WO2019021380A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2019021380A1
WO2019021380A1 PCT/JP2017/026958 JP2017026958W WO2019021380A1 WO 2019021380 A1 WO2019021380 A1 WO 2019021380A1 JP 2017026958 W JP2017026958 W JP 2017026958W WO 2019021380 A1 WO2019021380 A1 WO 2019021380A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
relay
low pressure
pipe
pressure gas
Prior art date
Application number
PCT/JP2017/026958
Other languages
French (fr)
Japanese (ja)
Inventor
幸志 東
要平 馬場
宏亮 浅沼
森本 修
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019532259A priority Critical patent/JP6779381B2/en
Priority to PCT/JP2017/026958 priority patent/WO2019021380A1/en
Publication of WO2019021380A1 publication Critical patent/WO2019021380A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • the present invention relates to an air conditioner having a relay between a heat source unit and a load side unit.
  • the conventional air conditioner includes a heat source unit, a first relay connected to the heat source unit, and a second relay connected to the downstream side of the first relay, the first relay and the first relay Some relay relays the flow of refrigerant between a plurality of indoor units.
  • the first relay and the second relay are connected by three refrigerant pipes.
  • One of the three refrigerant pipes is a liquid pipe that causes liquid refrigerant to flow between the first relay and the second relay.
  • one of the pipes is a high pressure gas pipe in which the first relay supplies high-pressure gas refrigerant to the second relay, and the other pipe is the low pressure refrigerant of the second relay. It is a low pressure gas pipe which returns to 1 relay.
  • the high pressure gas pipe is branched into two pipes of one pipe, and is connected to each second relay. There is.
  • the connection configuration of the low pressure gas pipe and the liquid pipe is similar to that of the high pressure gas pipe.
  • the two high pressure gas pipes branched from the first relay to the two second relays are not provided with a valve for blocking the flow of the refrigerant. Therefore, even when only the indoor unit connected to one of the second relays is operated, the refrigerant having the same pressure is supplied to both of the second relays using two high pressure gas pipes. In this case, the refrigerant is cooled and condensed in the high pressure gas pipe of the other second relay due to the difference between the saturation temperature accompanying the refrigerant pressure and the temperature around the pipe. If the indoor unit connected to the other second relay does not operate, the refrigerant does not flow and stays in that place.
  • the amount of refrigerant stagnation increases as the number of second relays increases, and increases as the volume of piping connecting the first relay and the second relay increases.
  • the volume of the pipe increases as the cross-sectional area of the pipe increases, and increases as the pipe length increases. Further, the larger the difference between the saturation temperature and the temperature around the pipe, the larger the amount of refrigerant stagnation.
  • the amount of refrigerant is sealed in the air conditioner, it is generally only sealed in the volume of the liquid pipe. If the amount of the stagnant refrigerant increases, the amount of refrigerant will be insufficient, and the refrigeration capacity of the operating indoor unit will be reduced.
  • Patent Document 1 discloses an example of a method of preventing the refrigerant from staying.
  • the humidity control unit disclosed in Patent Document 1 is provided with a bypass circuit for returning the refrigerant from the inactive refrigerant circuit to the low pressure side, and a capillary is provided in the bypass circuit.
  • the present invention has been made to solve the above-described problems, and provides an air conditioner that suppresses the amount of refrigerant staying in refrigerant piping.
  • An air conditioner comprises a heat source unit having a heat source side heat exchanger and a compressor, a first relay connected to the heat source unit and a refrigerant pipe, a high pressure gas pipe, a low pressure gas pipe and a liquid pipe.
  • a second relay connected to the first relay, a high pressure valve connected to the high pressure gas pipe, and a low pressure valve connected to the low pressure gas pipe, provided in the second relay
  • a control unit that controls the compressor and the plurality of connection ports, and the control unit stops all load-side units connected to the second relay.
  • the high pressure valve and the low pressure valve of at least one connection port of the plurality of connection ports are opened to perform the refrigerant recovery process of connecting the high pressure gas pipe and the low pressure gas pipe. is there.
  • the valve of the connection port of the second relay on which the refrigerant stagnates is opened, and the refrigerant that stagnates is collected by the heat source unit. The amount of stagnant refrigerant can be suppressed.
  • FIG. 1 is a refrigerant circuit diagram showing one configuration example of the air-conditioning apparatus of Embodiment 1 of the present invention.
  • the air conditioner 1 has a heat source unit 10, a first relay 30, and a plurality of second relays 50a and 50b.
  • the heat source unit 10 and the first relay 30 are connected by a high pressure pipe 23 and a low pressure pipe 22.
  • the first relay 30 and the second relay 50a are connected by the low pressure gas pipe 42, the low pressure gas pipe 42a, the high pressure gas pipe 43, and the high pressure gas pipe 43a.
  • the first relay 30 and the second relay 50b are connected by the low pressure gas pipe 42, the low pressure gas pipe 42b, the high pressure gas pipe 43, and the high pressure gas pipe 43b.
  • the air conditioner 100 is provided with a control unit 90.
  • the second relay 50 a branches the refrigerant flowing out of the heat source unit 10 into a plurality of load side units 70 a and 70 c, combines the refrigerant flowing out of the load side units 70 a and 70 c, and flows out to the first relay 30.
  • the second relay 50a and the load side unit 70a are connected by a gas branch pipe 75a and a liquid branch pipe 76a.
  • the second relay 50a and the load side unit 70c are connected by a gas branch pipe 75c and a liquid branch pipe 76c.
  • a plurality of load side units 70b and 70d are connected to the second relay 50b.
  • the second relay 50b and the load side unit 70b are connected by a gas branch pipe 75b and a liquid branch pipe 76b.
  • the second relay 50b and the load side unit 70d are connected by a gas branch pipe 75d and a liquid branch pipe 76d.
  • FIG. 2 is a figure which shows one structural example of the heat-source equipment and 1st repeater which were shown in FIG.
  • the heat source unit 10 includes a compressor 11, a flow path switching valve 12, a heat source side heat exchanger 13, an accumulator 14, and a flow path adjustment unit 15.
  • the compressor 11 is a variable displacement compressor.
  • the heat source side heat exchanger 13 performs heat exchange between the outside air and the refrigerant, and functions as an evaporator at the time of heating and as a condenser at the time of cooling.
  • the flow path switching valve 12 is connected to the discharge port side of the compressor 11, switches the flow direction of the refrigerant in the heat source unit 10, and switches the heating flow path and the cooling flow path.
  • FIG. 2 shows the case where the flow path switching valve 12 is a four-way valve.
  • the flow path adjustment unit 15 restricts the flow direction of the refrigerant and forms a flow from the heat source unit 10 to the first relay 30 on the high pressure pipe 23 side, and the heat source unit 10 to the heat source machine 10 from the first relay 30 on the low pressure pipe 22 side.
  • Form a flow of The flow path adjustment unit 15 has a first check valve 16, a second check valve 17, a third check valve 18 and a fourth check valve 19.
  • the accumulator 14 stores surplus refrigerant, and is connected to a refrigerant suction port of the compressor 11.
  • the accumulator 14 is provided with a refrigerant amount sensor 25 that detects a refrigerant shortage.
  • the refrigerant amount sensor 25 When the amount of refrigerant becomes less than the reference value, the refrigerant amount sensor 25 outputs an insufficient refrigerant signal indicating that the refrigerant is insufficient.
  • the flow path switching valve 12 is connected to the flow path adjustment unit 15, the accumulator 14, and the heat source side heat exchanger 13.
  • a first check valve 16 and a second check valve 17 provided in the flow path adjustment unit 15 are connected to the low pressure pipe 22.
  • a third check valve 18 and a fourth check valve 19 provided in the flow path adjustment unit 15 are connected to the high pressure pipe 23.
  • the first relay 30 branches the refrigerant into the second relays 50a and 50b and a load-side unit (not shown) connected to the first relay 30.
  • the first relay 30 includes a gas-liquid separator 32, a first heat exchange unit 33, a second heat exchange unit 34, a first flow control device 35, and a second flow control device 36.
  • a first branch unit 46 and a second branch unit 47 are provided.
  • the gas-liquid separator 32 separates the gas phase refrigerant and the liquid phase refrigerant, and is connected to the high pressure pipe 23, the high pressure gas pipe 43 and the liquid pipe 41.
  • the gas-liquid separation device 32 separates the refrigerant flowing from the heat source unit 10 through the high pressure pipe 23 into a gas and a liquid.
  • the gas-liquid separator 32 sends high-pressure gas refrigerant to the high-pressure gas pipe 43 and sends liquid refrigerant to the liquid pipe 41.
  • the first branch unit 46 has connection ports 81 to 84 connected to the heat exchanger of the load side unit.
  • the connection ports 81 to 84 have two on-off valves connected in parallel, for example, two-way valves.
  • the second branch unit 47 has connection ports 85 to 88 connected to the flow control device of the load side unit.
  • the connection ports 85 to 88 have, for example, two check valves connected in parallel.
  • the load side unit is not connected to the first relay 30 in the configuration example shown in FIG. 1, the load side unit may be connected to the first relay 30.
  • the liquid pipe 41 is provided with a first heat exchange unit 33 and a first flow control device 35.
  • the liquid pipe 41 is branched at the refrigerant outlet side of the first flow control device 35, and a bypass liquid pipe 45 is provided.
  • the bypass liquid pipe 45 is connected to the second heat exchange unit 34 and the second branch unit 47.
  • the first heat exchange unit 33 and the second heat exchange unit 34 exchange heat between the inflowing refrigerant and the air to cool the refrigerant.
  • the first flow control device 35 is in the open state when all the load side units 70a to 70d are in the cooling operation, and controls the flow rate of the inflowing liquid refrigerant, and when all the load side units 70a to 70d are in the heating operation, It is closed and blocks the flow of refrigerant.
  • the second flow control device 36 is opened when all the load side units 70a to 70d are in the heating operation, and controls the flow rate of the inflowing liquid refrigerant, and when all the load side units 70a to 70d are in the cooling operation, It is closed and blocks the flow of refrigerant.
  • Second repeaters 50 a and 50 b are connected in parallel to the first repeater 30.
  • the liquid pipe 41 is branched into a liquid pipe 41a connected to the second relay 50a and a liquid pipe 41b connected to the second relay 50b.
  • the low pressure gas pipe 42 is branched into a low pressure gas pipe 42a connected to the second relay 50a and a low pressure gas pipe 42b connected to the second relay 50b.
  • the high pressure gas pipe 43 is branched into a high pressure gas pipe 43a and a high pressure gas pipe 43b.
  • the high pressure gas pipe 43a is connected to the second relay 50a.
  • the high pressure gas pipe 43b is connected to the second relay 50b.
  • FIG. 3 is a diagram showing an example of the second relay shown in FIG. Since the second relays 50a and 50b have the same configuration, the configuration of the second relay 50a will be described here.
  • the second relay 50a includes first branch units 61a and 61c, second branch units 62a and 62c, a third heat exchange unit 52, and a third flow control device 53.
  • the liquid pipe 41 a is connected to the second branch units 62 a and 62 c via the third heat exchange unit 52.
  • the low pressure gas pipe 42a is connected to the first branch units 61a and 61c.
  • the second relay 50 a is provided with a bypass pipe 54 connecting the low pressure gas pipe 42 a and the liquid pipe 51.
  • the bypass pipe 54 is connected to the liquid pipe 51 via the third heat exchange unit 52.
  • a third flow control device 53 is provided between the third heat exchange unit 52 and the second branch unit 62c.
  • the third heat exchange unit 52 exchanges heat between the inflowing refrigerant and the air to cool the refrigerant.
  • the third flow control device 53 switches from the closed state to the open state, and controls the flow rate of the refrigerant.
  • the first branch unit 61a has four connection ports 81a to 84a.
  • the first branch unit 61c has four connection ports 81c to 84c.
  • the gas branch pipe 75a is connected to the connection port 81a, but the piping tips of the other connection ports 82a to 84a have caps.
  • the gas branch pipe 75c is connected to the connection port 81c, but the piping tips of the other connection ports 82c to 84c have caps.
  • the second branch unit 62a has four connection ports 85a to 88a.
  • the second branch unit 62c has four connection ports 85c to 88c.
  • the connection port 85a is connected to the liquid branch pipe 76a, but the piping tips of the other connection ports 86a to 88a have caps.
  • the connection port 85c is connected to the liquid branch pipe 76c, but the piping tips of the other connection ports 86c to 88c have caps.
  • FIG. 4 is a view showing an example of the configuration of the connection port shown in FIG. Since the connection ports 81a to 84a have the same configuration, the configuration of the connection port 81a will be described. Further, since the connection ports 85a to 88a have the same configuration, the configuration of the connection port 85a will be described.
  • the connection port 81 a includes a high pressure valve 121 connected to the high pressure gas pipe 43 a and connected to the high pressure branch pipe 111 and a low pressure valve 122 connected to the low pressure branch pipe 112.
  • the high pressure valve 121 and the low pressure valve 122 are, for example, solenoid valves.
  • the connection port 85 a has a check valve 141 connected to the liquid pipe 41 a and a check valve 142 connected to the liquid pipe 51.
  • the check valve 141 is provided in the branch pipe 131 connected to the liquid pipe 41 a.
  • the check valve 142 is provided in the branch pipe 132 connected to the liquid pipe 51.
  • the high pressure valve 121 is set to the closed state, and the low pressure valve 122 is set to the open state.
  • the refrigerant flowing from the liquid pipe 41a flows through the check valve 141, the liquid branch pipe 76a, the load side unit 70a, the gas branch pipe 75a and the low pressure valve 122 in order and flows into the low pressure gas pipe 42a.
  • the high pressure valve 121 is set to the open state, and the low pressure valve 122 is set to the closed state.
  • the refrigerant flowing from the high pressure gas pipe 43a flows into the liquid pipe 51 through the high pressure valve 121, the gas branch pipe 75a, the load side unit 70a, the liquid branch pipe 76a and the check valve 142 in this order. .
  • the load side unit 70a has a load side heat exchanger 71a and a load side flow control device 72a.
  • the load side heat exchanger 71a and the load side flow control device 72a are connected by refrigerant piping.
  • the load side heat exchanger 71a is connected to the connection port 81a via the gas branch pipe 75a.
  • the load-side flow control device 72a is connected to the connection port 85a via the liquid branch pipe 76a.
  • the load-side heat exchanger 71a exchanges heat between the air in the air-conditioned space and the refrigerant, and functions as a condenser during heating and as an evaporator during cooling.
  • the load-side flow rate control device 72a decompresses and expands the inflowing refrigerant.
  • FIG. 5 is a block diagram showing one configuration example of the control unit shown in FIG.
  • the control unit 90 shown in FIG. 5 has a memory 91 for storing a program, and a CPU (Central Processing Unit) 92 for executing processing in accordance with the program.
  • the CPU 92 has a timer function.
  • the control unit 90 is connected to the compressor 11, the flow path switching valve 12, and the refrigerant amount sensor 25 by signal lines.
  • the control unit 90 is connected to the first flow control device 35, the second flow control device 36, and the third flow control device 53 by signal lines.
  • the control unit 90 is connected to the high pressure valve 121 and the low pressure valve 122 of each connection port of the second relays 50a and 50b by signal lines.
  • the control unit 90 is connected to the load-side flow control devices 72a to 72d by signal lines.
  • the connection means is not limited to wired but may be wireless.
  • the control unit 90 controls the compressor 11, the flow path switching valve 12, the first flow control device 35, the second flow control device 36, and the third flow control device according to the operation state set in the load side units 70a to 70d.
  • the flow control device 53 and the load side flow control devices 72a to 72d are controlled.
  • the controller 90 executes various operation modes. As the operation mode, there are full cooling operation in which all load side units to be operated are cooling operation and all heating operation in which all load side units to be operated are heating operation. Other operation modes include a cooling main operation where the capacity of the cooling operation is larger than the capacity of the heating operation, and a heating main operation where the capacity of the heating operation is larger than the capacity of the cooling operation.
  • the control unit 90 When the control unit 90 receives the refrigerant shortage signal from the refrigerant amount sensor 25, the control unit 90 controls the connection port of any one of the second relays 50 a and 50 b so as to store the stagnant refrigerant in the heat source unit 10. Perform the refrigerant recovery process to return. Specifically, the control unit 90 determines that refrigerant stagnation occurs when there is a second relay in which not all of the connected load-side units are operated among the second relays 50a and 50b. . Then, the control unit 90 selects at least one connection port of the plurality of connection ports connected to the high pressure gas pipe as a control target in the second relay in which all the load side units are not operating. The control unit 90 opens the high pressure valve 121 and the low pressure valve 122 of the selected connection port, and performs a refrigerant recovery process of connecting the high pressure gas pipe and the low pressure gas pipe.
  • a set time for opening the high pressure valve 121 and the low pressure valve 122 may be determined.
  • the control unit 90 closes the low pressure valve 122 and the high pressure valve 121 when the set time has elapsed since the low pressure valve 122 was opened.
  • the set time is stored in the memory 91.
  • connection port when there are a connection port to which the load side unit is not connected and a connection port to which the load side unit is connected but the load side unit is not in operation, among the plurality of connection ports to be controlled
  • the connection port may be selected or the priority may be set.
  • the priority of the connection port to which the load side unit is not connected is set higher than the priority of the connection port to which the load side unit is connected.
  • the control unit 90 determines whether the refrigerant shortage in the heat source unit 10 is determined based on whether the refrigerant shortage signal is received from the refrigerant quantity sensor 25 or not.
  • the case is not limited.
  • the control unit 90 measures the state of the refrigeration cycle, calculates the refrigeration capacity using the measurement values of the temperature sensor and the pressure sensor (not shown), and if the calculated refrigeration capacity is reduced, the refrigerant amount is insufficient You may judge. Even if the air conditioner 1 is provided with a plurality of temperature sensors for measuring temperatures including the outside air temperature and the refrigerant temperature, and a plurality of pressure sensors for measuring the refrigerant pressure including the discharge pressure and the suction pressure of the compressor 11 Good. In this case, the control unit 90 may determine the refrigerant shortage from the measurement values of various sensors.
  • FIG. 1 to FIG. 3 there is shown a case where two load side units are connected to every two second relays 50a and 50b, but in the second relays 50a and 50b
  • the number of connected load units is not limited to two.
  • one load-side unit may be connected to one second relay, and no load-side unit may be connected to another second relay.
  • FIG. 6 is a diagram showing the flow of refrigerant in the second relay when the air conditioning apparatus shown in FIG. 1 is in the cooling only operation.
  • the flow of the refrigerant when the air conditioning apparatus 1 performs the cooling only operation will be described with reference to FIGS. 2 and 6.
  • the direction in which the refrigerant flows is indicated by an arrow. All of the operating states of the load side units 70a to 70d are cooling operation.
