WO2019022300A1 - Integrated equipment for automatic gene identification - Google Patents

Integrated equipment for automatic gene identification Download PDF

Info

Publication number
WO2019022300A1
WO2019022300A1 PCT/KR2017/011247 KR2017011247W WO2019022300A1 WO 2019022300 A1 WO2019022300 A1 WO 2019022300A1 KR 2017011247 W KR2017011247 W KR 2017011247W WO 2019022300 A1 WO2019022300 A1 WO 2019022300A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
module
extraction
mixer
chamber
Prior art date
Application number
PCT/KR2017/011247
Other languages
French (fr)
Korean (ko)
Inventor
이태재
신수정
임선영
김지현
신설이
이문근
이경균
배남호
이석재
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2019022300A1 publication Critical patent/WO2019022300A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • G01N35/085Flow Injection Analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips

Definitions

  • the present invention relates to an integrated automatic gene discrimination facility, and more particularly, to an integrated automatic gene discrimination facility capable of automatically discriminating the gene of a detection target organism automatically.
  • nano-biotechnology capable of directly confirming and manipulating biomolecule behavior of nano units such as genes, proteins and cells of an object have been actively conducted.
  • Such nano-biotechnology can be used to diagnose a disease or to determine the type of a target object, and thus the recent industrial field is being expanded.
  • a lab-on-a-chip is a type of biochip that allows a small chip to perform research that can be done in a laboratory.
  • the lab-on-a-chip is made of plastic, glass, silicon, etc. to create microchannels of nanometer (nm) or less.
  • nm nanometer
  • a typical lab-on-a-chip mixes a PCR buffer and a gene to amplify the gene.
  • the lab-on-a-chip is provided by laminating thin films, there is a problem that the PCR buffer injected between the thin films and the gene are difficult to be mixed quickly.
  • the conventional gene chip is not fully automatic, and it takes a lot of time to identify the gene, which is not practical.
  • An object of the present invention to solve the above problems is to provide an integrated automatic gene discrimination facility capable of automatically discriminating the gene of the detection target bacteria automatically.
  • a method for manufacturing a genetic material An upper module provided on the upper part of the main body module and covering the upper part of the integrated automatic gene discrimination chip when it is turned forward; A flow module coupled to the upper module, the flow module being adapted to control the flow of fluid in the integrated automatic gene discrimination chip; An amplification module provided in the main body module and provided under the amplifier of the integrated automatic gene discrimination chip; A discriminating module provided at an upper portion of the main body module and connected to an electrode unit of the integrated automatic gene discrimination chip; And a control module provided in the main body module, wherein the discrimination module discriminates a gene by measuring a current amount of a mixed substance.
  • the upper module includes an upper module body unit forming a main body and covering the upper part of the integrated automatic gene discrimination chip; And a hinge unit provided on one side of the upper module body unit, wherein the upper module body unit is rotatable forward and rearward to the hinge unit.
  • the flow module includes: a plurality of flow pump units connected to the integrated automatic gene discrimination chip to inject and suck air; And a plurality of flow valve units for controlling the flow of the fluid by opening and closing the valves in the integrated chip for fully automatic gene discrimination.
  • the flow pump unit includes: a first flow pump unit connected to a metering pump unit, a mixer pump unit, and a mixer pressure control unit of the integrated automatic gene discrimination chip; A second flow pump unit connected to the amplification pump unit, the extraction chamber pump unit and the extraction pressure regulation unit of the integrated automatic gene discrimination chip; And a third flow pump unit connected to the discrimination pump unit and the discrimination pressure regulating unit of the fully automatic gene discrimination integrated chip.
  • a first flow valve unit connected to an extraction container valve of the integrated automatic gene discrimination chip; A second flow valve unit connected to the extraction chamber valve unit and the extraction air injection valve of the integrated automatic gene discrimination chip; A third flow valve unit connected to the mixer valve unit of the integrated automatic gene discrimination chip; A fourth flow valve unit connected to the quantitative valve unit of the integrated automatic gene discrimination chip; A fifth flow valve unit connected to the amplification valve unit of the integrated automatic gene discrimination chip; And a sixth flow valve unit connected to the amplification mixing valve unit of the integrated automatic gene discrimination chip.
  • the flow pump unit comprises: a fluid delivery tube forming a body and coupled to the upper module; And a pressure regulating tube provided on one side of the fluid transfer tube, wherein the pressure regulating tube is configured to regulate the flow of the fluid between the pump and the fluid transfer tube when the fluid transfer tube is connected to the pump of the fully automatic gene- To the outside.
  • the flow pump unit comprises: a fluid delivery body forming a body and coupled to the upper module; An air discharge hole formed in the fluid transfer body; A fluid delivery tube having one end connected to a rotary valve provided in the main body module and the other end connected to a pump of the integrated automatic gene discrimination chip; And a sealing member provided so as to be rotatable forward and rearward and fixed to seal the air discharge hole when rotating backward.
  • the air discharge hole may discharge the air between the inner surface of the other end of the fluid transfer tube and the outer surface of the pump to the outside when the other end of the fluid transfer tube is connected to the pump And the like.
  • the amplification module may include: an amplification module main unit provided in the main body module and coupled to a position corresponding to the amplifier; A heater unit coupled to the amplification module main unit; A heat sink unit provided below the heater unit; And a fan unit coupled to one side of the heat sink unit, wherein the amplification module repeatedly raises and lowers the temperature of the amplifier to perform PCR of a gene.
  • the discriminating module may include a pogo pin array body provided at an upper portion of the main body module and provided at a position adjacent to the electrode unit of the integrated automatic gene discrimination chip to form a body; A pogo pin array lifting body coupled to one side of the pogo pin array body so as to be able to move up and down, and the other side of which extends toward an upper portion of the electrode unit; And a pogo pin provided on the other side of the pogo pin array lifting body for measuring an amount of current in contact with the electrode unit, wherein the pogo pin array lifting body is lifted and lowered vertically so that the pogo pin and the electrode unit are in contact with each other .
  • the present invention provides a gene discrimination apparatus using an integrated automatic gene discrimination facility.
  • the present invention provides a food poisoning discriminator using an integrated automatic gene discrimination facility.
  • the present invention provides a fish species discriminator to which a fully automatic gene discrimination integration facility is applied.
  • the effect of the present invention according to the above configuration is that the bacteria to be detected can be easily concentrated using the magnetic force, and the bacteria to be detected are concentrated in two stages using the concentrating section and the extracting section, Mixing can be prevented. That is, accurate test results can be obtained.
  • the quantitative chamber portion, the quantitative stopper portion, and the remaining amount discharging portion of the present invention can be filled with the predetermined mixed PCR solution in each of the metering chambers without any separate control. That is, the present invention can control the mixed PCR solution injected into the amplifier to be always constant automatically, thereby improving the accuracy of the experiment, and it is economical to inject the mixed PCR solution quickly.
  • the quantitative air filter unit of the present invention eliminates the bubbles contained in the mixed PCR solution transferred toward the amplifier, thereby causing an error in the experimental results due to the air contained in the mixed PCR solution when the mixed PCR solution is amplified Can be prevented.
  • the quantitative air filter unit of the present invention can prevent the mixed PCR solution stored in the amplifier from being pressurized even when the metering pump unit continuously injects air. That is, the quantitative air filter unit is convenient because the metering pump unit can precisely control the time for injecting air to transport the mixed PCR solution.
  • the quantitative support hole of the present invention can prevent a problem that leakage occurs when the film substrate laminated by a plurality of layers spreads when air is injected into the metering pump unit.
  • the amplifying film portion of the amplifier of the present invention does not leak because each film is stacked so as to cover all the upper surfaces of the films laminated on the lower side.
  • the present invention shortens the preparation time for gene discrimination, and makes it possible to quickly identify the gene.
  • FIG. 1 and FIG. 2 are diagrams illustrating the configuration of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
  • FIG. 3 is a combined perspective view of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
  • FIG. 4 is an exploded perspective view of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
  • FIG. 5 is an illustration of a mixer main chamber portion of a blender of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
  • FIG. 6 is an exemplary diagram illustrating a vortex induction unit of a blender of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an internal fluid flow of a mixer main chamber part of a blender of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
  • FIG. 8 is an exploded perspective view of an amplifier of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
  • FIG. 9 is an exemplary diagram of a discriminator of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a gene discrimination method according to an embodiment of the present invention.
  • Fig. 11 is a flowchart of a step of concentrating the detection target bacteria of the gene discrimination method according to an embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a step of generating a primary mixed solution in the step of concentrating a detection target bacterium in the gene discrimination method according to an embodiment of the present invention.
  • FIG. 13 is a flowchart illustrating a step of injecting a primary mixed solution of a step of concentration of a detection target bacterium in a method for identifying a gene according to an embodiment of the present invention into a concentrating part.
  • FIG. 14 is a flowchart illustrating a step of concentrating the detection target bacteria by discharging a foreign matter solution in the step of concentrating the detection target bacteria in the gene discrimination method according to an embodiment of the present invention.
  • FIG. 15 is a flowchart illustrating a step of transferring a second mixed solution in the step of concentrating the detection target bacteria in the gene discrimination method according to an embodiment of the present invention to the extraction unit.
  • FIG. 16 is a flowchart showing a step of re-concentrating the detection target bacteria in the step of concentrating the detection target bacteria in the gene discrimination method according to an embodiment of the present invention.
  • 17 is a flowchart of a step of extracting a gene of the gene discrimination method according to an embodiment of the present invention.
  • FIG. 18 is a flowchart illustrating a step of extracting a gene from a detection subject bacterium in the step of extracting a gene of the gene discrimination method according to an embodiment of the present invention.
  • FIG. 19 is a flowchart illustrating a step of transferring a gene to a blender in the step of extracting a gene of the gene discrimination method according to an embodiment of the present invention.
  • FIG. 20 is a flowchart of a step of forming a mixed PCR solution of a gene discrimination method according to an embodiment of the present invention.
  • FIG. 21 is a flowchart of a step of injecting a gene according to an embodiment of the present invention.
  • FIG. 22 is a flowchart of a step of forming a mixed material of the gene discrimination method according to an embodiment of the present invention.
  • FIG. 23 is a flowchart of a step of discriminating genes of a gene discrimination method according to an embodiment of the present invention.
  • FIG. 24 is a perspective view of an integrated module for fully automatic gene identification according to an embodiment of the present invention, in which an upper module is rotated forward;
  • 25 is a top view of an integrated automatic gene discrimination apparatus according to an embodiment of the present invention.
  • 26 and 27 are perspective views of the upper module of the integrated automatic gene discrimination apparatus according to the embodiment of the present invention rotated backward.
  • FIG. 28 is a perspective view illustrating an integrated automatic gene discrimination chip mounted on a main body module of an integrated automatic gene discrimination facility according to an embodiment of the present invention.
  • FIG. 29 is a side perspective view of the upper module of the integrated automatic gene discrimination apparatus according to an embodiment of the present invention, which is rotated forward; FIG.
  • FIG. 30 is a perspective view of a rotary valve unit of an integrated automatic gene discrimination integrated facility according to an embodiment of the present invention.
  • 31 is a perspective view of the fluid pump unit of the integrated automatic gene discrimination apparatus according to another embodiment of the present invention in which the sealing member is rotated backward.
  • 32 is a side view of the flow pump unit of the integrated automatic gene discrimination apparatus according to another embodiment of the present invention in which the sealing member is rotated forward;
  • FIG. 33 is a perspective view showing an upper part of a main body module in which an integrated automatic gene discrimination chip of an integrated automatic gene discrimination facility according to an embodiment of the present invention is detached.
  • FIG. 34 is a perspective view of an amplification module of an integrated automatic gene discrimination apparatus according to an embodiment of the present invention.
  • a method for manufacturing a genetic material An upper module provided on the upper part of the main body module and covering the upper part of the integrated automatic gene discrimination chip when it is turned forward; A flow module coupled to the upper module, the flow module being adapted to control the flow of fluid in the integrated automatic gene discrimination chip; An amplification module provided in the main body module and provided under the amplifier of the integrated automatic gene discrimination chip; A discriminating module provided at an upper portion of the main body module and connected to an electrode unit of the integrated automatic gene discrimination chip; And a control module provided in the main body module, wherein the discrimination module discriminates a gene by measuring a current amount of a mixed substance.
  • FIG. 1 and FIG. 2 are diagrams illustrating the configuration of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
  • 3 is an assembled perspective view of an integrated automatic gene discrimination chip according to an embodiment of the present invention
  • FIG. 4 is an exploded perspective view of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
  • the integrated automatic gene discrimination chip 1000 includes a concentrator 100, a mixer 200, a quantifier 300, an amplifier 400, a mixer 500, a discriminator 600 A main body chip 700, and a frame machine 800.
  • the concentrator 100 may be provided to extract a foreign object from a mixed solution in which a desalting solution and magnetic particles are mixed to concentrate the detection target bacteria, and to extract a gene in the concentrated detection target bacteria.
  • the buffer unit 120, the concentration pump unit 130, the concentration unit 140, the foreign matter discharge unit 150, And may include a transfer valve unit 190.
  • the mixing unit 110 is provided upstream of the thickening unit 140 to mix the desorption solution and the magnetic particles and includes a mixing vessel unit 111, a mixing heating unit 112, a mixing motor unit 113, And a mixing valve unit (114).
  • the mixing vessel unit 111 may be provided so that the desorption solution and the magnetic particles are injected, and the desorption solution and the magnetic particles are supported for a predetermined time.
  • the desolvation solution may be a solution which has been desorbed from food, fish, etc., but is not limited thereto.
  • the magnetic particles may be bonded to the detection object bacteria contained in the desorption solution, and may be particles having magnetic properties.
  • the mixing heating unit 112 is connected to the mixing container unit 111 and can heat the mixing container unit 111 to a predetermined temperature. At this time, the mixing heating unit 112 may heat the mixing vessel unit 111 to 32 to 42 degrees so that the desorption solution and the magnetic particles can be actively mixed.
  • the mixing motor unit 113 may be connected to the mixing container unit 111 to apply vibration to the mixing container unit 111. Specifically, the mixing motor unit 113 may mix the desalination solution and the magnetic particles contained in the mixing vessel unit 111 by applying vibration to the mixing vessel unit 111 for 20 to 120 minutes .
  • the mixing vessel unit 111 is heated by the mixing heating unit 112 and the mixing motor unit 113 generates vibration to mix the desorption solution and the magnetic particles, The mixing efficiency of the solution and the magnetic particles can be further improved. And, when the desalination solution and the magnetic particles are mixed, the detection subject bacteria contained in the desorption solution can be combined with the magnetic particles.
  • the mixing valve unit 114 is provided between the mixing vessel unit 111 and the thickening unit 140 and is capable of selectively providing the mixed primary solution to the thickening unit 140 . Specifically, the mixing valve unit 114 is closed during the mixing of the desorption solution and the magnetic particles in the mixing vessel unit 111, and when the desorption solution and the magnetic particles are mixed, The mixed solution may be supplied to the concentrating part 140.
  • the buffer unit 120 may be provided upstream of the thickening unit 140 and the buffer unit 120 may be provided to inject the cleaning solution and the transferring solution into the thickening unit 140 have. Specifically, the buffer unit 120 may inject the cleaning solution into the thickening unit 140 so that the foreign matter solution contained in the primary mixed solution may be discharged through the foreign matter discharging unit 150.
  • the buffer unit 120 can transfer the secondary mixed solution stored in the concentrating unit 140 to the extracting unit 180 by injecting the transferring solution into the concentrating unit 140.
  • the secondary mixed solution refers to a solution in which the foreign matter solution is discharged and concentrated in the primary mixed solution.
  • the concentration pump unit 130 may be disposed downstream of the mixing unit 110 and the buffer unit 120 and may be provided upstream of the concentration unit 140.
  • the concentration pump unit 130 may inject the primary mixed solution, the cleaning solution, and the transfer solution into the concentration unit 140.
  • the concentrating unit 140 concentrates the detection target bacteria by discharging the foreign matter solution from the primary mixed solution in which the desorption solution and the magnetic particles are mixed, selectively generates a magnetic force, And is capable of concentrating the bacteria to be detected.
  • the enrichment unit 140 includes a concentration vessel unit 141, a concentrated magnet unit 142, a concentration motor unit 143, a vibration motor unit 144 and a concentration valve unit 145.
  • the concentrating container unit 141 may be provided to receive and pass the primary mixed solution.
  • the concentrating container unit 141 may be provided in the form of a tube, and the liquid injected to one side may be discharged to the other side.
  • the shape of the concentrating container unit 141 is not limited to the embodiment.
  • the concentrated magnet unit 142 is provided adjacent to the concentrating container unit 141 and may generate magnetic force selectively in the concentrating container unit 141.
  • the concentrated magnet unit 142 may be provided below the concentrating container unit 141 and may be provided to apply or remove the magnetic force of the concentrating container unit 141.
  • the condensing magnet unit 142 may be connected to the condensing motor unit 143 to adjust the distance between the condensing magnet unit 142 and the condensing container unit 141. That is, the concentrated magnet unit 142 may move adjacent to the concentrated container unit 141 by the concentrated motor unit 143 to apply a magnetic force to the concentrated container unit 141. Conversely, the condensing magnet unit 142 may be separated from the condensing container unit 141 by the condensing motor unit 143 to remove the magnetic force applied to the condensing container unit 141.
  • the concentrated magnet unit 142 may have a plurality of magnets in the longitudinal direction of the concentrating container unit 141. At this time, the magnets may have different polarities of adjacent magnets. That is, the condensing magnet unit 142 may be provided such that the polarities of the magnets opposed to the concentrating container unit 141 are alternately repeated in the N and S poles.
  • the concentrated magnet unit 142 may be electromagnetically generated to selectively generate a magnetic force in the concentrating container unit 141.
  • a magnetic force may be generated in the concentrated container unit 141 when a current is supplied to the concentrated magnet unit 142.
  • the concentrated motor unit 143 may not be provided.
  • the concentrated magnet unit 142 provided as an electromagnet as described above, since the magnetic force generated in the concentrating container unit 141 can be controlled by controlling the current flowing in the concentrated magnet unit 142, Easy magnetic control is possible.
  • the concentrated magnet unit 142 provided as described above can control the flow of the detection subject bacteria contained in the primary mixed solution by controlling the magnetic force applied to the concentrated container unit 141.
  • the magnetic particles combined with the detection target bacteria are moved toward the concentrated magnet unit 142 side by the magnetic force, And can be fixed to the inner wall of the container unit 141.
  • the vibrating motor unit 144 is connected to the concentrating container unit 141 and generates vibration in the concentrating container unit 141 when the secondary mixed solution is transferred to the extracting unit 180 And the bacteria to be detected attached to the concentrating container unit (141) are peeled off.
  • the secondary mixed solution can maintain the state of being attached to the concentrated magnet unit 142 side in the concentrated vessel unit 141 even when the concentrated vessel unit 141 has its magnetic force removed. Therefore, when the vibration motor unit 144 transfers the secondary mixed solution in the concentrating container unit 141 to the extracting unit 180, Vibration can be applied to the mixed solution to separate from the inner wall.
  • the vibration motor unit 144 provided as described above can increase the transport efficiency of the secondary mixed solution.
  • the foreign matter discharging unit 150 may be disposed downstream of the thickening unit 140 and the extracting unit 180 and the foreign matter discharging unit 150 may include the thickening unit 140 and the extracting unit 180 ) May be provided to discharge the foreign substance solution.
  • the foreign matter discharge unit 150 includes a foreign matter outlet unit 151, a first discharge valve unit 152, and a second discharge valve unit 153.
  • the foreign matter outlet unit 151 is disposed on the downstream side of the concentrating unit 140 and the extracting unit 180 so that the foreign matter solution can be discharged.
  • the first discharge valve unit 152 is provided between the enrichment unit 140 and the discharge port unit 151. When the foreign matter solution having passed through the enrichment unit 140 is transferred to the discharge port unit 151 , And can be opened. The first discharge valve unit 152 may be closed when the second mixed solution is transferred from the enrichment unit 140 to the extraction unit 180.
  • the second discharge valve unit 153 is provided between the extraction unit 180 and the discharge unit 151 so that when the foreign matter solution having passed through the extraction unit 180 is transferred to the discharge unit 151 , And can be opened.
  • the second discharge valve unit 153 may be closed when the gene extracted from the extractor 180 is transferred to the mixer 200.
  • the extraction chamber unit 160 can inject the extraction solution for extracting the genes in the detection target bacteria into the extraction unit 180 and the extraction chamber unit 161, the extraction chamber pump unit 162, Unit 163 and an extraction chamber pressure regulating unit 164.
  • the extraction chamber unit 161 may be provided to receive the extraction solution and may be provided on the upstream side of the extraction unit 180.
  • the extraction chamber pump unit 162 may be connected to the extraction chamber unit 161 to inject air to supply the extraction solution contained in the extraction chamber unit 161 to the extraction unit 180.
  • the extraction chamber valve unit 163 is provided between the extraction chamber unit 161 and the extraction unit 180 and may be provided to control whether the extraction solution contained in the extraction chamber unit 161 is supplied or not have.
  • the extraction chamber pressure regulating unit 164 is connected to the extraction chamber pump unit 162 and the extraction chamber pressure regulating unit 164 is connected to the fluid transfer tube for injecting air into the extraction chamber unit 161
  • the extraction chamber pressure regulating unit 164 thus provided is configured such that when the fluid transfer tube is connected to the extraction chamber pump unit 162, air between the extraction chamber pump unit 162 and the fluid transfer tube is introduced into the extraction chamber pump It is possible to prevent a problem of flowing into the extraction chamber unit 161 through the unit 162. That is, only a predetermined amount of air can always be injected into the extraction chamber unit 161.
  • the extraction chamber pressure regulating unit 164 may be opened when the extraction chamber pump unit 162 discharges the extraction solution contained in the extraction chamber unit 161 to regulate the internal pressure.
  • the extraction chamber pressure regulating unit 164 thus provided can improve the safety by allowing the fluid transfer tube to be separated from the extraction chamber pump unit 162 while the internal pressure is adjusted.
  • the extraction air injection unit 170 is provided on the upstream side of the extraction unit 180 and may include an extraction air injection unit 171 and an extraction air injection valve 172.
  • the extraction air injection unit 171 injects air into the extraction unit 180 to discharge the gene extracted from the extraction unit 180 toward the mixer 200 provided downstream of the extraction unit 180 can do. At this time, the extraction air injection unit 171 can inject air into the extraction unit 180 in a state where a magnetic force is applied to the extraction unit 180. In this way, when the extraction unit 180 is applied with a magnetic force, the detection target bacteria and the magnetic particles are attached to the extraction unit 180 and fixed. Therefore, in a state where the extraction unit 180 is applied with a magnetic force, only the genes extracted from the detection subject organism can be transferred to the mixer 200.
  • the extraction air injection unit 171 injects air into the extraction unit 180 and transfers the gene in the extraction unit 180
  • the extraction chamber unit 160 is also connected to the extraction unit 180
  • the extraction solution may be further injected to more smoothly transfer the gene.
  • the extracting unit 180 can re-concentrate the detection target bacteria by discharging the foreign matter solution from the secondary mixed solution in a state in which the detection target bacteria are concentrated by the concentration unit 140, The gene to be detected can be extracted.
  • the extraction unit 180 may selectively generate a magnetic force to fix the detection target bacteria combined with the magnetic particles in the extraction unit 180, thereby re-concentrating the detection target bacteria and extracting the gene to be detected have.
  • the extraction unit 180 may include an extraction container unit 181, an extraction magnet unit 182, an extraction motor unit 183, an extraction temperature control unit 184, and an extraction cooling unit 185 .
  • the extraction container unit 181 accommodates the detection target bacteria combined with the magnetic particles, and may be provided so that the secondary mixed solution passes through the extraction container unit 181.
  • the extraction container unit 181 may be provided in a tube shape, but the shape of the extraction container unit 181 is not limited thereto.
  • the extraction magnet unit 182 is provided adjacent to the extraction container unit 181 and can selectively generate magnetic force in the extraction container unit 181.
  • the extraction magnet unit 182 may be provided below the extraction container unit 181 and may be provided to apply or remove the magnetic force of the extraction container unit 181.
  • the extraction magnet unit 182 may be connected to the extraction motor unit 183 to adjust the distance from the extraction container unit 181. That is, the extraction magnet unit 182 may be moved adjacent to the extraction container unit 181 by the extraction motor unit 183 to apply a magnetic force to the extraction container unit 181. Conversely, the extraction magnet unit 182 may be separated from the extraction container unit 181 by the extraction motor unit 183 to remove the magnetic force applied to the extraction container unit 181.
  • the extraction magnet unit 182 may have a configuration in which a plurality of magnets are provided in the longitudinal direction of the extraction container unit 181. At this time, the magnets may have different polarities of adjacent magnets. That is, the extraction magnet unit 182 may be provided such that the polarities of the magnets opposed to the extraction container unit 181 are alternately repeated in the N and S poles. At the intersection of the N pole and the S pole, a strong magnetic flux is formed. Therefore, since the extraction magnet unit 182 captures and captures magnetic particles intensively at the point where the N pole and the S pole intersect, it is possible to prevent the problem that the detection target bacteria combined with the magnetic particles are lost.
  • the extraction magnet unit 182 may be electromagnetically generated to selectively generate magnetic force in the extraction container unit 181.
  • a magnetic force may be generated in the extraction container unit 181 when a current is supplied to the extraction magnet unit 182. Conversely, if the current can not flow through the extraction magnet unit 182, the magnetic force applied to the extraction container unit 181 can be removed. If the extraction magnet unit 182 is provided with an electromagnet, the extraction motor unit 183 may not be provided.
  • the extraction magnet unit 182 provided as described above can control the flow of the detection subject bacteria contained in the secondary mixed solution by controlling the magnetic force applied to the extraction container unit 181.
  • the extraction magnet unit 182 when the extraction magnet unit 182 generates a magnetic force in the extraction container unit 181, the magnetic particles combined with the detection target bacteria are moved toward the extraction magnet unit 182 by the magnetic force, And can be fixed to the inner wall of the container unit 181.
  • the extraction temperature control unit 184 may be connected to the extraction container unit 181 to heat and cool the extraction container unit 181 into which the extraction solution is injected to a predetermined temperature.
  • the extraction temperature control unit 184 can heat and cool the extraction container unit 181 with the magnetic force acting on the extraction container unit 181 being removed so that the temperature of the secondary mixture solution is uniform .
  • the extraction container unit 181 can be heated at 90 to 100 degrees for 5 to 20 minutes. If the temperature of the extraction container unit 181 is less than 90 degrees, the extraction solution may not actively active. If the temperature of the extraction container unit 181 exceeds 100 degrees, the gene may be destroyed, The function of the solution may be lost. Thus, the extraction container unit 181 can be heated from 90 to 100 degrees for 5 minutes to 20 minutes.
  • the extraction solution contained in the extraction container unit 181 heated in an appropriate range can actively break down the cells of the detection target bacteria to rapidly extract genes.
  • the temperature of the extraction container unit 181 is not limited to that described above, and it may be maintained at room temperature depending on the type of extraction solution.
  • the extraction temperature control unit 184 can cool the heated extraction container unit 181 to room temperature. At this time, the extraction temperature control unit 184 may cool the temperature of the extraction container unit 181 by 20 to 30 degrees.
  • the extraction cooling unit 185 may be connected to the extraction temperature control unit 184 to cool the extraction temperature control unit 184.
  • the extraction cooling unit 185 is adapted to be operated simultaneously when the extraction temperature control unit 184 heats the extraction container unit 181 to prevent the failure of the extraction temperature control unit 184 due to overheating And may be operated when the extraction temperature control unit 184 exceeds a predetermined temperature.
  • the extraction cooling unit 184 can operate even when the extraction temperature control unit 184 cools the extraction vessel unit 181 to room temperature so that cooling can be performed more quickly.
  • the extraction unit 180 may further include a first extraction vessel valve 186 and a second extraction vessel valve 187.
  • the first extraction vessel valve 186 and the second extraction vessel valve 187 may be provided adjacent to both sides of the extraction vessel unit 181, respectively.
  • the first extraction vessel valve 186 and the second extraction vessel valve 187 are connected to the extraction vessel unit 181 when the extraction vessel unit 181 is heated by the extraction temperature control unit 184, It can be controlled to adjust the internal pressure and prevent the contained solution from flowing out.
  • the mixer transfer valve unit 190 is provided downstream of the extraction unit 180 and may be opened when the extracted gene is transferred to the mixer 200.
  • FIG. 5 is a diagram illustrating a mixer main chamber part of a blender of an integrated automatic gene discrimination chip according to an embodiment of the present invention
  • FIG. 6 is a block diagram illustrating a vortex induction unit of a blender of an integrated automatic gene discrimination chip according to an embodiment of the present invention
  • FIG. 7 is an exemplary view illustrating an internal fluid flow of a mixer main chamber portion of a mixer of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
  • the mixer 200 is provided downstream of the concentrating extractor 100, and the gene and the PCR buffer are mixed to form a mixed PCR solution.
  • the mixer 200 includes a mixer main chamber 210, a mixer auxiliary chamber 220, a mixer transfer chamber 230, a mixer pump 240, a mixer pressure regulator 250, And a mixer valve unit 270.
  • the gene and the PCR buffer (polymerase chain reaction buffer) are arranged to be mixed while reciprocating between the mixer auxiliary chamber unit 220 and the mixer main chamber unit 210 . ≪ / RTI >
  • the mixer main chamber portion 210 includes a mixer main chamber body 211, a mixer main chamber extension 212, a mixer injection hole 213, a mixer air filter 214 and a vortex induction unit 215, And the PCR buffer is accommodated and mixed with the gene extracted from the target bacteria.
  • the mixer main chamber main body 211 is provided so that the gene and the PCR buffer can be accommodated therein.
  • the mixer main chamber body 211 may be provided in the main body chip 700 formed by stacking a plurality of films, and a space in which the gene and the PCR buffer can be accommodated may be formed therein.
  • the mixer main chamber extension body 212 extends to one side of the mixer main chamber body 211 and a relatively higher step than the mixer main chamber main body 211 can be formed.
  • the mixer main chamber extension 212 is connected to the mixer sub chamber 220 only when the mixer sub chamber 220 sucks the gene and the PCR buffer introduced into the mixer main chamber body 211. [ A step can be formed so as to be able to be transported.
  • the mixer main chamber extension 212 may prevent the gene and the PCR buffer from moving to the mixer sub-chamber 220 when the mixer sub-chamber 220 does not apply a suction force.
  • the mixer injection hole 213 is formed on the bottom surface of the mixer main chamber body 211 and the extracted gene can be injected. As shown in FIG. 7A, the PCR buffer is injected from the mixer main chamber extension 212 before the gene is introduced into the mixer main chamber body 211, and is injected into the mixer injection hole 213 To the front end of the housing. That is, the mixer injection hole 213 provided in the mixer main chamber body 211 can prevent the PCR buffer pre-filled in the mixer main chamber body 211 from flowing into the mixer injection hole 213 and flowing back May be provided.
  • the mixer air filter 214 is provided on the upper side of the mixer main chamber body 211 and may be provided on the upper side of the mixer injection hole 213.
  • the mixer air filter 214 mixes the gene and the PCR buffer while discharging the bubbles injected together with the gene through the mixer injection hole 213 to the outside.
  • the gene introduced through the mixer injection hole 213 includes bubbles.
  • the mixer air filter 214 can discharge the bubbles introduced together with the gene to the outside. At this time, the bubble may burst and the gene and the PCR buffer may be mixed. That is, the mixer air filter 214 can improve mixing efficiency.
  • the mixer air filter 214 may increase the mixing efficiency as described above while discharging the bubbles generated while the gene and the PCR buffer reciprocate.
  • the vortex induction unit 215 may be provided in the mixer main chamber body 211 and the vortex induction unit 215 may be provided to vortex while colliding with the gene and the PCR buffer when they move . 6, the vortex induction unit 215 may be provided to extend inward from both sides of the mixer main chamber body 211, And is provided. The vortex induction unit 215 may be provided on one side of the mixer main chamber body 211 and on the other side of the mixer main chamber body 211 so as to be offset from each other.
  • the vortex induction unit 215 may be provided to extend vertically inward from both sides of the mixer main chamber body 211, and as shown in FIG. 6 (b) and may be formed to extend diagonally inward from both side surfaces of the mixer main chamber body 211 as shown in Figs.
  • the vortex induction unit 215 may be extended in a curved shape from both sides of the mixer main chamber body 211 toward the inside.
  • the vortex induction unit 215 is not limited to the illustrated form, and may be included in one embodiment as long as the shape and position of vortex can be actively generated when the gene and the PCR buffer move.
  • the vortex induction unit 215 thus provided can improve the mixing efficiency of the gene and the PCR buffer.
  • the mixer main chamber body 211 provided as described above is provided on the main body chip 700 formed by lamination of thin films, the mixing of the gene and the PCR buffer is performed in the same space, .
  • the mixer main chamber part 210 according to the present invention is configured to rapidly mix the gene and the PCR buffer, so that the mixed PCR solution can be rapidly formed.
  • the mixer auxiliary chamber unit 220 is connected to the mixer main chamber unit 210 to receive the gene and the PCR buffer accommodated in the mixer main chamber unit 210.
  • the mixer transfer chamber part 230 is connected to the mixer auxiliary chamber part 220 and the mixer transfer chamber part 230 can be provided to receive a mixed PCR solution in which the gene and the PCR buffer are mixed.
  • the mixer transfer chamber 230 may be connected to the quantitative injector 300 so that the mixed PCR solution can be discharged toward the injector 300.
  • the mixer pump unit 240 is connected to the mixer transfer chamber unit 230 and the mixer pump unit 240 mixes the gene and the PCR buffer with the mixer auxiliary chamber unit 220 and the mixer main chamber unit 210 to reciprocate and mix air.
  • the mixer pump unit 240 sucks the mixed PCR solution contained in the mixer main chamber unit 210 and moves the mixed PCR solution to the mixer auxiliary chamber unit 220, As shown in FIG. 7 (c), air may be injected into the mixed PCR solution contained in the mixer auxiliary chamber 220 and transferred to the mixer main chamber 210. In this way, the mixer pump unit 240 can mix the gene and the PCR buffer between the mixer sub-chamber 220 and the mixer main chamber 210 and mix them.
  • the mixer pump unit 240 may suck the mixed PCR solution contained in the mixer auxiliary chamber unit 220 and store the mixed PCR solution in the mixer transfer chamber unit 230.
  • the mixer pump unit 240 may be configured to inject air to discharge the mixed PCR solution contained in the mixer transfer chamber unit 230 toward the metering injector 300.
  • the mixer pump unit 240 may inject the PCR buffer into the mixer main chamber 210. Specifically, the mixer pump unit 240 may inject a preset amount of PCR buffer into the mixer main chamber 210 before the gene is injected.
  • the mixer pressure regulator 250 is connected to the mixer pump 240 and the mixer pressure regulator 250 includes a fluid delivery tube (not shown) for injecting air into the mixer pump 240, The air between the mixer pump unit 240 and the fluid delivery tube is discharged to the outside and is then sealed.
  • the mixer pressure regulator 250 may be configured such that the air between the mixer pump unit 240 and the fluid delivery tube is supplied to the mixer pump unit 240 when the fluid delivery tube is connected to the mixer pump unit 240, Can be prevented. That is, only a predetermined amount of air can always be injected.
  • the mixer pressure regulator 250 may be opened when the mixer pump unit 240 discharges the mixed PCR solution to the quantitative injector 300 to regulate the internal pressure.
  • the mixer pressure regulator 250 may be separated from the mixer pump 240 in a state in which the inner pressure of the mixer pressure regulator 250 is adjusted, thereby improving safety.
  • the mixer support hole 260 may be formed at a position adjacent to the mixer pump 240 and the mixer pressure regulator 250.
  • the mixer support hole 260 may prevent the main body 700 from being deformed when the air flows into the mixer pump 240 and the mixer pressure regulator 250 .
  • the mixer support hole 260 prevents deformation of the main body chip 700, thereby preventing leakage of water.
  • the mixer valve unit 270 is provided between the mixer auxiliary chamber unit 220 and the mixer transfer chamber unit 230 and includes a first mixer valve 271 and a second mixer valve 272.
  • the first mixer valve 271 may control the flow between the mixer auxiliary chamber part 220 and the mixer transfer chamber part 230.
  • the second mixer valve 272 may control the flow between the mixer transfer chamber part 230 and the metering injector 300.
  • the first mixer valve 271 may be configured such that the mixer pump unit 240 sucks the mixed PCR solution contained in the mixer auxiliary chamber unit 220 and transfers the mixed PCR solution to the mixer transfer chamber unit 230 It may be in an open state. At this time, the second mixer valve 272 is closed.
  • the second mixer valve 272 may be opened when the mixer pump unit 240 transfers the mixed PCR solution contained in the mixer transfer chamber unit 230 to the metering injector 300. At this time, the first mixer valve 271 is closed.
  • the quantitative injector 300 is provided between the mixer 200 and the amplifier 400, and can inject the mixed PCR solution in a predetermined amount into the amplifier 400 .
  • the metering injector 300 includes a metering chamber 310, a metering stopper 320, a metering pump 340, a metering support hole 350, a metering valve 360, And a metering air filter unit 370.
  • the quantification chamber 310 has a plurality of quantification chambers for receiving a mixed PCR solution formed by mixing a gene and a PCR buffer.
  • the metering chamber 310 includes a first metering chamber 311, a second metering chamber 312, a third metering chamber 313, a fourth metering chamber 314, and a fifth metering chamber 315, .
  • the first to third quantification chambers 311 to 315 may be provided to have a size capable of accommodating a predetermined amount of the mixed PCR solution.
  • the first quantification chamber 311 is provided on the upstream side to which the mixed PCR solution flows, and the downstream side of the second quantification chamber 311, the third quantification chamber 313,
  • the first metering chamber 314 and the fifth metering chamber 315 may be sequentially arranged.
  • the number of the metering chamber units 310 is not limited to one embodiment but may be plural.
  • the metering stopper 320 is provided between adjacent pair of metering chambers, and has a plurality of metering stoppers having a relatively higher stepped portion compared to the metering chambers.
  • a first metering stopper 321 is provided between the first metering chamber 311 and the second metering chamber 312 and the second metering chamber 312 and the third metering chamber 313 are provided between the first metering chamber 311 and the second metering chamber 312,
  • a second metering stopper 322 is provided.
  • a third metering stopper 323 is provided between the third metering chamber 313 and the fourth metering chamber 314 and between the fourth metering chamber 314 and the fifth metering chamber 315
  • a fourth metering stopper 324 is provided.
  • the quantitative stopper unit 320 may be provided with a stepped portion for allowing the mixed PCR solution to pass therethrough in a state where the mixed PCR solution is filled in the quantitative chamber located upstream.
  • the first quantitative stopper 321 to the fourth quantitative stopper 324 of the quantitative stopper 320 may be formed so as to form steps having the same height. In the path of the mixed PCR solution, .
  • the introduced mixed PCR solution is first directed to the first quantitative stopper 321.
  • the first quantitative stopper 321 has a stepped height, the mixed PCR solution can not pass over the first quantitative stopper 321 and is naturally transferred to the first quantitative chamber 311, And is filled in the first metering chamber 311.
  • the first quantitative chamber 311 is filled with the mixed PCR solution, the water level of the mixed PCR solution rises by the step height of the first quantitative stopper 321, and the first quantitative stopper 321 It passes over.
  • the mixed PCR solution having passed through the first quantitative stopper 321 is directed to the second quantitative stopper 322.
  • the second quantitative stopper 322 also has a stepped height, the mixed PCR solution moves toward the second quantitative chamber 312 without passing over the second quantitative stopper 322, The chamber 312 is filled.
  • the second quantitative chamber 312 is filled with the mixed PCR solution, the water level of the mixed PCR solution rises by the step height of the second quantitative stopper 322, and the second quantitative stopper 322 It passes over.
  • the third PCR chamber 313 and the fourth PCR chamber 314 can be filled with the mixed PCR solution.
  • the quantitative stopper 320 is not provided in a stepped shape and the wall surface of the channel channel is made hydrophobic, the mixed PCR solution can be injected in a predetermined amount into each of the metering chambers in accordance with the difference in fluid resistance in the channel channel. .
  • the remaining amount discharging unit 330 may be provided to discharge the mixed PCR solution remaining after filling the metering chamber unit 310.
  • the metering stopper 320 further includes a discharge stopper 325 provided between the metering chamber 310 and the residual amount discharging unit 330.
  • the discharge stopper 325 is provided between the fifth metering chamber 315 and the remaining amount discharging portion 330, and is relatively higher than the metering stoppers 321, 322, 323, Can be formed.
  • the discharge stopper 325 may be discharged to the remaining amount discharging unit 330 through the mixed PCR solution while the mixed PCR solution is completely filled in the metering chamber 310 So that a stepped portion is formed.
  • the quantitative chamber 310, the quantitative stopper 320, and the residual amount discharger 330 provided as described above may be filled with a predetermined mixed PCR solution in each of the quantitative chambers without any separate control. That is, according to the present invention, the mixed PCR solution injected into the amplifier 400 can be constantly maintained, thereby improving the accuracy of the experiment, and the mixed PCR solution can be injected quickly, which is economical.
  • the metering pump unit 340 is provided on the upstream side of the metering chamber unit 310 and can transfer the mixed PCR solution contained in the metering chamber unit 310 to the amplifier 400. More specifically, the metering pump unit 340 is provided between the metering chamber unit 310 and the metering stopper unit 320. When the metering chamber unit 310 is filled with the mixed PCR solution, So that the mixed PCR solution contained in the quantification chamber 310 can be transferred to the amplifier 400.
  • the quantitative support hole 350 may be formed at a position adjacent to the quantitative pump 340. When the air is injected into the metering pump unit 340, the quantitative support hole 350 may prevent the main body chip 700 from being deformed. Also, the quantitative support hole 350 can prevent the deformation of the main body chip 700, thereby preventing the leakage of water.
  • the metering valve unit 360 is provided on the upstream side of the metering pump unit 340.
  • the metering valve unit 360 may be disposed between the metering pump unit 340 and the metering stopper unit 320.
  • the metering valve unit 360 may be disposed between the metering pump unit 340 and the metering stopper unit 320, When the mixed PCR solution contained in the metering chamber 310 is transferred to the amplifier 400, it may be in a closed state.
  • the quantitative air filter unit 370 is provided on the downstream side of the quantification chamber unit 310 and the quantitative air filter unit 370 is configured to collect bubbles contained in the mixed PCR solution transferred toward the amplifier 400 Can be removed. Specifically, when the amplifier 400 amplifies the gene contained in the mixed PCR solution, if the bubble is included, an error may occur in the experimental result. Therefore, the quantitative air filter unit 370 can remove bubbles contained in the mixed PCR solution transferred toward the amplifier 400, thereby preventing the above-described problems from occurring.
  • the quantitative air filter unit 370 may be configured to discharge all of the air injected from the quantitative pump unit 340 to stop the transfer of the mixed PCR solution when the mixed PCR solution has passed through the quantitative air filter unit 370 . Specifically, when the quantitative pump unit 340 injects air and the mixed PCR solution contained in the quantification chamber unit 310 is all transferred to the amplifier 400, the quantitative pump unit 340 is injected by the quantitative pump unit 340 The air can be exhausted through the quantitative air filter unit 370.
  • the quantitative air filter unit 370 may prevent the mixed PCR solution contained in the amplifier 400 from being pressurized even when the metering pump unit 340 continuously injects air. Accordingly, the quantitative air filter unit 370 is not required to precisely control the injection time of the air for feeding the mixed PCR solution by the quantitative pump unit 340, which is convenient.
  • FIG. 8 is an exploded perspective view of an amplifier of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
  • the amplifier 400 is provided downstream of the mixer 200, and performs PCR for the mixed PCR solution to form an amplification solution .
  • the amplifier 400 includes an amplification film unit 410, an amplification main chamber unit 420, a first amplification valve unit 430, a second amplification valve unit 440, an amplification pump unit 450, A chamber portion 460, an amplification mixing valve portion 470, and an amplification support hole 480.
  • the amplification main chamber part 420 is provided in the amplification film part 410, and a mixed PCR solution formed by mixing a gene and a PCR buffer may be accommodated.
  • the amplification main chamber 420 may form a channel through which the mixed PCR solution passes, and may be provided such that heating and cooling are continuously performed to generate a polymerase chain reaction.
  • the first amplification valve unit 430 may be provided on the amplification film unit 410 and may be provided on the upstream side of the amplification main chamber unit 420.
  • the second amplification valve unit 440 may be provided on the amplification film unit 410 and on the downstream side of the amplification main chamber unit 420.
  • the first amplification valve unit 430 and the second amplification valve unit 440 may be accommodated in the amplification main chamber 420 during the polymerase chain reaction have.
  • the amplification film part 410 is laminated with a plurality of films and the valve film 411 is laminated on the amplification main chamber film 412, the amplifying flow film 413, the flow path dummy film 414, the primary dummy film, A film 417, and a secondary dummy film.
  • the valve film 411 has the amplification main chamber part 420 at a position corresponding to the amplification main chamber part 420 formed in the main body chip 700,
  • the first amplification valve unit 430 and the second amplification valve unit 440 may be formed on the upstream side and the downstream side, respectively.
  • the amplification main chamber film 412 is stacked on the valve film 411 and the amplification main chamber part 420 may be formed at a position corresponding to the valve film 411.
  • the amplification main chamber film 412 may cover the entire upper portion of the valve film.
  • the amplification main chamber film 412 includes an amplification main chamber main film 412a and a wing film 412b.
  • the amplification main chamber part 420 may be formed in the amplification main chamber film 412 in a position and shape corresponding to the amplification main chamber part 420 formed in the valve film 411.
  • the wing films 412b may be provided on both sides of the main amplification main body film 412a and cover the upper portions of the first amplification valve unit 430 and the second amplification valve unit 440 .
  • the blade film 412b may be formed to have a step height higher than the amplification main chamber main film 412a.
  • the amplification channel film 413 is provided to cover the upper part of the amplification main chamber main film 412a and the amplification main chamber part 420 is formed at a position corresponding to the amplification main chamber main film 412a .
  • the amplification channel film 413 may be formed to have a thickness equal to that of the amplification main chamber main film 412a and the wing film 412b.
  • the channel dummy film 414 is stacked so as to cover the entire upper portion of the amplification main chamber film 421.
  • the channel dummy film 414 has the amplification main chamber part 420 may be formed.
  • the primary dummy film is stacked so as to cover the entire upper portion of the channel dummy film 414, and the amplification main chamber part 420, the first amplification valve part 430 And the second amplification valve unit 440 may be formed.
  • the primary dummy film is composed of the first primary dummy film 415 and the second primary dummy film 415, but the primary dummy film may be provided in more than one.
  • the valve dummy film 417 is stacked to cover the entire upper portion of the primary dummy film, and the first amplification valve unit 430 and the second amplification valve unit 440 may be formed.
  • the secondary dummy film is stacked so as to cover the entire upper portion of the valve dummy film 417, and the amplification main chamber part 420, the first amplification valve part 430 And the second amplification valve unit 440 may be formed.
  • the secondary dummy film is composed of the first secondary dummy film 418 and the second secondary dummy film 419, but the secondary dummy film may be provided in more than one.
  • the primary dummy film and the secondary dummy film provided as described above can provide a space for swelling when the temperature of the mixed PCR solution contained in the amplification main chamber part 420 increases. That is, the dummy films provide an inflatable space of the amplification main chamber part 420 to prevent damage and sample leakage.
  • the amplifying film part 410 provided as described above is provided such that the films laminated on the valve film 411 cover the entire upper portion of the valve film 411 so that the liquid does not flow out, .
  • the amplification pump unit 450 is provided downstream of the amplification main chamber 420 and is capable of sucking and injecting air to transfer the amplified amplified solution.
  • the amplification auxiliary chamber part 460 is provided between the amplification pump part 450 and the amplification main chamber part 420 and can accommodate the amplification solution.
  • the amplification mixing valve unit 470 may be provided between the amplification assisting chamber unit 460 and the mixer 500.
  • the amplification support part 480 is provided at a position adjacent to the amplification pump part 450 and injects air into and discharges the amplification pump part 450.
  • the amplification pump unit 450 sucks air in a state in which the amplification / mixing valve unit 470 is closed, and supplies the amplification solution stored in the amplification main chamber unit 420 to the amplification auxiliary chamber unit 460
  • the amplification mixing valve unit 470 is opened and the amplification solution contained in the amplification auxiliary chamber unit 460 is injected into the mixer 500 ).
  • the mixer 500 is provided downstream of the amplifier 400 and may mix a signal material with the amplified solution amplified by the amplifier 400 to form a mixed material.
  • the mixer 500 may include a mixing chamber part 510 and a mixing auxiliary chamber part 520.
  • the mixing chamber part 510 includes a mixing chamber main body 511, a mixing chamber extension 512, a mixing injection hole 513, a mixing air filter 514 and a vortex induction unit (not shown).
  • the mixing chamber chamber body 511 is provided so that the amplification solution and the signal material can be received therein.
  • the mixing chamber chamber body 511 may be provided in the body chip 700 formed by stacking a plurality of films, and a space in which the amplification solution and the signal material can be accommodated may be formed therein.
  • the mixing chamber extension body 512 is provided to extend to one side of the mixing chamber main body 511 and relatively higher steps than the mixing chamber main body 511 can be formed. Specifically, the mixing chamber extension 512 is formed in the mixing auxiliary chamber part 520 only when the amplification solution and the signal material introduced into the mixing chamber main body 511 are sucked by the mixing auxiliary chamber part 520, A stepped portion may be formed so as to be able to be transported. The mixing chamber extension 512 may prevent the amplification solution and the signal material from moving to the mixing auxiliary chamber part 520 when the mixing auxiliary chamber part 520 does not apply a suction force.
  • the mixing hole 513 is formed on the bottom surface of the mixing chamber main body 511 to inject the amplification solution.
  • the signal material is injected from the mixing chamber chamber extension 512 before the amplification solution is introduced into the mixing chamber chamber body 511, And is filled up to the front end of the injection hole 513. That is, the mixing injection hole 513 provided in the mixing chamber main body 511 is positioned at a position where the signal material pre-filled in the mixing chamber chamber body 511 flows into the mixing injection hole 513, As shown in FIG.
  • the mixed air filter 514 is provided on the upper side of the mixing chamber main body 511 and may be provided on the upper part of the mixing injection hole 513.
  • the mixed air filter 514 may mix the amplification solution and the signal material while discharging the bubbles injected together with the amplification solution through the mixing injection hole 513 to the outside.
  • the amplification solution introduced through the mixing hole 513 includes bubbles.
  • the mixed air filter 514 may discharge the bubbles introduced together with the gene. At this time, the amplification solution and the signal material can be mixed with the bubbles. That is, the mixing air filter 514 can improve mixing efficiency.
  • the mixing air filter 514 may discharge the bubbles generated as the amplification solution and the signal material reciprocate to the outside, thereby improving the mixing efficiency as described above.
  • the vortex induction unit is substantially the same as the vortex induction unit 215 of the mixer 200, so that redundant description will be omitted.
  • FIG. 9A is an exploded perspective view of a discriminator of an integrated automatic gene discrimination chip according to an embodiment of the present invention
  • FIG. 9B is a diagram showing a discrimination of an integrated automatic gene discrimination chip according to an embodiment of the present invention Fig.
  • the discriminator 600 is provided downstream of the mixer 500, and can identify a gene contained in the mixed material.
  • the discrimination device 600 can discriminate the gene by measuring the amount of the current of the mixed material and includes an electrode unit 610, a discrimination substrate unit 620, a discrimination film unit 630, a discrimination unit 640 A discrimination pump unit 650, a discrimination pressure regulating unit 660 and a discrimination support hole 670.
  • the electrode unit 610 may be formed of a material such as platinum, gold, carbon, copper, nickel, or silver.
  • the electrode unit 610 may measure the amount of current of the mixed material, and may include a working electrode 611, a counter electrode 612, And includes a reference electrode 613.
  • the working electrode 611 can measure the amount of current of the mixed material.
  • the mixed material is a mixture of the amplification solution and the signal material, and the gene contained in the amplification solution is combined with the signal material. If the number of the genes is smaller than that of the signal substance, the signal substance remains in the mixed substance in a state that the signal substance can not bind to the gene.
  • the working electrode 611 can measure an electrical signal of the signal material that is not thus coupled. Therefore, the amount of current measured by the working electrode 611 can be changed in accordance with the amount of the signal material that is not coupled.
  • the counter electrode 612 can exchange electrons derived from the redox reaction of the signal material included in the mixed material with the working electrode 611. Specifically, the counter electrode 612 can exchange electrons derived from the signal material not associated with the gene of the mixed material through the redox reaction with the working electrode 611. The working electrode 611 can accurately measure the amount of current of the mixed material by measuring the amount of electrons exchanged with the counter electrode 612
  • the reference electrode 613 may be a reference for a voltage to be applied to the working electrode 611.
  • the reference electrode 613 has a reference voltage for each of the mixed materials and the working electrode 611 is adapted to apply a voltage according to a reference voltage of the reference electrode 613, (611) can maintain a relatively constant voltage with respect to the mixed material.
  • the applied voltage applied to the working electrode 611 may be a unique voltage value for causing a redox reaction depending on each signal material included in the mixed material.
  • the applied voltage may be adjusted in consideration of the reference electrode 613 so that the signal material included in the mixed material has a voltage value at which a redox reaction can occur.
  • the display voltage may be a sum of the reference voltage and the applied voltage.
  • the display voltage of the working electrode 611 is a reference voltage of 0.2V And an applied voltage of 0.5V.
  • the electrodes 511, 512 and 513 of the electrode unit 610 include a reaction part 614 contacting the mixed material and a ground part 615 extending from the reaction part 614 and grounded ). ≪ / RTI >
  • the reaction unit 614 may refer to a portion where the working electrode 611, the counter electrode 612, and the reference electrode 613 are in contact with the mixed material.
  • the mixed material may be electrochemically reacted with the electrode unit 610 while passing through the reaction unit 614.
  • the ground unit 615 may refer to a grounded portion of the electrodes 611, 612, and 613 included in the electrode unit 610 and may extend from the reaction unit 614.
  • the grounding unit 615 may be separated from the reaction unit 614 by the discriminating film unit 630 so as not to be in contact with the mixed substance.
  • a plurality of the electrode units 610 may be attached to the upper portion of the identification substrate unit 620.
  • the material of the identification substrate unit 620 may be glass, and a plurality of the electrode units 610 may be attached to the upper portion of the identification substrate unit 620 in the longitudinal direction. At this time, the material of the identification substrate unit 620 is not limited to glass.
  • the discriminating film unit 630 is attached to the upper portion of the discriminating substrate unit 620, and a reaction chamber through which the mixed substance passes may be formed.
  • the determination film unit 630 may be provided to form the reaction chambers at positions corresponding to the plurality of electrode units 610 provided in the longitudinal direction of the identification substrate unit 620.
  • the reaction chamber may be formed in such a shape that mixed material having passed through the mixer 200 flows into one side, reacts with the electrode unit 610, and is discharged to the other side.
  • the width of the discriminating film unit 630 is divided into the reaction part 614 and the grounding part 615 of the electrode unit 610 so that the grounding part 615 and the mixed material are not in contact with each other .
  • the discriminating and discharging unit 640 may be disposed downstream of the discriminating film unit 630 and may receive the mixed substance that has passed through the discriminating film unit 630 and has been subjected to gene discrimination to be discharged to the outside.
  • the discrimination pump unit 650 is connected to the mixing auxiliary chamber unit 520 and the discrimination pump unit 650 amplifies the amplification solution and the signal material from the mixing chamber main body 510 and the mixing auxiliary chamber unit 520) to be mixed and reciprocated.
  • the discrimination pump unit 650 sucks the air in the mixing chamber part 510 to move the amplification solution and the signal material to the mixing auxiliary chamber part 520,
  • the amplification solution and the signal material accommodated in the chamber part 520 can be transferred to the mixing chamber part 510.
  • the discrimination pump unit 650 may mix the amplification solution and the signal material between the mixing auxiliary chamber unit 520 and the mixing chamber chamber unit 510 to form a mixed material.
  • the discrimination pump unit 650 may suck air such that the mixed material contained in the mixing auxiliary chamber unit 520 passes through the discriminating film unit 630 and moves to the discriminating discharging unit 640 .
  • the discrimination pressure regulating unit 660 is connected to the discrimination pump unit 650 and the discrimination pressure regulating unit 660 is connected to the discrimination pump unit 650 through an air suction tube (not shown)
  • the air in the space between the discrimination pump unit 650 and the air suction tube is discharged to the outside and is then sealed.
  • the discrimination pressure regulating unit 660 provides air to the discrimination pump unit 650, It is possible to prevent the problem of flowing into the inside through the through hole.
  • the discrimination pressure regulating unit 660 may be opened when the discrimination pump unit 650 moves and discharges the mixed substances to regulate the internal pressure.
  • the discrimination pressure regulating unit 660 thus provided can separate the air suction tube from the discriminating pump unit 650 while the internal pressure is adjusted, thereby improving the safety.
  • the discrimination support hole 670 may be formed at a position adjacent to the discrimination pump unit 650 and the discrimination support hole 670 may be formed in the main body chip 650 when the discrimination pump unit 650 sucks air. 700 can be prevented from being deformed. That is, it is possible to prevent the mixed material from flowing out due to the deformation of the main body chip 700.
  • the main body chip 700 is provided inside the frame unit 800 to form a body, and the injected sample can be moved.
  • the main body chip 700 may include a main body upper film 710, a main body film 720, and a main body lower film 730, and a plurality of films may be stacked to form a channel.
  • the frame device 800 includes an upper frame 810 and a lower frame 820 to form an outer shape of the integrated automatic gene discrimination chip 1000. Specifically, the upper frame 810 and the lower frame 820 are coupled to each other to form an appearance of the integrated chip 1000 for an automatic gene discrimination.
  • the frame unit 800 may be made of a plastic material, but the material of the frame unit 800 is not limited thereto.
  • a plurality of alignment holes may be formed in the main body chip 700, and a columnar alignment column provided in the frame unit 800 may be inserted into the alignment holes.
  • the alignment pillars may be inserted into the alignment holes formed in the integrated automatic gene discrimination chip 1000 to fix the respective structures at predetermined positions.
  • the integrated automatic gene discrimination integrated chip 1000 is compact and convenient to carry. In addition, the integrated automatic gene discrimination chip 1000 is practical since it can be used immediately on the spot because the gene can be identified quickly. In addition, since the integrated chip 1000 for automatic gene discrimination does not need to fix the probe corresponding to the gene to the discriminator 600 in advance, it is possible to shorten the preparation time for gene discrimination and quickly identify the gene Do.
  • FIG. 10 is a flowchart of a gene discrimination method according to an embodiment of the present invention
  • FIG. 11 is a flowchart of a step of concentrating a detection target bacterium of a gene discrimination method according to an embodiment of the present invention.
  • the gene discrimination method can first perform step S100 of concentrating the detection target bacteria.
  • the step (S100) of concentrating the bacteria to be detected comprises a step (S110) of producing a primary mixed solution by mixing the desorption solution and the magnetic particles, a step of injecting the generated primary mixed solution into the concentration part (S120 A step S140 of discharging the foreign substance solution from the injected primary mixed solution to concentrate the detection target bacteria (S130), transferring the secondary mixed solution in the concentrated state to the extraction part (S140) And discharging the foreign substance solution from the secondary mixed solution to re-concentrate the detection target bacteria (S150).
  • FIG. 12 is a flowchart illustrating a step of generating a primary mixed solution in the step of concentrating a detection target bacterium in the gene discrimination method according to an embodiment of the present invention.
  • step S110 of mixing the desorption solution and the magnetic particles to form a primary mixed solution first, a step S111 of injecting a desorption solution and magnetic particles into the mixing vessel unit is performed .
  • a step S112 of heating the mixing vessel unit to a predetermined temperature may be performed.
  • the mixing vessel unit 111 can be heated to a temperature at which the mixed heating unit 112 can actively mix the desorption solution and the magnetic particles.
  • the mixing vessel unit 111 may be heated to 32 to 42 degrees.
  • vibration may be applied to the mixing vessel unit to mix the desorption solution and the magnetic particles to generate a primary mixed solution (S113).
  • the mixing vessel unit 111 is subjected to vibration for 20 to 120 minutes by the mixing motor unit 113, so that the desorption solution and the magnetic particles can be mixed.
  • the detection target microorganism and the magnetic particles may be combined.
  • FIG. 13 is a flowchart illustrating a step of injecting a primary mixed solution of a step of concentration of a detection target bacterium in a method for identifying a gene according to an embodiment of the present invention into a concentrating part.
  • the step of injecting the generated primary mixed solution into the concentrating unit (S120) may be performed by first performing a step S121 of generating a magnetic force in the concentrating container unit using the concentrated magnet unit have.
  • the concentrated magnet unit 142 is disposed adjacent to the concentrating container unit 141 by the concentrating motor unit 143 So that a magnetic force can be generated in the concentrating container unit 141.
  • step (S121) of generating a magnetic force to the concentrating container unit using the concentrated magnet unit when the concentrated magnet unit 142 is provided as an electromagnet a current is supplied to the concentrated magnet unit 142, It is also possible to generate a magnetic force in the magnet 141.
  • the step of injecting the primary mixed solution into the concentrating container unit using the concentrating pump unit (S122) may be performed.
  • the detection subject bacteria contained in the primary mixed solution may be attached to the inner wall of the concentrating container unit 141 by magnetic force in a state of being combined with the magnetic particles.
  • FIG. 14 is a flowchart illustrating a step of concentrating the detection target bacteria by discharging a foreign matter solution in the step of concentrating the detection target bacteria in the gene discrimination method according to an embodiment of the present invention.
  • the step S130 of discharging the foreign material solution from the injected primary mixed solution to concentrate the detection target bacteria is performed first (S131) of injecting the cleaning solution into the concentration portion .
  • the first discharge valve unit 152 is opened and the buffer unit 120 can inject the cleaning solution into the concentrating container unit 141.
  • the foreign substance solution may be discharged to the foreign substance discharging unit together with the washing solution to concentrate the detection target bacteria (S132).
  • the cleaning solution can transfer the foreign matter solution in the primary mixed solution contained in the concentrating container unit 141 to the foreign matter outlet unit 151 and discharge it.
  • the bacteria and the magnetic particles to be detected attached to the inner wall of the concentrating container unit 141 are not conveyed to the foreign matter outlet unit 151 together with the cleaning solution, but by the magnetic force of the concentrated magnet unit 142 By keeping the fixed state, it can be concentrated.
  • FIG. 15 is a flowchart illustrating a step of transferring a second mixed solution in the step of concentrating the detection target bacteria in the gene discrimination method according to an embodiment of the present invention to the extraction unit.
  • the magnetic force generated in the concentrating container unit is first removed, (S141) of generating a magnetic force in the unit.
  • the extraction magnet unit 182 may move adjacent to the extraction container unit 181 by the extraction motor unit 183 to generate a magnetic force in the extraction container unit 181.
  • the extraction magnet unit 182 in the step (S141) of removing magnetic force generated in the concentrating container unit and generating magnetic force in the extraction container unit using the extraction magnet unit when the extraction magnet unit 182 is provided as an electromagnet, the extraction magnet unit 182 to generate a magnetic force in the extraction container unit 181.
  • the concentrating unit 140 separates the concentrated magnet unit 142 from the concentrating container unit 141, or prevents current from flowing through the concentrated magnet unit 142, Can be removed.
  • step (S142) of generating vibration in the concentrating container unit can be performed.
  • the vibration motor unit 144 provided in the enrichment unit 140 generates vibration in the enrichment container unit 141 to remove the detection target bacteria attached to the enrichment container unit 141 . That is, the detection target bacteria adhering to the inner wall of the thickening part 140 can be more quickly transferred to the extracting part 180.
  • the transferring solution may be injected into the concentrating unit to transfer the secondary mixed solution to the extraction container unit (S143).
  • the buffer unit 120 injects the transfer solution into the concentrating unit 140 while the enrichment valve unit 145 is opened, thereby to transfer the secondary mixed solution to the extraction container unit 181 .
  • FIG. 16 is a flowchart showing a step of re-concentrating the detection target bacteria in the step of concentrating the detection target bacteria in the gene discrimination method according to an embodiment of the present invention.
  • step S150 of discharging the foreign matter solution from the transferred secondary mixed solution to re-concentrate the detection target bacteria first, the detection target bacteria combined with the magnetic particles are collected in the extraction container Unit (S151) attached to the unit.
  • the magnetic force generated in the concentrating container unit is removed, and the magnetic force applied to the extraction container unit 181 in the step (S 141) of generating magnetic force in the extraction container unit using the extraction magnet unit
  • the bacteria to be detected contained in the secondary mixed solution passing through the container unit 181 can be attached to the extraction container unit 181.
  • the foreign substance solution transferred together with the transferring solution may be discharged to the foreign substance discharging unit, and the step of re-concentrating the detection target bacteria (S152) may be performed.
  • the second discharge valve unit 153 is switched to the open state.
  • the foreign matter solution other than the detection target bacteria combined with the magnetic particles may be transferred to the foreign matter discharging unit 150 together with the transferring solution and discharged.
  • 17 is a flowchart of a step of extracting a gene of the gene discrimination method according to an embodiment of the present invention.
  • step (S200) of extracting genes from the concentrated detection subject bacteria can be performed.
  • (S200) of extracting a gene from the concentrated detection target bacteria is performed by injecting an extraction solution into an extraction unit containing the detection target bacteria combined with magnetic particles (S210), heating the extraction unit to a predetermined temperature, (S220) a step of extracting the gene from the target organism, and a step S230 of cooling the extracting unit to room temperature, and transferring the extracted gene toward the mixer (S240).
  • the extraction chamber unit 160 includes the extraction unit 180 ). ≪ / RTI >
  • the extraction solution may be a solution capable of extracting the gene in the bacteria to be detected by disrupting the bacteria to be detected.
  • FIG. 18 is a flowchart illustrating a step of extracting a gene from a detection subject bacterium in the step of extracting a gene of the gene discrimination method according to an embodiment of the present invention.
  • a step S220 of extracting a gene from the detection target bacteria by heating the extracting unit to a predetermined temperature includes firstly removing the magnetic force applied to the extracting unit by using the extracting magnet unit (S221).
  • the extraction magnet unit 182 is separated from the extraction container unit 181 and is connected to the extraction unit 180 The applied magnetic force can be removed.
  • the extracted magnet unit 182 is provided with an electromagnet
  • the current flowing in the extracted magnet unit 182 is controlled So that the magnetic force applied to the extraction unit can be removed.
  • the extracting unit may be heated to a predetermined temperature to extract a gene from the detection target organism (S222).
  • the extraction section 180 can be heated at 90 to 100 degrees for 5 to 20 minutes. If the temperature of the extraction container unit 181 is less than 90 degrees, the extraction solution may not actively active. If the temperature of the extraction container unit 181 exceeds 100 degrees, the gene may be destroyed, The function of the solution may be lost. Thus, the extraction container unit 181 can be heated from 90 to 100 degrees for 5 minutes to 20 minutes.
  • the temperature of the extraction container unit 181 is not limited to that described above, and it may be maintained at room temperature depending on the type of extraction solution.
  • the extraction solution contained in the extraction container unit 181 heated in an appropriate range can actively break down the cells of the detection target bacteria to rapidly extract genes.
  • the extracting unit After the extracting unit is heated to a preset temperature and the gene is extracted from the detection target bacteria (S220), the extracting unit may be cooled to room temperature (S230). At this stage, the extraction container unit 181 can be quickly cooled by 20 to 30 degrees by the extraction temperature control unit 184 and the extraction cooling unit 185.
  • FIG. 19 is a flowchart illustrating a step of transferring a gene to a blender in the step of extracting a gene of the gene discrimination method according to an embodiment of the present invention.
  • the step of transferring the extracted gene toward a blender may first perform step S241 of applying a magnetic force to the extracting unit.
  • the detection target bacteria contained in the extraction container unit 181 are in a state of being fixed to the inner wall of the extraction container unit 181 by the magnetic force because they are in a state of being coupled with the magnetic particles.
  • the gene extracted from the detection target bacteria is not fixed to the inner wall of the extraction container unit 181 because it is not coupled with the magnetic particles.
  • the step of transferring the gene extracted by the extracting unit toward the blender may be performed.
  • the extraction air injection unit 170 may open the extraction air injection valve 172 to inject air into the extraction unit 180.
  • the second discharge valve unit 153 is closed, and the mixer transfer valve unit 190 may be in an open state. In this state, the air injected into the extracting unit 180 may transfer the gene to the mixer 200.
  • the bacteria to be detected attached to the extraction container unit 181 and the magnetic particles are not transferred to the mixer 200, so they can be separated from the gene and discharged naturally.
  • the extraction chamber 160 further injects the extraction solution into the extraction unit 180 to smoothly transfer the gene .
  • FIG. 20 is a flowchart of a step of forming a mixed PCR solution of a gene discrimination method according to an embodiment of the present invention.
  • step S300 of forming a mixed PCR solution by mixing the extracted gene with the PCR buffer can be performed .
  • step S310 of injecting a PCR buffer into the main mixer chamber may be performed.
  • the PCR buffer is injected from the mixer main chamber extension 212 by the mixer pump unit 240 before the gene is introduced into the mixer main chamber body 211, To the front end of the housing.
  • a step S320 of injecting a gene into the mixer main chamber portion into which the PCR buffer is injected may be performed.
  • the gene injected through the mixer injection hole 213 may be mixed with the PCR buffer while bubbles are discharged by the mixer air filter 214 formed in the upper part of the mixer injection hole 213 .
  • a step S330 of injecting and sucking air such that the injected gene and the PCR buffer are mixed while reciprocating the mixer main chamber portion and the mixer auxiliary chamber portion can be performed.
  • the mixer pump unit 240 sucks the mixed PCR solution contained in the mixer main chamber unit 210 and moves the mixed PCR solution to the mixer auxiliary chamber unit 220, As shown in FIG. 7 (c), air may be injected into the mixed PCR solution contained in the mixer auxiliary chamber 220 and transferred to the mixer main chamber 210.
  • the mixer pump unit 240 may mix the gene and the PCR buffer by reciprocating the mixer auxiliary chamber unit 220 and the mixer main chamber unit 210 a plurality of times.
  • the gene and the PCR buffer when mixed while reciprocating between the mixer auxiliary chamber part 220 and the mixer main chamber part 210, they may collide with the vortex induction unit 215 to generate a vortex.
  • the resulting vortex can improve the mixing efficiency of the gene and the PCR buffer.
  • the mixed PCR solution in which the gene and the PCR buffer are mixed can be sucked and transferred to the mixer transfer chamber part (S340).
  • the mixer transfer chamber unit 230 can receive and receive the mixed PCR solution contained in the mixer auxiliary chamber unit 220 by the suction force of the mixer pump unit 240.
  • air may be injected into the mixer transfer chamber portion to transfer the mixed PCR solution to the quantitative injector (S350).
  • the mixer pump unit 240 may inject air to discharge the mixed PCR solution contained in the mixer transfer chamber unit 230 toward the metering injector 300.
  • Such a gene discrimination method improves the mixing efficiency of the gene and the PCR buffer, improves the reliability of the experimental results, and enables rapid experimentation.
  • FIG. 21 is a flowchart of a step of injecting a gene according to an embodiment of the present invention.
  • the mixed PCR solution thus formed may be quantitatively injected into the amplifier (S400) .
  • the step S410 of filling the mixed PCR solution sequentially from the quantification chamber located upstream may be performed. This step may be performed automatically by the quantitative stopper having a stepped portion through which the mixed PCR solution is passed after the mixed PCR solution is filled in the quantification chamber located upstream.
  • the introduced mixed PCR solution is first directed to the first quantitative stopper 321.
  • the first quantitative stopper 321 has a stepped height, the mixed PCR solution can not pass over the first quantitative stopper 321 and is naturally transferred to the first quantitative chamber 311, And is filled in the first metering chamber 311.
  • the first quantitative chamber 311 is filled with the mixed PCR solution, the water level of the mixed PCR solution rises by the step height of the first quantitative stopper 321, and the first quantitative stopper 321 It passes over.
  • the mixed PCR solution having passed through the first quantitative stopper 321 is directed to the second quantitative stopper 322.
  • the second quantitative stopper 322 also has a stepped height, the mixed PCR solution moves toward the second quantitative chamber 312 without passing over the second quantitative stopper 322, The chamber 312 is filled.
  • the second quantitative chamber 312 is filled with the mixed PCR solution, the water level of the mixed PCR solution rises by the step height of the second quantitative stopper 322, and the second quantitative stopper 322 It passes over.
  • the third PCR chamber 313 and the fourth PCR chamber 314 can be filled with the mixed PCR solution.
  • the quantitative stopper 320 is not provided in a stepped shape and the wall surface of the channel channel is made hydrophobic, the mixed PCR solution can be injected in a predetermined amount into each of the metering chambers in accordance with the difference in fluid resistance in the channel channel. .
  • a step S420 of filling the remaining portion of the metering chamber and discharging the remaining mixed PCR solution to the remaining amount discharging portion may be performed.
  • the discharge stopper 325 (see FIG. 3), which has a stepped portion to allow the excess mixed PCR solution to pass therethrough and be discharged to the remaining amount discharge portion 330 in a state in which the mixed PCR solution is filled in the dosing chamber portion 310 ).
  • the discharge stopper 325 which has a stepped portion to allow the excess mixed PCR solution to pass therethrough and be discharged to the remaining amount discharge portion 330 in a state in which the mixed PCR solution is filled in the dosing chamber portion 310 ).
  • step S430 of closing the metering valve unit may be performed.
  • the quantitative pump part 340 injects the mixed PCR solution stored in the quantification chamber part 310 into the amplifier (400).
  • the quantitative air filter unit 370 can remove bubbles contained in the mixed PCR solution transferred toward the amplifier 400.
  • the gene discrimination method as described above can be always injected into the amplifier 400 by a predetermined amount, thereby improving the reliability of the experimental results and automatically injecting the quantitation without any additional control, The experiment can be made possible.
  • PCR buffer for gene amplification may be lyophilized in a gene amplification chamber and loaded in advance.
  • amplified genes are amplified by polymerase chain reaction (PCR) on the quantified mixed PCR solution to form an amplification solution (S500).
  • PCR polymerase chain reaction
  • the mixed PCR solution injected in the quantitative manner is amplified by the amplification of the gene Can be amplified.
  • the gene can be amplified by polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • FIG. 22 is a flowchart of a step of forming a mixed material of the gene discrimination method according to an embodiment of the present invention.
  • an amplification solution and a signal substance are mixed
  • Forming a mixed material may be performed.
  • step S600 of forming the mixed material by mixing the amplification solution and the signal material a step (S611) of injecting the amplification solution into the mixing chamber part into which the signal material is injected, and a step of injecting the amplification solution and the signal material into the mixing chamber part (S612) of injecting and sucking air to be mixed while reciprocating the mixed auxiliary chamber portion.
  • the signal material is injected into the mixing chamber chamber extension 512 (FIG. 5) before the amplification solution is introduced into the mixing chamber chamber body 511, at step S611, And may be filled up to the front end of the mixed injection hole 513.
  • the amplification solution injected through the mixing hole 513 is mixed with the mixture
  • the air bubbles can be mixed with the signal material while being discharged by the mixed air filter 514 formed in the upper portion of the injection hole 513.
  • the discrimination pump portion 650 is connected to the mixing chamber portion 510 Air can be sucked in and the signal material and the amplification solution can be transferred to the mixing auxiliary chamber part 520.
  • the discrimination pump unit 650 may inject air and then transfer the signal material and the amplification solution contained in the mixing auxiliary chamber unit 520 to the mixing chamber chamber unit 510. In this way, the discrimination pump unit 650 can mix the amplification solution and the signal material between the mixing auxiliary chamber part 520 and the mixing chamber part 510 a plurality of times.
  • the amplification solution and the signal material when the amplification solution and the signal material are mixed while reciprocating between the mixing auxiliary chamber part 520 and the mixing chamber part 510, the amplification solution and the signal material may collide with the vortex induction unit to generate a vortex.
  • the vortex generated as described above can improve the mixing efficiency of the amplification solution and the signal material.
  • FIG. 23 is a flowchart of a step of discriminating genes of a gene discrimination method according to an embodiment of the present invention.
  • a step S700 of determining the gene by measuring the amount of current of the mixed material may be performed .
  • Step S700 of determining the gene by measuring the amount of current of the mixed material formed may include applying an applied voltage to the working electrode (S710), measuring the electron derived from the redox reaction of the signal material included in the mixed material A step S720 of continuously exchanging the working electrode with the working electrode through an amount of electrons exchanged with the counter electrode S730 and a step S740 of discriminating the gene by analyzing the measured amount of current .
  • a step of applying an applied voltage to the working electrode S710 is a step of applying an applied voltage to the working electrode 611.
  • the applied voltage means a unique voltage value for causing a redox reaction depending on each signal material included in the mixed material. That is, by applying the applied voltage to the working electrode 611 in consideration of the reference voltage of the reference electrode 613, the redox reaction can be performed on the signal material contained in the mixed material.
  • the counter electrode 612 may oxidize the signal material contained in the mixed material Electrons derived through the reduction reaction can be exchanged with the working electrode 611.
  • the signal material causing the redox reaction may be a signal material Quot; Specifically, the binding amount of the signal material is determined according to the amount of the gene, and the signal material that is not coupled to the gene is extracted through the redox reaction to provide an electrical signal to the working electrode 611 .
  • the working electrode 611 sequentially changes the amount of current through the amount of electrons exchanged with the counter electrode 612 . That is, in the step S730 of continuously measuring the amount of current through the amount of electrons exchanged with the counter electrode by the working electrode, it is possible to successively measure the amount of current change according to the amount of the signal material not coupled to the gene .
  • step S740 of determining the gene by analyzing the measured amount of electric current when the amount of current is higher than a preset reference value, it is determined that the gene is less than the reference amount. If the amount of current is lower than the predetermined reference value, Many can be judged.
  • the method for determining the gene is not limited to the food poisoning bacteria determination device.
  • the method of gene identification can be applied to a fish species discriminator.
  • FIG. 24 is a perspective view showing a state in which the upper module of the integrated automatic gene discrimination apparatus according to the embodiment of the present invention is rotated forward
  • FIG. 25 is a top view of the integrated automatic gene discrimination apparatus according to an embodiment of the present invention
  • 26 and 27 are perspective views of the upper module of the integrated automatic gene discrimination apparatus according to the embodiment of the present invention rotated backward.
  • FIG. 28 is a perspective view of an integrated automatic gene discrimination chip mounted on a main body module of an integrated automatic gene discrimination apparatus according to an embodiment of the present invention.
  • FIG. 29 is a perspective view of an integrated automatic gene discrimination apparatus according to an embodiment of the present invention.
  • FIG. 30 is a perspective view of a rotary valve unit of an integrated automatic gene discrimination apparatus according to an embodiment of the present invention.
  • the fully automatic gene discrimination integration facility 2000 includes a body module 1100, an upper module 1200, a flow module 1300, an amplification module 1400, a discrimination module 1500, Module 1600. < / RTI >
  • the main body module 1100 may include a main body frame unit 1110 and a rotary valve unit 1120.
  • the main body frame unit 1100 may be mounted on the integrated chip 1000.
  • the main body frame unit 1110 forms the body of the main body module 1100 and the upper module 1200 can be coupled to the upper side.
  • the rotary valve unit 1120 may be provided inside the body frame unit 1110.
  • the rotary valve unit 1120 is connected to a rotary pump (not shown) provided in the main body frame unit 1110 and a flow pump unit provided in the upper module 1200 to inject and suck air .
  • the concentrator 140 of the integrated automatic gene discrimination chip 1000 may be positioned inside the body module 1100.
  • the upper module 1200 is provided on the upper part of the main body module 1100 and may be provided to cover the upper part of the integrated automatic gene discrimination chip 1000 when it is turned forward.
  • the upper module 1200 includes an upper module main body unit 1210, a hinge unit 1220, and a handle unit 1230.
  • the upper module body unit 1210 forms the body of the upper module 1200 and may be provided to cover the upper part of the integrated automatic gene discrimination chip 1000.
  • the hinge unit 1220 may be provided on one side of the upper module body unit 1210 so that the upper module body unit 1210 can be rotated forward and rearward.
  • the forward direction may refer to a direction in which the upper module main body unit 1210 covers the upper portion of the fully automatic gene discrimination integrated chip 1000. That is, the integrated autonomous gene discrimination chip 1000 can be mounted on and dismounted from the main body module 1100 while the upper module main body unit 1210 is pivoted rearward, and the upper module main body unit 1210, In this state, the gene discrimination can proceed.
  • the handle unit 1230 may be provided on the other side of the upper module body unit 1210 so as to easily rotate the upper module body unit 1210 forward and backward.
  • the flow module 1300 may be coupled to the upper module 1200 and may be provided to control fluid flow in the integrated automatic gene discrimination chip 1000.
  • the flow module 1300 includes a plurality of flow pump units 1350, 1370 and 1390 connected to the fully automatic gene discrimination integrated chip 1000 to inject and suck air, and a valve in the fully automatic gene discrimination integrated chip 1000 And a plurality of flow valve units (1310, 1320, 1330, 1340, 1360, 1380) for controlling the flow of the fluid by opening and closing.
  • the flow pump unit includes a first flow pump unit 1350, a second flow pump unit 1370, and a third flow pump unit 1390.
  • the first flow pump unit 1350 is connected to the quantitative pump unit 340, the mixer pump unit 240 and the mixer pressure controller 250 of the fully automatic gene discrimination integrated chip 1000, And may be coupled to the upper module 1200.
  • the first flow pump unit 1350 may be connected to the metering pump unit 340, the mixer pump unit 240, and the mixer pressure regulator 250 to inject and suck air.
  • the first flow pump unit 1350 may include a first fluid delivery tube 1351, a second fluid delivery tube 1352, and a pressure control tube 1353.
  • the first fluid delivery tube 1351 may be connected to the metering pump unit 340 to inject air and the second fluid delivery tube 1352 may be connected to the mixer pump unit 240, Can be injected and inhaled.
  • the pressure control tube 1353 is connected to the mixer pressure regulator 250 so that when the first flow pump unit 1350 is connected to the metering pump unit 340 and the mixer pump unit 240, The internal pressure can be adjusted.
  • FIG. 31 is a perspective view of the flow pump unit of the integrated automatic gene discrimination integrated facility according to another embodiment of the present invention, in which the sealing member is rotated backward. FIG. And the sealing member of the flow pump unit is rotated forward.
  • the first flow pump unit 1350 includes a first fluid delivery tube 1351, a second fluid delivery tube (not shown), a fluid delivery body 1354, An air discharge hole 1355 and a sealing member 1356.
  • the fluid transfer body 1354 forms the body of the first flow pump unit 1350 and may be coupled to the upper module body unit 1210. Specifically, the fluid transfer body 1354 may be coupled to the metering pump unit 340 and the mixer pump unit 240 at corresponding positions. The first fluid transfer tube 1351 and the second fluid transfer tube may be coupled to the fluid transfer body 1354.
  • the air discharge hole 1355 may be formed in the fluid transfer body 1354. Specifically, when the first fluid delivery tube 1351 and the other end of the second fluid delivery tube are connected to the metering pump unit 340 and the mixer pump unit 240, The first fluid transfer tube 1351 and the inner surface of the other end of the second fluid transfer tube and the outer surface of the metering pump unit 340 and the outer surface of the mixer pump unit 240, .
  • the metering pump unit 340 and the mixer pump unit 240 are inserted and connected to the inside of the first fluid delivery tube 1351 and the second fluid delivery tube, the metering pump unit 340 And the air between the outer surface of the mixer pump part 240 and the inner surface of the second fluid delivery tube is supplied to the metering pump part 340 and the mixer pump unit 240 are pushed and moved. Accordingly, the air discharge hole 1355 is provided between the first fluid delivery tube 1351 and the amplification pump unit 340 and the air from the second fluid delivery tube and the mixer pump unit 240 to the outside It is possible to prevent the fluid from moving before the air is artificially introduced into the amplification pump unit 340 and the mixer pump unit 240 and improve the accuracy of gene discrimination.
  • the first fluid transfer tube 1351 and the second fluid transfer tube are connected at one end to the rotary valve unit 1120 of the body module 1100 and at the other end to the amplification pump (340) and the mixer pump unit (240), respectively.
  • the sealing member 1356 is rotatable forward and rearward, and may be fixed to seal the air discharge hole 1355 when rotating backward.
  • the sealing member 1356 may be provided on one side of the fluid transfer body 1354, and may be provided so as to pivot forward and backward.
  • the sealing member 1356 is configured such that the air discharge hole 1355 is formed between the outer surface of the metering pump unit 340 and the inner surface of the first fluid delivery tube 1351 and the air between the outer surface of the metering pump unit 340 and the inner surface of the mixer pump unit 240 And the inner surface of the second fluid delivery tube may be pivoted rearward to seal the air discharge hole 1355 when the air is discharged to the outside.
  • the sealing member 1356 thus formed can prevent air from leaking through the air discharge hole 1355 when the first fluid delivery tube 1351 and the second fluid delivery tube inject air .
  • the first flow pump unit 1350 may be provided according to one embodiment or another embodiment.
  • the second flow pump unit 1370 is connected to the amplification pump unit 450, the extraction chamber pump unit 162 and the extraction pressure regulating unit 164 of the integrated automatic gene diagnosis integrated chip 1000, 1210 < / RTI >
  • the second flow pump unit 1370 may include a first fluid delivery tube 1371, a second fluid delivery tube 1372, and a pressure control tube 1373.
  • the third flow pump unit 1390 may be coupled to the upper module body unit 1210 to be connected to the discrimination pump unit 650 and the discrimination pressure regulating unit 660 of the fully automatic gene discrimination integrated chip 1000 .
  • the second flow pump unit 1370 and the third flow pump unit 1390 may have substantially the same configuration as the first flow pump unit 1360 and may be constructed in accordance with one embodiment or another embodiment As shown in FIG.
  • the flow valve unit includes a first flow valve unit 1310, a second flow valve unit 1320, a third flow valve unit 1330, a fourth flow valve unit 1340 ), A fifth flow valve unit 1360 and a sixth flow valve unit 1380.
  • the first flow valve unit 1310 may be connected to the extraction container valves 186 and 187 of the integrated automatic gene discrimination chip 1000.
  • the first flow valve unit 1310 adjusts the pressure inside the extraction container unit 181,
  • the first extraction vessel valve 186 and the second extraction vessel valve 187 can be controlled to prevent the solution from leaking out.
  • the second flow valve unit 1320 may be connected to the extraction chamber valve unit 163 and the extraction air injection valve 172 of the integrated automatic gene discrimination chip 1000.
  • the second flow valve unit 1320 thus provided can control the extraction chamber valve unit 163 to determine whether to supply the extraction solution stored in the extraction chamber unit 161 to the extraction unit 180 .
  • the second flow valve unit 1320 may control the extraction air injection valve 172 for injecting air to move the fluid contained in the extraction unit 180.
  • the third flow valve unit 1330 may be connected to the mixer valve unit 270 of the fully automatic gene discrimination integrated chip 1000.
  • the third flow valve unit 1300 thus provided controls the flow between the mixer sub-chamber part 220 and the mixer transfer chamber part 230 by controlling the first mixer valve 271,
  • the mixer valve 272 may be controlled to control the flow between the mixer transfer chamber part 230 and the metering injector 300.
  • the fourth flow valve unit 1340 may be connected to the quantitative valve unit 360 of the fully automatic gene discrimination integrated chip 1000.
  • the quantitative pump unit 340 transfers the mixed PCR solution contained in the quantification chamber unit 310 to the amplifier 400
  • the fourth flow valve unit 1340 provided as described above is connected to the quantitative valve unit 360 Can be controlled.
  • the fifth flow valve unit 1360 may be connected to the amplification valve units 430 and 440 of the integrated automatic gene discrimination chip 1000.
  • the fifth flow valve unit 1360 may be connected to the first amplification valve unit 430 and the second amplification unit 420 so that the mixed PCR buffer is accommodated in the amplification main chamber 420 during the PCR,
  • the valve unit 440 can be controlled.
  • the sixth flow valve unit 1380 may be connected to the amplification mixing valve unit 470 of the integrated automatic gene discrimination chip 1000.
  • the sixth flow valve unit 1380 sucks the air in the state where the amplification mixing valve unit 470 is closed and supplies the amplification solution stored in the amplification main chamber unit 420 to the amplification auxiliary chamber unit 460,
  • the amplification mixing valve unit 470 is opened and the amplification solution contained in the amplification auxiliary chamber unit 460 is injected into the mixer 460 by injecting air in a state in which the second amplification valve unit 440 is hermetically closed.
  • the amplification and mixing valve unit 470 can be controlled so that the amplification /
  • FIG. 33 is a perspective view showing an upper part of a main body module in which an integrated automatic gene discrimination chip of a fully automatic gene discrimination integrated facility according to an embodiment of the present invention is detached.
  • the amplification module 1400 is provided in the main body module 1100 and may be provided below the amplifier 400 of the integrated automatic gene discrimination chip 1000.
  • the amplification module 1400 includes an amplification module main body unit 1410, a heater unit 1420, a heat sink unit 1430, and a fan unit 1440.
  • the amplification module main body unit 1410 forms the body of the amplification module 1400.
  • the amplification module main body unit 1410 is coupled to the upper side of the main body module 1100.
  • the integrated automatic gene recognition chip 1000 is mounted on the main body module 1100, May be coupled to corresponding locations.
  • the heater unit 1420 is coupled to the amplification module main body unit 1410 to increase the temperature of the mixed PCR solution contained in the amplifier 400. Specifically, as the temperature of the mixed PCR solution located in the amplifier 400 is increased and decreased repeatedly, the amount of the gene contained in the mixed PCR solution is increased.
  • the heater unit 1420 may be used when the temperature of the mixed PCR solution located in the amplifier 400 is increased by applying heat to the amplifier 400.
  • the heat radiating plate unit 1430 is provided under the heater unit 1420 so that when the heater unit 1420 heats the amplifier 400, the heater unit 1420 is damaged due to excessive heat .
  • the fan unit 1440 is coupled to one side of the heat sink unit 1430 so as to lower the temperature of the amplifier 400 and prevent heat damage to the heater unit 1420.
  • the amplification module 1400 repeatedly raises and lowers the temperature of the amplifier 400 to perform the PCR of the gene.
  • the discrimination module 1500 is provided on the main body module 1100 and is connected to the electrode unit 610 of the integrated automatic gene discrimination chip 1000 to measure the amount of current.
  • the determining module 1500 may include a pogo pin array body 1510, a pogo pin array lifting body 1520, and a pogo pin 1530.
  • the pogo pin array body 1510 is coupled to a position corresponding to the discrimination hole 1314 of the upper module main body unit 1310 to form the body of the discrimination module 1500.
  • the pogo pin array body 1510 may be provided at a position adjacent to the electrode unit 610 of the integrated automatic gene discrimination chip 1000.
  • the pogo pin array lifting body 1520 may be coupled to one side of the pogo pin array body 1510 so that the pogo pin array lifting body 1520 can be raised and lowered and the other side thereof may extend toward the upper portion of the electrode unit 610.
  • the pogo pin array lifting body 1520 may be provided in a plate shape, and one side of the pogo pin array body 1510 may be coupled to move upward and downward to be movable.
  • the shape of the pogo pin array lifting body 1520 is not limited to the plate shape shown.
  • the pogo pin array lifting body 1520 can be raised and lowered so that the pogo pin 1530 and the electrode unit 610 are in contact with each other.
  • the pogo pin 1530 is provided on the other side of the pogo pin array lifting body 1520 and can measure the amount of current in contact with the electrode unit 610. Specifically, the pogo pin 1530 is provided on the other side of the pogo pin array lifting body 1520, and may be provided in a position and in a number corresponding to the electrode unit 610. The pogo pin 1530 may have three fins connected to the working electrode 511, the counter electrode 512 and the reference electrode 513 of the electrode unit 610, respectively. The pogo pin 1530 thus prepared can discriminate the gene by the above-described gene discrimination method.
  • the genetic identification of the fully integrated gene chip 1000 is discarded and replaced with a new fully automatic gene discrimination integrated chip 1000 to perform the next gene discrimination.
  • the integrated automatic genotyping integrated facility (2000) provided as described above can be applied to a gene discriminator, a food poisoning discriminator, a fish species discriminator, and the like.

