WO2019021990A1 - Enterocyte-like cells - Google Patents

Enterocyte-like cells Download PDF

Info

Publication number
WO2019021990A1
WO2019021990A1 PCT/JP2018/027454 JP2018027454W WO2019021990A1 WO 2019021990 A1 WO2019021990 A1 WO 2019021990A1 JP 2018027454 W JP2018027454 W JP 2018027454W WO 2019021990 A1 WO2019021990 A1 WO 2019021990A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
differentiation
small intestine
culture
drug
Prior art date
Application number
PCT/JP2018/027454
Other languages
French (fr)
Japanese (ja)
Inventor
水口 裕之
和雄 高山
亮介 根来
Original Assignee
国立大学法人大阪大学
国立研究開発法人医薬基盤・健康・栄養研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 国立研究開発法人医薬基盤・健康・栄養研究所 filed Critical 国立大学法人大阪大学
Priority to JP2019532586A priority Critical patent/JP7181556B2/en
Publication of WO2019021990A1 publication Critical patent/WO2019021990A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a method for selectively inducing the differentiation of pluripotent stem cells into enterocyte-like cells. Also provided are enterocyte-like cells that are excellent for expressing drug metabolizing enzymes and drug transporters. More specifically, provided are small intestine-type enterocyte-like cells that have properties closer to difficult-to-acquire primary culture enterocytes. This is achieved by a method that contains a step in which endodermal cells, provided by inducing the differentiation of pluripotent stem cells, are induced to differentiate into intestinal progenitor cells by culture in a system containing LY2090314. The resulting intestinal progenitor cells are cultured in a system that contains two or more humoral factor compounds selected from Wnt3a, EGF, p38 MAPK inhibitor, IGF-1, R-spondin, Noggin, and DEX. The resulting cells have various properties of enterocyte-like cells and are excellent with respect to the amount of expression of drug metabolizing enzymes and drug transporters, and drug metabolism and drug absorption can be simultaneously evaluated in a homogeneous evaluation system using the very stable enterocyte-like cells.

