WO2019020446A1 - Method for operating an electric overall onboard power supply, control unit, and vehicle - Google Patents

Method for operating an electric overall onboard power supply, control unit, and vehicle Download PDF

Info

Publication number
WO2019020446A1
WO2019020446A1 PCT/EP2018/069466 EP2018069466W WO2019020446A1 WO 2019020446 A1 WO2019020446 A1 WO 2019020446A1 EP 2018069466 W EP2018069466 W EP 2018069466W WO 2019020446 A1 WO2019020446 A1 WO 2019020446A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical
energy storage
control unit
maintenance
energy store
Prior art date
Application number
PCT/EP2018/069466
Other languages
German (de)
French (fr)
Inventor
Michael Vogt
Matthieu Joly
Stefan Appel
Lanig Garo
Thomas Hackner
Norbert Breimhorst
Original Assignee
Audi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag filed Critical Audi Ag
Publication of WO2019020446A1 publication Critical patent/WO2019020446A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a method for operating an electrical overall on-board network, a control unit and a motor vehicle.
  • a motor vehicle may comprise a plurality of energy stores, which differ in their production costs and their maintenance costs.
  • the energy storage devices may be provided in different electrical systems of the motor vehicle, which are referred to here as sub-systems of an entire on-board network.
  • the extent of the load depends on the extent of the requested or injected power, which is requested from the respective sub-board network or fed into the respective sub-board network. This can lead to an energy store, which can be replaced only with a high level of maintenance, wears out faster than an energy store, which can be replaced with minimal maintenance.
  • the invention is based on the object, an entire board network of a motor vehicle, which includes a plurality of energy storage, the way to operate, that the maintenance costs regarding the energy storage remains minimal.
  • the invention provides a method for operating an electrical overall on-board network.
  • at least two sub-systems of the entire on-board network which in each case comprise at least one electrical energy store, are connected or coupled to one another by means of a respective voltage converter. If an electrical power is fed into or from the respective sub-board network by at least one electrical component of at least one of the sub-board systems, a respective load level of the energy store is detected by a monitoring unit, which is also referred to as an observer.
  • a respective target performance for each energy storage and it is the voltage converter or the voltage converter of the type controlled by the control unit that the respective electrical power of at least one Kom Component is fed according to the calculated target services in the respective energy storage or related from the respective energy storage.
  • Characteristic of the method is thus that a respective maintenance profile includes a value relating to a maintenance of the respective energy storage.
  • the entire on-board network consists of at least two sub-board networks, to each of which an electrical energy store and an electrical component can be connected. Electrical power can be transmitted between the at least two sub-board networks via a respective voltage converter.
  • the monitoring unit determines the load on each energy storage device. Depending on the determined load levels and respective maintenance profiles of the energy storage, the control unit divides the supplied or requested power on the energy storage and controls for this purpose the voltage converter accordingly.
  • the respective share of the power intended for each energy store is the said target power.
  • the load level is weighted by means of the maintenance profile.
  • the value of the maintenance profile relating to the maintenance effort may be a multiplicative factor with which the degree of loading is multiplied and which is greater the greater the maintenance effort. It is thus calculated a fictitious, dependent on the maintenance effort load.
  • Characteristic is therefore that the division takes into account a respective maintenance effort and a respective load level of a respective energy storage.
  • the control unit can drive at least one voltage converter such that the electric power is fed into energy storage taking account of respective maintenance profiles and respective current load levels according to the respective target power is taken from these.
  • the respective maintenance profiles in this case include the value which describes a maintenance effort of the respective energy store.
  • the target performance is chosen so that preferably energy storage, which have a low maintenance, are charged more, whereas energy storage, which have a high maintenance, are less burdened.
  • the invention provides the advantage that an entire on-board network of the type can be operated, that the total maintenance of the entire on-board network is minimal. As well as the value of the maintenance effort, additional values may be provided as factors in the maintenance profiles, for example.
  • a development of the invention provides that a respective maintenance profile comprises a value relating to a systemic relevance of the respective energy store. In other words, a value is stored in a respective maintenance profile, which describes the relevance of the respective energy store for the functioning of the motor vehicle.
  • the maintenance profile of an energy store of a partial onboard network of the air conditioning system can for example have a value which assigns a low priority or system relevance to the respective energy store, whereas the maintenance profile of an energy store of a drive device has a value in comparison to which the respective energy store has a high priority or system assigns relevance.
  • This can also be taken into account by the control unit in the calculation of the target power, so that, for example, an energy store is assigned less target power than the maintenance effort would allow, in order to minimize the wear of system-relevant energy storage. This results in the advantage that the wear of system-relevant energy storage can be minimized.