Abstract

The present invention relates to integrated equipment for automatic gene identification, and more specifically, to integrated equipment for automatic gene identification, the equipment allowing automatic and rapid identification of the genes of a target bacterium for analysis. The present invention provides a configuration of integrated equipment for automatic gene identification, the equipment being characterized by comprising: a main body module forming the exterior and having an integrated chip for automatic gene identification mounted in an upper portion thereof; an upper module provided above the main body module and provided to cover an upper portion of the integrated chip for automatic gene identification when rotated forward; a flow module coupled to the upper module and provided to control the flow of a fluid inside the integrated chip for automatic gene identification; an amplification module provided in the main body module and provided under an amplifier of the integrated chip for automatic gene identification; an identification module provided above the main body module and connected to an electrode unit of the integrated chip for automatic gene identification; and a control module provided in the main body module, wherein the identification module measures the residual amount of a mixture to identify a gene.

Description

전자동 유전자 판별 통합설비Integrated automatic gene discrimination facility
본 발명은 전자동 유전자 판별 통합설비에 관한 것으로, 보다 상세하게는 전자동으로 검출대상균의 유전자를 신속하게 판별할 수 있도록 하기 위한 전자동 유전자 판별 통합설비에 관한 것이다.The present invention relates to an integrated automatic gene discrimination facility, and more particularly, to an integrated automatic gene discrimination facility capable of automatically discriminating the gene of a detection target organism automatically.
최근, 대상체의 유전자나 단백질 및 세포 등 나노 단위의 생체분자 거동을 직접적으로 확인하고 조작할 수 있는 나노-바이오 기술에 대한 연구가 활발하게 이루어지고 있다. 이러한 나노-바이오 기술은 질병을 진단하거나, 대상체의 종류 등을 판단할 수 있게 함으로써, 최근 적용되는 산업분야가 확대되고 있는 추세이다.In recent years, studies on nano-biotechnology capable of directly confirming and manipulating biomolecule behavior of nano units such as genes, proteins and cells of an object have been actively conducted. Such nano-biotechnology can be used to diagnose a disease or to determine the type of a target object, and thus the recent industrial field is being expanded.
특히, 최근에는 랩온어칩(Lap on a chip)의 개발이 활발하게 이루어지고 있다. 랩온어칩이란 바이오 칩의 일종으로, 작은 크기의 칩 하나로 실험실에서 할 수 있는 연구를 수행할 수 있도록 만든 장치이다. 구체적으로, 랩온어칩은 플라스틱, 유리, 실리콘 등의 소재를 사용해 나노미터(㎚) 이하의 미세 채널을 만들고, 이를 통해 극미량의 샘플이나 시료만으로 기존의 실험실에서 할 수 있는 실험이나 연구 과정을 신속하게 대체할 수 있도록 만든 칩이다. 이러한 실용성으로 인해 랩온어칩은 지속적으로 개발되고 사용되고 있는 추세이다.Particularly, in recent years, the development of a lab-on-a-chip has been actively carried out. A lab-on-a-chip is a type of biochip that allows a small chip to perform research that can be done in a laboratory. Specifically, the lab-on-a-chip is made of plastic, glass, silicon, etc. to create microchannels of nanometer (nm) or less. Through this, labs and researches that can be done in existing laboratories It is a chip made to replace. Because of this practicality, lab-on-a-chip is continuously being developed and used.
그러나, 일반적으로 랩온어칩의 경우, 균을 탈리한 다음, 균을 농축하고, 균으로부터 유전자를 추출한 다음 랩온어칩에 추출한 유전자를 주입하여 실험을 수행한다. 이때, 종래에는 탈리된 균을 농축하고, 유전자를 추출하는 과정을 각각 별도로 수행한 다음, 개별적으로 랩온어칩에 유전자를 주입하여야 하는 번거로움이 있었다.However, in general, in the case of a lab-on-a-chip, the bacteria are desorbed, the bacteria are concentrated, the gene is extracted from the bacteria, and the experiment is performed by injecting the gene extracted in the lab-on-a-chip. At this time, conventionally, there has been a problem that it is necessary to separately perform the steps of concentrating the defective bacteria and extracting the genes, and then injecting the genes individually into the lab-on-a-chip.
즉, 종래에는 유전자 판별장치를 휴대하기 어렵고, 유전자를 판별하기 위해 준비에 필요한 작업이 길어 신속한 실험이 불가능하기 때문에 실용성이 떨어졌다.In other words, it is difficult to carry a gene discrimination device in the past, and since it takes a long time to prepare for gene discrimination, rapid experimentation is impossible and practicality is low.
그리고, 일반적인 랩온어칩은, 유전자를 증폭하기 위해 PCR버퍼와 유전자를 혼합한다. 그러나, 랩온어칩은 얇은 필름을 적층하여 마련되기 때문에, 얇은 필름 사이에 주입된 PCR버퍼와 유전자가 신속하게 혼합이 이루어지기 어려운 문제가 있다.And, a typical lab-on-a-chip mixes a PCR buffer and a gene to amplify the gene. However, since the lab-on-a-chip is provided by laminating thin films, there is a problem that the PCR buffer injected between the thin films and the gene are difficult to be mixed quickly.
또한, 종래에는 랩온어칩에 PCR버퍼와 유전자를 혼합한 혼합PCR용액을 주입할 때, 사람이 일일이 기설정된 양을 측정하여 주입하였다. 따라서, 종래에는 랩온어칩에 혼합PCR용액을 주입하는데 많은 시간이 소요되었으며, 항상 정확하게 일정한 양을 주입하기 어려워 실험의 신뢰성이 낮아지는 문제가 있었다.In addition, conventionally, when a mixed PCR solution containing a PCR buffer and a gene is injected into a lab-on-a-chip, a predetermined amount of human is injected into the lab-on-a-chip. Therefore, conventionally, it takes a lot of time to inject the mixed PCR solution into the lab-on-a-chip, and it is difficult to always inject a certain amount accurately, which lowers the reliability of the experiment.
그리고 특히, 종래의 유전자 칩은 전자동으로 이루어져 있지 않아, 유전자를 판별하는데 많은 시간이 소요되기 때문에 실용적이지 못한 문제가 있었다.In particular, the conventional gene chip is not fully automatic, and it takes a lot of time to identify the gene, which is not practical.
상기와 같은 문제를 해결하기 위한 본 발명의 목적은 전자동으로 검출대상균의 유전자를 신속하게 판별할 수 있도록 하기 위한 전자동 유전자 판별 통합설비를 제공하는 것이다.An object of the present invention to solve the above problems is to provide an integrated automatic gene discrimination facility capable of automatically discriminating the gene of the detection target bacteria automatically.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not intended to limit the invention to the precise form disclosed. There will be.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 상부에 전자동 유전자 판별 통합칩이 장착되며, 외형을 형성하는 본체모듈; 상기 본체모듈의 상부에 마련되며, 전방으로 회동시 상기 전자동 유전자 판별 통합칩의 상부를 덮도록 마련되는 상부모듈; 상기 상부모듈에 결합되며, 상기 전자동 유전자 판별 통합칩 내 유체의 흐름을 제어하도록 마련되는 유동모듈; 상기 본체모듈에 마련되며, 상기 전자동 유전자 판별 통합칩의 증폭기의 하측에 마련되는 증폭모듈; 상기 본체모듈의 상부에 마련되며, 상기 전자동 유전자 판별 통합칩의 전극유닛과 연결되도록 마련되는 판별모듈; 및 상기 본체모듈에 마련되는 제어모듈을 포함하며, 상기 판별모듈은 혼합물질의 전류량을 측정하여 유전자를 판별하는 것을 특징으로 하는 전자동 유전자 판별 통합설비를 제공한다.According to an aspect of the present invention, there is provided a method for manufacturing a genetic material, An upper module provided on the upper part of the main body module and covering the upper part of the integrated automatic gene discrimination chip when it is turned forward; A flow module coupled to the upper module, the flow module being adapted to control the flow of fluid in the integrated automatic gene discrimination chip; An amplification module provided in the main body module and provided under the amplifier of the integrated automatic gene discrimination chip; A discriminating module provided at an upper portion of the main body module and connected to an electrode unit of the integrated automatic gene discrimination chip; And a control module provided in the main body module, wherein the discrimination module discriminates a gene by measuring a current amount of a mixed substance.
본 발명의 실시예에 있어서, 상기 상부모듈은, 본체를 형성하며, 상기 전자동 유전자 판별 통합칩의 상부를 덮도록 마련되는 상부모듈본체유닛; 및 상기 상부모듈본체유닛의 일측에 마련되는 힌지유닛을 포함하며, 상기 상부모듈본체유닛은 상기 힌지유닛에 전방 및 후방으로 회동 가능하도록 마련된 것을 특징으로 할 수 있다.In an embodiment of the present invention, the upper module includes an upper module body unit forming a main body and covering the upper part of the integrated automatic gene discrimination chip; And a hinge unit provided on one side of the upper module body unit, wherein the upper module body unit is rotatable forward and rearward to the hinge unit.
본 발명의 실시예에 있어서, 상기 유동모듈은, 상기 전자동 유전자 판별 통합칩과 연결되어 공기를 주입 및 흡입하는 복수의 유동펌프유닛; 및 상기 전자동 유전자 판별 통합칩 내 밸브를 개폐하여 유체의 흐름을 제어하는 복수의 유동밸브유닛을 포함하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the flow module includes: a plurality of flow pump units connected to the integrated automatic gene discrimination chip to inject and suck air; And a plurality of flow valve units for controlling the flow of the fluid by opening and closing the valves in the integrated chip for fully automatic gene discrimination.
본 발명의 실시예에 있어서, 상기 유동펌프유닛은, 상기 전자동 유전자 판별 통합칩의 정량펌프부, 믹서펌프부 및 믹서압력조절부와 연결되는 제1 유동펌프유닛; 상기 전자동 유전자 판별 통합칩의 증폭펌프부, 추출챔버펌프유닛 및 추출압력조절유닛과 연결되는 제2 유동펌프유닛; 및 상기 전자동 유전자 판별 통합칩의 판별펌프부 및 판별압력조절유닛과 연결되는 제3 유동펌프유닛을 포함하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the flow pump unit includes: a first flow pump unit connected to a metering pump unit, a mixer pump unit, and a mixer pressure control unit of the integrated automatic gene discrimination chip; A second flow pump unit connected to the amplification pump unit, the extraction chamber pump unit and the extraction pressure regulation unit of the integrated automatic gene discrimination chip; And a third flow pump unit connected to the discrimination pump unit and the discrimination pressure regulating unit of the fully automatic gene discrimination integrated chip.
본 발명의 실시예에 있어서, 상기 전자동 유전자 판별 통합칩의 추출용기밸브와 연결되는 제1 유동밸브유닛; 상기 전자동 유전자 판별 통합칩의 추출챔버밸브유닛 및 추출공기주입밸브와 연결되는 제2 유동밸브유닛; 상기 전자동 유전자 판별 통합칩의 믹서밸브부와 연결되는 제3 유동밸브유닛; 상기 전자동 유전자 판별 통합칩의 정량밸브부와 연결되는 제4 유동밸브유닛; 상기 전자동 유전자 판별 통합칩의 증폭밸브부와 연결되는 제5 유동밸브유닛; 및 상기 전자동 유전자 판별 통합칩의 증폭혼합밸브부와 연결되는 제6 유동밸브유닛을 포함하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, a first flow valve unit connected to an extraction container valve of the integrated automatic gene discrimination chip; A second flow valve unit connected to the extraction chamber valve unit and the extraction air injection valve of the integrated automatic gene discrimination chip; A third flow valve unit connected to the mixer valve unit of the integrated automatic gene discrimination chip; A fourth flow valve unit connected to the quantitative valve unit of the integrated automatic gene discrimination chip; A fifth flow valve unit connected to the amplification valve unit of the integrated automatic gene discrimination chip; And a sixth flow valve unit connected to the amplification mixing valve unit of the integrated automatic gene discrimination chip.
본 발명의 실시예에 있어서, 상기 유동펌프유닛은, 몸체를 형성하며, 상기 상부모듈에 결합되는 유체이송튜브; 및 상기 유체이송튜브의 일측에 마련되는 압력조절튜브를 포함하며, 상기 압력조절튜브는, 상기 전자동 유전자 판별 통합칩의 펌프에 상기 유체이송튜브가 연결될 때, 상기 펌프와 상기 유체이송튜브 사이의 공기를 외부로 배출시키는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the flow pump unit comprises: a fluid delivery tube forming a body and coupled to the upper module; And a pressure regulating tube provided on one side of the fluid transfer tube, wherein the pressure regulating tube is configured to regulate the flow of the fluid between the pump and the fluid transfer tube when the fluid transfer tube is connected to the pump of the fully automatic gene- To the outside.
본 발명의 실시예에 있어서, 상기 유동펌프유닛은, 몸체를 형성하며, 상기 상부모듈에 결합되는 유체이송몸체; 상기 유체이송몸체에 형성되는 공기배출홀; 일단이 상기 본체모듈에 마련되는 로터리밸브와 연결되고, 타단이 상기 전자동 유전자 판별 통합칩의 펌프와 연결되도록 마련되는 유체이송튜브; 및 전방 및 후방을 향해 회동 가능하도록 마련되며, 후방으로 회동시 상기 공기배출홀을 밀폐하도록 고정되는 밀폐부재를 포함하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the flow pump unit comprises: a fluid delivery body forming a body and coupled to the upper module; An air discharge hole formed in the fluid transfer body; A fluid delivery tube having one end connected to a rotary valve provided in the main body module and the other end connected to a pump of the integrated automatic gene discrimination chip; And a sealing member provided so as to be rotatable forward and rearward and fixed to seal the air discharge hole when rotating backward.
본 발명의 실시예에 있어서, 상기 공기배출홀은, 상기 유체이송튜브의 타단이 상기 펌프와 연결되었을 때, 상기 유체이송튜브의 타단의 내측면과 상기 펌프의 외측면 사이의 공기를 외부로 배출하도록 마련되는 것을 특징으로 할 수 있다.In the embodiment of the present invention, the air discharge hole may discharge the air between the inner surface of the other end of the fluid transfer tube and the outer surface of the pump to the outside when the other end of the fluid transfer tube is connected to the pump And the like.
본 발명의 실시예에 있어서, 상기 증폭모듈은, 상기 본체모듈에 마련되되, 상기 증폭기와 대응되는 위치에 결합되는 증폭모듈본체유닛; 상기 증폭모듈본체유닛에 결합되는 히터유닛; 상기 히터유닛의 하부에 마련되는 방열판유닛; 및 상기 방열판유닛의 일측에 결합되는 팬유닛을 포함하며, 상기 증폭모듈은 상기 증폭기의 온도를 반복적으로 상승 및 하강시켜 유전자의 중합효소 연쇄반응(PCR)이 이루어지도록 하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the amplification module may include: an amplification module main unit provided in the main body module and coupled to a position corresponding to the amplifier; A heater unit coupled to the amplification module main unit; A heat sink unit provided below the heater unit; And a fan unit coupled to one side of the heat sink unit, wherein the amplification module repeatedly raises and lowers the temperature of the amplifier to perform PCR of a gene.
본 발명의 실시예에 있어서, 상기 판별모듈은, 상기 본체모듈의 상부에 마련되되, 상기 전자동 유전자 판별 통합칩의 전극유닛과 인접한 위치에 마련되어 몸체를 형성하는 포고핀어레이몸체; 상기 포고핀어레이몸체에 승강이 가능하도록 일측이 결합되며, 타측이 상기 전극유닛의 상부를 향해 연장되어 마련되는 포고핀어레이승강체; 및 상기 포고핀어레이승강체의 타측에 마련되며, 상기 전극유닛과 접촉하여 전류량을 측정하는 포고핀을 포함하며, 상기 포고핀어레이승강체는 상기 포고핀과 상기 전극유닛이 접촉되도록 수직 방향으로 승강되는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the discriminating module may include a pogo pin array body provided at an upper portion of the main body module and provided at a position adjacent to the electrode unit of the integrated automatic gene discrimination chip to form a body; A pogo pin array lifting body coupled to one side of the pogo pin array body so as to be able to move up and down, and the other side of which extends toward an upper portion of the electrode unit; And a pogo pin provided on the other side of the pogo pin array lifting body for measuring an amount of current in contact with the electrode unit, wherein the pogo pin array lifting body is lifted and lowered vertically so that the pogo pin and the electrode unit are in contact with each other .
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 전자동 유전자 판별 통합설비를 적용한 유전자 판별장치를 제공한다.In order to achieve the above object, the present invention provides a gene discrimination apparatus using an integrated automatic gene discrimination facility.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 전자동 유전자 판별 통합설비를 적용한 식중독 판별기를 제공한다.In order to achieve the above object, the present invention provides a food poisoning discriminator using an integrated automatic gene discrimination facility.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 전자동 유전자 판별 통합설비를 적용한 어종 판별기를 제공한다.In order to accomplish the above object, the present invention provides a fish species discriminator to which a fully automatic gene discrimination integration facility is applied.
상기와 같은 구성에 따르는 본 발명의 효과는, 자력을 이용하여 검출대상균을 용이하게 농축할 수 있으며, 농축부와 추출부를 이용하여 검출대상균을 2단계에 걸쳐 농축하기 때문에 유전자 판별시 이물질이 혼합되는 것을 방지할 수 있다. 즉, 정확한 검사 결과를 얻을 수 있다.The effect of the present invention according to the above configuration is that the bacteria to be detected can be easily concentrated using the magnetic force, and the bacteria to be detected are concentrated in two stages using the concentrating section and the extracting section, Mixing can be prevented. That is, accurate test results can be obtained.
또한, 검출대상균을 농축하고 유전자를 추출하는 과정이 모두 자동화되어 수행되므로 신속하고 간편하게 유전자를 판별하도록 할 수 있다.In addition, since the process of concentrating the detection target bacteria and extracting the genes is performed automatically, it is possible to quickly and easily identify the genes.
또한, 본 발명의 정량챔버부, 정량스토퍼부, 잔량배출부는 별도의 제어 없이도 각각의 정량챔버에 기설정된 혼합PCR용액이 채워지도록 할 수 있다. 즉, 본 발명은 증폭기에 주입되는 혼합PCR용액이 자동으로 항상 일정하도록 제어할 수 있어 실험의 정확도를 향상시킬 수 있으며, 신속하게 혼합PCR용액을 주입할 수 있어 경제적이다.In addition, the quantitative chamber portion, the quantitative stopper portion, and the remaining amount discharging portion of the present invention can be filled with the predetermined mixed PCR solution in each of the metering chambers without any separate control. That is, the present invention can control the mixed PCR solution injected into the amplifier to be always constant automatically, thereby improving the accuracy of the experiment, and it is economical to inject the mixed PCR solution quickly.
또한, 본 발명의 정량에어필터부는 증폭기를 향해 이송되는 혼합PCR용액에 포함된 기포를 제거함으로써, 혼합PCR용액을 증폭할 때, 혼합PCR용액에 포함된 공기로 인해 실험 결과에 오류가 발생하는 문제를 방지할 수 있다.In addition, the quantitative air filter unit of the present invention eliminates the bubbles contained in the mixed PCR solution transferred toward the amplifier, thereby causing an error in the experimental results due to the air contained in the mixed PCR solution when the mixed PCR solution is amplified Can be prevented.
또한, 본 발명의 정량에어필터부는 정량펌프부가 계속 공기를 주입할 경우에도, 증폭기에 수용된 혼합PCR용액을 가압하지 않도록 할 수 있다. 즉, 정량에어필터부는 정량펌프부가 혼합PCR용액을 이송시키기 위해 공기를 주입하는 시간을 정밀하게 제어하지 않아도 되도록 할 수 있어 편리하다.Further, the quantitative air filter unit of the present invention can prevent the mixed PCR solution stored in the amplifier from being pressurized even when the metering pump unit continuously injects air. That is, the quantitative air filter unit is convenient because the metering pump unit can precisely control the time for injecting air to transport the mixed PCR solution.
또한, 본 발명의 정량지지홀은 정량펌프부에 공기가 주입될 때, 복수의 층으로 적층된 필름기판이 벌어져 누수가 발생하는 문제를 방지할 수 있다.In addition, the quantitative support hole of the present invention can prevent a problem that leakage occurs when the film substrate laminated by a plurality of layers spreads when air is injected into the metering pump unit.
또한, 본 발명의 증폭기의 증폭필름부는, 각 필름이 하부에 적층된 필름의 상면을 모두 덮도록 적층되기 때문에 누수가 발생하지 않는다.Further, the amplifying film portion of the amplifier of the present invention does not leak because each film is stacked so as to cover all the upper surfaces of the films laminated on the lower side.
또한, 본 발명은 유전자와 대응되는 프로브를 미리 판별기에 고정할 필요가 없기 때문에 유전자 판별을 준비하는 시간이 단축되며, 신속하게 유전자를 판별하는 것이 가능하다.Further, since it is not necessary to fix the probe corresponding to the gene in advance in the discriminator, the present invention shortens the preparation time for gene discrimination, and makes it possible to quickly identify the gene.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the above effects and include all effects that can be deduced from the detailed description of the present invention or the configuration of the invention described in the claims.
도 1 및 도 2는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 구성예시도이다.FIG. 1 and FIG. 2 are diagrams illustrating the configuration of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 결합사시도이다.FIG. 3 is a combined perspective view of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 분해사시도이다.4 is an exploded perspective view of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 믹서기의 믹서주챔버부의 예시도이다.5 is an illustration of a mixer main chamber portion of a blender of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 믹서기의 와류유도유닛을 나타낸 예시도이다.6 is an exemplary diagram illustrating a vortex induction unit of a blender of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 믹서기의 믹서주챔버부의 내부 유체 흐름을 나타낸 예시도이다.7 is a diagram illustrating an internal fluid flow of a mixer main chamber part of a blender of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 증폭기의 분해사시도이다.8 is an exploded perspective view of an amplifier of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
도 9는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 판별기의 예시도이다.9 is an exemplary diagram of a discriminator of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
도 10은 본 발명의 일실시예에 따른 유전자 판별방법의 순서도이다.FIG. 10 is a flowchart of a gene discrimination method according to an embodiment of the present invention.
도 11은 본 발명의 일실시예에 따른 유전자 판별방법의 검출대상균을 농축하는 단계의 순서도이다.Fig. 11 is a flowchart of a step of concentrating the detection target bacteria of the gene discrimination method according to an embodiment of the present invention.
도 12는 본 발명의 일실시예에 따른 유전자 판별방법의 검출대상균을 농축하는 단계의 1차 혼합용액을 생성하는 단계를 구체화한 순서도이다.FIG. 12 is a flowchart illustrating a step of generating a primary mixed solution in the step of concentrating a detection target bacterium in the gene discrimination method according to an embodiment of the present invention.
도 13은 본 발명의 일실시예에 따른 유전자 판별방법의 검출대상균을 농축하는 단계의 1차 혼합용액을 농축부에 주입하는 단계를 구체화한 순서도이다.FIG. 13 is a flowchart illustrating a step of injecting a primary mixed solution of a step of concentration of a detection target bacterium in a method for identifying a gene according to an embodiment of the present invention into a concentrating part.
도 14는 본 발명의 일실시예에 따른 유전자 판별방법의 검출대상균을 농축하는 단계의 이물질용액을 배출시켜 검출대상균을 농축하는 단계를 구체화한 순서도이다.FIG. 14 is a flowchart illustrating a step of concentrating the detection target bacteria by discharging a foreign matter solution in the step of concentrating the detection target bacteria in the gene discrimination method according to an embodiment of the present invention.
도 15는 본 발명의 일실시예에 따른 유전자 판별방법의 검출대상균을 농축하는 단계의 2차 혼합용액을 추출부로 이송하는 단계를 구체화한 순서도이다.FIG. 15 is a flowchart illustrating a step of transferring a second mixed solution in the step of concentrating the detection target bacteria in the gene discrimination method according to an embodiment of the present invention to the extraction unit.
도 16은 본 발명의 일실시예에 따른 유전자 판별방법의 검출대상균을 농축하는 단계의 검출대상균을 재농축하는 단계를 구체화한 순서도이다.FIG. 16 is a flowchart showing a step of re-concentrating the detection target bacteria in the step of concentrating the detection target bacteria in the gene discrimination method according to an embodiment of the present invention.
도 17은 본 발명의 일실시예에 따른 유전자 판별방법의 유전자를 추출하는 단계의 순서도이다.17 is a flowchart of a step of extracting a gene of the gene discrimination method according to an embodiment of the present invention.
도 18은 본 발명의 일실시예에 따른 유전자 판별방법의 유전자를 추출하는 단계의 검출대상균으로부터 유전자를 추출하는 단계를 구체화한 순서도이다.FIG. 18 is a flowchart illustrating a step of extracting a gene from a detection subject bacterium in the step of extracting a gene of the gene discrimination method according to an embodiment of the present invention.
도 19는 본 발명의 일실시예에 따른 유전자 판별방법의 유전자를 추출하는 단계의 믹서기를 향해 이송하는 단계를 구체화한 순서도이다.FIG. 19 is a flowchart illustrating a step of transferring a gene to a blender in the step of extracting a gene of the gene discrimination method according to an embodiment of the present invention.
도 20은 본 발명의 일실시예에 따른 유전자 판별방법의 혼합PCR용액을 형성하는 단계의 순서도이다.FIG. 20 is a flowchart of a step of forming a mixed PCR solution of a gene discrimination method according to an embodiment of the present invention.
도 21은 본 발명의 일실시예에 따른 유전자 판별방법의 정량 주입하는 단계의 순서도이다.FIG. 21 is a flowchart of a step of injecting a gene according to an embodiment of the present invention.
도 22는 본 발명의 일실시예에 따른 유전자 판별방법의 혼합물질을 형성하는 단계의 순서도이다.22 is a flowchart of a step of forming a mixed material of the gene discrimination method according to an embodiment of the present invention.
도 23은 본 발명의 일실시예에 따른 유전자 판별방법의 유전자를 판별하는 단계의 순서도이다.FIG. 23 is a flowchart of a step of discriminating genes of a gene discrimination method according to an embodiment of the present invention.
도 24는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 상부모듈이 전방으로 회동된 상태의 사시도이다.FIG. 24 is a perspective view of an integrated module for fully automatic gene identification according to an embodiment of the present invention, in which an upper module is rotated forward; FIG.
도 25는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 상면도이다.25 is a top view of an integrated automatic gene discrimination apparatus according to an embodiment of the present invention.
도 26 및 도 27은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 상부모듈이 후방으로 회동된 상태의 사시도이다.26 and 27 are perspective views of the upper module of the integrated automatic gene discrimination apparatus according to the embodiment of the present invention rotated backward.
도 28은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 본체모듈에 안착된 전자동 유전자 판별 통합칩을 나타낸 사시도이다.28 is a perspective view illustrating an integrated automatic gene discrimination chip mounted on a main body module of an integrated automatic gene discrimination facility according to an embodiment of the present invention.
도 29는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 상부모듈이 전방으로 회동된 상태의 측면사시도이다.FIG. 29 is a side perspective view of the upper module of the integrated automatic gene discrimination apparatus according to an embodiment of the present invention, which is rotated forward; FIG.
도 30은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 로터리밸브유닛을 나타낸 사시도이다.30 is a perspective view of a rotary valve unit of an integrated automatic gene discrimination integrated facility according to an embodiment of the present invention.
도 31은 본 발명의 다른 실시예에 따른 전자동 유전자 판별 통합설비의 유동펌프유닛의 밀폐부재가 후방으로 회동된 상태의 사시도이다.31 is a perspective view of the fluid pump unit of the integrated automatic gene discrimination apparatus according to another embodiment of the present invention in which the sealing member is rotated backward.
도 32는 본 발명의 다른 실시예에 따른 전자동 유전자 판별 통합설비의 유동펌프유닛의 밀폐부재가 전방으로 회동된 상태의 측면도이다.32 is a side view of the flow pump unit of the integrated automatic gene discrimination apparatus according to another embodiment of the present invention in which the sealing member is rotated forward;
도 33은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 전자동 유전자 판별 통합칩이 탈착된 상태의 본체모듈의 상부를 나타낸 사시도이다.FIG. 33 is a perspective view showing an upper part of a main body module in which an integrated automatic gene discrimination chip of an integrated automatic gene discrimination facility according to an embodiment of the present invention is detached. FIG.
도 34는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 증폭모듈의 사시도이다.34 is a perspective view of an amplification module of an integrated automatic gene discrimination apparatus according to an embodiment of the present invention.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 상부에 전자동 유전자 판별 통합칩이 장착되며, 외형을 형성하는 본체모듈; 상기 본체모듈의 상부에 마련되며, 전방으로 회동시 상기 전자동 유전자 판별 통합칩의 상부를 덮도록 마련되는 상부모듈; 상기 상부모듈에 결합되며, 상기 전자동 유전자 판별 통합칩 내 유체의 흐름을 제어하도록 마련되는 유동모듈; 상기 본체모듈에 마련되며, 상기 전자동 유전자 판별 통합칩의 증폭기의 하측에 마련되는 증폭모듈; 상기 본체모듈의 상부에 마련되며, 상기 전자동 유전자 판별 통합칩의 전극유닛과 연결되도록 마련되는 판별모듈; 및 상기 본체모듈에 마련되는 제어모듈을 포함하며, 상기 판별모듈은 혼합물질의 전류량을 측정하여 유전자를 판별하는 것을 특징으로 하는 전자동 유전자 판별 통합설비를 제공한다.According to an aspect of the present invention, there is provided a method for manufacturing a genetic material, An upper module provided on the upper part of the main body module and covering the upper part of the integrated automatic gene discrimination chip when it is turned forward; A flow module coupled to the upper module, the flow module being adapted to control the flow of fluid in the integrated automatic gene discrimination chip; An amplification module provided in the main body module and provided under the amplifier of the integrated automatic gene discrimination chip; A discriminating module provided at an upper portion of the main body module and connected to an electrode unit of the integrated automatic gene discrimination chip; And a control module provided in the main body module, wherein the discrimination module discriminates a gene by measuring a current amount of a mixed substance.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In order to clearly illustrate the present invention, parts not related to the description are omitted, and similar parts are denoted by like reference characters throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is referred to as being "connected" (connected, connected, coupled) with another part, it is not only the case where it is "directly connected" "Is included. Also, when an element is referred to as " comprising ", it means that it can include other elements, not excluding other elements unless specifically stated otherwise.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, the terms "comprises" or "having" and the like refer to the presence of stated features, integers, steps, operations, elements, components, or combinations thereof, But do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1 및 도 2는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 구성예시도이다. 그리고, 도 3은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 결합사시도이고, 도 4는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 분해사시도이다.FIG. 1 and FIG. 2 are diagrams illustrating the configuration of an integrated automatic gene discrimination chip according to an embodiment of the present invention. 3 is an assembled perspective view of an integrated automatic gene discrimination chip according to an embodiment of the present invention, and FIG. 4 is an exploded perspective view of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
도 1 내지 도 4에 도시된 것처럼, 전자동 유전자 판별 통합칩(1000)은 농축추출기(100), 믹서기(200), 정량주입기(300), 증폭기(400), 혼합기(500), 판별기(600), 본체칩(700) 및 프레임기(800)를 포함한다.1 to 4, the integrated automatic gene discrimination chip 1000 includes a concentrator 100, a mixer 200, a quantifier 300, an amplifier 400, a mixer 500, a discriminator 600 A main body chip 700, and a frame machine 800. [0035]
먼저, 농축추출기(100)는 탈리용액과 자성입자가 혼합된 혼합용액으로부터 이물질용액을 배출시켜 검출대상균을 농축하고, 농축된 검출대상균 내의 유전자를 추출하도록 마련될 수 있으며, 혼합부(110), 버퍼부(120), 농축펌프부(130), 농축부(140), 이물질 배출부(150), 추출챔버부(160), 추출공기주입부(170), 추출부(180), 믹서이송밸브부(190)를 포함할 수 있다.First, the concentrator 100 may be provided to extract a foreign object from a mixed solution in which a desalting solution and magnetic particles are mixed to concentrate the detection target bacteria, and to extract a gene in the concentrated detection target bacteria. An extracting chamber 160, an extracting air injecting unit 170, an extracting unit 180, a mixer 170, and a mixer 170. The buffer unit 120, the concentration pump unit 130, the concentration unit 140, the foreign matter discharge unit 150, And may include a transfer valve unit 190.
상기 혼합부(110)는 상기 농축부(140)의 상류에 마련되어 탈리용액 및 자성입자를 혼합할 수 있도록 마련되며, 혼합용기유닛(111), 혼합가열유닛(112), 혼합모터유닛(113) 및 혼합밸브유닛(114)을 포함한다.The mixing unit 110 is provided upstream of the thickening unit 140 to mix the desorption solution and the magnetic particles and includes a mixing vessel unit 111, a mixing heating unit 112, a mixing motor unit 113, And a mixing valve unit (114).
상기 혼합용기유닛(111)은 상기 탈리용액 및 상기 자성입자가 주입되며, 소정의 시간 동안 상기 탈리용액 및 상기 자성입자를 담지 하도록 마련될 수 있다. 여기서, 상기 탈리용액은 식품이나 어류 등에서 탈리한 용액을 지칭할 수 있으나, 이에 한정되는 것은 아니다. 그리고, 상기 자성입자는 상기 탈리용액에 포함된 검출대상균과 결합되며, 자성을 갖는 입자를 지칭할 수 있다.The mixing vessel unit 111 may be provided so that the desorption solution and the magnetic particles are injected, and the desorption solution and the magnetic particles are supported for a predetermined time. Here, the desolvation solution may be a solution which has been desorbed from food, fish, etc., but is not limited thereto. The magnetic particles may be bonded to the detection object bacteria contained in the desorption solution, and may be particles having magnetic properties.
상기 혼합가열유닛(112)은 상기 혼합용기유닛(111)에 연결되어 마련되며, 상기 혼합용기유닛(111)을 기설정된 온도로 가열할 수 있다. 이때, 상기 혼합가열유닛(112)은 상기 혼합용기유닛(111)을 32도 내지 42도로 가열하여 상기 탈리용액과 상기 자성입자가 활발하게 혼합될 수 있도록 할 수 있다.The mixing heating unit 112 is connected to the mixing container unit 111 and can heat the mixing container unit 111 to a predetermined temperature. At this time, the mixing heating unit 112 may heat the mixing vessel unit 111 to 32 to 42 degrees so that the desorption solution and the magnetic particles can be actively mixed.
상기 혼합모터유닛(113)은 상기 혼합용기유닛(111)과 연결되어 상기 혼합용기유닛(111)에 진동을 가할 수 있다. 구체적으로, 상기 혼합모터유닛(113)은 혼합용기유닛(111)에 20분 내지 120분 동안 진동을 가하여 상기 혼합용기유닛(111)의 내부에 수용된 상기 탈리용액 및 상기 자성입자를 혼합시킬 수 있다. The mixing motor unit 113 may be connected to the mixing container unit 111 to apply vibration to the mixing container unit 111. Specifically, the mixing motor unit 113 may mix the desalination solution and the magnetic particles contained in the mixing vessel unit 111 by applying vibration to the mixing vessel unit 111 for 20 to 120 minutes .
이처럼, 상기 혼합용기유닛(111)은 상기 혼합가열유닛(112)에 의해 가열된 상태에서 상기 혼합모터유닛(113)에 의해 진동이 발생하여 상기 탈리용액 및 상기 자성입자를 혼합하기 때문에, 상기 탈리용액 및 상기 자성입자의 혼합 효율을 더욱 향상시킬 수 있다. 그리고, 상기 탈리용액 및 상기 자성입자가 혼합될 때, 상기 탈리용액 내에 포함된 검출대상균은 상기 자성입자와 결합될 수 있다.Since the mixing vessel unit 111 is heated by the mixing heating unit 112 and the mixing motor unit 113 generates vibration to mix the desorption solution and the magnetic particles, The mixing efficiency of the solution and the magnetic particles can be further improved. And, when the desalination solution and the magnetic particles are mixed, the detection subject bacteria contained in the desorption solution can be combined with the magnetic particles.
상기 혼합밸브유닛(114)은 상기 혼합용기유닛(111)과 상기 농축부(140) 사이에 마련되며, 혼합이 완료된 1차 혼합용액을 상기 농축부(140)에 선택적으로 제공할 수 있도록 마련된다. 구체적으로, 상기 혼합밸브유닛(114)은 상기 혼합용기유닛(111) 내에서 상기 탈리용액 및 상기 자성입자가 혼합되는 동안 폐쇄되며, 상기 탈리용액 및 상기 자성입자의 혼합이 완료된 경우 개방되어 상기 1차 혼합용액을 상기 농축부(140)로 제공할 수 있다.The mixing valve unit 114 is provided between the mixing vessel unit 111 and the thickening unit 140 and is capable of selectively providing the mixed primary solution to the thickening unit 140 . Specifically, the mixing valve unit 114 is closed during the mixing of the desorption solution and the magnetic particles in the mixing vessel unit 111, and when the desorption solution and the magnetic particles are mixed, The mixed solution may be supplied to the concentrating part 140.
*상기 버퍼부(120)는 상기 농축부(140)의 상류에 마련될 수 있으며, 상기 버퍼부(120)는, 상기 농축부(140)에 세척용액 및 이송용액을 주입할 수 있도록 마련될 수 있다. 구체적으로, 상기 버퍼부(120)는 상기 농축부(140)에 세척용액을 주입하여, 상기 1차 혼합용액에 포함된 이물질용액이 상기 이물질 배출부(150)를 통해 배출되도록 할 수 있다. 그리고, 상기 버퍼부(120)는 상기 농축부(140)에 이송용액을 주입하여 상기 농축부(140)에 수용된 2차 혼합용액을 상기 추출부(180)로 이송시킬 수 있다. 여기서, 상기 2차 혼합용액은 상기 1차 혼합용액에서 상기 이물질용액이 배출되어 농축이 이루어진 용액을 지칭한다.The buffer unit 120 may be provided upstream of the thickening unit 140 and the buffer unit 120 may be provided to inject the cleaning solution and the transferring solution into the thickening unit 140 have. Specifically, the buffer unit 120 may inject the cleaning solution into the thickening unit 140 so that the foreign matter solution contained in the primary mixed solution may be discharged through the foreign matter discharging unit 150. The buffer unit 120 can transfer the secondary mixed solution stored in the concentrating unit 140 to the extracting unit 180 by injecting the transferring solution into the concentrating unit 140. Here, the secondary mixed solution refers to a solution in which the foreign matter solution is discharged and concentrated in the primary mixed solution.
상기 농축펌프부(130)는 상기 혼합부(110) 및 상기 버퍼부(120)의 하류에 마련되고, 상기 농축부(140)의 상류에 마련될 수 있다. 상기 농축펌프부(130)는 상기 1차 혼합용액, 상기 세척용액 및 상기 이송용액을 상기 농축부(140)로 주입시킬 수 있다.The concentration pump unit 130 may be disposed downstream of the mixing unit 110 and the buffer unit 120 and may be provided upstream of the concentration unit 140. The concentration pump unit 130 may inject the primary mixed solution, the cleaning solution, and the transfer solution into the concentration unit 140.
상기 농축부(140)는 상기 탈리용액과 상기 자성입자가 혼합된 상기 1차 혼합용액으로부터 상기 이물질용액을 배출시켜 상기 검출대상균을 농축하며, 자력을 선택적으로 발생시켜 상기 자성입자와 결합된 상기 검출대상균을 농축할 수 있도록 마련되는 것을 특징으로 할 수 있다. 그리고, 상기 농축부(140)는 농축용기유닛(141), 농축자석유닛(142), 농축모터유닛(143), 진동모터유닛(144) 및 농축밸브유닛(145)을 포함한다.The concentrating unit 140 concentrates the detection target bacteria by discharging the foreign matter solution from the primary mixed solution in which the desorption solution and the magnetic particles are mixed, selectively generates a magnetic force, And is capable of concentrating the bacteria to be detected. The enrichment unit 140 includes a concentration vessel unit 141, a concentrated magnet unit 142, a concentration motor unit 143, a vibration motor unit 144 and a concentration valve unit 145.
상기 농축용기유닛(141)은 상기 1차 혼합용액이 수용 및 통과될 수 있도록 마련될 수 있다. 일 예로, 상기 농축용기유닛(141)은 튜브(tube) 형태로 마련될 수 있으며, 일측으로 주입된 액체가 타측으로 배출되도록 마련될 수 있다. 단, 상기 농축용기유닛(141)의 형태를 일실시예에 한정하는 것은 아니다.The concentrating container unit 141 may be provided to receive and pass the primary mixed solution. For example, the concentrating container unit 141 may be provided in the form of a tube, and the liquid injected to one side may be discharged to the other side. However, the shape of the concentrating container unit 141 is not limited to the embodiment.
상기 농축자석유닛(142)은 상기 농축용기유닛(141)에 인접하게 마련되며, 상기 농축용기유닛(141)에 선택적으로 자력을 발생시킬 수 있다. 일 예로, 상기 농축자석유닛(142)은 상기 농축용기유닛(141)의 하부에 마련되어 상기 농축용기유닛(141) 자력을 가하거나 제거하도록 마련될 수 있다.The concentrated magnet unit 142 is provided adjacent to the concentrating container unit 141 and may generate magnetic force selectively in the concentrating container unit 141. For example, the concentrated magnet unit 142 may be provided below the concentrating container unit 141 and may be provided to apply or remove the magnetic force of the concentrating container unit 141.
구체적으로, 상기 농축자석유닛(142)은 상기 농축모터유닛(143)과 연결되어 상기 농축용기유닛(141)과의 거리가 조절되도록 마련될 수 있다. 즉, 상기 농축자석유닛(142)은 상기 농축모터유닛(143)에 의해 상기 농축용기유닛(141)에 인접하게 이동되어 상기 농축용기유닛(141)에 자력을 가할 수 있다. 그리고 반대로, 상기 농축자석유닛(142)은 상기 농축모터유닛(143)에 의해 상기 농축용기유닛(141)으로부터 이격되어 상기 농축용기유닛(141)에 가해지는 자력을 제거할 수도 있다.The condensing magnet unit 142 may be connected to the condensing motor unit 143 to adjust the distance between the condensing magnet unit 142 and the condensing container unit 141. That is, the concentrated magnet unit 142 may move adjacent to the concentrated container unit 141 by the concentrated motor unit 143 to apply a magnetic force to the concentrated container unit 141. Conversely, the condensing magnet unit 142 may be separated from the condensing container unit 141 by the condensing motor unit 143 to remove the magnetic force applied to the condensing container unit 141.