Description

小腸上皮様細胞Small intestine epithelial-like cells
 本発明は、多能性幹細胞から小腸上皮様細胞(enterocyte-like cells: ELC)への分化誘導方法に関し、さらに前記分化誘導方法により得られた小腸上皮様細胞に関する。さらには、上記小腸上皮様細胞を用いた薬物毒性評価方法及び/又は薬物動態評価方法に関する。さらには、上記小腸上皮様細胞へ分化誘導するための培地組成物及び培地調製用キットに関する。 The present invention relates to a method for inducing differentiation of pluripotent stem cells into small intestinal epithelial-like cells (ELC), and further relates to small intestinal epithelial-like cells obtained by the method for inducing differentiation. Furthermore, the present invention relates to a method for evaluating drug toxicity and / or a method for evaluating pharmacokinetics using the above-mentioned small intestine epithelial-like cells. Furthermore, the present invention relates to a medium composition for inducing differentiation into the small intestine epithelial-like cells and a kit for preparation of the medium.
 本出願は、参照によりここに援用されるところの日本出願特願2017-147217号優先権を請求する。 This application claims the priority of Japanese Patent Application No. 201-147217, which is incorporated herein by reference.
 多能性幹細胞とは、多分化能と自己複製能を有する未分化細胞であり、多能性幹細胞から分化誘導した細胞は組織損傷後の組織修復力を有することが示唆されている。このため、多能性幹細胞及びその分化細胞は、各種疾患の治療用物質のスクリーニング、再生医療分野において有用であるとして、さかんに研究されている。多能性幹細胞のうち、iPS細胞は、線維芽細胞などの体細胞に、特定の転写因子、例えばOCT3/4、SOX2、KLF4、C-MYC等の遺伝子を導入することにより、体細胞を脱分化して作製された人工多能性幹細胞である。分化多能性を持った細胞は理論上、小腸上皮細胞等を含む全ての組織や臓器に分化誘導することが可能である。 Pluripotent stem cells are undifferentiated cells having pluripotency and self-replication ability, and it has been suggested that cells induced to differentiate from pluripotent stem cells have tissue repair ability after tissue damage. For this reason, pluripotent stem cells and their differentiated cells are being studied extensively as being useful in screening of substances for treating various diseases and in the field of regenerative medicine. Among pluripotent stem cells, iPS cells are released from somatic cells by introducing specific transcription factors such as OCT3 / 4, SOX2, KLF4 and C-MYC into somatic cells such as fibroblasts. It is an induced pluripotent stem cell produced by differentiation. The pluripotent cells can theoretically be induced to differentiate into all tissues and organs including small intestinal epithelial cells and the like.
 非特許文献1(Nature, 2011 Feb 3;470(7332):105-9)は世界で初めてヒト多能性幹細胞から小腸組織を作製した論文である。本論文では小腸に存在する小腸上皮細胞、パネート細胞、ゴブレット細胞、腸管上皮内分泌細胞をすべて含むオルガノイドを作製可能であることを示している。非特許文献2(Stem Cell Reports, 2014 Jun 3;2(6):838-52)はヒト多能性幹細胞から長期間自己複製可能な小腸幹細胞を作製できることを報告した論文である。本論文で作製した小腸幹細胞は非特許文献1と同様に、小腸に存在する小腸上皮細胞、パネート細胞、ゴブレット細胞、腸管上皮内分泌細胞をすべて含むオルガノイドに分化することができる。 Non-Patent Document 1 (Nature, 2011 Feb 3; 470 (7332): 105-9) is the first paper in the world to produce small intestine tissue from human pluripotent stem cells. In this paper, we show that it is possible to produce organoids that contain small intestinal epithelial cells, Panate cells, Goblet cells and intestinal epithelial endocrine cells present in the small intestine. Non-Patent Document 2 (Stem Cell Reports, 2014 Jun 3; 2 (6): 838-52) is a paper that reports that long-term self-replicatable small intestinal stem cells can be produced from human pluripotent stem cells. The small intestinal stem cells prepared in this paper can be differentiated into organoids including all of the small intestinal epithelial cells, Panate cells, Goblet cells, and intestinal epithelial endocrine cells present in the small intestine, as in Non-Patent Document 1.
 非特許文献3(Stem Cells, 2013 Jun;31(6):1086-96)はマウス・ヒト多能性幹細胞から小腸系列の細胞への分化誘導を、GSK-3 Inhibitor IX であるBIO(6-Bromoindirubin-3'-oxime)、γ-secretase inhibitor であるDAPT(N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl ester)等を用いることで促進できることを報告した論文である。BIO、DAPTを併用することによって、多能性幹細胞から効率良くCDX2(caudal type homeobox 2)陽性細胞を分化誘導できるようになる。なお、CDX2は後腸(hindgut)、小腸幹細胞、腸管前駆細胞(intestinal progenitor cells)、小腸上皮細胞のいずれにおいても発現している腸管分化を制御するマスター転写因子である。 Non-patent document 3 (Stem Cells, 2013 Jun; 31 (6): 1086-96) induces differentiation of mouse and human pluripotent stem cells into cells of the small intestine lineage, BIO (6-GSK-3 Inhibitor IX) Using Bromoindirubin-3'-oxime), DAPT (N-[(3,5-Difluorophenyl) acetyl] -L-alanyl-2-phenyl] glycine-1,1-dimethylethyl ester) as a γ-secretase inhibitor, etc. Is a paper that reports that it can be promoted by By combining BIO and DAPT, it becomes possible to efficiently induce differentiation of CDX2 (caudal type homeobox 2) positive cells from pluripotent stem cells. CDX2 is a master transcription factor that controls intestinal differentiation which is expressed in any of hindgut, small intestine stem cells, intestinal progenitor cells and small intestinal epithelial cells.
 非特許文献4(Drug Metab Pharmacokinet, 2014;29(1):44-51)はヒト多能性幹細胞から小腸上皮様細胞への分化を試みた論文である。これにより、SI(Sucrase Isomaltase)、SLC15A1(solute carrier family 15 member 1)/PEPT1(Peptide transporter 1)、LGR5(leucine-rich repeat containing G protein-coupled receptor 5)などの小腸マーカーを発現した小腸上皮様細胞を作製することができる。また、作製した小腸上皮様細胞はジペプチドであるβ-Ala-Lys-AMCA(β-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid)を取り込むことができる。しかしながら、薬物代謝酵素である CYP3A4(Cytochrome P450 3A4)の発現は、ヒト小腸と比較して極めて低い(約1/500)ことが問題である。非特許文献5(Drug Metab Dispo, 2015;43(4):603-610)もヒト多能性幹細胞から小腸上皮様細胞への分化を試みた論文である。これにより、SI、Villin、SLC15A1/PEPT1、BCRP(Breast cancer resistance protein)などの小腸マーカーを発現した小腸上皮様細胞を作製することができる。さらに、この小腸上皮様細胞がPEPT1活性及びBCRP活性を有することが非特許文献6(Drug Metab Dispo, 2016 Oct;44(10):0. doi: 10.1124/dmd.116.069336. Epub 2016 Jul 14.)にて示されている。しかしながら、薬物トランスポーターであるABCB1(ATP-binding cassette sub-family B member 1)/MDR1(multidrug resistance protein 1)の発現は、ヒト小腸と比較して極めて低い(約1/100)ことが問題である。 Non-Patent Document 4 (Drug Metab Pharmacokinet, 2014; 29 (1): 44-51) is an article that attempts to differentiate human pluripotent stem cells into small intestinal epithelial-like cells. As a result, small intestinal epithelium-like cells expressing small intestine markers such as SI (Sucrase Isomaltase), SLC 15 A1 (solute carrier family 15 member 1) / PEPT1 (Peptide transporter 1), LGR 5 (leucine-rich repeat containing G protein-coupled receptor 5) Cells can be generated. In addition, the prepared small intestinal epithelial-like cells can take in the dipeptide β-Ala-Lys-AMCA (β-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid). However, it is a problem that the expression of drug metabolizing enzyme CYP3A4 (Cytochrome P450 3A4) is extremely low (about 1/500) as compared to human small intestine. Non-Patent Document 5 (Drug Metab Dispo, 2015; 43 (4): 603-610) is also a paper in which differentiation of human pluripotent stem cells into small intestinal epithelial-like cells is attempted. Thereby, small intestinal epithelial-like cells expressing small intestinal markers such as SI, Villin, SLC15A1 / PEPT1, BCRP (Breast cancer resistance protein) can be prepared. Furthermore, it is shown in non-patent document 6 that this small intestinal epithelial-like cell has PEPT1 activity and BCRP activity (Drug Metab Dispo, 2016 Oct; 44 (10): 0. doi: 10.1124 / dmd. 116.069336. Epub 2016 Jul 14.) It is indicated by. However, the problem is that the expression of the drug transporter ABCB1 (ATP-binding cassette sub-family B member 1) / MDR1 (multidrug resistance protein 1) is extremely low (about 1/100) compared to human small intestine. is there.
 以上非特許文献1-6に示す通り、小腸上皮細胞への分化誘導技術の開発に係る研究が進められているが、これらの方法ではヒト多能性幹細胞から薬物代謝・薬物吸収を同時に評価可能な小腸上皮細胞としては不十分であった。ALK5阻害物質(SB431542)、Wnt3a及びEGF(epidermal growth factor)を培養系に加え、培養時間を延ばすことで、効果的に多能性幹細胞から小腸上皮様細胞へ分化誘導しうることについて開示がある(特許文献1)。特許文献1では、アデノウイルスベクター(以下、「Adベクター」という。)を用いてCDX2遺伝子及び/又はFOXA2遺伝子を細胞に導入することで、小腸上皮細胞への分化効率が向上したことが開示されている。しかしながら、Adベクターの使用に伴う安全性や手技の煩雑さによる汎用性の問題があり、Adベクターを用いずに効果的に小腸上皮細胞へ分化誘導可能な方法の開発が切望されている。 As described in Non-Patent Document 1-6 above, research is being conducted on the development of techniques for inducing differentiation into small intestinal epithelial cells, but these methods can simultaneously evaluate drug metabolism and drug absorption from human pluripotent stem cells. As a small intestinal epithelial cell. It is disclosed that ALK5 inhibitor (SB 431 542), Wnt 3a and EGF (epidermal growth factor) can be added to the culture system to extend differentiation time to effectively induce differentiation of pluripotent stem cells to small intestinal epithelial-like cells (Patent Document 1). Patent Document 1 discloses that the efficiency of differentiation into small intestinal epithelial cells is improved by introducing the CDX2 gene and / or the FOXA2 gene into cells using an adenoviral vector (hereinafter referred to as "Ad vector"). ing. However, there are problems with versatility due to the safety and complicated procedures associated with the use of the Ad vector, and development of a method capable of effectively inducing differentiation into small intestinal epithelial cells without using the Ad vector is desired.
国際公開WO2016/14975号公報(基礎出願:特願2015-51745)International Publication WO 2016/14975 (Basic Application: Japanese Patent Application No. 2015-51745)
 従来は初代培養のヒト小腸上皮細胞を入手することは困難であり、また得られた細胞も個体差による性状の違いが問題であった。現在、小腸のin vitro吸収評価系モデル細胞として、強固なタイトジャンクション(tight junction)を形成でき、小腸の薬物透過を予測しうるCaco-2細胞(ヒト結腸癌由来の細胞株)が実用化されている。しかしながら、上記細胞が癌細胞由来であることや、ヒト小腸上皮細胞と異なり、薬物代謝酵素CYP3A4をほとんど発現しないことなどが問題になっており、小腸における薬物代謝・透過性に関し、安定的に試験可能な優れた細胞が切望されている。 Conventionally, it has been difficult to obtain primary cultured human small intestinal epithelial cells, and the resulting cells also have problems with differences in their characteristics due to individual differences. At present, Caco-2 cells (a cell line derived from human colon cancer) capable of forming strong tight junctions and predicting drug permeation in the small intestine can be put to practical use as a model cell of the small intestine in vitro absorption evaluation system. ing. However, the problem is that the above cells are derived from cancer cells and, unlike human small intestinal epithelial cells, hardly express the drug metabolizing enzyme CYP3A4, etc., it is a stable test regarding drug metabolism and permeability in the small intestine. There is a great need for possible superior cells.
 上記に鑑みて、多能性幹細胞から小腸上皮様細胞への選択的な分化誘導方法について研究が試みられた。ALK5阻害物質(SB431542)、Wnt3a及びEGF(epidermal growth factor)を培養系に加えた培養を行い、さらにAdベクターを用いてCDX2遺伝子及び/又はFOXA2遺伝子を導入することによって、小腸上皮細胞への分化効率が向上し、小腸における薬物代謝・透過性や安定的に試験可能な優れた細胞が得られた(特許文献1)。しかしながら、Adベクターの使用に伴う汎用性の問題があった。 In view of the above, research has been conducted on a method for selectively inducing differentiation of pluripotent stem cells to intestinal epithelial-like cells. Culture is performed by adding ALK5 inhibitor (SB 431 542), Wnt 3a and EGF (epidermal growth factor) to the culture system, and further differentiation into small intestinal epithelial cells by introducing the CDX2 gene and / or FOXA2 gene using an Ad vector The efficiency was improved and drug metabolism / permeability in the small intestine and excellent cells which can be stably tested were obtained (Patent Document 1). However, there were problems of versatility associated with the use of Ad vectors.
 そこで、多能性幹細胞から薬物代謝、薬物吸収を評価できる小腸上皮様細胞への選択的な分化誘導方法を提供することを課題とする。また、係る小腸上皮様細胞への選択的な分化誘導方法において、Adベクターを用いずにより簡便な方法により、分化誘導する方法を提供することを課題とする。 Therefore, it is an object of the present invention to provide a method for selectively inducing differentiation of pluripotent stem cells into small intestinal epithelial-like cells capable of evaluating drug metabolism and drug absorption. Another object of the present invention is to provide a method for inducing differentiation by a more convenient method without using an Ad vector in the method for selectively inducing differentiation into small intestinal epithelial-like cells.
 本発明者等は、上記課題を達成するために、従来法の小腸上皮様細胞作製方法を基に培養液及び培養時間についてさらに検討を重ねた結果、多能性幹細胞を内胚葉細胞(definitive endoderm cells)に分化誘導した後、LY2090314を培養系に加えて培養し、腸管前駆細胞を作製することで、効果的に多能性幹細胞から小腸上皮様細胞へ分化誘導しうることを見出し、本発明を完成した。 The present inventors conducted further studies on culture solution and culture time based on the conventional method for producing small intestine epithelial-like cells in order to achieve the above-mentioned problems, and as a result, pluripotent stem cells (definitive endoderm) were obtained. After differentiation induction to cells), LY2090314 is added to a culture system and cultured, and it is found that differentiation of pluripotent stem cells to small intestine epithelial-like cells can be effectively induced by preparing intestinal progenitor cells, the present invention Completed.
 即ち本発明は、以下よりなる。
1.以下の工程を含む、多能性幹細胞から小腸上皮様細胞への分化誘導方法:
1)多能性幹細胞を内胚葉細胞に分化誘導する工程;
2)前記分化誘導により得られた内胚葉細胞を、LY2090314を含む系で培養し、腸管前駆細胞に分化誘導する工程。
2.前記2)の工程の後、さらに以下の3)の工程を含む、前項1に記載の小腸上皮様細胞への分化誘導方法:
3)Wnt3a及びEGF(epidermal growth factor)を含む系で培養し、小腸上皮様細胞へ分化誘導する工程。
3.前記3)の工程で、Wnt3a及びEGFと、さらにp38 MAPK阻害剤、IGF-1(insulin-like growth factor-1)、R-spondin、Noggin及びDEX(dexamethasone)から選択されるいずれか2種以上を含む系で培養する、前項2に記載の分化誘導方法。
4.前記3)の工程で、Wnt3a及びEGFと、さらにp38 MAPK阻害剤、IGF-1、R-spondin、Noggin及びDEX含む系で培養する、前項2に記載の分化誘導方法。
5.前項1~4のいずれかに記載の分化誘導方法により得られた小腸上皮様細胞。
6.前項1~4のいずれかに記載の分化誘導方法の工程で培養された培養物。
7.前項5に記載の小腸上皮様細胞を、薬物毒性評価又は薬物動態評価に使用する方法。
8.LY2090314を含む、小腸上皮様細胞への分化誘導用培地。
9.Wnt3a及びEGFを含む、小腸上皮様細胞への分化誘導用培地。
10.Wnt3a、EGF、p38 MAPK阻害剤、IGF-1、R-spondin、Noggin及びDEXから選択されるいずれか2種以上の液性因子化合物を含む前項9に記載の分化誘導用培地。
11.Wnt3a、EGF、p38 MAPK阻害剤、IGF-1、R-spondin、Noggin及びDEXを含む、前項10に記載の分化誘導用培地。
12.LY2090314、Wnt3a、EGF、p38 MAPK阻害剤、IGF-1、R-spondin、Noggin及びDEXから選択されるいずれか1種又は複数種の液性因子化合物を含む試薬を少なくとも2種以上を構成として含む、小腸上皮様細胞への分化誘導用培地調製用キット。
That is, the present invention consists of the following.
1. A method for inducing differentiation of pluripotent stem cells into intestinal epithelial-like cells, comprising the following steps:
1) inducing differentiation of pluripotent stem cells into endoderm cells;
2) A step of culturing the endoderm cells obtained by the differentiation induction in a system containing LY 2090314 to induce differentiation into intestinal progenitor cells.
2. The method for inducing differentiation to small intestine epithelial-like cells according to item 1 above, which further comprises the following step 3) after the step 2):
3) A step of culturing in a system containing Wnt3a and EGF (epidermal growth factor) and inducing differentiation into small intestinal epithelial-like cells.
3. In the step 3), any two or more selected from Wnt 3a and EGF and p38 MAPK inhibitor, IGF-1 (insulin-like growth factor-1), R-spondin, Noggin and DEX (dexamethasone) 3. The method for inducing differentiation according to item 2 above, which is cultured in a system comprising
4. The method for inducing differentiation according to the above 2, wherein the culture is carried out in a system containing Wnt3a and EGF, and p38 MAPK inhibitor, IGF-1, R-spondin, Noggin and DEX in the step 3).
5. The small intestinal epithelial-like cells obtained by the method for inducing differentiation according to any one of the above 1 to 4.
6. The culture cultured in the step of the method for inducing differentiation according to any one of the above 1 to 4.
7. The method to use the small intestine epithelial-like cell of the preceding clause 5 for drug toxicity evaluation or pharmacokinetic evaluation.
8. A medium for inducing differentiation to small intestine epithelial-like cells, which comprises LY2090314.
9. A medium for inducing differentiation into small intestine epithelial-like cells, which comprises Wnt3a and EGF.
10. 10. The culture medium for differentiation induction according to the above 9, which comprises any two or more humoral factor compounds selected from Wnt3a, EGF, p38 MAPK inhibitor, IGF-1, R-spondin, Noggin and DEX.
11. 11. The differentiation-inducing medium according to item 10, which comprises Wnt3a, EGF, p38 MAPK inhibitor, IGF-1, R-spondin, Noggin and DEX.
12. At least two or more reagents including at least two or more types of liquid factor compounds selected from LY2090314, Wnt3a, EGF, p38 MAPK inhibitor, IGF-1, R-spondin, Noggin and DEX , A kit for preparing a medium for inducing differentiation into small intestine epithelial-like cells.
 本発明の分化誘導方法によれば、分化誘導の工程において、Adベクター等による遺伝子導入操作を行うことなく、分化誘導用の基本培地に液性因子化合物を添加して培養して細胞を培養することで、簡便かつ効果的に多能性幹細胞から小腸上皮様細胞へ分化誘導することができる。具体的には、多能性幹細胞を内胚葉細胞に分化誘導した後、LY2090314を培養系に加えて培養し、腸管前駆細胞を作製する本発明の分化誘導方法により、効果的に多能性幹細胞から小腸上皮様細胞へ分化誘導しうる。さらに、腸管前駆細胞にWnt3a、EGF、p38 MAPK阻害剤、IGF-1、R-spondin、Noggin及びDEXを含む培地で培養することで、多能性幹細胞由来小腸上皮細胞におけるCDX2遺伝子の発現がヒト成人小腸(Adult Intestine: AI)よりも高くなったため、Adベクターを用いた遺伝子導入なしで高効率な分化誘導が達成できたと考えられる。 According to the differentiation induction method of the present invention, in the step of differentiation induction, the liquid factor compound is added to the basic medium for induction of differentiation and the cells are cultured, without performing the gene transfer operation with the Ad vector or the like. Thus, pluripotent stem cells can be easily and efficiently induced to differentiate into small intestinal epithelial-like cells. Specifically, pluripotent stem cells are induced to differentiate into endoderm cells, and then LY2090314 is added to the culture system and cultured to produce intestinal progenitor cells. The differentiation induction method of the present invention effectively produces pluripotent stem cells. Can induce differentiation into small intestinal epithelial-like cells. Furthermore, expression of the CDX2 gene in pluripotent stem cell-derived small intestinal epithelial cells is human by culturing in a medium containing Wnt3a, EGF, p38 MAPK inhibitor, IGF-1, R-spondin, Noggin and DEX in intestinal progenitor cells Because it is higher than the adult small intestine (Adult Intestine: AI), it is considered that highly efficient differentiation induction could be achieved without gene transfer using an Ad vector.
 従来は初代培養の小腸上皮細胞は入手が困難であり、また個体差による性状の違いも問題であったのに対し、本発明の分化誘導方法により、安定的に優れた小腸上皮様細胞を提供可能となった。得られた細胞は、各種小腸上皮様細胞の性状を有しており、薬物代謝酵素や薬物トランスポーターの発現量に関し、優れている。上記により、小腸での薬物代謝・透過性に関し、安定的に優れた小腸上皮様細胞を用いて均質な評価系のもとで薬物代謝・薬物吸収を同時に評価可能となる。 In the past, small intestine epithelial cells in primary culture were difficult to obtain, and differences in characteristics due to individual differences were also a problem, but the differentiation induction method of the present invention provides stable small intestinal epithelial-like cells stably. It has become possible. The obtained cells have the properties of various small intestinal epithelial-like cells, and are excellent in terms of the expression amounts of drug metabolizing enzymes and drug transporters. According to the above, with regard to drug metabolism and permeability in the small intestine, it is possible to simultaneously evaluate drug metabolism and drug absorption under a homogeneous evaluation system using stably excellent small intestinal epithelial-like cells.