  • the compressor 11 shown in FIG. 2 compresses the refrigerant drawn from the accumulator 14 and discharges a high temperature and high pressure gas refrigerant.
  • the gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 through the flow path switching valve 12.
  • the gas refrigerant exchanges heat with the outside air, is condensed, and is liquefied.
  • the liquefied refrigerant flows into the first relay 30 through the fourth check valve 19 and the high pressure pipe 23.
  • the liquid refrigerant flows in the order of the gas-liquid separation device 32, the first heat exchange unit 33, and the first flow control device 35.
  • the liquid refrigerant flowing out of the first relay 30 shown in FIG. 2 through the liquid pipe 41 flows into the liquid pipes 41a and 41b shown in FIG.
  • the liquid refrigerant flowing through the liquid pipe 41a flows into the second relay 50a.
  • the liquid refrigerant flowing through the liquid pipe 41b flows into the second relay 50b.
  • the liquid refrigerant flowing into the second relay 50a is branched to the connection ports 85c and 85a.
  • the liquid refrigerant that has flowed into the second relay 50 b flows through the third heat exchange unit 52 and then is branched to the connection ports 85 d and 85 b.
  • the liquid refrigerant flowing through the connection port 85c flows through the liquid branch pipe 76c and flows into the load side unit 70c.
  • the liquid refrigerant flowing through the connection port 85a flows through the liquid branch pipe 76a and flows into the load side unit 70a.
  • the liquid refrigerant flowing through the connection port 85d flows through the liquid branch pipe 76d and flows into the load side unit 70d.
  • the liquid refrigerant flowing through the connection port 85b flows through the liquid branch pipe 76b and flows into the load side unit 70b.
  • the refrigerant flowing into the load side unit 70c is decompressed by the load side flow control device 72c, and then exchanges heat with the air of the air conditioning target space in the load side heat exchanger 71c to evaporate and gasify.
  • the gasified refrigerant flows through the gas branch pipe 75c and flows into the connection port 81c of the second relay 50a.
  • the flow of the refrigerant in the load side units 70a, 70b and 70d is the same as that of the load side unit 70c, so the description thereof will be omitted.
  • the gas refrigerant flowing through the connection port 81c and the gas refrigerant flowing through the connection port 81a merge at the low pressure gas pipe 42a.
  • the gas refrigerant flowing through the connection port 81d and the gas refrigerant flowing through the connection port 81b merge at the low pressure gas pipe 42b.
  • the gas refrigerant flowing through the low pressure gas pipe 42a and the gas refrigerant flowing through the low pressure gas pipe 42b join the low pressure gas pipe 42, and then flow into the first relay 30 shown in FIG.
  • the gas refrigerant that has flowed into the first relay 30 shown in FIG. 2 flows through the low pressure gas pipe 42 and the low pressure pipe 22 and flows into the heat source unit 10.
  • the gas refrigerant that has flowed into the heat source unit 10 flows through the first check valve 16 and the flow path switching valve 12 in order and flows into the accumulator 14.
  • the refrigerant discharged from the compressor 11 carries the heat generated by the heat source unit 10 to the load side units 70a to 70d and cools the air conditioning target space of the load side units 70a to 70d. It returns to the accumulator 14 of ten.
  • FIG. 7 is a diagram showing the flow of the refrigerant in the second relay when the air conditioning apparatus shown in FIG. 1 performs the heating only operation.
  • the direction in which the refrigerant flows is indicated by an arrow.
  • the refrigerant piping through which the high pressure gas refrigerant flows is displayed thick. All of the operating states of the load side units 70a to 70d are heating operations.
  • the high temperature / high pressure gas refrigerant discharged from the compressor 11 shown in FIG. 2 flows through the flow path switching valve 12 and the third check valve 18 and then flows into the first relay 30 via the low pressure pipe 22. .
  • the gas refrigerant is diverted to the high pressure gas pipes 43a and 43b shown in FIG.
  • the gas refrigerant flowing through the high pressure gas pipe 43a flows into the second relay 50a.
  • the gas refrigerant flowing through the high pressure gas pipe 43b flows into the second relay 50b.
  • the gas refrigerant that has flowed into the second relay 50a is branched to the connection ports 81c and 81a.
  • the gas refrigerant that has flowed into the second relay 50b is branched to the connection ports 81d and 81b.
  • the gas refrigerant flowing through the connection port 81c flows through the gas branch pipe 75c and flows into the load side unit 70c.
  • the gas refrigerant flowing through the connection port 81a flows through the gas branch pipe 75a and flows into the load side unit 70a.
  • the gas refrigerant flowing through the connection port 81 d flows through the gas branch pipe 75 d and flows into the load side unit 70 d.
  • the gas refrigerant flowing through the connection port 81b flows through the gas branch pipe 75b and flows into the load side unit 70b.
  • the refrigerant flowing into the load side unit 70c exchanges heat with the air in the air conditioning target space in the load side heat exchanger 71c, is condensed, and is liquefied.
  • the liquefied refrigerant is reduced in pressure by the load-side flow control device 72c, and then flows through the liquid branch pipe 76c to flow into the connection port 85c of the second relay 50a.
  • the flow of the refrigerant in the load side units 70a, 70b and 70d is the same as that of the load side unit 70c, so the description thereof will be omitted.
  • the refrigerant flowing through the connection port 85c and the refrigerant flowing through the connection port 85a flow into the liquid pipe 41a via the liquid pipe 51.
  • the refrigerant flowing through the connection port 85d and the refrigerant flowing through the connection port 85b flow into the liquid pipe 41b via the liquid pipe 51.
  • the refrigerant flowing into the first relay 30 shown in FIG. 2 flows through the low pressure pipe 22 through the second heat exchange unit 34, the second flow control device 36 and the first heat exchange unit 33 in this order. It flows into the heat source unit 10.
  • the refrigerant that has flowed into the heat source unit 10 flows into the heat source side heat exchanger 13 after flowing through the second check valve 17.
  • the liquid refrigerant exchanges heat with the outside air, evaporates, and gasifies.
  • the gasified refrigerant flows into the accumulator 14 after flowing through the flow path switching valve 12.
  • the refrigerant discharged from the compressor 11 carries the heat generated by the heat source unit 10 to the load side units 70a to 70d and warms the air conditioning target space of the load side units 70a to 70d. It returns to the accumulator 14 of ten.
  • FIG. 8 is a diagram showing the flow of the refrigerant in the second relay when the air conditioning apparatus shown in FIG. 1 performs the cooling main operation.
  • the direction in which the refrigerant flows is indicated by an arrow.
  • the refrigerant piping through which the high pressure gas refrigerant flows is displayed thick.
  • the load unit 70c is in the heating operation.
  • the load side units 70a and 70d are in the cooling operation.
  • the load side unit 70 b is stopped.
  • control in the all cooling operation is partially different.
  • points different from the case where the air conditioning apparatus 1 performs the cooling only operation will be described.
  • the liquid refrigerant flows from the heat source unit 10 shown in FIG. 2 through the high pressure pipe and flows into the first relay 30 in the same manner as the case where the operation mode is the cooling only operation.
  • the liquid refrigerant that has flowed into the first relay 30 is separated into high-pressure gas refrigerant and liquid refrigerant in the gas-liquid separator 32. After flowing through the high pressure gas pipe 43, the high pressure gas refrigerant is diverted to the high pressure gas pipes 43a and 43b.
  • the liquid refrigerant separated by the gas-liquid separation device 32 flows through the liquid pipe 41 in the same manner as in the case of the cooling only operation, and then is branched to the liquid pipes 41a and 41b.
  • the liquid refrigerant flowing through the liquid pipe 41a flows into the load side unit 70a via the connection port 85a and the liquid branch pipe 76a.
  • the refrigerant is reduced in pressure by the load side flow control device 72a in the same manner as in the case of the cooling only operation mode, and then exchanges heat with the air in the air conditioned space by the load side heat exchanger 71a. Go and evaporate and gasify.
  • the gasified refrigerant flows through the gas branch pipe 75a and flows into the connection port 81a of the second relay 50a.
  • the gas refrigerant flows from the connection port 81 a to the low pressure gas pipe 42 a, the low pressure gas pipe 42, the first relay 30, and the low pressure pipe 22 in this order, and returns to the heat source unit 10.
  • coolant in the load side unit 70d is the same as that of the load side unit 70a, the description is abbreviate
  • the gas refrigerant flowing through the high pressure gas pipe 43a flows into the load side unit 70c via the connection port 81c and the gas branch pipe 75c in the same manner as in the case of the heating only operation mode.
  • the refrigerant exchanges heat with the air in the space to be air-conditioned in the load side heat exchanger 71c, condenses and liquefies, as in the case of the heating only operation mode.
  • the liquefied refrigerant is reduced in pressure by the load-side flow control device 72c, and then flows through the liquid branch pipe 76c to flow into the connection port 85c of the second relay 50a.
  • the liquefied refrigerant flows into the liquid pipe 51 and is used in the cooling operation of the load side unit 70c.
  • the air conditioning target space of the load side units 70a and 70d is cooled, and the air conditioning target space of the load side unit 70c is warmed.
  • the second relay 50b high-pressure gas refrigerant flows from the first relay 30 through the high-pressure gas pipe 43 and the high-pressure gas pipe 43b even when the load side units 70b and 70d do not perform heating operation. Is supplied to the second repeater 50b.
  • the high pressure valves 121 of the connection ports 81b to 84b and 81d to 84d connected to the high pressure gas pipe 43b are all closed, the gas refrigerant stagnates between the first relay 30 and the second relay 50b.
  • the gas refrigerant that has stagnated is deprived of heat by the surrounding air, the temperature drops, and it stagnates.
  • the heating flow path is set to the heat source unit 10
  • a load side unit (not shown) is connected to the first repeater 30. It is assumed that the load side unit connected to the first relay 30 is performing the heating operation, but not all the load side units connected to the second relays 50a and 50b are operating. In this case, the refrigerant stagnates in the high pressure gas pipes 43, 43a and 43b between the first relay 30 and the second relays 50a and 50b. Even when there is only one second relay connected to the first relay 30, the refrigerant stagnates between the first relay 30 and the second relay 50a.
  • FIG. 9 is a flowchart showing an operation procedure performed by the control unit shown in FIG.
  • the control unit 90 determines whether the refrigerant amount sensor 25 has detected a refrigerant shortage (step S101). When receiving the refrigerant shortage signal from the refrigerant amount sensor 25, the control unit 90 determines that the refrigerant is shortage, and searches for a connection port to be controlled in the refrigerant recovery process (step S102).
  • the refrigerant is between the first relay 30 and the second relays 50a and 50b. It does not stay.
  • Control part 90 excludes the 2nd relay which has a connection port connected with the load side unit which is performing heating operation from control object of refrigerant recovery processing.
  • the control unit 90 selects a connection port to be controlled from among a plurality of connection ports connected to the high pressure gas pipe in the remaining second repeater.
  • the connection port meeting the condition to be controlled is either a connection port to which the load-side unit is not connected or a connection port to which the load-side unit is not operating even if the load-side unit is connected.
  • the control unit 90 selects a connection port meeting the conditions as a control target of the refrigerant recovery process (step S103).
  • the connection port to be selected is represented by a connection port k.
  • k is any one of 81a to 84a.
  • the control unit 90 selects one connection port k in accordance with the set priority. For example, the priority of the connection port to which the load-side unit is not connected is set higher than the priority of the connection port to which the load-side unit is connected.
  • the control unit 90 switches the high pressure valve 121 of the selected connection port k from the closed state to the open state, and switches the low pressure valve 122 from the closed state to the open state (step S104).
  • the refrigerant flows from the high pressure gas pipe to the high pressure valve 121 and the low pressure valve 122 to flow into the low pressure gas pipe.
  • the control unit 90 measures the time from when the low pressure valve 122 is opened, and determines whether the measured time has passed the set time (step S105). When the set time has elapsed, the control unit 90 returns the high pressure valve 121 of the connection port k from the open state to the closed state, and returns the low pressure valve 122 from the open state to the closed state (step S106).
  • connection ports k meeting the conditions in the process of step S102 are the connection ports 82d to 84d and the connection ports 81b to 84b.
  • the control unit 90 selects one of these connection ports, and performs the processes of steps S104 and S105 shown in FIG.
  • the refrigerant accumulated between the first relay 30 and the second relay 50b flows through the high pressure valve 121 and the low pressure valve 122 of the selected connection port k, and then the heat source unit 10 via the low pressure gas pipe 42b.
  • connection port 81b is provided along the distance of the high pressure gas pipe 43 starting from the first relay 30 and the high pressure gas pipe 43b branched from the high pressure gas pipe 43. Distance is the farthest position. In this case, the refrigerant remaining between the first relay 30 and the second relay 50b can be recovered to the low pressure gas pipe 42b with as much as possible.
  • the control unit 90 performs control to open and close the load side flow control device 72b between step S103 and step S104. You may The reason will be described below. Here, the case where the selected connection port k is the connection port 81b will be described.
  • the refrigerant in the gas branch pipe 75b is cooled at the temperature of the surrounding air, and the refrigerant pressure is reduced. Further, the pressure difference between the refrigerant pressure of the low pressure gas pipe 42 b and the refrigerant pressure of the high pressure gas pipe 43 a is large. In this state, when the high pressure valve 121 and the low pressure valve 122 are opened, the high pressure gas refrigerant flows into the gas branch pipe 75b at a stretch. At this time, a large pressure load may be applied to the gas branch pipe 75b and the load side heat exchanger 71b. In addition, the high pressure gas refrigerant may vigorously flow from the high pressure gas pipe 43b to the gas branch pipe 75a and the low pressure gas pipe 42b to generate a sound like a bursting sound.
  • the load side unit 70d since the load side unit 70d is performing the cooling operation, the high-pressure liquid refrigerant flows into the liquid branch pipe 76b. Therefore, when the connection port 81b is selected in step S103 before the process of step S104, the load side flow control device 72b is opened before step S104, and the refrigerant pressure in the gas branch pipe 75b is increased. The pressure is raised to about 1/2 of the refrigerant pressure of the gas pipe 43b. Thereafter, the control unit 90 closes the load-side flow control device 72b, and proceeds to the process of step S104.
  • the control unit 90 reduces the differential pressure between the refrigerant pressure of the low pressure gas pipe 42b and the refrigerant pressure of the high pressure gas pipe 43b.
  • the high pressure valve 121 and the low pressure valve 122 are opened, the force of the refrigerant flowing from the high pressure gas pipe 43b into the low pressure gas pipe 42b is suppressed.
  • application of a large pressure load to the gas branch pipe 75b and the load side heat exchanger 71b is suppressed.
  • the magnitude of the sound generated when the high pressure gas refrigerant flows into the low pressure gas pipe 42b is reduced.
  • the controller 90 performs the refrigerant recovery process when the refrigerant insufficiency is detected is described with reference to FIG. 9, but the refrigerant recovery process detects the refrigerant insufficiency. Not limited to.
  • the load-side unit 70c connected to one second relay 50a of the two second relays 50a and 50b performs a heating operation, and the other unit The second relay 50b has no load side unit that performs heating operation. From this, the control unit 90 performs the heating operation on the load side unit connected to one second relay among the plurality of second relays, and performs the heating operation on the other second relays.
  • control unit 90 may perform the refrigerant recovery process on the other second relays according to the procedure shown in FIG. 9 every fixed time.
  • the load side unit connected to one second relay performs a heating operation, and the heating operation is performed in the other second relays.
  • the present invention is not limited to this case. For example, consider a case where the load side unit 70d connected to the second relay 50b shown in FIG. 8 has stopped operation. In this case, when the refrigerant flowing through the liquid pipe 41b returns to the first relay 30, the load side unit 70d can not return more smoothly than in the case where the cooling operation is performed.
  • the control unit 90 may perform the refrigerant recovery process shown in FIG.
  • the control unit 90 controls the second relay in the following manner.
  • One connection port is selected from a plurality of connection ports connected to the high pressure gas pipe. Then, the control unit 90 opens the high pressure valve 121 and the low pressure valve 122 provided in the selected connection port to connect the high pressure gas pipe and the low pressure gas pipe.
  • the control unit 90 when the control unit 90 is in an operating state where stagnation of refrigerant occurs, the control unit 90 opens the valve of the connection port of the second relay on which the refrigerant is stagnant, so that the stagnant refrigerant is a heat source machine Recover to 10.
  • the stagnating refrigerant is returned to the heat source unit 10, and it is possible to suppress a decrease in refrigeration capacity due to a shortage of the refrigerant.
  • the bypass circuit connecting the high pressure gas pipe and the low pressure gas pipe is always opened As compared with the above, it is possible to suppress the decrease in the freezing capacity.
  • the control unit 90 specifies the connection port where the refrigerant stagnates at the timing of the refrigerant shortage, and performs opening / closing control of the valve in the specified connection port, thereby recovering the refrigerant.
  • the control unit 90 specifies the connection port where the refrigerant stagnates at the timing of the refrigerant shortage, and performs opening / closing control of the valve in the specified connection port, thereby recovering the refrigerant.
  • a decrease in the refrigeration capacity can be prevented, so the restriction on the number of second relays and the pipe length is alleviated. Therefore, in the air conditioning apparatus 1 of the first embodiment, the degree of freedom in the design of the piping system is improved.
  • the second embodiment relates to another configuration example of the connection port connected to the high pressure gas pipe side.
  • the detailed description of the same configuration as that of the first embodiment is omitted.
  • FIG. 10 is a figure which shows one structural example of the connection port in the air conditioning apparatus of Embodiment 2 of this invention.
  • the connection ports 81a to 84a have the same configuration, the configuration of the connection port 81a will be described.
  • the connection ports 85a to 88a are the same as in the first embodiment, and thus the detailed description thereof is omitted.
  • connection port 81a is a low pressure valve connected to the low pressure gas pipe 42a, and is a second low pressure valve connected in parallel with the first low pressure valve 122-1 and the first low pressure valve 122-1. And 122-2.
  • the flow passage cross-sectional area of the first low pressure valve 122-1 is equal to that of the low pressure valve 122 shown in FIG.
  • the flow passage cross-sectional area of the second low pressure valve 122-2 is smaller than the flow passage cross-sectional area of the first low pressure valve 122-1.
  • FIG. 11 is a flowchart showing an example of processing executed by the control unit in the air conditioning apparatus according to Embodiment 2 of the present invention in the processing of step S104 shown in FIG.
  • the case where the control unit 90 performs the refrigerant return process on the connection port 81a will be described.
  • step S104 shown in FIG. 9 the control unit 90 switches the high pressure valve 121 from the closed state to the open state (step S141).
  • the control unit 90 switches the second low pressure valve 122-2 from the closed state to the open state with the first low pressure valve 122-1 closed (step S 142).
  • the second low pressure valve 122-2 is switched from the closed state to the open state, the refrigerant remaining between the first relay 30 and the second relay 50a flows from the high pressure gas pipe 43a to the low pressure gas pipe 42a.
  • the flow passage cross-sectional area of the second low pressure valve 122-2 is smaller than the flow passage cross-sectional area of the first low pressure valve 122-1, a decrease in the refrigeration capacity is suppressed.
  • the refrigerant is prevented from flowing vigorously from the high pressure gas pipe 43a to the low pressure gas pipe 42a.
  • application of a large pressure load to the gas branch pipe 75a and the load side heat exchanger 71a is suppressed.
  • the magnitude of the sound generated when the high pressure gas refrigerant flows into the low pressure gas pipe 42a is reduced.
  • step S105 shown in FIG. 9 when the set time has passed since the second low pressure valve 122-2 was opened, the control unit 90 causes the high pressure valve 121 and the second low pressure valve 122 to go to step S106. -2 switches from the open state to the closed state.
  • the air conditioner 1 of the second embodiment has a second low pressure having a small flow passage cross-sectional area when returning the refrigerant remaining in the high pressure gas pipe between the first relay 30 and the second relay to the heat source unit 10.
  • the valve 122-2 is opened to flow the refrigerant from the high pressure gas pipe to the low pressure gas pipe. Since the flow passage cross-sectional area of the second low pressure valve 122-2 is smaller than the flow passage cross-sectional area of the first low pressure valve 122-1, a decrease in refrigeration capacity is suppressed. According to the second embodiment, not only can the stagnating refrigerant be returned to the heat source unit 10, but also the reduction of the refrigeration capacity is suppressed. Further, since the refrigerant is suppressed from flowing vigorously from the high pressure gas pipe into the low pressure gas pipe, the pressure load on the refrigerant pipe is suppressed, and the magnitude of the generated sound is reduced.
  • the control unit 90 may switch the first low pressure valve 122-1 from the closed state to the open state.
  • the refrigerant is slightly flowing from the high pressure gas pipe 43a into the low pressure gas pipe 42a via the second low pressure valve 122-2.
  • the first low pressure valve 122-1 is opened, the pressure load on the refrigerant pipe and the generation of sound are suppressed. Thereafter, by opening the second low pressure valve 122-2, the refrigerant can be efficiently returned to the heat source unit 10.
  • the setting time is not limited to the determined time.
  • the control unit 90 may update the set time.
  • the control unit 90 may lengthen the set time in proportion to the number of the heat source units 10 being operated. In this case, excessive return of the amount of refrigerant to the heat source unit 10 is suppressed, and an amount of refrigerant suitable for the operating heat source unit 10 can be returned.
  • the amount of refrigerant held by each heat source unit 10 may not be averaged.
  • the refrigerant may be biased to one heat source unit 10 and the other heat source unit 10 may be short of refrigerant.
  • the control unit 90 acquires measurement values from the refrigerant amount sensors 25 of the plurality of heat source units 10, and the refrigerant amounts become uniform among the heat source units 10 As described above, the compressors 11 are controlled, and the amounts of refrigerant of the heat source units 10 are averaged.
  • control unit 90 determines that the amount of refrigerant is insufficient, the control unit 90 extends the set time. It is determined whether the amount of refrigerant is insufficient by comparing the amount of refrigerant appropriate for one heat source unit 10 with the amount of refrigerant calculated by the control unit 90. A reference value is stored in the memory 91 as an appropriate amount of refrigerant for one heat source unit 10. If the calculated amount of refrigerant is less than the reference value, the control unit 90 lengthens the set time.
  • the memory 91 may store the history of the refrigerant recovery process, and the control unit 90 may update the set time with reference to the history of the refrigerant recovery process.
  • the control unit 90 records the time related to the refrigerant recovery process in the memory 91 every time the refrigerant recovery process is performed. Then, the control unit 90 refers to the history of the refrigerant recovery process recorded by the memory, and updates the set time to a longer time as the time interval of the refrigerant recovery process is shorter.
  • the control unit 90 determines whether the amount of refrigerant is insufficient based on the time interval of the refrigerant recovery process stored in the memory 91, and reflects the determination result in the set time.
  • the control unit 90 shortens the set time as the time interval of the refrigerant recovery process is longer, and lengthens the set time as the time interval of the refrigerant recovery process is shorter. By updating the set time in this manner, the amount of refrigerant returned to the heat source unit 10 can be made appropriate, and a decrease in the refrigeration capacity can be suppressed.
  • the control unit 90 updates the set time based on one and both of the number of operating compressors 11 and the time interval of refrigerant recovery. Therefore, the appropriate amount of refrigerant can be recovered to the heat source unit 10 according to the change in the operating state.
  • the memory 91 stores the history of the refrigerant amount in the refrigerant recovery process, and the control unit 90 refers to the history, and the second relay with the best refrigerant recovery efficiency. May be selected. An example of the operation of the control unit 90 in this case will be described.
  • the refrigerant amount sensor 25 has a function of measuring the amount of refrigerant. Every time the refrigerant recovery processing is performed, the control unit 90 associates the second relay to which the connection port to be controlled belongs and the amount of refrigerant measured by the refrigerant amount sensor 25 and records them in the memory 91.
  • the control unit 90 refers to the information recorded in the memory 91 when selecting one connection port in step S103 shown in FIG.
  • the control unit 90 selects one connection port from the second relays recorded in association with the largest refrigerant amount among the recorded refrigerant amounts.
  • the control unit 90 performs the refrigerant recovery process, in order to select the connection port of the second relay having the highest refrigerant recovery efficiency among the plurality of second relays 50a and 50b, The amount of return of the refrigerant to the heat source unit 10 is the largest. As a result, the efficiency of refrigerant recovery can be increased, and a decrease in refrigeration capacity can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This air conditioner has: a heat source device having a heat-source-side heat exchanger and a compressor; a first relay device connected to the heat source device by refrigerant piping; a second relay device connected to the first relay device by a high-pressure gas pipe, a low-pressure gas pipe, and a liquid pipe; a plurality of connection ports provided to the second relay device, the plurality of connection ports having a high-pressure valve connected to the high-pressure gas pipe and a low-pressure valve connected to the low-pressure gas pipe; and a control unit that controls the compressor and the plurality of connection ports. When all load-side units connected to the second relay device have stopped, the control unit performs a refrigerant recovery process for opening the high-pressure valve and the low-pressure valve of at least one connection port from among the plurality of connection ports and connecting the high-pressure gas pipe and the low-pressure gas pipe.

Description

空気調和装置Air conditioner
 本発明は、熱源機と負荷側ユニットとの間に中継器を有する空気調和装置に関する。 The present invention relates to an air conditioner having a relay between a heat source unit and a load side unit.
 従来の空気調和装置には、熱源機と、熱源機に接続される第1中継器と、第1中継器の下流側に接続された第2中継器とを有し、第1中継器および第2中継器とが複数の室内機との間の冷媒の流れを中継するものがある。 The conventional air conditioner includes a heat source unit, a first relay connected to the heat source unit, and a second relay connected to the downstream side of the first relay, the first relay and the first relay Some relay relays the flow of refrigerant between a plurality of indoor units.
 第1中継器と第2中継器は、3つ冷媒配管で接続されている。3つの冷媒配管の1つは、第1中継器と第2中継器との間で液冷媒を流通させる液管である。残りの2つの冷媒配管のうち、一方の配管は第1中継器が高圧のガス冷媒を第2中継器に供給する高圧ガス管であり、他方の配管は第2中継器が低圧の冷媒を第1中継器に戻す低圧ガス管である。 The first relay and the second relay are connected by three refrigerant pipes. One of the three refrigerant pipes is a liquid pipe that causes liquid refrigerant to flow between the first relay and the second relay. Among the remaining two refrigerant pipes, one of the pipes is a high pressure gas pipe in which the first relay supplies high-pressure gas refrigerant to the second relay, and the other pipe is the low pressure refrigerant of the second relay. It is a low pressure gas pipe which returns to 1 relay.
 第2中継器が第1中継器の下流側に2つ並列に接続されている場合、高圧ガス管は、1本の配管が2本に分岐して、各第2中継器にそれぞれ接続されている。低圧ガス管および液管の接続構成は、高圧ガス管と同様である。 When two second relays are connected in parallel on the downstream side of the first relay, the high pressure gas pipe is branched into two pipes of one pipe, and is connected to each second relay. There is. The connection configuration of the low pressure gas pipe and the liquid pipe is similar to that of the high pressure gas pipe.
 第1中継器から2つの第2中継器へ分岐する2本の高圧ガス管には、冷媒の流れを遮断する弁は設けられていない。そのため、一方の第2中継器に接続される室内機のみが運転する場合でも、2本の高圧ガス管を用いて、双方の第2中継器に同等圧力の冷媒が供給される。この場合、冷媒圧力に伴う飽和温度と配管の周囲の温度との差により、他方の第2中継器の高圧ガス管で冷媒は、冷却され凝縮する。他方の第2中継器に接続された室内機が運転しないと、冷媒が流れず、その場所に滞留してしまう。 The two high pressure gas pipes branched from the first relay to the two second relays are not provided with a valve for blocking the flow of the refrigerant. Therefore, even when only the indoor unit connected to one of the second relays is operated, the refrigerant having the same pressure is supplied to both of the second relays using two high pressure gas pipes. In this case, the refrigerant is cooled and condensed in the high pressure gas pipe of the other second relay due to the difference between the saturation temperature accompanying the refrigerant pressure and the temperature around the pipe. If the indoor unit connected to the other second relay does not operate, the refrigerant does not flow and stays in that place.
 冷媒が滞留する量は、第2中継器の数が多いほど多く、第1中継器と第2中継器とを接続する配管の容積が大きくなるほど多くなる。配管の容積は、配管の断面積が大きいほど大きく、配管長が長いほど大きくなる。また、飽和温度と配管の周囲の温度との差が大きいほど、冷媒が滞留する量が多くなる。空気調和装置に冷媒量を封入する際、液管の容積分の冷媒量しか封入しないのが一般的である。滞留する冷媒の量が多くなると、冷媒量が不足し、運転する室内機の冷凍能力が低下してしまうことになる。 The amount of refrigerant stagnation increases as the number of second relays increases, and increases as the volume of piping connecting the first relay and the second relay increases. The volume of the pipe increases as the cross-sectional area of the pipe increases, and increases as the pipe length increases. Further, the larger the difference between the saturation temperature and the temperature around the pipe, the larger the amount of refrigerant stagnation. When the amount of refrigerant is sealed in the air conditioner, it is generally only sealed in the volume of the liquid pipe. If the amount of the stagnant refrigerant increases, the amount of refrigerant will be insufficient, and the refrigeration capacity of the operating indoor unit will be reduced.
 冷媒が滞留することを防ぐ方法の一例が、特許文献1に開示されている。特許文献1に開示された調湿ユニットは、休止中の冷媒回路から冷媒を低圧側に戻すバイパス回路が設けられ、バイパス回路にキャピラリが設けられている。 Patent Document 1 discloses an example of a method of preventing the refrigerant from staying. The humidity control unit disclosed in Patent Document 1 is provided with a bypass circuit for returning the refrigerant from the inactive refrigerant circuit to the low pressure side, and a capillary is provided in the bypass circuit.
特開2010-71592号公報Unexamined-Japanese-Patent No. 2010-71592
 上述した第2中継器に、高圧ガス管と低圧ガス管との間に、特許文献1に開示されたバイパス回路を設けることが考えられる。しかしながら、バイパス回路のキャピラリに常に冷媒が流れるため、第2中継器に接続される室内機が運転しているか否かに関わらず、冷凍能力が低下してしまう。 It is conceivable to provide a bypass circuit disclosed in Patent Document 1 between the high pressure gas pipe and the low pressure gas pipe in the second relay described above. However, since the refrigerant always flows through the capillary of the bypass circuit, the refrigeration capacity is reduced regardless of whether the indoor unit connected to the second relay is operating.
 本発明は、上記のような課題を解決するためになされたもので、冷媒配管に滞留する冷媒量を抑制する空気調和装置を提供するものである。 The present invention has been made to solve the above-described problems, and provides an air conditioner that suppresses the amount of refrigerant staying in refrigerant piping.
 本発明に係る空気調和装置は、熱源側熱交換器および圧縮機を有する熱源機と、前記熱源機と冷媒配管で接続される第1中継器と、高圧ガス管、低圧ガス管および液管で、前記第1中継器と接続される第2中継器と、前記高圧ガス管に接続される高圧弁と、前記低圧ガス管に接続される低圧弁とを有し、前記第2中継器に設けられた複数の接続ポートと、前記圧縮機および前記複数の接続ポートを制御する制御部と、を有し、前記制御部は、前記第2中継器に接続された負荷側ユニットが全て停止している場合、前記複数の接続ポートのうち、少なくとも1つの接続ポートの前記高圧弁および前記低圧弁を開状態にして、前記高圧ガス管と前記低圧ガス管とを接続させる冷媒回収処理を行うものである。 An air conditioner according to the present invention comprises a heat source unit having a heat source side heat exchanger and a compressor, a first relay connected to the heat source unit and a refrigerant pipe, a high pressure gas pipe, a low pressure gas pipe and a liquid pipe. A second relay connected to the first relay, a high pressure valve connected to the high pressure gas pipe, and a low pressure valve connected to the low pressure gas pipe, provided in the second relay And a control unit that controls the compressor and the plurality of connection ports, and the control unit stops all load-side units connected to the second relay. In this case, the high pressure valve and the low pressure valve of at least one connection port of the plurality of connection ports are opened to perform the refrigerant recovery process of connecting the high pressure gas pipe and the low pressure gas pipe. is there.
 本発明によれば、冷媒の滞留が発生する運転状態になると、冷媒が滞留する第2中継器の接続ポートの弁を開放することで、滞留する冷媒が熱源機に回収されるため、配管に滞留する冷媒量を抑えることができる。 According to the present invention, when the operation state in which the refrigerant stagnates is generated, the valve of the connection port of the second relay on which the refrigerant stagnates is opened, and the refrigerant that stagnates is collected by the heat source unit. The amount of stagnant refrigerant can be suppressed.
本発明の実施の形態1の空気調和装置の一構成例を示す冷媒回路図である。It is a refrigerant circuit figure which shows one structural example of the air conditioning apparatus of Embodiment 1 of this invention. 図1に示した熱源機および第1中継器の一構成例を示す図である。It is a figure which shows the example of 1 structure of the heat-source equipment and 1st repeater which were shown in FIG. 図1に示した第2中継器の一例を示す図である。It is a figure which shows an example of the 2nd repeater shown in FIG. 図3に示す接続ポートの一構成例を示す図である。It is a figure which shows one structural example of the connection port shown in FIG. 図1に示した制御部の一構成例を示すブロック図である。It is a block diagram which shows one structural example of the control part shown in FIG. 図1に示した空気調和装置が全冷房運転の場合における第2中継器の冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant of the 2nd relay device in, when the air conditioning apparatus shown in FIG. 1 is cooling-free operation. 図1に示した空気調和装置が全暖房運転を行う場合における第2中継器の冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant of a 2nd relay device in, when the air conditioning apparatus shown in FIG. 1 performs a heating only operation. 図1に示した空気調和装置が冷房主体運転を行う場合における第2中継器の冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant of a 2nd relay device in, when the air conditioning apparatus shown in FIG. 1 performs cooling main operation. 図5に示した制御部が実行する動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure which the control part shown in FIG. 5 performs. 本発明の実施の形態2の空気調和装置における接続ポートの一構成例を示す図である。It is a figure which shows one structural example of the connection port in the air conditioning apparatus of Embodiment 2 of this invention. 本発明の実施の形態2の空気調和装置における制御部が、図9に示したステップS104の処理で実行する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which the control part in the air conditioning apparatus of Embodiment 2 of this invention performs by the process of step S104 shown in FIG.
実施の形態1.
 本実施の形態1の空気調和装置の構成を説明する。図1は、本発明の実施の形態1の空気調和装置の一構成例を示す冷媒回路図である。図1に示すように、空気調和装置1は、熱源機10と、第1中継器30と、複数の第2中継器50aおよび50bとを有する。熱源機10と第1中継器30とは、高圧管23および低圧管22で接続されている。第1中継器30と第2中継器50aとは、低圧ガス管42、低圧ガス管42a、高圧ガス管43および高圧ガス管43aで接続されている。第1中継器30と第2中継器50bとは、低圧ガス管42、低圧ガス管42b、高圧ガス管43および高圧ガス管43bで接続されている。空気調和装置100には、制御部90が設けられている。
Embodiment 1
The configuration of the air conditioner of Embodiment 1 will be described. FIG. 1 is a refrigerant circuit diagram showing one configuration example of the air-conditioning apparatus of Embodiment 1 of the present invention. As shown in FIG. 1, the air conditioner 1 has a heat source unit 10, a first relay 30, and a plurality of second relays 50a and 50b. The heat source unit 10 and the first relay 30 are connected by a high pressure pipe 23 and a low pressure pipe 22. The first relay 30 and the second relay 50a are connected by the low pressure gas pipe 42, the low pressure gas pipe 42a, the high pressure gas pipe 43, and the high pressure gas pipe 43a. The first relay 30 and the second relay 50b are connected by the low pressure gas pipe 42, the low pressure gas pipe 42b, the high pressure gas pipe 43, and the high pressure gas pipe 43b. The air conditioner 100 is provided with a control unit 90.
 第2中継器50aは、熱源機10から流出する冷媒を複数の負荷側ユニット70aおよび70cに分岐させ、負荷側ユニット70aおよび70cから流出する冷媒を合流して第1中継器30に流出する。第2中継器50aと負荷側ユニット70aとは、ガス枝管75aおよび液枝管76aで接続されている。第2中継器50aと負荷側ユニット70cとは、ガス枝管75cおよび液枝管76cで接続されている。第2中継器50bには、複数の負荷側ユニット70bおよび70dが接続されている。第2中継器50bと負荷側ユニット70bとは、ガス枝管75bおよび液枝管76bで接続されている。第2中継器50bと負荷側ユニット70dとは、ガス枝管75dおよび液枝管76dで接続されている。 The second relay 50 a branches the refrigerant flowing out of the heat source unit 10 into a plurality of load side units 70 a and 70 c, combines the refrigerant flowing out of the load side units 70 a and 70 c, and flows out to the first relay 30. The second relay 50a and the load side unit 70a are connected by a gas branch pipe 75a and a liquid branch pipe 76a. The second relay 50a and the load side unit 70c are connected by a gas branch pipe 75c and a liquid branch pipe 76c. A plurality of load side units 70b and 70d are connected to the second relay 50b. The second relay 50b and the load side unit 70b are connected by a gas branch pipe 75b and a liquid branch pipe 76b. The second relay 50b and the load side unit 70d are connected by a gas branch pipe 75d and a liquid branch pipe 76d.
 図1に示した熱源機10の構成を説明する。図2は、図1に示した熱源機および第1中継器の一構成例を示す図である。熱源機10は、圧縮機11と、流路切替弁12と、熱源側熱交換器13と、アキュムレータ14と、流路調整ユニット15とを有する。圧縮機11は、容量可変の圧縮機である。熱源側熱交換器13は、外気と冷媒との間で熱交換を行うものであり、暖房時には蒸発器として機能し、冷房時には凝縮器として機能する。流路切替弁12は、圧縮機11の吐出口側に接続され、熱源機10における冷媒の流通方向を切り替えて、暖房流路と冷房流路とを切り替える。図2は、流路切替弁12が四方弁の場合を示す。 The configuration of the heat source unit 10 shown in FIG. 1 will be described. FIG. 2: is a figure which shows one structural example of the heat-source equipment and 1st repeater which were shown in FIG. The heat source unit 10 includes a compressor 11, a flow path switching valve 12, a heat source side heat exchanger 13, an accumulator 14, and a flow path adjustment unit 15. The compressor 11 is a variable displacement compressor. The heat source side heat exchanger 13 performs heat exchange between the outside air and the refrigerant, and functions as an evaporator at the time of heating and as a condenser at the time of cooling. The flow path switching valve 12 is connected to the discharge port side of the compressor 11, switches the flow direction of the refrigerant in the heat source unit 10, and switches the heating flow path and the cooling flow path. FIG. 2 shows the case where the flow path switching valve 12 is a four-way valve.
 流路調整ユニット15は、冷媒の流通方向を制限し、高圧管23側では熱源機10から第1中継器30への流れを形成し、低圧管22側では第1中継器30から熱源機10への流れを形成する。流路調整ユニット15は、第1の逆止弁16、第2の逆止弁17、第3の逆止弁18および第4の逆止弁19を有する。アキュムレータ14は、余剰冷媒を貯留するものであり、圧縮機11の冷媒の吸入口に接続されている。アキュムレータ14には、冷媒不足を検知する冷媒量センサ25が設けられている。冷媒量センサ25は、冷媒量が基準値未満になると、冷媒が不足している旨の冷媒不足信号を出力する。流路切替弁12は、流路調整ユニット15、アキュムレータ14および熱源側熱交換器13と接続されている。 The flow path adjustment unit 15 restricts the flow direction of the refrigerant and forms a flow from the heat source unit 10 to the first relay 30 on the high pressure pipe 23 side, and the heat source unit 10 to the heat source machine 10 from the first relay 30 on the low pressure pipe 22 side. Form a flow of The flow path adjustment unit 15 has a first check valve 16, a second check valve 17, a third check valve 18 and a fourth check valve 19. The accumulator 14 stores surplus refrigerant, and is connected to a refrigerant suction port of the compressor 11. The accumulator 14 is provided with a refrigerant amount sensor 25 that detects a refrigerant shortage. When the amount of refrigerant becomes less than the reference value, the refrigerant amount sensor 25 outputs an insufficient refrigerant signal indicating that the refrigerant is insufficient. The flow path switching valve 12 is connected to the flow path adjustment unit 15, the accumulator 14, and the heat source side heat exchanger 13.
 流路調整ユニット15に設けられた第1の逆止弁16および第2の逆止弁17が、低圧管22と接続されている。流路調整ユニット15に設けられた第3の逆止弁18および第4の逆止弁19が、高圧管23と接続されている。 A first check valve 16 and a second check valve 17 provided in the flow path adjustment unit 15 are connected to the low pressure pipe 22. A third check valve 18 and a fourth check valve 19 provided in the flow path adjustment unit 15 are connected to the high pressure pipe 23.
 次に、図2を参照して、第1中継器30の構成を説明する。第1中継器30は、第2中継器50aおよび50bと、自器に接続される図に示さない負荷側ユニットとに、冷媒を分岐させるものである。第1中継器30は、気液分離装置32と、第1の熱交換部33と、第2の熱交換部34と、第1の流量制御装置35と、第2の流量制御装置36と、第1分岐ユニット46と、第2分岐ユニット47とを有する。気液分離装置32は、気相の冷媒と液相の冷媒とを分離させるものであって、高圧管23、高圧ガス管43および液管41と接続されている。気液分離装置32は、熱源機10から高圧管23を介して流入する冷媒を気体と液体に分離する。気液分離装置32は、高圧のガス冷媒を高圧ガス管43に送り出し、液冷媒を液管41に送り出す。 Next, the configuration of the first repeater 30 will be described with reference to FIG. The first relay 30 branches the refrigerant into the second relays 50a and 50b and a load-side unit (not shown) connected to the first relay 30. The first relay 30 includes a gas-liquid separator 32, a first heat exchange unit 33, a second heat exchange unit 34, a first flow control device 35, and a second flow control device 36. A first branch unit 46 and a second branch unit 47 are provided. The gas-liquid separator 32 separates the gas phase refrigerant and the liquid phase refrigerant, and is connected to the high pressure pipe 23, the high pressure gas pipe 43 and the liquid pipe 41. The gas-liquid separation device 32 separates the refrigerant flowing from the heat source unit 10 through the high pressure pipe 23 into a gas and a liquid. The gas-liquid separator 32 sends high-pressure gas refrigerant to the high-pressure gas pipe 43 and sends liquid refrigerant to the liquid pipe 41.
 第1分岐ユニット46は、負荷側ユニットの熱交換器に接続される接続ポート81~84を有する。接続ポート81~84は、並列接続された、例えば、2方弁からなる2つの開閉弁を有する。第2分岐ユニット47は、負荷側ユニットの流量制御装置に接続される接続ポート85~88を有する。接続ポート85~88は、並列接続された、例えば、2つの逆止弁を有する。図1に示す構成例では、第1中継器30に負荷側ユニットが接続されていないが、第1中継器30に負荷側ユニットが接続されてもよい。 The first branch unit 46 has connection ports 81 to 84 connected to the heat exchanger of the load side unit. The connection ports 81 to 84 have two on-off valves connected in parallel, for example, two-way valves. The second branch unit 47 has connection ports 85 to 88 connected to the flow control device of the load side unit. The connection ports 85 to 88 have, for example, two check valves connected in parallel. Although the load side unit is not connected to the first relay 30 in the configuration example shown in FIG. 1, the load side unit may be connected to the first relay 30.
 液管41には、第1の熱交換部33および第1の流量制御装置35が設けられている。液管41は、第1の流量制御装置35の冷媒出口側で分岐され、バイパス液管45が設けられている。バイパス液管45は、第2の熱交換部34および第2分岐ユニット47と接続されている。第1の熱交換部33および第2の熱交換部34は、流入する冷媒と空気との間で熱交換を行って、冷媒を冷却する。第1の流量制御装置35は、負荷側ユニット70a~70dが全て冷房運転の場合、開状態になり、流入する液冷媒の流量を制御し、負荷側ユニット70a~70dが全て暖房運転の場合、閉状態になり、冷媒の流れを阻止する。第2の流量制御装置36は、負荷側ユニット70a~70dが全て暖房運転の場合、開状態になり、流入する液冷媒の流量を制御し、負荷側ユニット70a~70dが全て冷房運転の場合、閉状態になり、冷媒の流れを阻止する。 The liquid pipe 41 is provided with a first heat exchange unit 33 and a first flow control device 35. The liquid pipe 41 is branched at the refrigerant outlet side of the first flow control device 35, and a bypass liquid pipe 45 is provided. The bypass liquid pipe 45 is connected to the second heat exchange unit 34 and the second branch unit 47. The first heat exchange unit 33 and the second heat exchange unit 34 exchange heat between the inflowing refrigerant and the air to cool the refrigerant. The first flow control device 35 is in the open state when all the load side units 70a to 70d are in the cooling operation, and controls the flow rate of the inflowing liquid refrigerant, and when all the load side units 70a to 70d are in the heating operation, It is closed and blocks the flow of refrigerant. The second flow control device 36 is opened when all the load side units 70a to 70d are in the heating operation, and controls the flow rate of the inflowing liquid refrigerant, and when all the load side units 70a to 70d are in the cooling operation, It is closed and blocks the flow of refrigerant.
 第2中継器50aおよび50bが第1中継器30に並列に接続されている。液管41は、第2中継器50aと接続される液管41aと、第2中継器50bと接続される液管41bとに分岐されている。低圧ガス管42は、第2中継器50aと接続される低圧ガス管42aと、第2中継器50bと接続される低圧ガス管42bとに分岐されている。高圧ガス管43は、高圧ガス管43aと高圧ガス管43bとに分岐されている。高圧ガス管43aは第2中継器50aと接続されている。高圧ガス管43bは第2中継器50bと接続されている。 Second repeaters 50 a and 50 b are connected in parallel to the first repeater 30. The liquid pipe 41 is branched into a liquid pipe 41a connected to the second relay 50a and a liquid pipe 41b connected to the second relay 50b. The low pressure gas pipe 42 is branched into a low pressure gas pipe 42a connected to the second relay 50a and a low pressure gas pipe 42b connected to the second relay 50b. The high pressure gas pipe 43 is branched into a high pressure gas pipe 43a and a high pressure gas pipe 43b. The high pressure gas pipe 43a is connected to the second relay 50a. The high pressure gas pipe 43b is connected to the second relay 50b.
 次に、第2中継器50aおよび50bの構成を説明する。図3は、図1に示した第2中継器の一例を示す図である。第2中継器50aおよび50bは同一な構成であるため、ここでは、第2中継器50aの構成を説明する。 Next, the configuration of the second relays 50a and 50b will be described. FIG. 3 is a diagram showing an example of the second relay shown in FIG. Since the second relays 50a and 50b have the same configuration, the configuration of the second relay 50a will be described here.
 第2中継器50aは、第1分岐ユニット61aおよび61cと、第2分岐ユニット62aおよび62cと、第3の熱交換部52と、第3の流量制御装置53とを有する。液管41aは、第3の熱交換部52を介して第2分岐ユニット62aおよび62cと接続されている。低圧ガス管42aは、第1分岐ユニット61aおよび61cと接続されている。第2中継器50aには、低圧ガス管42aと液管51とを接続するバイパス管54が設けられている。バイパス管54は、第3の熱交換部52を介して液管51と接続されている。バイパス管54において、第3の熱交換部52と第2分岐ユニット62cとの間に第3の流量制御装置53が設けられている。第3の熱交換部52は、流入する冷媒と空気との間で熱交換を行って、冷媒を冷却する。第3の流量制御装置53は、液管41aに流れる液冷媒を気化させて第1中継器30に戻す場合に、閉状態から開状態に切り替わり、冷媒の流量を制御する。 The second relay 50a includes first branch units 61a and 61c, second branch units 62a and 62c, a third heat exchange unit 52, and a third flow control device 53. The liquid pipe 41 a is connected to the second branch units 62 a and 62 c via the third heat exchange unit 52. The low pressure gas pipe 42a is connected to the first branch units 61a and 61c. The second relay 50 a is provided with a bypass pipe 54 connecting the low pressure gas pipe 42 a and the liquid pipe 51. The bypass pipe 54 is connected to the liquid pipe 51 via the third heat exchange unit 52. In the bypass pipe 54, a third flow control device 53 is provided between the third heat exchange unit 52 and the second branch unit 62c. The third heat exchange unit 52 exchanges heat between the inflowing refrigerant and the air to cool the refrigerant. When the liquid refrigerant flowing in the liquid pipe 41a is vaporized and returned to the first relay 30, the third flow control device 53 switches from the closed state to the open state, and controls the flow rate of the refrigerant.
 第1分岐ユニット61aは、4つの接続ポート81a~84aを有する。第1分岐ユニット61cは、4つの接続ポート81c~84cを有する。接続ポート81aはガス枝管75aが接続されているが、他の接続ポート82a~84aの配管先端にはキャップが付いている。接続ポート81cはガス枝管75cが接続されているが、他の接続ポート82c~84cの配管先端にはキャップが付いている。 The first branch unit 61a has four connection ports 81a to 84a. The first branch unit 61c has four connection ports 81c to 84c. The gas branch pipe 75a is connected to the connection port 81a, but the piping tips of the other connection ports 82a to 84a have caps. The gas branch pipe 75c is connected to the connection port 81c, but the piping tips of the other connection ports 82c to 84c have caps.
 第2分岐ユニット62aは、4つの接続ポート85a~88aを有する。第2分岐ユニット62cは、4つの接続ポート85c~88cを有する。接続ポート85aは液枝管76aが接続されているが、他の接続ポート86a~88aの配管先端にはキャップが付いている。接続ポート85cは液枝管76cが接続されているが、他の接続ポート86c~88cの配管先端にはキャップが付いている。 The second branch unit 62a has four connection ports 85a to 88a. The second branch unit 62c has four connection ports 85c to 88c. The connection port 85a is connected to the liquid branch pipe 76a, but the piping tips of the other connection ports 86a to 88a have caps. The connection port 85c is connected to the liquid branch pipe 76c, but the piping tips of the other connection ports 86c to 88c have caps.
 図4は、図3に示す接続ポートの一構成例を示す図である。接続ポート81a~84aは互いに同様な構成なため、接続ポート81aの構成を説明する。また、接続ポート85a~88aは互いに同様な構成なため、接続ポート85aの構成を説明する。 FIG. 4 is a view showing an example of the configuration of the connection port shown in FIG. Since the connection ports 81a to 84a have the same configuration, the configuration of the connection port 81a will be described. Further, since the connection ports 85a to 88a have the same configuration, the configuration of the connection port 85a will be described.
 接続ポート81aは、高圧ガス管43aに接続され、高圧分岐配管111に接続された高圧弁121と、低圧分岐配管112に接続された低圧弁122とを有する。高圧弁121および低圧弁122は、例えば、電磁弁からなる。接続ポート85aは、液管41aに接続される逆止弁141と、液管51に接続される逆止弁142とを有する。逆止弁141は、液管41aに接続された分岐配管131に設けられている。逆止弁142は、液管51に接続された分岐配管132に設けられている。 The connection port 81 a includes a high pressure valve 121 connected to the high pressure gas pipe 43 a and connected to the high pressure branch pipe 111 and a low pressure valve 122 connected to the low pressure branch pipe 112. The high pressure valve 121 and the low pressure valve 122 are, for example, solenoid valves. The connection port 85 a has a check valve 141 connected to the liquid pipe 41 a and a check valve 142 connected to the liquid pipe 51. The check valve 141 is provided in the branch pipe 131 connected to the liquid pipe 41 a. The check valve 142 is provided in the branch pipe 132 connected to the liquid pipe 51.
 負荷側ユニット70aの運転状態が冷房運転の場合、高圧弁121が閉状態に設定され、低圧弁122が開状態に設定される。冷房運転の場合、液管41aから流入する冷媒は、逆止弁141、液枝管76a、負荷側ユニット70a、ガス枝管75aおよび低圧弁122を順に流通して、低圧ガス管42aに流入する。負荷側ユニット70aの運転状態が暖房運転の場合、高圧弁121が開状態に設定され、低圧弁122が閉状態に設定される。暖房運転の場合、高圧ガス管43aから流入する冷媒は、高圧弁121、ガス枝管75a、負荷側ユニット70a、液枝管76aおよび逆止弁142を順に流通して、液管51に流入する。 When the operation state of the load side unit 70a is the cooling operation, the high pressure valve 121 is set to the closed state, and the low pressure valve 122 is set to the open state. In the case of the cooling operation, the refrigerant flowing from the liquid pipe 41a flows through the check valve 141, the liquid branch pipe 76a, the load side unit 70a, the gas branch pipe 75a and the low pressure valve 122 in order and flows into the low pressure gas pipe 42a. . When the operation state of the load side unit 70a is the heating operation, the high pressure valve 121 is set to the open state, and the low pressure valve 122 is set to the closed state. In the case of heating operation, the refrigerant flowing from the high pressure gas pipe 43a flows into the liquid pipe 51 through the high pressure valve 121, the gas branch pipe 75a, the load side unit 70a, the liquid branch pipe 76a and the check valve 142 in this order. .
 次に、図3を参照して、負荷側ユニット70a~70dの構成を説明する。負荷側ユニット70a~70dは同様な構成であるため、ここでは、負荷側ユニット70aの構成を説明する。負荷側ユニット70aは、負荷側熱交換器71aと、負荷側流量制御装置72aとを有する。負荷側熱交換器71aおよび負荷側流量制御装置72aは冷媒配管で接続されている。負荷側熱交換器71aは、ガス枝管75aを介して接続ポート81aと接続されている。負荷側流量制御装置72aは、液枝管76aを介して接続ポート85aと接続されている。負荷側熱交換器71aは、空調対象空間の空気と冷媒との間で熱交換を行うものであり、暖房時には凝縮器として機能し、冷房時には蒸発器として機能する。負荷側流量制御装置72aは、流入する冷媒を減圧して膨張させる。 Next, with reference to FIG. 3, the configuration of the load side units 70a to 70d will be described. Since the load side units 70a to 70d have the same configuration, the configuration of the load side unit 70a will be described here. The load side unit 70a has a load side heat exchanger 71a and a load side flow control device 72a. The load side heat exchanger 71a and the load side flow control device 72a are connected by refrigerant piping. The load side heat exchanger 71a is connected to the connection port 81a via the gas branch pipe 75a. The load-side flow control device 72a is connected to the connection port 85a via the liquid branch pipe 76a. The load-side heat exchanger 71a exchanges heat between the air in the air-conditioned space and the refrigerant, and functions as a condenser during heating and as an evaporator during cooling. The load-side flow rate control device 72a decompresses and expands the inflowing refrigerant.
 次に、図1に示した制御部90の構成を説明する。図5は、図1に示した制御部の一構成例を示すブロック図である。図5に示す制御部90は、プログラムを記憶するメモリ91と、プログラムにしたがって処理を実行するCPU(Central Processing Unit)92とを有する。CPU92はタイマーの機能を備えている。 Next, the configuration of the control unit 90 shown in FIG. 1 will be described. FIG. 5 is a block diagram showing one configuration example of the control unit shown in FIG. The control unit 90 shown in FIG. 5 has a memory 91 for storing a program, and a CPU (Central Processing Unit) 92 for executing processing in accordance with the program. The CPU 92 has a timer function.
 制御部90は、圧縮機11、流路切替弁12および冷媒量センサ25と信号線で接続されている。制御部90は、第1の流量制御装置35、第2の流量制御装置36および第3の流量制御装置53と信号線で接続されている。制御部90は、第2中継器50aおよび50bにおける各接続ポートの高圧弁121および低圧弁122と信号線で接続されている。制御部90は、負荷側流量制御装置72a~72dと信号線で接続されている。接続手段は、有線に限らず、無線であってもよい。 The control unit 90 is connected to the compressor 11, the flow path switching valve 12, and the refrigerant amount sensor 25 by signal lines. The control unit 90 is connected to the first flow control device 35, the second flow control device 36, and the third flow control device 53 by signal lines. The control unit 90 is connected to the high pressure valve 121 and the low pressure valve 122 of each connection port of the second relays 50a and 50b by signal lines. The control unit 90 is connected to the load-side flow control devices 72a to 72d by signal lines. The connection means is not limited to wired but may be wireless.
 制御部90は、負荷側ユニット70a~70dに設定される運転状態に合わせて、圧縮機11、流路切替弁12、第1の流量制御装置35、第2の流量制御装置36、第3の流量制御装置53および負荷側流量制御装置72a~72dを制御する。制御部90は、各種運転モードを実行する。運転モードとして、運転する全ての負荷側ユニットが冷房運転である全冷房運転と、運転する全ての負荷側ユニットが暖房運転である全暖房運転とがある。他の運転モードとして、冷房運転の容量が暖房運転の容量よりも大きい冷房主体運転と、暖房運転の容量が冷房運転の容量よりも大きい暖房主体運転とがある。 The control unit 90 controls the compressor 11, the flow path switching valve 12, the first flow control device 35, the second flow control device 36, and the third flow control device according to the operation state set in the load side units 70a to 70d. The flow control device 53 and the load side flow control devices 72a to 72d are controlled. The controller 90 executes various operation modes. As the operation mode, there are full cooling operation in which all load side units to be operated are cooling operation and all heating operation in which all load side units to be operated are heating operation. Other operation modes include a cooling main operation where the capacity of the cooling operation is larger than the capacity of the heating operation, and a heating main operation where the capacity of the heating operation is larger than the capacity of the cooling operation.
 制御部90は、冷媒量センサ25から冷媒不足信号を受信すると、第2中継器50aおよび50bのうち、いずれかの第2中継器の接続ポートを制御して、滞留する冷媒を熱源機10に戻す冷媒回収処理を行う。具体的には、制御部90は、第2中継器50aおよび50bのうち、接続される負荷側ユニットの全てが運転していない第2中継器があると、冷媒の滞留が起きる状態と判定する。そして、制御部90は、負荷側ユニットの全てが運転していない第2中継器において、高圧ガス管に接続される複数の接続ポートのうち、少なくとも1つの接続ポートを制御対象に選択する。制御部90は、選択した接続ポートの高圧弁121および低圧弁122を開状態にして、高圧ガス管と低圧ガス管とを接続させる冷媒回収処理を行う。 When the control unit 90 receives the refrigerant shortage signal from the refrigerant amount sensor 25, the control unit 90 controls the connection port of any one of the second relays 50 a and 50 b so as to store the stagnant refrigerant in the heat source unit 10. Perform the refrigerant recovery process to return. Specifically, the control unit 90 determines that refrigerant stagnation occurs when there is a second relay in which not all of the connected load-side units are operated among the second relays 50a and 50b. . Then, the control unit 90 selects at least one connection port of the plurality of connection ports connected to the high pressure gas pipe as a control target in the second relay in which all the load side units are not operating. The control unit 90 opens the high pressure valve 121 and the low pressure valve 122 of the selected connection port, and performs a refrigerant recovery process of connecting the high pressure gas pipe and the low pressure gas pipe.
 高圧弁121および低圧弁122を開状態にする設定時間が決められていてもよい。制御部90は、低圧弁122を開状態にしてから設定時間が経過すると、低圧弁122および高圧弁121を閉じる。設定時間はメモリ91に記録されている。 A set time for opening the high pressure valve 121 and the low pressure valve 122 may be determined. The control unit 90 closes the low pressure valve 122 and the high pressure valve 121 when the set time has elapsed since the low pressure valve 122 was opened. The set time is stored in the memory 91.
 また、制御対象となる複数の接続ポートに、負荷側ユニットが接続されていない接続ポートと、負荷側ユニットが接続されているが負荷側ユニットが運転していない接続ポートとがある場合、いずれの接続ポートを選択するか、優先順位が設定されていてもよい。例えば、負荷側ユニットが接続されていない接続ポートの優先順位が、負荷側ユニットが接続されている接続ポートの優先順位よりも高く設定される。負荷側ユニットが接続されている接続ポートの弁が開くとき、高圧ガス管から低圧ガス管に流れ込む冷媒の圧力が負荷側ユニットの負荷側熱交換器等の機器に影響を及ぼすことを抑制できるからである。 In addition, when there are a connection port to which the load side unit is not connected and a connection port to which the load side unit is connected but the load side unit is not in operation, among the plurality of connection ports to be controlled The connection port may be selected or the priority may be set. For example, the priority of the connection port to which the load side unit is not connected is set higher than the priority of the connection port to which the load side unit is connected. When the valve of the connection port to which the load side unit is connected is opened, the pressure of the refrigerant flowing from the high pressure gas pipe into the low pressure gas pipe can be prevented from affecting the equipment such as the load side heat exchanger of the load side unit It is.
 本実施の形態1では、制御部90が熱源機10における冷媒不足を冷媒量センサ25から冷媒不足信号を受信するか否かで判定する場合で説明するが、冷媒量の不足はセンサで検知させる場合に限らない。制御部90は、冷凍サイクルの状態を測定する、図に示さない温度センサおよび圧力センサの測定値を用いて冷凍能力を算出し、算出した冷凍能力が低下すると、冷媒量が不足していると判定してもよい。外気温度および冷媒温度を含む温度を測定する複数の温度センサと、圧縮機11の吐出圧力および吸入圧力を含む冷媒圧力を測定する複数の圧力センサとが、空気調和装置1に設けられていてもよい。この場合、制御部90は、各種センサの測定値から冷媒不足を判定してもよい。 In the first embodiment, the control unit 90 determines whether the refrigerant shortage in the heat source unit 10 is determined based on whether the refrigerant shortage signal is received from the refrigerant quantity sensor 25 or not. The case is not limited. The control unit 90 measures the state of the refrigeration cycle, calculates the refrigeration capacity using the measurement values of the temperature sensor and the pressure sensor (not shown), and if the calculated refrigeration capacity is reduced, the refrigerant amount is insufficient You may judge. Even if the air conditioner 1 is provided with a plurality of temperature sensors for measuring temperatures including the outside air temperature and the refrigerant temperature, and a plurality of pressure sensors for measuring the refrigerant pressure including the discharge pressure and the suction pressure of the compressor 11 Good. In this case, the control unit 90 may determine the refrigerant shortage from the measurement values of various sensors.
 また、図1~図3に示した構成例では、2つの第2中継器50aおよび50b毎に2台の負荷側ユニットが接続される場合を示しているが、第2中継器50aおよび50bに接続される負荷側ユニットの台数は2台に限らない。複数の第2中継器のうち、1台の第2中継器に1台の負荷側ユニットが接続され、他の第2中継器に負荷側ユニットが1台も接続されていなくてもよい。 Further, in the configuration example shown in FIG. 1 to FIG. 3, there is shown a case where two load side units are connected to every two second relays 50a and 50b, but in the second relays 50a and 50b The number of connected load units is not limited to two. Among the plurality of second relays, one load-side unit may be connected to one second relay, and no load-side unit may be connected to another second relay.
 図6は、図1に示した空気調和装置が全冷房運転の場合における第2中継器の冷媒の流れを示す図である。空気調和装置1が全冷房運転を行う場合の冷媒の流れを、図2および図6を参照して説明する。図6では、冷媒が流れる方向を矢印で示す。負荷側ユニット70a~70dの運転状態の全てが冷房運転である。 FIG. 6 is a diagram showing the flow of refrigerant in the second relay when the air conditioning apparatus shown in FIG. 1 is in the cooling only operation. The flow of the refrigerant when the air conditioning apparatus 1 performs the cooling only operation will be described with reference to FIGS. 2 and 6. In FIG. 6, the direction in which the refrigerant flows is indicated by an arrow. All of the operating states of the load side units 70a to 70d are cooling operation.
 図2に示す圧縮機11は、アキュムレータ14から吸入する冷媒を圧縮し、高温高圧のガス冷媒を吐出する。圧縮機11から吐出されたガス冷媒は、流路切替弁12を通って熱源側熱交換器13に流入する。熱源側熱交換器13において、ガス冷媒は、外気と熱交換を行って凝縮され、液化する。液化した冷媒は、第4の逆止弁19および高圧管23を通って第1中継器30に流入する。第1中継器30において、液冷媒は、気液分離装置32、第1の熱交換部33、および第1の流量制御装置35の順に流通する。 The compressor 11 shown in FIG. 2 compresses the refrigerant drawn from the accumulator 14 and discharges a high temperature and high pressure gas refrigerant. The gas refrigerant discharged from the compressor 11 flows into the heat source side heat exchanger 13 through the flow path switching valve 12. In the heat source side heat exchanger 13, the gas refrigerant exchanges heat with the outside air, is condensed, and is liquefied. The liquefied refrigerant flows into the first relay 30 through the fourth check valve 19 and the high pressure pipe 23. In the first relay 30, the liquid refrigerant flows in the order of the gas-liquid separation device 32, the first heat exchange unit 33, and the first flow control device 35.
 液冷媒は、液管41を介して、図2に示した第1中継器30から流出すると、図6に示す液管41aおよび41bに分流する。液管41aを流れる液冷媒は第2中継器50aに流入する。液管41bを流れる液冷媒は第2中継器50bに流入する。第2中継器50aに流入した液冷媒は、第3の熱交換部52を流通した後、接続ポート85cおよび85aに分流する。一方、第2中継器50bに流入した液冷媒は、第3の熱交換部52を流通した後、接続ポート85dおよび85bに分流する。 When the liquid refrigerant flows out of the first relay 30 shown in FIG. 2 through the liquid pipe 41, it flows into the liquid pipes 41a and 41b shown in FIG. The liquid refrigerant flowing through the liquid pipe 41a flows into the second relay 50a. The liquid refrigerant flowing through the liquid pipe 41b flows into the second relay 50b. After flowing through the third heat exchange section 52, the liquid refrigerant flowing into the second relay 50a is branched to the connection ports 85c and 85a. On the other hand, the liquid refrigerant that has flowed into the second relay 50 b flows through the third heat exchange unit 52 and then is branched to the connection ports 85 d and 85 b.
 接続ポート85cを流通する液冷媒は、液枝管76cを流通して、負荷側ユニット70cに流入する。接続ポート85aを流通する液冷媒は、液枝管76aを流通して、負荷側ユニット70aに流入する。接続ポート85dを流通する液冷媒は、液枝管76dを流通して、負荷側ユニット70dに流入する。接続ポート85bを流通する液冷媒は、液枝管76bを流通して、負荷側ユニット70bに流入する。 The liquid refrigerant flowing through the connection port 85c flows through the liquid branch pipe 76c and flows into the load side unit 70c. The liquid refrigerant flowing through the connection port 85a flows through the liquid branch pipe 76a and flows into the load side unit 70a. The liquid refrigerant flowing through the connection port 85d flows through the liquid branch pipe 76d and flows into the load side unit 70d. The liquid refrigerant flowing through the connection port 85b flows through the liquid branch pipe 76b and flows into the load side unit 70b.
 負荷側ユニット70cに流入した冷媒は、負荷側流量制御装置72cで減圧された後、負荷側熱交換器71cにおいて、空調対象空間の空気と熱交換を行って蒸発し、ガス化する。ガス化した冷媒は、ガス枝管75cを流通して、第2中継器50aの接続ポート81cに流入する。なお、負荷側ユニット70a、70bおよび70dにおける冷媒の流れは、負荷側ユニット70cと同様であるため、その説明を省略する。 The refrigerant flowing into the load side unit 70c is decompressed by the load side flow control device 72c, and then exchanges heat with the air of the air conditioning target space in the load side heat exchanger 71c to evaporate and gasify. The gasified refrigerant flows through the gas branch pipe 75c and flows into the connection port 81c of the second relay 50a. The flow of the refrigerant in the load side units 70a, 70b and 70d is the same as that of the load side unit 70c, so the description thereof will be omitted.
 第2中継器50aにおいて、接続ポート81cを流通するガス冷媒と接続ポート81aを流通するガス冷媒とが低圧ガス管42aで合流する。また、第2中継器50bにおいて、接続ポート81dを流通するガス冷媒と接続ポート81bを流通するガス冷媒とが低圧ガス管42bで合流する。低圧ガス管42aを流通するガス冷媒と低圧ガス管42bを流通するガス冷媒とが低圧ガス管42に合流した後、図2に示した第1中継器30に流入する。 In the second relay unit 50a, the gas refrigerant flowing through the connection port 81c and the gas refrigerant flowing through the connection port 81a merge at the low pressure gas pipe 42a. Further, in the second relay 50b, the gas refrigerant flowing through the connection port 81d and the gas refrigerant flowing through the connection port 81b merge at the low pressure gas pipe 42b. The gas refrigerant flowing through the low pressure gas pipe 42a and the gas refrigerant flowing through the low pressure gas pipe 42b join the low pressure gas pipe 42, and then flow into the first relay 30 shown in FIG.
 図2に示す第1中継器30に流入したガス冷媒は、低圧ガス管42および低圧管22を流通して熱源機10に流入する。熱源機10に流入したガス冷媒は、第1の逆止弁16および流路切替弁12を順に流通してアキュムレータ14に流入する。 The gas refrigerant that has flowed into the first relay 30 shown in FIG. 2 flows through the low pressure gas pipe 42 and the low pressure pipe 22 and flows into the heat source unit 10. The gas refrigerant that has flowed into the heat source unit 10 flows through the first check valve 16 and the flow path switching valve 12 in order and flows into the accumulator 14.
 このようにして、圧縮機11から吐出された冷媒は、熱源機10で生成された熱を負荷側ユニット70a~70dに運び、負荷側ユニット70a~70dの空調対象空間を冷却した後、熱源機10のアキュムレータ14に戻る。 Thus, the refrigerant discharged from the compressor 11 carries the heat generated by the heat source unit 10 to the load side units 70a to 70d and cools the air conditioning target space of the load side units 70a to 70d. It returns to the accumulator 14 of ten.
 次に、空気調和装置1が全暖房運転を行う場合の冷媒の流れを、図2および図7を参照して説明する。図7は、図1に示した空気調和装置が全暖房運転を行う場合における第2中継器の冷媒の流れを示す図である。図7では、冷媒が流れる方向を矢印で示す。高圧ガス冷媒が流れる冷媒配管を太く表示している。負荷側ユニット70a~70dの運転状態の全てが暖房運転である。 Next, the flow of the refrigerant when the air conditioning apparatus 1 performs the heating only operation will be described with reference to FIGS. 2 and 7. FIG. 7 is a diagram showing the flow of the refrigerant in the second relay when the air conditioning apparatus shown in FIG. 1 performs the heating only operation. In FIG. 7, the direction in which the refrigerant flows is indicated by an arrow. The refrigerant piping through which the high pressure gas refrigerant flows is displayed thick. All of the operating states of the load side units 70a to 70d are heating operations.
 図2に示す圧縮機11から吐出された高温高圧のガス冷媒は、流路切替弁12および第3の逆止弁18を流通した後、低圧管22を介して第1中継器30に流入する。第1中継器30において、ガス冷媒は、気液分離装置32および高圧ガス管43を流通した後、図7に示す高圧ガス管43aおよび43bに分流する。 The high temperature / high pressure gas refrigerant discharged from the compressor 11 shown in FIG. 2 flows through the flow path switching valve 12 and the third check valve 18 and then flows into the first relay 30 via the low pressure pipe 22. . In the first relay 30, after flowing through the gas-liquid separation device 32 and the high pressure gas pipe 43, the gas refrigerant is diverted to the high pressure gas pipes 43a and 43b shown in FIG.
 高圧ガス管43aを流れるガス冷媒は第2中継器50aに流入する。高圧ガス管43bを流れるガス冷媒は第2中継器50bに流入する。第2中継器50aに流入したガス冷媒は、接続ポート81cおよび81aに分流する。一方、第2中継器50bに流入したガス冷媒は、接続ポート81dおよび81bに分流する。 The gas refrigerant flowing through the high pressure gas pipe 43a flows into the second relay 50a. The gas refrigerant flowing through the high pressure gas pipe 43b flows into the second relay 50b. The gas refrigerant that has flowed into the second relay 50a is branched to the connection ports 81c and 81a. On the other hand, the gas refrigerant that has flowed into the second relay 50b is branched to the connection ports 81d and 81b.
 接続ポート81cを流通するガス冷媒は、ガス枝管75cを流通して、負荷側ユニット70cに流入する。接続ポート81aを流通するガス冷媒は、ガス枝管75aを流通して、負荷側ユニット70aに流入する。接続ポート81dを流通するガス冷媒は、ガス枝管75dを流通して、負荷側ユニット70dに流入する。接続ポート81bを流通するガス冷媒は、ガス枝管75bを流通して、負荷側ユニット70bに流入する。 The gas refrigerant flowing through the connection port 81c flows through the gas branch pipe 75c and flows into the load side unit 70c. The gas refrigerant flowing through the connection port 81a flows through the gas branch pipe 75a and flows into the load side unit 70a. The gas refrigerant flowing through the connection port 81 d flows through the gas branch pipe 75 d and flows into the load side unit 70 d. The gas refrigerant flowing through the connection port 81b flows through the gas branch pipe 75b and flows into the load side unit 70b.
 負荷側ユニット70cに流入した冷媒は、負荷側熱交換器71cにおいて、空調対象空間の空気と熱交換を行って凝縮され、液化する。液化した冷媒は、負荷側流量制御装置72cで減圧された後、液枝管76cを流通して、第2中継器50aの接続ポート85cに流入する。なお、負荷側ユニット70a、70bおよび70dにおける冷媒の流れは、負荷側ユニット70cと同様であるため、その説明を省略する。 The refrigerant flowing into the load side unit 70c exchanges heat with the air in the air conditioning target space in the load side heat exchanger 71c, is condensed, and is liquefied. The liquefied refrigerant is reduced in pressure by the load-side flow control device 72c, and then flows through the liquid branch pipe 76c to flow into the connection port 85c of the second relay 50a. The flow of the refrigerant in the load side units 70a, 70b and 70d is the same as that of the load side unit 70c, so the description thereof will be omitted.
 第2中継器50aにおいて、接続ポート85cを流通する冷媒と接続ポート85aを流通する冷媒とが、液管51を経由して液管41aに流入する。また、第2中継器50bにおいては、接続ポート85dを流通する冷媒と接続ポート85bを流通する冷媒とが、液管51を経由して液管41bに流入する。液管41aを流通する冷媒と液管41bを流通する冷媒とが液管41に合流した後、図2に示した第1中継器30に流入する。 In the second relay unit 50a, the refrigerant flowing through the connection port 85c and the refrigerant flowing through the connection port 85a flow into the liquid pipe 41a via the liquid pipe 51. In the second relay 50b, the refrigerant flowing through the connection port 85d and the refrigerant flowing through the connection port 85b flow into the liquid pipe 41b via the liquid pipe 51. After the refrigerant flowing through the liquid pipe 41a and the refrigerant flowing through the liquid pipe 41b join the liquid pipe 41, the refrigerant flows into the first relay 30 shown in FIG.
 図2に示す第1中継器30に流入した冷媒は、第2の熱交換部34、第2の流量制御装置36および第1の熱交換部33を順に経由して低圧管22を流通して熱源機10に流入する。熱源機10に流入した冷媒は、第2の逆止弁17を流通した後、熱源側熱交換器13に流入する。熱源側熱交換器13において、液冷媒は、外気と熱交換を行って蒸発し、ガス化する。ガス化した冷媒は、流路切替弁12を流通した後、アキュムレータ14に流入する。 The refrigerant flowing into the first relay 30 shown in FIG. 2 flows through the low pressure pipe 22 through the second heat exchange unit 34, the second flow control device 36 and the first heat exchange unit 33 in this order. It flows into the heat source unit 10. The refrigerant that has flowed into the heat source unit 10 flows into the heat source side heat exchanger 13 after flowing through the second check valve 17. In the heat source side heat exchanger 13, the liquid refrigerant exchanges heat with the outside air, evaporates, and gasifies. The gasified refrigerant flows into the accumulator 14 after flowing through the flow path switching valve 12.
 このようにして、圧縮機11から吐出された冷媒は、熱源機10で生成された熱を負荷側ユニット70a~70dに運び、負荷側ユニット70a~70dの空調対象空間を温めた後、熱源機10のアキュムレータ14に戻る。 In this manner, the refrigerant discharged from the compressor 11 carries the heat generated by the heat source unit 10 to the load side units 70a to 70d and warms the air conditioning target space of the load side units 70a to 70d. It returns to the accumulator 14 of ten.
 次に、空気調和装置1が冷房主体運転を行う場合の冷媒の流れを説明する。図8は、図1に示した空気調和装置が冷房主体運転を行う場合における第2中継器の冷媒の流れを示す図である。図8では、冷媒が流れる方向を矢印で示す。高圧ガス冷媒が流れる冷媒配管を太く表示している。図8では、負荷側ユニット70a~70dのうち、負荷側ユニット70cが暖房運転である。負荷側ユニット70aおよび70dが冷房運転である。負荷側ユニット70bが停止している。冷房主体運転は、全冷房運転における制御が一部異なる。ここでは、空気調和装置1が全冷房運転を行う場合と異なる点を説明する。 Next, the flow of the refrigerant when the air conditioning apparatus 1 performs the cooling main operation will be described. FIG. 8 is a diagram showing the flow of the refrigerant in the second relay when the air conditioning apparatus shown in FIG. 1 performs the cooling main operation. In FIG. 8, the direction in which the refrigerant flows is indicated by an arrow. The refrigerant piping through which the high pressure gas refrigerant flows is displayed thick. In FIG. 8, among the load units 70a to 70d, the load unit 70c is in the heating operation. The load side units 70a and 70d are in the cooling operation. The load side unit 70 b is stopped. In the cooling main operation, control in the all cooling operation is partially different. Here, points different from the case where the air conditioning apparatus 1 performs the cooling only operation will be described.
 運転モードが全冷房運転の場合と同様にして、液冷媒が、図2に示す熱源機10から高圧管を流通して第1中継器30に流入する。第1中継器30に流入した液冷媒は、気液分離装置32において、高圧ガス冷媒と液冷媒とに分離する。高圧ガス冷媒は、高圧ガス管43を流通した後、高圧ガス管43aおよび43bに分流する。一方、気液分離装置32で分離された液冷媒は、全冷房運転の場合と同様にして、液管41を流通した後、液管41aおよび41bに分流する。 The liquid refrigerant flows from the heat source unit 10 shown in FIG. 2 through the high pressure pipe and flows into the first relay 30 in the same manner as the case where the operation mode is the cooling only operation. The liquid refrigerant that has flowed into the first relay 30 is separated into high-pressure gas refrigerant and liquid refrigerant in the gas-liquid separator 32. After flowing through the high pressure gas pipe 43, the high pressure gas refrigerant is diverted to the high pressure gas pipes 43a and 43b. On the other hand, the liquid refrigerant separated by the gas-liquid separation device 32 flows through the liquid pipe 41 in the same manner as in the case of the cooling only operation, and then is branched to the liquid pipes 41a and 41b.
 液管41aを流通する液冷媒は、接続ポート85aおよび液枝管76aを経由して負荷側ユニット70aに流入する。負荷側ユニット70aにおいて、冷媒は、運転モードが全冷房運転の場合と同様にして、負荷側流量制御装置72aで減圧された後、負荷側熱交換器71aで空調対象空間の空気と熱交換を行って蒸発し、ガス化する。ガス化した冷媒は、ガス枝管75aを流通して、第2中継器50aの接続ポート81aに流入する。ガス冷媒は、接続ポート81aから、低圧ガス管42a、低圧ガス管42、第1中継器30および低圧管22を順に流通して、熱源機10に戻る。なお、負荷側ユニット70dにおける冷媒の流れは、負荷側ユニット70aと同様であるため、その説明を省略する。 The liquid refrigerant flowing through the liquid pipe 41a flows into the load side unit 70a via the connection port 85a and the liquid branch pipe 76a. In the load side unit 70a, the refrigerant is reduced in pressure by the load side flow control device 72a in the same manner as in the case of the cooling only operation mode, and then exchanges heat with the air in the air conditioned space by the load side heat exchanger 71a. Go and evaporate and gasify. The gasified refrigerant flows through the gas branch pipe 75a and flows into the connection port 81a of the second relay 50a. The gas refrigerant flows from the connection port 81 a to the low pressure gas pipe 42 a, the low pressure gas pipe 42, the first relay 30, and the low pressure pipe 22 in this order, and returns to the heat source unit 10. In addition, since the flow of the refrigerant | coolant in the load side unit 70d is the same as that of the load side unit 70a, the description is abbreviate | omitted.
 一方、高圧ガス管43aを流通するガス冷媒は、運転モードが全暖房運転の場合と同様にして、接続ポート81cおよびガス枝管75cを経由して負荷側ユニット70cに流入する。負荷側ユニット70cにおいて、冷媒は、運転モードが全暖房運転の場合と同様にして、負荷側熱交換器71cで空調対象空間の空気と熱交換を行って凝縮され、液化する。液化した冷媒は、負荷側流量制御装置72cで減圧された後、液枝管76cを流通して、第2中継器50aの接続ポート85cに流入する。液化した冷媒は、液管51に流入し、負荷側ユニット70cの冷房運転で利用される。 On the other hand, the gas refrigerant flowing through the high pressure gas pipe 43a flows into the load side unit 70c via the connection port 81c and the gas branch pipe 75c in the same manner as in the case of the heating only operation mode. In the load side unit 70c, the refrigerant exchanges heat with the air in the space to be air-conditioned in the load side heat exchanger 71c, condenses and liquefies, as in the case of the heating only operation mode. The liquefied refrigerant is reduced in pressure by the load-side flow control device 72c, and then flows through the liquid branch pipe 76c to flow into the connection port 85c of the second relay 50a. The liquefied refrigerant flows into the liquid pipe 51 and is used in the cooling operation of the load side unit 70c.
 このようにして、冷房主体運転では、負荷側ユニット70aおよび70dの空調対象空間が冷却され、負荷側ユニット70cの空調対象空間が温められる。 Thus, in the cooling main operation, the air conditioning target space of the load side units 70a and 70d is cooled, and the air conditioning target space of the load side unit 70c is warmed.
 図8に示す第2中継器50aにおいては、第1中継器30から高圧ガス管43および高圧ガス管43aを流通するガス冷媒は、負荷側ユニット70cに流れ込む。一方、第2中継器50bでは、負荷側ユニット70bおよび70dがいずれも暖房運転をしていなくても、高圧のガス冷媒が第1中継器30から高圧ガス管43および高圧ガス管43bを流通して、第2中継器50bに供給される。しかし、高圧ガス管43bに接続される接続ポート81b~84bおよび81d~84dの高圧弁121が全て閉状態なので、第1中継器30と第2中継器50bとの間にガス冷媒が滞留する。滞留するガス冷媒は、周囲の空気に熱が奪われ、温度が低下し、滞留してしまう。 In the second relay unit 50a shown in FIG. 8, the gas refrigerant flowing from the first relay unit 30 through the high pressure gas pipe 43 and the high pressure gas pipe 43a flows into the load side unit 70c. On the other hand, in the second relay 50b, high-pressure gas refrigerant flows from the first relay 30 through the high-pressure gas pipe 43 and the high-pressure gas pipe 43b even when the load side units 70b and 70d do not perform heating operation. Is supplied to the second repeater 50b. However, since the high pressure valves 121 of the connection ports 81b to 84b and 81d to 84d connected to the high pressure gas pipe 43b are all closed, the gas refrigerant stagnates between the first relay 30 and the second relay 50b. The gas refrigerant that has stagnated is deprived of heat by the surrounding air, the temperature drops, and it stagnates.
 第1中継器30と第2中継器50bとの間にガス冷媒が滞留する場合を、図8を参照して冷房主体運転の場合で説明したが、冷媒が滞留する運転状態はこの場合に限らない。熱源機10から高圧のガス冷媒を第1中継器30側に供給する暖房流路に熱源機10が設定された場合、第2中継器50aおよび50bにおいて、接続される負荷側ユニットが1台も運転していない第2中継器と第1中継器30との間にガス冷媒が滞留する。 Although the case where the gas refrigerant stagnates between the first relay 30 and the second relay 50b has been described in the case of the cooling main operation with reference to FIG. 8, the operation state in which the refrigerant stagnates is limited to this case. Absent. When the heat source unit 10 is set in the heating flow path for supplying high-pressure gas refrigerant from the heat source unit 10 to the first relay unit 30, one load side unit is connected to the second relay units 50a and 50b. The gas refrigerant stagnates between the second relay not operating and the first relay 30.
 熱源機10に暖房流路が設定された場合に、冷媒が滞留する別の例を説明する。第1中継器30に図に示さない負荷側ユニットが接続されているものとする。第1中継器30に接続される負荷側ユニットが暖房運転を行っているが、第2中継器50aおよび50bに接続される負荷側ユニットの全て運転していないとする。この場合、第1中継器30と第2中継器50aおよび50bとの間の高圧ガス管43、43aおよび43bに冷媒が滞留することになる。第1中継器30に接続される第2中継器が1台の場合でも、第1中継器30と第2中継器50aとの間に冷媒が滞留する。 When the heating flow path is set to the heat source unit 10, another example in which the refrigerant stagnates will be described. It is assumed that a load side unit (not shown) is connected to the first repeater 30. It is assumed that the load side unit connected to the first relay 30 is performing the heating operation, but not all the load side units connected to the second relays 50a and 50b are operating. In this case, the refrigerant stagnates in the high pressure gas pipes 43, 43a and 43b between the first relay 30 and the second relays 50a and 50b. Even when there is only one second relay connected to the first relay 30, the refrigerant stagnates between the first relay 30 and the second relay 50a.
 次に、冷媒の滞留を熱源機10に戻す動作の手順を説明する。図9は、図5に示した制御部が実行する動作手順を示すフローチャートである。 Next, the procedure of the operation of returning the stagnation of the refrigerant to the heat source unit 10 will be described. FIG. 9 is a flowchart showing an operation procedure performed by the control unit shown in FIG.
 制御部90は、冷媒量センサ25が冷媒不足を検知したか否かを判定する(ステップS101)。制御部90は、冷媒量センサ25から冷媒不足信号を受信すると、冷媒不足と判定し、冷媒回収処理の制御対象となる接続ポートを探す(ステップS102)。 The control unit 90 determines whether the refrigerant amount sensor 25 has detected a refrigerant shortage (step S101). When receiving the refrigerant shortage signal from the refrigerant amount sensor 25, the control unit 90 determines that the refrigerant is shortage, and searches for a connection port to be controlled in the refrigerant recovery process (step S102).
 第2中継器50aおよび50bの各第2中継器において、1台でも負荷側ユニットが暖房運転を行っていれば、第1中継器30と第2中継器50aおよび50bとの間で、冷媒は滞留しない。 In each of the second relays 50a and 50b, if at least one load-side unit is performing a heating operation, the refrigerant is between the first relay 30 and the second relays 50a and 50b. It does not stay.
 制御部90は、暖房運転を行っている負荷側ユニットと接続される接続ポートを有する第2中継器を、冷媒回収処理の制御対象から除外する。制御部90は、残った第2中継器において、高圧ガス管に接続される複数の接続ポートから制御対象の接続ポートを選択する。制御対象の条件に合う接続ポートは、負荷側ユニットが接続されていない接続ポートと、負荷側ユニットが接続されていても負荷側ユニットが運転していない接続ポートとのうち、いずれかである。 Control part 90 excludes the 2nd relay which has a connection port connected with the load side unit which is performing heating operation from control object of refrigerant recovery processing. The control unit 90 selects a connection port to be controlled from among a plurality of connection ports connected to the high pressure gas pipe in the remaining second repeater. The connection port meeting the condition to be controlled is either a connection port to which the load-side unit is not connected or a connection port to which the load-side unit is not operating even if the load-side unit is connected.
 制御部90は、条件に合う接続ポートを、冷媒回収処理の制御対象として選択する(ステップS103)。選択される接続ポートを、接続ポートkで表す。例えば、第1分岐ユニット61aから接続ポートkが選択される場合、kは81a~84aのいずれかである。ステップS103において、制御部90は、条件に合う接続ポートが複数ある場合には、設定された優先順位にしたがって、1つの接続ポートkを選択する。例えば、負荷側ユニットが接続されていない接続ポートの優先順位は、負荷側ユニットが接続されている接続ポートの優先順位よりも高く設定されている。 The control unit 90 selects a connection port meeting the conditions as a control target of the refrigerant recovery process (step S103). The connection port to be selected is represented by a connection port k. For example, when the connection port k is selected from the first branch unit 61a, k is any one of 81a to 84a. In step S103, when there are a plurality of connection ports meeting the conditions, the control unit 90 selects one connection port k in accordance with the set priority. For example, the priority of the connection port to which the load-side unit is not connected is set higher than the priority of the connection port to which the load-side unit is connected.
 続いて、制御部90は、選択した接続ポートkの高圧弁121を閉状態から開状態に切り替え、低圧弁122を閉状態から開状態に切り替える(ステップS104)。これにより、接続ポートkにおいて、高圧ガス管から冷媒が高圧弁121および低圧弁122を流通して低圧ガス管に流入する。制御部90は、低圧弁122を開いたときから時間を計測し、計測した時間が設定時間を経過したか否かを判定する(ステップS105)。設定時間が経過すると、制御部90は、接続ポートkの高圧弁121を開状態から閉状態に戻し、低圧弁122を開状態から閉状態に戻す(ステップS106)。 Subsequently, the control unit 90 switches the high pressure valve 121 of the selected connection port k from the closed state to the open state, and switches the low pressure valve 122 from the closed state to the open state (step S104). Thus, at the connection port k, the refrigerant flows from the high pressure gas pipe to the high pressure valve 121 and the low pressure valve 122 to flow into the low pressure gas pipe. The control unit 90 measures the time from when the low pressure valve 122 is opened, and determines whether the measured time has passed the set time (step S105). When the set time has elapsed, the control unit 90 returns the high pressure valve 121 of the connection port k from the open state to the closed state, and returns the low pressure valve 122 from the open state to the closed state (step S106).
 図8に示した構成例では、ステップS102の処理で条件に合う接続ポートkは、接続ポート82d~84dおよび接続ポート81b~84bである。制御部90が、これらの接続ポートのうち、いずれかの接続ポートを1つ選択し、図9に示すステップS104およびS105の処理を行う。第1中継器30と第2中継器50bとの間に滞留する冷媒が、選択された接続ポートkの高圧弁121および低圧弁122を流通した後、低圧ガス管42bを経由して熱源機10に戻る。 In the configuration example shown in FIG. 8, the connection ports k meeting the conditions in the process of step S102 are the connection ports 82d to 84d and the connection ports 81b to 84b. The control unit 90 selects one of these connection ports, and performs the processes of steps S104 and S105 shown in FIG. The refrigerant accumulated between the first relay 30 and the second relay 50b flows through the high pressure valve 121 and the low pressure valve 122 of the selected connection port k, and then the heat source unit 10 via the low pressure gas pipe 42b. Return to
 図8に示した構成例の場合、接続ポート82d~84dおよび81b~84bのうち、接続ポート81bを選択することが望ましい。候補となった接続ポート82d~84dおよび81b~84bのうち、接続ポート81bは、第1中継器30を起点とする高圧ガス管43の距離および高圧ガス管43から分岐する高圧ガス管43bに沿った距離が最も遠い位置にある。この場合、第1中継器30と第2中継器50bの間に滞留する冷媒を、できるだけ残らず低圧ガス管42bに回収することができる。 In the case of the configuration example shown in FIG. 8, it is desirable to select the connection port 81b among the connection ports 82d to 84d and 81b to 84b. Among the connection ports 82d to 84d and 81b to 84b which have become candidates, the connection port 81b is provided along the distance of the high pressure gas pipe 43 starting from the first relay 30 and the high pressure gas pipe 43b branched from the high pressure gas pipe 43. Distance is the farthest position. In this case, the refrigerant remaining between the first relay 30 and the second relay 50b can be recovered to the low pressure gas pipe 42b with as much as possible.
 また、制御部90は、接続ポート81bのように、選択した接続ポートkに負荷側ユニットが接続されている場合、ステップS103とステップS104との間で、負荷側流量制御装置72bを開閉する制御を行ってもよい。以下に、その理由を説明する。ここでは、選択された接続ポートkが接続ポート81bの場合で説明する。 Further, when the load side unit is connected to the selected connection port k, as in the connection port 81b, the control unit 90 performs control to open and close the load side flow control device 72b between step S103 and step S104. You may The reason will be described below. Here, the case where the selected connection port k is the connection port 81b will be described.