  • a respective maintenance profile comprises a value which identifies an energy store as a main energy store or as a maintenance energy store.
  • the maintenance profile can identify an energy store as an energy store, which can be charged to a lesser extent, or as an energy store, which can be loaded preferably and / or in a comparatively higher extent. For example, it is possible for the control unit to load predetermined maintenance energy storage in favor of the main energy storage.
  • energy storage devices with higher tolerances for example the cyclization behavior of the energy store, the working temperature and the charging current, are used as maintenance energy storage devices than in the case of the main energy storage devices.
  • Such a systematic separation into main energy storage and maintenance energy storage is also referred to as master-slave energy storage configuration.
  • the combination of the value to be considered can be done in the manner described by weighting.
  • a development of the invention provides that target performance for the respective energy storage are calculated only when a predetermined load level of the energy storage, which is located in the part of the on-board electrical system of the feeding or related electrical component is exceeded.
  • a distribution of the fed or related electrical power to a plurality of energy stores is not done by default or always. Instead, this is done only in the case that a predetermined load level of the energy storage device provided for the feeding or related electrical component is exceeded.
  • an electrical component to supply electric power to the energy store of the same sub-board network by default and the control unit distributes this electrical power only to other energy stores of at least one other sub-board network and accordingly drives at least one voltage converter when a predetermined load level, eg a state of charge of the energy storage of the same sub-board network, exceeded or fallen short of.
  • a development of the invention provides that at least one further electrical component is controlled by the control unit of the type that the electrical target power to be fed into the energy store or to be obtained from the energy stores is reduced.
  • at least one electrical component is actuated by the control unit in order to reduce an electrical power to be supplied or to be output by energy storage.
  • a speed of a fan can be raised by the control unit, if electrical power is fed into the entire on-board network by an electric machine.
  • a portion of the excess electrical power can be absorbed by the fan, whereby the electrical power to be absorbed by the energy storage is reduced.
  • the maintenance profile comprises a wear characteristic.
  • the maintenance profile includes information describing the extent of wear of the respective energy store as a function of the current load level and / or of at least one environmental parameter. For example, it can be described in the wear characteristic how much an energy storage device wears through a charging cycle, whereby the connection of the wear, e.g. may be related to the current temperature of the storage environment or the energy storage itself. This results in the advantage that the current wear behavior can be determined dynamically.
  • the control unit for the motor vehicle also belongs to the invention.
  • the control unit has a processor device which is set up to carry out an embodiment of the method according to the invention.
  • the processor device can have at least one microprocessor and / or at least one microcontroller.
  • the processor device may comprise program code that is adapted to when executed by the processor device to carry out the embodiment of the method according to the invention.
  • the program code may be stored in a data memory of the processor device.
  • the control unit can be designed as a control unit for a motor vehicle.
  • the invention also includes a motor vehicle, which comprises the control unit.
  • the motor vehicle can be designed as a motor vehicle, in particular as a passenger cars or trucks.
  • FIG. 1 shows an overall on-board network of a motor vehicle according to the invention
  • FIG. 2 shows a hierarchy of energy stores, as may be defined in maintenance profiles in the motor vehicle of FIG. 1;
  • FIG. 3 shows a sequence of a method according to the invention.
  • the described components of the embodiments each represent individual features of the invention, which are to be considered independently of one another, which also develop the invention independently of each other and thus also individually or in a different combination than the one shown as part of the invention. Furthermore, the described embodiments can also be supplemented by further features of the invention already described.
  • the entire on-board electrical system 1 may comprise three sub-electrical systems A, B, C with a respective voltage level. These may be, for example, sub-systems A, B, C in a low-voltage, a medium-voltage and a high-voltage voltage position. For example, the high-voltage voltage greater than 60V, the low voltage voltage position is less than 25V, and the mid-voltage voltage is in the range of 25V to 60V.
  • the sub-bus systems A, B, C can be connected to one another by voltage converters DCDC 1, DCDC 2.
  • a sub-board network may include a respective energy store NV, MV, HV and at least one electrical component 3.
  • the energy stores NV, MV, HV can be, for example, lithium-ion batteries or lead-acid batteries.
  • the electrical components 3 may be resistive resistors R, electrical consumers M or generators G, for example. Electrical consumers M may be, for example, an electric motor, air conditioning, ventilation or vehicle lighting.
  • the voltage converters DCDC 1, DCDC 2 can be controlled by a control unit 4.
