WO2019021475A1 - 送液装置 - Google Patents

送液装置 Download PDF

Info

Publication number
WO2019021475A1
WO2019021475A1 PCT/JP2017/027525 JP2017027525W WO2019021475A1 WO 2019021475 A1 WO2019021475 A1 WO 2019021475A1 JP 2017027525 W JP2017027525 W JP 2017027525W WO 2019021475 A1 WO2019021475 A1 WO 2019021475A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
pump
stroke
liquid
preload
Prior art date
Application number
PCT/JP2017/027525
Other languages
English (en)
French (fr)
Inventor
潤 柳林
佳祐 小川
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to EP17919517.7A priority Critical patent/EP3660310B1/en
Priority to JP2019532337A priority patent/JP6753532B2/ja
Priority to CN201780092293.2A priority patent/CN110799754B/zh
Priority to US16/629,421 priority patent/US11434897B2/en
Priority to PCT/JP2017/027525 priority patent/WO2019021475A1/ja
Publication of WO2019021475A1 publication Critical patent/WO2019021475A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/02Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/005Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
    • F04B11/0058Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons with piston speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/005Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
    • F04B11/0075Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons connected in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • F04B23/06Combinations of two or more pumps the pumps being all of reciprocating positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/022Stopping, starting, unloading or idling control by means of pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0202Linear speed of the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/03Pressure in the compression chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet

Definitions

  • the present invention relates to a liquid transfer device used to transfer a mobile phase in a fluid chromatograph such as high performance liquid chromatograph (HPLC) or supercritical fluid chromatograph (SFC).
  • HPLC high performance liquid chromatograph
  • SFC supercritical fluid chromatograph
  • the liquid delivery apparatus used in the HPLC system is required to have the ability to stably deliver the mobile phase at high pressure. Therefore, a double plunger type liquid delivery apparatus in which two plunger pumps are connected in series or in parallel is generally used.
  • the upstream primary plunger pump and the downstream secondary plunger pump operate in a complementary manner.
  • the secondary side plunger pump In the discharge stroke by the primary side plunger pump, the secondary side plunger pump performs suction operation while the primary side plunger pump discharges the liquid, and a part of the liquid discharged by the primary side plunger pump is 2 The next plunger pump sucks. In the discharge stroke by the secondary side plunger pump, the secondary side plunger pump performs a discharge operation, while the primary side plunger pump performs a suction operation.
  • the flow rate obtained by subtracting the suction flow rate of the secondary side plunger pump from the discharge flow rate of the primary side plunger pump becomes the liquid flow rate of the liquid transfer device.
  • the discharge flow rate of the secondary side plunger pump is the liquid transfer flow rate of the liquid transfer device.
  • Such an in-line double plunger type liquid delivery apparatus is provided with a valve for preventing backflow on each of the inlet side and the outlet side of the primary side plunger pump.
  • the valve on the inlet side closes and the valve on the outlet side opens
  • the valve on the inlet side opens and the valve on the outlet side It is supposed to close.
  • the pressure in the pump chamber of the primary plunger pump after the suction operation of the primary plunger pump is completed is the system pressure (HPLC And the pressure in the analysis channel of the SFC).
  • the primary plunger pump discharges the plunger in the discharge direction so that the pressure in the pump chamber can be increased to a pressure close to the system pressure, in addition to the liquid suction operation. It is common to perform a pre-load operation to drive the
  • the mobile phase sucked into the pump chamber is compressed to generate heat, and the temperature of the mobile phase rises to expand the volume. Thereafter, in the process of flowing through the flow path, the mobile phase discharged from the pump chamber is deprived of heat by the flow path wall surface and the like to be cooled and the volume shrinks.
  • an error occurs between the ideal value of the liquid flow rate determined by the product of the actual liquid flow rate, the plunger cross-sectional area, and the driving speed of the plunger, and the liquid accuracy decreases. It causes pulsation.
  • thermal compensation control theoretically, it is possible to suppress the occurrence of problems such as a decrease in liquid transfer accuracy and pulsation. However, in practice, non-negligible pulsations may occur even if these thermal compensation controls are performed.
  • the volume change of the mobile phase in the liquid feeding process which is the cause of the pulsation is due to the mobile phase which generates heat in the pre-compression stroke being discharged from the pump chamber while the temperature rises. Therefore, if the temperature rise of the mobile phase in the preload stroke can be suppressed, the pulsation is also suppressed.
  • an object of this invention is to enable it to suppress that the liquid of liquid feeding object in a precompression stroke of a liquid feeding apparatus rises in temperature.
  • the present inventors focused on the relationship between the speed of discharge operation of the plunger pump during the pre-compression stroke (this is referred to as pre-load speed) and the magnitude of heat generation of the liquid to be fed. If the preload rate is low, the heat buildup of the fluid is sufficiently absorbed by the pump head during the preload stroke. Since the precompression process is performed isothermally, the temperature rise of the liquid is reduced, and the volume change of the liquid in the liquid transfer process is also reduced. As a result, pulsation is suppressed.
  • the time constant for heat generation to be absorbed by the pump head is on the order of 1 s to several s.
  • the preload rate is high, the heat of the fluid can not be absorbed by the pump head during the preload stroke. That is, since the precompression process is performed adiabatically, the temperature rise of the liquid becomes large, and the volume change of the liquid in the liquid feeding process also becomes large. As a result, relatively large pulsations occur.
  • system pressure also referred to as a liquid transfer pressure
  • system pressure can take a wide value from several MPa to over 100 MPa.
  • the discharge operation amount of the plunger pump required to complete the preload stroke that is, the moving distance (preload distance) of the plunger is proportional to the system pressure.
  • the preload speed needs to be increased to a certain extent.
  • high preload rates will be excessive if system pressure is low, and the preload stroke will be completed more quickly than necessary.
  • the preload stroke can be adiabatic.
  • the second limitation is the compression rate of the liquid to be fed.
  • the preload distance is proportional to the compression rate of the liquid to be fed.
  • organic solvents In water and organic solvents used as mobile phases in liquid chromatographs, organic solvents have higher compressibility than water, and the difference in compressibility is about 3 times. Therefore, when the liquid to be sent is an organic solvent, the preload distance is longer than when the liquid to be sent is water. Therefore, if the precompression speed is set on the basis of a liquid having a high compression rate, the precompression speed will be excessive for a liquid having a compression rate lower than that, and the precompression stroke will be completed in a short time more than necessary. As a result, the preload stroke can be adiabatic.
  • the third limitation is that, if one plunger pump is performing a preload stroke, that preload stroke must be completed by the time the discharge stroke of another plunger pump is completed and the plunger pump transitions to the discharge stroke.
  • There is a time constraint of having to The working distance of the plunger is limited and can not be operated beyond the top dead center (the position where the plunger is most pushed into the pump chamber). Therefore, the preload stroke must be completed before the plunger of the plunger pump in the discharge stroke reaches the top dead center (or the deceleration start reference point provided slightly before the top dead center to secure the deceleration distance). You must.
  • the flow rate of the liquid can take a wide value from several uL / min to several mL / min.
  • the cycle (this is called the pump cycle) at which the plunger pump that executes the discharge stroke switches is inversely proportional to the liquid delivery flow rate, so the pump cycle has a range of about 3 digits within the above flow rate range.
  • the pump cycle may be 1 s or less, and the time that can be allocated to the preload stroke is shortened, so the preload speed needs to be increased to some extent.
  • such a high preload rate will be excessive if the delivery flow rate is low, and the preload stroke will be completed in a shorter time than necessary.
  • the preload stroke can be adiabatic.
  • Patent Document 6 a time (this is referred to as a preloading time) spent on the preloading stroke is determined based on the set flow rate (target liquid delivery flow rate), and the preloading is completed so that the preloading is completed within the preloading time. It is stated that the speed is determined. Therefore, it is considered possible to configure a liquid delivery device corresponding to the fourth constraint by using the technology disclosed in Patent Document 6.
  • Patent Document 6 does not mention at all about suppressing the temperature rise of the liquid during the precompression stroke, and neither describes nor suggests the first, second and third limitations. Therefore, even if the person skilled in the art is aware of the existence of Patent Document 6, it can not configure a liquid delivery apparatus corresponding to the first, second and third constraints.
  • a liquid delivery apparatus has first to third modes corresponding to the first to third constraints, respectively.
  • Each of the first to third embodiments includes the discharge flow channel, the pump unit, the liquid transfer pressure sensor, the non-discharge pressure sensor, the preloading unit, and the preloading speed determination unit.
  • the pump unit has a plurality of plunger pumps connected in series or in parallel to each other, and discharges the liquid to be supplied to the discharge flow path. Close the communication between the at least one plunger pump of the plurality of plunger pumps and the discharge flow passage during a non-discharge time during which the discharge stroke for discharging the liquid to the discharge flow passage is not performed It is a pump.
  • the primary side (upstream side) plunger pump corresponds to a closing pump.
  • both plunger pumps correspond to closing pumps.
  • the pressure in the pump chamber after the suction stroke is completed is lower than the pressure in the discharge flow channel (for example, atmospheric pressure). Therefore, after the suction stroke is completed, the closed pump performs a preload stroke to make the pressure in the pump chamber equal to the pressure in the discharge flow path, that is, the pressure equivalent to the liquid delivery pressure before shifting to the discharge stroke. It needs to be enhanced.
  • the liquid transfer pressure sensor detects the pressure in the discharge flow path as a liquid transfer pressure.
  • the non-discharge pressure sensor detects the pressure in the pump chamber of the closing pump during the non-discharge time as a non-discharge pressure.
  • the preloading unit is configured to perform the closing pump during the non-discharging time after the suction stroke for sucking the liquid into the pump chamber is completed based on the output of the liquid transfer pressure sensor and the output of the non-discharging pressure sensor. It is configured to execute a pre-pressure stroke for performing the discharge operation until the non-discharge pressure becomes substantially the same as the liquid transfer pressure. Whether or not the non-discharge pressure is substantially the same as the liquid transfer pressure can be determined, for example, based on whether or not the difference between the non-discharge pressure and the liquid transfer pressure falls within a predetermined range.
  • the precompression speed determination unit is configured to determine the speed of discharge operation of the closed pump during the precompression stroke, that is, the precompression speed.
  • the preloading unit is configured to operate the closed pump at the preloading speed determined by the preloading speed determination unit in the preloading stroke.
  • the first form of the liquid transfer device is to cope with the above-mentioned first restriction. That is, in the first aspect, the preload speed determination unit increases the maximum speed (hereinafter, referred to as the maximum preload speed) of the discharge operation during the preload stroke of the closed pump as the liquid transfer pressure increases. It is configured to determine the preloading speed based on the fluid delivery pressure, using the correlation defined in.
  • the preloading unit is configured to cause the closing pump to start the preloading stroke immediately after the suction stroke of the closing pump is completed, and the preloading speed determining unit is configured to perform the closing Configured to determine the rate of discharge operation of the closing pump during the pre-load stroke, such that the pre-load stroke of the pump is completed immediately before the end of the discharge stroke of another plunger pump during the discharge stroke; Is preferred. Then, since the pre-load stroke can be performed as long as possible, the pre-load speed is reduced, and the adiabatic pre-load stroke is suppressed.
  • the correlation is defined such that the speed of the discharge operation of the closing pump during the preload stroke is higher as the difference between the liquid transfer pressure and the non-discharge pressure is larger.
  • the preload speed determination unit is configured to determine a new speed of the discharge operation of the closed pump using the correlation in the middle of the preload stroke, and the preload unit is the preload speed determination unit.
  • the preloading speed of the plunger pump during the preloading stroke can be made to correspond to the difference between the liquid feed pressure and the non-discharge pressure.
  • the first aspect can correspond to the fourth constraint described above. That is, the correlation can be defined such that the maximum speed of the discharge operation during the pre-compression stroke of the closed pump is higher as the target fluid delivery flow rate is larger.
  • the preloading speed of the plunger pump during the preloading stroke can be made to correspond to the preset target liquid delivery flow rate.
  • the apparatus further comprises a compression rate storage unit that stores information on the compression rate of the liquid to be delivered as a compression rate, and the correlation indicates that the compression stroke of the closed pump is greater as the compression rate of the liquid to be delivered is larger. It is specified that the maximum speed of the inside discharge operation is high. As a result, the preloading speed of the plunger pump during the preloading stroke can be made to correspond to the compression rate of the liquid to be fed.
  • the first form can be made compatible with the third restriction. That is, until the plunger pump in the discharge stroke when the preload stroke of the closed pump is started reaches the top dead center or the deceleration start reference point provided slightly before the top dead center
  • the apparatus may further include a discharge operable amount calculation unit configured to calculate an amount capable of performing the discharge operation as the discharge operable amount.
  • the correlation can be defined such that the maximum speed of the discharge operation during the preload stroke of the closing pump decreases as the discharge operable amount increases.
  • the preloading speed of the plunger pump during the preloading stroke can be made to correspond to the state of the other plunger pump during the discharging stroke.
  • the second form of the liquid transfer device is to cope with the above-mentioned second restriction. That is, the second embodiment includes a compression rate storage unit that stores information on the compression rate of liquid to be fed as the compression rate.
  • the precompression speed determination unit uses the correlation defined so that the maximum speed of the discharge operation during the precompression stroke of the closed pump becomes higher as the compression rate of the liquid to be fed increases.
  • the speed of discharge operation of the closed pump during the pre-compression stroke is determined on the basis of. As a result, the preloading speed of the plunger pump during the preloading stroke corresponds to the compression rate of the liquid to be fed.
  • the preloading portion is configured to cause the closing pump to start the preloading stroke immediately after the suction stroke of the closing pump is completed
  • the preloading speed determination unit is configured to It is configured to determine the speed of discharge operation of the closing pump during the pre-load stroke, so that the pre-load stroke of the closing pump is completed immediately before the end of the discharge stroke of the other plunger pump during the discharge stroke. Is preferred. Then, since the pre-load stroke can be performed as long as possible, the pre-load speed is reduced, and the adiabatic pre-load stroke is suppressed.
  • the above-mentioned second form can also correspond to the above-mentioned fourth constraint. That is, the correlation can be defined such that the maximum speed of the discharge operation of the closing pump during the pre-compression stroke is higher as the target fluid delivery flow rate is larger.
  • the preloading speed of the plunger pump during the preloading stroke can be made to correspond to the preset target liquid delivery flow rate.
  • the above-mentioned second form can also correspond to the above-mentioned third constraint. That is, until the plunger pump in the discharge stroke when the preload stroke of the closed pump is started reaches the top dead center or the deceleration start reference point provided slightly before the top dead center
  • the apparatus may further include a discharge operable amount calculation unit configured to calculate an amount capable of performing the discharge operation as the discharge operable amount.
  • the correlation can be defined such that the maximum speed of the discharge operation during the preload stroke of the closing pump decreases as the discharge operable amount increases.
  • the preloading speed of the plunger pump during the preloading stroke can be made to correspond to the state of the other plunger pump during the discharging stroke.
  • the third form of the liquid transfer device addresses the third constraint described above. That is, in the third embodiment, the deceleration start reference point at which the plunger pump during the discharge stroke when the preload stroke of the closed pump is started is provided at or slightly above the top dead center.
  • the apparatus is provided with a dischargeable operation possible amount calculation unit configured to calculate, as the dischargeable operation possible amount, the amount by which the plunger pump can perform the discharge operation until it reaches.
  • the preload speed determination unit uses the correlation defined such that the maximum speed of the discharge operation during the preload stroke of the closed pump decreases as the discharge operable amount increases, and the discharge operation possible amount is determined as the discharge operable amount. It is configured to determine the speed of the discharge operation during the precompression stroke of the closed pump based thereon. As a result, the preload speed of the plunger pump during the preload stroke corresponds to the state of the other plunger pump during the discharge stroke.
  • the preloading portion is configured to cause the closing pump to start the preloading stroke immediately after the suction stroke of the closing pump is completed
  • the preloading speed determination unit is configured to It is configured to determine the speed of discharge operation of the closing pump during the pre-load stroke, so that the pre-load stroke of the closing pump is completed immediately before the end of the discharge stroke of the other plunger pump during the discharge stroke. Is preferred. Then, since the pre-load stroke can be performed as long as possible, the pre-load speed is reduced, and the adiabatic pre-load stroke is suppressed.
  • the above-mentioned third mode can be made to correspond to the above-mentioned fourth constraint. That is, the correlation can be defined such that the maximum speed of the discharge operation of the closing pump during the pre-compression stroke is higher as the target fluid delivery flow rate is larger.
  • the preloading speed of the plunger pump during the preloading stroke can be made to correspond to the preset target liquid delivery flow rate.
  • the preload velocity determination unit uses the correlation defined so that the highest preload velocity of the closed pump in the preload stroke is higher as the delivery pressure is higher. Since the precompression speed is determined based on the fluid pressure, the precompression speed of the closed pump is in accordance with the delivery pressure. As a result, when the fluid delivery pressure is low, the prepressurization speed also decreases accordingly, so that the precompression stroke is easily performed isothermally, and the temperature rise of the fluid to be delivered in the precompression stroke is suppressed.
  • the precompression speed of the closed pump during the precompression stroke corresponds to the compression rate of the liquid to be transferred.
  • the preloading speed also decreases accordingly, so the preloading stroke is easily performed isothermally, and the temperature rise of the liquid to be fed is suppressed in the preloading stroke.
  • the preload speed of the plunger pump during the preload stroke corresponds to the state of the other plunger pump during the discharge stroke.
  • the liquid delivery apparatus 1 of this embodiment includes two plunger pumps, ie, a primary pump 2 and a secondary pump 22.
  • the primary pump 2 and the secondary pump 22 are connected in series with each other.
  • the primary side pump 2 and the secondary side pump 22 constitute a pump unit for feeding the liquid through the discharge flow path 38.
  • the primary side pump 2 includes a pump head 3 having a pump chamber 4 therein and a pump body 6.
  • the pump head 3 is provided at the tip of the pump body 6.
  • the pump head 3 is provided with an inlet for introducing the liquid into the pump chamber 4 and an outlet for discharging the liquid from the pump chamber 4.
  • a check valve 16 is provided at the inlet of the pump head 3 to prevent backflow of the liquid.
  • the distal end of the plunger 10 is slidably inserted into the pump chamber 4.
  • the proximal end of the plunger 10 is held by a crosshead 8 housed within the pump body 6.
  • the crosshead 8 is moved in one direction (left and right direction in the drawing) in the pump body 6 by the rotation of the feed screw 14, and the plunger 10 is moved in one direction accordingly.
  • a primary pump drive motor 12 is provided to rotate the feed screw 14.
  • the primary side pump drive motor 12 is a stepping motor.
  • the secondary side pump 22 includes a pump head 23 having a pump chamber 24 therein, and a pump body 28.
  • the pump head 23 is provided at the tip of the pump body 28.
  • the pump head 23 is provided with an inlet portion for introducing the liquid into the pump chamber 24 and an outlet portion for discharging the liquid from the pump chamber 24.
  • a check valve 26 is provided at the inlet of the pump head 23 to prevent backflow of the liquid.
  • the tip of the plunger 32 is slidably inserted into the pump chamber 24.
  • the proximal end of the plunger 32 is held by a crosshead 30 housed within the pump body 28.
  • the crosshead 30 is moved in one direction (left and right direction in the drawing) in the pump body 28 by the rotation of the feed screw 36, and the plunger 32 is moved in one direction accordingly.
  • a secondary pump drive motor 34 for rotating the feed screw 36 is provided at the proximal end of the pump body 28 .
  • the secondary pump drive motor 34 is a stepping motor.
  • the inlet of the pump head 3 is connected to a container (not shown) for storing the liquid to be fed via a flow path.
  • the inlet of the pump head 23 is connected to the outlet of the pump head 3 via the connection channel 18.
  • a primary side pressure sensor 20 for detecting the pressure (P1) in the pump chamber 4 is provided on the connection flow passage 18.
  • the primary side pressure sensor 20 is for detecting the pressure in the pump chamber 4 of the primary side pump 2 during a non-discharge time during which the primary pump 2 is not in the discharge stroke as a non-discharge pressure.
  • a discharge flow path 38 is connected to the outlet of the pump head 23.
  • the discharge channel 38 communicates with, for example, an analysis channel of a liquid chromatograph.
  • a secondary pressure sensor 40 for detecting the pressure (P2) in the pump chamber 24 as the liquid transfer pressure is provided on the discharge flow path 38.
  • the operations of the primary pump drive motor 12 and the secondary pump drive motor 34 are controlled by the control unit 42.
  • the control unit 42 is configured to cause the primary pump 2 and the secondary pump 22 to operate complementarily so that the flow rate of the liquid fed through the discharge flow path 38 becomes a preset target flow rate. There is.
  • the complementary operation of the primary side pump 2 and the secondary side pump 22 will be described. While the primary side pump 2 is performing the discharge stroke for discharging the liquid, the secondary side pump 22 sucks the liquid. And a part of the liquid discharged from the primary pump 2 is sucked into the pump chamber 24 of the secondary pump 22. When the suction stroke of the secondary pump 22 is completed, the secondary pump 2 shifts to the discharge stroke. At this time, the primary side pump 2 shifts to the suction stroke, and after the suction stroke is completed, the preload stroke is performed.
  • the check valve 26 is in a closed state.
  • the communication between the pump chamber 4 of the primary pump 2 and the discharge flow path 38 is cut off.
  • a pump in which communication with the discharge flow path 38 is interrupted during non-discharge time is referred to herein as a closed pump. Since the liquid delivery apparatus of this embodiment is an in-line double plunger system, only the primary side pump 2 corresponds to a closed pump, but in the case of a parallel double plunger system, both plunger pumps correspond to a closed pump.
  • the control unit 42 is configured to control the operation of the primary-side pump drive motor 12 based on the non-discharge pressure P1 and the liquid feeding pressure P2 in the pre-compression stroke described later.
  • the control unit 42 includes a preloading unit 44, a preloading speed determination unit 46, and a correlation holding unit 48.
  • the control unit 42 is realized by, for example, a computer circuit having an arithmetic element such as a microcomputer.
  • the preloading unit 44 and the preloading speed determining unit 46 are functions obtained by the arithmetic element of the control unit 42 executing a predetermined program, and the correlation holding unit 48 is a part of the storage device provided in the control unit 42. Function realized by the domain of
  • the preloading unit 44 is configured to execute the preloading stroke on the primary side pump 2 after the suction stroke for sucking the liquid into the pump chamber 4 is completed during the non-discharge time when the primary side pump 2 is not in the discharge stroke. It is done.
  • the precompression stroke is the timing before the primary pump 2 that completed the suction stroke shifts to the discharge stroke, and the primary pump 2 is discharged until the non-discharge pressure P1 becomes approximately the same pressure as the liquid delivery pressure P2. It is a process that The timing at which the primary side pump 2 starts the preload stroke is, for example, immediately after the suction stroke of the primary side pump 2 is completed.
  • the precompression speed determination unit 46 is configured to determine the speed of the discharge operation during the precompression stroke of the primary side pump 2, that is, the precompression speed.
  • the preload speed determination unit 46 determines the preload speed of the primary side pump 2 using the correlation held in the correlation holding unit 48.
  • the preload unit 44 operates the primary side pump 2 at the preload speed determined by the preload speed determination unit 46 in the preload stroke.
  • the preloading velocity V is drawn to be linearly proportional to the differential pressure ⁇ P
  • the correlation may be drawn in a curvilinear manner.
  • the correlation is drawn in a step-like manner, and the differential pressure ⁇ P is divided into a plurality of levels, and it is specified that the preload speed V is determined by the level to which the differential pressure ⁇ P belongs. It is. Note that the present invention is not limited to these, as long as the preload velocity V and the differential pressure ⁇ P have a positive correlation.
  • the preload velocity V can be determined by the following equation.
  • V C1 ⁇ ⁇ P C1 is a proportionality coefficient which is set so that the preload stroke is completed before the discharge stroke of the secondary pump 22 is completed.
  • the preload speed determination unit 46 may determine the initial value of the preload speed V using the above correlation, and operate the primary side pump 2 at a constant speed during the preload stroke, or at predetermined time intervals.
  • the differential pressure ⁇ P may be determined, and in each case, the preloading velocity V may be redetermined using the determined ⁇ P and the above correlation. If the preloading velocity V is redetermined during the preloading stroke, the preloading unit 44 changes the preloading velocity of the primary pump 2 to that redetermined.
  • the preloading velocity V changes with time so that the initial value is the highest and continuously decreases.
  • the initial value (maximum speed) of the preload velocity V is high when the delivery pressure P2 is high (see FIG. 3A), and the initial value of the preload velocity V is low when the delivery pressure P2 is low. (See FIG. 3B).
  • the time required for the pre-compression stroke can be kept substantially constant regardless of the liquid transfer pressure, the pre-compression stroke can be easily performed isothermally.
  • the preload velocity V is relatively high immediately after the preload stroke is started, compression of the liquid is performed adiabatically, and the liquid generates heat not a little.
  • this heat generation can make part of the pump head 3 absorbed during the completion of the pre-compression stroke by lengthening the time required for the pre-compression stroke, and bring the compression of the liquid closer to isothermal one. it can.
  • the preload velocity V decreases continuously with time, the heat generation of the liquid also decreases with time, and the compression of the liquid becomes isothermal when the preload stroke is completed. As a result, the entire preloading process becomes isothermal.
  • the stability of the liquid transfer can be further improved when the liquid transfer is performed under a liquid transfer condition such as gradient analysis in which the liquid transfer pressure P2 changes.
  • the correlation between the preload velocity V and the differential pressure ⁇ P is defined so that the preload velocity does not become zero even when the differential pressure ⁇ P is at or near zero. preferable. Then, it is ensured that the precompression of the primary side pump 2 is completed within a finite time even when the precompression stroke progresses and the differential pressure ⁇ P becomes zero or close to zero.
  • the preload velocity V is redetermined using the correlation for each fixed time.
  • the preload velocity V gradually decreases with the initial value as the highest speed.
  • the liquid transfer pressure P2 has a low value such that the initial value of the preloading velocity V is set to the minimum height, the preloading velocity V remains unchanged at the minimum height.
  • the initial value (maximum speed) of the preload velocity V is high when the delivery pressure P2 is high (see FIG.
  • the preloading velocity V can also be correlated with the liquid delivery flow rate L.
  • FIG. 5 shows an example of the correlation between the preload velocity V and the liquid transfer flow rate L.
  • FIG. 5 shows a correlation in which the preload velocity V is linearly proportional to the liquid transfer flow rate L, the present invention is not limited to this, and the preload velocity V and the liquid transfer flow rate L are It is sufficient if it has positive correlation. Therefore, the correlation may be drawn curvilinearly or drawn stepwise.
  • the liquid transfer flow rate L is a target flow rate set in advance.
  • V C2 ⁇ ⁇ P ⁇ L
  • C2 is a proportionality coefficient which is set so that the preload stroke is completed before the discharge stroke of the secondary pump 22 is completed.
  • the primary side pump 2 carries out a suction stroke for sucking the liquid into the pump chamber 4 (step S1).
  • the suction stroke is completed in a short time by driving the plunger 10 at high speed (for example, maximum speed) to the suction side (left side in FIG. 1). This is to increase the time allotted for the subsequent pre-compression stroke.
  • the preload unit 44 causes the primary pump 2 to execute the preload stroke.
  • the preload speed determination unit 46 calculates a differential pressure ⁇ P between the liquid transfer pressure P2 and the non-discharge pressure P1 (step S2). If the differential pressure ⁇ P is not zero or almost zero (step S3), the preload velocity determination unit 46 uses the correlation held by the correlation holding unit 48 to calculate the differential pressure ⁇ P or the differential pressure ⁇ P and the liquid flow rate Based on L, the preloading speed is determined (step S4).
  • the preload unit 44 discharges the primary pump 2 at the speed determined by the preload speed determination unit 48 (step S5).
  • step S3 to S5 The above operation is repeatedly performed until the differential pressure ⁇ P becomes zero or almost zero (steps S3 to S5).
  • step S6 the preloading speed during the preloading stroke decreases continuously with time.
  • step S6 the differential pressure ⁇ P becomes zero or almost zero.
  • step S7 the primary pump 2 shifts to the discharge stroke.
  • the control unit 42 includes the compression ratio holding unit 50, and the correlation holding unit 48 includes the preload velocity V and the compression ratio of liquid to be sent. The difference is that the correlation with k is maintained.
  • the compression rate holding unit 50 is a function realized by a partial area of a storage device provided in the control unit 42.
  • the compression rate holding unit 50 is configured to hold the actual compression rate of the liquid to be fed or the predicted value thereof.
  • the actual compression rate input by the user can be held in the compression rate holding unit 50.
  • the compression rate of the liquid to be fed can be calculated by using the amount of movement of the plunger 10 in the discharge direction and the amount of increase in the non-discharge pressure P1 during the precompression stroke of the primary pump 2.
  • the compression rate holding unit 50 may hold the compression rate obtained by calculation during the pre-compression stroke one cycle before as a predicted value.
  • the correlation holding unit 48 holds the correlation between the preload velocity V and the compression rate k of the liquid to be fed, as shown in FIG.
  • This correlation is defined such that the preload velocity V is higher as the compression ratio is larger. That is, the preload velocity V and the compression rate k have a positive correlation.
  • FIG. 8 shows a correlation in which the preload velocity V is linearly proportional to the compression ratio k, the present invention is not limited to this, and the preload velocity V and the compression ratio k are positive. It is sufficient if it has a correlation. Therefore, the correlation may be drawn curvilinearly or drawn stepwise.
  • the preload velocity determination unit 46 adds to the correlation between the preload velocity V and the differential pressure ⁇ P, or instead of the correlation between the preload velocity V and the differential pressure ⁇ P.
  • the preload velocity V is determined by using the correlation between the preload velocity V and the compression rate k.
  • the preloading velocity V is determined using the correlation between the preloading velocity V and the compression rate k, the preloading velocity V decreases when the compression rate k of the liquid to be fed is small, and the preloading pressure when the compression rate k is large The speed V is increased.
  • the pre-compression stroke can be completed in the same length of time regardless of the compression rate of the liquid to be fed, so the time required for the pre-compression stroke will not be shorter than necessary. Thereby, the compression of the liquid in the precompression stroke tends to be isothermal.
  • the preload velocity V can be obtained by the following equation.
  • V C3 ⁇ k C3 is a proportionality coefficient set so that the pre-compression stroke is completed before the discharge stroke of the secondary pump 22 is completed.
  • V C4 ⁇ ⁇ P ⁇ k
  • C4 is a proportionality coefficient which is set so that the preload stroke is completed before the discharge stroke of the secondary pump 22 is completed.
  • V C5 ⁇ ⁇ P ⁇ L ⁇ k
  • C5 is a proportionality coefficient which is set so that the preload stroke is completed before the discharge stroke of the secondary pump 22 is completed.
  • the control unit 42 includes the dischargeable amount calculation unit 52, and the correlation holding unit 48 includes the preload speed and the dischargeable amount calculation unit 52. It differs in that it holds the correlation with.
  • the ejection operable amount calculation unit 52 is a function obtained by the arithmetic element of the control unit 42 executing a predetermined program.
  • the relative relationship between the position of the plunger 10 of the primary pump 2 and the position of the plunger 32 of the secondary pump 22 is not always constant, and the positions of the respective plungers 10 and 32 are affected by the operation history up to that point . Therefore, in the stage where the primary side pump 2 starts the preload stroke, both the case where the position of the plunger 32 of the secondary side pump 22 during the discharge stroke is far from the top dead center and the case where it is near the top dead center are assumed. .
  • the distance by which the plunger 32 can be operated in the discharge direction until the plunger 32 reaches the top dead center A lot). Therefore, a relatively long time can be allocated to the preload stroke of the primary side pump 2, and the preload speed can be relatively low.
  • the discharge operable amount ⁇ is small. For this reason, the time allocated to the preload stroke of the primary side pump 2 becomes short, and it is necessary to increase the preload speed.
  • the discharge operable amount ⁇ of the secondary side pump 22 can be obtained by calculation on the control unit 42 side.
  • the control unit 42 grasps the number of control pulses (referred to as the maximum control pulse number) that can be given to the secondary pump drive motor 34 before the plunger 32 of the secondary pump 22 reaches the top dead center from the bottom dead center. doing. Therefore, if the number of control pulses already given to the secondary side pump drive motor 34 at the start of the preload stroke of the primary side pump 2 is subtracted from the maximum number of control pulses, the plunger 32 is given until the top dead center is reached.
  • the number of possible control pulses, that is, the discharge operation possible amount ⁇ can be determined.
  • the discharge operation is possible by subtracting the control pulse number of the plunger 32 of the secondary pump 22 from the pulse number representing the position of the deceleration start reference point
  • the quantity ⁇ can be determined.
  • the plunger 10 of the primary pump 2 completes the preload before the plunger 32 of the secondary pump 22 reaches the deceleration start reference point. Therefore, by discharging the plunger 10 of the primary pump 2 while accelerating in accordance with the deceleration of the plunger 32 of the secondary pump 22, it is possible to obtain a desired liquid transfer flow rate as a total.
  • the correlation holding unit 48 holds the correlation defined such that the preload velocity V decreases as the dischargeable operation amount ⁇ increases.
  • the preloading speed V is drawn to be in inverse proportion to the discharge operable amount ⁇
  • the present invention is not limited to this, and the preloading velocity V and the discharge operable amount ⁇ Should have a negative correlation. Therefore, the correlation may be drawn linearly or in a step-like manner.
  • the preload velocity determination unit 46 adds to the correlation between the preload velocity V and the differential pressure ⁇ P or the correlation between the preload velocity V and the compression rate k, or instead of the correlation between the velocity V and the differential pressure ⁇ P and the correlation between the preload velocity V and the compression rate k, the correlation between the preload velocity V and the discharge operable amount ⁇ is used to determine the preload velocity V It is configured.
  • the preload speed V increases when the discharge operable amount ⁇ of the secondary side pump 22 is small, and the preload speed when the discharge operable amount ⁇ is large. V becomes smaller. For this reason, the time required for the preload stroke does not become shorter than necessary. Thereby, the compression of the liquid in the precompression stroke tends to be isothermal.
  • the preload velocity V can be determined by the following equation.
  • V C6 / ⁇ C6 is a proportionality coefficient which is set so that the preload stroke is completed before the discharge stroke of the secondary pump 22 is completed.
  • the preload velocity V can be correlated with all of the differential pressure ⁇ P, the feed flow rate L, the liquid compression rate k, and the preload operable amount ⁇ .
  • the preloading velocity V can be obtained by the following equation (1).
  • C7 is a mechanical constant determined by the design of the primary pump 2 and the secondary pump 22.
  • the remaining time until the discharge stroke of the secondary side pump 22 during the discharge stroke ends at the same time (the remaining discharge time can be determined by the following equation (3).
  • C9 is a mechanical constant determined by the design of the secondary side pump 22.
  • the primary side pump 2 and the secondary side pump 22 In order for the primary side pump 2 and the secondary side pump 22 to cooperate to realize continuous liquid delivery, the primary side pump 2 must complete the preload stroke before the discharge stroke of the secondary side pump 22 is completed. You must. That is, there are the following restrictions. Remaining discharge time ⁇ ⁇ remaining preload time (4)
  • the preloading speed is calculated large at the beginning of the preloading stroke. Therefore, the mobile phase is pressurized earlier than expected. At this time, when the preload velocity V is recalculated, the remaining preload pressure decreases earlier than expected, so the recalculated preload velocity V decreases. This results in a continuously decreasing pre-load velocity profile as shown in FIGS. 3A and 3B.
  • the preloading velocity V is calculated smaller at the beginning of the preloading stroke. Therefore, the mobile phase is boosted later than expected. At this time, if the preload velocity V is recalculated, the remaining preload pressure decreases more slowly than expected, so the recalculated preload velocity V becomes larger. Therefore, contrary to the continuously decreasing velocity profile as shown in FIGS. 3A and 3B, a continuously increasing velocity profile can be obtained.
  • the pre-compression stroke of the primary pump 2 is completed within the remaining discharge time of the secondary pump 22.
  • the pre-pressure velocity decreases continuously with time, as shown in FIGS. 3A and 3B. Therefore, it is possible to use, as the predicted value k, a value that maximizes the liquid used as the mobile phase so that the predicted value k of the liquid compression rate does not become smaller than the actual liquid compression rate. More specifically, it is possible to use the value of hexane (1.6 GPa -1 ) which falls in the class having the largest compression rate among liquids generally used as the mobile phase. Alternatively, when the liquid delivery apparatus of this embodiment is used as a delivery pump of a supercritical chromatograph, a higher compression rate may be used as a predicted value, assuming liquefied carbon which is a mobile phase.
  • a preloading velocity V is provided which fulfills all the requirements for the coordination of the closing pump with the other plunger pumps.
  • the plungers of the complementary pump should be placed slightly above or at top dead center if the more general and mild delivery conditions (low to medium pressure, low to medium flow, mobile phase compression rate is low) In the case of being far from the decelerating start reference point), the mobile phase pre-compression stroke is made more isothermal.
  • the isothermal pre-compression stroke makes it possible to suppress the temperature rise of the mobile phase and to reduce the flow compensation by heat compensation control. Even when there is a deviation from the ideal state in the thermal compensation control, it is possible to suppress the remaining pulsation that can not be compensated. Such pulsations improve the delivery stability of the delivery pump and thus the reproducibility of the chromatographic analysis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)