 負荷側ユニット70bは運転を停止しているため、ガス枝管75b内の冷媒が周囲の空気の温度で冷却され、冷媒圧力が低下している。また、低圧ガス管42bの冷媒圧力と高圧ガス管43aの冷媒圧力との圧力差が大きい状態である。この状態で、高圧弁121および低圧弁122が開くと、高圧のガス冷媒が一気にガス枝管75b内に流れ込む。このとき、ガス枝管75bおよび負荷側熱交換器71bに大きな圧力負荷がかかってしまう場合がある。また、高圧のガス冷媒が高圧ガス管43bからガス枝管75aおよび低圧ガス管42bに勢いよく流れ込むことで、破裂音のような音が発生することがある。 Since the load side unit 70b has stopped operation, the refrigerant in the gas branch pipe 75b is cooled at the temperature of the surrounding air, and the refrigerant pressure is reduced. Further, the pressure difference between the refrigerant pressure of the low pressure gas pipe 42 b and the refrigerant pressure of the high pressure gas pipe 43 a is large. In this state, when the high pressure valve 121 and the low pressure valve 122 are opened, the high pressure gas refrigerant flows into the gas branch pipe 75b at a stretch. At this time, a large pressure load may be applied to the gas branch pipe 75b and the load side heat exchanger 71b. In addition, the high pressure gas refrigerant may vigorously flow from the high pressure gas pipe 43b to the gas branch pipe 75a and the low pressure gas pipe 42b to generate a sound like a bursting sound.
 図8に示す場合、負荷側ユニット70dが冷房運転を行っているので、液枝管76bには、高圧の液冷媒が流れ込んでいる。そこで、ステップS104の処理の前に、制御部90は、ステップS103で接続ポート81bを選択すると、ステップS104の前に負荷側流量制御装置72bを開いて、ガス枝管75b内の冷媒圧力を高圧ガス管43bの冷媒圧力の1/2程度まで上昇させる。その後、制御部90は、負荷側流量制御装置72bを閉じ、ステップS104の処理に進む。 In the case shown in FIG. 8, since the load side unit 70d is performing the cooling operation, the high-pressure liquid refrigerant flows into the liquid branch pipe 76b. Therefore, when the connection port 81b is selected in step S103 before the process of step S104, the load side flow control device 72b is opened before step S104, and the refrigerant pressure in the gas branch pipe 75b is increased. The pressure is raised to about 1/2 of the refrigerant pressure of the gas pipe 43b. Thereafter, the control unit 90 closes the load-side flow control device 72b, and proceeds to the process of step S104.
 このようにして、制御部90がステップS104の前に負荷側流量制御装置72bを開閉制御することで、低圧ガス管42bの冷媒圧力と高圧ガス管43bの冷媒圧力との差圧が小さくなる。そして、高圧弁121および低圧弁122が開いたとき、冷媒が高圧ガス管43bから低圧ガス管42bに流れ込む勢いが抑制される。その結果、ガス枝管75bおよび負荷側熱交換器71bに大きな圧力負荷がかかることが抑制される。また、高圧のガス冷媒が低圧ガス管42bに流れ込むときに発生する音の大きさが低減する。 In this manner, by opening and closing the load side flow control device 72b before the step S104, the control unit 90 reduces the differential pressure between the refrigerant pressure of the low pressure gas pipe 42b and the refrigerant pressure of the high pressure gas pipe 43b. When the high pressure valve 121 and the low pressure valve 122 are opened, the force of the refrigerant flowing from the high pressure gas pipe 43b into the low pressure gas pipe 42b is suppressed. As a result, application of a large pressure load to the gas branch pipe 75b and the load side heat exchanger 71b is suppressed. Further, the magnitude of the sound generated when the high pressure gas refrigerant flows into the low pressure gas pipe 42b is reduced.
 なお、本実施の形態1では、図9を参照して、冷媒不足が検知されたとき、制御部90が冷媒回収処理を行う場合で説明したが、冷媒回収処理は冷媒不足が検知された場合に限らない。空気調和装置1が図8に示した運転状態では、2台の第2中継器50aおよび50bのうち、一方の第2中継器50aに接続された負荷側ユニット70cが暖房運転を行い、他方の第2中継器50bには暖房運転を行う負荷側ユニットが1台もない。このことから、制御部90は、複数の第2中継器のうち、1台の第2中継器に接続される負荷側ユニットが暖房運転を行い、他の第2中継器では、暖房運転している負荷側ユニットがない状態を認識すると、他の第2中継器で冷媒が滞留していると判断してもよい。この場合、制御部90は、一定時間毎に他の第2中継器に対して、図9に示した手順にしたがって冷媒回収処理を行ってもよい。 In the first embodiment, the case where the controller 90 performs the refrigerant recovery process when the refrigerant insufficiency is detected is described with reference to FIG. 9, but the refrigerant recovery process detects the refrigerant insufficiency. Not limited to. When the air conditioner 1 is in the operating state shown in FIG. 8, the load-side unit 70c connected to one second relay 50a of the two second relays 50a and 50b performs a heating operation, and the other unit The second relay 50b has no load side unit that performs heating operation. From this, the control unit 90 performs the heating operation on the load side unit connected to one second relay among the plurality of second relays, and performs the heating operation on the other second relays. If it is recognized that there is no load-side unit present, it may be determined that the refrigerant is stagnating in another second relay. In this case, the control unit 90 may perform the refrigerant recovery process on the other second relays according to the procedure shown in FIG. 9 every fixed time.
 また、図9を参照して、冷媒回収処理の対象となる運転状態として、1台の第2中継器に接続される負荷側ユニットが暖房運転を行い、他の第2中継器では、暖房運転している負荷側ユニットがない状態の場合を説明したが、この場合に限らない。例えば、図8に示した第2中継器50bに接続される負荷側ユニット70dが運転を停止している場合を考える。この場合、液管41bを流通する冷媒が第1中継器30に戻る際、負荷側ユニット70dが冷房運転を行っている場合よりもスムーズに戻ることができない。第2中継器に接続される負荷側ユニットが1台も運転も行っていない場合に、制御部90が図9に示した冷媒回収処理を行ってもよい。 Further, referring to FIG. 9, as an operation state to be subjected to the refrigerant recovery process, the load side unit connected to one second relay performs a heating operation, and the heating operation is performed in the other second relays. Although there has been described the case where there is no load side unit in operation, the present invention is not limited to this case. For example, consider a case where the load side unit 70d connected to the second relay 50b shown in FIG. 8 has stopped operation. In this case, when the refrigerant flowing through the liquid pipe 41b returns to the first relay 30, the load side unit 70d can not return more smoothly than in the case where the cooling operation is performed. When no load side unit connected to the second relay is operating, the control unit 90 may perform the refrigerant recovery process shown in FIG.
 本実施の形態1の空気調和装置1では、自器に接続されている負荷側ユニットが全て運転を停止している第2中継器があると、制御部90は、その第2中継器において、高圧ガス管に接続される複数の接続ポートから1つの接続ポートを選択する。そして、制御部90は、選択した接続ポートに設けられた高圧弁121および低圧弁122を開状態にして、高圧ガス管と低圧ガス管とを接続させる。 In the air conditioner 1 of the first embodiment, when there is a second relay in which all load-side units connected to its own unit have stopped operation, the control unit 90 controls the second relay in the following manner. One connection port is selected from a plurality of connection ports connected to the high pressure gas pipe. Then, the control unit 90 opens the high pressure valve 121 and the low pressure valve 122 provided in the selected connection port to connect the high pressure gas pipe and the low pressure gas pipe.
 本実施の形態1によれば、制御部90は、冷媒の滞留が発生する運転状態になると、冷媒が滞留する第2中継器の接続ポートの弁を開放することで、滞留する冷媒を熱源機10に回収する。滞留する冷媒が熱源機10に戻り、冷媒不足による冷凍能力の低下を抑制することができる。また、冷媒の滞留が発生する運転状態に高圧ガス管と低圧ガス管とを接続する弁を開状態にするので、高圧ガス管と低圧ガス管とを接続するバイパス回路を常に開状態にする場合に比べて、冷凍能力の低下を抑制できる。 According to the first embodiment, when the control unit 90 is in an operating state where stagnation of refrigerant occurs, the control unit 90 opens the valve of the connection port of the second relay on which the refrigerant is stagnant, so that the stagnant refrigerant is a heat source machine Recover to 10. The stagnating refrigerant is returned to the heat source unit 10, and it is possible to suppress a decrease in refrigeration capacity due to a shortage of the refrigerant. In addition, when the valve connecting the high pressure gas pipe and the low pressure gas pipe is opened in the operating state where stagnation of refrigerant occurs, the bypass circuit connecting the high pressure gas pipe and the low pressure gas pipe is always opened As compared with the above, it is possible to suppress the decrease in the freezing capacity.
 また、滞留する冷媒の量と、高圧ガス管と低圧ガス管とをバイパスする回路が常に開状態である空気調和機の場合、冷凍能力の低下との関係で、第2中継器の台数、冷媒配管の長さおよび負荷側ユニットの容量を含む配管システム設計が制限される。これに対して、本実施の形態1では、冷媒不足のタイミングで、制御部90は冷媒が滞留する接続ポートを特定し、特定した接続ポートにおける弁の開閉制御を行うことで、冷媒の回収と冷凍能力の低下とを図っている。冷媒量が足りている通常の運転状態では、冷凍能力の低下を防げるため、第2中継器の台数と配管長の制限が軽減する。そのため、本実施の形態1の空気調和装置1は、配管システムの設計の自由度が向上する。 Further, in the case of an air conditioner in which the amount of refrigerant staying and the circuit bypassing the high pressure gas pipe and the low pressure gas pipe are always in the open state, the number of second relays, refrigerants Piping system design is limited, including piping length and load side unit capacity. On the other hand, in the first embodiment, the control unit 90 specifies the connection port where the refrigerant stagnates at the timing of the refrigerant shortage, and performs opening / closing control of the valve in the specified connection port, thereby recovering the refrigerant. We are trying to reduce the refrigeration capacity. In a normal operating condition in which the amount of refrigerant is sufficient, a decrease in the refrigeration capacity can be prevented, so the restriction on the number of second relays and the pipe length is alleviated. Therefore, in the air conditioning apparatus 1 of the first embodiment, the degree of freedom in the design of the piping system is improved.
実施の形態2.
 本実施の形態2は、高圧ガス管側と接続される接続ポートの他の構成例に関するものである。本実施の形態2では、実施の形態1と同様な構成についての詳細な説明を省略する。
Second Embodiment
The second embodiment relates to another configuration example of the connection port connected to the high pressure gas pipe side. In the second embodiment, the detailed description of the same configuration as that of the first embodiment is omitted.
 図10は、本発明の実施の形態2の空気調和装置における接続ポートの一構成例を示す図である。本実施の形態2では、接続ポート81a~84aは互いに同様な構成のため、接続ポート81aの構成を説明する。接続ポート85a~88aは実施の形態1と同様なため、その詳細な説明を省略する。 FIG. 10: is a figure which shows one structural example of the connection port in the air conditioning apparatus of Embodiment 2 of this invention. In the second embodiment, since the connection ports 81a to 84a have the same configuration, the configuration of the connection port 81a will be described. The connection ports 85a to 88a are the same as in the first embodiment, and thus the detailed description thereof is omitted.
 図10に示すように、接続ポート81aは、低圧ガス管42aに接続される低圧弁として、第1低圧弁122-1と、第1低圧弁122-1と並列に接続される第2低圧弁122-2とを有する。第1低圧弁122-1の流路断面積は図4に示した低圧弁122と同等である。第2低圧弁122-2の流路断面積は、第1低圧弁122-1の流路断面積よりも小さい。負荷側ユニット70aが暖房運転を行う際、第1低圧弁122-1が開状態に設定される。 As shown in FIG. 10, the connection port 81a is a low pressure valve connected to the low pressure gas pipe 42a, and is a second low pressure valve connected in parallel with the first low pressure valve 122-1 and the first low pressure valve 122-1. And 122-2. The flow passage cross-sectional area of the first low pressure valve 122-1 is equal to that of the low pressure valve 122 shown in FIG. The flow passage cross-sectional area of the second low pressure valve 122-2 is smaller than the flow passage cross-sectional area of the first low pressure valve 122-1. When the load side unit 70a performs the heating operation, the first low pressure valve 122-1 is set to the open state.
 本実施の形態2における制御部90の動作を、図9および図11を参照して説明する。図11は、本発明の実施の形態2の空気調和装置における制御部が、図9に示したステップS104の処理で実行する処理の一例を示すフローチャートである。ここでは、制御部90が接続ポート81aに対して冷媒戻り処理を行う場合で説明する。 The operation of the control unit 90 in the second embodiment will be described with reference to FIGS. 9 and 11. FIG. 11 is a flowchart showing an example of processing executed by the control unit in the air conditioning apparatus according to Embodiment 2 of the present invention in the processing of step S104 shown in FIG. Here, the case where the control unit 90 performs the refrigerant return process on the connection port 81a will be described.
 図9に示したステップS104において、制御部90は、高圧弁121を閉状態から開状態に切り替える(ステップS141)。制御部90は、第1低圧弁122-1を閉じた状態で、第2低圧弁122-2を閉状態から開状態に切り替える(ステップS142)。第2低圧弁122-2が閉状態から開状態に切り替わると、第1中継器30と第2中継器50aとの間に滞留する冷媒が高圧ガス管43aから低圧ガス管42aに流れる。また、第2低圧弁122-2の流路断面積は第1低圧弁122-1の流路断面積より小さいので、冷凍能力の低下が抑制される。さらに、冷媒が高圧ガス管43aから低圧ガス管42aに勢いよく流れこむことが抑制される。その結果、ガス枝管75aおよび負荷側熱交換器71aに大きな圧力負荷がかかることが抑制される。また、高圧のガス冷媒が低圧ガス管42aに流れ込むときに発生する音の大きさが低減する。 In step S104 shown in FIG. 9, the control unit 90 switches the high pressure valve 121 from the closed state to the open state (step S141). The control unit 90 switches the second low pressure valve 122-2 from the closed state to the open state with the first low pressure valve 122-1 closed (step S 142). When the second low pressure valve 122-2 is switched from the closed state to the open state, the refrigerant remaining between the first relay 30 and the second relay 50a flows from the high pressure gas pipe 43a to the low pressure gas pipe 42a. Further, since the flow passage cross-sectional area of the second low pressure valve 122-2 is smaller than the flow passage cross-sectional area of the first low pressure valve 122-1, a decrease in the refrigeration capacity is suppressed. Further, the refrigerant is prevented from flowing vigorously from the high pressure gas pipe 43a to the low pressure gas pipe 42a. As a result, application of a large pressure load to the gas branch pipe 75a and the load side heat exchanger 71a is suppressed. Further, the magnitude of the sound generated when the high pressure gas refrigerant flows into the low pressure gas pipe 42a is reduced.
 続いて、図9に示したステップS105において、第2低圧弁122-2が開状態になってから設定時間が経過すると、ステップS106において、制御部90は、高圧弁121および第2低圧弁122-2を開状態から閉状態に切り替える。 Subsequently, in step S105 shown in FIG. 9, when the set time has passed since the second low pressure valve 122-2 was opened, the control unit 90 causes the high pressure valve 121 and the second low pressure valve 122 to go to step S106. -2 switches from the open state to the closed state.
 本実施の形態2の空気調和装置1は、第1中継器30と第2中継器との間の高圧ガス管に滞留する冷媒を熱源機10に戻す際、流路断面積が小さい第2低圧弁122-2を開けて、高圧ガス管から冷媒を低圧ガス管に流通させる。第2低圧弁122-2の流路断面積は第1低圧弁122-1の流路断面積より小さいので、冷凍能力の低下が抑制される。本実施の形態2によれば、滞留する冷媒を熱源機10に戻せるだけでなく、冷凍能力の低下が抑制される。また、高圧ガス管から低圧ガス管に冷媒が勢いよく流れこむことが抑制されるので、冷媒配管への圧力負荷が抑制され、発生する音の大きさが低減する。 The air conditioner 1 of the second embodiment has a second low pressure having a small flow passage cross-sectional area when returning the refrigerant remaining in the high pressure gas pipe between the first relay 30 and the second relay to the heat source unit 10. The valve 122-2 is opened to flow the refrigerant from the high pressure gas pipe to the low pressure gas pipe. Since the flow passage cross-sectional area of the second low pressure valve 122-2 is smaller than the flow passage cross-sectional area of the first low pressure valve 122-1, a decrease in refrigeration capacity is suppressed. According to the second embodiment, not only can the stagnating refrigerant be returned to the heat source unit 10, but also the reduction of the refrigeration capacity is suppressed. Further, since the refrigerant is suppressed from flowing vigorously from the high pressure gas pipe into the low pressure gas pipe, the pressure load on the refrigerant pipe is suppressed, and the magnitude of the generated sound is reduced.
 なお、図11に示す手順において、ステップS142の後に、制御部90は、第1低圧弁122-1を閉状態から開状態に切り替えてもよい。第1低圧弁122-1が開く前に、第2低圧弁122-2を介して冷媒が高圧ガス管43aから低圧ガス管42aに少し流入している。第1低圧弁122-1が開いたとき、冷媒配管への圧力負荷と音の発生とが抑制される。その後に第2低圧弁122-2が開くことで、冷媒を熱源機10に効率よく戻すことができる。 In the procedure shown in FIG. 11, after step S142, the control unit 90 may switch the first low pressure valve 122-1 from the closed state to the open state. Before the first low pressure valve 122-1 is opened, the refrigerant is slightly flowing from the high pressure gas pipe 43a into the low pressure gas pipe 42a via the second low pressure valve 122-2. When the first low pressure valve 122-1 is opened, the pressure load on the refrigerant pipe and the generation of sound are suppressed. Thereafter, by opening the second low pressure valve 122-2, the refrigerant can be efficiently returned to the heat source unit 10.
 上述の第1および第2の実施の形態において、設定時間は決められた時間に限らない。制御部90が設定時間を更新してもよい。制御部90は、空気調和装置1が複数の熱源機10を有する場合、運転している熱源機10の台数に比例して設定時間を長くしてもよい。この場合、熱源機10への過剰に冷媒量を戻すことが抑制され、運転している熱源機10に適した量の冷媒を戻すことができる。 In the first and second embodiments described above, the setting time is not limited to the determined time. The control unit 90 may update the set time. When the air conditioning apparatus 1 has a plurality of heat source units 10, the control unit 90 may lengthen the set time in proportion to the number of the heat source units 10 being operated. In this case, excessive return of the amount of refrigerant to the heat source unit 10 is suppressed, and an amount of refrigerant suitable for the operating heat source unit 10 can be returned.