  • a detection unit 5 can detect a load level 6 of a respective energy store NV, MV, HV and transmit it to the control unit 4.
  • the possible parameters may include, for example, a temperature of a memory, the current, the aging, the cell type, a construction and a state of charge.
  • maintenance profiles 7 of the respective energy storage NV, MV, HV can be stored. It may also be that the respective maintenance profiles 7 are stored in the energy stores NV, MV, HV and can be read out by the control unit 4.
  • a maintenance profile 7 may include a value 8 relating to a maintenance effort of the respective energy store. This value 8 can be dependent, for example, on the costs and / or the expense of exchanging the energy store NV, MV, HV.
  • a maintenance profile 7 can also include a value 9 relating to a system relevance of the respective energy store NV, MV, HV. This can depend on whether the respective energy storage NV, MV, HV for an operation of the motor vehicle 2 is necessary or only for operation of comfort functions such as for operating an air conditioner.
  • the maintenance profile 7 can also comprise a value 10 which identifies the respective energy store NV, MV, HV as the main energy store 11 or as the maintenance energy store 12.
  • a maintenance energy storage 12 can be used for example in energy storage NV, MV, HV, which should preferably be loaded so as to minimize wear of a main energy storage 1 1.
  • Maintenance energy storage 12 may be, for example, energy storage NV, MV, HV, which are cheaper and easier to exchange.
  • the maintenance profile 7 may also include a wear characteristic 13 of the respective energy storage NV, MV, HV.
  • the wear behavior of the energy storage device NV, MV, HV can be defined, for example, as a function of the continuous charging cycles, the current ambient temperature or the current state of charge.
  • the control unit 4 controls at least one electrical component 3 in order to change its power consumption or feed.
  • a generator G which is located in the sub-board network B, feeds power P into the sub-board network B.
  • the energy storage MV of the sub-electrical system B has already reached a predetermined component limit, for example a predetermined load level 6a, eg a maximum state of charge, and this is registered by the detection unit 5.
  • the control unit 4 can then, taking into account the maintenance profiles 7 and the load levels 6 of the energy storage NV, MV, HV, target performance PNV, PMV, PHV calculate which of the respective energy storage NV, MV, HV to be included.
  • Target performance PNV, PMV, PHV can be determined by the way that the maintenance effort has a minimum. Accordingly, the control unit 4 can drive the voltage converters DCDC 1, DCDC 2, so that the respective target powers PNV, PMV, PHV are received by the energy stores NV, MV, HV.
  • FIG. 2 shows a main energy store 1 1 and two maintenance energy stores 12.
  • the energy stores NV, MV, HV can be located in different subbroad networks A, B, C, which are connected via voltage transformers DCDC 1, DCDC 2, for example via DC / DC - Transducers can be connected to each other.
  • the voltage transformers DCDC 1, DCDC 2 can be controlled by the control unit 4.
  • the main energy storage 1 1 may be an energy storage NV, MV, HV, which is to wear to a small extent.
  • the two maintenance energy storages 12 may be energy storages NV, MV, HV, which should preferably be loaded, for example, due to a low maintenance outlay for an exchange.
  • the classification of an energy store NV, MV, HV as a main energy storage 1 1 or as a maintenance energy storage 12 may be set in a value of the maintenance profile 7.
  • the maintenance profile 7 can, for example be stored in the control unit 4 and / or the energy storage NV, MV, HV. It may be that there is an electrical power requirement P in a sub-electrical system A, which can not be optimally covered by the energy store HV of the sub-board network A and the generators G installed in the sub-bus system A. Then can be transmitted via the voltage converter DCDC 1, DCDC 2 from the remaining part of the on-board electrical systems of the entire on-board electrical system 1, PB power, PC in the sub-electrical system A. In this case, the control unit 4 for a maintenance energy storage 12 can determine a target power PC, which is above the target power of the main energy storage PB, whereby the wear of the main energy storage 1 1 is reduced to the maintenance energy storage 12.
  • Fig. 3 shows a possible sequence of a method according to the invention.
  • a first step P1 at least one electrical component 3 can draw electrical power P from a sub-electrical system A. It may be that the detection unit 5 detects a respective load level 6 of the energy store NV, MV, HV and transmits it to the control unit 4 P2. A predetermined load factor 6a of the energy store HV of the sub-unit A can be exceeded.
  • the control unit 4 can determine target powers PNV, PMV, PHV for the respective energy stores NV, MV, HV P3.
  • the maintenance profiles 7 are dynamically used in conjunction with the load levels 6, in accordance with the existing generators / current sources G and consumers / sinks M, in order to distribute the electrical power L to the sub-system, so that no energy store NV, MV, HV is loaded more is considered necessary and marginal loads and types of energy storage are reduced.
  • Possible parameters of the load types are a temperature of the energy store ( ⁇ ), current (l), voltage of the energy store (U), power loss (Q), temperature of the energy storage environment (tU), IRMS value, cyclization (Z), aging (t ), Cell type (type), design (K), state of charge (SOC). It may be that the control unit 4 controls a further electrical component 3 in order to reduce its power requirement P4.
  • the control unit 4 can control the voltage transformers DCDC 1, DCDC 2 such that the respective target powers PNV, PMV, PHV are obtained from the energy stores NV, MV, HV P5.
  • the examples show how can be operated by the invention, an entire on-board network of a motor vehicle of the kind that the maintenance costs remain minimal.

Abstract

The invention relates to a method for operating an electric overall onboard power supply(1), in which at least two partial onboard power supplies (A, B) of the overall onboard power supply (1), which each comprise at least one electrical energy accumulator (HV, MV), are connected to one another by means of a corresponding voltage converter (DCDC 1), and at least one electrical component (3) of at least one of the partial onboard power supplies (A, B) is used to feed or draw electrical power (P) into/from the corresponding partial onboard power supply (A, B), and a particular target power (PHV, PMV) for the energy accumulators (HV, MV) is calculated by a control unit (4) according to a particular degree of loading (6) and a particular maintenance profile (7) of the energy accumulators (HV, HM), and the voltage converters (DCDC 1) are controlled by the control unit (4) in such a manner that the electrical powers (P) of the at least one component (3) are fed into the respective energy accumulators (HV, MV) or drawn from the respective energy accumulators (HV, MV) according to the calculated target powers (PHV, PMV). The maintenance profile (7) comprises a value (8) relating to a maintenance effort of the energy accumulator (HV, MV) in question.

Description

Verfahren zum Betreiben eines elektrischen Gesamtbordnetzes, Steuereinheit und Kraftfahrzeug  Method for operating an electrical overall on-board network, control unit and motor vehicle
BESCHREIBUNG: Die Erfindung betrifft ein Verfahren zum Betreiben eines elektrischen Gesamtbordnetzes, eine Steuereinheit und ein Kraftfahrzeug. DESCRIPTION The invention relates to a method for operating an electrical overall on-board network, a control unit and a motor vehicle.
Ein Kraftfahrzeug kann mehrere Energiespeicher umfassen, welche sich in ihren Herstellungskosten und ihrem Wartungsaufwand voneinander unter- scheiden. Die Energiespeicher können in unterschiedlichen elektrischen Bordnetzen des Kraftfahrzeugs bereitgestellt sein, die hier als Teilbordnetze eines Gesamtbordnetzes bezeichnet sind. