WO2019021518A1 - Track transport system and track transport system operating method - Google Patents

Track transport system and track transport system operating method Download PDF

Info

Publication number
WO2019021518A1
WO2019021518A1 PCT/JP2018/007675 JP2018007675W WO2019021518A1 WO 2019021518 A1 WO2019021518 A1 WO 2019021518A1 JP 2018007675 W JP2018007675 W JP 2018007675W WO 2019021518 A1 WO2019021518 A1 WO 2019021518A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
obstacle
obstacle detection
transportation
track
Prior art date
Application number
PCT/JP2018/007675
Other languages
French (fr)
Japanese (ja)
Inventor
小田 篤史
勝田 敬一
尊善 西野
将尭 横田
雄飛 堤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP18839067.8A priority Critical patent/EP3659896A1/en
Publication of WO2019021518A1 publication Critical patent/WO2019021518A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • B61L23/04Control, warning, or like safety means along the route or between vehicles or vehicle trains for monitoring the mechanical state of the route
    • B61L23/041Obstacle detection
    • B61L15/0062
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • B61L23/34Control, warnings or like safety means indicating the distance between vehicles or vehicle trains by the transmission of signals therebetween
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/0018Communication with or on the vehicle or vehicle train
    • B61L15/0027Radio-based, e.g. using GSM-R
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/04Satellite based navigation systems, e.g. GPS

Definitions

  • the present invention relates to an orbital transport system traveling on a track.
  • detecting obstacles is important to improve the safety and operability of the transportation system.
  • a manned driving system operated by a driver most of on-orbit and route are detecting obstacles by visual observation of the driver.
  • an unmanned operation system that employs automatic operation, safety and operability are ensured by blocking other traffic on a dedicated track and preventing the entry of obstacles.
  • Patent Document 1 as a technology for eliminating an obstacle on a track, a displacement vehicle is caused to travel while maintaining a predetermined inter-vehicle distance ahead of a transportation vehicle traveling on a track, and an obstacle on a traveling road is eliminated.
  • Track transport system is disclosed.
  • Patent Document 1 is a system on the premise of collision with an obstacle, and when the obstacle can not be eliminated, a significant delay in operation may occur.
  • An object of the present invention is to provide a track transportation system with improved safety and operability in order to cope with the above-mentioned problems.
  • a transport vehicle for transporting passengers an obstacle detection vehicle having a sensor that precedes the transport vehicle and detects an obstacle on a track, the transport vehicle, and the obstacle
  • the transport vehicle is characterized in that the transport vehicle is decelerated in response to an obstacle detection signal from the sensor.
  • the reduction in the number of users is required to reduce operating costs, and the need for unmanned operation of the orbital transportation system is high.
  • existing unmanned operation systems are limited to those using dedicated tracks.
  • the dedicated track uses a dedicated track that blocks the entry of other traffic by infrastructure such as elevated and underground, and the introduction cost is very high.
  • the inventors created a new idea for realizing an unmanned operation system on an open track. That is, the idea is to run a unit (obstacle detection vehicle) having a sensor having an obstacle detection function separately from the transport vehicle that transports passengers.
  • a unit obstacle detection vehicle
  • an example will be described in which unmanned operation is realized by an operation in which a unit for obstacle detection runs ahead of a passenger vehicle. According to this example, even if there is an obstacle on the track, it can be detected early and the vehicle can be stopped, so it is possible to provide a track transportation system with improved safety and operability.
  • the obstacle detection vehicle has an unmanned driving function
  • this system can be introduced without increasing the number of drivers.
  • the transport vehicle has an unmanned operation function
  • the train can be operated without an operator. Then, instead of reducing the formation of one train, the degree of freedom of operation will be increased by increasing the number of trains.
  • Patent Document 1 as a technique (paragraph 0002) for removing an obstacle on a track, a displacement vehicle is made to travel while maintaining a predetermined inter-vehicle distance in front of a transportation vehicle traveling on a track.
  • An orbital transport system (paragraph 0001) is disclosed which eliminates obstacles. For example, in paragraph 0012, "the small obstacle is eliminated by the elimination car, and the elimination car collides with an obstacle that can not be eliminated so that the vehicle can not travel. Even in cases where it is possible to stop the transport vehicle safely, it is a premise system to eliminate obstacles by collisions. If an obstacle can not be eliminated, a significant delay in operation may occur.
  • an automatic driving system is installed to make the leading shape of the leading vehicle of the following transportation vehicles an ideal shape with low aerodynamic resistance and reduce the weight of the vehicle to increase the payload. It is done. The function of detecting an obstacle is not disclosed.
  • the track transportation system is a system on the premise that a unit having an obstacle detection function detects an obstacle at an early stage, thereby stopping both the unit and the transportation vehicle before a collision occurs. .
  • This makes it possible to increase the safety of the unit, the transport vehicle, and the obstacle.
  • the transport vehicle itself can exhibit a sufficient detection / braking function as a whole without having a high detection function and braking function, safety, A highly operable system can be realized.
  • the obstacle can be eliminated after avoiding the collision with the obstacle, highly operable operation with reduced operation delay becomes possible.
  • the detection distance is about 200 m even for millimeter wave radars and cameras, which are sensors with long detection distances.
  • the braking distance of the car is about 200 m at 120 km / h, and it can be stopped in front of the obstacle even if it is braked after detecting the obstacle with a millimeter wave radar or a camera.
  • the braking distance of the car is short because the occupant is seated and high deceleration performance is set on the premise that the seat belt is worn.
  • the track transportation system represented by a train it is assumed that passengers get on the vehicle in a standing state, and generally, deceleration performance lower than that of a car is set.
  • the braking distance required to stop from the same speed is longer in an orbital transport system than in a car.
  • the braking distance from 120 km / h is about 500 m. Therefore, when a sensor for vehicles is applied as it is to a track transportation system, the detection distance of the sensor may be shorter than the necessary braking distance. As a result, even if an obstacle is detected by a sensor, there arises a safety issue that the track transportation system can not stop in front of the obstacle.
  • FIG. 1 is a diagram showing the configuration of an orbital transportation system.
  • the track transportation system includes a transportation vehicle 101 for carrying passengers and cargo, an obstacle detection vehicle 102 for detecting an obstacle in front, and communication means 103 between the transportation vehicle 101 and the obstacle detection vehicle 102.
  • the communication means may connect the transportation vehicle 101 and the obstacle detection vehicle 102 by inter-vehicle communication, or may communicate via a facility on the ground.
  • data transmission may be implemented with sufficiently small transmission delay for control described later, and the method is not limited.
  • the obstacle detection vehicle 102 includes an obstacle detection sensor 104 which is a sensor for detecting an obstacle.
  • the obstacle detection sensor 104 is mainly intended to detect obstacles in advance. However, as a matter of course, it may be possible to detect that the obstacle detection vehicle 102 has touched or collided with an obstacle.
  • FIG. 4 is an explanatory view of a sensor corresponding to a touch or a collision.
  • An obstacle detection vehicle 402 traveling ahead of the transportation vehicle 401 includes a collision sensor 414 and a contact sensor 424.
  • a collision sensor 414 can use a detection sensor for an air bag of a car.
  • the contact sensor 424 a hollow structure that encloses all or part of the construction limit, a solid structure that covers the same area, or the like can be employed.
  • the deceleration performance of the obstacle detection vehicle 102 is set higher than the deceleration performance of the transportation vehicle 101.
  • the obstacle detection vehicle 102 according to the present embodiment is assumed to stop at 300 m, while the deceleration performance of the current train may stop at 600 m from the maximum speed.
  • the deceleration performance set for the obstacle detection vehicle 102 is desirably equivalent to, for example, the deceleration performance of a car. For example, if it is possible to stop at a maximum speed of 120 km to 200 m, many obstacle detection sensors used in automobiles can be easily used. Furthermore, it is more desirable to set the maximum level of deceleration performance that can be physically exhibited in an orbital transportation system.
  • the acceleration performance of the obstacle detection vehicle 102 is set higher than the acceleration performance of the transportation vehicle 101.
  • the acceleration performance of the obstacle detection vehicle 102 is expressed by equation (1).
  • alpha 1 is the required acceleration
  • alpha 2 of the obstacle detecting vehicle 102 is the maximum acceleration of the transportation vehicle 101
  • beta is the maximum deceleration of the transport vehicle 101.
  • the obstacle detection vehicle 102 be lightweight so that it can be easily retracted from the track if it can not travel due to contact or collision with an obstacle. Moreover, if it is lightweight, it will be possible to minimize damage to the obstacle even if it contacts or collides with the obstacle. If it is less than 2 tons like a car, it is desirable from the point that it can be operated without heavy equipment.
  • the material of the leading end of the obstacle detection vehicle 102 be capable of absorbing shock. In the event of a collision with an obstacle, the impact of the collision can be mitigated. In addition, it is desirable that the leading end shape of the obstacle detection vehicle 102 be a displacement structure that promotes elimination of the obstacle. Even if the vehicle collides with an obstacle, it is possible to prevent the obstacle detection vehicle 102 from involving the obstacle, which is advantageous for early resumption of driving.
  • the distance between the transport vehicle 101 and the obstacle detection vehicle 102 by the control device is at least the distance necessary to stop when the vehicle speed of the transport vehicle 101 is reduced at maximum deceleration performance as described later. To be controlled.
  • FIG. 2 is a flowchart showing a processing procedure executed by the obstacle detection vehicle 102.
  • steps 201 to 206 a stop instruction for the transportation vehicle 101 and the current position of the obstacle detection vehicle 102 are created.
  • the present process is executed every control cycle (for example, 20 milliseconds) of the obstacle detection vehicle 102.
  • the operation based on the flowchart of FIG. 2 is as follows.
  • Step 201 Sensor information on an obstacle on the orbit is acquired from the obstacle detection sensor 104. From the sensor information, it is determined whether or not an obstacle exists on the trajectory. Go to step 202.
  • Step 202 Sensor information on an obstacle in orbit is acquired from the collision sensor 414 and the contact sensor 424. From the sensor information, it is determined whether there is a contact or a collision with an obstacle on the track. Go to step 203.
  • Step 203 At step 201, it is determined whether an obstacle exists or at step 202 there is a contact or collision with the obstacle. If it is determined that an obstacle is present, or that it has come into contact with or collided with the obstacle, the process proceeds to step 204. If it is determined that the obstacle does not exist and does not contact or collide with the obstacle, the process proceeds to step 205.
  • Step 204 If it is determined in step 203 that an obstacle is present, or that the vehicle is in contact with or collides with the obstacle, a stop instruction is generated because it is necessary to immediately stop the transportation vehicle 101. Proceed to step 205.
  • Step 205 The current position of the obstacle detection vehicle 102 necessary for calculating the distance between the transportation vehicle 101 and the obstacle detection vehicle 102 is calculated. Although calculation of the current position is generally performed based on integration of the vehicle speed, other methods may be used. For example, a global positioning system (GPS) or the like may be used. Proceed to step 206.
  • GPS global positioning system
  • Step 206 The current position of the obstacle detection vehicle 102 and the presence / absence of a stop instruction for the transportation vehicle 101 are transmitted to the transportation vehicle 101 via the communication means 103.
  • FIG. 3 is a flowchart showing a processing procedure executed by the transportation vehicle 101.
  • steps 301 to 306 the transport vehicle 101 is stopped when there is an obstacle on the track or when the obstacle detection vehicle 102 contacts or collides with the obstacle. Alternatively, if there is no obstacle on the track and the obstacle detection vehicle 102 does not contact or collide with the obstacle, the vehicle travels with the obstacle detection vehicle 102 at a necessary distance. This process is executed every control cycle (for example, 20 milliseconds) of the transportation vehicle 101.
  • the operation based on the flowchart of FIG. 3 is as follows.
  • Step 301 The obstacle detection vehicle 102 receives the current position of the obstacle detection vehicle 102 and a stop instruction for the transportation vehicle 101. Go to step 302.
  • Step 302 In step 302, the current position of the transportation vehicle 101 necessary for calculating the distance between the transportation vehicle 101 and the obstacle detection vehicle 102 is calculated. Although calculation of the current position is generally performed based on integration of the vehicle speed, other methods may be used. For example, a global positioning system (GPS) or the like may be used. Proceed to step 303.
  • GPS global positioning system
  • Step 303 In step 303, the distance between the obstacle detection vehicle 102 and the transportation vehicle 101 is calculated from the current position of the obstacle detection vehicle 102 and the current position of the transportation vehicle 101. Go to step 304.
  • Step 304 the transport vehicle is set to be equal to or longer than the distance by which the distance between the obstacle detection vehicle 102 and the transport vehicle 101 is stopped when the transport vehicle 101 decelerates from the current vehicle speed with the maximum deceleration performance. Control. Generally, the distance required to decelerate and stop at a constant deceleration from a certain speed is expressed by equation (2).
  • L is a distance required to stop
  • V is a vehicle speed at the start of deceleration
  • is a deceleration of the transport vehicle.
  • control is performed so that L is smaller than the distance between the obstacle detection vehicle 102 and the transportation vehicle 101.
  • the distance between the obstacle detection vehicle 102 and the transportation vehicle is substituted as L in Equation (2), and the maximum deceleration of the transportation vehicle 101 is substituted for ⁇ to be equal to or less than V.
  • the speed of the vehicle 101 may be controlled.
  • the transportation vehicle 101 can A collision with the obstacle detection vehicle 102 can be suppressed. Go to step 305.
  • Step 305 In step 301, it is determined whether a stop instruction has been received from the obstacle detection vehicle 102. If the stop instruction has been received, the process proceeds to step 306.
  • Step 306 When the stop instruction is received from the obstacle detection vehicle 102, the transportation vehicle 101 is decelerated at the maximum deceleration and stopped.
  • the present invention is not limited thereto, and the vehicle is decelerated if collision with each other vehicle and obstacle can be suppressed. It doesn't matter.
  • the track transportation system includes the transportation vehicle 101 for transporting passengers, and the obstacle detection vehicle 102 having the sensor 104 which precedes the transportation vehicle 101 and detects an obstacle on the track.
  • the transportation vehicle 101 is configured to decelerate in response to an obstacle detection signal from the sensor 104, and includes communication means 103 communicably connecting the transportation vehicle 101 and the obstacle detection vehicle 102 with each other. Then, even when using a general obstacle detection sensor developed for a car, the transportation vehicle of the track transportation system is stopped in front of the obstacle or collision is avoided while maintaining the rapidity and transportation ability. It is possible to improve the safety and operability of the rail transportation system. In addition, it becomes possible to replace the obstacle detection by visual observation of the driver with the present embodiment, and to enable unmanned operation of the track transport system currently being operated by the driver, and to reduce the operation cost. It becomes.
  • This effect becomes greater as the braking distance of the obstacle detection vehicle 102 is shorter than the braking distance of the transportation vehicle 101.
  • the obstacle detection vehicle 102 determines whether there is an obstacle from the information of the obstacle detection sensor 104 or whether there is a contact or a collision with the obstacle from the information of the collision sensor 414 and the contact sensor 424. I have made instructions. However, information such as the obstacle detection sensor 104 is transmitted to the transportation vehicle 101, it is determined whether the transportation vehicle 101 has an obstacle or there is a contact or collision with the obstacle, and a stop instruction is generated.
  • the transportation vehicle 101 can be stopped or sufficiently decelerated if there is an obstacle or if there is a contact or collision with the obstacle, and in the present invention, an obstacle exists or it is in contact with an obstacle or It does not matter which device is used to determine whether a collision has occurred or to issue a stop instruction based on the determination.
  • the transportation vehicle is such that the distance between the obstacle detection vehicle 102 and the transportation vehicle 101 is equal to or greater than the distance traveled before the transportation vehicle 101 decelerates from the current vehicle speed with the maximum deceleration performance. It controls 101.
  • the obstacle detection vehicle is such that the distance between the obstacle detection vehicle 102 and the transportation vehicle 101 is equal to or more than the distance traveled before the transportation vehicle 101 decelerates from the current vehicle speed with the maximum deceleration performance. 102 may be controlled.
  • the distance between the obstacle detection vehicle 102 and the transportation vehicle 101 is equal to or greater than the distance traveled before the transportation vehicle stops at the maximum deceleration performance from the current vehicle speed (that is, the braking distance) It does not matter which device is used to control the interval.