그리고, 보다 상세하게 설명하면, 상기 농축자석유닛(142)은 상기 농축용기유닛(141)의 길이 방향으로 복수의 자석이 마련된 형태일 수 있다. 이때, 상기 자석은 인접한 자석의 극성이 서로 다르게 마련될 수 있다. 즉, 상기 농축자석유닛(142)은 상기 농축용기유닛(141)과 대향되는 자석의 극성이 N극과 S극이 상호 교차되어 반복되도록 마련될 수 있다.In more detail, the concentrated magnet unit 142 may have a plurality of magnets in the longitudinal direction of the concentrating container unit 141. At this time, the magnets may have different polarities of adjacent magnets. That is, the condensing magnet unit 142 may be provided such that the polarities of the magnets opposed to the concentrating container unit 141 are alternately repeated in the N and S poles.
또한, 상기 농축자석유닛(142)은 전자석으로 마련되어 상기 농축용기유닛(141)에 선택적으로 자력을 발생시킬 수도 있다. 이처럼, 상기 농축자석유닛(142)이 전자석으로 마련된 경우, 상기 농축자석유닛(142)에 전류를 흘려주면, 상기 농축용기유닛(141)에 자력이 발생할 수 있다. 이와 반대로, 상기 농축자석유닛(142)에 전류가 흐르지 못하게 하면, 상기 농축용기유닛(141)에 가해지는 자력을 제거할 수 있다. 그리고, 상기 농축자석유닛(142)이 전자석으로 마련된 경우, 상기 농축모터유닛(143)은 구비되지 않을 수 있다.Also, the concentrated magnet unit 142 may be electromagnetically generated to selectively generate a magnetic force in the concentrating container unit 141. In this way, when the concentrated magnet unit 142 is provided with an electromagnet, a magnetic force may be generated in the concentrated container unit 141 when a current is supplied to the concentrated magnet unit 142. On the contrary, if the current can not flow through the concentrated magnet unit 142, the magnetic force applied to the concentrated container unit 141 can be removed. When the concentrated magnet unit 142 is provided with an electromagnet, the concentrated motor unit 143 may not be provided.
상기와 같이 전자석으로 마련된 상기 농축자석유닛(142)의 경우, 상기 농축자석유닛(142)에 흐르는 전류를 제어하는 것으로 상기 농축용기유닛(141)에 발생시키는 자력을 제어할 수 있기 때문에 보다 신속하고 간편한 자력 제어가 가능하다.In the case of the concentrated magnet unit 142 provided as an electromagnet as described above, since the magnetic force generated in the concentrating container unit 141 can be controlled by controlling the current flowing in the concentrated magnet unit 142, Easy magnetic control is possible.
전술한 바와 같이 마련된 상기 농축자석유닛(142)은 상기 농축용기유닛(141)에 가해지는 자력을 제어함으로써, 상기 1차 혼합용액에 포함된 상기 검출대상균의 유동을 제어할 수 있다. The concentrated magnet unit 142 provided as described above can control the flow of the detection subject bacteria contained in the primary mixed solution by controlling the magnetic force applied to the concentrated container unit 141. [
구체적으로, 상기 농축자석유닛(142)이 상기 농축용기유닛(141)에 자력을 발생시키면, 상기 검출대상균과 결합된 상기 자성입자가 자력에 의해 상기 농축자석유닛(142)측으로 이동되어 상기 농축용기유닛(141)의 내벽에 고정될 수 있다.Specifically, when the concentrated magnet unit 142 generates a magnetic force in the concentrating container unit 141, the magnetic particles combined with the detection target bacteria are moved toward the concentrated magnet unit 142 side by the magnetic force, And can be fixed to the inner wall of the container unit 141.
상기 진동모터유닛(144)은 상기 농축용기유닛(141)에 연결되어 마련되며, 상기 2차 혼합용액이 상기 추출부(180)로 이송될 때, 상기 농축용기유닛(141)에 진동을 발생시켜 상기 농축용기유닛(141)에 부착된 상기 검출대상균을 떼어내는 것을 특징으로 할 수 있다.The vibrating motor unit 144 is connected to the concentrating container unit 141 and generates vibration in the concentrating container unit 141 when the secondary mixed solution is transferred to the extracting unit 180 And the bacteria to be detected attached to the concentrating container unit (141) are peeled off.
구체적으로, 상기 2차 혼합용액은 상기 농축용기유닛(141)에 자력을 제거한 상태일 때에도, 상기 농축용기유닛(141) 내부의 상기 농축자석유닛(142)측에 부착된 상태를 유지할 수 있다. 따라서, 상기 진동모터유닛(144)은 상기 농축용기유닛(141) 내의 상기 2차 혼합용액을 상기 추출부(180)로 이송시킬 때, 상기 농축용기유닛(141)의 내벽에 부착된 상기 2차 혼합용액에 진동을 가해 상기 내벽으로부터 분리시킬 수 있다. 이처럼 마련된 상기 진동모터유닛(144)은 상기 2차 혼합용액의 이송 효율을 높일 수 있다.Specifically, the secondary mixed solution can maintain the state of being attached to the concentrated magnet unit 142 side in the concentrated vessel unit 141 even when the concentrated vessel unit 141 has its magnetic force removed. Therefore, when the vibration motor unit 144 transfers the secondary mixed solution in the concentrating container unit 141 to the extracting unit 180, Vibration can be applied to the mixed solution to separate from the inner wall. The vibration motor unit 144 provided as described above can increase the transport efficiency of the secondary mixed solution.
상기 이물질 배출부(150)는 상기 농축부(140) 및 상기 추출부(180)의 하류에 마련될 수 있으며, 상기 이물질 배출부(150)는, 상기 농축부(140) 및 상기 추출부(180)를 통과한 상기 이물질용액이 배출되도록 마련될 수 있다. The foreign matter discharging unit 150 may be disposed downstream of the thickening unit 140 and the extracting unit 180 and the foreign matter discharging unit 150 may include the thickening unit 140 and the extracting unit 180 ) May be provided to discharge the foreign substance solution.
구체적으로, 상기 이물질 배출부(150)는 이물질 배출구유닛(151), 제1 배출밸브유닛(152) 및 제2 배출밸브유닛(153)을 포함한다.Specifically, the foreign matter discharge unit 150 includes a foreign matter outlet unit 151, a first discharge valve unit 152, and a second discharge valve unit 153.
상기 이물질 배출구유닛(151)은 상기 농축부(140) 및 상기 추출부(180)의 하류측에 위치하여 상기 이물질용액이 배출될 수 있도록 마련된다.The foreign matter outlet unit 151 is disposed on the downstream side of the concentrating unit 140 and the extracting unit 180 so that the foreign matter solution can be discharged.
상기 제1 배출밸브유닛(152)은 상기 농축부(140)와 상기 배출구유닛(151)의 사이에 마련되어, 상기 농축부(140)를 통과한 이물질용액이 상기 배출구유닛(151)으로 이송될 때, 개방될 수 있다. 그리고, 상기 제1 배출밸브유닛(152)은 상기 농축부(140)에서 상기 추출부(180)로 상기 2차 혼합용액이 이송될 때에는 폐쇄되도록 마련될 수 있다.The first discharge valve unit 152 is provided between the enrichment unit 140 and the discharge port unit 151. When the foreign matter solution having passed through the enrichment unit 140 is transferred to the discharge port unit 151 , And can be opened. The first discharge valve unit 152 may be closed when the second mixed solution is transferred from the enrichment unit 140 to the extraction unit 180.
상기 제2 배출밸브유닛(153)은 상기 추출부(180)와 상기 배출구유닛(151)의 사이에 마련되어, 상기 추출부(180)를 통과한 이물질용액이 상기 배출구유닛(151)으로 이송될 때, 개방될 수 있다. 그리고, 상기 제2 배출밸브유닛(153)은 상기 추출부(180)에서 믹서기(200)로 추출된 유전자가 이송될 때에는 폐쇄되도록 마련될 수 있다.The second discharge valve unit 153 is provided between the extraction unit 180 and the discharge unit 151 so that when the foreign matter solution having passed through the extraction unit 180 is transferred to the discharge unit 151 , And can be opened. The second discharge valve unit 153 may be closed when the gene extracted from the extractor 180 is transferred to the mixer 200.
상기 추출챔버부(160)는 상기 검출대상균 내의 유전자를 추출하는 추출용액을 상기 추출부(180)에 주입할 수 있으며, 추출챔버유닛(161), 추출챔버펌프유닛(162) 및 추출챔버밸브유닛(163) 및 추출챔버압력조절유닛(164)을 포함한다.The extraction chamber unit 160 can inject the extraction solution for extracting the genes in the detection target bacteria into the extraction unit 180 and the extraction chamber unit 161, the extraction chamber pump unit 162, Unit 163 and an extraction chamber pressure regulating unit 164.
상기 추출챔버유닛(161)은 상기 추출용액을 수용하도록 마련될 수 있으며, 상기 추출부(180)의 상류측에 마련될 수 있다. The extraction chamber unit 161 may be provided to receive the extraction solution and may be provided on the upstream side of the extraction unit 180.
상기 추출챔버펌프유닛(162)은 추출챔버유닛(161)과 연결되어 추출챔버유닛(161)에 수용된 상기 추출용액을 상기 추출부(180)로 공급하기 위해 공기를 주입할 수 있다.The extraction chamber pump unit 162 may be connected to the extraction chamber unit 161 to inject air to supply the extraction solution contained in the extraction chamber unit 161 to the extraction unit 180.
상기 추출챔버밸브유닛(163)은 상기 추출챔버유닛(161)과 상기 추출부(180)의 사이에 마련되며, 상기 추출챔버유닛(161)에 수용된 상기 추출용액의 공급여부를 제어하도록 마련될 수 있다.The extraction chamber valve unit 163 is provided between the extraction chamber unit 161 and the extraction unit 180 and may be provided to control whether the extraction solution contained in the extraction chamber unit 161 is supplied or not have.
상기 추출챔버압력조절유닛(164)은 상기 추출챔버펌프유닛(162)과 연결되며, 상기 추출챔버압력조절유닛(164)은, 상기 추출챔버유닛(161)에 공기를 주입하기 위한 유체이송튜브(미도시)가 연결될 때, 상기 추출챔버펌프유닛(162)과 상기 유체이송튜브 사이의 공기를 외부로 배출한 이후에 밀폐되는 것을 특징으로 할 수 있다. 이처럼 마련된 상기 추출챔버압력조절유닛(164)은 상기 추출챔버펌프유닛(162)에 상기 유체이송튜브가 연결될 때, 상기 추출챔버펌프유닛(162)과 상기 유체이송튜브 사이의 공기가 상기 추출챔버펌프유닛(162)을 통해 상기 추출챔버유닛(161)에 유입되는 문제를 방지할 수 있다. 즉, 항상 정해진 양만큼의 공기만 상기 추출챔버유닛(161)에 주입되도록 할 수 있다.The extraction chamber pressure regulating unit 164 is connected to the extraction chamber pump unit 162 and the extraction chamber pressure regulating unit 164 is connected to the fluid transfer tube for injecting air into the extraction chamber unit 161 When the extraction chamber pump unit 162 and the fluid delivery tube are connected to each other, the air between the extraction chamber pump unit 162 and the fluid delivery tube is discharged to the outside. The extraction chamber pressure regulating unit 164 thus provided is configured such that when the fluid transfer tube is connected to the extraction chamber pump unit 162, air between the extraction chamber pump unit 162 and the fluid transfer tube is introduced into the extraction chamber pump It is possible to prevent a problem of flowing into the extraction chamber unit 161 through the unit 162. That is, only a predetermined amount of air can always be injected into the extraction chamber unit 161.
또한, 상기 추출챔버압력조절유닛(164)은, 상기 추출챔버펌프유닛(162)이 상기 추출챔버유닛(161)에 수용된 추출용액을 모두 배출하였을 때, 개방되어 내부 압력을 조절할 수도 있다. 이처럼 마련된 상기 추출챔버압력조절유닛(164)은 내부 압력이 조절된 상태에서 상기 유체이송튜브가 상기 추출챔버펌프유닛(162)으로부터 분리될 수 있도록 함으로써, 안전성을 향상시킬 수 있다.The extraction chamber pressure regulating unit 164 may be opened when the extraction chamber pump unit 162 discharges the extraction solution contained in the extraction chamber unit 161 to regulate the internal pressure. The extraction chamber pressure regulating unit 164 thus provided can improve the safety by allowing the fluid transfer tube to be separated from the extraction chamber pump unit 162 while the internal pressure is adjusted.
상기 추출공기주입부(170)는 상기 추출부(180)의 상류측에 마련되며, 추출공기주입유닛(171) 및 추출공기주입밸브(172)를 포함할 수 있다.The extraction air injection unit 170 is provided on the upstream side of the extraction unit 180 and may include an extraction air injection unit 171 and an extraction air injection valve 172.
상기 추출공기주입유닛(171)은 상기 추출부(180)에서 추출된 상기 유전자를 상기 추출부(180)의 하류에 마련된 상기 믹서기(200)를 향해 배출하도록 상기 추출부(180)에 공기를 주입할 수 있다. 이때, 상기 추출공기주입유닛(171)은 상기 추출부(180)에 자력이 가해진 상태에서 상기 추출부(180)에 공기를 주입할 수 있다. 이처럼, 상기 추출부(180)에 자력이 가해진 상태에서는 상기 검출대상균과 자성입자가 상기 추출부(180)에 부착되어 고정된 상태이다. 따라서, 상기 추출부(180)에 자력이 가해진 상태에서는 상기 검출대상균으로부터 추출된 유전자만 상기 믹서기(200)로 이송되도록 할 수 있다.The extraction air injection unit 171 injects air into the extraction unit 180 to discharge the gene extracted from the extraction unit 180 toward the mixer 200 provided downstream of the extraction unit 180 can do. At this time, the extraction air injection unit 171 can inject air into the extraction unit 180 in a state where a magnetic force is applied to the extraction unit 180. In this way, when the extraction unit 180 is applied with a magnetic force, the detection target bacteria and the magnetic particles are attached to the extraction unit 180 and fixed. Therefore, in a state where the extraction unit 180 is applied with a magnetic force, only the genes extracted from the detection subject organism can be transferred to the mixer 200.
또한, 상기 추출공기주입유닛(171)이 상기 추출부(180)에 공기를 주입하여 상기 추출부(180) 내 유전자를 이송시킬 때, 상기 추출챔버부(160)도 상기 추출부(180)에 상기 추출용액을 더 주입하여 상기 유전자를 더욱 원활하게 이송시킬 수도 있다.When the extraction air injection unit 171 injects air into the extraction unit 180 and transfers the gene in the extraction unit 180, the extraction chamber unit 160 is also connected to the extraction unit 180 The extraction solution may be further injected to more smoothly transfer the gene.
상기 추출부(180)는 상기 농축부(140)에 의해 상기 검출대상균이 농축된 상태인 상기 2차 혼합용액으로부터 이물질용액을 배출시켜 상기 검출대상균을 재농축할 수 있으며, 상기 검출대상균으로부터 검출 대상인 유전자를 추출할 수 있다. 특히, 상기 추출부(180)는 자력을 선택적으로 발생시켜 자성입자와 결합된 검출대상균을 상기 추출부(180) 내에 고정시킴으로써, 상기 검출대상균을 재농축하고 검출 대상인 유전자가 추출되도록 할 수 있다.The extracting unit 180 can re-concentrate the detection target bacteria by discharging the foreign matter solution from the secondary mixed solution in a state in which the detection target bacteria are concentrated by the concentration unit 140, The gene to be detected can be extracted. In particular, the extraction unit 180 may selectively generate a magnetic force to fix the detection target bacteria combined with the magnetic particles in the extraction unit 180, thereby re-concentrating the detection target bacteria and extracting the gene to be detected have.
구체적으로, 상기 추출부(180)는 추출용기유닛(181), 추출자석유닛(182), 추출모터유닛(183), 추출온도제어유닛(184) 및 추출냉각유닛(185)을 포함할 수 있다.Specifically, the extraction unit 180 may include an extraction container unit 181, an extraction magnet unit 182, an extraction motor unit 183, an extraction temperature control unit 184, and an extraction cooling unit 185 .
상기 추출용기유닛(181)은 상기 자성입자와 결합된 검출대상균이 수용되며, 상기 2차 혼합용액이 통과하도록 마련될 수 있다. 일 예로, 상기 추출용기유닛(181)은 튜브 형태로 마련될 수 있으나, 상기 추출용기유닛(181)의 형태를 이에 한정하는 것은 아니다.The extraction container unit 181 accommodates the detection target bacteria combined with the magnetic particles, and may be provided so that the secondary mixed solution passes through the extraction container unit 181. For example, the extraction container unit 181 may be provided in a tube shape, but the shape of the extraction container unit 181 is not limited thereto.
상기 추출자석유닛(182)은 상기 추출용기유닛(181)에 인접하게 마련되며, 상기 추출용기유닛(181)에 선택적으로 자력을 발생시킬 수 있다. 일 예로, 상기 추출자석유닛(182)은 상기 추출용기유닛(181)의 하부에 마련되어 상기 추출용기유닛(181) 자력을 가하거나 제거하도록 마련될 수 있다.The extraction magnet unit 182 is provided adjacent to the extraction container unit 181 and can selectively generate magnetic force in the extraction container unit 181. For example, the extraction magnet unit 182 may be provided below the extraction container unit 181 and may be provided to apply or remove the magnetic force of the extraction container unit 181.
구체적으로, 상기 추출자석유닛(182)은 상기 추출모터유닛(183)과 연결되어 상기 추출용기유닛(181)과의 거리가 조절되도록 마련될 수 있다. 즉, 상기 추출자석유닛(182)은 상기 추출모터유닛(183)에 의해 상기 추출용기유닛(181)에 인접하게 이동되어 상기 추출용기유닛(181)에 자력을 가할 수 있다. 그리고 반대로, 상기 추출자석유닛(182)은 상기 추출모터유닛(183)에 의해 상기 추출용기유닛(181)으로부터 이격되어 상기 추출용기유닛(181)에 가해지는 자력을 제거할 수도 있다.Specifically, the extraction magnet unit 182 may be connected to the extraction motor unit 183 to adjust the distance from the extraction container unit 181. That is, the extraction magnet unit 182 may be moved adjacent to the extraction container unit 181 by the extraction motor unit 183 to apply a magnetic force to the extraction container unit 181. Conversely, the extraction magnet unit 182 may be separated from the extraction container unit 181 by the extraction motor unit 183 to remove the magnetic force applied to the extraction container unit 181.
*그리고, 보다 상세하게 설명하면, 상기 추출자석유닛(182)은 상기 추출용기유닛(181)의 길이 방향으로 복수의 자석이 마련된 형태일 수 있다. 이때, 상기 자석은 인접한 자석의 극성이 서로 다르게 마련될 수 있다. 즉, 상기 추출자석유닛(182)은 상기 추출용기유닛(181)과 대향되는 자석의 극성이 N극과 S극이 상호 교차되어 반복되도록 마련될 수 있다. N극과 S극의 교차 지점에는 자속이 강하게 형성된다. 따라서, 상기 추출자석유닛(182)은 상기 N극과 S극이 교차되는 지점에 자성입자를 집중적으로 부착시켜 포획하기 때문에 자성입자와 결합된 검출대상균이 유실되는 문제를 방지할 수 있다.In more detail, the extraction magnet unit 182 may have a configuration in which a plurality of magnets are provided in the longitudinal direction of the extraction container unit 181. At this time, the magnets may have different polarities of adjacent magnets. That is, the extraction magnet unit 182 may be provided such that the polarities of the magnets opposed to the extraction container unit 181 are alternately repeated in the N and S poles. At the intersection of the N pole and the S pole, a strong magnetic flux is formed. Therefore, since the extraction magnet unit 182 captures and captures magnetic particles intensively at the point where the N pole and the S pole intersect, it is possible to prevent the problem that the detection target bacteria combined with the magnetic particles are lost.
또한, 상기 추출자석유닛(182)은 전자석으로 마련되어 상기 추출용기유닛(181)에 선택적으로 자력을 발생시킬 수도 있다. 이처럼, 상기 추출자석유닛(182)이 전자석으로 마련된 경우, 상기 추출자석유닛(182)에 전류를 흘려주면, 상기 추출용기유닛(181)에 자력이 발생하게 될 수 있다. 이와 반대로, 상기 추출자석유닛(182)에 전류가 흐르지 못하게 하면, 상기 추출용기유닛(181)에 가해지는 자력을 제거할 수 있다. 그리고, 상기 추출자석유닛(182)이 전자석으로 마련된 경우, 상기 추출모터유닛(183)은 구비되지 않을 수 있다.The extraction magnet unit 182 may be electromagnetically generated to selectively generate magnetic force in the extraction container unit 181. When the extraction magnet unit 182 is provided with an electromagnet, a magnetic force may be generated in the extraction container unit 181 when a current is supplied to the extraction magnet unit 182. Conversely, if the current can not flow through the extraction magnet unit 182, the magnetic force applied to the extraction container unit 181 can be removed. If the extraction magnet unit 182 is provided with an electromagnet, the extraction motor unit 183 may not be provided.
상기와 같이 전자석으로 마련된 상기 추출자석유닛(182)의 경우, 상기 추출자석유닛(182)에 흐르는 전류를 제어하는 것으로 상기 추출용기유닛(181)에 발생시키는 자력을 제어할 수 있기 때문에 보다 신속하고 간편한 자력 제어가 가능하다.In the case of the extraction magnet unit 182 provided as an electromagnet as described above, since the magnetic force generated in the extraction container unit 181 can be controlled by controlling the current flowing in the extraction magnet unit 182, Easy magnetic control is possible.
전술한 바와 같이 마련된 상기 추출자석유닛(182)은 상기 추출용기유닛(181)에 가해지는 자력을 제어함으로써, 상기 2차 혼합용액에 포함된 상기 검출대상균의 유동을 제어할 수 있다. The extraction magnet unit 182 provided as described above can control the flow of the detection subject bacteria contained in the secondary mixed solution by controlling the magnetic force applied to the extraction container unit 181. [
구체적으로, 상기 추출자석유닛(182)이 상기 추출용기유닛(181)에 자력을 발생시키면, 상기 검출대상균과 결합된 상기 자성입자가 자력에 의해 상기 추출자석유닛(182)측으로 이동되어 상기 추출용기유닛(181)의 내벽에 고정될 수 있다.Specifically, when the extraction magnet unit 182 generates a magnetic force in the extraction container unit 181, the magnetic particles combined with the detection target bacteria are moved toward the extraction magnet unit 182 by the magnetic force, And can be fixed to the inner wall of the container unit 181.
상기 추출온도제어유닛(184)은 상기 추출용기유닛(181)과 연결되어 상기 추출용액이 주입된 상기 추출용기유닛(181)을 기설정된 온도로 가열 및 냉각하도록 마련될 수 있다. 그리고, 상기 추출온도제어유닛(184)은 상기 2차 혼합용액의 온도가 균일하도록 상기 추출용기유닛(181)에 작용하는 자력을 제거한 상태에서 상기 추출용기유닛(181)을 가열 및 냉각시킬 수 있다.The extraction temperature control unit 184 may be connected to the extraction container unit 181 to heat and cool the extraction container unit 181 into which the extraction solution is injected to a predetermined temperature. The extraction temperature control unit 184 can heat and cool the extraction container unit 181 with the magnetic force acting on the extraction container unit 181 being removed so that the temperature of the secondary mixture solution is uniform .
상기 추출용기유닛(181)을 90도 내지 100도로 5분 내지 20분 동안 가열시킬 수 있다. 상기 추출용기유닛(181)의 온도가 90도 미만일 경우, 상기 추출용액이 활발하게 활동하지 못할 수 있으며, 상기 추출용기유닛(181)의 온도가 100도를 초과할 경우, 유전자가 파괴되거나, 추출용액의 기능이 상실될 수 있다. 따라서, 상기 추출용기유닛(181)은 90도 내지 100도로 5분 내지 20분 동안 가열될 수 있다.The extraction container unit 181 can be heated at 90 to 100 degrees for 5 to 20 minutes. If the temperature of the extraction container unit 181 is less than 90 degrees, the extraction solution may not actively active. If the temperature of the extraction container unit 181 exceeds 100 degrees, the gene may be destroyed, The function of the solution may be lost. Thus, the extraction container unit 181 can be heated from 90 to 100 degrees for 5 minutes to 20 minutes.
이처럼, 적정범위에서 가열된 상기 추출용기유닛(181)에 수용된 상기 추출용액은 상기 검출대상균의 세포를 활발하게 파쇄하여 신속하게 유전자를 추출할 수 있다.As described above, the extraction solution contained in the extraction container unit 181 heated in an appropriate range can actively break down the cells of the detection target bacteria to rapidly extract genes.
그러나, 상기 추출용기유닛(181)의 온도는 상술한 바에 한정되지 않으며, 추출용액의 종류에 따라 상온으로 유지되는 것도 가능하다.However, the temperature of the extraction container unit 181 is not limited to that described above, and it may be maintained at room temperature depending on the type of extraction solution.
그리고, 상기 추출온도제어유닛(184)은, 가열된 상기 추출용기유닛(181)를 상온으로 냉각시킬 수 있다. 이때, 상기 추출온도제어유닛(184)은 상기 추출용기유닛(181)의 온도를 20도 내지 30도로 냉각시킬 수 있다.The extraction temperature control unit 184 can cool the heated extraction container unit 181 to room temperature. At this time, the extraction temperature control unit 184 may cool the temperature of the extraction container unit 181 by 20 to 30 degrees.
상기 추출냉각유닛(185)은 상기 추출온도제어유닛(184)과 연결되어 상기 추출온도제어유닛(184)을 냉각시키도록 마련될 수 있다. 상기 추출냉각유닛(185)은 상기 추출온도제어유닛(184)이 과열로 인한 고장을 방지하기 위해 상기 추출온도제어유닛(184)이 상기 추출용기유닛(181)을 가열할 때, 동시에 작동되도록 마련될 수 있으며, 상기 추출온도제어유닛(184)이 기설정된 온도를 초과할 경우에 작동이 되도록 할 수도 있다. 그리고, 상기 추출냉각유닛(184)은 상기 추출온도제어유닛(184)이 상기 추출용기유닛(181)을 상온으로 냉각시킬 때에도, 작동하여 더욱 신속하게 냉각이 이루어지도록 할 수 있다.The extraction cooling unit 185 may be connected to the extraction temperature control unit 184 to cool the extraction temperature control unit 184. The extraction cooling unit 185 is adapted to be operated simultaneously when the extraction temperature control unit 184 heats the extraction container unit 181 to prevent the failure of the extraction temperature control unit 184 due to overheating And may be operated when the extraction temperature control unit 184 exceeds a predetermined temperature. The extraction cooling unit 184 can operate even when the extraction temperature control unit 184 cools the extraction vessel unit 181 to room temperature so that cooling can be performed more quickly.
또한, 상기 추출부(180)는 제1 추출용기밸브(186) 및 제2 추출용기밸브(187)를 더 포함할 수 있다. 상기 제1 추출용기밸브(186) 및 제2 추출용기밸브(187)는 상기 추출용기유닛(181)의 양측에 인접하게 각각 마련될 수 있다. 그리고, 상기 제1 추출용기밸브(186) 및 제2 추출용기밸브(187)는 상기 추출온도제어유닛(184)에 의해 상기 추출용기유닛(181)이 가열될 때, 상기 추출용기유닛(181) 내부의 압력을 조절하고, 수용된 용액이 유출되는 것을 방지하도록 제어될 수 있다.The extraction unit 180 may further include a first extraction vessel valve 186 and a second extraction vessel valve 187. The first extraction vessel valve 186 and the second extraction vessel valve 187 may be provided adjacent to both sides of the extraction vessel unit 181, respectively. The first extraction vessel valve 186 and the second extraction vessel valve 187 are connected to the extraction vessel unit 181 when the extraction vessel unit 181 is heated by the extraction temperature control unit 184, It can be controlled to adjust the internal pressure and prevent the contained solution from flowing out.
상기 믹서이송밸브부(190)는 상기 추출부(180)의 하류에 마련되며, 추출된 상기 유전자가 상기 믹서기(200)로 이송될 때, 개방될 수 있다.The mixer transfer valve unit 190 is provided downstream of the extraction unit 180 and may be opened when the extracted gene is transferred to the mixer 200.
도 5는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 믹서기의 믹서주챔버부의 예시도이고, 도 6은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 믹서기의 와류유도유닛을 나타낸 예시도이며, 도 7은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 믹서기의 믹서주챔버부의 내부 유체 흐름을 나타낸 예시도이다.FIG. 5 is a diagram illustrating a mixer main chamber part of a blender of an integrated automatic gene discrimination chip according to an embodiment of the present invention, and FIG. 6 is a block diagram illustrating a vortex induction unit of a blender of an integrated automatic gene discrimination chip according to an embodiment of the present invention. And FIG. 7 is an exemplary view illustrating an internal fluid flow of a mixer main chamber portion of a mixer of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
도 1 내지 도 7에 도시된 것처럼, 믹서기(200)는 상기 농축추출기(100)의 하류에 마련되며, 상기 유전자와 PCR버퍼를 혼합하여 혼합PCR용액을 형성할 수 있다. 그리고, 상기 믹서기(200)는 믹서주챔버부(210), 믹서보조챔버부(220), 믹서이송챔버부(230), 믹서펌프부(240), 믹서압력조절부(250), 믹서지지홀(260) 및 믹서밸브부(270)를 포함하며, 유전자와 PCR버퍼(중합효소 연쇄반응 버퍼)는 상기 믹서보조챔버부(220)와 상기 믹서주챔버부(210)를 왕복하면서 혼합되도록 마련되는 것을 특징으로 할 수 있다.As shown in FIGS. 1 to 7, the mixer 200 is provided downstream of the concentrating extractor 100, and the gene and the PCR buffer are mixed to form a mixed PCR solution. The mixer 200 includes a mixer main chamber 210, a mixer auxiliary chamber 220, a mixer transfer chamber 230, a mixer pump 240, a mixer pressure regulator 250, And a mixer valve unit 270. The gene and the PCR buffer (polymerase chain reaction buffer) are arranged to be mixed while reciprocating between the mixer auxiliary chamber unit 220 and the mixer main chamber unit 210 . ≪ / RTI >
상기 믹서주챔버부(210)는 믹서주챔버본체(211), 믹서주챔버연장체(212), 믹서주입홀(213), 믹서에어필터(214) 및 와류유도유닛(215)를 포함하며, 검출대상균으로부터 추출된 상기 유전자와 상기 PCR버퍼가 수용되어 혼합될 수 있도록 마련된다.The mixer main chamber portion 210 includes a mixer main chamber body 211, a mixer main chamber extension 212, a mixer injection hole 213, a mixer air filter 214 and a vortex induction unit 215, And the PCR buffer is accommodated and mixed with the gene extracted from the target bacteria.
상기 믹서주챔버본체(211)는 내부에 상기 유전자 및 상기 PCR버퍼가 수용될 수 있도록 마련된다. 구체적으로, 상기 믹서주챔버본체(211)는 복수의 필름이 적층되어 형성된 본체칩(700)에 마련될 수 있으며, 내부에 상기 유전자 및 상기 PCR버퍼가 수용될 수 있는 공간이 형성될 수 있다.The mixer main chamber main body 211 is provided so that the gene and the PCR buffer can be accommodated therein. Specifically, the mixer main chamber body 211 may be provided in the main body chip 700 formed by stacking a plurality of films, and a space in which the gene and the PCR buffer can be accommodated may be formed therein.
상기 믹서주챔버연장체(212)는 상기 믹서주챔버본체(211)의 일측에 연장되어 마련되며, 상기 믹서주챔버본체(211)에 비해 상대적으로 높은 단차가 형성될 수 있다. 구체적으로, 상기 믹서주챔버연장체(212)는 상기 믹서주챔버본체(211)에 유입된 상기 유전자 및 상기 PCR버퍼가 상기 믹서보조챔버부(220)가 흡입할 경우에만 상기 믹서보조챔버부(220)로 이송될 수 있도록 단차가 형성될 수 있다. 이처럼 마련된 상기 믹서주챔버연장체(212)는 상기 믹서보조챔버부(220)가 흡입력을 가하지 않는 경우, 상기 유전자와 상기 PCR버퍼가 상기 믹서보조챔버부(220)로 이동되지 않도록 할 수 있다.The mixer main chamber extension body 212 extends to one side of the mixer main chamber body 211 and a relatively higher step than the mixer main chamber main body 211 can be formed. The mixer main chamber extension 212 is connected to the mixer sub chamber 220 only when the mixer sub chamber 220 sucks the gene and the PCR buffer introduced into the mixer main chamber body 211. [ A step can be formed so as to be able to be transported. The mixer main chamber extension 212 may prevent the gene and the PCR buffer from moving to the mixer sub-chamber 220 when the mixer sub-chamber 220 does not apply a suction force.
상기 믹서주입홀(213)은 상기 믹서주챔버본체(211)의 바닥면에 형성되어 추출된 상기 유전자가 주입될 수 있다. 그리고, 도 7의 (a)에 도시된 것처럼, 상기 PCR버퍼는 상기 믹서주챔버본체(211)에 상기 유전자가 유입되기 전에, 상기 믹서주챔버연장체(212)로부터 주입되어 상기 믹서주입홀(213)의 앞단까지 채워지는 것을 특징으로 할 수 있다. 즉, 상기 믹서주챔버본체(211)에 마련되는 상기 믹서주입홀(213)은 상기 믹서주챔버본체(211)에 미리 채워진 PCR버퍼가 상기 믹서주입홀(213)로 유입되어 역류하지 않도록 할 수 있는 위치에 마련될 수 있다.The mixer injection hole 213 is formed on the bottom surface of the mixer main chamber body 211 and the extracted gene can be injected. As shown in FIG. 7A, the PCR buffer is injected from the mixer main chamber extension 212 before the gene is introduced into the mixer main chamber body 211, and is injected into the mixer injection hole 213 To the front end of the housing. That is, the mixer injection hole 213 provided in the mixer main chamber body 211 can prevent the PCR buffer pre-filled in the mixer main chamber body 211 from flowing into the mixer injection hole 213 and flowing back May be provided.
상기 믹서에어필터(214)는 상기 믹서주챔버본체(211)의 상측에 마련되되, 상기 믹서주입홀(213)의 상부에 마련될 수 있다. 그리고, 상기 믹서에어필터(214)는, 상기 믹서주입홀(213)을 통해 상기 유전자와 함께 주입되는 기포를 외부로 배출시키면서 상기 유전자와 상기 PCR버퍼를 혼합시킬 수 있다. 구체적으로, 상기 믹서주입홀(213)을 통해 유입되는 유전자는 기포를 포함하고 있다. 상기 믹서에어필터(214)는 상기 유전자와 함께 유입된 기포를 외부로 배출할 수 있다. 그리고 이때, 기포가 터지면서 상기 유전자와 상기 PCR버퍼를 혼합시킬 수 있다. 즉, 상기 믹서에어필터(214)는 혼합 효율을 향상시킬 수 있다.The mixer air filter 214 is provided on the upper side of the mixer main chamber body 211 and may be provided on the upper side of the mixer injection hole 213. The mixer air filter 214 mixes the gene and the PCR buffer while discharging the bubbles injected together with the gene through the mixer injection hole 213 to the outside. Specifically, the gene introduced through the mixer injection hole 213 includes bubbles. The mixer air filter 214 can discharge the bubbles introduced together with the gene to the outside. At this time, the bubble may burst and the gene and the PCR buffer may be mixed. That is, the mixer air filter 214 can improve mixing efficiency.
또한, 상기 믹서에어필터(214)는 상기 유전자 및 상기PCR버퍼가 왕복 이동하면서 발생하는 기포를 외부로 배출하면서 상술한 바와 같은 방법으로 혼합 효율을 향상시킬 수도 있다.In addition, the mixer air filter 214 may increase the mixing efficiency as described above while discharging the bubbles generated while the gene and the PCR buffer reciprocate.
상기 와류유도유닛(215)은 상기 믹서주챔버본체(211)에 하나 이상으로 마련될 수 있으며, 상기 와류유도유닛(215)은 상기 유전자 및 상기 PCR버퍼가 이동할 때 충돌하면서 와류가 발생하도록 마련될 수 있다. 구체적으로, 상기 와류유도유닛(215)은 도 6에 도시된 것처럼, 상기 와류유도유닛(215)은, 상기 믹서주챔버본체(211)의 양측면으로부터 내측을 향해 연장되어 마련될 수 있으며, 상호 이격되어 마련되는 것을 특징으로 할 수 있다. 그리고, 상기 와류유도유닛(215)은 상기 믹서주챔버본체(211)의 일측에 마련된 것과 타측에 마련된 것이 상호 엇갈려서 위치하도록 마련될 수 있다.The vortex induction unit 215 may be provided in the mixer main chamber body 211 and the vortex induction unit 215 may be provided to vortex while colliding with the gene and the PCR buffer when they move . 6, the vortex induction unit 215 may be provided to extend inward from both sides of the mixer main chamber body 211, And is provided. The vortex induction unit 215 may be provided on one side of the mixer main chamber body 211 and on the other side of the mixer main chamber body 211 so as to be offset from each other.
일 예로, 도 6의 (a)에 도시된 것처럼, 상기 와류유도유닛(215)은 믹서주챔버본체(211)의 양측면으로부터 내측을 향해 수직으로 연장되도록 마련될 수 있고, 도 6의 (b), (c)에 도시된 것처럼 믹서주챔버본체(211)의 양측면으로부터 내측을 향해 대각선으로 연장되어 형성될 수도 있다.6 (a), the vortex induction unit 215 may be provided to extend vertically inward from both sides of the mixer main chamber body 211, and as shown in FIG. 6 (b) and may be formed to extend diagonally inward from both side surfaces of the mixer main chamber body 211 as shown in Figs.
또한, 도 6의 (d)에 도시된 것처럼, 상기 와류유도유닛(215)은 믹서주챔버본체(211)의 양측면으로부터 내측을 향해 곡선 형태로 연장되어 마련될 수도 있다.6 (d), the vortex induction unit 215 may be extended in a curved shape from both sides of the mixer main chamber body 211 toward the inside.
그러나, 상기 와류유도유닛(215)은 도시된 형태로 한정되지 않으며, 상기 유전자 및 상기 PCR버퍼가 이동할 때, 충돌하면서 와류가 활발하게 발생할 수 있는 형태 및 위치라면 모두 일실시예에 포함될 수 있다.However, the vortex induction unit 215 is not limited to the illustrated form, and may be included in one embodiment as long as the shape and position of vortex can be actively generated when the gene and the PCR buffer move.
이처럼 마련된 상기 와류유도유닛(215)은 상기 유전자 및 상기 PCR버퍼의 혼합효율을 향상시킬 수 있다.The vortex induction unit 215 thus provided can improve the mixing efficiency of the gene and the PCR buffer.
전술한 바와 같이 마련된, 상기 믹서주챔버본체(211)는 얇은 필름이 적층되어 형성된 본체칩(700)에 마련되기 때문에 단순히 상기 유전자와 상기 PCR버퍼를 같은 공간에 두는 것으로 혼합이 신속하게 이루어지지 않는다. 그러나, 본 발명에 따른 상기 믹서주챔버부(210)는 상기 유전자와 상기 PCR버퍼를 신속하게 혼합시킬 수 있도록 구성되어 있어, 혼합PCR용액을 신속하게 형성할 수 있다.Since the mixer main chamber body 211 provided as described above is provided on the main body chip 700 formed by lamination of thin films, the mixing of the gene and the PCR buffer is performed in the same space, . However, the mixer main chamber part 210 according to the present invention is configured to rapidly mix the gene and the PCR buffer, so that the mixed PCR solution can be rapidly formed.
믹서보조챔버부(220)는 상기 믹서주챔버부(210)와 연결되어 상기 믹서주챔버부(210)에 수용된 상기 유전자와 상기 PCR버퍼를 수용할 수 있도록 마련된다.The mixer auxiliary chamber unit 220 is connected to the mixer main chamber unit 210 to receive the gene and the PCR buffer accommodated in the mixer main chamber unit 210.
상기 믹서이송챔버부(230)는 상기 믹서보조챔버부(220)와 연결되며, 상기 믹서이송챔버부(230)는 상기 유전자와 상기 PCR버퍼가 혼합된 혼합PCR용액을 수용하도록 마련될 수 있다. 그리고, 상기 믹서이송챔버부(230)는 수용된 상기 혼합PCR용액을 정량주입기(300)를 향해 배출할 수 있도록 상기 정량주입기(300)와 연결될 수 있다.The mixer transfer chamber part 230 is connected to the mixer auxiliary chamber part 220 and the mixer transfer chamber part 230 can be provided to receive a mixed PCR solution in which the gene and the PCR buffer are mixed. The mixer transfer chamber 230 may be connected to the quantitative injector 300 so that the mixed PCR solution can be discharged toward the injector 300.
상기 믹서펌프부(240)는 상기 믹서이송챔버부(230)와 연결되며, 상기 믹서펌프부(240)는 상기 유전자와 상기 PCR버퍼가 상기 믹서보조챔버부(220)와 상기 믹서주챔버부(210)를 왕복하며 혼합되도록 공기를 흡입 및 배출할 수 있다. 구체적으로, 도 7의 (b)에 도시된 것처럼, 상기 믹서펌프부(240)는 상기 믹서주챔버부(210)에 수용된 혼합PCR용액을 흡입하여 상기 믹서보조챔버부(220)로 이동시키고, 도 7의 (c)에 도시된 것처럼, 다시 상기 믹서보조챔버부(220)에 수용된 상기 혼합PCR용액에 공기를 주입하여 상기 믹서주챔버부(210)로 이송시킬 수 있다. 이처럼, 상기 믹서펌프부(240)는 상기 유전자와 상기 PCR버퍼가 상기 믹서보조챔버부(220)와 상기 믹서주챔버부(210)를 왕복하며 혼합되도록 할 수 있다.The mixer pump unit 240 is connected to the mixer transfer chamber unit 230 and the mixer pump unit 240 mixes the gene and the PCR buffer with the mixer auxiliary chamber unit 220 and the mixer main chamber unit 210 to reciprocate and mix air. 7 (b), the mixer pump unit 240 sucks the mixed PCR solution contained in the mixer main chamber unit 210 and moves the mixed PCR solution to the mixer auxiliary chamber unit 220, As shown in FIG. 7 (c), air may be injected into the mixed PCR solution contained in the mixer auxiliary chamber 220 and transferred to the mixer main chamber 210. In this way, the mixer pump unit 240 can mix the gene and the PCR buffer between the mixer sub-chamber 220 and the mixer main chamber 210 and mix them.
또한, 상기 믹서펌프부(240)는 상기 믹서보조챔버부(220)에 수용된 상기 혼합PCR용액을 흡입하여 상기 믹서이송챔버부(230)에 수용시킬 수도 있다. 그리고, 상기 믹서펌프부(240)는 상기 믹서이송챔버부(230)에 수용된 상기 혼합PCR용액을 상기 정량주입기(300)를 향해 배출시키도록 공기를 주입할 수 있도록 마련될 수 있다.In addition, the mixer pump unit 240 may suck the mixed PCR solution contained in the mixer auxiliary chamber unit 220 and store the mixed PCR solution in the mixer transfer chamber unit 230. The mixer pump unit 240 may be configured to inject air to discharge the mixed PCR solution contained in the mixer transfer chamber unit 230 toward the metering injector 300.
또한, 상기 믹서펌프부(240)는 상기 믹서주챔버부(210)에 상기 PCR버퍼를 주입할 수 있다. 구체적으로, 상기 믹서펌프부(240)는 상기 믹서주챔버부(210)에 상기 유전자가 주입되기 전에 미리 기설정된 양만큼의 PCR버퍼를 주입할 수 있다. In addition, the mixer pump unit 240 may inject the PCR buffer into the mixer main chamber 210. Specifically, the mixer pump unit 240 may inject a preset amount of PCR buffer into the mixer main chamber 210 before the gene is injected.
상기 믹서압력조절부(250)는 상기 믹서펌프부(240)와 연결되며, 상기 믹서압력조절부(250)는, 상기 믹서펌프부(240)에 공기를 주입하기 위한 유체이송튜브(미도시)가 연결될 때, 상기 믹서펌프부(240)와 상기 유체이송튜브 사이의 공기를 외부로 배출한 이후에 밀폐되는 것을 특징으로 할 수 있다. 이처럼 마련된 상기 믹서압력조절부(250)는 상기 믹서펌프부(240)에 상기 유체이송튜브가 연결될 때, 상기 믹서펌프부(240)와 상기 유체이송튜브 사이의 공기가 상기 믹서펌프부(240)로 유입되는 문제를 방지할 수 있다. 즉, 항상 정해진 양만큼의 공기만 주입하도록 할 수 있다.The mixer pressure regulator 250 is connected to the mixer pump 240 and the mixer pressure regulator 250 includes a fluid delivery tube (not shown) for injecting air into the mixer pump 240, The air between the mixer pump unit 240 and the fluid delivery tube is discharged to the outside and is then sealed. The mixer pressure regulator 250 may be configured such that the air between the mixer pump unit 240 and the fluid delivery tube is supplied to the mixer pump unit 240 when the fluid delivery tube is connected to the mixer pump unit 240, Can be prevented. That is, only a predetermined amount of air can always be injected.
또한, 상기 믹서압력조절부(250)는, 상기 믹서펌프부(240)가 상기 정량주입기(300)에 혼합PCR용액을 모두 배출하였을 때, 개방되어 내부 압력을 조절할 수도 있다. 이처럼 마련된 상기 믹서압력조절부(250)는 내부 압력이 조절된 상태에서 상기 유체이송튜브가 상기 믹서펌프부(240)로부터 분리될 수 있도록 함으로써, 안전성을 향상시킬 수 있다.The mixer pressure regulator 250 may be opened when the mixer pump unit 240 discharges the mixed PCR solution to the quantitative injector 300 to regulate the internal pressure. The mixer pressure regulator 250 may be separated from the mixer pump 240 in a state in which the inner pressure of the mixer pressure regulator 250 is adjusted, thereby improving safety.
상기 믹서지지홀(260)은 상기 믹서펌프부(240) 및 상기 믹서압력조절부(250)와 인접한 위치에 형성될 수 있다. 이처럼 마련된 상기 믹서지지홀(260)은 믹서펌프부(240)와 믹서압력조절부(250)에 공기가 유동될 때, 복수의 필름이 적층된 본체칩(700)이 벌어져 변형되는 문제를 방지할 수 있다. 또한, 상기 믹서지지홀(260)은 본체칩(700)의 변형을 방지하여 누수가 발생하는 문제도 방지할 수 있다.The mixer support hole 260 may be formed at a position adjacent to the mixer pump 240 and the mixer pressure regulator 250. The mixer support hole 260 may prevent the main body 700 from being deformed when the air flows into the mixer pump 240 and the mixer pressure regulator 250 . In addition, the mixer support hole 260 prevents deformation of the main body chip 700, thereby preventing leakage of water.
상기 믹서밸브부(270)는 상기 믹서보조챔버부(220) 및 상기 믹서이송챔버부(230) 사이에 마련되며, 제1 믹서밸브(271) 및 제2 믹서밸브(272)를 포함한다.The mixer valve unit 270 is provided between the mixer auxiliary chamber unit 220 and the mixer transfer chamber unit 230 and includes a first mixer valve 271 and a second mixer valve 272.
상기 제1 믹서밸브(271)는 상기 믹서보조챔버부(220) 및 상기 믹서이송챔버부(230) 사이의 유동을 제어할 수 있다.The first mixer valve 271 may control the flow between the mixer auxiliary chamber part 220 and the mixer transfer chamber part 230.
상기 제2 믹서밸브(272)는 상기 믹서이송챔버부(230) 및 상기 정량주입기(300) 사이의 유동을 제어할 수 있다.The second mixer valve 272 may control the flow between the mixer transfer chamber part 230 and the metering injector 300.
구체적으로, 상기와 같이 마련된 상기 제1 믹서밸브(271)는 상기 믹서펌프부(240)가 상기 믹서보조챔버부(220)에 수용된 혼합PCR용액을 흡입하여 상기 믹서이송챔버부(230)로 이송할 때, 개방된 상태일 수 있다. 그리고 이때, 상기 제2 믹서밸브(272)는 폐쇄된다.The first mixer valve 271 may be configured such that the mixer pump unit 240 sucks the mixed PCR solution contained in the mixer auxiliary chamber unit 220 and transfers the mixed PCR solution to the mixer transfer chamber unit 230 It may be in an open state. At this time, the second mixer valve 272 is closed.
그리고, 상기 제2 믹서밸브(272)는 상기 믹서펌프부(240)가 상기 믹서이송챔버부(230)에 수용된 혼합PCR용액을 상기 정량주입기(300)로 이송할 때, 개방될 수 있다. 그리고 이때, 상기 제1 믹서밸브(271)는 폐쇄된다.The second mixer valve 272 may be opened when the mixer pump unit 240 transfers the mixed PCR solution contained in the mixer transfer chamber unit 230 to the metering injector 300. At this time, the first mixer valve 271 is closed.