Abstract

送液装置は、吐出流路、ポンプ部、送液圧力センサ、非吐出時圧力センサ、予圧部及び予圧速度決定部を備えている。ポンプ部は、互いに直列又は並列に接続された複数のプランジャポンプを有する。ポンプ部の複数のプランジャポンプのうち少なくとも1つのプランジャポンプは、吐出流路へ液を吐出する吐出行程を実行していない非吐出時間中に吐出流路との間の連通が遮断される閉鎖ポンプである。予圧部は、送液圧力センサの出力と非吐出時圧力センサの出力に基づき、ポンプ室内へ液を吸引する吸引行程が完了した後でかつ非吐出時間中の閉鎖ポンプに、非吐出時圧力が送液圧力と略同一になるまで吐出動作させる予圧行程を実行させるように構成されている。予圧速度決定部は、予圧行程中の閉鎖ポンプの予圧速度を決定するように構成されている。

Description

送液装置
 本発明は、例えば高速液体クロマトグラフ(HPLC)や超臨界流体クロマトグラフ(SFC)などの流体クロマトグラフにおいて移動相を送液するために用いられる送液装置に関するものである。
 HPLCシステムに用いられる送液装置は、移動相を高圧で安定して送液する能力が求められる。そのため、2つのプランジャポンプが直列又は並列に接続されたダブルプランジャ方式の送液装置が一般的に用いられている。
 例えば、2つのプランジャポンプが直列に接続された送液装置は、上流側の1次側プランジャポンプと下流側の2次側プランジャポンプが相補的に動作するものであるが、その吐出行程として1次側プランジャポンプによる送液行程と、2次側プランジャポンプによる送液行程がある。
 1次側プランジャポンプによる吐出行程では、1次側プランジャポンプが液を吐出している間に2次側プランジャポンプは吸引動作を行ない、1次側プランジャポンプにより吐出される液の一部を2次側プランジャポンプが吸引する。2次側プランジャポンプによる吐出行程では、2次側プランジャポンプが吐出動作を行ない、その間に1次側プランジャポンプが吸引動作を行なう。
 1次側プランジャポンプによる吐出行程では、1次側プランジャポンプの吐出流量から2次側プランジャポンプの吸引流量を差し引いた流量が送液装置の送液流量となり、2次側プランジャポンプによる吐出行程では、2次側プランジャポンプの吐出流量が送液装置の送液流量となる。
 このような直列型ダブルプランジャ方式の送液装置は、1次側プランジャポンプの入口側と出口側のそれぞれに逆流を防止するバルブが設けられている。1次側プランジャポンプが吐出動作を行なうときは入口側のバルブが閉じて出口側のバルブが開き、1次側プランジャポンプが吸引動作を行なうときは入口側のバルブが開いて出口側のバルブが閉じるようになっている。
 1次側プランジャポンプの吸引動作は出口側のバルブが閉じた状態で行なわれるため、1次側プランジャポンプの吸引動作が完了した後の1次側プランジャポンプのポンプ室内の圧力がシステム圧力(HPLCやSFCの分析流路内の圧力)よりも低い状態となる。この状態で吐出動作を行なうポンプを2次側プランジャポンプから1次側プランジャポンプに切り替えると、1次側プランジャポンプのポンプ室内がシステム圧力と同じ圧力に上昇するまで1次側プランジャポンプから液が吐出されず、その結果、一時的に送液流量が低下して送液流量の安定性が低下する。
 このような問題から、2次側プランジャポンプによる吐出行程の間に、1次側プランジャポンプは液の吸引動作に加えて、ポンプ室内がシステム圧力に近い圧力にまで高められるようにプランジャを吐出方向へ駆動する予圧動作を行なうようになっていることが一般的である。
 これは、2つのプランジャポンプが並列に接続された並列型ダブルプランジャ方式の送液装置においても同様であり、一方のプランジャポンプが吐出動作を行なっている間に、他方のプランジャポンプは吸引動作と予圧動作を行なうようになっている。
 予圧動作が行なわれると、ポンプ室内に吸引された移動相が圧縮されて発熱し、移動相の温度が上昇して体積が膨張する。その後、ポンプ室から吐出された移動相は流路を流れている過程において流路壁面などによって熱を奪われて冷却され、体積が収縮する。このような体積収縮が起こると、実際の送液流量とプランジャ断面積とプランジャの駆動速度の積によって求められる送液流量の理想的な値との間に誤差が生じ、送液精度の低下や脈動の原因となる。
 移動相の体積収縮による上記の問題への対策として、移動相の発熱・冷却過程の事前知識に基づいてプランジャ速度を制御するフィードフォワード制御や、システム圧力が目標値に等しくなるようプランジャ速度を制御するフィードバック制御を行なうことが提案されている(特許文献1から5を参照。)。これらの制御を総じて熱補償制御と称する。
US8535016B2 US9360006B2 US8297936B2 US2014193275A1 US2013336803A1 WO2017/094097
 上記のような熱補償制御により、理論上は、送液精度の低下や脈動といった問題の発生を抑制することができる。しかし、実際には、これらの熱補償制御を実施しても無視できない脈動が発生することがある。
 そもそも、脈動の原因である送液過程での移動相の体積変化は、予圧行程で発熱した移動相が、温度が上昇した状態のままポンプ室から吐出されることに起因する。したがって、予圧行程での移動相の温度上昇を抑制することができれば、脈動も抑制される。
 そこで、本発明は、送液装置の予圧行程での送液対象の液が温度上昇することを抑制できるようにすることを目的とするものである。
 本発明者らは、予圧行程中のプランジャポンプの吐出動作の速度(これを、予圧速度という。)と送液対象の液の発熱の大きさとの関係に注目した。予圧速度が低い場合、液の発熱は予圧行程中に十分にポンプヘッドに吸収される。予圧行程は等温的に行なわれるので、液の温度上昇幅は小さくなり、送液過程での液の体積変化も小さくなる。その結果、脈動が抑制される。なお、ポンプヘッドに発熱が吸収されるための時定数は1sから数sのオーダーである。
 反対に、予圧速度が高い場合、液の発熱は予圧行程中にポンプヘッドで吸収しきれない。つまり、予圧行程は断熱的に行なわれるので、液の温度上昇幅が大きくなり、送液過程での液の体積変化も大きくなる。その結果、比較的大きな脈動が発生する。
 したがって、予圧速度をなるべく低くすることが、送液対象の液の温度上昇を抑制し、脈動の発生を抑制することを可能にする。しかし、予圧速度をなるべく低くして予圧行程を等温的なものに近づけることは、容易に実現できるものではない。それは、次のような制約があるからである。
 第1の制約として、システム圧力(送液圧力ともいう。)による制約がある。液体クロマトグラフでは、システム圧力が数MPaから100MPaを超えるまでの広い値を取りうる。予圧行程が完了するまでに必要なプランジャポンプの吐出動作量、すなわちプランジャの移動距離(予圧距離)は、システム圧力に比例する。システム圧力が高い場合、予圧距離が長くなるため、そのプランジャポンプが吐出行程へ移行するまでに予圧行程を完了させるためには、予圧速度をある程度高くする必要がある。しかし、そのような高い予圧速度はシステム圧力が低い場合には過剰になり、必要以上に短時間に予圧行程が完了することとなる。その結果、予圧行程が断熱的になりうる。
 第2の制約として、送液対象の液の圧縮率による制約がある。予圧距離は送液対象の液の圧縮率に比例する。液体クロマトグラフにおいて移動相として使用される水と有機溶媒では、有機溶媒は水よりも圧縮率が高く、その圧縮率差は約3倍にもなる。そのため、送液対象の液が有機溶媒の場合、送液対象の液が水の場合に比べて予圧距離が長くなる。そのため、圧縮率の高い液を基準に予圧速度を設定すると、それよりも圧縮率の低い液に対しては過剰な予圧速度となり、必要以上に短時間に予圧行程が完了することとなる。その結果、予圧行程が断熱的になりうる。
 第3の制約として、あるプランジャポンプが予圧行程を実行している場合、その予圧行程を、別のプランジャポンプの吐出行程が完了し、そのプランジャポンプが吐出行程へ移行するタイミングまでに完了しなければならないという時間的な制約がある。プランジャの動作距離には限界があり、上死点(プランジャをポンプ室内へ最も押し込んだ位置)を超えて動作させることはできない。そのため、吐出行程中のプランジャポンプのプランジャが上死点(あるいは減速距離を確保するために上死点のわずかに手前に設けられた減速開始基準点)に達するまでに、予圧行程を完了しなければならない。吐出行程中のプランジャポンプのプランジャが上死点に近い場合には、予圧行程中のプランジャポンプが吐出行程に移行するタイミングが近いため、早く予圧行程を完了させるためにある程度高い予圧速度が必要になる。しかし、吐出行程中のプランジャポンプのプランジャがまだ上死点から遠い場合には、そのような高い予圧速度は過剰であり、必要以上に短時間に予圧行程が完了することとなる。その結果、予圧行程が断熱的になりうる。
 第4の制約として、送液流量による制約がある。液体クロマトグラフや超臨界流体クロマトグラフでは、送液流量が数uL/minから数mL/minまでの広い値をとりうる。ダブルプランジャ方式の送液装置では、吐出行程を実行するプランジャポンプが切り替わる周期(これをポンプ周期という。)は送液流量に反比例するので、上記の流量範囲においてポンプ周期は約3桁の範囲をとる。送液流量が高い場合、ポンプ周期は1s以下になることがあり、予圧行程に割り当てることができる時間が短くなるため、予圧速度をある程度高くする必要がある。しかし、そのような高い予圧速度は、送液流量が低い場合には過剰になり、必要以上に短時間に予圧行程が完了することとなる。その結果、予圧行程が断熱的になりうる。
 ここで、特許文献6には、設定流量(目標送液流量)に基づいて予圧行程に費やされる時間(これを予圧時間という。)が求められ、その予圧時間内に予圧が完了するように予圧速度が決定されることが記載されている。したがって、特許文献6に開示の技術を用いれば、上記第4の制約に対応した送液装置を構成することが可能であると考えられる。しかし、特許文献6では、予圧行程中における液の温度上昇を抑制することについて何ら述べられておらず、上記第1、第2及び第3の制約について記載も示唆もなされていない。したがって、当業者は、特許文献6の存在を知ったとしても、上記第1、第2及び第3の制約に対応した送液装置を構成することはできない。
 本発明に係る送液装置は、上記第1から第3の制約のそれぞれに対応した第1から第3の形態を有する。それら第1から第3の形態はいずれも、吐出流路、ポンプ部、送液圧力センサ、非吐出時圧力センサ、予圧部及び予圧速度決定部を備えている。
 ポンプ部は、互いに直列又は並列に接続された複数のプランジャポンプを有し、前記吐出流路へ送液対象の液を吐出するものである。前記複数のプランジャポンプのうち少なくとも1つの前記プランジャポンプが、前記吐出流路へ液を吐出する吐出行程を実行していない非吐出時間中に前記吐出流路との間の連通が遮断される閉鎖ポンプである。本発明の送液装置が2つのプランジャポンプが互いに直列に接続された直列型ダブルプランジャ方式のものである場合、一次側(上流側)のプランジャポンプが閉鎖ポンプに該当する。また、本発明の送液装置が2つのプランジャポンプが互いに並列に接続された並列型ダブルプランジャ方式のものである場合、両方のプランジャポンプが閉鎖ポンプに該当する。非吐出時間中に吐出流路との間の連通が遮断される閉鎖ポンプは、吸引行程が完了した後のポンプ室内の圧力が吐出流路内の圧力よりも低く(例えば、大気圧)なる。そのため、閉鎖ポンプは、吸引行程が完了した後で吐出行程へ移行する前に、予圧行程を実行してポンプ室内の圧力を吐出流路内の圧力、すなわち送液圧力と同程度の圧力にまで高めておく必要がある。
 送液圧力センサは、前記吐出流路内の圧力を送液圧力として検出するものである。非吐出時圧力センサは、前記非吐出時間中における前記閉鎖ポンプの前記ポンプ室内の圧力を非吐出時圧力として検出するものである。
 予圧部は、前記送液圧力センサの出力と前記非吐出時圧力センサの出力に基づき、前記ポンプ室内へ液を吸引する吸引行程が完了した後でかつ前記非吐出時間中の前記閉鎖ポンプに、前記非吐出時圧力が前記送液圧力と略同一になるまで吐出動作させる予圧行程を実行させるように構成されている。非吐出時圧力が送液圧力と略同一であるか否かは、例えば、非吐出時圧力が送液圧力との差分が予め決められた範囲内に収まったか否かにより判断することができる。
 予圧速度決定部は、前記予圧行程中の前記閉鎖ポンプの吐出動作の速度、すなわち予圧速度を決定するように構成されている。前記予圧部は、前記予圧行程において、前記予圧速度決定部により決定された予圧速度で前記閉鎖ポンプを動作させるように構成されている。
 本発明に係る送液装置の第1の形態は、上述の第1の制約に対応したものである。すなわち、当該第1の形態では、前記予圧速度決定部が、前記送液圧力が高いほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度(以下、最高予圧速度という。)が高くなるように規定された相関関係を用い、前記送液圧力に基づいて予圧速度を決定するように構成されている。
 上記第1の形態において、前記予圧部は、前記閉鎖ポンプに当該閉鎖ポンプの前記吸引行程が完了した直後に前記予圧行程を開始させるように構成されており、前記予圧速度決定部は、前記閉鎖ポンプの前記予圧行程が前記吐出行程中の他のプランジャポンプの当該吐出行程が終了する直前に完了するように、前記予圧行程中の前記閉鎖ポンプの吐出動作の速度を決定するように構成されていることが好ましい。そうすれば、予圧行程を可能な限り長く行なうことができるので、予圧速度が遅くなり、予圧行程が断熱的に行なわれることが抑制される。
 また、上記第1の形態において、前記相関関係は、前記送液圧力と前記非吐出時圧力との差分が大きいほど前記予圧行程中の前記閉鎖ポンプの吐出動作の速度が高くなるように規定されていることが好ましい。その場合、前記予圧速度決定部は、前記予圧行程の途中で前記相関関係を用いて前記閉鎖ポンプの吐出動作の新たな速度を決定するように構成され、前記予圧部は、前記予圧速度決定部により前記閉鎖ポンプの吐出動作の新たな速度が決定されたときに、前記閉鎖ポンプの吐出動作の速度を前記新たな速度に変更するように構成される。これにより、予圧行程中のプランジャポンプの予圧速度を送液圧力と非吐出時圧力との差分に応じたものとすることができる。
 さらに、上記第1の形態は上述の第4の制約にも対応させることができる。すなわち、前記相関関係を、前記目標送液流量が大きいほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度が高くなるように規定することができる。これにより、予圧行程中のプランジャポンプの予圧速度を予め設定された目標送液流量に応じたものとすることができる。
 また、上記第1の形態を上述の第2の制約にも対応させることができる。その場合、送液対象の液の圧縮率に関する情報を圧縮率として記憶する圧縮率記憶部をさらに備え、前記相関関係は、送液対象の液の圧縮率が大きいほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度が高くなるように規定される。これにより、予圧行程中のプランジャポンプの予圧速度を送液対象の液の圧縮率に応じたものとすることができる。
 また、上記第1の形態を上述の第3の制約にも対応させることができる。すなわち、前記閉鎖ポンプの前記予圧行程が開始される際の前記吐出行程中の前記プランジャポンプが上死点又は上死点のわずかに手前に設けられた減速開始基準点に達するまでに当該プランジャポンプが吐出動作することができる量を吐出動作可能量として算出するように構成された吐出動作可能量計算部をさらに備えさせることができる。この場合、前記相関関係を、前記吐出動作可能量が大きいほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度が低くなるように規定することができる。これにより、予圧行程時のプランジャポンプの予圧速度を、吐出行程中の他のプランジャポンプの状態に応じたものとすることができる。