Abstract

Obstacle detection is an issue in improving the safety and operability of a track transport system in which a transport car travels on a track, since evasive steering is not possible should an obstacle be present on the track. To address this problem, the present invention is characterized by comprising a transport car for transporting passengers, an obstacle detection car which precedes the transport car and has a sensor for detecting an obstacle on the track, and a communication means for connecting the transport car and obstacle detection car so as to enable communication therebetween, and in that the transport car decelerates upon receiving an obstacle detection signal from the sensor.

Description

軌道輸送システム、軌道輸送システムの運行方法Orbital transport system, operation method of orbital transport system
 本発明は、軌道上を走行する軌道輸送システムに関する。 The present invention relates to an orbital transport system traveling on a track.
 軌道上を輸送用車両が走行する軌道輸送システムでは、軌道上に障害物があった場合、操舵による回避が出来ない。そのため、障害物を検知することは輸送システムの安全性や運用性を向上させるために重要である。運転士が運転する有人運転システムでは、軌道上および経路上の大部分は運転士の目視によって障害物を検知している。一方、自動運転を採用する無人運転システムでは、専用軌道で他の交通を遮断し障害物の侵入を防ぐことにより安全性や運用性を確保している。 In a track transportation system in which a transportation vehicle travels on a track, if there is an obstacle on the track, the obstacle can not be avoided by steering. Therefore, detecting obstacles is important to improve the safety and operability of the transportation system. In a manned driving system operated by a driver, most of on-orbit and route are detecting obstacles by visual observation of the driver. On the other hand, in an unmanned operation system that employs automatic operation, safety and operability are ensured by blocking other traffic on a dedicated track and preventing the entry of obstacles.
 また特許文献1には、線路上の障害物を排除する技術として、軌道上を走行する輸送用車両の前方を所定の車間距離を保って排障車を走行させ、走行路上の障害物を排除する軌道輸送システムが開示されている。 Further, in Patent Document 1, as a technology for eliminating an obstacle on a track, a displacement vehicle is caused to travel while maintaining a predetermined inter-vehicle distance ahead of a transportation vehicle traveling on a track, and an obstacle on a traveling road is eliminated. Track transport system is disclosed.
特開平5-338538号公報Japanese Patent Application Laid-Open No. 5-338538
 専用軌道を採用するには費用や場所等の制約が大きい。有人運転システムでも、より安全性や運用性の向上が望まれる場合がある。また、特許文献1の排障車は障害物との衝突が前提のシステムであり、障害物が排除できなかった場合には運行の大幅遅延が起きうる。 There are large restrictions on cost and location when adopting a dedicated track. Even in the case of a manned operation system, there may be a need to further improve safety and operability. Further, the displacement vehicle of Patent Document 1 is a system on the premise of collision with an obstacle, and when the obstacle can not be eliminated, a significant delay in operation may occur.
 本発明は上記課題に対応すべく、安全性や運用性を向上させた軌道輸送システムを提供することを目的とする。 An object of the present invention is to provide a track transportation system with improved safety and operability in order to cope with the above-mentioned problems.
 上記課題を解決するために、乗客を輸送する輸送用車両と、前記輸送用車両に先行し、軌道上の障害物を検知するセンサーを有する障害物検知車両と、前記輸送用車両と前記障害物検知車両との間を通信可能につなぐ通信手段を備え、前記輸送用車両は、前記センサーによる障害物検知信号を受けて減速することを特徴とする。 In order to solve the above problems, a transport vehicle for transporting passengers, an obstacle detection vehicle having a sensor that precedes the transport vehicle and detects an obstacle on a track, the transport vehicle, and the obstacle The transport vehicle is characterized in that the transport vehicle is decelerated in response to an obstacle detection signal from the sensor.
 本発明によれば、安全性や運用性を向上させた軌道輸送システムを提供できる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide an orbital transportation system with improved safety and operability. Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
本発明の一実施例における軌道輸送システムの構成を示す図である。It is a figure which shows the structure of the orbital transport system in one Example of this invention. 本発明の一実施例における障害物検知車両の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the obstacle detection vehicle in one Example of this invention. 本発明の一実施例における輸送用車両の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the transport vehicle in one Example of this invention. 本発明の一実施例における接触や衝突に対応するセンサーの説明図である。It is an explanatory view of a sensor corresponding to a touch and a collision in one example of the present invention.
 利用者数の減少等により運営コスト低減が求められており、軌道輸送システムの無人運転化のニーズは高い。しかし、既存の無人運転システムは、専用軌道を利用したものに限られる。専用軌道は高架化や地下化といったインフラにより他の交通の進入を遮断した専用軌道を利用したものであり、導入コストが非常に高い。既存の開放軌道を専用軌道に変更する場合には、用地や工事等、さらなる制約を考慮する必要がある。 The reduction in the number of users is required to reduce operating costs, and the need for unmanned operation of the orbital transportation system is high. However, existing unmanned operation systems are limited to those using dedicated tracks. The dedicated track uses a dedicated track that blocks the entry of other traffic by infrastructure such as elevated and underground, and the introduction cost is very high. When changing the existing open track to a dedicated track, it is necessary to consider further restrictions such as site and construction.
 これに対し発明者らは、開放軌道での無人運転システムを実現するための新しいアイデアを創出した。すなわち、乗客を輸送する輸送用車両とは別に、障害物検知機能を持ったセンサーを有するユニット(障害物検知車両)を走らせるアイデアである。後述する実施例では、障害物検知のためのユニットを乗客用車両よりも先に走らせる運行により、無人運転を実現する例を説明する。この例によれば、万が一軌道上に障害物が存在したとしても、早期に検知し車両を停止させることができるため、安全性や運用性を向上させた軌道輸送システムを提供できる。障害物検知車両が無人運転機能を有すれば、運転士を増やすことなく本システムを導入できる。さらに輸送用車両が無人運転機能を有すれば、運転士がいなくとも列車を運行できる。そうすると、一列車の編成を減らす代わりに列車の本数を増やす等、運用の自由度が高まることとなる。 On the other hand, the inventors created a new idea for realizing an unmanned operation system on an open track. That is, the idea is to run a unit (obstacle detection vehicle) having a sensor having an obstacle detection function separately from the transport vehicle that transports passengers. In an embodiment to be described later, an example will be described in which unmanned operation is realized by an operation in which a unit for obstacle detection runs ahead of a passenger vehicle. According to this example, even if there is an obstacle on the track, it can be detected early and the vehicle can be stopped, so it is possible to provide a track transportation system with improved safety and operability. If the obstacle detection vehicle has an unmanned driving function, this system can be introduced without increasing the number of drivers. Furthermore, if the transport vehicle has an unmanned operation function, the train can be operated without an operator. Then, instead of reducing the formation of one train, the degree of freedom of operation will be increased by increasing the number of trains.
 なお特許文献1には、線路上の障害物を排除する技術(段落0002)として、軌道上を走行する輸送用車両の前方を所定の車間距離を保って排障車を走行させ、走行路上の障害物を排除する軌道輸送システム(段落0001)が開示されている。この特許文献1の排障車は、例えば段落0012に「小さい障害物であれば排障車によって排除され、また、排障車が排除不可能な障害物に衝突して走行不可能となった場合でも、輸送用車両を安全に停止することができる」とあるように、衝突により障害物を排除することが前提のシステムである。万が一障害物が排除できなかった場合には、運行の大幅遅延が起きうる。この排障車は、後続の輸送用車両の先頭用車両の先頭形状を空気力学的に抵抗の小さい理想的な形状にするとともに車両重量を低減してペイロードを増加するために自動運転装置が搭載されている。障害物を検知する機能については開示されていない。 In Patent Document 1, as a technique (paragraph 0002) for removing an obstacle on a track, a displacement vehicle is made to travel while maintaining a predetermined inter-vehicle distance in front of a transportation vehicle traveling on a track. An orbital transport system (paragraph 0001) is disclosed which eliminates obstacles. For example, in paragraph 0012, "the small obstacle is eliminated by the elimination car, and the elimination car collides with an obstacle that can not be eliminated so that the vehicle can not travel. Even in cases where it is possible to stop the transport vehicle safely, it is a premise system to eliminate obstacles by collisions. If an obstacle can not be eliminated, a significant delay in operation may occur. In this vehicle, an automatic driving system is installed to make the leading shape of the leading vehicle of the following transportation vehicles an ideal shape with low aerodynamic resistance and reduce the weight of the vehicle to increase the payload. It is done. The function of detecting an obstacle is not disclosed.