内胚葉細胞(definitive endoderm cells)から腸管前駆細胞(intestinal progenitor cells)への分化誘導に効果的なGSK3β阻害剤のスクリーニングのための実験プロトコールを示す図である。(実施例2)It is a figure which shows the experimental protocol for the screening of the GSK3 (beta) inhibitor effective in the differentiation induction to an intestinal progenitor cell (intestinal progenitor cells) from a definitive endoderm cell. (Example 2) 各種GSK3β阻害剤を含む培養系で内胚葉細胞培養を培養したときの各種遺伝子マーカーの発現を確認した図である。(実施例2)It is the figure which confirmed expression of various gene markers when endodermal cell culture is culture | cultivated in the culture system containing various GSK3 (beta) inhibitors. (Example 2) 各種GSK3β阻害剤を含む培養系で内胚葉細胞培養を培養したときのCDX2のタンパク質発現量をウエスタンブロット法により解析した結果を示す写真図である。(実施例2)It is a photograph figure which shows the result of having analyzed the protein expression level of CDX2 when culturing endodermal cell culture in the culture system containing various GSK3 beta inhibitors by the western blot method. (Example 2) LY2090314の作用によるCDX2陽性細胞率をフローサイトメトリーを用いて算出した図である。(実施例2)It is the figure which computed the CDX2 positive cell rate by the effect | action of LY2090314 using flow cytometry. (Example 2) LY2090314の作用によるCDX2の発現を、細胞免疫染色により確認した写真図である。(実施例2)It is the photograph figure which confirmed the expression of CDX2 by the effect | action of LY2090314 by cell immunostaining. (Example 2) LY2090314の使用濃度を変えた培養系で内胚葉細胞を培養したときの各種遺伝子マーカーの発現を確認した図である。(実施例3)It is the figure which confirmed expression of various gene markers when endodermal cells are cultured by the culture system which changed the use density | concentration of LY2090314. (Example 3) LY2090314の使用濃度を変えたときのCDX2のタンパク質発現量をウエスタンブロット法により解析した結果を示す写真図である。(実施例3)It is a photograph which shows the result of having analyzed the protein expression level of CDX2 when the use density | concentration of LY2090314 is changed by the western blot method. (Example 3) LY2090314の使用濃度を変えたときのCDX2陽性細胞率をフローサイトメトリーを用いて算出した図である。(実施例3)It is the figure which computed the CDX2 positive cell ratio when the use density | concentration of LY2090314 is changed using flow cytometry. (Example 3) 腸管前駆細胞(intestinal progenitor cells)から小腸上皮様細胞(enterocyte-like cells)への分化誘導に効果的な液性因子化合物のスクリーニングのための実験プロトコールを示す図である。(実施例4)It is a figure which shows the experimental protocol for the screening of the humoral factor compound effective in differentiation-induction from intestinal progenitor cells (intestinal progenitor cells) to small intestinal epithelial-like cells (enterocyte-like cells). (Example 4) 各種液性因子化合物を含む系で腸管前駆細胞を培養したときのVillin又はISX遺伝子マーカーの発現を確認した図である。(実施例4)It is the figure which confirmed expression of a Villin or ISX gene marker when a gut precursor cell is culture | cultivated by the system containing various liquid factor compounds. (Example 4) 各種液性因子化合物を組み合わせて含む系で腸管前駆細胞を培養したときのVillin又はISX遺伝子マーカーの発現を確認した図である。(実施例4)It is the figure which confirmed expression of a Villin or ISX gene marker when an intestinal progenitor cell is culture | cultivated by the type | system | group which contains various liquid factor compounds in combination. (Example 4) 各液性因子化合物の組み合わせによる培養後のVillin又はCDX2遺伝子マーカーの発現を確認した図である。(実施例4)It is the figure which confirmed expression of Villin or CDX2 gene marker after culture | cultivation by the combination of each humoral factor compound. (Example 4) 腸管前駆細胞(intestinal progenitor cells)から小腸上皮様細胞(enterocyte-like cells)への分化誘導に好適な培養期間を確認するための実験プロトコールを示す図である。(実施例5)It is a figure which shows the experimental protocol for confirming the culture | cultivation period suitable for differentiation induction from intestinal progenitor cells (intestinal progenitor cells) to small intestinal epithelial-like cells (enterocyte-like cells). (Example 5) 各期間培養後のVillin、ISX又はCDX2遺伝子マーカーの発現を確認した図である。(実施例5)It is a figure which confirmed expression of Villin, ISX, or a CDX2 gene marker after culture for each period. (Example 5) 28日間培養して得られた小腸上皮様細胞(ELC)とヒト成人小腸(AI)における培養開始後28日目のVillin、ISX、CDX2又はANPEP遺伝子マーカーの発現を確認した図である。また、SI(Sucrase-isomaltase)の遺伝子発現量についても確認した図である。(実施例5)It is the figure which confirmed the expression of Villin, ISX, CDX2 or ANP EP gene marker of the small intestine epithelial-like cell (ELC) obtained by culture | cultivating for 28 days, and 28th day after culture start in human adult small intestine (AI). Moreover, it is the figure which confirmed also about the gene expression amount of SI (Sucrase-isomaltase). (Example 5) 28日間培養して得られた細胞のVillin及びSI陽性細胞率をフローサイトメトリーを用いて確認した図である。(実験例5)It is the figure which confirmed the Villin and SI positive cell rate of the cell obtained by culture | cultivating for 28 days using flow cytometry. (Experimental example 5) 28日間培養して得られた細胞のVillinの発現を免疫染色により解析した結果を示す写真図である。(実施例5)It is a photograph which shows the result of having analyzed the expression of Villin of the cell obtained by culture | cultivating for 28 days by an immunostaining. (Example 5) 腸管前駆細胞(intestinal progenitor cells)から小腸上皮様細胞(enterocyte-like cells)への分化誘導に効果的な液性因子化合物の組み合わせを確認するための実験プロトコールを示す図である。(実施例6)It is a figure which shows the experimental protocol for confirming the combination of the humoral factor compound effective in the differentiation induction from a intestinal progenitor cell (intestinal progenitor cells) to a small intestinal epithelial-like cell (enterocyte-like cells). (Example 6) 本発明の方法により作製した小腸上皮様細胞(ELC)について、小腸で高発現する各種遺伝子発現量をヒト成人小腸(AI)及びヒト成人結腸(colon)での発現量と相対的に比較した結果を示す図である。(実験例6-1)In the small intestine epithelial-like cells (ELC) prepared by the method of the present invention, the expression levels of various genes highly expressed in the small intestine are relatively compared with the expression levels in human adult small intestine (AI) and human adult colon (colon) FIG. Experimental Example 6-1 本発明の方法により作製した小腸上皮様細胞(ELC)について、大腸で高発現する各種遺伝子発現量をヒト成人小腸(AI)及びヒト成人結腸(colon)での発現量と相対的に比較した結果を示す図である。(実験例6-1)In the small intestine epithelial-like cells (ELC) produced by the method of the present invention, the expression levels of various genes highly expressed in the large intestine are relatively compared with the expression levels in human adult small intestine (AI) and human adult colon (colon) FIG. Experimental Example 6-1 本発明の方法により作製した小腸上皮様細胞(ELC)について、各種薬物代謝酵素の遺伝子発現量をヒト成人小腸(AI)及びヒト成人結腸(colon)での発現量と相対的に比較した結果を示す図である。(実験例6-2)Regarding small intestine epithelial-like cells (ELC) produced by the method of the present invention, the results of comparing the gene expression levels of various drug-metabolizing enzymes relative to the expression levels in human adult small intestine (AI) and human adult colon (colon) FIG. (Experimental example 6-2) 本発明の方法により作製した小腸上皮様細胞(ELC)について、薬物代謝酵素CYP3A4誘導能を解析した結果を示す図である。(実験例6-2)It is a figure which shows the result of having analyzed the drug metabolising enzyme CYP3A4 inducibility about the small intestine epithelial-like cell (ELC) produced by the method of this invention. (Experimental example 6-2) 本発明の方法により作製した小腸上皮様細胞(ELC)について、カルボキシルエステラーゼ2(CES2)の活性を確認した結果を示す図である。(実験例6-3)It is a figure which shows the result of having confirmed the activity of carboxylesterase 2 (CES2) about the small intestine epithelial-like cell (ELC) produced by the method of this invention. Experimental Example 6-3 本発明の方法により作製した小腸上皮様細胞(ELC)について、頂端膜側に発現する各種薬物トランスポーター関連遺伝子の発現をヒト成人小腸(AI)及びヒト成人結腸(colon)での発現量と相対的に比較した結果を示す図である。(実験例6-4)The expression of various drug transporter-related genes expressed on the apical membrane side of the small intestine epithelial-like cells (ELCs) prepared by the method of the present invention is expressed relative to the amount expressed in human adult small intestine (AI) and human adult colon (colon) It is a figure showing the result of comparing. (Experimental example 6-4) 本発明の方法により作製した小腸上皮様細胞(ELC)について、基底膜側に発現する各種薬物トランスポーター関連遺伝子の発現をヒト成人小腸(AI)及びヒト成人結腸(colon)での発現量と相対的に比較した結果を示す図である。(実験例6-4)In the small intestine epithelial-like cells (ELCs) prepared by the method of the present invention, the expression of various drug transporter-related genes expressed on the basement membrane side is expressed relative to the amount expressed in human adult small intestine (AI) and human adult colon (colon) It is a figure showing the result of comparing. (Experimental example 6-4) 本発明の方法により作製した小腸上皮様細胞(ELC)について、細胞膜抵抗(TEER)及びルシファーイエロー(Lucifer yellow: LY)の膜透過係数により細胞膜バリア能を確認した図である。(実験例6-5)It is the figure which confirmed the cell membrane barrier ability by the membrane permeability coefficient of cell membrane resistance (TEER) and lucifer yellow (Lucifer yellow: LY) about the small intestine epithelial-like cell (ELC) produced by the method of this invention. (Experimental example 6-5) 本発明の方法により作製した小腸上皮様細胞(ELC)について、薬物輸送機能をMDR1輸送能により評価した結果を示す図である。(実験例6-6)It is a figure which shows the result of having evaluated the drug transport function by MDR1 transport capacity about the small intestine epithelial-like cell (ELC) produced by the method of this invention. (Experimental example 6-6) 本発明の方法により作製した小腸上皮様細胞(ELC)について、薬物輸送機能をPEPT1輸送能により評価した結果を示す図である。(実験例6-6)It is a figure which shows the result of having evaluated the drug transport function by PEPT1 transport capacity about the small intestine epithelial-like cell (ELC) produced by the method of this invention. (Experimental example 6-6) 本発明の方法により作製した小腸上皮様細胞(ELC)について、小腸で高発現するA.E-カドヘリン(E-cadherin)及びB.ZO-1の発現結果を示す図である。(実験例7-1)Regarding small intestine epithelial-like cells (ELC) prepared by the method of the present invention, A. E-cadherin (E-cadherin) and B.I. It is a figure which shows the expression result of ZO-1. (Experimental example 7-1) 本発明の方法により作製した腸管前駆細胞について、CDX2及びE-cadherinの発現結果を示す図である。(実験例7-2)It is a figure which shows the expression result of CDX2 and E-cadherin about the intestinal-progenitor cell produced by the method of this invention. (Experimental example 7-2) 本発明の方法により作製した小腸上皮様細胞(ELC)について、極性を有するかについて評価するためのVillin及びPEPT1の発現結果を示す図である。(実験例7-3)It is a figure which shows the expression result of Villin and PEPT1 for evaluating whether it has polarity about the small intestine epithelial-like cell (ELC) produced by the method of this invention. Experimental Example 7-3 本発明の方法により作製した小腸上皮様細胞(ELC)について、ALP活性評価するためのALP染色結果を示す図である。(実験例7-4)It is a figure which shows the ALP staining result for evaluating ALP activity about the small intestine epithelial-like cell (ELC) produced by the method of this invention. Experimental Example 7-4 本発明の方法により作製した小腸上皮様細胞(ELC)について、形態学的評価するための透過顕微鏡観察結果を示す図である。(実験例7-5)It is a figure which shows the transmission microscope observation result for carrying out a morphological evaluation about the small intestine epithelial-like cell (ELC) produced by the method of this invention. (Experimental example 7-5) 本発明の方法により作製した小腸上皮様細胞(ELC)について、ChromograninA、リゾチーム及びMucin2の発現結果を示す図である。(実験例7-6)It is a figure which shows the expression result of Chromogranin A, lysozyme, and Mucin2 about the small intestine epithelial-like cell (ELC) produced by the method of this invention. (Experimental example 7-6) 本発明の方法により作製した小腸上皮様細胞(ELC)について、小腸型又は大腸型特性を確認するためマイクロアレイによる網羅的遺伝子解析を行った結果を示す図である。(実験例7-7)It is a figure which shows the result of having performed the comprehensive gene analysis by the microarray in order to confirm a small intestine type or a large intestine type characteristic about the small intestine epithelial-like cell (ELC) produced by the method of this invention. (Experimental example 7-7) 本発明の方法により作製した小腸上皮様細胞(ELC)について、FD4の膜透過係数により細胞膜バリア能を確認した図である。(実験例7-8)It is the figure which confirmed the cell membrane barrier ability by the membrane permeability coefficient of FD4 about the small intestine epithelial-like cell (ELC) produced by the method of this invention. (Experimental example 7-8) 本発明の方法により作製した小腸上皮様細胞(ELC)について、FD4、LY及びローダミン123(Rhodamine123)の膜透過係数により細胞膜バリア能を確認した図である。(実験例7-9)It is the figure which confirmed the cell membrane barrier ability by the membrane permeability coefficient of FD4, LY, and rhodamine 123 (Rhodamine 123) about the small intestine epithelial-like cell (ELC) produced by the method of this invention. (Experimental example 7-9)
 本発明は、多能性幹細胞(pluripotent stem cells: PSC)から小腸上皮様細胞(enterocyte-like cells: ELC)への選択的な分化誘導方法に関し、更に薬物代謝酵素や薬物トランスポーターを発現する優れた小腸上皮様細胞に関する。 The present invention relates to a method for selectively inducing differentiation of pluripotent stem cells (PSCs) to small intestinal epithelial-like cells (ELCs), and further to excellent expression of drug metabolizing enzymes and drug transporters. Small intestinal epithelial-like cells.
 薬物の体内動態を予測するうえで、小腸における薬物吸収の予測は非常に重要であるが、初代培養ヒト小腸上皮細胞を入手することは非常に困難である。Caco-2細胞はヒト結腸癌由来細胞株であり強固なタイトジャンクションを形成できるために、小腸の薬物透過を予測するモデルとして、in vitro吸収評価系として汎用されている。一方、小腸上皮細胞における主たる薬物代謝酵素はCYP3A4であるが、Caco-2細胞はヒト小腸と異なり薬物代謝酵素をほとんど発現していない。そのために、Caco-2細胞では薬物代謝能を評価することはできない。現在のところ小腸における薬物代謝と薬物吸収を同時に評価できる実験系は構築されていない。 Although the prediction of drug absorption in the small intestine is very important in predicting the pharmacokinetics of drugs, it is very difficult to obtain primary cultured human small intestinal epithelial cells. Since Caco-2 cells are human colon cancer-derived cell lines and can form strong tight junctions, they are widely used as an in vitro absorption evaluation system as a model for predicting drug permeation in the small intestine. On the other hand, although the main drug-metabolizing enzyme in small intestinal epithelial cells is CYP3A4, Caco-2 cells, unlike human small intestine, hardly express drug-metabolizing enzymes. Therefore, drug metabolism can not be evaluated in Caco-2 cells. At present, no experimental system has been established that can simultaneously evaluate drug metabolism and drug absorption in the small intestine.
 薬物代謝酵素CYP(Cytochrome P450)のうち一部の分子種(CYP1A2、CYP2B6、CYP3A4)は誘導剤となる薬物に応答して、その発現量が上昇することが知られており、CYP誘導という。CYP誘導が引き起こされることにより、非誘導時とは薬物代謝速度が大きく変化する。小腸における主たるCYP分子種であるCYP3A4はVD3(活性型ビタミンD3)やRIF(リファンピシン)などの薬物によって誘導される。そこで、本発明者らはヒト多能性幹細胞から薬物代謝と薬物吸収の評価に応用できる小腸上皮様細胞を作製することを目指した。 Some molecular species (CYP1A2, CYP2B6, CYP3A4) of drug metabolizing enzymes CYP (Cytochrome P450) are known to be increased in expression level in response to a drug serving as an inducer, and referred to as CYP induction. The induction of CYP leads to a large change in drug metabolism rate from that in non-induction. CYP3A4, which is the main CYP molecular species in the small intestine, is induced by drugs such as VD3 (active vitamin D3) and RIF (rifampicin). Therefore, the present inventors aimed to produce small intestinal epithelial-like cells applicable to evaluation of drug metabolism and drug absorption from human pluripotent stem cells.
 本明細書において、多能性幹細胞とは多分化能及び/又は自己複製能を有する未分化細胞であればよく、特に限定されないが、iPS細胞(induced pluripotent stem cells)又はES細胞(embryonic stem cells)等の多能性幹細胞が挙げられる。特に好適には、iPS細胞である。 In the present specification, pluripotent stem cells may be undifferentiated cells having pluripotency and / or self-replication ability, and are not particularly limited, but iPS cells (induced pluripotent stem cells) or ES cells (embryonic stem cells) And other pluripotent stem cells. Particularly preferred are iPS cells.
 iPS細胞とは、体細胞へ数種類の遺伝子を導入することにより、受精卵、余剰胚やES細胞を利用せずに分化細胞の初期化を誘導し、ES細胞と同様な多能性や増殖能を有する誘導多能性幹細胞をいい、2006年にマウスの線維芽細胞から世界で初めて作られた(Cell 126: 663-676, 2006)。さらに、マウスiPS細胞の樹立に用いた4遺伝子のヒト相同遺伝子であるOCT3/4、SOX2、KLF4、C-MYCを、ヒト由来線維芽細胞に導入してヒトiPS細胞の樹立に成功したことが報告されている(Cell 131: 861-872, 2007)。本発明で使用されるiPS細胞は、上記のような自体公知の方法により作製されたiPS細胞、又は今後開発される新たな方法により作製されるiPS細胞であってもよい。ヒトiPS細胞株として、具体的には例えばTic(JCRB1331)を使用することができる。また、YO2、iHC1(Proc Natl Acad Sci U S A. 111(47):16772-7(2014))も使用することができる。 iPS cells induce the reprogramming of differentiated cells without using fertilized eggs, surplus embryos or ES cells by introducing several kinds of genes into somatic cells, and pluripotency and proliferation ability similar to ES cells And induced pluripotent stem cells, which were first made in the world from mouse fibroblasts in 2006 (Cell 126: 663-676, 2006). Furthermore, it has been successfully established human iPS cells by introducing into human derived fibroblasts OCT3 / 4, SOX2, KLF4 and C-MYC, which are human homologous genes of 4 genes used for establishing mouse iPS cells. It has been reported (Cell 131: 861-872, 2007). The iPS cells used in the present invention may be iPS cells produced by a method known per se as described above, or iPS cells produced by a new method to be developed in the future. Specifically, for example, Tic (JCRB1331) can be used as a human iPS cell line. Also, YO2 and iHC1 (Proc Natl Acad Sci USA 111 (47): 16772-7 (2014)) can be used.
 ES細胞とは、一般的には胚盤胞期胚の内部にある内部細胞塊(inner cell mass)と呼ばれる細胞集塊をin vitro培養に移し、未分化幹細胞集団として単離した多能性幹細胞である。ES細胞は、M.J.Evans & M.H.Kaufman (Nature, 292, 154, 1981)に続いて、G.R.Martin (Natl.Acad.Sci.USA, 78, 7634, 1981)によりマウスで多分化能を有する細胞株として樹立された。ヒト由来ES細胞についても、既に多くの株が樹立されており、ES Cell International社、Wisconsin Alumni Research Foundation、National Stem Cell Bank (NSCB)等から入手することが可能である。ES細胞は、一般に初期胚を培養することにより樹立されるが、体細胞の核を核移植した初期胚からもES細胞を作製することが可能である。また、異種動物の卵細胞、又は脱核した卵細胞を複数に分割した細胞小胞(cytoplasts、ooplastoids)に、所望の動物の細胞核を移植して胚盤胞期胚様の細胞構造体を作製し、それを基にES細胞を作製する方法もある。また、単為発生胚を胚盤胞期と同等の段階まで発生させ、そこからES細胞を作製する試みや、ES細胞と体細胞を融合させることにより、体細胞核の遺伝情報を有したES細胞を作る方法も報告されている。本発明で使用されるES細胞は、上記のような自体公知の方法により作製されたES細胞、又は今後開発される新たな方法により作製されるES細胞であってもよい。ES細胞として、例えばヒトES細胞株(KhES3)を使用することができる。 ES cells are pluripotent stem cells isolated as an undifferentiated stem cell population by transferring a cell mass generally called the inner cell mass inside the blastocyst stage embryo to in vitro culture. It is. As ES cell lines, pluripotent in mice by GRMartin (Natl. Acad. Sci. USA, 78, 7634, 1981) followed by MJEvans & MHKaufman (Nature, 292, 154, 1981) It was established. Many strains of human-derived ES cells have already been established, and they can be obtained from ES Cell International, Wisconsin Alumni Research Foundation, National Stem Cell Bank (NSCB), and the like. ES cells are generally established by culturing early embryos, but it is also possible to produce ES cells from early embryos obtained by nuclear transfer of somatic cell nuclei. Furthermore, a blastocyst stage embryo-like cell structure is prepared by transferring a cell nucleus of a desired animal to cell vesicles (cytoplasts, ooploidoids) obtained by dividing egg cells of heterologous animals or enucleated egg cells into multiple cells, There is also a method of producing ES cells based on it. In addition, an ES cell with genetic information of somatic cell nucleus by generating parthenogenetic embryos to a stage equivalent to the blastocyst stage and preparing ES cells therefrom, or by fusing ES cells with somatic cells How to make a has also been reported. The ES cells used in the present invention may be ES cells produced by a method known per se as described above, or ES cells produced by a new method to be developed in the future. As ES cells, for example, human ES cell lines (KhES3) can be used.
 本発明の多能性幹細胞から小腸上皮様細胞への分化誘導方法として、以下の1)及び2)の工程を含むことが必要である。
1)多能性幹細胞を内胚葉細胞に分化誘導する工程;
2)前記分化誘導により得られた内胚葉細胞を、GSK3β阻害剤を含む系で培養し、腸管前駆細胞に分化誘導する工程。
It is necessary to include the following steps 1) and 2) as the method for inducing differentiation of pluripotent stem cells of the present invention to small intestinal epithelial-like cells.
1) inducing differentiation of pluripotent stem cells into endoderm cells;
2) A step of culturing the endoderm cells obtained by the differentiation induction in a system containing a GSK3β inhibitor to induce differentiation into intestinal progenitor cells.
 本明細書において小腸上皮様細胞(enterocyte-like cells)とは、本発明の分化誘導方法、又は分化誘導処理により作製された細胞を意味する。後述する実施例、実験例において、本発明の方法により作製した小腸上皮様細胞は、単に「ELC」と略称する場合がある。また上記の2)の工程に示す腸管前駆細胞とは、本発明の小腸上皮様細胞に分化誘導される前の細胞をいい、例えば小腸前駆細胞と同義である。 As used herein, the term "enterocyte-like cells" refers to cells produced by the method for inducing differentiation of the present invention or the treatment for inducing differentiation. In Examples and Experimental Examples described later, the small intestine epithelial-like cells produced by the method of the present invention may be simply abbreviated as “ELC”. The intestinal progenitor cells shown in the above step 2) refer to cells before being induced to differentiate into the small intestinal epithelial cells of the present invention, and are synonymous with, for example, small intestinal progenitor cells.
 小腸上皮様細胞を作製する際の前記1)の工程での多能性幹細胞を内胚葉細胞に分化誘導する方法は、自体公知の方法を適用することができる。例えば、多能性幹細胞の培養系にアクチビンA(Activin A)を用いることが必要である。アクチビンAは、3~200 ng/ml、好ましくは約100 ng/mlを培養系に添加することができる。アクチビンAの濃度が3 ng/mlより低い場合には内胚葉細胞への分化が効率的に促進できないと考えられる。アクチビンAを培養系に添加する時期は、多能性幹細胞から内胚葉細胞に分化誘導可能な時期であればよく特に限定されないが、例えば多能性幹細胞培養開始後0~6日目、添加期間は1~7日間とすることができる。 A method known per se can be applied to the method of differentiating pluripotent stem cells into endoderm cells in the step 1) in the preparation of small intestinal epithelial-like cells. For example, it is necessary to use activin A in a culture system of pluripotent stem cells. Activin A can be added to the culture system at 3 to 200 ng / ml, preferably about 100 ng / ml. When the concentration of activin A is lower than 3 ng / ml, it is considered that differentiation to endodermal cells can not be efficiently promoted. The time to add activin A to the culture system is not particularly limited as long as differentiation of pluripotent stem cells into endoderm cells is possible, for example, 0 to 6 days after the start of pluripotent stem cell culture, for example Can be from 1 to 7 days.
 前記2)の工程では、前記分化誘導により得られた内胚葉細胞を、GSK3β阻害剤を含む系で培養することが必要である。GSK3β阻害剤としてはLY2090314が好適であり、3~100 nM、好ましくは約20 nMを培養系に添加することができる。LY2090314の濃度が3 nMより低い場合には分化が効率的に促進できないと考えられる。LY2090314を培養系に添加する時期は、内胚葉細胞に分化誘導した後であればよく特に限定されないが、例えば内胚葉細胞培養開始後0~11日目、好ましくは0~4日目に添加することができ、好適な添加期間としては4日間とすることができる。当該、2)の工程により、内胚葉細胞を腸管前駆細胞に分化誘導することができる。腸管前駆細胞への分化誘導は、CDX2発現により確認することができる。 In the step 2), it is necessary to culture endoderm cells obtained by the differentiation induction in a system containing a GSK3β inhibitor. As a GSK3β inhibitor, LY2090314 is suitable, and 3 to 100 nM, preferably about 20 nM can be added to the culture system. When the concentration of LY2090314 is lower than 3 nM, it is considered that differentiation can not be efficiently promoted. The time when LY 2090314 is added to the culture system is not particularly limited as long as it is after differentiation induction into endoderm cells, but for example, it is added 0 to 11 days after endodermal cell culture start, preferably 0 to 4 days And the preferred addition period may be 4 days. In the step 2), endoderm cells can be induced to differentiate into intestinal progenitor cells. The induction of differentiation into intestinal progenitor cells can be confirmed by CDX2 expression.
 前記2)の工程の後、さらに3)の工程において、Wnt3a及びEGF(epidermal growth factor)を含む系で培養し、小腸上皮様細胞へ分化誘導することができる。当該、3)の工程において、Wnt3a及びEGFと、さらにp38 MAPK阻害剤、IGF-1、R-spondin、Noggin及びDEXから選択されるいずれか2種以上を含む系で培養することで、より好適に小腸上皮様細胞へ分化誘導することができる。3)の工程において、Wnt3a、EGF、p38 MAPK阻害剤、IGF-1、R-spondin、Noggin及びDEX含む系で培養するのが、小腸上皮様細胞への分化誘導に際し、最も好適である。 After the step 2), the cells can be further cultured in a system containing Wnt 3a and EGF (epidermal growth factor) in the step 3) to induce differentiation into small intestine epithelial-like cells. In the step 3), it is more preferable to culture in a system comprising Wnt3a and EGF, and any two or more selected from p38 MAPK inhibitors, IGF-1, R-spondin, Noggin and DEX. Can be induced to differentiate into small intestinal epithelial-like cells. In the step 3), culturing in a system containing Wnt3a, EGF, p38 MAPK inhibitor, IGF-1, R-spondin, Noggin and DEX is most preferable for inducing differentiation into small intestinal epithelial-like cells.
 例えばWnt3aでは0.1 nM~10 mMを培養系に含ませることができる。例えばEGFでは0.5~5000 ng/ml、好ましくは約50 ng/mlを培養系に添加することができる。p38 MAPK阻害剤としては、SB202190、SB203580、SB706504等が挙げられ、最も好適にはSB202190である。例えばp38 MAPK阻害剤では0.1~1000μM、好ましくは約10μMを培養系に添加することができる。例えばIGF-1では0.2~2000 ng/ml、好ましくは約20 ng/mlを培養系に添加することができる。例えばR-spondinでは0.1 nM~10 mMを培養系に含ませることができる。例えばNogginでは0.1 nM~10 mMを培養系に含ませることができる。例えばDEXでは0.01~100μM、好ましくは約1μMを培養系に添加することができる。 For example, in the case of Wnt3a, 0.1 nM to 10 mM can be contained in the culture system. For example, for EGF, 0.5 to 5000 ng / ml, preferably about 50 ng / ml can be added to the culture system. Examples of p38 MAPK inhibitors include SB202190, SB203580, SB706504 and the like, and most preferred is SB202190. For example, for p38 MAPK inhibitors, 0.1 to 1000 μM, preferably about 10 μM can be added to the culture system. For example, for IGF-1, 0.2 to 2000 ng / ml, preferably about 20 ng / ml can be added to the culture system. For example, in the case of R-spondin, 0.1 nM to 10 mM can be contained in the culture system. For example, in the case of Noggin, 0.1 nM to 10 mM can be contained in the culture system. For example, in DEX, 0.01 to 100 μM, preferably about 1 μM can be added to the culture system.
3)の工程において、添加される液性因子化合物は、Wnt3a(0.1 nM~10 mM)、EGF(50 ng/ml)、p38 MAPK阻害剤(10μM)、IGF-1(20 ng/ml)、R-spondin(0.1 nM~10 mM)、Noggin(0.1 nM~10 mM)及びDEX(1μM)の組み合わせが最も好適である。 In the step 3), the humoral factor compound to be added is Wnt3a (0.1 nM to 10 mM), EGF (50 ng / ml), p38 MAPK inhibitor (10 μM), IGF-1 (20 ng / ml), The combination of R-spondin (0.1 nM to 10 mM), Noggin (0.1 nM to 10 mM) and DEX (1 μM) is most preferred.
 上記2)又は3)の工程において、例えば非特許文献3に示すように、BIOやDAPTなどの液性因子や化合物を内胚葉細胞の培養系に添加してもよい。例えばBIOの場合には、0.01~10μM、好ましくは約5μMを培養系に添加することができる。BIOの濃度が0.01μMより低い場合には小腸上皮様細胞への分化促進効果が確認できない可能性があり、10μMより高い場合には細胞毒性が生じる可能性が考えられる。例えばDAPTの場合には、0.02~20μM、好ましくは約10μMを培養系に添加することができる。DAPTの濃度が0.02μMより低い場合には小腸上皮様細胞への分化促進効果が確認できない可能性が考えられる。BIO及びDAPTを培養系に添加する時期は、内胚葉細胞から小腸上皮様細胞に分化誘導可能な時期であればよく特に限定されないが、例えば内胚葉細胞培養開始後0~30日目、好ましくは30日間添加することができる。BIO及びDAPTは、いずれか一方を先に添加してもよいし、同時に添加してもよい。 In the step 2) or 3), for example, as shown in Non-Patent Document 3, a liquid factor or compound such as BIO or DAPT may be added to the endodermal cell culture system. For example, in the case of BIO, 0.01 to 10 μM, preferably about 5 μM can be added to the culture system. If the concentration of BIO is lower than 0.01 μM, the effect of promoting differentiation to small intestinal epithelial-like cells may not be confirmed, and if it is higher than 10 μM, cytotoxicity may occur. For example, in the case of DAPT, 0.02 to 20 μM, preferably about 10 μM can be added to the culture system. If the concentration of DAPT is lower than 0.02 μM, it may be possible that the effect of promoting differentiation to small intestinal epithelial-like cells can not be confirmed. The time when BIO and DAPT are added to the culture system is not particularly limited as long as differentiation of endoderm cells into small intestinal epithelial cells is possible, for example, 0 to 30 days after endoderm cell culture is started, preferably It can be added for 30 days. Either BIO or DAPT may be added first, or may be added simultaneously.
 本発明の分化誘導方法において使用可能な基本培地として、例えば、以下に例示される培養液を用いることができる。各培養液に添加する物質は、目的に応じて、適宜増減することができる。使用する試薬は同等の機能を発揮しうるものであれば、製造・販売元は下記に限定されない。
(A)ヒトES/iPS細胞未分化維持培地としては、ReproStem(商品名)、iPSellon(商品名)、Essential 8(商品名)、TeSR-E8(商品名)、StemFit(R)AK03N(商品名)、StemFit(R)AK02N(商品名)などの各種幹細胞維持培地を使用することができる。
(B)分化誘導用培地として、例えばRPMI1640培地(Sigma社)に1×Glutamax(Thermo fisher scientific社)、B27 Supplement(Thermo fisher scientific社)、ペニシリン/ストレプトマイシンを含む培地も使用することができる。内胚葉細胞を分化誘導する際に使用する培地は同等の機能を発揮しうるものであれば、上記に限定されない。
(C)内胚葉細胞以降の分化誘導にはdifferentiation DMEM-high Glucose培地、10% Knock Serum Replacement(Thermo fisher scientific社)、1% Non Essential Amino Acid Solution(Thermo fisher scientific社)、ペニシリン/ストレプトマイシン、1×Glutamax(Thermo fisher scientific社)を含むDMEM-high Glucose培地(Wako社)を使用することができる。
As a basic medium that can be used in the differentiation induction method of the present invention, for example, the culture solution exemplified below can be used. Substances to be added to each culture solution can be appropriately increased or decreased depending on the purpose. The manufacturers and distributors are not limited to the following as long as the reagents used can exert the same function.
(A) As the human ES / iPS cell undifferentiated maintenance medium, ReproStem (trade name), iPSellon (trade name), Essential 8 (trade name), TeSR-E8 (trade name), StemFit (R) AK03N (trade name ) And stemFit (R) AK02N (trade name) can be used.
(B) As a medium for differentiation induction, for example, a medium containing 1 × Glutamax (Thermo fisher scientific), B27 Supplement (Thermo fisher scientific), and penicillin / streptomycin in RPMI 1640 medium (Sigma) can also be used. The medium used to induce differentiation of endodermal cells is not limited to the above as long as it can exert the same function.
(C) Differentiation DMEM-high Glucose medium, 10% Knock Serum Replacement (Thermo fisher scientific), 1% Non Essential Amino Acid Solution (Thermo fisher scientific), penicillin / streptomycin, 1 for induction of differentiation after endodermal cells It is possible to use DMEM-high Glucose medium (Wako) containing x Glutamax (Thermo fisher scientific).
 本発明の分化誘導方法において、多能性幹細胞から小腸上皮様細胞への分化の過程において、LY2090314、p38 MAPK阻害剤、IGF-1、R-spondin、Noggin及びDEX等の化合物から選択されるいずれか1種又は2種以上の液性因子化合物を適宜必要に応じて上記分化誘導用基本培地に添加して使用することができる。例えば、内胚葉細胞~腸管前駆細胞(多能性幹細胞の培養開始から4~8日目)では、上記(C)に示す基本培地にLY2090314(20 nM)を含む培地を分化誘導用培地とすることができる。例えば、腸管前駆細胞~小腸上皮様細胞(多能性幹細胞の培養開始から8~28日目)では、上記(C)に示す基本培地にp38 MAPK阻害剤(10 μM)、DEX(1 μM)、EGF(50 ng/ml)、IGF-1(20 ng/ml)及びWnt3a + R-spondin + Noggin(WRN: 25% Wnt3a + R-spondin + Noggin 発現細胞培養上清)を含む培地を分化誘導用培地とすることができる。 In the differentiation induction method of the present invention, any of compounds selected from LY2090314, p38 MAPK inhibitor, IGF-1, R-spondin, Noggin and DEX in the process of differentiation from pluripotent stem cells to small intestinal epithelial-like cells One or more kinds of liquid factor compounds can be used by optionally adding them to the above-mentioned basic medium for differentiation induction as needed. For example, in endoderm cells to intestinal progenitor cells (days 4 to 8 from the start of culture of pluripotent stem cells), a medium containing LY2090314 (20 nM) in the basic medium shown in (C) above is used as a differentiation-inducing medium be able to. For example, in the case of intestinal progenitor cells to small intestine epithelial-like cells (days 8 to 28 from the start of culture of pluripotent stem cells), p38 MAPK inhibitor (10 μM), DEX (1 μM) in the basic medium shown in (C) above , Induction of differentiation of medium containing EGF (50 ng / ml), IGF-1 (20 ng / ml) and Wnt3a + R-spondin + Noggin (WRN: 25% Wnt3a + R-spondin + Noggin expressing cell culture supernatant) It can be used as a culture medium.
 本発明は、多能性幹細胞から小腸上皮様細胞への分化誘導方法に使用する分化誘導用培地にも及ぶ。さらに、本発明は、上記分化誘導用培地調製用試薬キットにも及ぶ。キットの構成としては、LY2090314、あるいはp38 MAPK阻害剤、DEX、EGF、IGF-1、Wnt3a、R-spondin、Noggin等から選択される1種又は複数種の液性因子化合物を各々含む試薬をキットの構成とすることができる。例えば、Wnt3a、R-spondin及びNogginについては、これらの因子を発現する細胞培養上清を使用することができる。 The present invention also extends to a culture medium for inducing differentiation which is used in a method for inducing differentiation of pluripotent stem cells into intestinal epithelial-like cells. Furthermore, the present invention extends to the above-mentioned reagent kit for preparing a culture medium for differentiation induction. The kit comprises a reagent comprising LY2090314 or one or more liquid factor compounds selected from p38 MAPK inhibitor, DEX, EGF, IGF-1, Wnt3a, R-spondin, Noggin etc. Can be configured. For example, for Wnt3a, R-spondin and Noggin, cell culture supernatants expressing these factors can be used.
 本発明の分化誘導方法の工程において、培養している細胞上に基底膜マトリックスを含む溶液を重層し、さらに培養することができる。基底膜マトリックスは生物において、細胞の外に存在する超分子構造体であり、細胞外マトリックス(Extracellular Matrix: ECM)ともいい、ECMと略される。本発明の方法に使用可能な基底膜マトリックスとして、例えば「Engelbreth-Holm-Swarm(EHS)マウス肉腫から抽出した可溶性基底膜」について市販されているマトリゲル(商品名) が挙げられる。培養基材への基底膜マトリックス等の重層は、自体公知の方法、又は今後開発される方法によることができる。本発明の細胞の培養に使用する培養容器等の培養基材には、基底膜マトリックス等をコーティングしたものを用いて培養することができる。 In the step of the differentiation induction method of the present invention, a solution containing a basement membrane matrix can be overlaid on cells in culture and further cultured. The basement membrane matrix is a supramolecular structure existing outside cells in an organism, also called extracellular matrix (ECM), abbreviated as ECM. As a basement membrane matrix that can be used in the method of the present invention, for example, Matrigel (trade name) marketed for "soluble basement membrane extracted from Engelbreth-Holm-Swarm (EHS) mouse sarcoma" can be mentioned. The overlaying of the basement membrane matrix or the like on the culture substrate can be performed by a method known per se or a method to be developed in the future. A culture substrate such as a culture vessel used for culturing the cells of the present invention can be cultured using a basement membrane matrix or the like coated.
 例えば、分化開始の24時間~1時間前に、4℃の分化誘導用基本培地を用いて100倍希釈したマトリゲル希釈液を培養基材に重層し、分化誘導処理開始時に培養基材に付着されなかった溶液を除去したのちに、分化誘導用培養基材として使用することができる。また、分化誘導処理途中にマトリゲルを使用する場合は、小腸上皮様細胞への分化誘導20日目に、16℃の分化誘導培地(differentiation DMEM-high Glucose培地)を用いて100倍希釈したマトリゲル希釈液を小腸上皮様細胞上に重層するのが好適である。分化途中にマトリゲルを重層することによって、小腸上皮様細胞への分化が促進される。 For example, Matrigel diluted solution diluted 1: 100 using a basic culture medium for differentiation induction at 4 ° C. is overlaid on the culture substrate 24 hours to 1 hour before the initiation of differentiation, and attached to the culture substrate at the start of the differentiation induction treatment. After removing the solution which did not exist, it can be used as a culture base for differentiation induction. In addition, when using Matrigel in the middle of differentiation induction processing, Matrigel dilution diluted 100 fold using differentiation induction medium (differentiation DMEM-high Glucose medium) at 16 ° C on the 20th day of differentiation induction to small intestinal epithelial-like cells It is preferred to overlay the fluid on small intestinal epithelial cells. By overlaying Matrigel during differentiation, differentiation to small intestinal epithelial-like cells is promoted.
 本発明の分化誘導方法により得られる小腸上皮様細胞は、多能性幹細胞から人為的に分化誘導処理を行うことによって得られた小腸上皮様細胞である。当該小腸上皮様細胞は、薬物代謝酵素及び/又は薬物トランスポーターを発現していることを特徴とする。具体的には、本発明の小腸上皮様細胞は小腸上皮細胞マーカーであるVillin及びSIが陽性である。更に、本発明の小腸上皮様細胞は薬物代謝酵素であるCYP3A4や、薬物トランスポーターであるPEPT1などの発現量は、ヒト大腸と比較しても有意に高い値を示し、ヒト小腸に近い値を示す。また、小腸上皮細胞は細胞同士で強固に結びつき、タイトジャンクションを形成するが、本発明の分化誘導方法により得られた小腸上皮様細胞についても細胞膜抵抗(TEER)やタイトジャンクションの裏打ちタンパク質の一種であるZO-1(Zonula(Zona) occludens 1 protein、別名: Tight-junction protein-1: TJP-1)の測定値により優れたタイトジャンクション機能を有する。本発明は、当該分化誘導方法により得られた小腸上皮様細胞にも及ぶ。さらに本発明は、上記多能性幹細胞から人為的に分化誘導方法が施され、培養された培養物にも及ぶ。 The small intestinal epithelial-like cells obtained by the differentiation induction method of the present invention are small intestinal epithelial-like cells obtained by artificially inducing differentiation from pluripotent stem cells. The small intestine epithelial-like cells are characterized by expressing a drug metabolizing enzyme and / or a drug transporter. Specifically, the small intestine epithelial-like cells of the present invention are positive for small intestinal epithelial cell markers Villin and SI. Furthermore, the small intestine epithelial-like cells of the present invention show significantly higher expression levels of CYP3A4 which is a drug-metabolizing enzyme and PEPT1 which is a drug transporter, compared to human large intestine, and values close to human small intestine Show. In addition, small intestinal epithelial cells are tightly linked with each other to form tight junctions, but small intestinal epithelial-like cells obtained by the differentiation induction method of the present invention are also one of cell membrane resistance (TEER) and tight junction lining proteins. It has excellent tight junction function according to the measurement value of certain ZO-1 (Zonula (Zona) occludens 1 protein, aka: Tight-junction protein-1: TJP-1). The present invention extends to intestinal epithelial-like cells obtained by the method for inducing differentiation. Furthermore, the present invention extends to cultures cultured from the above pluripotent stem cells artificially subjected to the differentiation induction method.
 本発明は、上記分化誘導方法により得られる小腸上皮様細胞を、薬物毒性評価又は薬物動態評価に使用する方法にも及ぶ。さらに、上記分化誘導方法により得られる小腸上皮様細胞を用いることを特徴とする、薬物毒性評価方法及び/又は薬物動態評価方法にも及ぶ。さらに、当該小腸上皮様細胞を用いることを特徴とする、薬物-薬物間相互作用の検査方法や薬物代謝酵素誘導試験方法にも及ぶ。このようにして得られた小腸上皮様細胞に対して、医薬品候補化合物を添加することで、薬物代謝・薬物吸収、薬物毒性及び/又は薬物動態、薬物-薬物間相互作用、薬物代謝酵素誘導等について、各々検査し、評価することができる。従来は初代培養のヒト小腸上皮細胞は入手が困難であり、また個体差による性状の違いが問題であったのに対し、本発明の分化誘導方法により、安定的に優れた小腸上皮様細胞を提供可能である。 The present invention also extends to methods of using small intestine epithelial-like cells obtained by the above-described differentiation induction method for drug toxicity evaluation or pharmacokinetic evaluation. Furthermore, the present invention extends to a drug toxicity evaluation method and / or a pharmacokinetic evaluation method characterized by using the small intestine epithelial-like cells obtained by the above-mentioned differentiation induction method. Furthermore, the present invention also extends to a method for testing drug-drug interactions and a method for inducing drug metabolizing enzyme induction characterized by using the small intestine epithelial-like cells. Drug metabolism / drug absorption, drug toxicity and / or pharmacokinetics, drug-drug interaction, drug metabolizing enzyme induction etc. by adding a drug candidate compound to the small intestine epithelial-like cells thus obtained Each can be examined and evaluated. In the past, human intestinal epithelial cells in primary culture were difficult to obtain, and differences in characteristics due to individual differences were a problem. However, the method for inducing differentiation of the present invention allows stable and superior small intestinal epithelial-like cells to be obtained. It can be provided.
 以下、本発明の理解を深めるために実施例及び実験例を示して本発明を具体的に説明するが、これらは本発明の範囲を限定するものではないことはいうまでもない。なお、本発明の多能性幹細胞から小腸上皮様細胞(enterocyte-like cells: 以下単に「ELC」ともいう。)への分化誘導方法に係る各実施例では、多能性幹細胞からの分化誘導に係る各工程ごとに説明する。 EXAMPLES Hereinafter, the present invention will be specifically described by showing examples and experimental examples to further understand the present invention, but it goes without saying that these do not limit the scope of the present invention. In each of the examples according to the method for inducing differentiation of pluripotent stem cells of the present invention into small intestine epithelial-like cells (hereinafter simply referred to as "ELC"), the method for inducing differentiation from pluripotent stem cells The respective steps will be described.
(参考例1)各種培地組成
 本実施例で示す培養方法では、ヒトiPS細胞に対する培地が必要である。本参考例では、各種培養に使用可能な培養液の組成について説明する。
(Reference Example 1) Various Medium Composition The culture method shown in this example requires a medium for human iPS cells. In this reference example, the composition of a culture solution that can be used for various cultures will be described.