도 1 내지 도 4에 도시된 것처럼, 상기 정량주입기(300)는 상기 믹서기(200)와 상기 증폭기(400) 사이에 마련되며, 정량의 상기 혼합PCR용액을 상기 증폭기(400)에 주입할 수 있다. 그리고, 상기 정량주입기(300)는 정량챔버부(310), 정량스토퍼부(320), 잔량배출부(330), 정량펌프부(340), 정량지지홀(350), 정량밸브부(360) 및 정량에어필터부(370)를 포함한다.1 to 4, the quantitative injector 300 is provided between the mixer 200 and the amplifier 400, and can inject the mixed PCR solution in a predetermined amount into the amplifier 400 . The metering injector 300 includes a metering chamber 310, a metering stopper 320, a metering pump 340, a metering support hole 350, a metering valve 360, And a metering air filter unit 370.
상기 정량챔버부(310)는 유전자와 PCR버퍼가 혼합되어 형성된 혼합PCR용액을 수용하는 복수의 정량챔버를 갖는다. 구체적으로, 상기 정량챔버부(310)는 제1 정량챔버(311), 제2 정량챔버(312), 제3 정량챔버(313), 제4 정량챔버(314) 및 제5 정량챔버(315)를 포함한다. 그리고, 상기 제1 정량챔버(311) 내지 제5 정량챔버(315)는 기설정된 양의 혼합PCR용액을 수용할 수 있는 크기로 마련될 수 있다.The quantification chamber 310 has a plurality of quantification chambers for receiving a mixed PCR solution formed by mixing a gene and a PCR buffer. Specifically, the metering chamber 310 includes a first metering chamber 311, a second metering chamber 312, a third metering chamber 313, a fourth metering chamber 314, and a fifth metering chamber 315, . The first to third quantification chambers 311 to 315 may be provided to have a size capable of accommodating a predetermined amount of the mixed PCR solution.
또한, 상기 제1 정량챔버(311)는 상기 혼합PCR용액이 유입되는 상류측에 마련되며, 하류로 갈수록 상기 재2 정량챔버(312), 상기 제3 정량챔버(313), 상기 제4 정량챔버(314) 및 상기 제5 정량챔버(315)가 순차적으로 배치될 수 있다. 상기 정량챔버부(310)의 개수는 일실시예에 한정되지 않으며, 복수로 마련될 수 있다.The first quantification chamber 311 is provided on the upstream side to which the mixed PCR solution flows, and the downstream side of the second quantification chamber 311, the third quantification chamber 313, The first metering chamber 314 and the fifth metering chamber 315 may be sequentially arranged. The number of the metering chamber units 310 is not limited to one embodiment but may be plural.
상기 정량스토퍼부(320)는 인접한 한 쌍의 정량챔버 사이에 각각 마련되며, 상기 정량챔버에 비해 상대적으로 높은 단차가 형성된 복수의 정량스토퍼를 갖는다. 구체적으로, 상기 제1 정량챔버(311) 및 상기 제2 정량챔버(312) 사이에는 제1 정량스토퍼(321)가 마련되고, 상기 제2 정량챔버(312) 및 상기 제3 정량챔버(313) 사이에는 제2 정량스토퍼(322)가 마련된다. 그리고, 상기 제3 정량챔버(313) 및 상기 제4 정량챔버(314) 사이에는 제3 정량스토퍼(323)가 마련되며, 상기 제4 정량챔버(314) 및 상기 제5 정량챔버(315) 사이에는 제4 정량스토퍼(324)가 마련된다.The metering stopper 320 is provided between adjacent pair of metering chambers, and has a plurality of metering stoppers having a relatively higher stepped portion compared to the metering chambers. A first metering stopper 321 is provided between the first metering chamber 311 and the second metering chamber 312 and the second metering chamber 312 and the third metering chamber 313 are provided between the first metering chamber 311 and the second metering chamber 312, A second metering stopper 322 is provided. A third metering stopper 323 is provided between the third metering chamber 313 and the fourth metering chamber 314 and between the fourth metering chamber 314 and the fifth metering chamber 315 A fourth metering stopper 324 is provided.
상기와 같이 마련된 상기 정량스토퍼부(320)는, 상류에 위치한 정량챔버에 상기 혼합PCR용액이 모두 채워진 상태에서 상기 혼합PCR용액이 통과할 수 있도록 단차가 형성된 것을 특징으로 할 수 있다. 그리고, 상기 정량스토퍼부(320)의 제1 정량스토퍼(321) 내지 상기 제4 정량스토퍼(324)는 모두 동일한 높이의 단차가 형성되도록 마련될 수 있으며, 상기 혼합PCR용액의 경로상에 돌출부 형태로 마련될 수 있다.The quantitative stopper unit 320 may be provided with a stepped portion for allowing the mixed PCR solution to pass therethrough in a state where the mixed PCR solution is filled in the quantitative chamber located upstream. The first quantitative stopper 321 to the fourth quantitative stopper 324 of the quantitative stopper 320 may be formed so as to form steps having the same height. In the path of the mixed PCR solution, .
일 예로, 유입된 상기 혼합PCR용액은 먼저 상기 제1 정량스토퍼(321)로 향한다. 그러나, 상기 제1 정량스토퍼(321)는 단차가 높게 형성되어 있기 때문에 상기 혼합PCR용액은 상기 제1 정량스토퍼(321)를 넘어서 통과하지 못하고, 상기 제1 정량챔버(311)로 자연스럽게 이송되어 상기 제1 정량챔버(311)에 채워진다. 그리고, 상기 제1 정량챔버(311)가 상기 혼합PCR용액으로 가득 채워지면 상기 혼합PCR용액의 수위가 상기 제1 정량스토퍼(321)의 단차 높이만큼 상승하게 되어 상기 제1 정량스토퍼(321)를 넘어서 통과하게 된다. 상기 제1 정량스토퍼(321)를 통과한 상기 혼합PCR용액은 상기 제2 정량스토퍼(322)로 향한다. 그러나, 상기 제2 정량스토퍼(322)역시 단차가 높게 형성되어 있기 때문에 상기 혼합PCR용액은 상기 제2 정량스토퍼(322)를 넘지 못하고 상기 제2 정량챔버(312)를 향해 이동하여 상기 제2 정량챔버(312)를 가득 채운다. 그리고, 상기 제2 정량챔버(312)가 상기 혼합PCR용액으로 가득 채워지면 상기 혼합PCR용액의 수위가 상기 제2 정량스토퍼(322)의 단차 높이만큼 상승하게 되어 상기 제2 정량스토퍼(322)를 넘어서 통과하게 된다. 이와 같은 방식으로 상기 제3 정량챔버(313) 및 상기 제4 정량챔버(314)에 혼합PCR용액이 가득 채워질 수 있다.For example, the introduced mixed PCR solution is first directed to the first quantitative stopper 321. However, since the first quantitative stopper 321 has a stepped height, the mixed PCR solution can not pass over the first quantitative stopper 321 and is naturally transferred to the first quantitative chamber 311, And is filled in the first metering chamber 311. When the first quantitative chamber 311 is filled with the mixed PCR solution, the water level of the mixed PCR solution rises by the step height of the first quantitative stopper 321, and the first quantitative stopper 321 It passes over. The mixed PCR solution having passed through the first quantitative stopper 321 is directed to the second quantitative stopper 322. However, since the second quantitative stopper 322 also has a stepped height, the mixed PCR solution moves toward the second quantitative chamber 312 without passing over the second quantitative stopper 322, The chamber 312 is filled. When the second quantitative chamber 312 is filled with the mixed PCR solution, the water level of the mixed PCR solution rises by the step height of the second quantitative stopper 322, and the second quantitative stopper 322 It passes over. In this manner, the third PCR chamber 313 and the fourth PCR chamber 314 can be filled with the mixed PCR solution.
또한, 상기 정량스토퍼부(320)가 단차 형태로 마련되지 않고, 유로 채널의 벽면이 소수성의 성질을 갖도록 함으로써, 유로 채널 내 유체 저항의 차이에 따라 각 정량챔버에 혼합PCR용액이 정량 주입되도록 마련될 수도 있다.In addition, since the quantitative stopper 320 is not provided in a stepped shape and the wall surface of the channel channel is made hydrophobic, the mixed PCR solution can be injected in a predetermined amount into each of the metering chambers in accordance with the difference in fluid resistance in the channel channel. .
상기 잔량배출부(330)는 상기 정량챔버부(310)를 모두 채우고 남은 상기 혼합PCR용액을 배출하도록 마련될 수 있다.The remaining amount discharging unit 330 may be provided to discharge the mixed PCR solution remaining after filling the metering chamber unit 310. [
또한, 상기 정량스토퍼부(320)는, 상기 정량챔버부(310) 및 상기 잔량배출부(330)의 사이에 마련되는 배출스토퍼(325)를 더 포함한다. 구체적으로, 상기 배출스토퍼(325)는, 상기 제5 정량챔버(315) 및 상기 잔량배출부(330) 사이에 마련되며, 상기 정량스토퍼(321, 322, 323, 324)에 비해 상대적으로 높은 단차가 형성될 수 있다. 그리고, 상기 배출스토퍼(325)는 전술한 바와 동일한 방법으로 상기 정량챔버부(310)에 상기 혼합PCR용액이 모두 채워진 상태에서 상기 혼합PCR용액이 통과하여 상기 잔량배출부(330)로 배출될 수 있도록 단차가 형성된 것을 특징으로 할 수 있다.The metering stopper 320 further includes a discharge stopper 325 provided between the metering chamber 310 and the residual amount discharging unit 330. Specifically, the discharge stopper 325 is provided between the fifth metering chamber 315 and the remaining amount discharging portion 330, and is relatively higher than the metering stoppers 321, 322, 323, Can be formed. In the same manner as described above, the discharge stopper 325 may be discharged to the remaining amount discharging unit 330 through the mixed PCR solution while the mixed PCR solution is completely filled in the metering chamber 310 So that a stepped portion is formed.
전술한 바와 같이 마련된 상기 정량챔버부(310), 정량스토퍼부(320), 잔량배출부(330)는 별도의 제어 없이도 각각의 상기 정량챔버에 기설정된 혼합PCR용액이 채워지도록 할 수 있다. 즉, 본 발명은 증폭기(400)에 주입되는 혼합PCR용액이 항상 일정하도록 할 수 있어 실험의 정확도를 향상시킬 수 있으며, 신속하게 혼합PCR용액을 주입할 수 있어 경제적이다.The quantitative chamber 310, the quantitative stopper 320, and the residual amount discharger 330 provided as described above may be filled with a predetermined mixed PCR solution in each of the quantitative chambers without any separate control. That is, according to the present invention, the mixed PCR solution injected into the amplifier 400 can be constantly maintained, thereby improving the accuracy of the experiment, and the mixed PCR solution can be injected quickly, which is economical.
상기 정량펌프부(340)는 상기 정량챔버부(310)의 상류측에 마련되며, 상기 정량챔버부(310)에 수용된 상기 혼합PCR용액을 증폭기(400)로 이송시킬 수 있다. 구체적으로, 상기 정량펌프부(340)는 상기 정량챔버부(310) 및 상기 정량스토퍼부(320) 사이에 마련되며, 상기 정량챔버부(310)에 상기 혼합PCR용액이 모두 채워졌을 때, 공기를 주입하여 상기 정량챔버부(310)에 수용된 상기 혼합PCR용액을 상기 증폭기(400)로 이송시킬 수 있다.The metering pump unit 340 is provided on the upstream side of the metering chamber unit 310 and can transfer the mixed PCR solution contained in the metering chamber unit 310 to the amplifier 400. More specifically, the metering pump unit 340 is provided between the metering chamber unit 310 and the metering stopper unit 320. When the metering chamber unit 310 is filled with the mixed PCR solution, So that the mixed PCR solution contained in the quantification chamber 310 can be transferred to the amplifier 400.
상기 정량지지홀(350)은 상기 정량펌프부(340)와 인접한 위치에는 형성될 수 있다. 이처럼 마련된 상기 정량지지홀(350)은 상기 정량펌프부(340)로 공기가 주입될 때, 복수의 필름이 적층된 본체칩(700)이 벌어져 변형되는 문제를 방지할 수 있다. 또한, 상기 정량지지홀(350)은 본체칩(700)의 변형을 방지하여 누수가 발생하는 문제도 방지할 수 있다.The quantitative support hole 350 may be formed at a position adjacent to the quantitative pump 340. When the air is injected into the metering pump unit 340, the quantitative support hole 350 may prevent the main body chip 700 from being deformed. Also, the quantitative support hole 350 can prevent the deformation of the main body chip 700, thereby preventing the leakage of water.
상기 정량밸브부(360)는 상기 정량펌프부(340)의 상류측에 마련된다. 구체적으로, 상기 정량밸브부(360)는 상기 정량펌프부(340)와 상기 정량스토퍼부(320) 사이에 마련될 수 있으며, 상기 정량밸브부(360)는 상기 정량펌프부(340)가 상기 정량챔버부(310)에 수용된 상기 혼합PCR용액을 상기 증폭기(400)로 이송시킬 때, 폐쇄된 상태일 수 있다.The metering valve unit 360 is provided on the upstream side of the metering pump unit 340. The metering valve unit 360 may be disposed between the metering pump unit 340 and the metering stopper unit 320. The metering valve unit 360 may be disposed between the metering pump unit 340 and the metering stopper unit 320, When the mixed PCR solution contained in the metering chamber 310 is transferred to the amplifier 400, it may be in a closed state.
상기 정량에어필터부(370)는 상기 정량챔버부(310)의 하류측에 마련되며, 상기 정량에어필터부(370)는 상기 증폭기(400)를 향해 이송되는 상기 혼합PCR용액에 포함된 기포를 제거할 수 있다. 구체적으로, 상기 증폭기(400)가 상기 혼합PCR용액에 수용된 유전자를 증폭시킬 때, 기포가 포함되어 있을 경우, 실험 결과에 오류가 발생할 수 있다. 따라서, 상기 정량에어필터부(370)는 상기 증폭기(400)를 향해 이송되는 상기 혼합PCR용액에 포함된 기포를 제거하여 상술한 문제가 발생하는 것을 방지할 수 있다.The quantitative air filter unit 370 is provided on the downstream side of the quantification chamber unit 310 and the quantitative air filter unit 370 is configured to collect bubbles contained in the mixed PCR solution transferred toward the amplifier 400 Can be removed. Specifically, when the amplifier 400 amplifies the gene contained in the mixed PCR solution, if the bubble is included, an error may occur in the experimental result. Therefore, the quantitative air filter unit 370 can remove bubbles contained in the mixed PCR solution transferred toward the amplifier 400, thereby preventing the above-described problems from occurring.
또한, 상기 정량에어필터부(370)는 상기 혼합PCR용액이 모두 통과한 경우, 상기 정량펌프부로(340)부터 주입되는 공기를 모두 배출시켜 상기 혼합PCR용액의 이송을 정지시키도록 마련될 수 있다. 구체적으로, 상기 정량펌프부(340)가 공기를 주입하여 상기 정량챔버부(310)에 수용된 혼합PCR용액을 상기 증폭기(400)로 모두 이송한 경우, 상기 정량펌프부(340)에 의해 주입되는 공기가 상기 정량에어필터부(370)를 통해 모두 배출될 수 있다. 이처럼 마련된 상기 정량에어필터부(370)는 상기 정량펌프부(340)가 계속 공기를 주입할 경우에도, 상기 증폭기(400)에 수용된 상기 혼합PCR용액을 가압하지 않도록 할 수 있다. 따라서, 상기 정량에어필터부(370)는 상기 정량펌프부(340)가 상기 혼합PCR용액을 이송시키기 위해 공기를 주입하는 시간을 정밀하게 제어하지 않아도 되도록 할 수 있어 편리하다.The quantitative air filter unit 370 may be configured to discharge all of the air injected from the quantitative pump unit 340 to stop the transfer of the mixed PCR solution when the mixed PCR solution has passed through the quantitative air filter unit 370 . Specifically, when the quantitative pump unit 340 injects air and the mixed PCR solution contained in the quantification chamber unit 310 is all transferred to the amplifier 400, the quantitative pump unit 340 is injected by the quantitative pump unit 340 The air can be exhausted through the quantitative air filter unit 370. The quantitative air filter unit 370 may prevent the mixed PCR solution contained in the amplifier 400 from being pressurized even when the metering pump unit 340 continuously injects air. Accordingly, the quantitative air filter unit 370 is not required to precisely control the injection time of the air for feeding the mixed PCR solution by the quantitative pump unit 340, which is convenient.
도 8은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 증폭기의 분해사시도이다.8 is an exploded perspective view of an amplifier of an integrated automatic gene discrimination chip according to an embodiment of the present invention.
도 1 내지 도 4 및 도 8을 참조하면, 상기 증폭기(400)는 상기 믹서기(200)의 하류에 마련되며, 상기 혼합PCR용액에 대한 중합효소 연쇄반응(PCR)을 수행하여 증폭용액을 형성할 수 있다. 그리고, 상기 증폭기(400)는 증폭필름부(410), 증폭주챔버부(420), 제1 증폭밸브부(430), 제2 증폭밸브부(440), 증폭펌프부(450), 증폭보조챔버부(460), 증폭혼합밸브부(470), 증폭지지홀(480)을 포함할 수 있다.Referring to FIGS. 1 to 4 and 8, the amplifier 400 is provided downstream of the mixer 200, and performs PCR for the mixed PCR solution to form an amplification solution . The amplifier 400 includes an amplification film unit 410, an amplification main chamber unit 420, a first amplification valve unit 430, a second amplification valve unit 440, an amplification pump unit 450, A chamber portion 460, an amplification mixing valve portion 470, and an amplification support hole 480.
먼저, 상기 증폭주챔버부(420)는 상기 증폭필름부(410)에 마련되며, 유전자와 PCR버퍼를 혼합하여 형성된 혼합PCR용액이 수용되도록 마련될 수 있다. 이처럼 마련된 상기 증폭주챔버부(420)는 상기 혼합PCR용액이 통과하는 유로를 형성하며, 가열 및 냉각이 연속적으로 이루어져 중합효소 연쇄반응이 발생하도록 마련될 수 있다.First, the amplification main chamber part 420 is provided in the amplification film part 410, and a mixed PCR solution formed by mixing a gene and a PCR buffer may be accommodated. The amplification main chamber 420 may form a channel through which the mixed PCR solution passes, and may be provided such that heating and cooling are continuously performed to generate a polymerase chain reaction.
상기 제1 증폭밸브부(430)는 상기 증폭필름부(410)에 마련된되, 상기 증폭주챔버부(420)의 상류측에 마련될 수 있다.The first amplification valve unit 430 may be provided on the amplification film unit 410 and may be provided on the upstream side of the amplification main chamber unit 420.
상기 제2 증폭밸브부(440)는 상기 증폭필름부(410)에 마련된되, 상기 증폭주챔버부(420)의 하류측에 마련될 수 있다.The second amplification valve unit 440 may be provided on the amplification film unit 410 and on the downstream side of the amplification main chamber unit 420.
상기와 같이 마련된 상기 제1 증폭밸브부(430) 및 상기 제2 증폭밸브부(440)는 상기 혼합PCR버퍼가 중합효소 연쇄반응이 이루어지는 동안 상기 증폭주챔버부(420) 내에 수용되어 있도록 할 수 있다.The first amplification valve unit 430 and the second amplification valve unit 440 may be accommodated in the amplification main chamber 420 during the polymerase chain reaction have.
상기 증폭필름부(410)는 복수의 필름이 적층되며, 밸브필름(411)은 증폭주챔버필름(412), 증폭유로필름(413), 유로더미필름(414), 1차더미필름, 밸브더미필름(417), 2차 더미필름을 포함할 수 있다.The amplification film part 410 is laminated with a plurality of films and the valve film 411 is laminated on the amplification main chamber film 412, the amplifying flow film 413, the flow path dummy film 414, the primary dummy film, A film 417, and a secondary dummy film.
상기 밸브필름(411)은, 상기 본체칩(700)에 형성되는 증폭주챔버부(420)와 대응되는 위치에 상기 증폭주챔버부(420)가 마련되며, 상기 증폭주챔버부(420)의 상류측과 하류측에는 각각 상기 제1 증폭밸브부(430) 및 상기 제2 증폭밸브부(440)가 형성될 수 있다.The valve film 411 has the amplification main chamber part 420 at a position corresponding to the amplification main chamber part 420 formed in the main body chip 700, The first amplification valve unit 430 and the second amplification valve unit 440 may be formed on the upstream side and the downstream side, respectively.
상기 증폭주챔버필름(412)은 상기 밸브필름(411)의 상부에 적층되며, 상기 밸브필름(411)과 대응되는 위치에 상기 증폭주챔버부(420)가 형성될 수 있다. 그리고, 상기 증폭주챔버필름(412)은 상기 밸브필름의 상부를 모두 덮도록 마련될 수 있다. The amplification main chamber film 412 is stacked on the valve film 411 and the amplification main chamber part 420 may be formed at a position corresponding to the valve film 411. The amplification main chamber film 412 may cover the entire upper portion of the valve film.
구체적으로, 상기 증폭주챔버필름(412)은 증폭주챔버본체필름(412a) 및 날개필름(412b)을 포함한다. 상기 증폭주챔버필름(412)에는 상기 밸브필름(411)에 형성된 상기 증폭주챔버부(420)와 대응되는 위치 및 형상으로 증폭주챔버부(420)가 형성될 수 있다. 그리고, 상기 날개필름(412b)은 상기 증폭주챔버본체필름(412a)의 양측에 마련되어 상기 제1 증폭밸브부(430) 및 상기 제2 증폭밸브부(440)의 상부를 덮도록 마련될 수 있다. 이때, 상기 날개필름(412b)은 상기 증폭주챔버본체필름(412a)에 비해 단차가 높게 형성될 수 있다.Specifically, the amplification main chamber film 412 includes an amplification main chamber main film 412a and a wing film 412b. The amplification main chamber part 420 may be formed in the amplification main chamber film 412 in a position and shape corresponding to the amplification main chamber part 420 formed in the valve film 411. The wing films 412b may be provided on both sides of the main amplification main body film 412a and cover the upper portions of the first amplification valve unit 430 and the second amplification valve unit 440 . At this time, the blade film 412b may be formed to have a step height higher than the amplification main chamber main film 412a.
상기 증폭유로필름(413)은 상기 증폭주챔버본체필름(412a)의 상부를 덮도록 마련되며, 상기 증폭주챔버본체필름(412a)과 대응되는 위치에 상기 증폭주챔버부(420)가 형성될 수 있다. 그리고, 상기 증폭유로필름(413)은 상기 증폭주챔버본체필름(412a)과 상기 날개필름(412b)의 단차만큼 두께가 형성될 수 있다. 이처럼 마련된 상기 증폭유로필름(413)은 상기 증폭주챔버본체필름(412a)의 상부에 적층되었을 때, 상기 증폭유로필름(413)과 상기 날개필름(412b) 사이에 단차가 없도록 할 수 있다.The amplification channel film 413 is provided to cover the upper part of the amplification main chamber main film 412a and the amplification main chamber part 420 is formed at a position corresponding to the amplification main chamber main film 412a . The amplification channel film 413 may be formed to have a thickness equal to that of the amplification main chamber main film 412a and the wing film 412b. When the amplification channel film 413 is laminated on the amplification main chamber main film 412a, there is no step between the amplification channel film 413 and the wing film 412b.
상기 유로더미필름(414)은 상기 증폭주챔버필름(421)의 상부를 모두 덮도록 적층되며, 상기 유로더미필름(414)에는 하부에 적층된 필름들과 대응대는 위치에 상기 증폭주챔버부(420)가 형성될 수 있다.The channel dummy film 414 is stacked so as to cover the entire upper portion of the amplification main chamber film 421. The channel dummy film 414 has the amplification main chamber part 420 may be formed.
상기 1차 더미필름은 상기 유로더미필름(414)의 상부를 모두 덮도록 적층되며, 하부에 적층된 필름들과 대응되는 위치에 상기 증폭주챔버부(420), 상기 제1 증폭밸브부(430) 및 상기 제2 증폭밸브부(440)가 형성될 수 있다.The primary dummy film is stacked so as to cover the entire upper portion of the channel dummy film 414, and the amplification main chamber part 420, the first amplification valve part 430 And the second amplification valve unit 440 may be formed.
또한, 일실시예서는 상기 1차 더미필름이 제1 1차더미필름(415) 및 제2 1차더미필름(415)으로 이루어져 있으나, 상기 1차 더미필름은 하나 이상으로 마련될 수 있다.In an embodiment, the primary dummy film is composed of the first primary dummy film 415 and the second primary dummy film 415, but the primary dummy film may be provided in more than one.
상기 밸브더미필름(417)은 상기 1차 더미필름의 상부를 모두 덮도록 적층되며, 상기 제1 증폭밸브부(430) 및 상기 제2 증폭밸브부(440)가 형성될 수 있다.The valve dummy film 417 is stacked to cover the entire upper portion of the primary dummy film, and the first amplification valve unit 430 and the second amplification valve unit 440 may be formed.
상기 2차 더미필름은 상기 밸브더미필름(417)의 상부를 모두 덮도록 적층되며, 하부에 적층된 필름들과 대응되는 위치에 상기 증폭주챔버부(420), 상기 제1 증폭밸브부(430) 및 상기 제2 증폭밸브부(440)가 형성될 수 있다.The secondary dummy film is stacked so as to cover the entire upper portion of the valve dummy film 417, and the amplification main chamber part 420, the first amplification valve part 430 And the second amplification valve unit 440 may be formed.
또한, 일실시예서는 상기 2차 더미필름이 제1 2차더미필름(418) 및 제2 2차더미필름(419)으로 이루어져 있으나, 상기 2차 더미필름은 하나 이상으로 마련될 수 있다.Further, in one embodiment, the secondary dummy film is composed of the first secondary dummy film 418 and the second secondary dummy film 419, but the secondary dummy film may be provided in more than one.
상기와 같이 마련된 상기 1차 더미필름 및 상기 2차 더미필름은 상기 증폭주챔버부(420)의 내부에 수용된 혼합PCR용액이 온도가 증가할 때, 부풀어오를 수 있는 공간을 제공할 수 있다. 즉, 상기 더미필름들은 상기 증폭주챔버부(420)의 팽창 가능 공간을 제공하여 손상 및 시료 누출 문제가 발생하는 것을 방지할 수 있다.The primary dummy film and the secondary dummy film provided as described above can provide a space for swelling when the temperature of the mixed PCR solution contained in the amplification main chamber part 420 increases. That is, the dummy films provide an inflatable space of the amplification main chamber part 420 to prevent damage and sample leakage.
상기와 같이 마련된 상기 증폭필름부(410)는, 상기 밸브필름(411)의 상부에 적층되는 필름들이 상기 밸브필름(411)의 상부를 모두 덮도록 마련되어 있어 액체가 유출되지 않으며, 결합력이 향상될 수 있다.The amplifying film part 410 provided as described above is provided such that the films laminated on the valve film 411 cover the entire upper portion of the valve film 411 so that the liquid does not flow out, .
상기 증폭펌프부(450)는 상기 증폭주챔버부(420)의 하류에 마련되며, 유전자가 증폭된 증폭용액을 이송하도록 공기를 흡입 및 주입할 수 있도록 마련된다.The amplification pump unit 450 is provided downstream of the amplification main chamber 420 and is capable of sucking and injecting air to transfer the amplified amplified solution.
상기 증폭보조챔버부(460)는 상기 증폭펌프(450)부와 상기 증폭주챔버부(420)의 사이에 마련되어, 상기 증폭용액이 수용될 수 있다.The amplification auxiliary chamber part 460 is provided between the amplification pump part 450 and the amplification main chamber part 420 and can accommodate the amplification solution.
상기 증폭혼합밸브부(470)는 상기 증폭보조챔버부(460) 및 상기 혼합기(500) 사이에 마련될 수 있다.The amplification mixing valve unit 470 may be provided between the amplification assisting chamber unit 460 and the mixer 500.
상기 증폭지지홀(480)은 상기 증폭펌프부(450)와 인접한 위치에 마련되어 상기 증폭펌프부(450)에 공기를 주입 및 배출할 할 때, 상기 본체칩(700)의 틈이 벌어져 액체가 누출되는 문제를 방지할 수 있다.The amplification support part 480 is provided at a position adjacent to the amplification pump part 450 and injects air into and discharges the amplification pump part 450. The gap of the main body chip 700 spreads, Can be prevented.
구체적으로, 상기 증폭펌프부(450)는 상기 증폭혼합밸브부(470)가 폐쇄된 상태에서 공기를 흡입하여 상기 증폭주챔버부(420)에 수용된 증폭용액을 상기 증폭보조챔버부(460)로 이송하고, 상기 증폭혼합밸브부(470)가 개방되고, 상기 제2 증폭밸브부(440)가 밀폐된 상태에서 공기를 주입하여 상기 증폭보조챔버부(460)에 수용된 증폭용액을 상기 혼합기(500)로 이송할 수 있다.Specifically, the amplification pump unit 450 sucks air in a state in which the amplification / mixing valve unit 470 is closed, and supplies the amplification solution stored in the amplification main chamber unit 420 to the amplification auxiliary chamber unit 460 The amplification mixing valve unit 470 is opened and the amplification solution contained in the amplification auxiliary chamber unit 460 is injected into the mixer 500 ). ≪ / RTI >
상기 혼합기(500)는 상기 증폭기(400)의 하류에 마련되며, 상기 증폭기(400)에 의해 증폭된 상기 중폭용액에 신호물질을 혼합하여 혼합물질을 형성할 수 있다. 그리고, 상기 혼합기(500)는 혼합주챔버부(510) 및 혼합보조챔버부(520)를 포함할 수 있다.The mixer 500 is provided downstream of the amplifier 400 and may mix a signal material with the amplified solution amplified by the amplifier 400 to form a mixed material. The mixer 500 may include a mixing chamber part 510 and a mixing auxiliary chamber part 520.
상기 혼합주챔버부(510)는 혼합주챔버본체(511), 혼합주챔버연장체(512), 혼합주입홀(513), 혼합에어필터(514) 및 와류유도유닛(미도시)을 포함한다.The mixing chamber part 510 includes a mixing chamber main body 511, a mixing chamber extension 512, a mixing injection hole 513, a mixing air filter 514 and a vortex induction unit (not shown).
상기 혼합주챔버본체(511)는 내부에 상기 증폭용액 및 상기 신호물질이 수용될 수 있도록 마련된다. 구체적으로, 상기 혼합주챔버본체(511)는 복수의 필름이 적층되어 형성된 본체칩(700)에 마련될 수 있으며, 내부에 상기 증폭용액 및 상기 신호물질이 수용될 수 있는 공간이 형성될 수 있다.The mixing chamber chamber body 511 is provided so that the amplification solution and the signal material can be received therein. Specifically, the mixing chamber chamber body 511 may be provided in the body chip 700 formed by stacking a plurality of films, and a space in which the amplification solution and the signal material can be accommodated may be formed therein.
상기 혼합주챔버연장체(512)는 상기 혼합주챔버본체(511)의 일측에 연장되어 마련되며, 상기 혼합주챔버본체(511)에 비해 상대적으로 높은 단차가 형성될 수 있다. 구체적으로, 상기 혼합주챔버연장체(512)는 상기 혼합주챔버본체(511)에 유입된 상기 증폭용액 및 상기 신호물질이 상기 혼합보조챔버부(520)가 흡입할 경우에만 상기 혼합보조챔버부(520)로 이송될 수 있도록 단차가 형성될 수 있다. 이처럼 마련된 상기 혼합주챔버연장체(512)는 상기 혼합보조챔버부(520)가 흡입력을 가하지 않는 경우, 상기 증폭용액과 상기 신호물질이 상기 혼합보조챔버부(520)로 이동되지 않도록 할 수 있다.The mixing chamber extension body 512 is provided to extend to one side of the mixing chamber main body 511 and relatively higher steps than the mixing chamber main body 511 can be formed. Specifically, the mixing chamber extension 512 is formed in the mixing auxiliary chamber part 520 only when the amplification solution and the signal material introduced into the mixing chamber main body 511 are sucked by the mixing auxiliary chamber part 520, A stepped portion may be formed so as to be able to be transported. The mixing chamber extension 512 may prevent the amplification solution and the signal material from moving to the mixing auxiliary chamber part 520 when the mixing auxiliary chamber part 520 does not apply a suction force.
상기 혼합주입홀(513)은 상기 혼합주챔버본체(511)의 바닥면에 형성되어 상기 증폭용액이 주입될 수 있다. 그리고, 도 7의 (a)에 도시된 믹서기(200)와 마찬가지로, 상기 신호물질은 상기 혼합주챔버본체(511)에 상기 증폭용액이 유입되기 전에, 상기 혼합주챔버연장체(512)로부터 주입되어 상기 혼합주입홀(513)의 앞단까지 채워지는 것을 특징으로 할 수 있다. 즉, 상기 혼합주챔버본체(511)에 마련되는 상기 혼합주입홀(513)은 상기 혼합주챔버본체(511)에 미리 채워진 신호물질이 상기 혼합주입홀(513)로 유입되어 역류하지 않도록 할 수 있는 위치에 마련될 수 있다.The mixing hole 513 is formed on the bottom surface of the mixing chamber main body 511 to inject the amplification solution. Like the mixer 200 shown in FIG. 7A, the signal material is injected from the mixing chamber chamber extension 512 before the amplification solution is introduced into the mixing chamber chamber body 511, And is filled up to the front end of the injection hole 513. That is, the mixing injection hole 513 provided in the mixing chamber main body 511 is positioned at a position where the signal material pre-filled in the mixing chamber chamber body 511 flows into the mixing injection hole 513, As shown in FIG.
상기 혼합에어필터(514)는 상기 혼합주챔버본체(511)의 상측에 마련되되, 상기 혼합주입홀(513)의 상부에 마련될 수 있다. 그리고, 상기 혼합에어필터(514)는, 상기 혼합주입홀(513)을 통해 상기 증폭용액과 함께 주입되는 기포를 외부로 배출시키면서 상기 증폭용액과 상기 신호물질을 혼합시킬 수 있다. 구체적으로, 상기 혼합주입홀(513)을 통해 유입되는 증폭용액은 기포를 포함하고 있다. 상기 혼합에어필터(514)는 상기 유전자와 함께 유입된 기포를 외부로 배출할 수 있다. 그리고 이때, 기포가 터지면서 상기 증폭용액과 상기 신호물질을 혼합시킬 수 있다. 즉, 상기 혼합에어필터(514)는 혼합 효율을 향상시킬 수 있다.The mixed air filter 514 is provided on the upper side of the mixing chamber main body 511 and may be provided on the upper part of the mixing injection hole 513. The mixed air filter 514 may mix the amplification solution and the signal material while discharging the bubbles injected together with the amplification solution through the mixing injection hole 513 to the outside. Specifically, the amplification solution introduced through the mixing hole 513 includes bubbles. The mixed air filter 514 may discharge the bubbles introduced together with the gene. At this time, the amplification solution and the signal material can be mixed with the bubbles. That is, the mixing air filter 514 can improve mixing efficiency.
또한, 상기 혼합에어필터(514)는 상기 증폭용액 및 상기 신호물질이 왕복 이동하면서 발생하는 기포를 외부로 배출하여 상술한 바와 같은 방법으로 혼합 효율을 향상시킬 수도 있다.Also, the mixing air filter 514 may discharge the bubbles generated as the amplification solution and the signal material reciprocate to the outside, thereby improving the mixing efficiency as described above.
상기 와류유도유닛은 상기 믹서기(200)의 상기 와류유도유닛(215)과 실질적으로 동일함으로 중복되는 설명은 생략하도록 한다.The vortex induction unit is substantially the same as the vortex induction unit 215 of the mixer 200, so that redundant description will be omitted.
도 9의 (a)는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 판별기의 분해사시도이고, 도 9의 (b)는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합칩의 판별기의 상면도이다.FIG. 9A is an exploded perspective view of a discriminator of an integrated automatic gene discrimination chip according to an embodiment of the present invention, and FIG. 9B is a diagram showing a discrimination of an integrated automatic gene discrimination chip according to an embodiment of the present invention Fig.
도 1 및 도 9에 도시된 것처럼, 상기 판별기(600)는 상기 혼합기(500)의 하류에 마련되며, 상기 혼합물질에 포함된 유전자를 판별할 수 있다. 그리고, 상기 판별기(600)는 상기 혼합물질의 전류량을 측정하여 상기 유전자를 판별할 수 있으며, 전극유닛(610), 판별기판유닛(620), 판별필름유닛(630), 판별배출부(640), 판별펌프부(650), 판별압력조절유닛(660) 및 판별지지홀(670)을 포함할 수 있다.As shown in FIGS. 1 and 9, the discriminator 600 is provided downstream of the mixer 500, and can identify a gene contained in the mixed material. The discrimination device 600 can discriminate the gene by measuring the amount of the current of the mixed material and includes an electrode unit 610, a discrimination substrate unit 620, a discrimination film unit 630, a discrimination unit 640 A discrimination pump unit 650, a discrimination pressure regulating unit 660 and a discrimination support hole 670. [
상기 전극유닛(610)은 백금, 금, 카본, 구리, 니켈, 은 등의 소재로 마련될 수 있으며, 상기 혼합물질의 전류량을 측정할 수 있고, 작업전극(611), 상대전극(612), 기준전극(613)을 포함한다.The electrode unit 610 may be formed of a material such as platinum, gold, carbon, copper, nickel, or silver. The electrode unit 610 may measure the amount of current of the mixed material, and may include a working electrode 611, a counter electrode 612, And includes a reference electrode 613.
상기 작업전극(611)은 상기 혼합물질의 전류량을 측정할 수 있다. 구체적으로, 상기 혼합물질은 상기 증폭용액과 상기 신호물질이 혼합된 것으로서, 상기 증폭용액에 포함된 유전자는 상기 신호물질과 결합된다. 그리고, 상기 유전자의 개수가 상기 신호물질보다 적으면, 상기 신호물질은 상기 유전자와 결합되지 못한 상태로 상기 혼합물질에 잔류하게 된다. 상기 작업전극(611)은 이처럼 결합이 이루어지지 않은 상기 신호물질의 전기적 신호를 측정할 수 있다. 따라서, 작업전극(611)이 측정하는 전류량은 결합이 이루어지지 않은 상기 신호물질의 양에 따라 변화될 수 있다.The working electrode 611 can measure the amount of current of the mixed material. Specifically, the mixed material is a mixture of the amplification solution and the signal material, and the gene contained in the amplification solution is combined with the signal material. If the number of the genes is smaller than that of the signal substance, the signal substance remains in the mixed substance in a state that the signal substance can not bind to the gene. The working electrode 611 can measure an electrical signal of the signal material that is not thus coupled. Therefore, the amount of current measured by the working electrode 611 can be changed in accordance with the amount of the signal material that is not coupled.
상기 상대전극(612)은 상기 혼합물질에 포함된 상기 신호물질의 산화환원반응을 통해 도출되는 전자를 상기 작업전극(611)과 교환할 수 있다. 구체적으로, 상기 상대전극(612)은 상기 혼합물질의 상기 유전자와 결합되지 않은 상기 신호물질의 산화환원반응을 통해 도출되는 전자를 상기 작업전극(611)과 교환할 수 있다. 그리고, 상기 작업전극(611)은 상기 상대전극(612)과 교환이 이루어지는 상기 전자량을 측정함으로써, 상기 혼합물질의 전류량을 정확하게 측정할 수 있다The counter electrode 612 can exchange electrons derived from the redox reaction of the signal material included in the mixed material with the working electrode 611. Specifically, the counter electrode 612 can exchange electrons derived from the signal material not associated with the gene of the mixed material through the redox reaction with the working electrode 611. The working electrode 611 can accurately measure the amount of current of the mixed material by measuring the amount of electrons exchanged with the counter electrode 612
상기 기준전극(613)은 상기 작업전극(611)에 인가되어야 할 전압의 기준이 될 수 있다. 구체적으로, 상기 기준전극(613)은 각각의 상기 혼합물질에 대한 기준전압을 갖고, 상기 작업전극(611)은 상기 기준전극(613)의 기준전압에 따라 전압이 인가되도록 마련됨으로써, 상기 작업전극(611)이 상기 혼합물질에 대해 상대적으로 항상 일정한 전압을 유지하도록 할 수 있다. The reference electrode 613 may be a reference for a voltage to be applied to the working electrode 611. The reference electrode 613 has a reference voltage for each of the mixed materials and the working electrode 611 is adapted to apply a voltage according to a reference voltage of the reference electrode 613, (611) can maintain a relatively constant voltage with respect to the mixed material.
상기 작업전극(611)에 인가되는 인가전압은, 상기 혼합물질에 포함된 각각의 신호물질에 따라 산화환원반응을 일으키기 위한 고유한 전압 값인 것을 특징으로 할 수 있다. 그리고 특히, 상기 인가전압은 상기 혼합물질에 포함된 신호물질이 산화환원반응이 일어날 수 있는 전압 값을 갖도록 상기 기준전극(613)을 고려하여 조절될 수 있다.The applied voltage applied to the working electrode 611 may be a unique voltage value for causing a redox reaction depending on each signal material included in the mixed material. In particular, the applied voltage may be adjusted in consideration of the reference electrode 613 so that the signal material included in the mixed material has a voltage value at which a redox reaction can occur.
또한, 표시전압은 기준전압과 인가전압을 합한 값인 것을 특징으로 할 수 있다. 일 예로, 상기 기준전극(613)의 기준전압이 0.2V이고, 상기 작업전극(611)에 인가되어야 하는 인가전압이 0.5V일 경우, 상기 작업전극(611)의 표시전압은 기준전압 0.2V와 인가전압 0.5V를 합한 값인 0.7V일 수 있다.The display voltage may be a sum of the reference voltage and the applied voltage. For example, when the reference voltage of the reference electrode 613 is 0.2V and the applied voltage to be applied to the working electrode 611 is 0.5V, the display voltage of the working electrode 611 is a reference voltage of 0.2V And an applied voltage of 0.5V.
한편, 상기 전극유닛(610)의 상기 전극들(511, 512, 513)은 상기 혼합물질과 접촉되는 반응부(614), 및 상기 반응부(614)로부터 연장되어 형성되며 접지되는 접지부(615)로 구분되어 마련될 수 있다.The electrodes 511, 512 and 513 of the electrode unit 610 include a reaction part 614 contacting the mixed material and a ground part 615 extending from the reaction part 614 and grounded ). ≪ / RTI >
상기 반응부(614)는 상기 작업전극(611), 상기 상대전극(612) 및 상기 기준전극(613)이 상기 혼합물질과 접촉되는 부분을 지칭할 수 있다. 상기 혼합물질은 상기 반응부(614)를 통과하면서 상기 전극유닛(610)과 전기 화학적 반응이 이루어질 수 있다.The reaction unit 614 may refer to a portion where the working electrode 611, the counter electrode 612, and the reference electrode 613 are in contact with the mixed material. The mixed material may be electrochemically reacted with the electrode unit 610 while passing through the reaction unit 614.
상기 접지부(615)는 상기 전극유닛(610)에 포함된 상기 전극들(611, 612, 613)이 접지되는 부분을 지칭할 수 있으며, 상기 반응부(614)로부터 연장되어 형성될 수 있다. 그리고, 상기 접지부(615)는 상기 혼합물질과 접촉되지 않도록 상기 판별필름유닛(630)에 의해 상기 반응부(614)와 구분되도록 마련될 수 있다.The ground unit 615 may refer to a grounded portion of the electrodes 611, 612, and 613 included in the electrode unit 610 and may extend from the reaction unit 614. The grounding unit 615 may be separated from the reaction unit 614 by the discriminating film unit 630 so as not to be in contact with the mixed substance.
상기 판별기판유닛(620)은 상부에 복수의 상기 전극유닛(610)이 부착될 수 있다. 구체적으로, 상기 판별기판유닛(620)의 소재는 유리로 마련될 수 있으며, 상기 판별기판유닛(620)의 상부에는 길이 방향으로 복수의 상기 전극유닛(610)이 부착될 수 있다. 이때, 상기 판별기판유닛(620)의 소재는 유리로 한정되는 것은 아니다.A plurality of the electrode units 610 may be attached to the upper portion of the identification substrate unit 620. Specifically, the material of the identification substrate unit 620 may be glass, and a plurality of the electrode units 610 may be attached to the upper portion of the identification substrate unit 620 in the longitudinal direction. At this time, the material of the identification substrate unit 620 is not limited to glass.
상기 판별필름유닛(630)은 상기 판별기판유닛(620)의 상부에 부착되며, 상기 혼합물질이 통과하는 반응챔버가 형성될 수 있다. 구체적으로, 상기 판별필름유닛(630)은 상기 판별기판유닛(620)의 길이 방향으로 복수 개로 마련된 상기 전극유닛(610)과 대응되는 위치에 각각의 상기 반응챔버가 형성되도록 마련될 수 있다. 그리고, 상기 반응챔버는 상기 믹서기(200)를 통과한 혼합물질이 일측으로 유입되어 상기 전극유닛(610)과 반응한 뒤 타측으로 배출될 수 있는 형상으로 마련될 수 있다. 또한, 상기 판별필름유닛(630)의 폭은 상기 전극유닛(610)의 상기 반응부(614)와 상기 접지부(615)가 구분되어 있어, 상기 접지부(615)와 상기 혼합물질이 접촉되지 않도록 마련될 수 있다.The discriminating film unit 630 is attached to the upper portion of the discriminating substrate unit 620, and a reaction chamber through which the mixed substance passes may be formed. Specifically, the determination film unit 630 may be provided to form the reaction chambers at positions corresponding to the plurality of electrode units 610 provided in the longitudinal direction of the identification substrate unit 620. The reaction chamber may be formed in such a shape that mixed material having passed through the mixer 200 flows into one side, reacts with the electrode unit 610, and is discharged to the other side. The width of the discriminating film unit 630 is divided into the reaction part 614 and the grounding part 615 of the electrode unit 610 so that the grounding part 615 and the mixed material are not in contact with each other .
상기 판별배출부(640)는 상기 판별필름유닛(630)의 하류에 마련되며, 상기 판별필름유닛(630)을 통과하여 유전자 판별이 완료된 혼합물질을 수용하여 외부로 배출하도록 마련될 수 있다.The discriminating and discharging unit 640 may be disposed downstream of the discriminating film unit 630 and may receive the mixed substance that has passed through the discriminating film unit 630 and has been subjected to gene discrimination to be discharged to the outside.
상기 판별펌프부(650)는 상기 혼합보조챔버부(520)와 연결되며, 상기 판별펌프부(650)는 상기 증폭용액과 상기 신호물질이 상기 혼합주챔버본체(510)와 상기 혼합보조챔버부(520)를 왕복하며 혼합되도록 공기를 흡입 및 배출할 수 있다.The discrimination pump unit 650 is connected to the mixing auxiliary chamber unit 520 and the discrimination pump unit 650 amplifies the amplification solution and the signal material from the mixing chamber main body 510 and the mixing auxiliary chamber unit 520) to be mixed and reciprocated.
구체적으로, 상기 판별펌프부(650)는 상기 혼합주챔버부(510)의 공기를 흡입하여 상기 증폭용액 및 신호물질을 상기 혼합보조챔버부(520)로 이동시키고, 다시 공기를 주입하여 상기 혼합보조챔버부(520)에 수용된 상기 증폭용액 및 신호물질을 상기 혼합주챔버부(510)로 이송시킬 수 있다. 이처럼, 상기 판별펌프부(650)는 상기 증폭용액과 상기 신호물질이 상기 혼합보조챔버부(520)와 상기 혼합주챔버부(510)를 왕복하면서 혼합되어 혼합물질이 형성되도록 할 수 있다.Specifically, the discrimination pump unit 650 sucks the air in the mixing chamber part 510 to move the amplification solution and the signal material to the mixing auxiliary chamber part 520, The amplification solution and the signal material accommodated in the chamber part 520 can be transferred to the mixing chamber part 510. As such, the discrimination pump unit 650 may mix the amplification solution and the signal material between the mixing auxiliary chamber unit 520 and the mixing chamber chamber unit 510 to form a mixed material.
또한, 상기 판별펌프부(650)는 상기 혼합보조챔버부(520)에 수용된 상기 혼합물질이 상기 판별필름유닛(630)을 통과하여 상기 판별배출부(640)로 이동하도록 공기를 흡입할 수 있다.The discrimination pump unit 650 may suck air such that the mixed material contained in the mixing auxiliary chamber unit 520 passes through the discriminating film unit 630 and moves to the discriminating discharging unit 640 .
상기 판별압력조절유닛(660)은 상기 판별펌프부(650)와 연결되며, 상기 판별압력조절유닛(660)은, 공기를 흡입하기 위한 공기흡입튜브(미도시)가 상기 판별펌프부(650)에 연결될 때, 상기 판별펌프부(650)과 상기 공기흡입튜브 사이의 공기를 외부로 배출한 이후에 밀폐되는 것을 특징으로 할 수 있다. 이처럼 마련된 상기 판별압력조절유닛(660)은 상기 판별펌프부(650)에 상기 공기흡입튜브가 연결될 때, 상기 판별펌프부(650)와 상기 공기흡입튜브 사이의 공기가 상기 판별펌프부(650)를 통해 상기 내부로 유입되는 문제를 방지할 수 있다.The discrimination pressure regulating unit 660 is connected to the discrimination pump unit 650 and the discrimination pressure regulating unit 660 is connected to the discrimination pump unit 650 through an air suction tube (not shown) The air in the space between the discrimination pump unit 650 and the air suction tube is discharged to the outside and is then sealed. When the air suction tube is connected to the discrimination pump unit 650, the discrimination pressure regulating unit 660 provides air to the discrimination pump unit 650, It is possible to prevent the problem of flowing into the inside through the through hole.
또한, 상기 판별압력조절유닛(660)은, 상기 판별펌프부(650)가 상기 혼합물질을 모두 이동시켜 배출하였을 때, 개방되어 내부 압력을 조절할 수도 있다. 이처럼 마련된 상기 판별압력조절유닛(660)은 내부 압력이 조절된 상태에서 상기 공기흡입튜브가 상기 판별펌프부(650)로부터 분리될 수 있도록 함으로써, 안전성을 향상시킬 수 있다.In addition, the discrimination pressure regulating unit 660 may be opened when the discrimination pump unit 650 moves and discharges the mixed substances to regulate the internal pressure. The discrimination pressure regulating unit 660 thus provided can separate the air suction tube from the discriminating pump unit 650 while the internal pressure is adjusted, thereby improving the safety.
상기 판별지지홀(670)은 상기 판별펌프부(650)와 인접한 위치에 형성될 수 있으며, 상기 판별지지홀(670)은 상기 판별펌프부(650)가 공기를 흡입할 때, 상기 본체칩(700)에 변형이 생기는 문제를 방지할 수 있다. 즉, 상기 본체칩(700)의 변형으로 혼합물질이 유출되는 문제를 방지할 수 있다.The discrimination support hole 670 may be formed at a position adjacent to the discrimination pump unit 650 and the discrimination support hole 670 may be formed in the main body chip 650 when the discrimination pump unit 650 sucks air. 700 can be prevented from being deformed. That is, it is possible to prevent the mixed material from flowing out due to the deformation of the main body chip 700.
상기 본체칩(700)은 상기 프레임기(800)의 내부에 마련되어 몸체를 형성하며, 주입된 시료가 이동 가능하도록 마련될 수 있다. 그리고, 상기 본체칩(700)은 본체상부필름(710), 본체필름(720), 본체하부필름(730)으로 이루어질 수 있으며, 복수의 필름이 적층되어 유로를 형성할 수 있다.The main body chip 700 is provided inside the frame unit 800 to form a body, and the injected sample can be moved. The main body chip 700 may include a main body upper film 710, a main body film 720, and a main body lower film 730, and a plurality of films may be stacked to form a channel.
상기 프레임기(800)는 상기 전자동 유전자 판별 통합칩(1000)의 외형을 형성하도록 상부프레임(810) 및 하부프레임(820)을 포함한다. 구체적으로, 상기 상부프레임(810)과 상기 하부프레임(820)은 상호 결합되어 상기 전자동 유전자 판별 통합칩(1000)외형을 형성한다. 그리고, 상기 프레임기(800)는 플라스틱 재질로 마련될 수 있으나, 상기 프레임기(800)의 소재가 이에 한정되는 것은 아니다.The frame device 800 includes an upper frame 810 and a lower frame 820 to form an outer shape of the integrated automatic gene discrimination chip 1000. Specifically, the upper frame 810 and the lower frame 820 are coupled to each other to form an appearance of the integrated chip 1000 for an automatic gene discrimination. The frame unit 800 may be made of a plastic material, but the material of the frame unit 800 is not limited thereto.
또한, 상기 본체칩(700)에는 복수의 정렬홀이 형성될 수 있으며, 및 상기 프레임기(800)에 마련된 기둥모양의 정렬기둥이 상기 정렬홀에 삽입될 수 있다. 상기 정렬기둥은 상기 전자동 유전자 판별 통합칩(1000)에 형성된 정렬홀들의 내측에 삽입되어 각 구성을 기설정된 위치에 고정시킬 수 있다.In addition, a plurality of alignment holes may be formed in the main body chip 700, and a columnar alignment column provided in the frame unit 800 may be inserted into the alignment holes. The alignment pillars may be inserted into the alignment holes formed in the integrated automatic gene discrimination chip 1000 to fix the respective structures at predetermined positions.
이처럼 마련된 상기 전자동 유전자 판별 통합칩(1000)은 소형으로 이루어져 휴대가 편리하다. 그리고, 상기 전자동 유전자 판별 통합칩(1000)은 신속하게 유전자를 판별할 수 있기 때문에 현장에서 바로 사용이 가능하다는 점에서 실용적이다. 또한, 상기 전자동 유전자 판별 통합칩(1000)은 유전자와 대응되는 프로브를 미리 상기 판별기(600)에 고정할 필요가 없기 때문에 유전자 판별을 준비하는 시간이 단축되며, 신속하게 유전자를 판별하는 것이 가능하다.The integrated automatic gene discrimination integrated chip 1000 is compact and convenient to carry. In addition, the integrated automatic gene discrimination chip 1000 is practical since it can be used immediately on the spot because the gene can be identified quickly. In addition, since the integrated chip 1000 for automatic gene discrimination does not need to fix the probe corresponding to the gene to the discriminator 600 in advance, it is possible to shorten the preparation time for gene discrimination and quickly identify the gene Do.
도 10은 본 발명의 일실시예에 따른 유전자 판별방법의 순서도이고, 도 11은 본 발명의 일실시예에 따른 유전자 판별방법의 검출대상균을 농축하는 단계의 순서도이다.FIG. 10 is a flowchart of a gene discrimination method according to an embodiment of the present invention, and FIG. 11 is a flowchart of a step of concentrating a detection target bacterium of a gene discrimination method according to an embodiment of the present invention.
도 10 및 도 11에 도시된 것처럼, 유전자 판별방법은 먼저, 검출대상균을 농축하는 단계(S100)를 수행할 수 있다. 그리고, 검출대상균을 농축하는 단계(S100)는, 탈리용액 및 자성입자를 혼합하여 1차 혼합용액을 생성하는 단계(S110), 생성된 상기 1차 혼합용액을 농축부에 주입하는 단계(S120), 주입된 상기 1차 혼합용액에서 이물질용액을 배출시켜 검출대상균을 농축하는 단계(S130), 상기 검출대상균이 농축된 상태인 2차 혼합용액을 추출부로 이송하는 단계(S140) 및 이송된 상기 2차 혼합용액에서 이물질용액을 배출시켜 상기 검출대상균을 재농축하는 단계(S150)를 포함한다.As shown in FIGS. 10 and 11, the gene discrimination method can first perform step S100 of concentrating the detection target bacteria. The step (S100) of concentrating the bacteria to be detected comprises a step (S110) of producing a primary mixed solution by mixing the desorption solution and the magnetic particles, a step of injecting the generated primary mixed solution into the concentration part (S120 A step S140 of discharging the foreign substance solution from the injected primary mixed solution to concentrate the detection target bacteria (S130), transferring the secondary mixed solution in the concentrated state to the extraction part (S140) And discharging the foreign substance solution from the secondary mixed solution to re-concentrate the detection target bacteria (S150).
도 12는 본 발명의 일실시예에 따른 유전자 판별방법의 검출대상균을 농축하는 단계의 1차 혼합용액을 생성하는 단계를 구체화한 순서도이다.FIG. 12 is a flowchart illustrating a step of generating a primary mixed solution in the step of concentrating a detection target bacterium in the gene discrimination method according to an embodiment of the present invention.
도 12를 더 참조하면, 상기 탈리용액 및 자성입자를 혼합하여 1차 혼합용액을 생성하는 단계(S110)는, 먼저, 탈리용액 및 자성입자를 혼합용기유닛에 주입하는 단계(S111)를 수행할 수 있다.12, in step S110 of mixing the desorption solution and the magnetic particles to form a primary mixed solution, first, a step S111 of injecting a desorption solution and magnetic particles into the mixing vessel unit is performed .
다음으로, 상기 혼합용기유닛을 기설정된 온도로 가열하는 단계(S112)를 수행할 수 있다. 이 단계에서, 상기 혼합용기유닛(111)은 상기 혼합가열유닛(112)에 의해 상기 탈리용액과 상기 자성입자가 활발하게 혼합되도록 할 수 있는 온도로 가열될 수 있다. 이를 위해 상기 혼합용기유닛(111)은 32도 내지 42도로 가열될 수 있다.Next, a step S112 of heating the mixing vessel unit to a predetermined temperature may be performed. At this stage, the mixing vessel unit 111 can be heated to a temperature at which the mixed heating unit 112 can actively mix the desorption solution and the magnetic particles. To this end, the mixing vessel unit 111 may be heated to 32 to 42 degrees.
다음으로, 상기 혼합용기유닛에 진동을 가하여 상기 탈리용액 및 상기 자성입자를 혼합함으로써, 1차 혼합용액을 생성하는 단계(S113)를 수행할 수 있다. 이 단계에서, 상기 혼합용기유닛(111)은 상기 혼합모터유닛(113)에 의해 20분 내지 120분 동안 진동이 가해짐으로써, 상기 탈리용액 및 상기 자성입자가 혼합되도록 할 수 있다. 이처럼 혼합되어 생성되는 상기 1차 혼합용액에는 상기 검출대상균과 상기 자성입자가 결합된 상태일 수 있다.Next, vibration may be applied to the mixing vessel unit to mix the desorption solution and the magnetic particles to generate a primary mixed solution (S113). In this step, the mixing vessel unit 111 is subjected to vibration for 20 to 120 minutes by the mixing motor unit 113, so that the desorption solution and the magnetic particles can be mixed. In the primary mixed solution thus produced, the detection target microorganism and the magnetic particles may be combined.
도 13은 본 발명의 일실시예에 따른 유전자 판별방법의 검출대상균을 농축하는 단계의 1차 혼합용액을 농축부에 주입하는 단계를 구체화한 순서도이다.FIG. 13 is a flowchart illustrating a step of injecting a primary mixed solution of a step of concentration of a detection target bacterium in a method for identifying a gene according to an embodiment of the present invention into a concentrating part.
도 13을 더 참조하면, 생성된 상기 1차 혼합용액을 농축부에 주입하는 단계(S120)는, 먼저, 농축자석유닛을 이용하여 농축용기유닛에 자력을 발생시키는 단계(S121)를 수행할 수 있다. Referring to FIG. 13, the step of injecting the generated primary mixed solution into the concentrating unit (S120) may be performed by first performing a step S121 of generating a magnetic force in the concentrating container unit using the concentrated magnet unit have.
구체적으로, 농축자석유닛을 이용하여 농축용기유닛에 자력을 발생시키는 단계(S121)에서, 상기 농축자석유닛(142)은, 상기 농축모터유닛(143)에 의해 상기 농축용기유닛(141)과 인접하게 이동하여 상기 농축용기유닛(141)에 자력을 발생시킬 수 있다.Concretely, in the step S121 of generating a magnetic force to the concentrating container unit using the concentrated magnet unit, the concentrated magnet unit 142 is disposed adjacent to the concentrating container unit 141 by the concentrating motor unit 143 So that a magnetic force can be generated in the concentrating container unit 141.
또는, 상기 농축자석유닛(142)이 전자석으로 마련된 경우, 농축자석유닛을 이용하여 농축용기유닛에 자력을 발생시키는 단계(S121)에서, 상기 농축자석유닛(142)에 전류를 흘려 상기 농축용기유닛(141)에 자력을 발생시킬 수도 있다.Alternatively, in the step (S121) of generating a magnetic force to the concentrating container unit using the concentrated magnet unit when the concentrated magnet unit 142 is provided as an electromagnet, a current is supplied to the concentrated magnet unit 142, It is also possible to generate a magnetic force in the magnet 141.
다음으로, 농축펌프부를 이용하여 상기 1차 혼합용액을 상기 농축용기유닛에 주입하는 단계(S122)를 수행할 수 있다. 이 단계에서, 상기 1차 혼합용액에 포함된 상기 검출대상균은 상기 자성입자와 결합된 상태에서, 상기 농축용기유닛(141)의 내측벽에 자력에 의해 부착될 수 있다.Next, the step of injecting the primary mixed solution into the concentrating container unit using the concentrating pump unit (S122) may be performed. At this stage, the detection subject bacteria contained in the primary mixed solution may be attached to the inner wall of the concentrating container unit 141 by magnetic force in a state of being combined with the magnetic particles.
도 14는 본 발명의 일실시예에 따른 유전자 판별방법의 검출대상균을 농축하는 단계의 이물질용액을 배출시켜 검출대상균을 농축하는 단계를 구체화한 순서도이다.FIG. 14 is a flowchart illustrating a step of concentrating the detection target bacteria by discharging a foreign matter solution in the step of concentrating the detection target bacteria in the gene discrimination method according to an embodiment of the present invention.
도 14를 더 참조하면, 주입된 상기 1차 혼합용액에서 이물질용액을 배출시켜 검출대상균을 농축하는 단계(S130)는, 먼저, 상기 농축부에 세척용액을 주입하는 단계(S131)를 수행할 수 있다. 이 단계에 앞서, 상기 제1 배출밸브유닛(152)은 개방되며, 상기 버퍼부(120)는 상기 농축용기유닛(141)에 세척용액을 주입할 수 있다. Referring to FIG. 14, the step S130 of discharging the foreign material solution from the injected primary mixed solution to concentrate the detection target bacteria is performed first (S131) of injecting the cleaning solution into the concentration portion . Prior to this step, the first discharge valve unit 152 is opened and the buffer unit 120 can inject the cleaning solution into the concentrating container unit 141.
다음으로, 상기 세척용액과 함께 상기 이물질용액을 이물질 배출부로 배출시켜 상기 검출대상균을 농축하는 단계(S132)를 수행할 수 있다. 이 단계에서, 상기 세척용액은 상기 농축용기유닛(141) 내에 수용된 1차 혼합용액 중 이물질용액을 상기 이물질 배출구유닛(151)으로 이송시켜 배출할 수 있다. 이때, 상기 농축용기유닛(141)의 내측벽에 부착된 상기 검출대상균 및 자성입자는 상기 세척용액과 함께 상기 이물질 배출구유닛(151)으로 이송되지 않고 상기 농축자석유닛(142)의 자력에 의해 고정된 상태를 유지함으로써, 농축될 수 있다.Next, the foreign substance solution may be discharged to the foreign substance discharging unit together with the washing solution to concentrate the detection target bacteria (S132). At this stage, the cleaning solution can transfer the foreign matter solution in the primary mixed solution contained in the concentrating container unit 141 to the foreign matter outlet unit 151 and discharge it. At this time, the bacteria and the magnetic particles to be detected attached to the inner wall of the concentrating container unit 141 are not conveyed to the foreign matter outlet unit 151 together with the cleaning solution, but by the magnetic force of the concentrated magnet unit 142 By keeping the fixed state, it can be concentrated.
도 15는 본 발명의 일실시예에 따른 유전자 판별방법의 검출대상균을 농축하는 단계의 2차 혼합용액을 추출부로 이송하는 단계를 구체화한 순서도이다.FIG. 15 is a flowchart illustrating a step of transferring a second mixed solution in the step of concentrating the detection target bacteria in the gene discrimination method according to an embodiment of the present invention to the extraction unit.
도 15를 더 참조하면, 상기 검출대상균이 농축된 상태인 2차 혼합용액을 추출부로 이송하는 단계(S140)는 먼저, 농축용기유닛에 발생한 자력을 제거하고, 추출자석유닛을 이용하여 추출용기유닛에 자력을 발생시키는 단계(S141)를 수행할 수 있다. 이 단계에서, 상기 추출자석유닛(182)은, 상기 추출모터유닛(183)에 의해 상기 추출용기유닛(181)과 인접하게 이동하여 상기 추출용기유닛(181)에 자력을 발생시킬 수 있다.15, in the step S140 of transferring the secondary mixed solution in the concentrated state to the extraction unit, the magnetic force generated in the concentrating container unit is first removed, (S141) of generating a magnetic force in the unit. At this stage, the extraction magnet unit 182 may move adjacent to the extraction container unit 181 by the extraction motor unit 183 to generate a magnetic force in the extraction container unit 181.
또는, 상기 추출자석유닛(182)이 전자석으로 마련된 경우, 농축용기유닛에 발생한 자력을 제거하고, 추출자석유닛을 이용하여 추출용기유닛에 자력을 발생시키는 단계(S141)에서, 상기 추출자석유닛(182)에 전류를 흘려 상기 추출용기유닛(181)에 자력을 발생시킬 수도 있다.Alternatively, in the step (S141) of removing magnetic force generated in the concentrating container unit and generating magnetic force in the extraction container unit using the extraction magnet unit when the extraction magnet unit 182 is provided as an electromagnet, the extraction magnet unit 182 to generate a magnetic force in the extraction container unit 181. [
그리고 반대로, 상기 농축부(140)는 상기 농축자석유닛(142)을 상기 농축용기유닛(141)으로부터 이격시키거나, 상기 농축자석유닛(142)에 전류가 흐르지 못하게 함으로써, 상기 농축용기유닛(141)에 가해지는 자력을 제거시킬 수 있다.Conversely, the concentrating unit 140 separates the concentrated magnet unit 142 from the concentrating container unit 141, or prevents current from flowing through the concentrated magnet unit 142, Can be removed.
다음으로, 농축용기유닛에 진동을 발생시키는 단계(S142)를 수행할 수 있다. 이 단계에서, 상기 농축부(140)에 마련된 상기 진동모터유닛(144)은, 상기 농축용기유닛(141)에 진동을 발생시켜 상기 농축용기유닛(141)에 부착된 상기 검출대상균을 떼어낼 수 있다. 즉, 상기 농축부(140)의 내측벽에 부착된 상기 검출대상균이 상기 추출부(180)로 더 신속하게 이송될 수 있도록 할 수 있다.Next, step (S142) of generating vibration in the concentrating container unit can be performed. At this stage, the vibration motor unit 144 provided in the enrichment unit 140 generates vibration in the enrichment container unit 141 to remove the detection target bacteria attached to the enrichment container unit 141 . That is, the detection target bacteria adhering to the inner wall of the thickening part 140 can be more quickly transferred to the extracting part 180.
다음으로, 상기 농축부에 이송용액을 주입하여 상기 2차 혼합용액을 상기 추출용기유닛으로 이송시키는 단계(S143)를 수행할 수 있다. Next, the transferring solution may be injected into the concentrating unit to transfer the secondary mixed solution to the extraction container unit (S143).
구체적으로, 상기 농축밸브유닛(145)이 개방된 상태에서, 상기 버퍼부(120)는 상기 농축부(140)에 이송용액을 주입함으로써, 상기 2차 혼합용액을 상기 추출용기유닛(181)으로 이송시킬 수 있다.Specifically, the buffer unit 120 injects the transfer solution into the concentrating unit 140 while the enrichment valve unit 145 is opened, thereby to transfer the secondary mixed solution to the extraction container unit 181 .
도 16은 본 발명의 일실시예에 따른 유전자 판별방법의 검출대상균을 농축하는 단계의 검출대상균을 재농축하는 단계를 구체화한 순서도이다.FIG. 16 is a flowchart showing a step of re-concentrating the detection target bacteria in the step of concentrating the detection target bacteria in the gene discrimination method according to an embodiment of the present invention.
도 16을 더 참조하면, 이송된 상기 2차 혼합용액에서 이물질용액을 배출시켜 상기 검출대상균을 재농축하는 단계(S150)는, 먼저, 상기 자성입자와 결합된 상기 검출대상균이 상기 추출용기유닛에 부착되는 단계(S151)를 수행할 수 있다. Referring to FIG. 16, in step S150 of discharging the foreign matter solution from the transferred secondary mixed solution to re-concentrate the detection target bacteria, first, the detection target bacteria combined with the magnetic particles are collected in the extraction container Unit (S151) attached to the unit.
구체적으로, 이 단계에서는, 농축용기유닛에 발생한 자력을 제거하고, 추출자석유닛을 이용하여 추출용기유닛에 자력을 발생시키는 단계(S141)에서 상기 추출용기유닛(181)에 가해진 자력에 의해 상기 추출용기유닛(181)을 통과하는 상기 2차 혼합용액에 포함된 검출대상균이 상기 추출용기유닛(181)에 부착될 수 있다.Specifically, in this step, the magnetic force generated in the concentrating container unit is removed, and the magnetic force applied to the extraction container unit 181 in the step (S 141) of generating magnetic force in the extraction container unit using the extraction magnet unit The bacteria to be detected contained in the secondary mixed solution passing through the container unit 181 can be attached to the extraction container unit 181. [
다음으로, 상기 이송용액과 함께 이송된 상기 이물질용액을 이물질 배출부로 배출시켜 상기 검출대상균을 재농축하는 단계(S152)를 수행할 수 있다. 먼저 이 단계에 앞서, 상기 제2 배출밸브유닛(153)은 개방된 상태로 전환된다. 그리고, 이 단계에서, 상기 자성입자와 결합된 상기 검출대상균을 제외한 나머지 이물질용액은 상기 이송용액과 함께 상기 이물질 배출부(150)로 이송되어 배출될 수 있다. 이처럼, 이물질용액이 상기 배출부(150)를 통해 모두 배출되면, 자력에 의해 상기 추출용기유닛(181)의 내측벽에 부착된 검출대상균만 남겨짐으로써, 재농축이 이루어질 수 있다.Next, the foreign substance solution transferred together with the transferring solution may be discharged to the foreign substance discharging unit, and the step of re-concentrating the detection target bacteria (S152) may be performed. Prior to this step, the second discharge valve unit 153 is switched to the open state. At this stage, the foreign matter solution other than the detection target bacteria combined with the magnetic particles may be transferred to the foreign matter discharging unit 150 together with the transferring solution and discharged. When the foreign matter solution is completely discharged through the discharge unit 150, only the detection target bacteria adhering to the inner wall of the extraction container unit 181 are left by the magnetic force, so that the re-concentration can be performed.
도 17은 본 발명의 일실시예에 따른 유전자 판별방법의 유전자를 추출하는 단계의 순서도이다.17 is a flowchart of a step of extracting a gene of the gene discrimination method according to an embodiment of the present invention.
도 10 및 도 17에 도시된 것처럼, 검출대상균을 농축하는 단계(S100) 이후에는, 농축된 검출대상균으로부터 유전자를 추출하는 단계(S200)를 수행할 수 있다.As shown in Figs. 10 and 17, after step (S100) of concentrating the detection subject bacteria, step (S200) of extracting genes from the concentrated detection subject bacteria can be performed.
농축된 검출대상균으로부터 유전자를 추출하는 단계(S200)는, 자성입자와 결합된 검출대상균이 수용된 추출부에 추출용액을 주입하는 단계(S210), 상기 추출부를 기설정된 온도로 가열하여 상기 검출대상균으로부터 유전자를 추출하는 단계(S220), 상기 추출부를 상온으로 냉각하는 단계(S230)를 포함하며, 추출된 상기 유전자를 믹서기를 향해 이송하는 단계(S240)를 더 포함할 수 있다.(S200) of extracting a gene from the concentrated detection target bacteria is performed by injecting an extraction solution into an extraction unit containing the detection target bacteria combined with magnetic particles (S210), heating the extraction unit to a predetermined temperature, (S220) a step of extracting the gene from the target organism, and a step S230 of cooling the extracting unit to room temperature, and transferring the extracted gene toward the mixer (S240).
구체적으로, 자성입자와 결합된 검출대상균이 수용된 추출부에 추출용액을 주입하는 단계(S210)에서, 상기 추출챔버부(160)는 자성입자와 결합된 검출대상균이 수용된 상기 추출부(180)에 추출용액을 주입할 수 있다. 여기서, 상기 추출용액은 상기 검출대상균을 파쇄하여 상기 검출대상균 내의 유전자를 추출할 수 있는 용액일 수 있다.Specifically, in the step S210 of injecting the extraction solution into the extraction unit containing the detection target bacteria combined with the magnetic particles, the extraction chamber unit 160 includes the extraction unit 180 ). ≪ / RTI > Here, the extraction solution may be a solution capable of extracting the gene in the bacteria to be detected by disrupting the bacteria to be detected.
도 18은 본 발명의 일실시예에 따른 유전자 판별방법의 유전자를 추출하는 단계의 검출대상균으로부터 유전자를 추출하는 단계를 구체화한 순서도이다.FIG. 18 is a flowchart illustrating a step of extracting a gene from a detection subject bacterium in the step of extracting a gene of the gene discrimination method according to an embodiment of the present invention.
도 18을 더 참조하면, 상기 추출부를 기설정된 온도로 가열하여 상기 검출대상균으로부터 유전자를 추출하는 단계(S220)는, 먼저, 추출자석유닛을 이용하여 상기 추출부에 가해지는 자력을 제거하는 단계(S221)를 수행할 수 있다.18, a step S220 of extracting a gene from the detection target bacteria by heating the extracting unit to a predetermined temperature includes firstly removing the magnetic force applied to the extracting unit by using the extracting magnet unit (S221).
구체적으로, 추출자석유닛을 이용하여 상기 추출부에 가해지는 자력을 제거하는 단계(S221)에서, 상기 추출자석유닛(182)은 상기 추출용기유닛(181)로부터 이격되어 상기 추출부(180)에 가해지는 자력을 제거할 수 있다.More specifically, in the step S221 of removing the magnetic force applied to the extraction unit using the extraction magnet unit, the extraction magnet unit 182 is separated from the extraction container unit 181 and is connected to the extraction unit 180 The applied magnetic force can be removed.
또는, 상기 추출자석유닛(182)이 전자석으로 마련된 경우에는, 추출자석유닛을 이용하여 상기 추출부에 가해지는 자력을 제거하는 단계(S221)에서, 상기 추출자석유닛(182)에 흐르는 전류를 제어하여 상기 추출부에 가해지는 자력을 제거할 수도 있다.Alternatively, when the extracted magnet unit 182 is provided with an electromagnet, in the step S221 of removing the magnetic force applied to the extraction unit using the extracted magnet unit, the current flowing in the extracted magnet unit 182 is controlled So that the magnetic force applied to the extraction unit can be removed.
다음으로, 상기 추출부를 기설정된 온도로 가열하여 상기 검출대상균으로부터 유전자를 추출하는 단계(S222)를 수행할 수 있다. 이 단계에서, 상기 추출부(180)는 90도 내지 100도로 5분 내지 20분 동안 가열될 수 있다. 상기 추출용기유닛(181)의 온도가 90도 미만일 경우, 상기 추출용액이 활발하게 활동하지 못할 수 있으며, 상기 추출용기유닛(181)의 온도가 100도를 초과할 경우, 유전자가 파괴되거나, 추출용액의 기능이 상실될 수 있다. 따라서, 상기 추출용기유닛(181)은 90도 내지 100도로 5분 내지 20분 동안 가열될 수 있다.Next, the extracting unit may be heated to a predetermined temperature to extract a gene from the detection target organism (S222). At this stage, the extraction section 180 can be heated at 90 to 100 degrees for 5 to 20 minutes. If the temperature of the extraction container unit 181 is less than 90 degrees, the extraction solution may not actively active. If the temperature of the extraction container unit 181 exceeds 100 degrees, the gene may be destroyed, The function of the solution may be lost. Thus, the extraction container unit 181 can be heated from 90 to 100 degrees for 5 minutes to 20 minutes.
그러나, 상기 추출용기유닛(181)의 온도는 상술한 바에 한정되지 않으며, 추출용액의 종류에 따라 상온으로 유지되는 것도 가능하다.However, the temperature of the extraction container unit 181 is not limited to that described above, and it may be maintained at room temperature depending on the type of extraction solution.
이처럼, 적정범위에서 가열된 상기 추출용기유닛(181)에 수용된 상기 추출용액은 상기 검출대상균의 세포를 활발하게 파쇄하여 신속하게 유전자가 추출되도록 할 수 있다.As described above, the extraction solution contained in the extraction container unit 181 heated in an appropriate range can actively break down the cells of the detection target bacteria to rapidly extract genes.
상기 추출부를 기설정된 온도로 가열하여 상기 검출대상균으로부터 유전자를 추출하는 단계(S220) 이후에는, 상기 추출부를 상온으로 냉각하는 단계(S230)가 수행될 수 있다. 이 단계에서, 상기 추출용기유닛(181)은 상기 추출온도제어유닛(184) 및 추출냉각유닛(185)에 의해 20도 내지 30도로 신속하게 냉각될 수 있다.After the extracting unit is heated to a preset temperature and the gene is extracted from the detection target bacteria (S220), the extracting unit may be cooled to room temperature (S230). At this stage, the extraction container unit 181 can be quickly cooled by 20 to 30 degrees by the extraction temperature control unit 184 and the extraction cooling unit 185.
도 19는 본 발명의 일실시예에 따른 유전자 판별방법의 유전자를 추출하는 단계의 믹서기를 향해 이송하는 단계를 구체화한 순서도이다.FIG. 19 is a flowchart illustrating a step of transferring a gene to a blender in the step of extracting a gene of the gene discrimination method according to an embodiment of the present invention.
도 19를 더 참조하면, 추출된 상기 유전자를 믹서기를 향해 이송하는 단계(S240)는 먼저, 상기 추출부에 자력을 가하는 단계(S241)를 수행할 수 있다. 이 단계에서, 상기 추출용기유닛(181)에 수용된 검출대상균은 자성입자와 결합된 상태이기 때문에 자력에 의해 상기 추출용기유닛(181)의 내측벽에 고정된 상태가 된다. 그러나, 상기 검출대상균으로부터 추출된 유전자는 상기 자성입자와 결합되지 않기 때문에 상기 추출용기유닛(181)의 내측벽에 고정되지 않은 상태이다.Referring to FIG. 19, the step of transferring the extracted gene toward a blender (S240) may first perform step S241 of applying a magnetic force to the extracting unit. At this stage, the detection target bacteria contained in the extraction container unit 181 are in a state of being fixed to the inner wall of the extraction container unit 181 by the magnetic force because they are in a state of being coupled with the magnetic particles. However, the gene extracted from the detection target bacteria is not fixed to the inner wall of the extraction container unit 181 because it is not coupled with the magnetic particles.
다음으로, 상기 추출부에서 추출된 유전자를 믹서기를 향해 이송시키는 단계(S242)를 수행할 수 있다. 이 단계에서, 상기 추출공기주입부(170)는 상기 추출공기주입밸브(172)를 개방하여 상기 추출부(180)에 공기를 주입할 수 있다. 그리고 이때, 상기 제2 배출밸브유닛(153)은 폐쇄되고, 상기 믹서이송밸브부(190)는 개방된 상태일 수 있다. 이러한 상태에서 상기 추출부(180)에 주입된 공기는 상기 유전자를 상기 믹서기(200)로 이송시킬 수 있다. 이때, 상기 추출용기유닛(181)에 부착된 상기 검출대상균과 상기 자성입자는 상기 믹서기(200)로 이송되지 않으므로 자연스럽게 유전자와 분리되어 배출될 수 있다.Next, the step of transferring the gene extracted by the extracting unit toward the blender (S242) may be performed. At this stage, the extraction air injection unit 170 may open the extraction air injection valve 172 to inject air into the extraction unit 180. At this time, the second discharge valve unit 153 is closed, and the mixer transfer valve unit 190 may be in an open state. In this state, the air injected into the extracting unit 180 may transfer the gene to the mixer 200. At this time, the bacteria to be detected attached to the extraction container unit 181 and the magnetic particles are not transferred to the mixer 200, so they can be separated from the gene and discharged naturally.
또한, 상기 추출부에서 추출된 유전자를 믹서기를 향해 이송시키는 단계(S242)에서는, 상기 추출챔버부(160)가 상기 추출부(180)에 추출용액을 더 주입하여 상기 유전자를 더 원활하게 이송시키도록 할 수도 있다.In addition, in the step S242 of transferring the gene extracted from the extracting unit toward the blender, the extraction chamber 160 further injects the extraction solution into the extraction unit 180 to smoothly transfer the gene .
도 20은 본 발명의 일실시예에 따른 유전자 판별방법의 혼합PCR용액을 형성하는 단계의 순서도이다.FIG. 20 is a flowchart of a step of forming a mixed PCR solution of a gene discrimination method according to an embodiment of the present invention.
도 10 및 도 20을 참조하면, 농축된 검출대상균으로부터 유전자를 추출하는 단계(S200) 이후에는, 추출된 유전자와 PCR버퍼를 혼합하여 혼합PCR용액을 형성하는 단계(S300)를 수행할 수 있다. 추출된 유전자와 PCR버퍼를 혼합하여 혼합PCR용액을 형성하는 단계(S300)는 먼저, 믹서주챔버부에 PCR버퍼를 주입하는 단계(S310)를 수행할 수 있다. 이 단계에서, 상기 PCR버퍼는 상기 믹서주챔버본체(211)에 상기 유전자가 유입되기 전에, 상기 믹서펌프부(240)에 의해 상기 믹서주챔버연장체(212)로부터 주입되어 상기 믹서주입홀(213)의 앞단까지 채워지는 것을 특징으로 할 수 있다. 10 and 20, after the step S200 of extracting the gene from the concentrated detection target bacteria, a step S300 of forming a mixed PCR solution by mixing the extracted gene with the PCR buffer can be performed . In step S300 of mixing the extracted gene with the PCR buffer to form a mixed PCR solution, step S310 of injecting a PCR buffer into the main mixer chamber may be performed. In this step, the PCR buffer is injected from the mixer main chamber extension 212 by the mixer pump unit 240 before the gene is introduced into the mixer main chamber body 211, To the front end of the housing.
다음으로, PCR버퍼가 주입된 믹서주챔버부에 유전자를 주입하는 단계(S320)를 수행할 수 있다. 이 단계에서, 상기 믹서주입홀(213)을 통해 주입되는 상기 유전자는 상기 믹서주입홀(213)의 상부에 형성된 상기 믹서에어필터(214)에 의해 기포가 배출되면서 상기 PCR버퍼와 혼합될 수 있다.Next, a step S320 of injecting a gene into the mixer main chamber portion into which the PCR buffer is injected may be performed. At this stage, the gene injected through the mixer injection hole 213 may be mixed with the PCR buffer while bubbles are discharged by the mixer air filter 214 formed in the upper part of the mixer injection hole 213 .
다음으로, 주입된 유전자와 PCR버퍼가 믹서주챔버부와 믹서보조챔버부를 왕복하며 혼합되도록 공기를 주입 및 흡입하는 단계(S330)를 수행할 수 있다. 구체적으로, 도 7의 (b)에 도시된 것처럼, 상기 믹서펌프부(240)는 상기 믹서주챔버부(210)에 수용된 혼합PCR용액을 흡입하여 상기 믹서보조챔버부(220)로 이동시키고, 도 7의 (c)에 도시된 것처럼, 다시 상기 믹서보조챔버부(220)에 수용된 상기 혼합PCR용액에 공기를 주입하여 상기 믹서주챔버부(210)로 이송시킬 수 있다. 이처럼, 상기 믹서펌프부(240)는 상기 유전자와 상기 PCR버퍼가 상기 믹서보조챔버부(220)와 상기 믹서주챔버부(210)를 복수 회 왕복하며 혼합되도록 할 수 있다.Next, a step S330 of injecting and sucking air such that the injected gene and the PCR buffer are mixed while reciprocating the mixer main chamber portion and the mixer auxiliary chamber portion can be performed. 7 (b), the mixer pump unit 240 sucks the mixed PCR solution contained in the mixer main chamber unit 210 and moves the mixed PCR solution to the mixer auxiliary chamber unit 220, As shown in FIG. 7 (c), air may be injected into the mixed PCR solution contained in the mixer auxiliary chamber 220 and transferred to the mixer main chamber 210. As described above, the mixer pump unit 240 may mix the gene and the PCR buffer by reciprocating the mixer auxiliary chamber unit 220 and the mixer main chamber unit 210 a plurality of times.
또한, 상기 유전자와 상기 PCR버퍼는 상기 믹서보조챔버부(220)와 상기 믹서주챔버부(210)를 왕복하며 혼합될 때, 상기 와류유도유닛(215)에 충돌하여 와류를 발생시킬 수 있다. 이처럼 발생한 와류는 상기 유전자와 상기 PCR버퍼의 혼합효율을 향상시킬 수 있다.In addition, when the gene and the PCR buffer are mixed while reciprocating between the mixer auxiliary chamber part 220 and the mixer main chamber part 210, they may collide with the vortex induction unit 215 to generate a vortex. The resulting vortex can improve the mixing efficiency of the gene and the PCR buffer.
다음으로, 유전자와 PCR버퍼가 혼합된 혼합PCR용액을 흡입하여 믹서이송챔버부로 이송하는 단계(S340)를 수행할 수 있다. 이 단계에서, 상기 믹서이송챔버부(230)는 상기 믹서펌프부(240)의 흡입력에 의해 상기 믹서보조챔버부(220)에 수용된 상기 혼합PCR용액을 이송받아 수용할 수 있다.Next, the mixed PCR solution in which the gene and the PCR buffer are mixed can be sucked and transferred to the mixer transfer chamber part (S340). In this stage, the mixer transfer chamber unit 230 can receive and receive the mixed PCR solution contained in the mixer auxiliary chamber unit 220 by the suction force of the mixer pump unit 240.
다음으로, 믹서이송챔버부에 공기를 주입하여 혼합PCR용액을 정량주입기로 이송하는 단계(S350)를 수행할 수 있다. 이 단계에서, 상기 믹서펌프부(240)는 상기 믹서이송챔버부(230)에 수용된 상기 혼합PCR용액을 상기 정량주입기(300)를 향해 배출시키도록 공기를 주입할 수 있다.Next, air may be injected into the mixer transfer chamber portion to transfer the mixed PCR solution to the quantitative injector (S350). At this stage, the mixer pump unit 240 may inject air to discharge the mixed PCR solution contained in the mixer transfer chamber unit 230 toward the metering injector 300.
이처럼 마련된 유전자 판별방법은 유전자와 PCR버퍼의 혼합효율을 향상시켜 실험 결과의 신뢰성을 향상시키고, 신속하게 실험이 이루어지도록 할 수 있다.Such a gene discrimination method improves the mixing efficiency of the gene and the PCR buffer, improves the reliability of the experimental results, and enables rapid experimentation.
도 21은 본 발명의 일실시예에 따른 유전자 판별방법의 정량 주입하는 단계의 순서도이다.FIG. 21 is a flowchart of a step of injecting a gene according to an embodiment of the present invention.
도 10 및 도 21을 참조하면, 추출된 유전자와 PCR버퍼를 혼합하여 혼합PCR용액을 형성하는 단계(S300) 이후에는, 형성된 혼합PCR용액을 증폭기에 정량 주입하는 단계(S400)를 수행할 수 있다. 10 and 21, after the step S300 of forming the mixed PCR solution by mixing the extracted gene with the PCR buffer, the mixed PCR solution thus formed may be quantitatively injected into the amplifier (S400) .
형성된 혼합PCR용액을 증폭기에 정량 주입하는 단계(S400)는, 먼저, 상류에 위치한 정량챔버부터 순차적으로 상기 혼합PCR용액을 채우는 단계(S410)를 수행할 수 있다. 이 단계는, 상류에 위치한 정량챔버에 상기 혼합PCR용액이 모두 채워진 후에 상기 혼합PCR용액이 통과할 수 있도록 단차가 형성된 상기 정량스토퍼에 의해 자동으로 이루어지는 것을 특징으로 할 수 있다.In the step S400 of injecting the mixed PCR solution formed in the amplifier (S400), the step S410 of filling the mixed PCR solution sequentially from the quantification chamber located upstream may be performed. This step may be performed automatically by the quantitative stopper having a stepped portion through which the mixed PCR solution is passed after the mixed PCR solution is filled in the quantification chamber located upstream.
일 예로, 유입된 상기 혼합PCR용액은 먼저 상기 제1 정량스토퍼(321)로 향한다. 그러나, 상기 제1 정량스토퍼(321)는 단차가 높게 형성되어 있기 때문에 상기 혼합PCR용액은 상기 제1 정량스토퍼(321)를 넘어서 통과하지 못하고, 상기 제1 정량챔버(311)로 자연스럽게 이송되어 상기 제1 정량챔버(311)에 채워진다. 그리고, 상기 제1 정량챔버(311)가 상기 혼합PCR용액으로 가득 채워지면 상기 혼합PCR용액의 수위가 상기 제1 정량스토퍼(321)의 단차 높이만큼 상승하게 되어 상기 제1 정량스토퍼(321)를 넘어서 통과하게 된다. 상기 제1 정량스토퍼(321)를 통과한 상기 혼합PCR용액은 상기 제2 정량스토퍼(322)로 향한다. 그러나, 상기 제2 정량스토퍼(322)역시 단차가 높게 형성되어 있기 때문에 상기 혼합PCR용액은 상기 제2 정량스토퍼(322)를 넘지 못하고 상기 제2 정량챔버(312)를 향해 이동하여 상기 제2 정량챔버(312)를 가득 채운다. 그리고, 상기 제2 정량챔버(312)가 상기 혼합PCR용액으로 가득 채워지면 상기 혼합PCR용액의 수위가 상기 제2 정량스토퍼(322)의 단차 높이만큼 상승하게 되어 상기 제2 정량스토퍼(322)를 넘어서 통과하게 된다. 이와 같은 방식으로 상기 제3 정량챔버(313) 및 상기 제4 정량챔버(314)에 혼합PCR용액이 가득 채워질 수 있다.For example, the introduced mixed PCR solution is first directed to the first quantitative stopper 321. However, since the first quantitative stopper 321 has a stepped height, the mixed PCR solution can not pass over the first quantitative stopper 321 and is naturally transferred to the first quantitative chamber 311, And is filled in the first metering chamber 311. When the first quantitative chamber 311 is filled with the mixed PCR solution, the water level of the mixed PCR solution rises by the step height of the first quantitative stopper 321, and the first quantitative stopper 321 It passes over. The mixed PCR solution having passed through the first quantitative stopper 321 is directed to the second quantitative stopper 322. However, since the second quantitative stopper 322 also has a stepped height, the mixed PCR solution moves toward the second quantitative chamber 312 without passing over the second quantitative stopper 322, The chamber 312 is filled. When the second quantitative chamber 312 is filled with the mixed PCR solution, the water level of the mixed PCR solution rises by the step height of the second quantitative stopper 322, and the second quantitative stopper 322 It passes over. In this manner, the third PCR chamber 313 and the fourth PCR chamber 314 can be filled with the mixed PCR solution.
또한, 상기 정량스토퍼부(320)가 단차 형태로 마련되지 않고, 유로 채널의 벽면이 소수성의 성질을 갖도록 함으로써, 유로 채널 내 유체 저항의 차이에 따라 각 정량챔버에 혼합PCR용액이 정량 주입되도록 마련될 수도 있다.In addition, since the quantitative stopper 320 is not provided in a stepped shape and the wall surface of the channel channel is made hydrophobic, the mixed PCR solution can be injected in a predetermined amount into each of the metering chambers in accordance with the difference in fluid resistance in the channel channel. .
다음으로, 정량챔버부를 모두 채우고 남은 혼합PCR용액을 잔량배출부로 배출하는 단계(S420)를 수행할 수 있다. 이 단계에서는, 상기 정량챔버부(310)에 상기 혼합PCR용액이 모두 채워진 상태에서 여분의 상기 혼합PCR용액이 통과하여 상기 잔량배출부(330)로 배출될 수 있도록 단차가 형성된 상기 배출스토퍼(325)에 의해 자동으로 이루어지는 것을 특징으로 할 수 있다.Next, a step S420 of filling the remaining portion of the metering chamber and discharging the remaining mixed PCR solution to the remaining amount discharging portion may be performed. At this stage, the discharge stopper 325 (see FIG. 3), which has a stepped portion to allow the excess mixed PCR solution to pass therethrough and be discharged to the remaining amount discharge portion 330 in a state in which the mixed PCR solution is filled in the dosing chamber portion 310 ). In this case, as shown in Fig.
다음으로, 정량밸브부를 폐쇄하는 단계(S430)를 수행할 수 있다.Next, step S430 of closing the metering valve unit may be performed.
다음으로, 정량펌프부에 공기를 주입하여 정량챔버부에 수용된 혼합PCR용액을 증폭기로 주입하는 단계(S440)를 수행할 수 있다. 이 단계에서, 상기 정량펌프부(340)는 상기 정량챔버부(310)에 상기 혼합PCR용액이 모두 채워졌을 때, 공기를 주입하여 상기 정량챔버부(310)에 수용된 상기 혼합PCR용액을 상기 증폭기(400)로 이송시킬 수 있다. 그리고 이때, 상기 정량에어필터부(370)는 상기 증폭기(400)를 향해 이송되는 상기 혼합PCR용액에 포함된 기포를 제거할 수 있으며, 상기 혼합PCR용액이 모두 통과한 경우, 상기 정량펌프부(340)로부터 주입되는 공기를 모두 배출시켜 상기 혼합PCR용액의 이송을 정지시키도록 마련될 수 있다.Next, air may be injected into the metering pump unit, and the mixed PCR solution stored in the metering chamber unit may be injected into the amplifier (S440). At this stage, when the mixed PCR solution is completely filled in the quantification chamber part 310, the quantitative pump part 340 injects the mixed PCR solution stored in the quantification chamber part 310 into the amplifier (400). At this time, the quantitative air filter unit 370 can remove bubbles contained in the mixed PCR solution transferred toward the amplifier 400. When the mixed PCR solution passes through the quantitative air filter unit 370, 340 to stop the transfer of the mixed PCR solution.
전술한 바와 같이 마련된 유전자 판별방법은 항상 기설정된 양만큼만 동일하게 상기 증폭기(400)에 주입되도록 할 수 있어 실험 결과의 신뢰성을 높이고, 별도의 제어 없이도 자동으로 정량을 주입할 수 있도록 마련되어 편리하고 신속한 실험이 가능하게 할 수 있다.The gene discrimination method as described above can be always injected into the amplifier 400 by a predetermined amount, thereby improving the reliability of the experimental results and automatically injecting the quantitation without any additional control, The experiment can be made possible.
또한, 유전자 증폭을 위한 PCR버퍼는 유전자 증폭챔버에 동결 건조되어 미리 탑재될 수도 있다.In addition, the PCR buffer for gene amplification may be lyophilized in a gene amplification chamber and loaded in advance.
다시, 도 10을 참조하면, 형성된 혼합PCR용액을 증폭기에 정량 주입하는 단계(S400) 이후에는, 정량 주입된 혼합PCR용액에 대한 중합효소 연쇄반응(PCR)을 통해 유전자를 증폭하여 증폭용액을 형성하는 단계(S500)를 수행할 수 있다.Referring to FIG. 10, after the formed mixed PCR solution is quantitatively injected into the amplifier (S400), amplified genes are amplified by polymerase chain reaction (PCR) on the quantified mixed PCR solution to form an amplification solution (S500).