 これに対し実施例の軌道輸送システムは、障害物検知機能を持つユニットが早期に障害物を検知することにより、ユニット、輸送用車両ともに衝突が起きる前に停止させることを前提としたシステムである。これにより、ユニット、輸送用車両、障害物のどの安全性も高いものとすることができる。また、障害物検知機能を先行走行するユニットに持たせることで、輸送用車両自体に高い検知機能、制動機能を持たせなくとも、全体として十分な検知・制動機能を発揮させられる、安全性、運用性の高いシステムを実現できる。さらに、障害物との衝突を回避した上で障害物を排除できるため、運行の遅れを抑制した運用性の高い運行も可能になる。 On the other hand, the track transportation system according to the embodiment is a system on the premise that a unit having an obstacle detection function detects an obstacle at an early stage, thereby stopping both the unit and the transportation vehicle before a collision occurs. . This makes it possible to increase the safety of the unit, the transport vehicle, and the obstacle. In addition, by providing the obstacle detection function to the unit traveling ahead, the transport vehicle itself can exhibit a sufficient detection / braking function as a whole without having a high detection function and braking function, safety, A highly operable system can be realized. Furthermore, since the obstacle can be eliminated after avoiding the collision with the obstacle, highly operable operation with reduced operation delay becomes possible.
 ところで、障害物検知技術は自動車の自動運転向けに研究が進められており、一般的にミリ波レーダー、レーザーレーダー、カメラなどが用いられている。検知距離が長いセンサーであるミリ波レーダーやカメラでも検知距離は200m程度である。自動車の制動距離は120km/hで200m程度であり、ミリ波レーダーやカメラで障害物を検知してからブレーキをかけても障害物手前で停止できる。自動車の制動距離が短いのは、乗員が着席しており、シートベルトを着用していることを前提に高い減速性能が設定されているからである。 By the way, obstacle detection technology is being researched for automatic driving of a car, and in general, millimeter wave radar, laser radar, camera and the like are used. The detection distance is about 200 m even for millimeter wave radars and cameras, which are sensors with long detection distances. The braking distance of the car is about 200 m at 120 km / h, and it can be stopped in front of the obstacle even if it is braked after detecting the obstacle with a millimeter wave radar or a camera. The braking distance of the car is short because the occupant is seated and high deceleration performance is set on the premise that the seat belt is worn.
 一方で列車に代表される軌道輸送システムでは、乗客は立った状態で乗車することが想定され、一般に自動車よりも低い減速性能が設定されている。その結果、同一速度から停止するまでに必要な制動距離は自動車よりも軌道輸送システムのほうが長くなる。例えば120km/hからの制動距離は500m程度となる。そのため自動車向けのセンサーを軌道輸送システムにそのまま適用した場合、センサーの検知距離が、必要な制動距離よりも短くなってしまう可能性がある。その結果、障害物をセンサーで検知しても軌道輸送システムが障害物手前で停止できないという安全上の課題が発生する。またセンサーで検知してから停止可能な速度に最高速度を下げる場合、速達性や輸送能力の低下といった運用上の課題が発生する。この課題に対し、上記別ユニットの最大減速度を乗客用車両よりも大きくすれば、別ユニット未利用時に比べ、センサーで検知してから停止するまでの距離を短くすることができる。そうすれば、自動車の自動運転向けに開発されたセンサーを利用しながら、安全性、運用性の高い軌道輸送システムを実現できる。これは、ミリ波で止まりきれない分を、先行ユニットの距離でカバーしているともいえる。 On the other hand, in the track transportation system represented by a train, it is assumed that passengers get on the vehicle in a standing state, and generally, deceleration performance lower than that of a car is set. As a result, the braking distance required to stop from the same speed is longer in an orbital transport system than in a car. For example, the braking distance from 120 km / h is about 500 m. Therefore, when a sensor for vehicles is applied as it is to a track transportation system, the detection distance of the sensor may be shorter than the necessary braking distance. As a result, even if an obstacle is detected by a sensor, there arises a safety issue that the track transportation system can not stop in front of the obstacle. In addition, when the maximum speed is reduced to the speed that can be stopped after detection by the sensor, there are operational issues such as a decrease in expressability and transportation capacity. To solve this problem, if the maximum deceleration of the separate unit is made larger than that of the passenger vehicle, the distance from the detection by the sensor to the stop can be shortened compared to when the separate unit is not used. In this way, it is possible to realize a highly safe and easy-to-operate track transportation system while using sensors developed for autonomous driving of vehicles. This can be said to cover the portion that can not be stopped by the millimeter wave by the distance of the preceding unit.
 以下、本発明の実施例として、開放軌道の鉄道の例について図面を参照して説明する。 Hereinafter, as an example of the present invention, an example of a railway with an open track will be described with reference to the drawings.
 図1は、軌道輸送システムの構成を示す図である。軌道輸送システムは乗客や貨物を乗せる輸送用車両101と前方の障害物を検知する障害物検知車両102と輸送用車両101と障害物検知車両102間の通信手段103で構成される。通信手段は輸送用車両101と障害物検知車両102を車車間通信でつなげても良いし、地上の設備を介して通信しても良い。本実施例では、輸送用車両101と障害物検知車両102間で、以降に説明する制御のために伝送遅延が十分小さくデータ通信が実施できればよく、その方法は問わない。 FIG. 1 is a diagram showing the configuration of an orbital transportation system. The track transportation system includes a transportation vehicle 101 for carrying passengers and cargo, an obstacle detection vehicle 102 for detecting an obstacle in front, and communication means 103 between the transportation vehicle 101 and the obstacle detection vehicle 102. The communication means may connect the transportation vehicle 101 and the obstacle detection vehicle 102 by inter-vehicle communication, or may communicate via a facility on the ground. In the present embodiment, between the transportation vehicle 101 and the obstacle detection vehicle 102, data transmission may be implemented with sufficiently small transmission delay for control described later, and the method is not limited.
 障害物検知車両102は障害物を検知するためのセンサーである障害物検知センサー104を備える。障害物検知センサー104は障害物を事前に検知することを主目的としている。ただし万が一のため、障害物検知車両102が障害物に接触または衝突したことも検知できるようにしても良い。 The obstacle detection vehicle 102 includes an obstacle detection sensor 104 which is a sensor for detecting an obstacle. The obstacle detection sensor 104 is mainly intended to detect obstacles in advance. However, as a matter of course, it may be possible to detect that the obstacle detection vehicle 102 has touched or collided with an obstacle.
 図4に接触や衝突に対応するセンサーの説明図を示す。輸送用車両401に先行して走行する障害物検知車両402は、衝突センサー414と接触センサー424を備えている。本実施例では障害物の例として、踏切部などの線路上の人、自動車、落下物等との衝突や、建築限界を侵害している植物や突起物との接触を想定している。建築限界とは、線路に対して建築物を設置してはならないクリアランスのことである。衝突センサー414は自動車のエアバック用の検知センサーを利用することができる。接触センサー424としては、建築限界の全てまたは一部を囲うような中空構造体や、同領域をカバーする中実構造体等が採用できる。 FIG. 4 is an explanatory view of a sensor corresponding to a touch or a collision. An obstacle detection vehicle 402 traveling ahead of the transportation vehicle 401 includes a collision sensor 414 and a contact sensor 424. In the present embodiment, as an example of the obstacle, collision with people on a track such as a level crossing, cars, falling objects, etc., or contact with plants or protrusions invading building limits are assumed. The construction limit is the clearance where the building should not be installed on the track. The collision sensor 414 can use a detection sensor for an air bag of a car. As the contact sensor 424, a hollow structure that encloses all or part of the construction limit, a solid structure that covers the same area, or the like can be employed.
 障害物検知車両102の減速性能は、輸送用車両101の減速性能よりも高く設定されている。現行列車の減速性能として最高速度から600mで止まれるものがあるのに対し、本実施例の障害物検知車両102は、300mで止まるものを想定している。障害物検知車両102に設定される減速性能は、例えば自動車の減速性能と同等にすることが望ましい。例えば最大時速120kmから200mで止まれるようにすれば、自動車で用いられている障害物検知センサーの多くが容易に利用可能となる。さらには軌道輸送システムで物理的に発揮できる最大レベルの減速性能を設定するのがより望ましい。 The deceleration performance of the obstacle detection vehicle 102 is set higher than the deceleration performance of the transportation vehicle 101. The obstacle detection vehicle 102 according to the present embodiment is assumed to stop at 300 m, while the deceleration performance of the current train may stop at 600 m from the maximum speed. The deceleration performance set for the obstacle detection vehicle 102 is desirably equivalent to, for example, the deceleration performance of a car. For example, if it is possible to stop at a maximum speed of 120 km to 200 m, many obstacle detection sensors used in automobiles can be easily used. Furthermore, it is more desirable to set the maximum level of deceleration performance that can be physically exhibited in an orbital transportation system.