培地1:ヒトES/iPS細胞未分化維持培地としては、ReproStem、iPSellon、E8、mTeSR、StemFit(R)AK03N、StemFit(R)AK02Nなどの各種幹細胞維持培地を使用することができる。以後、当該培地を「培地1」という。 Medium 1: Various stem cell maintenance media such as ReproStem, iPSellon, E8, mTeSR, StemFit (R) AK03N, StemFit (R) AK02N can be used as human ES / iPS cell undifferentiated maintenance media. Hereinafter, the medium is referred to as "medium 1".
培地2:RPMI1640培地(Sigma社)に1×GlutaMAX(Thermo fisher scientific社)、B27 Supplement(Thermo fisher scientific社)、ペニシリン/ストレプトマイシンを含む培地を使用することができる。以後、当該培地を「培地2」という。 Medium 2: A medium containing 1 × GlutaMAX (Thermo fisher scientific), B27 Supplement (Thermo fisher scientific), penicillin / streptomycin in RPMI 1640 medium (Sigma) can be used. Hereinafter, the medium is referred to as "medium 2".
培地3:内胚葉細胞以降の分化誘導にはdifferentiation DMEM-high Glucose 培地(10% Knock Serum Replacement(Thermo fisher scientific社)、1% Non Essential Amino Acid Solution(Thermo fisher scientific社)、ペニシリン/ストレプトマイシン、1×GlutaMAX(Thermo fisher scientific社)を含むDMEM-high Glucose培地(Wako社))を使用することができる。以後、当該「differentiation DMEM-high Glucose 培地」を「培地3」という。 Medium 3: Differentiation DMEM-high Glucose medium (10% Knock Serum Replacement (Thermo fisher scientific)), 1% Non Essential Amino Acid Solution (Thermo fisher scientific), penicillin / streptomycin, 1 for differentiation induction after endodermal cells It is possible to use DMEM-high Glucose medium (Wako) containing x GlutaMAX (Thermo fisher scientific). Hereinafter, the “differentiation DMEM-high Glucose medium” is referred to as “medium 3”.
(実施例1)内胚葉細胞の作製
 本実施例では、ELCへの分化誘導工程における多能性幹細胞を内胚葉細胞に分化誘導する工程について説明する。本実施例では、ヒトiPS 細胞株としてTic(JCRB1331)を用いた。上記多能性幹細胞は、50μg/cm2の濃度でGrowth Factor Reduced(GFR)Matrigel(R)Matrix(Corning社)をコートした細胞培養用マルチプレート(住友ベークライト社)を用い、フィーダー細胞上にて、Tiss. Cult. Res. Commun., 27: 139-147 (2008) に記載の方法に従い培養した。培地は上記培地1のうち、ReproStem(商品名)を用いて培養した。
(Example 1) Preparation of endoderm cells In this example, the step of inducing differentiation of pluripotent stem cells in the differentiation induction step to ELCs into endoderm cells will be described. In this example, Tic (JCRB1331) was used as a human iPS cell line. The above pluripotent stem cells were prepared on feeder cells using Multiplate for cell culture (Sumitomo Bakelite) coated with Growth Factor Reduced (GFR) Matrigel (R) Matrix (Corning) at a concentration of 50 μg / cm 2 . , Tiss. Cult. Res. Commun., 27: 139-147 (2008). The medium was cultured using ReproStem (trade name) of the above-mentioned medium 1.
 Tic(JCRB1331)の培養系にActivin Aを100 ng/ml加えて4日間培養し、分化誘導処理を行い、以下の実施例及び比較例によるELC作製のための内胚葉細胞を作製した。 100 ng / ml of Activin A was added to the culture system of Tic (JCRB1331), and culture was carried out for 4 days for differentiation induction treatment to prepare endoderm cells for preparation of ELC according to the following examples and comparative examples.
(実施例2)腸管前駆細胞の作製
 本実施例では、ELCへの分化誘導工程における内胚葉細胞から腸管前駆細胞に分化誘導する工程について説明する。
Example 2 Preparation of Intestinal Progenitor Cells In this example, the step of inducing differentiation from endoderm cells to intestinal progenitor cells in the step of inducing differentiation to ELC will be described.
 内胚葉細胞から腸管前駆細胞への分化には、Wnt/βcateninシグナルの活性化が重要である。本実施例では、まずWnt/βcateninシグナルを活性化させるGSK3β阻害剤のスクリーニングを行った。実験プロトコールを図1に示した。ポジティブコントロールとして既報のBIO・DAPT(Stem Cells. 2013 Jun;31(6):1086-96.)を使用した。
BIO: 6BIO (2'Z,3'E)-6-Bromoindirubin-3'-oxime
DAPT: N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-(S)-phenylglycine t-butyl ester
Activation of Wnt / β catenin signal is important for differentiation of endoderm cells into intestinal progenitor cells. In this example, first, screening for a GSK3β inhibitor that activates Wnt / β-catenin signal was performed. The experimental protocol is shown in FIG. As a positive control, previously reported BIO · DAPT (Stem Cells. 2013 Jun; 31 (6): 1086-96.) Was used.
BIO: 6BIO (2'Z, 3'E) -6-Bromoindirubin-3'-oxime
DAPT: N- [N- (3,5-Difluorophenacetyl-L-alanyl)]-(S) -phenylglycine t-butyl ester
 実施例1と同手法により、Tic(JCRB1331)を内胚葉細胞へと分化誘導した後、GSK3β阻害剤である SB216763(20 μM)、CHIR99021(3 μM)、LY2090314(20 nM)、BIO(5 μM)及び、BIO(5 μM)+ DAPT(10 μM)を内胚葉細胞にそれぞれ4日間作用させた。 In the same manner as in Example 1, after Tic (JCRB1331) is induced to differentiate into endodermal cells, SB216763 (20 μM), CHIR99021 (3 μM), LY2090314 (20 nM), BIO (5 μM), which are GSK3β inhibitors. And BIO (5 μM) + DAPT (10 μM) were allowed to act on endodermal cells for 4 days, respectively.
 上記各GSK3β阻害剤を作用させた後、膵前駆細胞マーカーであるPDX1(Pancreatic and duodenal homeobox 1)、肝前駆細胞マーカーであるAFP(alpha fetoprotein)及び、腸管前駆細胞マーカーであるCDX2の遺伝子発現量を定量的RT-PCR法により解析した。その結果、LY2090314の作用により、膵前駆細胞マーカーであるPDX1、肝前駆細胞マーカーであるAFPの遺伝子発現量はDMSO添加群に比べ減少し、腸管前駆細胞マーカーであるCDX2は既報の方法(BIO・DAPT(Stem Cells. 2013 Jun;31(6): 1086-96.))と同等の遺伝子発現量を示した(図2)。 After acting each of the above GSK3β inhibitors, gene expression levels of pancreatic progenitor cell marker PDX1 (Pancreatic and duodenal homeobox 1), hepatic progenitor cell marker AFP (alpha fetoprotein) and intestinal progenitor cell marker CDX2 Were analyzed by quantitative RT-PCR. As a result, due to the action of LY2090314, the gene expression amount of PDX1 which is a pancreatic precursor cell marker and AFP which is a hepatic precursor cell marker is reduced as compared with the DMSO addition group, and CDX2, which is an intestinal precursor cell marker, The gene expression level was shown to be equivalent to DAPT (Stem Cells. 2013 Jun; 31 (6): 1086-96.) (FIG. 2).
 上記作用後、CDX2のタンパク質発現量をウエスタンブロット法により解析した。CDX2のタンパク発現量においても、LY2090314の作用により、既報の方法と同等の発現量を示した(図3)。腸管前駆細胞への分化誘導効率を評価するために、フローサイトメトリーを用いてCDX2陽性細胞率を算出した。その結果、LY2090314の作用によりCDX2陽性細胞率は約50%になった(図4)。 CDX2の発現を免疫染色により解析した。免疫染色においてもLY2090314の作用によりCDX2の発現を確認できた(図5)。 After the above action, the protein expression level of CDX2 was analyzed by Western blotting. Also in the protein expression level of CDX2, the expression level equivalent to that of the previously reported method was shown by the action of LY2090314 (FIG. 3). In order to evaluate the induction of differentiation into intestinal progenitor cells, the percentage of CDX2 positive cells was calculated using flow cytometry. As a result, the percentage of CDX2 positive cells became about 50% by the action of LY2090314 (FIG. 4). The expression of CDX2 was analyzed by immunostaining. Also in immunostaining, the expression of CDX2 could be confirmed by the action of LY2090314 (FIG. 5).
 上記結果より、内胚葉細胞に各種GSK3β阻害剤作用させた場合、LY2090314を作用させた場合に最も効果的に腸管前駆細胞への分化することが確認された。 From the above results, when endodermal cells were caused to act by various GSK3β inhibitors, it was confirmed that differentiation to intestinal progenitor cells was most effectively performed when LY2090314 was allowed to act.
(実施例3)LY2090314の使用濃度
 本実施例では、実施例2の結果より内胚葉細胞から腸管前駆細胞への分化にはLY2090314を作用させた場合に最も効果的に腸管前駆細胞への分化することが確認されたことから、最も効果的なLY2090314の使用濃度を確認した。
(Example 3) Use concentration of LY2090314 In this example, according to the result of Example 2, differentiation to endodermal cells to intestinal progenitor cells is most effectively differentiated to intestinal progenitor cells when LY2090314 is allowed to act From the fact that it was confirmed, the most effective LY2090314 used concentration was confirmed.
 実施例1と同手法により、Tic(JCRB1331)を内胚葉細胞へと分化誘導した後、LY2090314を様々な濃度で、内胚葉細胞に4日間作用させ、膵前駆細胞マーカーであるPDX1、肝前駆細胞マーカーであるAFP及び、腸管前駆細胞マーカーであるCDX2の遺伝子発現量を定量的RT-PCR法により解析した。その結果、20 nMのLY2090314の作用により、膵前駆細胞マーカーであるPDX1、肝前駆細胞マーカーであるAFPの遺伝子発現量は他の濃度に比べ減少し、腸管前駆細胞マーカーであるCDX2の遺伝子発現量は最も高かった(図6)。 After Tic (JCRB1331) is induced to differentiate into endodermal cells in the same manner as in Example 1, LY2090314 is allowed to act on endodermal cells at various concentrations for 4 days to be a pancreatic progenitor cell marker PDX1, a hepatic progenitor cell The gene expression levels of the marker AFP and the intestinal progenitor cell marker CDX2 were analyzed by a quantitative RT-PCR method. As a result, due to the action of LY2090314 at 20 nM, the gene expression level of pancreatic progenitor cell marker PDX1 and liver progenitor cell marker AFP is reduced compared to other concentrations, and gene expression level of intestinal progenitor cell marker CDX2 Was the highest (Figure 6).
 CDX2のタンパク質発現量をウエスタンブロット法により解析した。CDX2のタンパク質発現量において、10 nM及び20 nMのLY2090314の作用により、CDX2の高い発現量を示した(図7)。腸管前駆細胞への分化誘導効率を評価するために、フローサイトメトリーを用いてCDX2陽性細胞率を算出した。その結果、10 nM及び20 nMのLY2090314の作用によりCDX2陽性細胞率はそれぞれ約41%及び、約50%になった(図8)。
 これらの結果より、LY2090314を用いて内胚葉細胞から腸管前駆細胞への分化を行うには、10 nM 以上の濃度が適していることが示唆された。
The protein expression level of CDX2 was analyzed by Western blotting. On the protein expression level of CDX2, the action of 10 nM and 20 nM LY2090314 showed high expression level of CDX2 (FIG. 7). In order to evaluate the induction of differentiation into intestinal progenitor cells, the percentage of CDX2 positive cells was calculated using flow cytometry. As a result, due to the action of LY2090314 at 10 nM and 20 nM, the percentage of CDX2 positive cells became approximately 41% and approximately 50%, respectively (FIG. 8).
From these results, it was suggested that a concentration of 10 nM or more is suitable for differentiation of endoderm cells into intestinal progenitor cells using LY2090314.
(実施例4)ELCの作製(液性化合物のスクリーニング)1
 本実施例では、ELCへの分化誘導工程における内胚葉細胞から腸管前駆細胞を経てELCに分化誘導する工程について説明する。腸管前駆細胞からELCへの分化誘導に効果的な液性因子化合物のスクリーニングのための実験プロトコールを図9に示した。
Example 4 Preparation of ELC (Screening of Liquid Compound) 1
In this example, a step of inducing differentiation from an endoderm cell to an ELC via an intestinal progenitor cell in the step of inducing differentiation to ELC will be described. An experimental protocol for screening of humoral factor compounds effective for inducing differentiation of intestinal progenitor cells to ELC is shown in FIG.
 実施例1と同手法により、Tic(JCRB1331)を内胚葉細胞へと分化誘導した後、LY2090314(20 nM)を内胚葉細胞に4日間作用させて腸管前駆細胞へ分化誘導し、その後ELCへの分化誘導方法について検討した。LY2090314(10 nM)、SB202190(10 μM)、Nicotinamide(10 mM)、DEX(1 μM)、Triiodothyronine(T3、1 μM)、SB431542(10 μM)、HGF(20 ng/ml)、EGF(50 ng/ml)、IGF-1(20 ng/ml)、Wnt3a(25% Wnt3a 発現細胞培養上清)、Wnt3a + R-spondin + Noggin(WRN、25% Wnt3a + R-spondin + Noggin 発現細胞培養上清)、[Leul5]-Gastrin 1(Gastrin、10 nM)及び、Trichostatin A(100 nM)の各種液性因子化合物をそれぞれ12日間培養した。陽性コントロールとして既報のBIO・DAPTを用い、陰性コントロールとしてDMSOを用いた。なお、その間の培地交換は2日に1回行った。 In the same manner as in Example 1, after Tic (JCRB1331) is induced to differentiate into endodermal cells, LY2090314 (20 nM) is allowed to act on endodermal cells for 4 days to induce differentiation into intestinal progenitor cells, and then to ELC We examined the differentiation induction method. LY2090314 (10 nM), SB202190 (10 μM), Nicotinamide (10 mM), DEX (1 μM), Triiodothyronine (T3, 1 μM), SB431542 (10 μM), HGF (20 ng / ml), EGF (50 ng) / ml), IGF-1 (20 ng / ml), Wnt3a (25% Wnt3a expressing cell culture supernatant), Wnt3a + R-spondin + Noggin (WRN, 25% Wnt 3a + R-spondin + Noggin expressing cell culture supernatant ), [Leul5] -Gastrin 1 (Gastrin, 10 nM) and Trichostatin A (100 nM) were cultured for 12 days. The previously reported BIO • DAPT was used as a positive control, and DMSO was used as a negative control. In addition, the medium exchange in between was performed once every two days.
 ヒトiPS 細胞からの培養開始より20日目(各種液性因子化合物を含む培地で培養12日目)に、小腸上皮細胞のマーカーとしてVillin遺伝子及びISX遺伝子の発現を定量的RT-PCRにより解析した。その結果、各種液性因子化合物の内SB202190、DEX、T3、SB431542、EGF、IGF-1、Wnt3a、Wnt3a+R-spondin+Nogginの作用により、小腸上皮細胞マーカーであるVillin、ISXの遺伝子発現量が上昇した(図10)。 The expression of Villin gene and ISX gene as markers of small intestinal epithelial cells was analyzed by quantitative RT-PCR on the 20th day of culture starting from human iPS cells (12th day of culture in medium containing various humoral factor compounds) . As a result, the gene expression levels of Villin and ISX, which are small intestinal epithelial cell markers, by the action of SB202190, DEX, T3, SB431542, EGF, IGF-1, Wnt3a, Wnt3a + R-spondin + Noggin among various humoral factor compounds. Rose (Figure 10).
 上記の結果、小腸上皮細胞マーカーの遺伝子発現量を増加させた化合物あるいは液性因子化合物を様々な組み合わせで作用させ、ELCへの分化に適した組み合わせを探索した。その結果、Wnt3a、R-spondin、Noggin、EGF、SB202190、IGF-1、DEXの組み合わせにより、最もVillin、ISX及びCDX2の遺伝子発現量が増加した(図11、図12)。 As a result of the above, compounds in which the gene expression amount of small intestinal epithelial cell markers was increased or humoral factor compounds were made to act in various combinations, and combinations suitable for differentiation into ELC were searched. As a result, the combination of Wnt3a, R-spondin, Noggin, EGF, SB202190, IGF-1, and DEX most increased the amount of Villin, ISX, and CDX2 gene expression (FIGS. 11 and 12).
 以上の結果より、ELCへの分化には、Wnt3a、R-spondin、Noggin、EGF、SB202190、IGF-1、DEXの作用が有効である可能性が示唆された。 From the above results, it was suggested that the action of Wnt3a, R-spondin, Noggin, EGF, SB202190, IGF-1, and DEX may be effective for differentiation into ELC.
(実施例5)ELCの作製(培養期間の最適化)
 本実施例では、ELCへの分化誘導における培養期間の最適化について検討した。実験プロトコールは、図13に示した。
Example 5 Preparation of ELC (Optimization of Culture Period)
In this example, optimization of the culture period in induction of differentiation into ELC was examined. The experimental protocol is shown in FIG.
 実施例1と同手法により、Tic(JCRB1331)を内胚葉細胞へと分化誘導した後、LY2090314(20 nM)を内胚葉細胞に4日間作用させて腸管前駆細胞へ分化誘導し、図13に示す各濃度の液性因子化合物を含む培地で12日間、16日間又は20日間の各培養期間を変えて培養し、ELCへの分化誘導に係る期間の最適化を確認した。各期間培養後、小腸上皮細胞マーカーとしてVillin遺伝子、ISX遺伝子及びCDX2遺伝子の発現を定量的RT-PCRにより解析した。その結果、ヒトiPS 細胞からの培養開始より28日目(各液性因子化合物を含む培地で培養20日目)に各遺伝子発現量は最高値を示した(図14)。 In the same manner as in Example 1, after Tic (JCRB1331) was induced to differentiate into endodermal cells, LY2090314 (20 nM) was allowed to act on endodermal cells for 4 days to induce differentiation into intestinal progenitor cells, as shown in FIG. Each culture period was changed for 12 days, 16 days or 20 days in a culture medium containing humoral factor compounds at various concentrations, and optimization of the period for induction of differentiation to ELC was confirmed. After each period of culture, the expression of Villin gene, ISX gene and CDX2 gene as small intestinal epithelial cell markers was analyzed by quantitative RT-PCR. As a result, each gene expression level showed the highest value on the 28th day (20th day of culture in the medium containing each humoral factor compound) from the start of culture from human iPS cells (FIG. 14).
 本発明の方法で作製したヒトiPS 細胞からの培養開始より28日目のELCについて、ヒト成人小腸(AI)の値を1として、小腸上皮細胞マーカーの遺伝子発現量を定量的RT-PCR法により解析した。その結果、ELCでのVillin、ISX、CDX2、ANPEP(alanyl aminopeptidase, membrane)の遺伝子発現量はヒト成人小腸(AI)の遺伝子発現量に近い値を示した。しかしながら、SI(Sucrase-isomaltase)の遺伝子発現量はヒト成人小腸(AI)の約62分の1であった(図15)。次にELCへの分化誘導効率を評価するために、フローサイトメトリーを用いてVillin及びSI陽性細胞率を算出した。その結果、Villin陽性細胞率は約95%、SI陽性細胞率は約88%になった(図16)。Villinの発現を免疫染色により解析した。免疫染色においてもVillinの発現を確認できた(図17)。 Regarding ELC on day 28 from the start of culture from human iPS cells prepared by the method of the present invention, the value of human adult small intestine (AI) is 1, and gene expression level of small intestine epithelial cell marker is determined by quantitative RT-PCR method It analyzed. As a result, the gene expression levels of Villin, ISX, CDX2, and ANPEP (alanyl aminopeptidase, membrane) in ELC showed values close to those of human adult small intestine (AI). However, the gene expression level of SI (Sucrase-isomaltase) was about 62 times smaller than that of human adult small intestine (AI) (FIG. 15). Next, in order to evaluate the differentiation induction efficiency to ELC, flow cytometry was used to calculate Villin and SI positive cell rate. As a result, the Villin positive cell rate was about 95%, and the SI positive cell rate was about 88% (FIG. 16). The expression of Villin was analyzed by immunostaining. The expression of Villin could also be confirmed in the immunostaining (FIG. 17).
 以上の結果より、腸管前駆細胞にWnt3a、R-spondin、Noggin、EGF、SB202190、IGF-1、DEXを作用させ、ヒトiPS細胞からの分化誘導期間を28日にすることで、高効率でヒトiPS細胞からELCへ分化誘導が可能であることが示唆された。 From the above results, it is possible to achieve high efficiency by causing intestinal progenitor cells to react with Wnt3a, R-spondin, Noggin, EGF, SB202190, IGF-1, and DEX, and differentiating induction period from human iPS cells to 28 days. It was suggested that differentiation induction from iPS cells to ELC is possible.
(実施例6)ELCの作製
 本実施例では、以下の実験例6-1~6-6により性状を確認するためのELCを作製した。実験プロトコールを図18に示した。実施例1と同手法により、Tic(JCRB1331)を内胚葉細胞へと分化誘導した後、LY2090314(20 nM)を内胚葉細胞に4日間作用させて腸管前駆細胞へ分化誘導し、Wnt3a、R-spondin、Nogginを含む培地3にEGF(50 ng/ml)、IGF-1(20 ng/ml)、SB202190(10μM)、DEX(1μM)を含む培地で20日間(ヒトiPS 細胞からの培養開始より28日)培養した。本実施例で作製したELCを、以下の実験例6-1~6-6で使用した。なお、以下の実験例6-5で作製したELCは、Cell Culture insert上で分化誘導して得た。
Example 6 Preparation of ELC In this example, an ELC for confirming the properties was prepared by the following Experimental Examples 6-1 to 6-6. The experimental protocol is shown in FIG. In the same manner as in Example 1, after Tic (JCRB1331) is induced to differentiate into endodermal cells, LY2090314 (20 nM) is allowed to act on endodermal cells for 4 days to induce differentiation into intestinal progenitor cells, Wnt3a, R- 20 days in a medium containing EGF (50 ng / ml), IGF-1 (20 ng / ml), SB202190 (10 μM), DEX (1 μM) in medium 3 containing spondin and Noggin (from culture initiation from human iPS cells) 28 days) cultured. The ELCs prepared in this example were used in the following Experimental Examples 6-1 to 6-6. The ELCs prepared in the following Experimental Example 6-5 were obtained by differentiation induction on Cell Culture insert.
(実験例6-1)ELCの発現遺伝子
 実施例6で作製したELCについて、腸に関連する各種発現遺伝子を確認した。
(Experimental Example 6-1) Expressed Genes of ELC With respect to the ELCs prepared in Example 6, various expressed genes associated with intestine were confirmed.
 本発明のELCが、小腸型の腸管上皮細胞の性質を有するか評価するために、小腸で高発現する遺伝子であるApoa4(apolipoprotein A4)、Apoc2、Apoc3、Fgf19(fibroblast growth factor 19)の遺伝子発現量を定量的RT-PCR法により解析した。前記ELCにおけるApoa4、Apoc2、Apoc3、Fgf19の遺伝子発現量は、ヒト成人結腸(colon)の遺伝子発現量より高発現しており、ヒト成人小腸(AI)の遺伝子発現量に近い値を示した(図19)。 In order to evaluate whether the ELC of the present invention has properties of intestinal epithelial cells of small intestine type, gene expression of Apoa4 (apolipoprotein A4), Apoc2, Apoc3 and Fgf19 (fibroblast growth factor 19) which are genes highly expressed in small intestine The amount was analyzed by quantitative RT-PCR. The gene expression level of Apoa4, Apoc2, Apoc3 and Fgf19 in the ELC was higher than that of human adult colon (colon), and showed a value close to that of human adult small intestine (AI) ( Figure 19).
 前記ELCが、大腸型の腸管上皮細胞の性質を有するか評価するために、大腸で高発現する遺伝子であるCar1(carbonic anhydrase 1)、Car2、Slc2a2(solute carrier family 2 member 2)、Slc9a3の発現量を定量的RT-PCR法により解析した。前記ELCにおけるCar1、Car2、Slc2a2、Slc9a3の遺伝子発現量は、ヒト成人結腸(colon)の遺伝子発現量より低く、ヒト成人小腸(AI)の遺伝子発現量に近い値を示した(図20)。
 以上の結果から、前記ELCは小腸型の腸管上皮細胞である可能性が示唆された。
Expression of Car1 (carbonic anhydrase 1), Car2, Slc2a2 (solute carrier family 2 member 2), Slc9a3, which are genes highly expressed in the large intestine, to evaluate whether the ELC has the property of large intestine type intestinal epithelial cells The amount was analyzed by quantitative RT-PCR. The gene expression levels of Car1, Car2, Slc2a2 and Slc9a3 in the ELC were lower than the gene expression levels of human adult colon (colon), and showed values close to the gene expression levels of human adult small intestine (AI) (FIG. 20).
From the above results, it was suggested that the ELC may be a small intestine type intestinal epithelial cell.