 本発明に係る送液装置の第2の形態は、上述の第2の制約に対応したものである。すなわち、当該第2の形態は、送液対象の液の圧縮率に関する情報を圧縮率として記憶する圧縮率記憶部を備えている。そして、前記予圧速度決定部は、送液対象の液の圧縮率が大きいほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度が高くなるように規定された相関関係を用い、前記圧縮率に基づいて前記予圧行程中の前記閉鎖ポンプの吐出動作の速度を決定するように構成されている。これにより、予圧行程中のプランジャポンプの予圧速度が送液対象の液の圧縮率に応じたものとなる。
 上記第2の形態においても、前記予圧部は、前記閉鎖ポンプに当該閉鎖ポンプの前記吸引行程が完了した直後に前記予圧行程を開始させるように構成されており、前記予圧速度決定部は、前記閉鎖ポンプの前記予圧行程が前記吐出行程中の他のプランジャポンプの当該吐出行程が終了する直前に完了するように、前記予圧行程中の前記閉鎖ポンプの吐出動作の速度を決定するように構成されていることが好ましい。そうすれば、予圧行程を可能な限り長く行なうことができるので、予圧速度が遅くなり、予圧行程が断熱的に行なわれることが抑制される。
 また、上記第2の形態も上述の第4の制約に対応させることができる。すなわち、前記相関関係を、前記目標送液流量が大きいほど前記予圧行程中における前記閉鎖ポンプの吐出動作の最高速度が高くなるように規定することができる。これにより、予圧行程中のプランジャポンプの予圧速度を予め設定された目標送液流量に応じたものとすることができる。
 また、上記第2の形態も上述の第3の制約に対応させることができる。すなわち、前記閉鎖ポンプの前記予圧行程が開始される際の前記吐出行程中の前記プランジャポンプが上死点又は上死点のわずかに手前に設けられた減速開始基準点に達するまでに当該プランジャポンプが吐出動作することができる量を吐出動作可能量として算出するように構成された吐出動作可能量計算部をさらに備えさせることができる。この場合、前記相関関係を、前記吐出動作可能量が大きいほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度が低くなるように規定することができる。これにより、予圧行程中のプランジャポンプの予圧速度を、吐出行程中の他のプランジャポンプの状態に応じたものとすることができる。
 本発明に係る送液装置の第3の形態は、上述の第3の制約に対応したものである。すなわち、当該第3の形態は、前記閉鎖ポンプの前記予圧行程が開始される際の前記吐出行程中の前記プランジャポンプが上死点又は上死点のわずかに手前に設けられた減速開始基準点に達するまでに当該プランジャポンプが吐出動作することができる量を吐出動作可能量として算出するように構成された吐出動作可能量計算部を備えている。そして、前記予圧速度決定部は、前記吐出動作可能量が大きいほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度が低くなるように規定された相関関係を用い、前記吐出動作可能量に基づいて前記閉鎖ポンプの前記予圧行程中の吐出動作の速度を決定するように構成されている。これにより、予圧行程時のプランジャポンプの予圧速度が、吐出行程中の他のプランジャポンプの状態に応じたものとなる。
 上記第3の形態においても、前記予圧部は、前記閉鎖ポンプに当該閉鎖ポンプの前記吸引行程が完了した直後に前記予圧行程を開始させるように構成されており、前記予圧速度決定部は、前記閉鎖ポンプの前記予圧行程が前記吐出行程中の他のプランジャポンプの当該吐出行程が終了する直前に完了するように、前記予圧行程中の前記閉鎖ポンプの吐出動作の速度を決定するように構成されていることが好ましい。そうすれば、予圧行程を可能な限り長く行なうことができるので、予圧速度が遅くなり、予圧行程が断熱的に行なわれることが抑制される。
 また、上記第3の形態も上述の第4の制約に対応させることができる。すなわち、前記相関関係を、前記目標送液流量が大きいほど前記予圧行程中における前記閉鎖ポンプの吐出動作の最高速度が高くなるように規定することができる。これにより、予圧行程中のプランジャポンプの予圧速度を予め設定された目標送液流量に応じたものとすることができる。
 本発明に係る送液装置の第1の形態では、予圧速度決定部が、送液圧力が高いほど予圧行程中の閉鎖ポンプの最高予圧速度が高くなるように規定された相関関係を用い、送液圧力に基づいて予圧速度を決定するように構成されているので、閉鎖ポンプの予圧速度が送液圧力に応じたものとなる。これにより、送液圧力が低いときはそれだけ予圧速度も低くなるので、予圧行程が等温的に行なわれやすくなり、予圧行程において送液対象の液の温度上昇が抑制される。
 本発明に係る送液装置の第2の形態では、予圧行程中の閉鎖ポンプの予圧速度が送液対象の液の圧縮率に応じたものとなる。これにより、送液対象の液の圧縮率が低いときはそれだけ予圧速度も低くなるので、予圧行程が等温的に行なわれやすくなり、予圧行程において送液対象の液の温度上昇が抑制される。
 本発明に係る送液装置の第3の形態では、予圧行程中のプランジャポンプの予圧速度が、吐出行程中の他のプランジャポンプの状態に応じたものとなる。これにより、閉鎖ポンプが予圧行程を開始する際に吐出行程にある他のプランジャポンプが上死点又は上死点のわずかに手前に設けられた減速開始基準点から遠いときはそれだけ最高予圧速度も低くなるので、予圧行程が等温的に行なわれやすくなり、予圧行程において送液対象の液の温度上昇が抑制される。
送液装置の一実施例を示す概略構成断面図である。 同実施例で用いられる予圧速度と送液圧力との相関関係の一例を示すグラフである。 同実施例で用いられる予圧速度と送液圧力との相関関係の他の例を示すグラフである。 図2Aの相関関係を用いたときの一次側ポンプの予圧動作及び吐出動作の速度とそのときの一次側ポンプのポンプ室内の圧力P1を示すグラフである。 図3Aよりも送液圧力P2が低い場合の一次側ポンプの予圧動作及び吐出動作の速度とそのときの一次側ポンプのポンプ室内の圧力P1を示すグラフである。 図2Bの相関関係を用いたときの一次側ポンプの予圧動作及び吐出動作の速度とそのときの一次側ポンプのポンプ室内の圧力P1を示すグラフである。 図4Aよりも送液圧力P2が低い場合の一次側ポンプの予圧動作及び吐出動作の速度とそのときの一次側ポンプのポンプ室内の圧力P1を示すグラフである。 同実施例で用いられる予圧速度と送液流量との相関関係の一例を示すグラフである。 同実施例の一次側ポンプの送液動作の一例を示すフローチャートである。 送液装置の他の実施例を示す概略構成断面図である。 同実施例で用いられる予圧速度と圧縮率との相関関係の一例を示すグラフである。 送液装置のさらに他の実施例を示す概略構成断面図である。 同実施例で用いられる予圧速度と吐出動作可能量との相関関係の一例を示すグラフである。
 以下、本発明に係る送液装置の一実施例について図面を用いて説明する。
 送液装置の一実施例について図1を用いて説明する。
 この実施例の送液装置1は、2つのプランジャポンプ、すなわち一次側ポンプ2と二次側ポンプ22を備えている。一次側ポンプ2と二次側ポンプ22は互いに直列に接続されている。一次側ポンプ2と二次側ポンプ22は吐出流路38を通じて液を送液するポンプ部を構成している。
 一次側ポンプ2は、内部にポンプ室4を有するポンプヘッド3と、ポンプボディ6を備えている。ポンプヘッド3はポンプボディ6の先端に設けられている。ポンプヘッド3には、ポンプ室4に液を流入させる入口部とポンプ室4から液を流出させる出口部が設けられている。ポンプヘッド3の入口部に、液の逆流を防止する逆止弁16が設けられている。
 ポンプ室4にはプランジャ10の先端が摺動可能に挿入されている。プランジャ10の基端はポンプボディ6内に収容されたクロスヘッド8によって保持されている。クロスヘッド8は送りネジ14の回転によりポンプボディ6内で一方向(図において左右方向)に移動し、それに伴ってプランジャ10が一方向に移動する。ポンプボディ6の基端部に送りネジ14を回転させる一次側ポンプ駆動用モータ12が設けられている。一次側ポンプ駆動用モータ12はステッピングモータである。
 二次側ポンプ22は、内部にポンプ室24を有するポンプヘッド23と、ポンプボディ28を備えている。ポンプヘッド23はポンプボディ28の先端に設けられている。ポンプヘッド23には、ポンプ室24に液を流入させる入口部とポンプ室24から液を流出させる出口部が設けられている。ポンプヘッド23の入口部に、液の逆流を防止する逆止弁26が設けられている。
 ポンプ室24にはプランジャ32の先端が摺動可能に挿入されている。プランジャ32の基端はポンプボディ28内に収容されたクロスヘッド30によって保持されている。クロスヘッド30は送りネジ36の回転によりポンプボディ28内で一方向(図において左右方向)に移動し、それに伴ってプランジャ32が一方向に移動する。ポンプボディ28の基端部に送りネジ36を回転させる二次側ポンプ駆動用モータ34が設けられている。二次側ポンプ駆動用モータ34はステッピングモータである。
 ポンプヘッド3の入口部は、送液対象の液を貯留する容器(図示は省略)に、流路を介して接続されている。ポンプヘッド23の入口部は、連結流路18を介して、ポンプヘッド3の出口部と接続されている。連結流路18上にポンプ室4内の圧力(P1)を検出する一次側圧力センサ20が設けられている。一次側圧力センサ20は、一次側ポンプ2が吐出行程にない非吐出時間中における一次側ポンプ2のポンプ室4内の圧力を非吐出時圧力として検出するためのものである。
 ポンプヘッド23の出口部には吐出流路38が接続されている。吐出流路38は、例えば液体クロマトグラフの分析流路に通じている。吐出流路38上にポンプ室24内の圧力(P2)を送液圧力として検出する二次側圧力センサ40が設けられている。
 一次側ポンプ駆動用モータ12及び二次側ポンプ駆動用モータ34の動作は、制御部42により制御される。制御部42は、吐出流路38を通じて送液される液の流量が予め設定された目標流量となるように、一次側ポンプ2と二次側ポンプ22を相補的に動作させるように構成されている。
 一次側ポンプ2と二次側ポンプ22の相補的な動作について説明すると、一次側ポンプ2が液を吐出する吐出行程を実行している間に、二次側ポンプ22は液を吸引する吸引行程を実行し、一次側ポンプ2から吐出された液の一部が二次側ポンプ22のポンプ室24内に吸引される。二次側ポンプ22の吸引行程が完了すると、二次側ポンプ2は吐出行程へ移行する。このとき、一次側ポンプ2は吸引行程へ移行し、吸引行程が完了した後、予圧行程が実行される。
 二次側ポンプ22の吐出行程中、すなわち一次側ポンプ2が吐出行程でない非吐出時間中は、逆止弁26が閉じた状態となる。これにより、一次側ポンプ2のポンプ室4と吐出流路38との間の連通が遮断される。このように、非吐出時間中に吐出流路38との間の連通が遮断されるポンプを、本願では閉鎖ポンプと称する。この実施例の送液装置は、直列型ダブルプランジャ方式であるため、一次側ポンプ2のみが閉鎖ポンプに該当するが、並列型ダブルプランジャ方式の場合は双方のプランジャポンプが閉鎖ポンプに該当する。
 また、一次側圧力センサ20により検出される非吐出時圧力P1及び二次側圧力センサ40により検出される送液圧力P2は制御部42に取り込まれる。制御部42は、後述する予圧行程中における非吐出時圧力P1と送液圧力P2に基づいて一次側ポンプ駆動用モータ12の動作を制御するように構成されている。
 制御部42は、予圧部44、予圧速度決定部46及び相関関係保持部48を備えている。制御部42は、例えば、マイクロコンピュータなどの演算素子を有するコンピュータ回路によって実現されるものである。予圧部44及び予圧速度決定部46は、制御部42の演算素子が所定のプログラムを実行することによって得られる機能であり、相関関係保持部48は制御部42に設けられた記憶装置の一部の領域によって実現される機能である。
 予圧部44は、一次側ポンプ2が吐出行程にない非吐出時間中であってポンプ室4に液を吸引する吸引行程が完了した後で、一次側ポンプ2に予圧行程を実行するように構成されている。予圧行程とは、吸引行程を完了した一次側ポンプ2が吐出行程へ移行する前のタイミングで、非吐出時圧力P1が送液圧力P2と略同一の圧力になるまで一次側ポンプ2を吐出動作させる行程である。一次側ポンプ2が予圧行程を開始するタイミングは、例えば一次側ポンプ2の吸引行程が完了した直後である。
 予圧速度決定部46は、一次側ポンプ2の予圧行程中における吐出動作の速度、すなわち予圧速度を決定するように構成されている。予圧速度決定部46は、相関関係保持部48に保持された相関関係を用いて、一次側ポンプ2の予圧速度を決定する。予圧部44は、予圧行程において一次側ポンプ2を予圧速度決定部46により決定された予圧速度で動作させる。
 相関関係保持部48に保持される相関関係として、図2Aや図2Bに示されているように、送液圧力P2と非吐出時圧力P1の差圧ΔP(=P2-P1)が大きいほど予圧速度Vが高くなるように規定されたものが挙げられる。なお、図2Aでは、予圧速度Vが差圧ΔPに対して直線的に比例するように描かれているが、相関関係は曲線的に描かれるものであってもよい。また、図2Bでは、相関関係が階段状に描かれており、差圧ΔPが複数段にレベル分けされており、差圧ΔPが属するレベルによって予圧速度Vが決定されるように規定されたものである。なお、本発明はこれらに限定されるものではなく、予圧速度Vと差圧ΔPとが正の相関関係をもつものであればよい。
 図2Aに示された相関関係を用いて予圧速度Vを計算する場合、予圧速度Vは次式によって求めることができる。
 V=C1×ΔP
 C1は予圧行程が二次側ポンプ22の吐出行程が終了するまでに完了するように設定された比例係数である。
 予圧速度決定部46は、上記の相関関係を用いて予圧速度Vの初期値を決定し、予圧行程中、一定の速度で一次側ポンプ2を動作させるようにしてもよいし、一定時間ごとに差圧ΔPを求め、その都度、求めたΔPと上記の相関関係を用いて予圧速度Vを再決定するようにしてもよい。予圧行程中に予圧速度Vが再決定された場合、予圧部44は一次側ポンプ2の予圧速度を再決定されたものに変更する。
 上記の相関関係を用いて予圧速度Vの初期値を決定し、一定時間ごとに差圧ΔPを求め、その都度、求めたΔPと上記の相関関係を用いて予圧速度Vを再決定する場合、図3A及び図3Bに示されているように、予圧速度Vが初期値を最高速として連続的に低下するように時間変化することになる。このように動作させると、送液圧力P2が高いときは予圧速度Vの初期値(最高速)が高くなり(図3A参照)、送液圧力P2が低いときは予圧速度Vの初期値が低くなる(図3B参照)。これにより、送液圧力に拘わらず予圧行程に要する時間をほぼ一定に保つことができるので、予圧行程が等温的になされやすくなる。
 また、このように動作させると、予圧行程が開始された直後は予圧速度Vが比較的高いので液の圧縮が断熱的に行なわれ、少なからず液が発熱する。しかし、この発熱は、予圧行程に要する時間を長くとることによって予圧行程が完了するまでの間に一部をポンプヘッド3に吸収させることができ、液の圧縮を等温的なものに近づけることができる。また、予圧速度Vは時間とともに連続的に低下するため、液の発熱も時間とともに小さくなり、予圧行程が完了するころには液の圧縮が等温的になる。これにより、予圧行程の全体が等温的なものとなる。
 予圧行程の途中で予圧速度Vを再決定することの利点として、送液圧力P2の変化に追随できることも挙げられる。これにより、グラジエント分析など送液圧力P2が変化するような送液条件で送液を行なう場合に、送液の安定性をさらに向上させることができる。
 また、予圧速度Vと差圧ΔPとの相関関係は、図2Aに示されているように、差圧ΔPがゼロ又はゼロに近い状態でも予圧速度がゼロにならないように規定されていることが好ましい。そうすれば、予圧行程が進行して差圧ΔPがゼロ又はゼロに近くなった場合でも、有限の時間内に一次側ポンプ2の予圧を完了することが担保される。
 また、予圧速度Vと差圧ΔPとの相関関係として、図2Bに示されているような、階段状で描かれるものを用い、一定時間ごとにその相関関係を用いて予圧速度Vを再決定するようにすると、送液圧力P2がある程度高い値をとるときは、図4Aに示されているように、予圧速度Vが初期値を最高速として段階的に低下することになる。一方で、送液圧力P2が、予圧速度Vの初期値が最低限度の高さに設定されるような低い値をとるときは、予圧速度Vが最低限度の高さのままで推移することになる。このように動作させても、送液圧力P2が高いときは予圧速度Vの初期値(最高速)が高くなり(図4A参照)、送液圧力P2が低いときは予圧速度Vの初期値が低くなる(図4B参照)。これにより、送液圧力に拘わらず予圧行程に要する時間をほぼ一定に保つことができるので、予圧行程が等温的になされやすくなる。
 また、予圧速度Vは送液流量Lとも相関させることができる。図5は予圧速度Vと送液流量Lとの相関関係の一例を示している。図5では、予圧速度Vが送液流量Lに対して直線的に比例する相関関係を示しているが、本発明はこれに限定されるものではなく、予圧速度Vと送液流量Lとが正の相関関係をもつものであればよい。したがって、相関関係は、曲線的に描かれるものや階段状に描かれるものであってもよい。なお、送液流量Lとは、予め設定された目標流量である。
 送液流量Lが大きいときは二次側ポンプ22の吐出動作の速度が高くなるため、一次側ポンプ2の予圧行程に割り当てられる時間が短くなる。これに対し、送液流量Lが比較的小さいときは、二次側ポンプ22の動作速度も遅くなるため、一次側ポンプ2の予圧行程に割り当てられる時間を比較的長くとることができる。すなわち、送液流量Lが小さいときは予圧速度Vも低くすることができ、予圧行程をより等温的に行なうことができる。
 予圧速度Vを差圧ΔV及び送液流量Lと相関させる場合、その相関式は以下のように表すことができる。
 V=C2×ΔP×L
 C2は予圧行程が二次側ポンプ22の吐出行程が終了するまでに完了するように設定された比例係数である。
 この実施例の一次側ポンプ2の送液動作の一例について図1とともに図6のフローチャートを用いて説明する。ここでは、予圧行程中における予圧速度を時間的に変化させる場合について説明する。
 一次側ポンプ2はポンプ室4に液を吸引する吸引行程を実施する(ステップS1)。この吸引行程では、プランジャ10を高速(例えば最高速度)で吸引側(図1において左側)へ駆動することにより、吸引行程を短時間で完了させる。これは、その後の予圧行程に割り当てられる時間を長くとるためである。
 一次側ポンプ2の吸引行程が完了した後、予圧部44はすぐに予圧行程を一次側ポンプ2に実行させる。このとき、予圧速度決定部46は、送液圧力P2と非吐出時圧力P1との差圧ΔPを計算する(ステップS2)。差圧ΔPがゼロ又はほぼゼロでない場合(ステップS3)、予圧速度決定部46は、相関関係保持部48に保持されている相関関係を用い、その差圧ΔP、又は差圧ΔPと送液流量Lに基づいて、予圧速度を決定する(ステップS4)。予圧部44は予圧速度決定部48により決定された速度で一次側ポンプ2を吐出動作させる(ステップS5)。
 上記の動作は、差圧ΔPがゼロ又はほぼゼロになるまで繰り返し実行される(ステップS3~S5)。これにより、図3A及び図3Bに示されているように、予圧行程中における予圧速度が時間とともに連続的に低下していく。予圧行程は、差圧ΔPがゼロ又はほぼゼロになったときに完了する(ステップS6)。その後、一次側ポンプ2は吐出行程へ移行する(ステップS7)。
 送液装置の他の実施例について図7を用いて説明する。
 上記実施例の送液装置1とこの実施例の送液装置1aとは、制御部42が圧縮率保持部50を備え、相関関係保持部48が予圧速度Vと送液対象の液の圧縮率kとの相関関係を保持している点において相違している。圧縮率保持部50は、制御部42に設けられた記憶装置の一部の領域によって実現される機能である。
 圧縮率保持部50は、送液対象の液の実際の圧縮率又はその予測値を保持するように構成されている。送液対象の液の圧縮率が事前にわかっている場合には、ユーザにより入力された実際の圧縮率を圧縮率保持部50に保持させることができる。また、送液対象の液の圧縮率は、一次側ポンプ2の予圧行程の際のプランジャ10の吐出方向への動作量と非吐出時圧力P1の上昇量を用いて計算により求めることができるので、1周期前の予圧行程中に計算によって求められた圧縮率を予測値として圧縮率保持部50に保持させるようにしてもよい。
 相関関係保持部48には、図8に示されているような、予圧速度Vと送液対象の液の圧縮率kとの相関関係が保持されている。この相関関係は、圧縮率が大きいほど予圧速度Vが高くなるように規定されている。すなわち、予圧速度Vと圧縮率kとは正の相関関係をもっている。図8では、予圧速度Vが圧縮率kに対して直線的に比例する相関関係を示しているが、本発明はこれに限定されるものではなく、予圧速度Vと圧縮率kとが正の相関関係をもつものであればよい。したがって、相関関係は、曲線的に描かれるものや階段状に描かれるものであってもよい。
 この実施例の送液装置1aにおいて、予圧速度決定部46は、上述した予圧速度Vと差圧ΔPとの相関関係に加えて、又は上述した予圧速度Vと差圧ΔPとの相関関係の代わりに、予圧速度Vと圧縮率kとの相関関係を用いて予圧速度Vを決定するように構成されている。
 予圧速度Vと圧縮率kとの相関関係を用いて予圧速度Vを決定するため、送液対象の液の圧縮率kが小さいときは予圧速度Vが小さくなり、圧縮率kが大きいときは予圧速度Vが大きくなる。これにより、送液対象の液の圧縮率に拘わらず同程度の長さの時間で予圧行程を完了させることができるため、予圧行程に要する時間が必要以上に短くなることがない。これにより、予圧行程における液の圧縮が等温的になりやすい。
 図8に示された相関関係を用いて予圧速度Vを計算する場合、予圧速度Vは次式によって求めることができる。
 V=C3×k
 C3は予圧行程が二次側ポンプ22の吐出行程が終了するまでに完了するように設定された比例係数である。
 さらに、予圧速度Vを差圧ΔP及び圧縮率kと相関させる場合、予圧速度Vを求めるための相関式は以下のようになる。
 V=C4×ΔP×k
 C4は予圧行程が二次側ポンプ22の吐出行程が終了するまでに完了するように設定された比例係数である。
 さらに、予圧速度Vを差圧ΔP、送液流量L及び圧縮率kと相関させる場合、予圧速度Vを求めるための相関式は以下のようになる。
 V=C5×ΔP×L×k
 C5は予圧行程が二次側ポンプ22の吐出行程が終了するまでに完了するように設定された比例係数である。
 送液装置のさらに他の実施例について図9を用いて説明する。
 上記実施例の送液装置1aとこの実施例の送液装置1bとは、制御部42が吐出動作可能量計算部52を備え、相関関係保持部48が予圧速度と吐出動作可能量計算部52との相関関係を保持している点において相違している。吐出動作可能量計算部52は、制御部42の演算素子が所定のプログラムを実行することによって得られる機能である。
 一次側ポンプ2のプランジャ10の位置と二次側ポンプ22のプランジャ32の位置の相対的な関係は常に一定ではなく、それぞれのプランジャ10,32の位置はその時点までの動作履歴の影響を受ける。したがって、一次側ポンプ2が予圧行程を開始する段階で、吐出行程中である二次側ポンプ22のプランジャ32の位置が上死点から遠い場合と上死点に近い場合の両方が想定される。
 二次側ポンプ22のプランジャ32が上死点から遠い場合には、プランジャ32が上死点に達するまでにプランジャ32を吐出方向へ動作させることができる距離(これを吐出動作可能量αと称する。)は多く残っている。このため、一次側ポンプ2の予圧行程に比較的長い時間を割り当てることができ、予圧速度が比較的低くすることができる。一方で、二次側ポンプ22のプランジャ32が上死点に近い場合には、吐出動作可能量αは少ない。このため、一次側ポンプ2の予圧行程に割り当てられる時間は短くなり、予圧速度を高くする必要がある。
 二次側ポンプ22の吐出動作可能量αは、制御部42側で計算によって求めることができる。制御部42は、二次側ポンプ22のプランジャ32が下死点から上死点に達するまでに二次側ポンプ駆動モータ34に与えことができる制御パルス数(最大制御パルス数という。)を把握している。そのため、一次側ポンプ2の予圧行程の開始時点で二次側ポンプ駆動モータ34にすでに与えられている制御パルス数を最大制御パルス数から差し引けば、プランジャ32が上死点に達するまでに与えることのできる制御パルス数、すなわち吐出動作可能量αを求めることができる。
 上記の吐出動作可能量αの計算方法を少し修正することもできる。送液流量Lが大きい場合には、二次側ポンプ22のプランジャ32の動作速度も大きくなり、上死点での瞬時停止・反転が困難になることがある。そこで、上死点のわずかに手前に減速開始基準点を設け、二次側ポンプ22のプランジャ32が減速開始基準点に達したら動作速度を徐々に減少させて、上死点でゆるやかに停止・反転させるようにしてもよい。この場合は、上死点の位置を表す最大制御パルス数の代わりに、減速開始基準点の位置を表すパルス数から二次側ポンプ22のプランジャ32の制御パルス数を差し引くことで、吐出動作可能量αを求めることができる。このとき、一次側ポンプ2のプランジャ10は二次側ポンプ22のプランジャ32が減速開始基準点に達するまでに予圧を完了する。したがって、二次側ポンプ22のプランジャ32の減速に合わせて一次側ポンプ2のプランジャ10が加速しながら吐出するようにすることで、合計として所望の送液流量を得ることができる。
 相関関係保持部48には、図10に示されているように、吐出動作可能量αが大きいほど予圧速度Vが小さくなるように規定された相関関係が保持されている。なお、図10では、予圧速度Vが吐出動作可能量αに対して反比例するように描かれているが、本発明はこれに限定されるものではなく、予圧速度Vと吐出動作可能量αとが負の相関関係をもつものであればよい。したがって、相関関係は、直線的に描かれるものや階段状に描かれるものであってもよい。
 この実施例の送液装置1bにおいて、予圧速度決定部46は、上述した予圧速度Vと差圧ΔPとの相関関係や予圧速度Vと圧縮率kとの相関関係に加えて、又は上述した予圧速度Vと差圧ΔPとの相関関係や予圧速度Vと圧縮率kとの相関関係の代わりに、予圧速度Vと吐出動作可能量αとの相関関係を用いて予圧速度Vを決定するように構成されている。
 図10に示される相関関係を用いて予圧速度Vを決定すると、二次側ポンプ22の吐出動作可能量αが小さいときは予圧速度Vが大きくなり、吐出動作可能量αが大きいときは予圧速度Vが小さくなる。このため、予圧行程に要する時間が必要以上に短くなることがない。これにより、予圧行程における液の圧縮が等温的になりやすい。
 図10に示された相関関係を用いて予圧速度Vを計算する場合、予圧速度Vは次式によって求めることができる。
 V=C6/α
 C6は予圧行程が二次側ポンプ22の吐出行程が終了するまでに完了するように設定された比例係数である。
 また、予圧速度Vは、差圧ΔP、送液流量L、液の圧縮率k及び予圧動作可能量αのすべてと相関させることができる。その場合、予圧速度Vは、以下の式(1)により求めることができる。
Figure JPOXMLDOC01-appb-I000001
 C7は一次側ポンプ2及び二次側ポンプ22の設計によって決まる機械的な定数である。
 式(1)によって予圧行程に割り当てられる時間が最大化される(よって最も等温的に予圧される)ことを説明する。予圧行程中の一次側ポンプ2の予圧行程が完了するまでの残り時間(残り予圧時間)は、次式(2)によって求めることができる。
Figure JPOXMLDOC01-appb-I000002
 C8は一次側ポンプ2の設計によって決まる機械的な定数である。
 また、同時刻に吐出行程中の二次側ポンプ22の吐出行程が終了するまでの残り時間(残り吐出時間は、次式(3)によって求めることができる。
Figure JPOXMLDOC01-appb-I000003
 C9は二次側ポンプ22の設計によって決まる機械的な定数である。
 一次側ポンプ2と二次側ポンプ22が連携して連続的な送液を実現するためには、二次側ポンプ22の吐出行程が終了するまでに一次側ポンプ2が予圧行程を完了しなければならない。すなわち、次のような制約がある。
 残り吐出時間≧残り予圧時間    (4)
 一次側ポンプ2の予圧行程をより等温的に実施するためには、予圧行程に割り当てられる時間を最大化する必要がある。すなわち、
 残り吐出時間=残り予圧時間    (5)
である。したがって、上記式(5)に上記式(2)及び(3)を代入することにより、上記式(1)が得られる。
 ここで、圧縮率kとして、事前に計算によって求めた予測値を用いた場合、その予測値kと実際の液の圧縮率との間にずれがある場合も考えられ、そのような場合は下記のような挙動が実現される。
 圧縮率の予測値kが実際の圧縮率よりも大きい場合、予圧行程の初期において予圧速度が大きく計算される。そのため移動相が予想よりも早く昇圧される。このとき予圧速度Vを再計算すると、残り予圧圧力が予想よりも早く減少するので、再計算された予圧速度Vは小さくなる。そのため図3Aや図3Bに示されているような、連続的に減少する予圧速度プロファイルが得られる。
 逆に、圧縮率の予測値kが実際の圧縮率よりも小さい場合、予圧行程の初期において予圧速度Vが小さく計算される。そのため移動相が予想よりも遅く昇圧される。このとき予圧速度Vを再計算すると、残り予圧圧力が予想よりも遅く減少するので、再計算された予圧速度Vは大きくなる。そのため、図3Aや図3Bに示されているような連続的に減少する速度プロファイルとは逆に、連続的に増加する速度プロファイルが得られる。
 いずれの場合にも、二次側ポンプ22の残り吐出時間内に、一次側ポンプ2の予圧行程が完了することが担保される。しかし、予圧行程中の液の断熱圧縮による発熱を抑制するためには、図3A及び図3Bに示されているように、予圧速度が時間とともに連続的に減少することが好ましい。そのため、液の圧縮率の予測値kが実際の液の圧縮率よりも小さくならないように、移動相として用いられる液の中で最大となるような値を予測値kとして用いてもよい。より具体的に言えば、移動相として汎用的に用いられる液の中で圧縮率が最も大きい部類に入るヘキサンの値(1.6 GPa-1)を用いることができる。あるいは,この実施例の送液装置を超臨界クロマトグラフの送液ポンプとして用いる場合、移動相である液化二酸化炭素を想定して、より高い圧縮率の値を予測値として用いてもよい。
 以上において述べたように、本発明の様々な実施形態を単独で又は組み合わせて用いることで、液体クロマトグラフの送液ポンプに求められる広い圧力範囲、広い流量範囲、移動相の圧縮率の違い、閉鎖ポンプとその他のプランジャポンプとの連携に対する要求の全てを満たすような予圧速度Vが提供される。さらに、より一般的で温和な送液条件(低~中圧力、低~中流量、移動相の圧縮率が小さい場合、相補的ポンプのプランジャが上死点又は上死点のわずかに手前に設けられた減速開始基準点から遠い場合)においては、移動相の予圧行程がより等温的になされる。等温的な予圧行程は移動相の昇温を抑制し、熱補償制御による流量補償を小さくすることを可能にする。熱補償制御に理想的な状態からのずれがある場合でも、補償しきれない脈動が残存することを抑制する。このような脈動は送液ポンプの送液安定性を向上し、ひいてはクロマトグラフィー分析の再現性を向上する。
   1,1a,1b   送液装置
   2   一次側ポンプ(閉鎖ポンプ)
   3,23   ポンプヘッド
   4,24   ポンプ室
   6,28   ポンプボディ
   8,30   クロスヘッド
   10,32   プランジャ
   12,34   モータ
   14,36   送りネジ
   16,26   逆止弁
   20,40   圧力センサ
   22   二次側ポンプ
   42   制御部
   44   予圧部
   46   予圧速度決定部
   48   相関関係保持部
   50   圧縮率保持部
   52   吐出動作可能量保持部

Claims (13)

  1.  吐出流路と、
     互いに直列又は並列に接続された複数のプランジャポンプを有し、前記吐出流路へ送液対象の液を吐出するポンプ部であって、前記複数のプランジャポンプのうち少なくとも1つの前記プランジャポンプが、前記吐出流路へ液を吐出する吐出行程を実行していない非吐出時間中に前記吐出流路との間の連通が遮断される閉鎖ポンプである、ポンプ部と、
     前記吐出流路内の圧力を送液圧力として検出する送液圧力センサと、
     前記非吐出時間中における前記閉鎖ポンプの前記ポンプ室内の圧力を非吐出時圧力として検出する非吐出時圧力センサと、
     前記送液圧力センサの出力と前記非吐出時圧力センサの出力に基づき、前記ポンプ室内へ液を吸引する吸引行程が完了した後でかつ前記非吐出時間中の前記閉鎖ポンプに、前記非吐出時圧力が前記送液圧力と略同一になるまで吐出動作させる予圧行程を実行させるように構成された予圧部と、
     前記送液圧力が高いほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度が高くなるように規定された相関関係を用い、前記送液圧力に基づいて前記予圧行程中の前記閉鎖ポンプの吐出動作の速度を決定するように構成された予圧速度決定部と、を備え、
     前記予圧部は、前記予圧行程において、前記予圧速度決定部により決定された速度で前記閉鎖ポンプを吐出動作させるように構成されている、送液装置。
  2.  前記予圧部は、前記閉鎖ポンプに当該閉鎖ポンプの前記吸引行程が完了した直後に前記予圧行程を開始させるように構成されており、
     前記予圧速度決定部は、前記閉鎖ポンプの前記予圧行程が前記吐出行程中の他のプランジャポンプの当該吐出行程が終了する直前に完了するように、前記予圧行程中の前記閉鎖ポンプの吐出動作の速度を決定するように構成されている、請求項1に記載の送液装置。
  3.  前記相関関係は、前記送液圧力と前記非吐出時圧力との差分が大きいほど前記予圧行程中の前記閉鎖ポンプの吐出動作の速度が高くなるように規定されており、
     前記予圧速度決定部は、前記予圧行程の途中で前記相関関係を用いて前記閉鎖ポンプの吐出動作の新たな速度を決定するように構成され、
     前記予圧部は、前記予圧速度決定部により前記閉鎖ポンプの吐出動作の新たな速度が決定されたときに、前記閉鎖ポンプの吐出動作の速度を前記新たな速度に変更するように構成されている、請求項1又は2に記載の送液装置。
  4.  前記相関関係は、前記目標送液流量が大きいほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度が高くなるように規定されている、請求項1から3のいずれか一項に記載の送液装置。
  5.  送液対象の液の圧縮率に関する情報を圧縮率として記憶する圧縮率記憶部をさらに備え、
     前記相関関係は、送液対象の液の圧縮率が大きいほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度が高くなるように規定されている、請求項1から4のいずれか一項に記載の送液装置。
  6.  前記閉鎖ポンプの前記予圧行程が開始される際の前記吐出行程中の前記プランジャポンプが上死点又は上死点のわずかに手前に設けられた減速開始基準点に達するまでに当該プランジャポンプが吐出動作することができる量を吐出動作可能量として算出するように構成された吐出動作可能量計算部をさらに備え、
     前記相関関係は、前記吐出動作可能量が大きいほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度が低くなるように規定されている、請求項1から5のいずれか一項に記載の送液装置。
  7.  吐出流路と、
     互いに直列又は並列に接続された複数のプランジャポンプを有し、前記吐出流路へ送液対象の液を吐出するポンプ部であって、前記複数のプランジャポンプのうち少なくとも1つの前記プランジャポンプが、前記吐出流路へ液を吐出する吐出行程を実行していない非吐出時間中に前記吐出流路との間の連通が遮断される閉鎖ポンプである、ポンプ部と、
     前記吐出流路内の圧力を送液圧力として検出する送液圧力センサと、
     前記非吐出時間中における前記閉鎖ポンプの前記ポンプ室内の圧力を非吐出時圧力として検出する非吐出時圧力センサと、
     前記送液圧力センサの出力と前記非吐出時圧力センサの出力に基づき、前記ポンプ室内へ液を吸引する吸引行程が完了した後でかつ前記非吐出時間中の前記閉鎖ポンプに、前記非吐出時圧力が前記送液圧力と略同一になるまで吐出動作させる予圧行程を実行させるように構成された予圧部と、
     送液対象の液の圧縮率に関する情報を圧縮率として記憶する圧縮率記憶部と、
     送液対象の液の圧縮率が大きいほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度が高くなるように規定された相関関係を用い、前記圧縮率に基づいて前記予圧行程中の前記閉鎖ポンプの吐出動作の速度を決定するように構成された予圧速度決定部と、を備え、
     前記予圧部は、前記予圧行程において、前記予圧速度決定部により決定された速度で前記閉鎖ポンプを吐出動作させるように構成されている、送液装置。
  8.  前記予圧部は、前記閉鎖ポンプに当該閉鎖ポンプの前記吸引行程が完了した直後に前記予圧行程を開始させるように構成されており、
     前記予圧速度決定部は、前記閉鎖ポンプの前記予圧行程が当該閉鎖ポンプの前記吐出行程が開始される直前に完了するように、前記予圧行程中の前記閉鎖ポンプの吐出動作の速度を決定するように構成されている、請求項7に記載の送液装置。
  9.  前記相関関係は、前記目標送液流量が大きいほど前記予圧行程中における前記閉鎖ポンプの吐出動作の最高速度が高くなるように規定されている、請求項7又は8に記載の送液装置。
  10.  前記閉鎖ポンプの前記予圧行程が開始される際の前記吐出行程中の前記プランジャポンプが上死点又は上死点のわずかに手前に設けられた減速開始基準点に達するまでに当該プランジャポンプが吐出動作することができる量を吐出動作可能量として算出するように構成された吐出動作可能量計算部をさらに備え、
     前記相関関係は、前記吐出動作可能量が大きいほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度が低くなるように規定されている、請求項7から9のいずれか一項に記載の送液装置。
  11.  吐出流路と、
     互いに直列又は並列に接続された複数のプランジャポンプを有し、前記吐出流路へ送液対象の液を吐出するポンプ部であって、前記複数のプランジャポンプのうち少なくとも1つの前記プランジャポンプが、前記吐出流路へ液を吐出する吐出行程を実行していない非吐出時間中に前記吐出流路との間の連通が遮断される閉鎖ポンプである、ポンプ部と、
     前記吐出流路内の圧力を送液圧力として検出する送液圧力センサと、
     前記非吐出時間中における前記閉鎖ポンプの前記ポンプ室内の圧力を非吐出時圧力として検出する非吐出時圧力センサと、
     前記送液圧力センサの出力と前記非吐出時圧力センサの出力に基づき、前記ポンプ室内へ液を吸引する吸引行程が完了した後でかつ前記非吐出時間中の前記閉鎖ポンプに、前記非吐出時圧力が前記送液圧力と略同一になるまで吐出動作させる予圧行程を実行させるように構成された予圧部と、
     前記閉鎖ポンプの前記予圧行程が開始される際の前記吐出行程中の前記プランジャポンプが上死点又は上死点のわずかに手前に設けられた減速開始基準点に達するまでに当該プランジャポンプが吐出動作することができる量を吐出動作可能量として算出するように構成された吐出動作可能量計算部と、
     前記吐出動作可能量が大きいほど前記閉鎖ポンプの前記予圧行程中の吐出動作の最高速度が低くなるように規定された相関関係を用い、前記吐出動作可能量に基づいて前記閉鎖ポンプの前記予圧行程中の吐出動作の速度を決定するように構成された予圧速度決定部と、を備え、
     前記予圧部は、前記予圧行程において、前記予圧速度決定部により決定された速度で前記閉鎖ポンプを吐出動作させるように構成されている、送液装置。
  12.  前記予圧部は、前記閉鎖ポンプに当該閉鎖ポンプの前記吸引行程が完了した直後に前記予圧行程を開始させるように構成されており、
     前記予圧速度決定部は、前記閉鎖ポンプの前記予圧行程が当該閉鎖ポンプの前記吐出行程が開始される直前に完了するように、前記予圧行程中の前記閉鎖ポンプの吐出動作の速度を決定するように構成されている、請求項11に記載の送液装置。
  13.  前記相関関係は、前記目標送液流量が大きいほど前記予圧行程中における前記閉鎖ポンプの吐出動作の最高速度が高くなるように規定されている、請求項11又は12に記載の送液装置。
PCT/JP2017/027525 2017-07-28 2017-07-28 送液装置 WO2019021475A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17919517.7A EP3660310B1 (en) 2017-07-28 2017-07-28 Liquid feeding device
JP2019532337A JP6753532B2 (ja) 2017-07-28 2017-07-28 送液装置
CN201780092293.2A CN110799754B (zh) 2017-07-28 2017-07-28 送液装置
US16/629,421 US11434897B2 (en) 2017-07-28 2017-07-28 Liquid delivery device
PCT/JP2017/027525 WO2019021475A1 (ja) 2017-07-28 2017-07-28 送液装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027525 WO2019021475A1 (ja) 2017-07-28 2017-07-28 送液装置