 障害物検知車両102の加速性能は、輸送用車両101の加速性能よりも高く設定されている。障害物検知車両102の加速性能は式(1)であらわされる。 The acceleration performance of the obstacle detection vehicle 102 is set higher than the acceleration performance of the transportation vehicle 101. The acceleration performance of the obstacle detection vehicle 102 is expressed by equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、α1は障害物検知車両102の要求加速度、α2は輸送用車両101の最大加速度、βは輸送用車両101の最大減速度である。 Here, alpha 1 is the required acceleration, alpha 2 of the obstacle detecting vehicle 102 is the maximum acceleration of the transportation vehicle 101, beta is the maximum deceleration of the transport vehicle 101.
 障害物検知車両102は仮に障害物に接触または衝突し走行不可能となった場合に、軌道上から容易に退避させることが可能なように軽量であることが望ましい。また、軽量であれば万が一障害物に接触または衝突しても、障害物の損傷を最小限にすることが可能となる。自動車並みの2トン以下のものであれば、重機なしでも動かすことができる点でも望ましい。 It is desirable that the obstacle detection vehicle 102 be lightweight so that it can be easily retracted from the track if it can not travel due to contact or collision with an obstacle. Moreover, if it is lightweight, it will be possible to minimize damage to the obstacle even if it contacts or collides with the obstacle. If it is less than 2 tons like a car, it is desirable from the point that it can be operated without heavy equipment.
 障害物検知車両102の先頭の材質は、衝撃吸収できるものであると望ましい。万が一障害物と衝突した際に、衝突の衝撃を和らげることができるからである。また障害物検知車両102の先頭形状は、障害物の排除を促す排障構造であると望ましい。仮に障害物に衝突した場合でも、障害物検知車両102が障害物を巻き込む事態を抑制することができ、早期運転再開に有利だからである。 It is desirable that the material of the leading end of the obstacle detection vehicle 102 be capable of absorbing shock. In the event of a collision with an obstacle, the impact of the collision can be mitigated. In addition, it is desirable that the leading end shape of the obstacle detection vehicle 102 be a displacement structure that promotes elimination of the obstacle. Even if the vehicle collides with an obstacle, it is possible to prevent the obstacle detection vehicle 102 from involving the obstacle, which is advantageous for early resumption of driving.
 輸送用車両101は図示しない制御装置により、後述の通り障害物検知車両102との間隔が輸送用車両101の現在の車両速度から最大減速性能で減速したときに停止するまでに必要な距離以上となるように制御される。 The distance between the transport vehicle 101 and the obstacle detection vehicle 102 by the control device (not shown) is at least the distance necessary to stop when the vehicle speed of the transport vehicle 101 is reduced at maximum deceleration performance as described later. To be controlled.
 次に障害物検知車両の動作を説明する。図2は、障害物検知車両102により実行される処理手順を示すフローチャートである。 Next, the operation of the obstacle detection vehicle will be described. FIG. 2 is a flowchart showing a processing procedure executed by the obstacle detection vehicle 102.
 ステップ201~206で輸送用車両101に対する停止指示と障害物検知車両102の現在位置を作成する。本処理は障害物検知車両102の制御周期(例えば20ミリ秒)ごとに実行される。図2のフローチャート基づく動作は以下のとおりである。 In steps 201 to 206, a stop instruction for the transportation vehicle 101 and the current position of the obstacle detection vehicle 102 are created. The present process is executed every control cycle (for example, 20 milliseconds) of the obstacle detection vehicle 102. The operation based on the flowchart of FIG. 2 is as follows.
 ステップ201:
 障害物検知センサー104から軌道上の障害物に関するセンサー情報を取得する。前記センサー情報から軌道上に障害物が存在するか否かを判断する。ステップ202へ進む。
Step 201:
Sensor information on an obstacle on the orbit is acquired from the obstacle detection sensor 104. From the sensor information, it is determined whether or not an obstacle exists on the trajectory. Go to step 202.
 ステップ202:
 衝突センサー414および接触センサー424から軌道上の障害物に関するセンサー情報を取得する。前記センサー情報から軌道上の障害物と接触または衝突があったか否かを判断する。ステップ203へ進む。
Step 202:
Sensor information on an obstacle in orbit is acquired from the collision sensor 414 and the contact sensor 424. From the sensor information, it is determined whether there is a contact or a collision with an obstacle on the track. Go to step 203.
 ステップ203:
 ステップ201で障害物が存在するか、またはステップ202で障害物と接触または衝突があったかを判定する。障害物が存在する、または障害物と接触または衝突したと判定された場合はステップ204に進む。障害物が存在しない、かつ障害物と接触または衝突していないと判定された場合はステップ205に進む。
Step 203:
At step 201, it is determined whether an obstacle exists or at step 202 there is a contact or collision with the obstacle. If it is determined that an obstacle is present, or that it has come into contact with or collided with the obstacle, the process proceeds to step 204. If it is determined that the obstacle does not exist and does not contact or collide with the obstacle, the process proceeds to step 205.
 ステップ204:
 ステップ203において障害物が存在する、または障害物と接触または衝突したと判定された場合は、即座に輸送用車両101を停止させる必要があるため、停止指示を生成する。ステップ205に進む。
Step 204:
If it is determined in step 203 that an obstacle is present, or that the vehicle is in contact with or collides with the obstacle, a stop instruction is generated because it is necessary to immediately stop the transportation vehicle 101. Proceed to step 205.
 ステップ205:
 輸送用車両101と障害物検知車両102との間隔算出に必要な障害物検知車両102の現在位置を算出する。現在位置の算出は車両速度の積分に基づいて行われるのが一般的であるが、他の方法を用いても良い。例えば、全地球測位システム(GPS)等を用いても良い。ステップ206に進む。
Step 205:
The current position of the obstacle detection vehicle 102 necessary for calculating the distance between the transportation vehicle 101 and the obstacle detection vehicle 102 is calculated. Although calculation of the current position is generally performed based on integration of the vehicle speed, other methods may be used. For example, a global positioning system (GPS) or the like may be used. Proceed to step 206.
 ステップ206:
 障害物検知車両102の現在位置と輸送用車両101に対する停止指示の有無を輸送用車両101に対して通信手段103を介して送信する。
Step 206:
The current position of the obstacle detection vehicle 102 and the presence / absence of a stop instruction for the transportation vehicle 101 are transmitted to the transportation vehicle 101 via the communication means 103.
 次に輸送用車両101の動作を説明する。図3は、輸送用車両101により実行される処理手順を示すフローチャートである。 Next, the operation of the transportation vehicle 101 will be described. FIG. 3 is a flowchart showing a processing procedure executed by the transportation vehicle 101.
 ステップ301~306で軌道上に障害物が存在する、または障害物検知車両102が障害物と接触または衝突した場合に輸送用車両101を停止させる。または、軌道上に障害物が存在しない、かつ障害物検知車両102が障害物と接触または衝突していない場合は、障害物検知車両102と必要な間隔を持って走行する。本処理は輸送用車両101の制御周期(例えば20ミリ秒)ごとに実行される。図3のフローチャート基づく動作は以下のとおりである。 In steps 301 to 306, the transport vehicle 101 is stopped when there is an obstacle on the track or when the obstacle detection vehicle 102 contacts or collides with the obstacle. Alternatively, if there is no obstacle on the track and the obstacle detection vehicle 102 does not contact or collide with the obstacle, the vehicle travels with the obstacle detection vehicle 102 at a necessary distance. This process is executed every control cycle (for example, 20 milliseconds) of the transportation vehicle 101. The operation based on the flowchart of FIG. 3 is as follows.
 ステップ301:
 障害物検知車両102から障害物検知車両102の現在位置と輸送用車両101に対する停止指示を受信する。ステップ302へ進む。
Step 301:
The obstacle detection vehicle 102 receives the current position of the obstacle detection vehicle 102 and a stop instruction for the transportation vehicle 101. Go to step 302.
 ステップ302:
 ステップ302では、輸送用車両101と障害物検知車両102との間隔算出に必要な輸送用車両101の現在位置を算出する。現在位置の算出は車両速度の積分に基づいて行われるのが一般的であるが、他の方法を用いても良い。例えば、全地球測位システム(GPS)等を用いても良い。ステップ303に進む。
Step 302:
In step 302, the current position of the transportation vehicle 101 necessary for calculating the distance between the transportation vehicle 101 and the obstacle detection vehicle 102 is calculated. Although calculation of the current position is generally performed based on integration of the vehicle speed, other methods may be used. For example, a global positioning system (GPS) or the like may be used. Proceed to step 303.
 ステップ303:
 ステップ303では障害物検知車両102の現在位置と輸送用車両101の現在位置から障害物検知車両102と輸送用車両101との間隔を算出する。ステップ304に進む。
Step 303:
In step 303, the distance between the obstacle detection vehicle 102 and the transportation vehicle 101 is calculated from the current position of the obstacle detection vehicle 102 and the current position of the transportation vehicle 101. Go to step 304.