정량 주입된 혼합PCR용액에 대한 중합효소 연쇄반응(PCR)을 통해 유전자를 증폭하여 증폭용액을 형성하는 단계(S500)에서, 정량주입된 상기 혼합PCR용액은 상기 증폭기(400)를 통과하면서 상기 유전자의 수가 증폭될 수 있다. 여기서, 상기 유전자는 중합효소 연쇄반응(PCR)에 의해 증폭될 수 있다. 일반적으로, 검출대상균으로부터 추출되는 유전자의 수는 극소량이기 때문에, 추출한 상기 유전자만으로는 정확한 판별 작업을 수행하는 것이 어렵다. 그러나, 이처럼 상기 유전자를 증폭하여 상기 유전자의 수를 증가시키면 유전자 판별을 정확하게 수행할 수 있다.In the step S500 of amplifying the gene by PCR using the quantified mixed PCR solution (S500), the mixed PCR solution injected in the quantitative manner is amplified by the amplification of the gene Can be amplified. Here, the gene can be amplified by polymerase chain reaction (PCR). Generally, since the number of genes extracted from the detection target bacteria is very small, it is difficult to perform accurate discrimination work using only the extracted genes. However, if the number of genes is increased by amplifying the gene, the gene discrimination can be accurately performed.
도 22는 본 발명의 일실시예에 따른 유전자 판별방법의 혼합물질을 형성하는 단계의 순서도이다.22 is a flowchart of a step of forming a mixed material of the gene discrimination method according to an embodiment of the present invention.
도 10 및 도 22를 참조하면, 정량 주입된 혼합PCR용액에 대한 중합효소 연쇄반응(PCR)을 통해 유전자를 증폭하여 증폭용액을 형성하는 단계(S500) 이후에는, 증폭용액과 신호물질을 혼합하여 혼합물질을 형성하는 단계(S600)를 수행할 수 있다.Referring to FIGS. 10 and 22, after amplification of a gene through PCR (PCR) on a quantitatively-mixed PCR solution to form an amplification solution (S500), an amplification solution and a signal substance are mixed Forming a mixed material (S600) may be performed.
증폭용액과 신호물질을 혼합하여 혼합물질을 형성하는 단계(S600)는, 신호물질이 주입된 혼합주챔버부에 증폭용액을 주입하는 단계(S611) 및 주입된 증폭용액과 신호물질이 혼합주챔버부와 혼합보조챔버부를 왕복하며 혼합되도록 공기를 주입 및 흡입하는 단계(S612)를 포함한다.In the step S600 of forming the mixed material by mixing the amplification solution and the signal material, a step (S611) of injecting the amplification solution into the mixing chamber part into which the signal material is injected, and a step of injecting the amplification solution and the signal material into the mixing chamber part (S612) of injecting and sucking air to be mixed while reciprocating the mixed auxiliary chamber portion.
신호물질이 주입된 혼합주챔버부에 증폭용액을 주입하는 단계(S611)에서, 이 단계에서, 상기 신호물질은 상기 혼합주챔버본체(511)에 상기 증폭용액이 유입되기 전에, 상기 혼합주챔버연장체(512)로부터 주입되어 상기 혼합주입홀(513)의 앞단까지 채워질 수 있다.In this step, the signal material is injected into the mixing chamber chamber extension 512 (FIG. 5) before the amplification solution is introduced into the mixing chamber chamber body 511, at step S611, And may be filled up to the front end of the mixed injection hole 513.
주입된 증폭용액과 신호물질이 혼합주챔버부와 혼합보조챔버부를 왕복하며 혼합되도록 공기를 주입 및 흡입하는 단계(S612)에 앞서, 상기 혼합주입홀(513)을 통해 주입되는 상기 증폭용액은 상기 혼합주입홀(513)의 상부에 형성된 상기 혼합에어필터(514)에 의해 기포가 배출되면서 상기 신호물질과 혼합될 수 있다.Prior to the step S612 of injecting and sucking air such that the injected amplification solution and the signal substance are mixed while reciprocating the mixing chamber part and the mixing assisting chamber part, the amplification solution injected through the mixing hole 513 is mixed with the mixture The air bubbles can be mixed with the signal material while being discharged by the mixed air filter 514 formed in the upper portion of the injection hole 513. [
또한, 주입된 증폭용액과 신호물질이 혼합주챔버부와 혼합보조챔버부를 왕복하며 혼합되도록 공기를 주입 및 흡입하는 단계(S612)에서, 상기 판별펌프부(650)는 상기 혼합주챔버부(510)에 공기를 흡입하여 신호물질과 증폭용액을 상기 혼합보조챔버부(520)로 이동시킬 수 있다. 그리고, 상기 판별펌프부(650)는 공기를 주입하여 다시 상기 혼합보조챔버부(520)에 수용된 상기 신호물질과 증폭용액을 상기 혼합주챔버부(510)로 이송시킬 수 있다. 이처럼, 상기 판별펌프부(650)는 상기 증폭용액과 상기 신호물질이 상기 혼합보조챔버부(520)와 상기 혼합주챔버부(510)를 복수 회 왕복하며 혼합되도록 할 수 있다.In addition, in the step S612 of injecting and sucking air such that the injected amplification solution and the signal substance are mixed while reciprocating the mixing chamber portion and the mixing assisting chamber portion, the discrimination pump portion 650 is connected to the mixing chamber portion 510 Air can be sucked in and the signal material and the amplification solution can be transferred to the mixing auxiliary chamber part 520. The discrimination pump unit 650 may inject air and then transfer the signal material and the amplification solution contained in the mixing auxiliary chamber unit 520 to the mixing chamber chamber unit 510. In this way, the discrimination pump unit 650 can mix the amplification solution and the signal material between the mixing auxiliary chamber part 520 and the mixing chamber part 510 a plurality of times.
또한, 상기 증폭용액과 상기 신호물질은 상기 혼합보조챔버부(520)와 상기 혼합주챔버부(510)를 왕복하며 혼합될 때, 상기 와류유도유닛에 충돌하여 와류를 발생시킬 수 있다. 이처럼 발생한 와류는 상기 증폭용액과 상기 신호물질의 혼합효율을 향상시킬 수 있다.Further, when the amplification solution and the signal material are mixed while reciprocating between the mixing auxiliary chamber part 520 and the mixing chamber part 510, the amplification solution and the signal material may collide with the vortex induction unit to generate a vortex. The vortex generated as described above can improve the mixing efficiency of the amplification solution and the signal material.
도 23은 본 발명의 일실시예에 따른 유전자 판별방법의 유전자를 판별하는 단계의 순서도이다.FIG. 23 is a flowchart of a step of discriminating genes of a gene discrimination method according to an embodiment of the present invention.
도 10 및 도 23을 참조하면, 증폭용액과 신호물질을 혼합하여 혼합물질을 형성하는 단계(S600) 이후에는, 형성된 혼합물질의 전류량을 측정하여 유전자를 판별하는 단계(S700)를 수행할 수 있다.Referring to FIGS. 10 and 23, after the amplification solution and the signal material are mixed to form a mixed material (S600), a step S700 of determining the gene by measuring the amount of current of the mixed material may be performed .
형성된 혼합물질의 전류량을 측정하여 유전자를 판별하는 단계(S700)는 작업전극에 인가전압을 인가하는 단계(S710), 상대전극이 혼합물질에 포함된 신호물질의 산화환원반응을 통해 도출되는 전자를 작업전극과 교환하는 단계(S720), 작업전극이 상대전극과 교환하는 전자량을 통해 전류량을 연속적으로 측정하는 단계(S730) 및 측정된 전류량을 분석하여 유전자를 판별하는 단계(S740)를 포함한다.Step S700 of determining the gene by measuring the amount of current of the mixed material formed may include applying an applied voltage to the working electrode (S710), measuring the electron derived from the redox reaction of the signal material included in the mixed material A step S720 of continuously exchanging the working electrode with the working electrode through an amount of electrons exchanged with the counter electrode S730 and a step S740 of discriminating the gene by analyzing the measured amount of current .
먼저, 상기 작업전극에 인가전압을 인가하는 단계(S710)는, 상기 작업전극(611)에 인가전압을 인가하는 단계이다. 여기서, 상기 인가전압은, 상기 혼합물질에 포함된 각각의 신호물질에 따라 산화환원반응을 일으키기 위한 고유한 전압 값을 의미한다. 즉, 상기 기준전극(613)의 기준전압을 고려하여 상기 작업전극(611)에 인가전압이 인가됨으로써, 상기 혼합물질에 포함된 신호물질에 산화환원반응이 일어나도록 할 수 있다.First, a step of applying an applied voltage to the working electrode S710 is a step of applying an applied voltage to the working electrode 611. [ Here, the applied voltage means a unique voltage value for causing a redox reaction depending on each signal material included in the mixed material. That is, by applying the applied voltage to the working electrode 611 in consideration of the reference voltage of the reference electrode 613, the redox reaction can be performed on the signal material contained in the mixed material.
상기 상대전극이 혼합물질에 포함된 신호물질의 산화환원반응을 통해 도출되는 전자를 작업전극과 교환하는 단계(S720)에서, 상기 상대전극(612)은 상기 혼합물질에 포함된 상기 신호물질의 산화환원반응을 통해 도출되는 전자를 상기 작업전극(611)과 교환할 수 있다. 이때, 상기 상대전극이 혼합물질에 포함된 신호물질의 산화환원반응을 통해 도출되는 전자를 작업전극과 교환하는 단계(S720)에서, 산화환원반응을 일으키는 상기 신호물질은 유전자의 결합되지 못한 신호물질을 지칭한다. 구체적으로, 유전자의 양에 따라 상기 신호물질의 결합 양이 결정되며, 상기 유전자와 결합되지 못한 상기 신호물질은 산화환원반응을 통해 전자가 도출되어 상기 작업전극(611)에 전기적 신호를 제공하게 된다.In the step S720 of replacing the electrons derived from the redox reaction of the signal material included in the mixed material with the working electrode, the counter electrode 612 may oxidize the signal material contained in the mixed material Electrons derived through the reduction reaction can be exchanged with the working electrode 611. At this time, in the step of replacing the electrons derived through the redox reaction of the signal material included in the mixed material with the working electrode (S720), the signal material causing the redox reaction may be a signal material Quot; Specifically, the binding amount of the signal material is determined according to the amount of the gene, and the signal material that is not coupled to the gene is extracted through the redox reaction to provide an electrical signal to the working electrode 611 .
그리고, 상기 작업전극이 상대전극과 교환하는 전자량을 통해 전류량을 연속적으로 측정하는 단계(S730)에서, 상기 작업전극(611)은 상기 상대전극(612)과 교환하는 전자량을 통해 전류량을 연속적으로 측정할 수 있다. 즉, 상기 작업전극이 상대전극과 교환하는 전자량을 통해 전류량을 연속적으로 측정하는 단계(S730)에서는 상기 유전자와 결합되지 못한 상기 신호물질의 양에 따라 전류량이 변화되는 것을 연속적으로 측정할 수 있다.In the step S730 of continuously measuring the amount of current through the amount of electrons exchanged with the counter electrode, the working electrode 611 sequentially changes the amount of current through the amount of electrons exchanged with the counter electrode 612 . That is, in the step S730 of continuously measuring the amount of current through the amount of electrons exchanged with the counter electrode by the working electrode, it is possible to successively measure the amount of current change according to the amount of the signal material not coupled to the gene .
측정된 전류량을 분석하여 유전자를 판별하는 단계(S740)는 상기 전류량이 기설정된 기준치보다 높을 경우, 상기 유전자가 기준량보다 적은 것으로 판단하고, 상기 전류량이 기설정된 기준치보다 낮을 경우, 상기 유전자가 기준량보다 많은 것으로 판단할 수 있다.In the step S740 of determining the gene by analyzing the measured amount of electric current, when the amount of current is higher than a preset reference value, it is determined that the gene is less than the reference amount. If the amount of current is lower than the predetermined reference value, Many can be judged.
일 예로, 전자동 유전자 판별 통합칩을 이용한 유전자 판별 방법을 적용한 식중독균 판별기의 경우, 상기 전류량이 기설정된 기준치보다 높을 경우, 식중독을 유발하는 유전자가 적은 것으로 판단하고, 식품이 안전하다고 판단할 수 있다. 반대로, 상기 전류량이 기설정된 기준치보다 낮을 경우, 식중독을 유발하는 유전자가 많은 것으로 판단하고, 해당 식품을 섭취할 경우 식중독에 걸릴 위험이 있다고 판단할 수 있다.For example, in the case of a food-borne pathogen discriminator using a gene discrimination method using an integrated automatic gene discrimination chip, it is judged that the gene causing food poisoning is small and the food is safe when the electric current is higher than a preset reference value . On the other hand, if the amount of electric current is lower than a preset reference value, it is judged that there are many genes causing food poisoning, and it is judged that there is a risk of food poisoning if the food is consumed.
또한, 유전자 판별방법은 식중독균 판별기에 한정되는 것은 아니다. 일 예로, 유전자 판별방법은 어종 판별기에도 적용 가능하다.In addition, the method for determining the gene is not limited to the food poisoning bacteria determination device. For example, the method of gene identification can be applied to a fish species discriminator.
계속해서, 하기 도면을 참조하여 전자동 유전자 판별 통합설비를 설명하도록 한다.Next, referring to the following drawings, a description will be made of an integrated automatic gene discrimination facility.
도 24는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 상부모듈이 전방으로 회동된 상태의 사시도이고, 도 25는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 상면도이며, 도 26 및 도 27은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 상부모듈이 후방으로 회동된 상태의 사시도이다.FIG. 24 is a perspective view showing a state in which the upper module of the integrated automatic gene discrimination apparatus according to the embodiment of the present invention is rotated forward, FIG. 25 is a top view of the integrated automatic gene discrimination apparatus according to an embodiment of the present invention, 26 and 27 are perspective views of the upper module of the integrated automatic gene discrimination apparatus according to the embodiment of the present invention rotated backward.
그리고, 도 28은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 본체모듈에 안착된 전자동 유전자 판별 통합칩을 나타낸 사시도이고, 도 29는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 상부모듈이 전방으로 회동된 상태의 측면사시도이며, 도 30은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 로터리밸브유닛을 나타낸 사시도이다.FIG. 28 is a perspective view of an integrated automatic gene discrimination chip mounted on a main body module of an integrated automatic gene discrimination apparatus according to an embodiment of the present invention. FIG. 29 is a perspective view of an integrated automatic gene discrimination apparatus according to an embodiment of the present invention. FIG. 30 is a perspective view of a rotary valve unit of an integrated automatic gene discrimination apparatus according to an embodiment of the present invention. Referring to FIG.
도 24 내지 도 30에 도시된 것처럼, 전자동 유전자 판별 통합설비(2000)는 본체모듈(1100), 상부모듈(1200), 유동모듈(1300), 증폭모듈(1400), 판별모듈(1500) 및 제어모듈(1600)을 포함한다.As shown in FIGS. 24 to 30, the fully automatic gene discrimination integration facility 2000 includes a body module 1100, an upper module 1200, a flow module 1300, an amplification module 1400, a discrimination module 1500, Module 1600. < / RTI >
상기 본체모듈(1100)은 상기 전자동 유전자 판별 통합칩(1000)이 상부에 장착되도록 마련될 수 있으며, 본체프레임유닛(1110) 및 로터리밸브유닛(1120)을 포함할 수 있다.The main body module 1100 may include a main body frame unit 1110 and a rotary valve unit 1120. The main body frame unit 1100 may be mounted on the integrated chip 1000. [
상기 본체프레임유닛(1110)은 상기 본체모듈(1100)의 몸체를 형성하며, 상측에 상기 상부모듈(1200)이 결합되도록 마련될 수 있다.The main body frame unit 1110 forms the body of the main body module 1100 and the upper module 1200 can be coupled to the upper side.
*상기 로터리밸브유닛(1120)은 상기 본체프레임유닛(1110)의 내부에 마련될 수 있다. 그리고, 상기 로터리밸브유닛(1120)은 상기 본체프레임유닛(1110)의 내부에 마련되는 로터리펌프(미도시) 및 상기 상부모듈(1200)에 마련되는 유동펌프유닛과 연결되어 공기를 주입 및 흡입하도록 마련될 수 있다.The rotary valve unit 1120 may be provided inside the body frame unit 1110. The rotary valve unit 1120 is connected to a rotary pump (not shown) provided in the main body frame unit 1110 and a flow pump unit provided in the upper module 1200 to inject and suck air .
또한, 상기 본체모듈(1100)의 내부에는 상기 전자동 유전자 판별 통합칩(1000)의 농축부(140)가 위치되도록 마련될 수 있다.In addition, the concentrator 140 of the integrated automatic gene discrimination chip 1000 may be positioned inside the body module 1100.
상기 상부모듈(1200)은 상기 본체모듈(1100)의 상부에 마련되며, 전방으로 회동시 상기 전자동 유전자 판별 통합칩(1000)의 상부를 덮도록 마련될 수 있다. 그리고, 상기 상부모듈(1200)은 상부모듈본체유닛(1210), 힌지유닛(1220) 및 손잡이유닛(1230)을 포함한다.The upper module 1200 is provided on the upper part of the main body module 1100 and may be provided to cover the upper part of the integrated automatic gene discrimination chip 1000 when it is turned forward. The upper module 1200 includes an upper module main body unit 1210, a hinge unit 1220, and a handle unit 1230.
상기 상부모듈본체유닛(1210)은 상기 상부모듈(1200)의 몸체를 형성하며, 상기 전자동 유전자 판별 통합칩(1000)의 상부를 덮도록 마련될 수 있다.The upper module body unit 1210 forms the body of the upper module 1200 and may be provided to cover the upper part of the integrated automatic gene discrimination chip 1000.
상기 힌지유닛(1220)은 상기 상부모듈본체유닛(1210)의 일측에 마련되어 상기 상부모듈본체유닛(1210)이 전방 및 후방으로 회동 가능하도록 할 수 있다. 여기서, 전방은 상기 상부모듈본체유닛(1210)이 상기 전자동 유전자 판별 통합칩(1000)의 상부를 덮는 방향을 지칭할 수 있다. 즉, 상기 전자동 유전자 판별 통합칩(1000)은 상기 상부모듈본체유닛(1210)이 후방으로 회동된 상태에서, 상기 본체모듈(1100)에 장착 및 탈착될 수 있으며, 상기 상부모듈본체유닛(1210)이 전방으로 회동된 상태에서, 유전자 판별이 진행될 수 있다.The hinge unit 1220 may be provided on one side of the upper module body unit 1210 so that the upper module body unit 1210 can be rotated forward and rearward. Here, the forward direction may refer to a direction in which the upper module main body unit 1210 covers the upper portion of the fully automatic gene discrimination integrated chip 1000. That is, the integrated autonomous gene discrimination chip 1000 can be mounted on and dismounted from the main body module 1100 while the upper module main body unit 1210 is pivoted rearward, and the upper module main body unit 1210, In this state, the gene discrimination can proceed.
상기 손잡이유닛(1230)은 상기 상부모듈본체유닛(1210)을 용이하게 전방 및 후방으로 회동시킬 수 있도록 상기 상부모듈본체유닛(1210)의 타측에 구비될 수 있다.The handle unit 1230 may be provided on the other side of the upper module body unit 1210 so as to easily rotate the upper module body unit 1210 forward and backward.
상기 유동모듈(1300)은 상기 상부모듈(1200)에 결합되며, 상기 전자동 유전자 판별 통합칩(1000) 내 유체의 흐름을 제어하도록 마련될 수 있다. 상기 유동모듈(1300)은 상기 전자동 유전자 판별 통합칩(1000)과 연결되어 공기를 주입 및 흡입하는 복수의 유동펌프유닛(1350, 1370, 1390) 및 상기 전자동 유전자 판별 통합칩(1000) 내 밸브를 개폐하여 유체의 흐름을 제어하는 복수의 유동밸브유닛(1310, 1320, 1330, 1340, 1360, 1380)을 포함하는 것을 특징으로 할 수 있다.The flow module 1300 may be coupled to the upper module 1200 and may be provided to control fluid flow in the integrated automatic gene discrimination chip 1000. The flow module 1300 includes a plurality of flow pump units 1350, 1370 and 1390 connected to the fully automatic gene discrimination integrated chip 1000 to inject and suck air, and a valve in the fully automatic gene discrimination integrated chip 1000 And a plurality of flow valve units (1310, 1320, 1330, 1340, 1360, 1380) for controlling the flow of the fluid by opening and closing.
상기 유동펌프유닛은, 제1 유동펌프유닛(1350), 제2 유동펌프유닛(1370) 및 제3 유동펌프유닛(1390)을 포함한다.The flow pump unit includes a first flow pump unit 1350, a second flow pump unit 1370, and a third flow pump unit 1390.
상기 제1 유동펌프유닛(1350)은 상기 전자동 유전자 판별 통합칩(1000)의 정량펌프부(340), 믹서펌프부(240) 및 믹서압력조절부(250)와 연결되며, 이와 대응되는 위치의 상기 상부모듈(1200)에 결합될 수 있다. 상기 제1 유동펌프유닛(1350)은 상기 정량펌프부(340), 믹서펌프부(240) 및 믹서압력조절부(250)와 연결되어 공기를 주입 및 흡입할 수 있다.The first flow pump unit 1350 is connected to the quantitative pump unit 340, the mixer pump unit 240 and the mixer pressure controller 250 of the fully automatic gene discrimination integrated chip 1000, And may be coupled to the upper module 1200. The first flow pump unit 1350 may be connected to the metering pump unit 340, the mixer pump unit 240, and the mixer pressure regulator 250 to inject and suck air.
구체적으로, 일실시예에 따른 상기 제1 유동펌프유닛(1350)은 제1 유체이송튜브(1351), 제2 유체이송튜브(1352) 및 압력조절튜브(1353)을 포함할 수 있다. 상기 제1 유체이송튜브(1351)는 상기 정량펌프부(340)와 연결되어 공기를 주입하도록 마련될 수 있으며, 상기 제2 유체이송튜브(1352)는 상기 믹서펌프부(240)와 연결되어 공기를 주입 및 흡입 할 수 있다. 그리고, 상기 압력조절튜브(1353)는 상기 믹서압력조절부(250)와 연결되어 상기 제1 유동펌프유닛(1350)이 상기 정량펌프부(340) 및 믹서펌프부(240)와 연결되었을 때, 내부 압력을 조절할 수 있다.Specifically, the first flow pump unit 1350 according to one embodiment may include a first fluid delivery tube 1351, a second fluid delivery tube 1352, and a pressure control tube 1353. The first fluid delivery tube 1351 may be connected to the metering pump unit 340 to inject air and the second fluid delivery tube 1352 may be connected to the mixer pump unit 240, Can be injected and inhaled. The pressure control tube 1353 is connected to the mixer pressure regulator 250 so that when the first flow pump unit 1350 is connected to the metering pump unit 340 and the mixer pump unit 240, The internal pressure can be adjusted.
도 31은 본 발명의 다른 실시예에 따른 전자동 유전자 판별 통합설비의 유동펌프유닛의 밀폐부재가 후방으로 회동된 상태의 사시도이고, 도 32는 본 발명의 다른 실시예에 따른 전자동 유전자 판별 통합설비의 유동펌프유닛의 밀폐부재가 전방으로 회동된 상태의 측면도이다.FIG. 31 is a perspective view of the flow pump unit of the integrated automatic gene discrimination integrated facility according to another embodiment of the present invention, in which the sealing member is rotated backward. FIG. And the sealing member of the flow pump unit is rotated forward.
도 31 및 도 32에 도시된 것처럼, 또 다른 예로, 상기 제1 유동펌프유닛(1350)은 제1 유체이송튜브(1351), 제2 유체이송튜브(미도시), 유체이송몸체(1354), 공기배출홀(1355) 및 밀폐부재(1356)를 포함할 수 있다.31 and 32, in another example, the first flow pump unit 1350 includes a first fluid delivery tube 1351, a second fluid delivery tube (not shown), a fluid delivery body 1354, An air discharge hole 1355 and a sealing member 1356. [
구체적으로, 상기 유체이송몸체(1354)는 상기 제1 유동펌프유닛(1350)의 몸체를 형성하며, 상기 상부모듈본체유닛(1210)에 결합될 수 있다. 구체적으로, 상기 유체이송몸체(1354)는 상기 정량펌프부(340) 및 믹서펌프부(240)와 대응되는 위치에 결합될 수 있다. 그리고, 상기 유체이송몸체(1354)에는 상기 제1 유체이송튜브(1351) 및 제2 유체이송튜브가 결합될 수 있다.Specifically, the fluid transfer body 1354 forms the body of the first flow pump unit 1350 and may be coupled to the upper module body unit 1210. Specifically, the fluid transfer body 1354 may be coupled to the metering pump unit 340 and the mixer pump unit 240 at corresponding positions. The first fluid transfer tube 1351 and the second fluid transfer tube may be coupled to the fluid transfer body 1354.
상기 공기배출홀(1355)은 상기 유체이송몸체(1354)에 형성될 수 있다. 구체적으로, 상기 공기배출홀(1355)은 상기 제1 유체이송튜브(1351) 및 제2 유체이송튜브의 타단이 상기 정량펌프부(340) 및 상기 믹서펌프부(240)와 연결되었을 때, 상기 제1 유체이송튜브(1351) 및 상기 제2 유체이송튜브의 타단의 내측면과 상기 정량펌프부(340) 및 상기 믹서펌프부(240)의 외측면 사이의 공기를 외부로 배출하도록 마련되는 것을 특징으로 할 수 있다.The air discharge hole 1355 may be formed in the fluid transfer body 1354. Specifically, when the first fluid delivery tube 1351 and the other end of the second fluid delivery tube are connected to the metering pump unit 340 and the mixer pump unit 240, The first fluid transfer tube 1351 and the inner surface of the other end of the second fluid transfer tube and the outer surface of the metering pump unit 340 and the outer surface of the mixer pump unit 240, .
더욱 상세하게는, 상기 제1 유체이송튜브(1351) 및 제2 유체이송튜브의 내측으로 상기 정량펌프부(340) 및 상기 믹서펌프부(240)가 삽입되어 연결될 때, 상기 정량펌프부(340)의 외측면과 상기 제1 유체이송튜브(1351)의 내측면 사이의 공기 및 상기 믹서펌프부(240)의 외측면과 상기 제2 유체이송튜브의 내측면 사이의 공기가 상기 정량펌프부(340) 및 상기 믹서펌프부(240)의 내부에 주입된 유체를 밀어서 이동시키게 된다. 따라서, 상기 공기배출홀(1355)은 상기 제1 유체이송튜브(1351)와 상기 증폭펌프부(340) 사이의 공기 및 상기 제2 유체이송튜브와 상기 믹서펌프부(240) 사의 공기를 외부로 배출시킴으로써, 상기 증폭펌프부(340) 및 상기 믹서펌프부(240)에 인위적으로 공기를 주입하기 전에 유체가 이동하는 문제를 방지하고, 유전자 판별의 정확성을 향상시킬 수 있다.More specifically, when the metering pump unit 340 and the mixer pump unit 240 are inserted and connected to the inside of the first fluid delivery tube 1351 and the second fluid delivery tube, the metering pump unit 340 And the air between the outer surface of the mixer pump part 240 and the inner surface of the second fluid delivery tube is supplied to the metering pump part 340 and the mixer pump unit 240 are pushed and moved. Accordingly, the air discharge hole 1355 is provided between the first fluid delivery tube 1351 and the amplification pump unit 340 and the air from the second fluid delivery tube and the mixer pump unit 240 to the outside It is possible to prevent the fluid from moving before the air is artificially introduced into the amplification pump unit 340 and the mixer pump unit 240 and improve the accuracy of gene discrimination.
상기 제1 유체이송튜브(1351) 및 상기 제2 유체이송튜브는 일단이 상기 본체모듈(1100)의 로터리밸브유닛(1120)과 연결되고, 타단이 상기 전자동 유전자 판별 통합칩(1000)의 증폭펌프부(340) 및 상기 믹서펌프부(240)에 각각 연결 가능하도록 마련될 수 있다.The first fluid transfer tube 1351 and the second fluid transfer tube are connected at one end to the rotary valve unit 1120 of the body module 1100 and at the other end to the amplification pump (340) and the mixer pump unit (240), respectively.
상기 밀폐부재(1356)는 전방 및 후방을 향해 회동 가능하도록 마련되며, 후방으로 회동시 상기 공기배출홀(1355)을 밀폐하도록 고정될 수 있다. 구체적으로, 상기 밀폐부재(1356)는 상기 유체이송몸체(1354)의 일측에 마련될 수 있으며, 전방 및 후방을 향해 회동할 수 있도록 마련될 수 있다. The sealing member 1356 is rotatable forward and rearward, and may be fixed to seal the air discharge hole 1355 when rotating backward. Specifically, the sealing member 1356 may be provided on one side of the fluid transfer body 1354, and may be provided so as to pivot forward and backward.
그리고, 상기 밀폐부재(1356)는 상기 공기배출홀(1355)이 상기 정량펌프부(340)의 외측면과 상기 제1 유체이송튜브(1351)의 내측면 사이의 공기 및 상기 믹서펌프부(240)의 외측면과 상기 제2 유체이송튜브의 내측면 사이의 공기를 외부로 모두 배출하였을 때, 후방으로 회동하여 상기 공기배출홀(1355)을 밀폐하도록 마련될 수 있다. 이처럼 마련된 상기 밀폐부재(1356)는 상기 제1 유체이송튜브(1351) 및 상기 제2 유체이송튜브가 공기를 주입할 때, 상기 공기배출홀(1355)을 통해 공기가 새어나가는 것을 방지할 수 있다.The sealing member 1356 is configured such that the air discharge hole 1355 is formed between the outer surface of the metering pump unit 340 and the inner surface of the first fluid delivery tube 1351 and the air between the outer surface of the metering pump unit 340 and the inner surface of the mixer pump unit 240 And the inner surface of the second fluid delivery tube may be pivoted rearward to seal the air discharge hole 1355 when the air is discharged to the outside. The sealing member 1356 thus formed can prevent air from leaking through the air discharge hole 1355 when the first fluid delivery tube 1351 and the second fluid delivery tube inject air .
전술한 바와 같이 제1 유동펌프유닛(1350)은 일실시예 또는 다른 실시예에 따른 형태로 구비될 수 있다.As described above, the first flow pump unit 1350 may be provided according to one embodiment or another embodiment.
제2 유동펌프유닛(1370)은 상기 전자동 유전자 판별 통합칩(1000)의 증폭펌프부(450), 추출챔버펌프유닛(162) 및 추출압력조절유닛(164)와 연결되도록 상기 상부모듈본체유닛(1210)에 결합될 수 있다. 그리고, 상기 제2 유동펌프유닛(1370)은 제1 유체이송튜브(1371), 제2 유체이송튜브(1372) 및 압력조절튜브(1373)을 포함할 수 있다.The second flow pump unit 1370 is connected to the amplification pump unit 450, the extraction chamber pump unit 162 and the extraction pressure regulating unit 164 of the integrated automatic gene diagnosis integrated chip 1000, 1210 < / RTI > The second flow pump unit 1370 may include a first fluid delivery tube 1371, a second fluid delivery tube 1372, and a pressure control tube 1373.
상기 제3 유동펌프유닛(1390)은 상기 전자동 유전자 판별 통합칩(1000)의 판별펌프부(650) 및 판별압력조절유닛(660)과 연결되도록 상기 상부모듈본체유닛(1210)에 결합될 수 있다.The third flow pump unit 1390 may be coupled to the upper module body unit 1210 to be connected to the discrimination pump unit 650 and the discrimination pressure regulating unit 660 of the fully automatic gene discrimination integrated chip 1000 .
상기 제2 유동펌프유닛(1370) 및 상기 제3 유동펌프유닛(1390)은 상기 제1 유동펌프유닛(1360)과 실질적으로 동일한 구성으로 이루어질 수 있으며, 전술한 일실시예 또는 다른 실시예에 따른 형태로 구비될 수 있다.The second flow pump unit 1370 and the third flow pump unit 1390 may have substantially the same configuration as the first flow pump unit 1360 and may be constructed in accordance with one embodiment or another embodiment As shown in FIG.
다시, 도 24 내지 도 30을 참조하면, 상기 유동밸브유닛은 제1 유동밸브유닛(1310), 제2 유동밸브유닛(1320), 제3 유동밸브유닛(1330), 제4 유동밸브유닛(1340), 제5 유동밸브유닛(1360) 및 제6 유동밸브유닛(1380)을 포함할 수 있다.Referring again to FIGS. 24 to 30, the flow valve unit includes a first flow valve unit 1310, a second flow valve unit 1320, a third flow valve unit 1330, a fourth flow valve unit 1340 ), A fifth flow valve unit 1360 and a sixth flow valve unit 1380. [
상기 제1 유동밸브유닛(1310)은 상기 전자동 유전자 판별 통합칩(1000)의 추출용기 밸브(186, 187)와 연결될 수 있다. 이처럼 마련된, 상기 제1 유동밸브유닛(1310)은 상기 추출온도제어유닛(184)에 의해 상기 추출용기유닛(181)이 가열될 때, 상기 추출용기유닛(181) 내부의 압력을 조절하고, 수용된 용액이 유출되는 것을 방지하도록 상기 제1 추출용기밸브(186) 및 제2 추출용기밸브(187)를 제어할 수 있다.The first flow valve unit 1310 may be connected to the extraction container valves 186 and 187 of the integrated automatic gene discrimination chip 1000. When the extraction container unit 181 is heated by the extraction temperature control unit 184, the first flow valve unit 1310 thus provided adjusts the pressure inside the extraction container unit 181, The first extraction vessel valve 186 and the second extraction vessel valve 187 can be controlled to prevent the solution from leaking out.
상기 제2유동밸브유닛(1320)은 상기 전자동 유전자 판별 통합칩(1000)의 추출챔버밸브유닛(163) 및 추출공기주입밸브(172)와 연결될 수 있다. 이처럼 마련된 상기 제2 유동밸브유닛(1320)은 상기 추출챔버밸브유닛(163)를 제어하여 상기 추출챔버유닛(161)에 수용된 상기 추출용액을 상기 추출부(180)에 공급할지 여부를 결정할 수 있다. 그리고, 상기 제2 유동밸브유닛(1320)은 상기 추출부(180)에 수용된 유체를 이동시킬 공기를 주입하는 상기 추출공기주입밸브(172)를 제어할 수도 있다.The second flow valve unit 1320 may be connected to the extraction chamber valve unit 163 and the extraction air injection valve 172 of the integrated automatic gene discrimination chip 1000. The second flow valve unit 1320 thus provided can control the extraction chamber valve unit 163 to determine whether to supply the extraction solution stored in the extraction chamber unit 161 to the extraction unit 180 . The second flow valve unit 1320 may control the extraction air injection valve 172 for injecting air to move the fluid contained in the extraction unit 180.
상기 제3 유동밸브유닛(1330)은 상기 전자동 유전자 판별 통합칩(1000)의 믹서밸브부(270)와 연결될 수 있다. 이처럼 마련된 상기 제3 유동밸브유닛(1300)은 상기 제1 믹서밸브(271)를 조절하여 상기 믹서보조챔버부(220) 및 상기 믹서이송챔버부(230) 사이의 유동을 제어하고, 상기 제2 믹서밸브(272)를 조절하여 상기 믹서이송챔버부(230) 및 상기 정량주입기(300) 사이의 유동을 제어할 수 있다.The third flow valve unit 1330 may be connected to the mixer valve unit 270 of the fully automatic gene discrimination integrated chip 1000. The third flow valve unit 1300 thus provided controls the flow between the mixer sub-chamber part 220 and the mixer transfer chamber part 230 by controlling the first mixer valve 271, The mixer valve 272 may be controlled to control the flow between the mixer transfer chamber part 230 and the metering injector 300.
상기 제4 유동밸브유닛(1340)은 상기 전자동 유전자 판별 통합칩(1000)의 정량밸브부(360)와 연결될 수 있다. 이처럼 마련된 상기 제4 유동밸브유닛(1340)은 상기 정량펌프부(340)가 상기 정량챔버부(310)에 수용된 상기 혼합PCR용액을 상기 증폭기(400)로 이송할 때, 상기 정량밸브부(360)를 제어할 수 있다.The fourth flow valve unit 1340 may be connected to the quantitative valve unit 360 of the fully automatic gene discrimination integrated chip 1000. When the quantitative pump unit 340 transfers the mixed PCR solution contained in the quantification chamber unit 310 to the amplifier 400, the fourth flow valve unit 1340 provided as described above is connected to the quantitative valve unit 360 Can be controlled.
상기 제5 유동밸브유닛(1360) 상기 전자동 유전자 판별 통합칩(1000)의 증폭밸브부(430, 440)와 연결될 수 있다. 이처럼 마련된 상기 제5 유동밸브유닛(1360)은 상기 혼합PCR버퍼가 중합효소 연쇄반응이 이루어지는 동안 상기 증폭주챔버부(420) 내에 수용되어 있도록 상기 제1 증폭밸브부(430) 및 상기 제2 증폭밸브부(440)를 제어할 수 있다.The fifth flow valve unit 1360 may be connected to the amplification valve units 430 and 440 of the integrated automatic gene discrimination chip 1000. The fifth flow valve unit 1360 may be connected to the first amplification valve unit 430 and the second amplification unit 420 so that the mixed PCR buffer is accommodated in the amplification main chamber 420 during the PCR, The valve unit 440 can be controlled.
상기 제6 유동밸브유닛(1380)은 및 상기 전자동 유전자 판별 통합칩(1000)의 증폭혼합밸브부(470)와 연결될 수 있다. 이처럼 마련된 상기 제6 유동밸브유닛(1380)은 상기 증폭혼합밸브부(470)가 폐쇄된 상태에서 공기를 흡입하여 상기 증폭주챔버부(420)에 수용된 증폭용액을 상기 증폭보조챔버부(460)로 이송하고, 상기 증폭혼합밸브부(470)가 개방되고, 상기 제2 증폭밸브부(440)가 밀폐된 상태에서 공기를 주입하여 상기 증폭보조챔버부(460)에 수용된 증폭용액을 상기 혼합기(500)로 이송할 수 있도록 상기 증폭혼합밸브부(470)를 제어할 수 있다.The sixth flow valve unit 1380 may be connected to the amplification mixing valve unit 470 of the integrated automatic gene discrimination chip 1000. The sixth flow valve unit 1380 sucks the air in the state where the amplification mixing valve unit 470 is closed and supplies the amplification solution stored in the amplification main chamber unit 420 to the amplification auxiliary chamber unit 460, The amplification mixing valve unit 470 is opened and the amplification solution contained in the amplification auxiliary chamber unit 460 is injected into the mixer 460 by injecting air in a state in which the second amplification valve unit 440 is hermetically closed. The amplification and mixing valve unit 470 can be controlled so that the amplification /
도 33은 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 전자동 유전자 판별 통합칩이 탈착된 상태의 본체모듈의 상부를 나타낸 사시도이고, 도 34는 본 발명의 일실시예에 따른 전자동 유전자 판별 통합설비의 증폭모듈의 사시도이다.FIG. 33 is a perspective view showing an upper part of a main body module in which an integrated automatic gene discrimination chip of a fully automatic gene discrimination integrated facility according to an embodiment of the present invention is detached. FIG. A perspective view of the amplification module of the integrated facility.
도 33 및 도 34에 도시된 것처럼, 상기 증폭모듈(1400)은 상기 본체모듈(1100)에 마련되며, 상기 전자동 유전자 판별 통합칩(1000)의 증폭기(400)의 하측에 마련될 수 있다. 그리고, 상기 증폭모듈(1400)은 증폭모듈본체유닛(1410), 히터유닛(1420), 방열판유닛(1430) 및 팬유닛(1440)을 포함한다.33 and 34, the amplification module 1400 is provided in the main body module 1100 and may be provided below the amplifier 400 of the integrated automatic gene discrimination chip 1000. The amplification module 1400 includes an amplification module main body unit 1410, a heater unit 1420, a heat sink unit 1430, and a fan unit 1440.
상기 증폭모듈본체유닛(1410)은 상기 증폭모듈(1400)의 몸체를 형성한다. 그리고, 상기 증폭모듈본체유닛(1410)은 상기 본체모듈(1100)의 상측에 결합되되, 상기 전자동 유전자 판별 통합칩(1000)이 상기 본체모듈(1100)에 장착되었을 때, 상기 증폭기(400)와 대응되는 위치에 결합될 수 있다.The amplification module main body unit 1410 forms the body of the amplification module 1400. The amplification module main body unit 1410 is coupled to the upper side of the main body module 1100. When the integrated automatic gene recognition chip 1000 is mounted on the main body module 1100, May be coupled to corresponding locations.
상기 히터유닛(1420)은 상기 증폭모듈본체유닛(1410)에 결합되어, 상기 증폭기(400)에 수용된 혼합PCR용액의 온도를 상승시킬 수 있도록 마련된다. 구체적으로, 상기 증폭기(400)에 위치한 혼합PCR용액은 온도가 상승 및 하강되는 작업이 반복 수행됨에 따라, 혼합PCR용액에 포함된 유전자의 양이 증가된다. 상기 히터유닛(1420)은 상기 증폭기(400)에 열을 가하여 상기 증폭기(400)에 위치한 혼합PCR용액의 온도를 상승시킬 때, 사용될 수 있다.The heater unit 1420 is coupled to the amplification module main body unit 1410 to increase the temperature of the mixed PCR solution contained in the amplifier 400. Specifically, as the temperature of the mixed PCR solution located in the amplifier 400 is increased and decreased repeatedly, the amount of the gene contained in the mixed PCR solution is increased. The heater unit 1420 may be used when the temperature of the mixed PCR solution located in the amplifier 400 is increased by applying heat to the amplifier 400.
상기 방열판유닛(1430)은 상기 히터유닛(1420)의 하부에 마련되며, 상기 히터유닛(1420)이 상기 증폭기(400)에 열을 가할 때, 상기 히터유닛(1420)이 과도한 열로 인해 손상되는 것을 방지할 수 있다.The heat radiating plate unit 1430 is provided under the heater unit 1420 so that when the heater unit 1420 heats the amplifier 400, the heater unit 1420 is damaged due to excessive heat .
상기 팬유닛(1440)은 상기 방열판유닛(1430)의 일측에 결합되며, 상기 증폭기(400)의 온도를 하강시킴과 동시에, 상기 히터유닛(1420)에 열 손상이 발생하지 않도록 할 수 있다. The fan unit 1440 is coupled to one side of the heat sink unit 1430 so as to lower the temperature of the amplifier 400 and prevent heat damage to the heater unit 1420.
이처럼, 상기 증폭모듈(1400)은 상기 증폭기(400)의 온도를 반복적으로 상승 및 하강시켜 유전자의 중합효소 연쇄반응(PCR)이 이루어지도록 하는 것을 특징으로 할 수 있다.As described above, the amplification module 1400 repeatedly raises and lowers the temperature of the amplifier 400 to perform the PCR of the gene.
상기 판별모듈(1500)은 상기 본체모듈(1100)의 상부에 마련되며, 상기 전자동 유전자 판별 통합칩(1000)의 전극유닛(610)과 연결되어 전류량을 측정할 수 있다. 상기 판별모듈(1500)은 포고핀어레이몸체(1510), 포고핀어레이승강체(1520) 및 포고핀(1530)을 포함할 수 있다.The discrimination module 1500 is provided on the main body module 1100 and is connected to the electrode unit 610 of the integrated automatic gene discrimination chip 1000 to measure the amount of current. The determining module 1500 may include a pogo pin array body 1510, a pogo pin array lifting body 1520, and a pogo pin 1530.
상기 포고핀어레이몸체(1510)은 상기 상부모듈본체유닛(1310)의 판별홀(1314)과 대응되는 위치에 결합되며, 상기 판별모듈(1500)의 몸체를 형성할 수 있다. 구체적으로, 상기 포고핀어레이몸체(1510)는 상기 전자동 유전자 판별 통합칩(1000)의 전극유닛(610)에 인접한 위치에 마련될 수 있다.The pogo pin array body 1510 is coupled to a position corresponding to the discrimination hole 1314 of the upper module main body unit 1310 to form the body of the discrimination module 1500. Specifically, the pogo pin array body 1510 may be provided at a position adjacent to the electrode unit 610 of the integrated automatic gene discrimination chip 1000.
상기 포고핀어레이승강체(1520)는 상기 포고핀어레이몸체(1510)에 승강이 가능하도록 일측이 결합되며, 타측이 상기 전극유닛(610)의 상부를 향해 연장되어 마련될 수 있다. 구체적으로, 상기 포고핀어레이승강체(1520)는 판 형태로 마련될 수 있으며, 상기 포고핀어레이몸체(1510)에 일측이 결합되어 상부 및 하부를 향해 슬라이딩되어 이동 가능하도록 마련될 수 있다. 이때, 상기 포고핀어레이승강체(1520)의 형태가 도시된 판 형태로 한정되는 것은 아니다. 그리고, 상기 포고핀어레이승강체(1520)는 상기 포고핀(1530)과 상기 전극유닛(610)이 접촉되도록 승강될 수 있다.The pogo pin array lifting body 1520 may be coupled to one side of the pogo pin array body 1510 so that the pogo pin array lifting body 1520 can be raised and lowered and the other side thereof may extend toward the upper portion of the electrode unit 610. Specifically, the pogo pin array lifting body 1520 may be provided in a plate shape, and one side of the pogo pin array body 1510 may be coupled to move upward and downward to be movable. At this time, the shape of the pogo pin array lifting body 1520 is not limited to the plate shape shown. The pogo pin array lifting body 1520 can be raised and lowered so that the pogo pin 1530 and the electrode unit 610 are in contact with each other.
상기 포고핀(1530)은 상기 포고핀어레이승강체(1520)의 타측에 마련되며, 상기 전극유닛(610)과 접촉하여 전류량을 측정할 수 있다. 구체적으로, 상기 포고핀(1530)은 상기 포고핀어레이승강체(1520)의 타측에 마련되며, 상기 전극유닛(610)과 대응되는 위치 및 개수로 마련될 수 있다. 그리고, 상기 포고핀(1530)은 상기 전극유닛(610)의 상기 작업전극(511), 상기 상대전극(512) 및 상기 기준전극(513)에 각각 연결되는 세 개의 핀이 형성될 수 있다. 이처럼 마련된 상기 포고핀(1530)은 전술한 유전자 판별방법에 의해 상기 유전자를 판별할 수 있다.The pogo pin 1530 is provided on the other side of the pogo pin array lifting body 1520 and can measure the amount of current in contact with the electrode unit 610. Specifically, the pogo pin 1530 is provided on the other side of the pogo pin array lifting body 1520, and may be provided in a position and in a number corresponding to the electrode unit 610. The pogo pin 1530 may have three fins connected to the working electrode 511, the counter electrode 512 and the reference electrode 513 of the electrode unit 610, respectively. The pogo pin 1530 thus prepared can discriminate the gene by the above-described gene discrimination method.
이처럼 유전자 판별이 완료된 상기 전자동 유전자 판별 통합칩(1000)은 버려지고 새로운 전자동 유전자 판별 통합칩(1000)으로 교체하여 다음 유전자 판별을 수행할 수 있다.The genetic identification of the fully integrated gene chip 1000 is discarded and replaced with a new fully automatic gene discrimination integrated chip 1000 to perform the next gene discrimination.
전술한 바와 같이 마련된 전자동 유전자 판별 통합설비(2000)는 유전자 판별장치, 식중독 판별기, 어종 판별기 등에 적용될 수 있다.The integrated automatic genotyping integrated facility (2000) provided as described above can be applied to a gene discriminator, a food poisoning discriminator, a fish species discriminator, and the like.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. For example, each component described as a single entity may be distributed and implemented, and components described as being distributed may also be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is defined by the appended claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included within the scope of the present invention.