Publications (1)

Publication Number Publication Date
WO2019021475A1 true WO2019021475A1 (ja) 2019-01-31

Family

ID=65039571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027525 WO2019021475A1 (ja) 2017-07-28 2017-07-28 送液装置

Country Status (5)

Country Link
US (1) US11434897B2 (ja)
EP (1) EP3660310B1 (ja)
JP (1) JP6753532B2 (ja)
CN (1) CN110799754B (ja)
WO (1) WO2019021475A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203881A1 (ja) * 2022-04-19 2023-10-26 株式会社日立ハイテク 送液ポンプ及び送液方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11307179B2 (en) * 2017-10-23 2022-04-19 Shimadzu Corporation Liquid feeding device and fluid chromatograph
EP3505757A1 (en) * 2017-12-28 2019-07-03 Sensile Medical AG Micropump
JP7186113B2 (ja) * 2019-03-01 2022-12-08 株式会社日立ハイテク 送液ポンプ、液体クロマトグラフ装置
EP4081795A1 (en) 2019-12-23 2022-11-02 Waters Technologies Corporation Sample metering and injection for liquid chromatography
CN115684408A (zh) * 2022-10-28 2023-02-03 浙江福立分析仪器股份有限公司 超高效液相色谱分析的控制方法、系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178569A (ja) * 1985-02-01 1986-08-11 Jeol Ltd 送液ポンプの制御方法
JPH09264261A (ja) * 1996-03-28 1997-10-07 Sugino Mach Ltd 液体加圧装置
JP2000505524A (ja) * 1996-02-27 2000-05-09 アメルシャム・ファルマシア・バイオテック・アクチボラグ ポンプ装置
US8297936B2 (en) 2005-03-31 2012-10-30 Agilent Technologies, Inc. Compensating temperature-induced errors during piston movement
US8535016B2 (en) 2004-07-13 2013-09-17 Waters Technologies Corporation High pressure pump control
US20130336803A1 (en) 2012-06-19 2013-12-19 Gervin Ruegenberg Control arrangement for controlling a piston pump unit for liquid chromatography
US20140193275A1 (en) 2011-08-19 2014-07-10 Christoph Strobl Device for controlling a piston pump unit for liquid chromatography
US9360006B2 (en) 2009-04-29 2016-06-07 Agilent Technologies, Inc. Primary piston correction during transfer
WO2017094097A1 (ja) 2015-12-01 2017-06-08 株式会社島津製作所 送液装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0309596B1 (en) * 1987-09-26 1993-03-31 Hewlett-Packard GmbH Pumping apparatus for delivering liquid at high pressure
JP2004150402A (ja) * 2002-11-01 2004-05-27 Hitachi High-Technologies Corp 液体クロマトグラフ用ポンプ
JP4709629B2 (ja) * 2005-10-19 2011-06-22 株式会社日立ハイテクノロジーズ ポンプ装置
JP5358334B2 (ja) * 2009-07-28 2013-12-04 株式会社日立ハイテクノロジーズ 逆止弁を用いた送液装置、および反応液体クロマトグラフシステム
JP5624825B2 (ja) * 2010-07-29 2014-11-12 株式会社日立ハイテクノロジーズ 液体クロマトグラフ用ポンプ、および液体クロマトグラフ
JP6443564B2 (ja) * 2015-11-26 2018-12-26 株式会社島津製作所 送液装置、送液装置の送液制御方法及び送液装置の送液制御プログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178569A (ja) * 1985-02-01 1986-08-11 Jeol Ltd 送液ポンプの制御方法
JP2000505524A (ja) * 1996-02-27 2000-05-09 アメルシャム・ファルマシア・バイオテック・アクチボラグ ポンプ装置
JPH09264261A (ja) * 1996-03-28 1997-10-07 Sugino Mach Ltd 液体加圧装置
US8535016B2 (en) 2004-07-13 2013-09-17 Waters Technologies Corporation High pressure pump control
US8297936B2 (en) 2005-03-31 2012-10-30 Agilent Technologies, Inc. Compensating temperature-induced errors during piston movement
US9360006B2 (en) 2009-04-29 2016-06-07 Agilent Technologies, Inc. Primary piston correction during transfer
US20140193275A1 (en) 2011-08-19 2014-07-10 Christoph Strobl Device for controlling a piston pump unit for liquid chromatography
US20130336803A1 (en) 2012-06-19 2013-12-19 Gervin Ruegenberg Control arrangement for controlling a piston pump unit for liquid chromatography
WO2017094097A1 (ja) 2015-12-01 2017-06-08 株式会社島津製作所 送液装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3660310A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203881A1 (ja) * 2022-04-19 2023-10-26 株式会社日立ハイテク 送液ポンプ及び送液方法

Also Published As

Publication number Publication date
JPWO2019021475A1 (ja) 2019-12-26
EP3660310A1 (en) 2020-06-03
US11434897B2 (en) 2022-09-06
CN110799754B (zh) 2020-12-29
CN110799754A (zh) 2020-02-14
EP3660310B1 (en) 2021-10-20
US20200182235A1 (en) 2020-06-11
JP6753532B2 (ja) 2020-09-09
EP3660310A4 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
WO2019021475A1 (ja) 送液装置
CN108291897B (zh) 送液装置、送液装置的送液控制方法以及送液装置的送液控制程序
JP4377761B2 (ja) 液体クロマトグラフ装置
CN110809713B (zh) 送液装置及流体色谱仪
US6923916B1 (en) Liquid chromatograph pump and control method therefor
US11098702B2 (en) Liquid delivery device and fluid chromatograph
JP4887295B2 (ja) 流れを補償するポンプと注入器の同期のための装置、システム、および方法
JP6401683B2 (ja) 流体圧発生方法および流体圧発生装置
GB2446321A (en) Flow control for chromatography high pressure pump.
JP7123968B2 (ja) 医療流体のための容積式ポンプおよび医療流体のための容積式ポンプを備える血液処理装置ならびに医療流体のための容積式ポンプを制御するための方法
JP4377900B2 (ja) 液体クロマトグラフ装置
US11098848B2 (en) System for distributing semisolid lubricant and method of controlling such a system
JP3508378B2 (ja) 液体加圧装置
KR20110002811A (ko) 도포 장치
EP2136081A1 (en) Serial type pump comprising a heat exchanger
CN113892030B (zh) 送液泵及液相色谱仪
EP1311761B1 (en) Bubble detection and recovery in a liquid pumping system
US20090272762A1 (en) Two stage grease gun
US20180209405A1 (en) Improved pulse-free metering pump and methods relating thereto
JP2008019823A (ja) 液体定量送り装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532337

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017919517

Country of ref document: EP