 ステップ304:
 ステップ304では障害物検知車両102と輸送用車両101の間隔を輸送用車両101が現在の車両速度から最大減速性能で減速したときに停止するまでに走行する距離以上となるように輸送用車両を制御する。一般にある速度から一定減速度で減速し停止するまでに必要な距離は式(2)であらわされる。
Step 304:
In step 304, the transport vehicle is set to be equal to or longer than the distance by which the distance between the obstacle detection vehicle 102 and the transport vehicle 101 is stopped when the transport vehicle 101 decelerates from the current vehicle speed with the maximum deceleration performance. Control. Generally, the distance required to decelerate and stop at a constant deceleration from a certain speed is expressed by equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、Lは停止するまでに必要な距離、Vは減速を開始したときの車両速度、βは輸送用車両の減速度である。ステップ304ではLが障害物検知車両102と輸送用車両101の間隔よりも小さくなるように制御する。具体的には障害物検知車両102と輸送用車両の間隔を式(2)のLとして代入し、βに輸送用車両101の最大減速度を代入して得られるV以下となるように輸送用車両101の車両速度を制御すればよい。障害物検知車両と輸送用車両101の間隔を輸送用車両101が現在の車両速度から最大減速性能で減速したときに停止するまでに走行する距離以上となるように制御できれば、輸送用車両101が障害物検知車両102と衝突することを抑制できる。ステップ305に進む。 Here, L is a distance required to stop, V is a vehicle speed at the start of deceleration, and β is a deceleration of the transport vehicle. In step 304, control is performed so that L is smaller than the distance between the obstacle detection vehicle 102 and the transportation vehicle 101. Specifically, for transportation, the distance between the obstacle detection vehicle 102 and the transportation vehicle is substituted as L in Equation (2), and the maximum deceleration of the transportation vehicle 101 is substituted for β to be equal to or less than V. The speed of the vehicle 101 may be controlled. If the distance between the obstacle detection vehicle and the transportation vehicle 101 can be controlled to be equal to or more than the distance traveled before the transportation vehicle 101 decelerates from the current vehicle speed with the maximum deceleration performance, the transportation vehicle 101 can A collision with the obstacle detection vehicle 102 can be suppressed. Go to step 305.
 ステップ305:
 ステップ301で障害物検知車両102から停止指示を受信したかを判定する。停止指示を受信した場合はステップ306に進む。
Step 305:
In step 301, it is determined whether a stop instruction has been received from the obstacle detection vehicle 102. If the stop instruction has been received, the process proceeds to step 306.
 ステップ306:
 障害物検知車両102から停止指示を受信した場合は、輸送用車両101を最大減速度で減速させ停止させる。
Step 306:
When the stop instruction is received from the obstacle detection vehicle 102, the transportation vehicle 101 is decelerated at the maximum deceleration and stopped.
 なお実施例1は、輸送用車両101や障害物検知車両102を最大限速度で減速させて停止させる例を示したが、これに限られず、お互いの車両や障害物と衝突を抑制できれば減速させるだけでも構わない。 Although the first embodiment shows an example in which the transportation vehicle 101 and the obstacle detection vehicle 102 are decelerated at the maximum speed and stopped, the present invention is not limited thereto, and the vehicle is decelerated if collision with each other vehicle and obstacle can be suppressed. It doesn't matter.
 以上のように実施例1の軌道輸送システムは、乗客を輸送する輸送用車両101と、輸送用車両101に先行し、軌道上の障害物を検知するセンサー104を有する障害物検知車両102と、輸送用車両101と障害物検知車両102との間を通信可能につなぐ通信手段103を備え、輸送用車両101は、センサー104による障害物検知信号を受けて減速するよう構成されている。そうすると、自動車向けに開発された一般的な障害物検知センサーを用いた場合においても速達性や輸送能力を維持したまま、軌道輸送システムの輸送用車両を障害物手前で停止させる、または衝突を回避することが出来、軌道輸送システムの安全性や運用性を向上させることが出来る。また、運転士の目視による障害物検知を本実施例で置き換えることが可能となり、現在運転士が運転している軌道輸送システムを無人運転化することが可能となり、運営コストを低減することが可能となる。 As described above, the track transportation system according to the first embodiment includes the transportation vehicle 101 for transporting passengers, and the obstacle detection vehicle 102 having the sensor 104 which precedes the transportation vehicle 101 and detects an obstacle on the track. The transportation vehicle 101 is configured to decelerate in response to an obstacle detection signal from the sensor 104, and includes communication means 103 communicably connecting the transportation vehicle 101 and the obstacle detection vehicle 102 with each other. Then, even when using a general obstacle detection sensor developed for a car, the transportation vehicle of the track transportation system is stopped in front of the obstacle or collision is avoided while maintaining the rapidity and transportation ability. It is possible to improve the safety and operability of the rail transportation system. In addition, it becomes possible to replace the obstacle detection by visual observation of the driver with the present embodiment, and to enable unmanned operation of the track transport system currently being operated by the driver, and to reduce the operation cost. It becomes.
 この効果は、障害物検知車両102の制動距離が輸送用車両101の制動距離よりも短いほど大きなものとなる。 This effect becomes greater as the braking distance of the obstacle detection vehicle 102 is shorter than the braking distance of the transportation vehicle 101.
 実施例1においては障害物検知センサー104の情報から障害物が存在するか、または衝突センサー414および接触センサー424の情報から障害物と接触または衝突があったかを障害物検知車両102で判定し、停止指示を作成している。しかし、障害物検知センサー104等の情報を輸送用車両101に送信し、輸送用車両101で障害物が存在するか、または障害物と接触または衝突があったかを判定し、停止指示を作成するようにしてもよい。要は、障害物が存在するか、または障害物と接触または衝突があった場合に輸送用車両101が停止または十分に減速できればよく、本発明では障害物が存在するかまたは障害物と接触または衝突があったかの判定や、その判定に基づく停止指示をどの装置で作成するかは問わない。 In the first embodiment, the obstacle detection vehicle 102 determines whether there is an obstacle from the information of the obstacle detection sensor 104 or whether there is a contact or a collision with the obstacle from the information of the collision sensor 414 and the contact sensor 424. I have made instructions. However, information such as the obstacle detection sensor 104 is transmitted to the transportation vehicle 101, it is determined whether the transportation vehicle 101 has an obstacle or there is a contact or collision with the obstacle, and a stop instruction is generated. You may The point is that the transportation vehicle 101 can be stopped or sufficiently decelerated if there is an obstacle or if there is a contact or collision with the obstacle, and in the present invention, an obstacle exists or it is in contact with an obstacle or It does not matter which device is used to determine whether a collision has occurred or to issue a stop instruction based on the determination.
 実施例1において障害物検知車両102と輸送用車両101の間隔を輸送用車両101が現在の車両速度から最大減速性能で減速したときに停止するまでに走行する距離以上となるように輸送用車両101を制御している。たが、障害物検知車両102と輸送用車両101の間隔を輸送用車両101が現在の車両速度から最大減速性能で減速したときに停止するまでに走行する距離以上となるように障害物検知車両102を制御しても良い。本実施例では障害物検知車両102と輸送用車両101の間隔を輸送用車両が現在の車両速度から最大減速性能で減速したときに停止するまでに走行する距離(すなわち制動距離)以上となるように制御できれば良く、間隔をどの装置で制御するかは問わない。 In the first embodiment, the transportation vehicle is such that the distance between the obstacle detection vehicle 102 and the transportation vehicle 101 is equal to or greater than the distance traveled before the transportation vehicle 101 decelerates from the current vehicle speed with the maximum deceleration performance. It controls 101. However, the obstacle detection vehicle is such that the distance between the obstacle detection vehicle 102 and the transportation vehicle 101 is equal to or more than the distance traveled before the transportation vehicle 101 decelerates from the current vehicle speed with the maximum deceleration performance. 102 may be controlled. In this embodiment, the distance between the obstacle detection vehicle 102 and the transportation vehicle 101 is equal to or greater than the distance traveled before the transportation vehicle stops at the maximum deceleration performance from the current vehicle speed (that is, the braking distance) It does not matter which device is used to control the interval.
101      輸送用車両
102      障害物検知車両
103      通信手段
104      障害物検知センサー
401      輸送用車両
402      障害物検知車両
414      衝突センサー
424      接触センサー
101 Transportation Vehicle 102 Obstacle Detection Vehicle 103 Communication Means 104 Obstacle Detection Sensor 401 Transportation Vehicle 402 Obstacle Detection Vehicle 414 Collision Sensor 424 Contact Sensor