Claims (10)

  1. 상부에 전자동 유전자 판별 통합칩이 장착되며, 외형을 형성하는 본체모듈;A body module for mounting an integrated automatic gene discrimination chip on the upper part and forming an external shape;
    상기 본체모듈의 상부에 마련되며, 전방으로 회동시 상기 전자동 유전자 판별 통합칩의 상부를 덮도록 마련되는 상부모듈;An upper module provided on the upper part of the main body module and covering the upper part of the integrated automatic gene discrimination chip when it is turned forward;
    상기 상부모듈에 결합되며, 상기 전자동 유전자 판별 통합칩 내 유체의 흐름을 제어하도록 마련되는 유동모듈;A flow module coupled to the upper module, the flow module being adapted to control the flow of fluid in the integrated automatic gene discrimination chip;
    상기 본체모듈에 마련되며, 상기 전자동 유전자 판별 통합칩의 증폭기의 하측에 마련되는 증폭모듈;An amplification module provided in the main body module and provided under the amplifier of the integrated automatic gene discrimination chip;
    상기 본체모듈의 상부에 마련되며, 상기 전자동 유전자 판별 통합칩의 전극유닛과 연결되도록 마련되는 판별모듈; 및A discriminating module provided at an upper portion of the main body module and connected to an electrode unit of the integrated automatic gene discrimination chip; And
    상기 본체모듈에 마련되는 제어모듈을 포함하며,And a control module provided in the main body module,
    상기 판별모듈은 혼합물질의 전류량을 측정하여 유전자를 판별하는 것을 특징으로 하는 전자동 유전자 판별 통합설비.Wherein the discrimination module discriminates a gene by measuring a current amount of a mixed substance.
  2. 제 1 항에 있어서,The method according to claim 1,
    상기 상부모듈은,The upper module includes:
    본체를 형성하며, 상기 전자동 유전자 판별 통합칩의 상부를 덮도록 마련되는 상부모듈본체유닛; 및An upper module main body unit forming a main body and covering an upper portion of the integrated automatic gene discrimination chip; And
    상기 상부모듈본체유닛의 일측에 마련되는 힌지유닛을 포함하며,And a hinge unit provided on one side of the upper module body unit,
    상기 상부모듈본체유닛은 상기 힌지유닛에 전방 및 후방으로 회동 가능하도록 마련된 것을 특징으로 하는 전자동 유전자 판별 통합설비.Wherein the upper module body unit is rotatably provided to the hinge unit forward and backward.
  3. 제 1 항에 있어서,The method according to claim 1,
    상기 유동모듈은,The flow module comprises:
    상기 전자동 유전자 판별 통합칩과 연결되어 공기를 주입 및 흡입하는 복수의 유동펌프유닛; 및A plurality of flow pump units connected to the integrated automatic gene discrimination chip for injecting and sucking air; And
    상기 전자동 유전자 판별 통합칩 내 밸브를 개폐하여 유체의 흐름을 제어하는 복수의 유동밸브유닛을 포함하는 것을 특징으로 하는 전자동 유전자 판별 통합설비.And a plurality of flow valve units for controlling the flow of the fluid by opening and closing the valves in the fully automatic gene discrimination integrated chip.
  4. 제 3 항에 있어서,The method of claim 3,
    상기 유동펌프유닛은,The flow pump unit comprises:
    상기 전자동 유전자 판별 통합칩의 정량펌프부, 믹서펌프부 및 믹서압력조절부와 연결되는 제1 유동펌프유닛;A first flow pump unit connected to the metering pump unit, the mixer pump unit, and the mixer pressure regulator of the integrated automatic gene discrimination chip;
    상기 전자동 유전자 판별 통합칩의 증폭펌프부, 추출챔버펌프유닛 및 추출압력조절유닛과 연결되는 제2 유동펌프유닛; 및A second flow pump unit connected to the amplification pump unit, the extraction chamber pump unit and the extraction pressure regulation unit of the integrated automatic gene discrimination chip; And
    상기 전자동 유전자 판별 통합칩의 판별펌프부 및 판별압력조절유닛과 연결되는 제3 유동펌프유닛을 포함하는 것을 특징으로 하는 전자동 유전자 판별 통합설비.And a third flow pump unit connected to the discrimination pump unit of the integrated automatic gene discrimination chip and the discrimination pressure regulating unit.
  5. 제 3 항에 있어서,The method of claim 3,
    상기 전자동 유전자 판별 통합칩의 추출용기밸브와 연결되는 제1 유동밸브유닛;A first flow valve unit connected to an extraction container valve of the integrated automatic gene discrimination chip;
    상기 전자동 유전자 판별 통합칩의 추출챔버밸브유닛 및 추출공기주입밸브와 연결되는 제2 유동밸브유닛;A second flow valve unit connected to the extraction chamber valve unit and the extraction air injection valve of the integrated automatic gene discrimination chip;
    상기 전자동 유전자 판별 통합칩의 믹서밸브부와 연결되는 제3 유동밸브유닛;A third flow valve unit connected to the mixer valve unit of the integrated automatic gene discrimination chip;
    상기 전자동 유전자 판별 통합칩의 정량밸브부와 연결되는 제4 유동밸브유닛;A fourth flow valve unit connected to the quantitative valve unit of the integrated automatic gene discrimination chip;
    상기 전자동 유전자 판별 통합칩의 증폭밸브부와 연결되는 제5 유동밸브유닛; 및A fifth flow valve unit connected to the amplification valve unit of the integrated automatic gene discrimination chip; And
    상기 전자동 유전자 판별 통합칩의 증폭혼합밸브부와 연결되는 제6 유동밸브유닛을 포함하는 것을 특징으로 하는 전자동 유전자 판별 통합설비.And a sixth flow valve unit connected to the amplification mixing valve unit of the integrated automatic gene discrimination chip.
  6. 제 3 항에 있어서,The method of claim 3,
    상기 유동펌프유닛은,The flow pump unit comprises:
    몸체를 형성하며, 상기 상부모듈에 결합되는 유체이송튜브; 및A fluid delivery tube forming a body and coupled to the upper module; And
    상기 유체이송튜브의 일측에 마련되는 압력조절튜브를 포함하며,And a pressure control tube provided on one side of the fluid transfer tube,
    상기 압력조절튜브는, 상기 전자동 유전자 판별 통합칩의 펌프에 상기 유체이송튜브가 연결될 때, 상기 펌프와 상기 유체이송튜브 사이의 공기를 외부로 배출시키는 것을 특징으로 하는 전자동 유전자 판별 통합설비.Wherein the pressure regulating tube discharges air between the pump and the fluid transfer tube to the outside when the fluid transfer tube is connected to the pump of the fully automatic gene discrimination integrated chip.
  7. 제 3 항에 있어서,The method of claim 3,
    상기 유동펌프유닛은,The flow pump unit comprises:
    몸체를 형성하며, 상기 상부모듈에 결합되는 유체이송몸체;A fluid delivery body forming a body and coupled to the upper module;
    상기 유체이송몸체에 형성되는 공기배출홀;An air discharge hole formed in the fluid transfer body;
    일단이 상기 본체모듈에 마련되는 로터리밸브와 연결되고, 타단이 상기 전자동 유전자 판별 통합칩의 펌프와 연결되도록 마련되는 유체이송튜브; 및A fluid delivery tube having one end connected to a rotary valve provided in the main body module and the other end connected to a pump of the integrated automatic gene discrimination chip; And
    전방 및 후방을 향해 회동 가능하도록 마련되며, 후방으로 회동시 상기 공기배출홀을 밀폐하도록 고정되는 밀폐부재를 포함하는 것을 특징으로 하는 전자동 유전자 판별 통합설비.And a sealing member provided so as to be rotatable toward the front and rear sides and fixed to seal the air discharge hole when rotating backward.
  8. 제 7 항에 있어서,8. The method of claim 7,
    상기 공기배출홀은,The air discharge hole
    상기 유체이송튜브의 타단이 상기 펌프와 연결되었을 때, 상기 유체이송튜브의 타단의 내측면과 상기 펌프의 외측면 사이의 공기를 외부로 배출하도록 마련되는 것을 특징으로 하는 전자동 유전자 판별 통합설비.And an air outlet between the inner surface of the other end of the fluid transfer tube and the outer surface of the pump when the other end of the fluid transfer tube is connected to the pump.
  9. 제 1 항에 있어서,The method according to claim 1,
    상기 증폭모듈은,Wherein the amplification module comprises:
    상기 본체모듈에 마련되되, 상기 증폭기와 대응되는 위치에 결합되는 증폭모듈본체유닛;An amplification module main unit provided on the main body module and coupled to a position corresponding to the amplifier;
    상기 증폭모듈본체유닛에 결합되는 히터유닛;A heater unit coupled to the amplification module main unit;
    상기 히터유닛의 하부에 마련되는 방열판유닛; 및A heat sink unit provided below the heater unit; And
    상기 방열판유닛의 일측에 결합되는 팬유닛을 포함하며,And a fan unit coupled to one side of the heat sink unit,
    상기 증폭모듈은 상기 증폭기의 온도를 반복적으로 상승 및 하강시켜 유전자의 중합효소 연쇄반응(PCR)이 이루어지도록 하는 것을 특징으로 하는 전자동 유전자 판별 통합설비.Wherein the amplification module repeatedly raises and lowers the temperature of the amplifier so that PCR of the gene is performed.
  10. 제 1 항에 있어서,The method according to claim 1,
    상기 판별모듈은,The discrimination module comprises:
    상기 본체모듈의 상부에 마련되되, 상기 전자동 유전자 판별 통합칩의 전극유닛과 인접한 위치에 마련되어 몸체를 형성하는 포고핀어레이몸체;A pogo pin array body provided at an upper portion of the main body module and provided at a position adjacent to the electrode unit of the integrated automatic gene discrimination chip to form a body;
    상기 포고핀어레이몸체에 승강이 가능하도록 일측이 결합되며, 타측이 상기 전극유닛의 상부를 향해 연장되어 마련되는 포고핀어레이승강체; 및A pogo pin array lifting body coupled to one side of the pogo pin array body so as to be able to move up and down, and the other side of which extends toward an upper portion of the electrode unit; And
    상기 포고핀어레이승강체의 타측에 마련되며, 상기 전극유닛과 접촉하여 전류량을 측정하는 포고핀을 포함하며,And a pogo pin provided on the other side of the pogo pin array lifting body for measuring an amount of current in contact with the electrode unit,
    상기 포고핀어레이승강체는 상기 포고핀과 상기 전극유닛이 접촉되도록 수직 방향으로 승강되는 것을 특징으로 하는 전자동 유전자 판별 통합설비.Wherein the pogo pin array lifting body is vertically moved up and down so that the pogo pin and the electrode unit are in contact with each other.
PCT/KR2017/011247 2017-07-24 2017-10-12 Integrated equipment for automatic gene identification WO2019022300A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170093656A KR101912942B1 (en) 2017-07-24 2017-07-24 Device for automatic discrimination of gene
KR10-2017-0093656 2017-07-24

Publications (1)

Publication Number Publication Date
WO2019022300A1 true WO2019022300A1 (en) 2019-01-31

Family

ID=64100729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011247 WO2019022300A1 (en) 2017-07-24 2017-10-12 Integrated equipment for automatic gene identification

Country Status (2)

Country Link
KR (1) KR101912942B1 (en)
WO (1) WO2019022300A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102043103B1 (en) 2018-11-26 2019-11-11 바이오뱅크 주식회사 Automatic genetic detector
KR102288369B1 (en) * 2020-12-23 2021-08-10 주식회사 미코바이오메드 Integrated chip with lysis and amplifying nucleic acids, lysis module having the same, apparatus for point-of-care-testing having the same, and method for lysis and amplifying nucleic acids using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101214780B1 (en) * 2004-09-15 2012-12-21 인터젠엑스 인크. Microfluidic devices
KR20130033345A (en) * 2010-01-29 2013-04-03 마이크로닉스 인코포레이티드. Sample-to-answer microfluidic cartridge
KR20130092185A (en) * 2012-02-10 2013-08-20 (주)바이오니아 Automatic analysis apparatus and method of biological samples
JP2016522676A (en) * 2013-03-15 2016-08-04 ナノバイオシム・インコーポレイテッド System and method for mobile device analysis of nucleic acids and proteins
JP2017502687A (en) * 2013-11-29 2017-01-26 ジェネウェーブ Microfluidic cartridges for molecular diagnostics, docking stations using such microfluidic cartridges, and processes for analyzing biological samples

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101214780B1 (en) * 2004-09-15 2012-12-21 인터젠엑스 인크. Microfluidic devices
KR20130033345A (en) * 2010-01-29 2013-04-03 마이크로닉스 인코포레이티드. Sample-to-answer microfluidic cartridge
KR20130092185A (en) * 2012-02-10 2013-08-20 (주)바이오니아 Automatic analysis apparatus and method of biological samples
JP2016522676A (en) * 2013-03-15 2016-08-04 ナノバイオシム・インコーポレイテッド System and method for mobile device analysis of nucleic acids and proteins
JP2017502687A (en) * 2013-11-29 2017-01-26 ジェネウェーブ Microfluidic cartridges for molecular diagnostics, docking stations using such microfluidic cartridges, and processes for analyzing biological samples

Also Published As

Publication number Publication date
KR101912942B1 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
WO2011136624A2 (en) Automatic biological sample purification device having a magnetic-field-applying unit, a method for extracting a target substance from a biological sample, and a protein expression and purification method
WO2021045436A1 (en) Cleaning device having vacuum cleaner and docking station and method of controlling the same
WO2018212496A2 (en) Nucleic acid analysis apparatus using catridge
WO2021206229A1 (en) Diffuser and hair dryer having same
WO2016024730A1 (en) Refrigerator and controlling method thereof
WO2019022300A1 (en) Integrated equipment for automatic gene identification
WO2022035041A1 (en) Vacuum cleaner
WO2012096480A2 (en) Diagnostic cartridge and control method for diagnostic cartridge
WO2019022299A9 (en) Fully-automatic gene-reading integrated chip
WO2023277247A1 (en) Genome extraction apparatus including flow cover
WO2023277246A1 (en) Amplification module having gas moving passage and extract moving passage
WO2023277245A1 (en) Genome extraction device having dual chamber structure in which outer chamber and inner chamber are combined
WO2019172687A1 (en) Air conditioner
WO2020004839A1 (en) Air purifier comprising bidirectional discharge channels and method for controlling same
WO2020226340A1 (en) Water dispensing apparatus and control method therefor
WO2020027500A1 (en) Modular fluid chip and fluid flow system comprising same
WO2022114636A1 (en) Cleaning apparatus including vacuum cleaner and docking station, and control method therefor
WO2019240516A2 (en) Gate valve system and control method therefor
WO2023277248A1 (en) Genome extraction device having dual chamber structure in which outer chamber and bead chamber are combined
WO2022163997A1 (en) Particle transfer system and particle transfer method
WO2020149582A1 (en) Air conditioner and control method therefor
WO2022270676A1 (en) Automated liquid sampling device and automated liquid sampling system comprising same
WO2021242009A1 (en) Automatic mattress sterilization device
WO2011096782A2 (en) Liquid flow apparatus, fixed quantity liquid supply apparatus, and target substance extracting apparatus and target substance extracting method using the two apparatuses
WO2022186468A1 (en) Water purification apparatus and control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919191

Country of ref document: EP

Kind code of ref document: A1