 ただし、熱源機10が複数の場合、各熱源機10が保有する冷媒量が平均化されていない場合もある。例えば、2台の熱源機10が運転している場合、一方の熱源機10に冷媒が偏って、他方の熱源機10に冷媒が不足している場合がある。冷媒量センサ25が冷媒量を測定する機能を備えていると、制御部90は、複数の熱源機10の冷媒量センサ25から測定値を取得し、熱源機10同士で冷媒量が均等になるように各圧縮機11を制御し、各熱源機10の冷媒量を平均化する。その上で、制御部90は、冷媒量が不足していると判定すると、設定時間を長くする。冷媒量が不足しているか否かの判定は、1台の熱源機10に適正な冷媒量と、制御部90が算出した冷媒量とを比較して行う。1台の熱源機10に適正な冷媒量として基準値がメモリ91に格納されている。制御部90は、算出した冷媒量が基準値未満であれば、設定時間を長くする。 However, when there are a plurality of heat source units 10, the amount of refrigerant held by each heat source unit 10 may not be averaged. For example, when two heat source units 10 are operating, the refrigerant may be biased to one heat source unit 10 and the other heat source unit 10 may be short of refrigerant. When the refrigerant amount sensor 25 has a function of measuring the amount of refrigerant, the control unit 90 acquires measurement values from the refrigerant amount sensors 25 of the plurality of heat source units 10, and the refrigerant amounts become uniform among the heat source units 10 As described above, the compressors 11 are controlled, and the amounts of refrigerant of the heat source units 10 are averaged. Then, if the control unit 90 determines that the amount of refrigerant is insufficient, the control unit 90 extends the set time. It is determined whether the amount of refrigerant is insufficient by comparing the amount of refrigerant appropriate for one heat source unit 10 with the amount of refrigerant calculated by the control unit 90. A reference value is stored in the memory 91 as an appropriate amount of refrigerant for one heat source unit 10. If the calculated amount of refrigerant is less than the reference value, the control unit 90 lengthens the set time.
 また、上述の第1および第2の実施の形態において、メモリ91が冷媒回収処理の履歴を記憶し、制御部90が冷媒回収処理の履歴を参照して、設定時間を更新してもよい。この場合の制御部90の動作の一例を説明する。制御部90は、冷媒回収処理を行う度に、冷媒回収処理に関する時間をメモリ91に記録する。そして、制御部90は、メモリが記録する冷媒回収処理の履歴を参照し、冷媒回収処理の時間間隔が短いほど、設定時間を長い時間に更新する。この構成によれば、制御部90は、メモリ91が記憶する、冷媒回収処理の時間間隔を基に、冷媒量が不足しているか否かを判定し、判定結果を設定時間に反映させる。制御部90は、冷媒回収処理の時間間隔が長いほど、設定時間を短くし、冷媒回収処理の時間間隔が短いほど、設定時間を長くする。このようにして設定時間を更新することで、熱源機10に戻す冷媒量を適正化し、かつ冷凍能力の低下を抑制できる。 In the first and second embodiments described above, the memory 91 may store the history of the refrigerant recovery process, and the control unit 90 may update the set time with reference to the history of the refrigerant recovery process. An example of the operation of the control unit 90 in this case will be described. The control unit 90 records the time related to the refrigerant recovery process in the memory 91 every time the refrigerant recovery process is performed. Then, the control unit 90 refers to the history of the refrigerant recovery process recorded by the memory, and updates the set time to a longer time as the time interval of the refrigerant recovery process is shorter. According to this configuration, the control unit 90 determines whether the amount of refrigerant is insufficient based on the time interval of the refrigerant recovery process stored in the memory 91, and reflects the determination result in the set time. The control unit 90 shortens the set time as the time interval of the refrigerant recovery process is longer, and lengthens the set time as the time interval of the refrigerant recovery process is shorter. By updating the set time in this manner, the amount of refrigerant returned to the heat source unit 10 can be made appropriate, and a decrease in the refrigeration capacity can be suppressed.
 従来、空気調和装置の運転状態が変化しても、高圧ガス管と低圧ガス管とをバイパスする回路が開状態のままなので、単位時間あたり一定量しか冷媒を回収できなかった。これに対して、上述したように、圧縮機11の運転台数および冷媒回収の時間間隔のうち、一方および両方を基に、制御部90が設定時間を更新する。そのため、運転状態の変化に応じて、適正な冷媒量を熱源機10に回収できる。 Conventionally, even if the operating condition of the air conditioner changes, the refrigerant bypassing the high pressure gas pipe and the low pressure gas pipe remains open, so that only a certain amount of refrigerant can be recovered per unit time. On the other hand, as described above, the control unit 90 updates the set time based on one and both of the number of operating compressors 11 and the time interval of refrigerant recovery. Therefore, the appropriate amount of refrigerant can be recovered to the heat source unit 10 according to the change in the operating state.
 また、上述の第1および第2の実施の形態において、メモリ91が冷媒回収処理の冷媒量の履歴を記憶し、制御部90が履歴を参照して、冷媒回収効率が最もよい第2中継器を選択するようにしてもよい。この場合の制御部90の動作の一例を説明する。冷媒量センサ25が冷媒量を測定する機能を備えている。制御部90は、冷媒回収処理を行う度に、制御対象となった接続ポートが属する第2中継器と冷媒量センサ25が測定する冷媒量とを関連付けてメモリ91に記録する。制御部90は、図9に示したステップS103において、1つの接続ポートを選択する際、メモリ91が記録した情報を参照する。そして、制御部90は、記録された冷媒量のうち、最も多い冷媒量に関連付けて記録された第2中継器から1つの接続ポートを選択する。この構成によれば、制御部90が冷媒回収処理を行う際、複数の第2中継器50aおよび50bのうち、冷媒回収効率が最も高い第2中継器の接続ポートを選択するため、設定時間に冷媒を熱源機10に戻す量が最も多くなる。その結果、冷媒回収の効率を上げるとともに、冷凍能力の低下を抑制できる。 Further, in the first and second embodiments described above, the memory 91 stores the history of the refrigerant amount in the refrigerant recovery process, and the control unit 90 refers to the history, and the second relay with the best refrigerant recovery efficiency. May be selected. An example of the operation of the control unit 90 in this case will be described. The refrigerant amount sensor 25 has a function of measuring the amount of refrigerant. Every time the refrigerant recovery processing is performed, the control unit 90 associates the second relay to which the connection port to be controlled belongs and the amount of refrigerant measured by the refrigerant amount sensor 25 and records them in the memory 91. The control unit 90 refers to the information recorded in the memory 91 when selecting one connection port in step S103 shown in FIG. Then, the control unit 90 selects one connection port from the second relays recorded in association with the largest refrigerant amount among the recorded refrigerant amounts. According to this configuration, when the control unit 90 performs the refrigerant recovery process, in order to select the connection port of the second relay having the highest refrigerant recovery efficiency among the plurality of second relays 50a and 50b, The amount of return of the refrigerant to the heat source unit 10 is the largest. As a result, the efficiency of refrigerant recovery can be increased, and a decrease in refrigeration capacity can be suppressed.
 1 空気調和装置、10 熱源機、11 圧縮機、12 流路切替弁、13 熱源側熱交換器、14 アキュムレータ、15 流路調整ユニット、16 第1の逆止弁、17 第2の逆止弁、18 第3の逆止弁、19 第4の逆止弁、22 低圧管、23 高圧管、25 冷媒量センサ、30 第1中継器、32 気液分離装置、33 第1の熱交換部、34 第2の熱交換部、35 第1の流量制御装置、36 第2の流量制御装置、41、41a、41b 液管、42、42a、42b 低圧ガス管、43、43a、43b 高圧ガス管、45 バイパス液管、46 第1分岐ユニット、47 第2分岐ユニット、50a、50b 第2中継器、51 液管、52 第3の熱交換部、53 第3の流量制御装置、54 バイパス管、61a、61c 第1分岐ユニット、62a、62c 第2分岐ユニット、70a~70d 負荷側ユニット、71a~71d 負荷側熱交換器、72a~72d 負荷側流量制御装置、75a~75d ガス枝管、76a~76d 液枝管、81、81a~81d 接続ポート、82、82a~82d 接続ポート、83、83a~83d 接続ポート、84、84a~84d 接続ポート、85、85a~85d 接続ポート、86、86a~86d 接続ポート、87、87a~87d 接続ポート、88、88a~88d 接続ポート、90 制御部、91 メモリ、92 CPU、100 空気調和装置、111 高圧分岐配管、112 低圧分岐配管、121 高圧弁、122 低圧弁、122-1 第1低圧弁、122-2 第2低圧弁、131、132 分岐配管、141、142 逆止弁。 REFERENCE SIGNS LIST 1 air conditioner, 10 heat source unit, 11 compressor, 12 flow path switching valve, 13 heat source side heat exchanger, 14 accumulator, 15 flow path adjusting unit, 16 first check valve, 17 second check valve , 18 third check valve, 19 fourth check valve, 22 low pressure pipe, 23 high pressure pipe, 25 refrigerant quantity sensor, 30 first relay, 32 gas-liquid separator, 33 first heat exchange unit, 34 second heat exchange unit, 35 first flow control device, 36 second flow control device, 41, 41a, 41b liquid pipe, 42, 42a, 42b low pressure gas pipe, 43, 43a, 43b high pressure gas pipe, 45 bypass liquid pipe, 46 first branch unit, 47 second branch unit, 50a, 50b second relay, 51 liquid pipe, 52 third heat exchange unit, 53 third flow control device, 54 bypass pipe, 1a, 61c first branch unit, 62a, 62c second branch unit, 70a to 70d load side unit, 71a to 71d load side heat exchanger, 72a to 72d load side flow control device, 75a to 75d gas branch pipe, 76a to 76d 76d Liquid branch pipe 81, 81a to 81d connection port 82, 82a to 82d connection port 83, 83a to 83d connection port 84, 84a to 84d connection port 85, 85a to 85d connection port 86, 86a to 86d Connection port 87, 87a to 87d connection port, 88, 88a to 88d connection port, 90 control unit, 91 memory, 92 CPU, 100 air conditioner, 111 high pressure branch piping, 112 low pressure branch piping, 121 high pressure valve, 122 low pressure Valve, 122-1 first low pressure valve, 122-2 2 the low pressure valve, 131 and 132 branch pipe, 141 and 142 check valve.

Claims (8)

  1.  熱源側熱交換器および圧縮機を有する熱源機と、
     前記熱源機と冷媒配管で接続される第1中継器と、
     高圧ガス管、低圧ガス管および液管で、前記第1中継器と接続される第2中継器と、
     前記高圧ガス管に接続される高圧弁と、前記低圧ガス管に接続される低圧弁とを有し、前記第2中継器に設けられた複数の接続ポートと、
     前記圧縮機および前記複数の接続ポートを制御する制御部と、を有し、
     前記制御部は、
     前記第2中継器に接続された負荷側ユニットが全て停止している場合、前記複数の接続ポートのうち、少なくとも1つの接続ポートの前記高圧弁および前記低圧弁を開状態にして、前記高圧ガス管と前記低圧ガス管とを接続させる冷媒回収処理を行う、空気調和装置。
    A heat source machine having a heat source side heat exchanger and a compressor;
    A first relay connected to the heat source unit and a refrigerant pipe;
    A second relay connected to the first relay by a high pressure gas pipe, a low pressure gas pipe, and a liquid pipe;
    A plurality of connection ports provided in the second relay, comprising: a high pressure valve connected to the high pressure gas pipe; and a low pressure valve connected to the low pressure gas pipe;
    A controller that controls the compressor and the plurality of connection ports;
    The control unit
    When all the load side units connected to the second relay stop, the high pressure valve and the low pressure valve of at least one of the plurality of connection ports are opened and the high pressure gas is opened. An air conditioner performing refrigerant recovery processing in which a pipe and the low pressure gas pipe are connected.
  2.  前記制御部は、
     前記熱源機が暖房流路に設定された状態であって、前記第2中継器に接続される負荷側ユニットの全てが運転を停止しているとき、該第2中継器の前記複数の接続ポートから、1つの接続ポートを選択して該接続ポートを前記開状態にする、請求項1に記載の空気調和装置。
    The control unit
    The plurality of connection ports of the second relay when the heat source unit is set in the heating flow path and all of the load side units connected to the second relay stop operating. The air conditioning apparatus according to claim 1, wherein one connection port is selected to open the connection port.
  3.  前記制御部は、
     前記複数の接続ポートのうち、前記第1中継器から前記高圧ガス管の距離が最も遠い位置にある接続ポートを選択して前記開状態にする、請求項1または2に記載の空気調和装置。
    The control unit
    The air conditioning apparatus according to claim 1, wherein a connection port located at a position where the distance from the first relay to the high pressure gas pipe is the longest among the plurality of connection ports is selected to be in the open state.
  4.  前記低圧弁は、
     第1低圧弁と、該第1低圧弁と並列に接続され、該第1低圧弁よりも流路断面積が小さい第2低圧弁とを有し、
     前記制御部は、
     前記第1低圧弁を閉じた状態で、前記第2低圧弁を前記開状態にする、請求項1~3のいずれか1項に記載の空気調和装置。
    The low pressure valve is
    A first low pressure valve, and a second low pressure valve connected in parallel to the first low pressure valve and having a flow passage cross-sectional area smaller than that of the first low pressure valve;
    The control unit
    The air conditioner according to any one of claims 1 to 3, wherein the second low pressure valve is brought into the open state with the first low pressure valve closed.
  5.  前記制御部は、
     前記冷媒回収処理に用いる前記接続ポートに前記負荷側ユニットが接続されている場合、前記高圧弁および前記低圧弁を前記開状態にする前に、該負荷側ユニットに設けられた流量制御装置を開閉する、請求項1~4のいずれか1項に記載の空気調和装置。
    The control unit
    When the load side unit is connected to the connection port used for the refrigerant recovery process, the flow control device provided in the load side unit is opened and closed before the high pressure valve and the low pressure valve are opened. The air conditioner according to any one of claims 1 to 4, wherein
  6.  前記第1中継器に、複数の前記熱源機が接続され、
     前記制御部は、
     複数の前記熱源機のうち、運転中の熱源機の台数に比例して、前記接続ポートの前記開状態の時間を長くする、請求項1~5のいずれか1項に記載の空気調和装置。
    A plurality of the heat source units are connected to the first relay,
    The control unit
    The air conditioner according to any one of claims 1 to 5, wherein the open time of the connection port is lengthened in proportion to the number of heat source units in operation among the plurality of heat source units.
  7.  冷媒回路を循環する冷媒の量を測定する冷媒量センサをさらに有し、
     前記第2中継器が複数設けられ、
     前記制御部は、
     複数の前記第2中継器から回収される冷媒量を記憶しており、
     前記冷媒回収処理を行う際、記録された冷媒量のうち、最も多い冷媒量に関連付けて記録された第2中継器の前記接続ポートを選択する、請求項1~6のいずれか1項に記載の空気調和装置。
    And a refrigerant amount sensor for measuring the amount of refrigerant circulating in the refrigerant circuit,
    A plurality of second relays are provided,
    The control unit
    The amount of refrigerant collected from the plurality of second relays is stored,
    7. The connection port according to claim 1, wherein the connection port of the second relay recorded in association with the largest refrigerant amount among the recorded refrigerant amounts is selected when the refrigerant recovery processing is performed. Air conditioning equipment.
  8.  前記制御部は、
     前記冷媒回収処理を行う度に該冷媒回収処理を行った時間を記憶し、
     記録された前記冷媒回収処理の時間間隔が短いほど、前記接続ポートの前記開状態の時間を長くする、請求項1~7のいずれか1項に記載の空気調和装置。
    The control unit
    Every time the refrigerant recovery process is performed, the time when the refrigerant recovery process is performed is stored,
    The air conditioner according to any one of claims 1 to 7, wherein the open time of the connection port is lengthened as the recorded time interval of the refrigerant recovery process is shorter.
PCT/JP2017/026958 2017-07-26 2017-07-26 Air conditioner WO2019021380A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019532259A JP6779381B2 (en) 2017-07-26 2017-07-26 Air conditioner
PCT/JP2017/026958 WO2019021380A1 (en) 2017-07-26 2017-07-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/026958 WO2019021380A1 (en) 2017-07-26 2017-07-26 Air conditioner

Publications (1)

Publication Number Publication Date
WO2019021380A1 true WO2019021380A1 (en) 2019-01-31

Family

ID=65040069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026958 WO2019021380A1 (en) 2017-07-26 2017-07-26 Air conditioner

Country Status (2)

Country Link
JP (1) JP6779381B2 (en)
WO (1) WO2019021380A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571825A (en) * 1991-09-12 1993-03-23 Matsushita Refrig Co Ltd Multiroom type air-conditioner
JP2003097864A (en) * 2001-09-26 2003-04-03 Mitsubishi Electric Corp Air conditioner
JP2008116073A (en) * 2006-11-01 2008-05-22 Daikin Ind Ltd Air conditioning apparatus
JP2013015280A (en) * 2011-07-05 2013-01-24 Daikin Industries Ltd Outdoor multi-unit
WO2017042967A1 (en) * 2015-09-11 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン) リミテッド Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571825A (en) * 1991-09-12 1993-03-23 Matsushita Refrig Co Ltd Multiroom type air-conditioner
JP2003097864A (en) * 2001-09-26 2003-04-03 Mitsubishi Electric Corp Air conditioner
JP2008116073A (en) * 2006-11-01 2008-05-22 Daikin Ind Ltd Air conditioning apparatus
JP2013015280A (en) * 2011-07-05 2013-01-24 Daikin Industries Ltd Outdoor multi-unit
WO2017042967A1 (en) * 2015-09-11 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン) リミテッド Air conditioner

Also Published As

Publication number Publication date
JP6779381B2 (en) 2020-11-04
JPWO2019021380A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
KR101319687B1 (en) Multi type air conditioner and method of controlling the same
WO2013099047A1 (en) Air conditioner
KR102373851B1 (en) Air conditioner
JP4462387B1 (en) Refrigeration equipment
EP1998124B1 (en) Air conditioner
JP5506185B2 (en) Air conditioner
EP2515053B1 (en) Multi type air conditioner and operating method
JPWO2019073621A1 (en) Air conditioner
JP6003635B2 (en) AIR CONDITIONER AND AIR CONDITIONER CONSTRUCTION METHOD
JP6223469B2 (en) Air conditioner
KR20110074109A (en) Air conditioner and method for controlling of air conditioner
KR101726073B1 (en) Air conditioning system
JP4553761B2 (en) Air conditioner
JP6628911B1 (en) Refrigeration cycle device
JP5334554B2 (en) Air conditioner
JP6508394B2 (en) Refrigeration system
KR101414860B1 (en) Air conditioner and method of controlling the same
EP2896911A1 (en) Air conditioning apparatus
WO2019065856A1 (en) Refrigeration device
JP3984250B2 (en) Multi-room air conditioner
KR101723689B1 (en) Air conditoner
JP5601890B2 (en) Air conditioner
WO2019021380A1 (en) Air conditioner
JP2017075707A (en) Air conditioner
JP2006125762A (en) Indoor unit, air conditioning device comprising the same, and its operating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918991

Country of ref document: EP

Kind code of ref document: A1