(実験例6-2)ELCの薬物代謝酵素・薬物抱合酵素作用
 実施例6で作製したELCにおける薬物代謝酵素・薬物抱合酵素であるCYP2C9(cytochrome P450 family 2 subfamily C member 9)、CYP2J2、CYP3A4、UGT1A1(UDP glucuronosyltransferase family 1 member A1)、UGT1A3、CES2(carboxylesterase 2)の遺伝子発現量を定量的RT-PCR法により解析した。前記ELCにおけるCYP2J2、CYP3A4、UGT1A1、UGT1A3、CES2の遺伝子発現量は、ヒト成人小腸(AI)より低い値を示した。一方、CYP3A4の遺伝子発現量は、ヒト成人結腸(colon)に比べ高発現していた(図21)。
(Experimental Example 6-2) Drug-Metabolizing Enzyme-Drug Conjugating Enzyme Function of ELC The drug-metabolizing enzyme-drug-conjugated enzyme in the ELC prepared in Example 6 was CYP2C9 (cytochrome P450 family 2 subfamily C member 9), CYP2J2, CYP3A4, The gene expression levels of UGT1A1 (UDP glucuronosyltransferase family 1 member A1), UGT1A3, and CES2 (carboxylesterase 2) were analyzed by a quantitative RT-PCR method. The gene expression levels of CYP2J2, CYP3A4, UGT1A1, UGT1A3 and CES2 in the ELC showed lower values than human adult small intestine (AI). On the other hand, the gene expression level of CYP3A4 was higher than that of human adult colon (FIG. 21).
 前記ELCにおけるCYP3A4の誘導能について、CYP3A4誘導作用を有するリファンピシン(RIF、20 μM)及び、活性型ビタミンD3(VD3、100 nM)をそれぞれ48時間作用させ、その後CYP3A4の遺伝子発現量を定量的RT-PCR法により解析した。その結果、リファンピシン、活性型VD3の作用によりCYP3A4の遺伝子発現量は有意に上昇した。以上の結果より、前記ELCは、CYP3A4の誘導試験に応用できる可能性が示唆された(図22)。 With regard to the inducibility of CYP3A4 in the ELC, Rifampicin (RIF, 20 μM) having CYP3A4 inducing action and active vitamin D3 (VD3, 100 nM) are each allowed to act for 48 hours, and then the gene expression level of CYP3A4 is quantified RT -Analyzed by PCR method. As a result, the gene expression level of CYP3A4 was significantly increased by the action of rifampicin and activated VD3. From the above results, it was suggested that the ELC could be applied to the induction test of CYP3A4 (FIG. 22).
(実験例6-3)ELCにおけるカルボキシルエステラーゼ2(CES2)の活性
 CES2は小腸に局在し、膜透過性に係る酵素である。実施例6で作製したELCにおけるCES2の活性をCES2の基質であるFD(Fluorescein diacetate)を用いて評価した。また、CES2の阻害剤としてロペラミド(1 mM)を使用した。前記ELCにおけるCES2の活性は、CES2阻害剤であるロペラミドにより有意に阻害された。以上の結果より、前記ELCはCES2の活性を評価できる可能性が示唆された(図23)。
(Experimental Example 6-3) Activity of Carboxylesterase 2 (CES2) in ELC CES 2 is localized in the small intestine and is an enzyme involved in membrane permeability. The activity of CES2 in the ELC prepared in Example 6 was evaluated using FD (Fluorescein diacetate) which is a substrate of CES2. In addition, loperamide (1 mM) was used as a CES2 inhibitor. The activity of CES2 in the ELC was significantly inhibited by the CES2 inhibitor loperamide. From the above results, it was suggested that the ELC could evaluate the activity of CES2 (FIG. 23).
(実験例6-4)ELCにおける薬物トランスポーター遺伝子の発現
 実施例6で作製したELCにおける頂端膜側に発現する薬物トランスポーターであるMDR1(multidrug resistance protein 1)、BCRP(breast cancer resistance protein)、PEPT1(peptide transporter 1)、MRP2(multidrug resistance-associated protein 2)、MRP4及び、MRP6の遺伝子発現量を定量的RT-PCR法により解析した。前記ELCにおけるBCRP、PEPT1、MRP2、MRP4及び、MRP6の遺伝子発現量は、ヒト成人小腸(AI)に近い値を示したが、MDR1の遺伝子発現量は、ヒト成人小腸(AI)に比べ約1/66であった。一方で、PEPT1の遺伝子発現量はヒト成人結腸(colon)に比べ100倍以上高発現していた(図24)。
(Experimental Example 6-4) Expression of Drug Transporter Gene in ELC The drug transporter MDR1 (multidrug resistance protein 1), BCRP (breast cancer resistance protein), which is the drug transporter expressed on the apical membrane side in the ELC prepared in Example 6. The gene expression levels of PEPT1 (peptide transporter 1), MRP2 (multidrug resistance-associated protein 2), MRP4 and MRP6 were analyzed by quantitative RT-PCR. Although the gene expression levels of BCRP, PEPT1, MRP2, MRP4 and MRP6 in the ELC showed values close to human adult small intestine (AI), the gene expression level of MDR1 was about 1 compared to human adult small intestine (AI) It was / 66. On the other hand, the gene expression level of PEPT1 was over 100 times higher than that of human adult colon (FIG. 24).
 前記ELCにおける基底膜側に発現する薬物トランスポーターであるMRP1、MRP3、MRP5、OSTα(organic solute transporter alpha)及び、OSTβの遺伝子発現量を定量的RT-PCR法により解析した。前記ELCにおけるMRP1、MRP5、OSTα及び、OSTβの遺伝子発現量は、ヒト成人小腸(AI)に近い値を示した。しかしながら、MRP3の遺伝子発現量はヒト成人小腸(AI)の約1/16であった(図25)。 The gene expression levels of MRP1, MRP3, MRP5, OSTα (organic soluble transporter alpha) and OSTβ, which are drug transporters expressed on the basement membrane side in the ELC, were analyzed by quantitative RT-PCR. The gene expression levels of MRP1, MRP5, OSTα and OSTβ in the ELC showed values close to human adult small intestine (AI). However, the gene expression level of MRP3 was about 1/16 that of human adult small intestine (AI) (FIG. 25).
(実験例6-5)ELCのバリア機能
 ELCでのバリア能を細胞膜抵抗(TEER)及びルシファーイエロー(LY)の膜透過係数により評価した。本実験例では、実施例6の手法でCell Culture insert上で分化誘導したELCを用いた。Cell Culture insert上で分化誘導したELCは、膜を通した細胞輸送アッセイに適している。
(Experimental Example 6-5) Barrier Function of ELC The barrier ability of ELC was evaluated by the membrane permeability coefficient of cell membrane resistance (TEER) and lucifer yellow (LY). In this experimental example, ELCs induced to differentiate on Cell Culture insert by the method of Example 6 were used. Differentiation-induced ELCs on Cell Culture inserts are suitable for cell transport assays across membranes.
 ELCでのTEERを、ミリセル(Millicell)ERS-2抵抗値測定システム(Merck Millipore製)を用いて測定した。前記ELCのTEER値は約656Ω×cm2であった。さらに、カプリン酸(C10、10 mM)の作用によりTEER値は有意に低下した(図26A)。前記TEER 値の結果と一致して、タイトジャンクション開口剤であるC10によりLYの膜透過係数は増加した(図26B)。バリア能を有していること、C10によりLY透過量が増加したことから、前記ELCは吸収促進剤の開発にも応用できる可能性が考えられた。 The TEER at ELC was measured using a Millicell ERS-2 resistance measurement system (Merck Millipore). The TEER value of the ELC was about 656 Ω × cm 2 . Furthermore, the TEER value was significantly reduced by the action of capric acid (C10, 10 mM) (FIG. 26A). Consistent with the TEER value results, the membrane permeability coefficient of LY was increased by C10, a tight junction opener (FIG. 26B). It is thought that the ELC may be applied to the development of absorption enhancers because it has barrier ability and LY permeation amount is increased by C10.
(実験例6-6)ELCにおける薬物輸送機能
 実施例6で作製したELCにおける薬物輸送機能をMDR1輸送能により評価した。MDR1輸送能はローダミン123(Rhodamine123)を用いて、頂端膜側から基底膜側への透過量を指標に測定した。その結果、前記ELCにおいてMDR1阻害剤であるシクロスポリンA(CysA、10 μM)の作用により、ローダミン123の透過量は増加した。以上の結果より前記ELCはMDR1の頂端膜側から基底膜側への輸送能を評価できる可能性が示唆された(図27)。
(Experimental Example 6-6) Drug Transport Function in ELC The drug transport function in the ELC prepared in Example 6 was evaluated by MDR1 transport ability. MDR1 transportability was measured using Rhodamine 123 (Rhodamine 123), with the amount of permeation from the apical membrane side to the basement membrane side as an index. As a result, the permeation amount of rhodamine 123 was increased by the action of cyclosporin A (CysA, 10 μM), which is an MDR1 inhibitor, in the ELC. From the above results, it is suggested that the ELC may be able to evaluate the transport ability of MDR1 from the apical membrane side to the basement membrane side (FIG. 27).
 前記ELCにおける薬物輸送機能をPEPT1輸送能により評価した。PEPT1輸送能は蛍光ペプチドであるβ-Ala-Lys-AMCAを用いて、蛍光ペプチドの取り込みにより測定した。その結果、前記ELCにおいてPEPT1阻害剤であるカプトプリル(100 μM)の作用により、蛍光ペプチドであるβ-Ala-Lys-AMCAの取り込みは減少した。以上の結果より、前記ELCは、PEPT1の輸送能を評価できる可能性が示唆された(図28)。 The drug transport function in the ELC was evaluated by PEPT1 transport ability. PEPT1 transportability was measured by incorporation of the fluorescent peptide using the fluorescent peptide β-Ala-Lys-AMCA. As a result, the uptake of the fluorescent peptide β-Ala-Lys-AMCA was reduced by the action of the PEPT1 inhibitor captopril (100 μM) in the ELC. From the above results, it was suggested that the ELC could evaluate the transport ability of PEPT1 (FIG. 28).
(実施例7)腸管上皮様細胞の作製2
 実施例6に記載の方法と同様に図18に記載のプロトコールによりヒトiPS細胞株Tic(JCRB1331)から腸管上皮様細胞を作製した。以下、本実施例においても得られた腸管上皮様細胞を、単に「ELC」という。
Example 7 Preparation of Intestinal Epithelial-Like Cells 2
Intestinal epithelial-like cells were produced from human iPS cell line Tic (JCRB1331) according to the protocol described in FIG. 18 in the same manner as the method described in Example 6. Hereinafter, intestinal epithelial-like cells obtained also in the present example are simply referred to as "ELC".
(実験例7-1)ELCにおける細胞間接着マーカーの発現
 実施例7で作製したELCについて、細胞間接着マーカーであるE-カドヘリン及び、Zonula occludens-1(ZO-1)の発現を細胞免疫染色により解析した。細胞免疫染色のために、細胞を固定液(PFA: paraformaldehyde)を用いて10分間固定し、2%仔牛血清アルブミン(BSA)及び0.2%界面活性剤(TritonX-100)を含むPBS溶液で細胞をブロッキングした後、一次抗体を加えて4℃一夜おき、二次抗体を加えて室温で1時間置いた。一次抗体としてAnti-E Cadherin antibody、Anti-ZO-1 antibody、二次抗体としてDonkey anti-rabbit IgG Secondary Antibody, Alexa Fluor 594 conjugateを用いた。細胞免疫染色によりE-カドヘリン及びZO-1の発現を確認できた(図29AB)。
(Experimental example 7-1) Expression of intercellular adhesion marker in ELC With respect to ELC prepared in Example 7, cell immunostaining of expression of E-cadherin which is intercellular adhesion marker and Zonula occludens-1 (ZO-1) It analyzed by. For cell immunostaining, fix the cells in fixative (PFA: paraformaldehyde) for 10 minutes, and use PBS solution containing 2% calf serum albumin (BSA) and 0.2% surfactant (Triton X-100). After blocking, the primary antibody was added and kept at 4 ° C. overnight, and the secondary antibody was added and kept at room temperature for 1 hour. Anti-E Cadherin antibody and Anti-ZO-1 antibody were used as a primary antibody, and Donkey anti-rabbit IgG Secondary Antibody and Alexa Fluor 594 conjugate were used as a secondary antibody. Cell immunostaining confirmed the expression of E-cadherin and ZO-1 (FIG. 29 AB).
(実験例7-2)ヒトiPS細胞由来腸管前駆細胞におけるCDX2及びE-カドヘリンの発現
 実施例7のELC作製工程で得た腸管前駆細胞について、CDX2及びE-カドヘリンの発現を、上記と同手法を用いた細胞免疫染色により評価した。一次抗体としてAnti-CDX2 antibody、Anti-E Cadherin antibody、二次抗体としてDonkey anti-mouse IgG Secondary Antibody, Alexa Fluor 488 conjugate、Donkey anti-rabbit IgG Secondary Antibody, Alexa Fluor 594 conjugateを用いた。ヒトiPS細胞由来腸管前駆細胞はCDX2及びE-カドヘリンを発現しており、円柱上皮様細胞の形態を示した(図30)。
(Experimental Example 7-2) Expression of CDX2 and E-cadherin in Human iPS Cell-Derived Intestinal Progenitor Cells The expression of CDX2 and E-cadherin in the intestinal progenitor cells obtained in the ELC preparation step of Example 7 was the same as that described above It was evaluated by cell immunostaining using Anti-CDX2 antibody and Anti-E cadherin antibody were used as a primary antibody, Donkey anti-mouse IgG Secondary Antibody, Alexa Fluor 488 conjugate and Donkey anti-rabbit IgG Secondary Antibody and Alexa Fluor 594 conjugate were used as a secondary antibody. Human iPS cell-derived intestinal progenitor cells expressed CDX2 and E-cadherin and exhibited the morphology of columnar epithelial-like cells (FIG. 30).
(実験例7-3)ELCにおけるvillin及びPeptide transporter 1(PEPT1)の発現
 実施例7で作製したELCが極性を有しているかを評価した。頂端膜側に発現するvillin及びPEPT1の発現を免疫染色により確認したところ、ELCは円柱上皮様の形態を示し、頂端膜側にvillin及びPEPT1の発現を観察でき、極性を有することが確認された(図31)。
(Experimental Example 7-3) Expression of villin and Peptide transporter 1 (PEPT1) in ELC It was evaluated whether the ELC produced in Example 7 had polarity. When the expression of villin and PEPT1 expressed on the apical membrane side was confirmed by immunostaining, ELC showed a columnar epithelial-like morphology, the expression of villin and PEPT1 could be observed on the apical membrane side, and it was confirmed to have polarity. (Figure 31).
(実験例7-4)ELCにおけるカリフォスファターゼ(ALP)活性
 実施例7で作製したELCがALP活性を有しているかを評価した。ALP活性は、Blue-Color Staining Kit(System Bioscience社)を用いて細胞をALP染色(Blue-Color Staining Kit, System Bioscience)した。ELCはALP活性を有していることが示された(図32)。
(Experimental Example 7-4) Calyphosphatase (ALP) Activity in ELC It was evaluated whether the ELC prepared in Example 7 had ALP activity. For ALP activity, cells were stained with ALP (Blue-Color Staining Kit, System Bioscience) using Blue-Color Staining Kit (System Bioscience). ELC was shown to have ALP activity (FIG. 32).
(実験例7-5)ELCにおける形態学的評価1
 実施例7で作製したELCについて、透過型電子顕微鏡(Transmission Electron Microscope: TEM)を用いて観察し、形態学的評価を行った。ELCは円柱上皮様の形態を示し、頂端膜における微絨毛構造を観察できた(黒色矢印)(図33)。
(Experimental example 7-5) Morphological evaluation 1 in ELC
The ELC produced in Example 7 was observed using a transmission electron microscope (TEM), and morphological evaluation was performed. The ELC exhibited columnar epithelial-like morphology, and the microvilli structure in the apical membrane could be observed (black arrow) (FIG. 33).
(実験例7-6)ELCにおける形態学的評価2
 実施例7で作製したELCからなる細胞集団において、小腸を構成する細胞である腸内分泌細胞、パネート細胞及び杯細胞が存在するかを免疫染色により評価した。得られた細胞集団には、腸内分泌細胞マーカーであるChromograninAの陽性細胞、パネート細胞マーカーであるリゾチームの陽性細胞、杯細胞マーカーであるMucin2の陽性細胞を観察できた(図34)。その結果、ELCは生体の小腸上皮細胞と似た形態学的な特徴を示し、細胞集団には、生体と同様に小腸を構成する4種類の細胞が存在することが示唆された。
(Experimental example 7-6) Morphological evaluation 2 in ELC
In the cell population consisting of ELCs prepared in Example 7, it was evaluated by immunostaining whether enteroendocrine cells, panate cells and goblet cells, which are cells constituting the small intestine, were present. In the obtained cell population, positive cells of the enteroendocrine cell marker Chromogranin A, positive cells of lysozyme, which is a panate cell marker, and positive cells of a mucin cell marker, which is a goblet cell marker, can be observed (FIG. 34). As a result, ELC showed morphological characteristics similar to those of the small intestine epithelial cells of the living body, and it was suggested that there are four types of cells constituting the small intestine like the living body in the cell population.
(実験例7-7)ELCの特性
 実施例7で作製したELCについて、小腸型又は大腸型の腸管上皮細胞なのかを確認した。評価のために、マイクロアレイにより網羅的な遺伝子発現量の解析を行った。実施例7で作製したELCは、ヒト成人大腸(colon)よりもヒト成人小腸(AI)に似た遺伝子発現パターンを示した(図35)。
 以上の結果より、実施例7のELCは小腸型の腸管上皮様細胞である可能性が示唆された。
(Experimental Example 7-7) Characteristics of ELC The ELC produced in Example 7 was confirmed to be intestinal epithelial cells of small intestine type or large intestine type. A comprehensive analysis of gene expression levels was performed using a microarray for evaluation. The ELC prepared in Example 7 showed a gene expression pattern more similar to human adult small intestine (AI) than human adult colon (FIG. 35).
From the above results, it was suggested that the ELC of Example 7 may be a small intestine type intestinal epithelial-like cell.
(実験例7-8)ELCの膜透過性1
 本実験例では、実験例6-5と同様にCell Culture insert上で分化誘導したELCにおけるバリア能を、平均分子量3000-5000のFITC-デキストラン(Fluorescein isothiocyanate-dextran: FD4)の膜透過係数により評価した。1 mg/mlのFD4(Sigma-Aldrich)を含むHBSS溶液を細胞に加え、37℃で90分間反応させたときのFD4透過量を測定した。FD4透過量は蛍光プレートリーダー(TroStar LB941, Berthold)を用い、励起波長485nm、放射波長535nmで測定した。タイトジャンクション開口剤であるカプリン酸(C10、10 mM)を作用させたとき、FD4透過量が増加し、膜透過性が増したことが確認された(図36)。
Experimental Example 7-8 Membrane Permeability of ELC 1
In this experimental example, the barrier ability in ELC induced to differentiate on Cell Culture insert as in Experimental Example 6-5 is evaluated by the membrane permeability coefficient of FITC-dextran (Fluorescein isothiocyanate-dextran: FD4) having an average molecular weight of 3000-5000. did. The HBSS solution containing 1 mg / ml FD4 (Sigma-Aldrich) was added to the cells, and the FD4 permeation amount was measured when reacted at 37 ° C. for 90 minutes. The amount of FD4 transmission was measured using a fluorescence plate reader (TroStar LB941, Berthold) at an excitation wavelength of 485 nm and an emission wavelength of 535 nm. When the tight junction opener capric acid (C10, 10 mM) was allowed to act, it was confirmed that the FD4 permeation amount increased and the membrane permeability increased (FIG. 36).
 膜透過性(Papp)は以下の式により算出した・
Papp= δCr / δt × Vr / (A × C0 )
δCr = final receiver concentration; 
δt = assay time; 
Vr = receivervolume; 
A = transwell growth area; 
C0 = FD4 concentration in the donor compartment
Membrane permeability (Papp) was calculated by the following equation
Papp = δCr / δt × Vr / (A × C 0 )
δCr = final receiver concentration;
δt = assay time;
Vr = receivervolume;
A = transwell growth area;
C 0 = FD4 concentration in the donor compartment
(実験例7-9)ELCの膜透過性2
 本実験例では、実施例7の手法でCell Culture insert上で分化誘導したELCについて、FD4、ルシファーイエロー(LY)及びローダミン123の透過量を経時的に測定した。LY又はローダミン123による膜透過性は、上記FD4の測定と同様に蛍光プレートリーダー(TroStar LB941, Berthold)を用いて測定した。その結果、経時的にFD4、LY及びローダミン123の透過量の増加が確認された。さらに、タイトジャンクション開口剤であるC10の作用によりFD4及びLYの透過量が増加したことが確認され、MDR1阻害剤であるシクロスポリンA(CysA)の作用によりCysAを含まない系(DMSO)に比べてローダミン123透過量が増加したことが確認された(図37)。上記結果より、前記ELCはMDR1の頂端膜側から基底膜側への輸送能を評価できる可能性が示唆された。
(Experimental Example 7-9) Membrane Permeability of ELC 2
In this experimental example, the permeation amounts of FD4, lucifer yellow (LY) and rhodamine 123 were measured over time for ELCs induced to differentiate on Cell Culture insert by the method of Example 7. The membrane permeability by LY or rhodamine 123 was measured using a fluorescence plate reader (TroStar LB941, Berthold) in the same manner as the measurement of FD4 described above. As a result, it was confirmed that the transmission of FD4, LY and rhodamine 123 increased with time. Furthermore, it was confirmed that the penetration amount of FD4 and LY was increased by the action of C10 which is a tight junction opener, and compared to a system (DMSO) which does not contain CysA by the action of cyclosporin A (CysA) which is an MDR1 inhibitor. It was confirmed that rhodamine 123 permeation amount increased (FIG. 37). From the above results, it was suggested that the ELC may be able to evaluate the transport ability of MDR1 from the apical membrane side to the basement membrane side.
 以上詳述したように、本発明の分化誘導方法により得られた細胞は、小腸上皮細胞が発現する各マーカーを発現し、薬物代謝酵素及び薬物トランスポーターを発現し、タイトジャンクション機能を有することから、小腸型の腸管上皮様細胞ということができる。特に、遺伝子組換え技術を用いて遺伝子を導入することなく分化誘導できる点で、より簡便に分化誘導処理を行うことができる。上記により、薬物代謝・薬物吸収を同時に評価で可能な小腸上皮様細胞を効率良く作製できることとなった。 As described in detail above, the cells obtained by the differentiation induction method of the present invention express each marker expressed by small intestinal epithelial cells, express a drug metabolizing enzyme and a drug transporter, and have a tight junction function. Intestinal epithelial-like cells of the small intestine type. In particular, differentiation induction processing can be performed more simply in that differentiation can be induced without introducing a gene using gene recombination technology. By the above, it became possible to efficiently produce small intestinal epithelial-like cells capable of simultaneously evaluating drug metabolism and drug absorption.
 従来は初代培養の小腸上皮細胞は入手が困難であり、また個体差による性状の違いも問題であったのに対し、本発明の分化誘導方法により、安定的に優れた小腸上皮様細胞を提供可能となった。得られた細胞は、各種小腸上皮様細胞の性状を有しており、薬物代謝酵素や薬物トランスポーターの発現量に関し、優れている。上記により、小腸での薬物代謝・透過性に関し、安定的に優れた小腸上皮様細胞を用いて均質な評価系のもとで薬物代謝・薬物吸収を同時に評価可能となり、医薬品等の薬剤開発や、食品等の分析、開発等にも大きく貢献しうることが期待され、有用である。 In the past, small intestine epithelial cells in primary culture were difficult to obtain, and differences in characteristics due to individual differences were also a problem, but the differentiation induction method of the present invention provides stable small intestinal epithelial-like cells stably. It has become possible. The obtained cells have the properties of various small intestinal epithelial-like cells, and are excellent in terms of the expression amounts of drug metabolizing enzymes and drug transporters. As described above, with regard to drug metabolism and permeability in the small intestine, drug metabolism and drug absorption can be simultaneously evaluated under a homogeneous evaluation system using stable and excellent small intestinal epithelial-like cells, It is expected to be able to greatly contribute to the analysis, development, etc. of food etc. and is useful.

Claims (12)

  1. 以下の工程を含む、多能性幹細胞から小腸上皮様細胞への分化誘導方法:
    1)多能性幹細胞を内胚葉細胞に分化誘導する工程;
    2)前記分化誘導により得られた内胚葉細胞を、LY2090314を含む系で培養し、腸管前駆細胞に分化誘導する工程。
    A method for inducing differentiation of pluripotent stem cells into intestinal epithelial-like cells, comprising the following steps:
    1) inducing differentiation of pluripotent stem cells into endoderm cells;
    2) A step of culturing the endoderm cells obtained by the differentiation induction in a system containing LY 2090314 to induce differentiation into intestinal progenitor cells.
  2. 前記2)の工程の後、さらに以下の3)の工程を含む、請求項1に記載の小腸上皮様細胞への分化誘導方法:
    3)Wnt3a及びEGF(epidermal growth factor)を含む系で培養し、小腸上皮様細胞へ分化誘導する工程。
    The method for inducing differentiation to small intestine epithelial-like cells according to claim 1, further comprising the following step 3) after the step 2):
    3) A step of culturing in a system containing Wnt3a and EGF (epidermal growth factor) and inducing differentiation into small intestinal epithelial-like cells.
  3. 前記3)の工程で、Wnt3a及びEGFと、さらにp38 MAPK阻害剤、IGF-1(insulin-like growth factor-1)、R-spondin、Noggin及びDEX(dexamethasone)から選択されるいずれか2種以上を含む系で培養する、請求項2に記載の分化誘導方法。 In the step 3), any two or more selected from Wnt 3a and EGF and p38 MAPK inhibitor, IGF-1 (insulin-like growth factor-1), R-spondin, Noggin and DEX (dexamethasone) The method for inducing differentiation according to claim 2, wherein the method is cultured in a system comprising
  4. 前記3)の工程で、Wnt3a及びEGFと、さらにp38 MAPK阻害剤、IGF-1、R-spondin、Noggin及びDEX含む系で培養する、請求項2に記載の分化誘導方法。 The method for inducing differentiation according to claim 2, wherein the culture is carried out in a system containing Wnt3a and EGF and p38 MAPK inhibitor, IGF-1, R-spondin, Noggin and DEX in the step 3).
  5. 請求項1~4のいずれかに記載の分化誘導方法により得られた小腸上皮様細胞。 A small intestine epithelial-like cell obtained by the method for inducing differentiation according to any one of claims 1 to 4.
  6. 請求項1~4のいずれかに記載の分化誘導方法の工程で培養された培養物。 A culture cultured in the step of the method for inducing differentiation according to any one of claims 1 to 4.
  7. 請求項5に記載の小腸上皮様細胞を、薬物毒性評価又は薬物動態評価に使用する方法。 A method of using the small intestine epithelial-like cells according to claim 5 for drug toxicity evaluation or pharmacokinetic evaluation.
  8. LY2090314を含む、小腸上皮様細胞への分化誘導用培地。 A medium for inducing differentiation to small intestine epithelial-like cells, which comprises LY2090314.
  9. Wnt3a及びEGFを含む、小腸上皮様細胞への分化誘導用培地。 A medium for inducing differentiation into small intestine epithelial-like cells, which comprises Wnt3a and EGF.
  10. Wnt3a、EGF、p38 MAPK阻害剤、IGF-1、R-spondin、Noggin及びDEXから選択されるいずれか2種以上の液性因子化合物を含む請求項9に記載の分化誘導用培地。 The culture medium for differentiation induction according to claim 9, comprising any two or more kinds of humoral factor compounds selected from Wnt3a, EGF, p38 MAPK inhibitor, IGF-1, R-spondin, Noggin and DEX.
  11. Wnt3a、EGF、p38 MAPK阻害剤、IGF-1、R-spondin、Noggin及びDEXを含む、請求項10に記載の分化誘導用培地。 The culture medium according to claim 10, which comprises Wnt3a, EGF, a p38 MAPK inhibitor, IGF-1, R-spondin, Noggin and DEX.
  12. LY2090314、Wnt3a、EGF、p38 MAPK阻害剤、IGF-1、R-spondin、Noggin及びDEXから選択されるいずれか1種又は複数種の液性因子化合物を含む試薬を少なくとも2種以上を構成として含む、小腸上皮様細胞への分化誘導用培地調製用キット。 At least two or more reagents including at least two or more types of liquid factor compounds selected from LY2090314, Wnt3a, EGF, p38 MAPK inhibitor, IGF-1, R-spondin, Noggin and DEX , A kit for preparing a medium for inducing differentiation into small intestine epithelial-like cells.
PCT/JP2018/027454 2017-07-28 2018-07-23 Enterocyte-like cells WO2019021990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019532586A JP7181556B2 (en) 2017-07-28 2018-07-23 small intestine epithelial-like cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-147217 2017-07-28
JP2017147217 2017-07-28

Publications (1)

Publication Number Publication Date
WO2019021990A1 true WO2019021990A1 (en) 2019-01-31

Family

ID=65040887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027454 WO2019021990A1 (en) 2017-07-28 2018-07-23 Enterocyte-like cells

Country Status (2)

Country Link
JP (1) JP7181556B2 (en)
WO (1) WO2019021990A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054659A1 (en) * 2018-09-10 2020-03-19 国立大学法人東京工業大学 Method for producing intestinal cells from pluripotent stem cells
JP2020162434A (en) * 2019-03-28 2020-10-08 大日本印刷株式会社 Method for producing metabolized or modified product in small intestine in vitro
CN113897336A (en) * 2020-06-22 2022-01-07 厦门博创盛世生物技术有限公司 Preparation method and application of WRN conditioned medium
WO2024053406A1 (en) * 2022-09-09 2024-03-14 国立大学法人大阪大学 Small intestine epithelium-like cells and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147975A1 (en) * 2015-03-13 2016-09-22 国立研究開発法人医薬基盤・健康・栄養研究所 Intestinal epithelioid cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147975A1 (en) * 2015-03-13 2016-09-22 国立研究開発法人医薬基盤・健康・栄養研究所 Intestinal epithelioid cells

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BONE H.K. ET AL.: "A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3", J. CELL SCI., vol. 124, 15 June 2011 (2011-06-15), pages 1992 - 2000, XP055157158, DOI: 10.1242/jcs.081679 *
FORSTER R. ET AL.: "Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells", STEM CELL REPORTS, vol. 2, no. 6, 3 June 2014 (2014-06-03), pages 838 - 852, XP055311225, DOI: 10.1016/j.stemcr.2014.05.001 *
IWAO T. ET AL.: "Generation of enterocyte-like cells with pharmacokinetic functions from human induced pluripotent stem cells using small-molecule compounds", DRUG METAB. DISPOS., vol. 43, no. 4, April 2015 (2015-04-01), pages 603 - 610, XP055415683, DOI: 10.1124/dmd.114.062604 *
SPENCE J.R. ET AL.: "Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro", NATURE, vol. 470, no. 7332, 3 February 2011 (2011-02-03), pages 105 - 109, XP002743856, DOI: 10.1038/nature09691 *
TU C. ET AL.: "Glycogen synthase kinase-3 inhibition sensitizes human induced pluripotent stem cells to thiol-containing antioxidants induced apoptosis", STEM CELL RES., vol. 23, 22 July 2017 (2017-07-22), pages 182 - 187, XP085163305, DOI: 10.1016/j.scr.2017.07.019 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054659A1 (en) * 2018-09-10 2020-03-19 国立大学法人東京工業大学 Method for producing intestinal cells from pluripotent stem cells
EP3851518A4 (en) * 2018-09-10 2022-06-22 Tokyo Institute of Technology Method for producing intestinal cells from pluripotent stem cells
JP2020162434A (en) * 2019-03-28 2020-10-08 大日本印刷株式会社 Method for producing metabolized or modified product in small intestine in vitro
CN113897336A (en) * 2020-06-22 2022-01-07 厦门博创盛世生物技术有限公司 Preparation method and application of WRN conditioned medium
WO2024053406A1 (en) * 2022-09-09 2024-03-14 国立大学法人大阪大学 Small intestine epithelium-like cells and production method thereof

Also Published As

Publication number Publication date
JP7181556B2 (en) 2022-12-01
JPWO2019021990A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
US20200199538A1 (en) Derivation of liver organoids from human pluripotent stem cells
Tucker et al. Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and retinal differentiation
CN102165058B (en) Compositions for mesoderm derived ISLl1+ multipotent cells (IMPs), epicardial progenitor cells (EPCs) and multipotent CXCR4+CD56+ cells (C56Cs) and methods of use
US20170009203A1 (en) Method Of Differentiation From Stem Cells To Hepatocytes
CN105358680B (en) Method and composition for the culture entoderm progenitor cells that suspend
JP7181556B2 (en) small intestine epithelial-like cells
JP7063624B2 (en) Method for producing liver stem / progenitor cells from mature hepatocytes using small molecule compounds
US8278105B2 (en) Induction, propagation and isolation of liver progenitor cells
JP6663419B2 (en) Intestinal epithelial-like cells
US20070298016A1 (en) Methods For The Generation Of Hepatocyte-Like Cells From Human Blastocyst-Derived Stem (Hbs)
US20050032207A1 (en) Method for isolating, culturing and differentiating intestinal stem cells for therapeutic use
KR20220000930A (en) Methods for generating hepatocytes and cholangiocytes from pluripotent stem cells
KR102446763B1 (en) Method for Inducing Differentiation from Pluripotent Stem Cells to Intestinal Epithelial Cells
WO2020091020A1 (en) Method for producing pluripotent stem cell-derived intestinal organoid
JP2020516247A (en) Multi-donor stem cell composition and methods of making the same
JP2021531018A (en) Hepatobiliary pancreatic tissue and its preparation method
CN110832069A (en) Methods for chemically induced lineage reprogramming
KR20210077698A (en) Method for producing stem/progenitor cells from endoderm tissue or organ-derived cells using low molecular weight compounds
WO2024053406A1 (en) Small intestine epithelium-like cells and production method thereof
JP7058330B2 (en) Method for producing intestinal epithelial cells and intestinal epithelial cells
US20230126568A1 (en) Production method for intestinal epithelial cells and utilization thereof
WO2023160671A1 (en) Inducible mature liver cell and method for preparing same
Hongbao et al. The octamer-binding transcription factor 4 (Oct-4) and stem cell literatures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838386

Country of ref document: EP

Kind code of ref document: A1