Claims (7)

  1.  乗客を輸送する輸送用車両と、
     前記輸送用車両に先行し、軌道上の障害物を検知するセンサーを有する障害物検知車両と、
     前記輸送用車両と前記障害物検知車両との間を通信可能につなぐ通信手段を備え、
     前記輸送用車両は、前記センサーによる障害物検知信号を受けて減速する軌道輸送システム。
    A transport vehicle for transporting passengers,
    An obstacle detection vehicle that precedes the transportation vehicle and has a sensor that detects an obstacle on a track;
    A communication unit communicably connecting the transport vehicle and the obstacle detection vehicle;
    An orbital transportation system in which the transportation vehicle decelerates in response to an obstacle detection signal from the sensor.
  2.  前記障害物検知車両を、前記輸送用車両が停止するまでに必要な制動距離よりも前方を走行させるよう制御する制御装置を備えた請求項1に記載の軌道輸送システム。 The track transportation system according to claim 1, further comprising: a control device that controls the obstacle detection vehicle to travel ahead of a braking distance required before the transportation vehicle stops.
  3.  前記障害物検知車両の制動距離が前記輸送用車両の制動距離よりも短い請求項1に記載の軌道輸送システム。 The track transportation system according to claim 1, wherein a braking distance of the obstacle detection vehicle is shorter than a braking distance of the transportation vehicle.
  4.  前記センサーによる前記障害物の検知、前記障害物検知車両と前記障害物との衝突または接触のいずれかが起きた際に、前記輸送用車両を停止させる制御装置を備えた請求項1に記載の軌道輸送システム。 The control device according to claim 1, further comprising a control device for stopping the transportation vehicle when any one of the detection of the obstacle by the sensor and the collision or contact between the obstacle detection vehicle and the obstacle occurs. Orbital transport system.
  5.  前記障害物検知車両が無人運転機能を有する請求項1に記載の軌道輸送システム。 The track transportation system according to claim 1, wherein the obstacle detection vehicle has an unmanned driving function.
  6.  前記輸送用車両が無人運転機能を有する請求項5に記載の軌道輸送システム。 The orbital transportation system according to claim 5, wherein the transportation vehicle has an unmanned driving function.
  7.  乗客を輸送する輸送用車両に先行させて、軌道上の障害物を検知するセンサーを有する障害物検知車両を走らせることを特徴とする軌道輸送システムの運行方法。 A method of operating a track transportation system, comprising running an obstacle detection vehicle having a sensor for detecting an obstacle on a track prior to a transportation vehicle for transporting a passenger.
PCT/JP2018/007675 2017-07-27 2018-03-01 Track transport system and track transport system operating method WO2019021518A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18839067.8A EP3659896A1 (en) 2017-07-27 2018-03-01 Track transport system and track transport system operating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017145049A JP2019025984A (en) 2017-07-27 2017-07-27 Track transportation system, operation method of track transportation system
JP2017-145049 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019021518A1 true WO2019021518A1 (en) 2019-01-31

Family

ID=65040674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007675 WO2019021518A1 (en) 2017-07-27 2018-03-01 Track transport system and track transport system operating method

Country Status (3)

Country Link
EP (1) EP3659896A1 (en)
JP (1) JP2019025984A (en)
WO (1) WO2019021518A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338538A (en) 1992-06-08 1993-12-21 Mitsubishi Heavy Ind Ltd Track transport system
JPH0710003A (en) * 1993-04-28 1995-01-13 East Japan Railway Co Hindrance detecting device for railroad vehicle
JPH08130801A (en) * 1994-10-31 1996-05-21 Isamu Oshiro Leading servant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338538A (en) 1992-06-08 1993-12-21 Mitsubishi Heavy Ind Ltd Track transport system
JPH0710003A (en) * 1993-04-28 1995-01-13 East Japan Railway Co Hindrance detecting device for railroad vehicle
JPH08130801A (en) * 1994-10-31 1996-05-21 Isamu Oshiro Leading servant

Also Published As

Publication number Publication date
JP2019025984A (en) 2019-02-21
EP3659896A1 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
CN108025763B (en) Signal processing apparatus, signal processing method, and computer-readable storage medium
CN106564497B (en) Method and apparatus for controlling subject vehicle
CN110239545B (en) Vehicle control device, vehicle control method, and storage medium
CN105303861A (en) Overtake assessment arrangement and system and autonomous vehicle with an overtake assessment arrangement
CN110271541B (en) Vehicle control device, vehicle control method, and storage medium
CN110271542B (en) Vehicle control device, vehicle control method, and storage medium
JP2001357491A (en) Line traveling general controller and line traveling controller
JP6220434B1 (en) Automatic stop control system
CN107813819B (en) Collision buffering device and method for vehicle
KR20210006551A (en) Vehicle and method for controlling thereof
CA3057276A1 (en) Enforcing restricted speed rules utilizing track data and other data sources
CN110949390A (en) Vehicle control device, vehicle control method, and storage medium
WO2018074541A1 (en) Vehicle control apparatus
WO2019026321A1 (en) Rail transportation system and rail transportation system operating method
JP2019209909A (en) Vehicle control system
US11577729B2 (en) Method for driving on an opposite lane in a controlled manner
JP2019089373A (en) Obstacle monitoring device and vehicle operation management system
JPWO2020123143A5 (en)
WO2019021518A1 (en) Track transport system and track transport system operating method
JP2019209910A (en) Vehicle control system
US20200307592A1 (en) Vehicle control device, vehicle control method, and storage medium
JP6936380B1 (en) Vehicle control system and vehicle control method
JP2020001544A (en) Track transport system and operation method for the same
JP2019140810A (en) Locus transport system
CN111619571B (en) Vehicle control system, vehicle control method, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839067

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018839067

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018839067

Country of ref document: EP

Effective date: 20200227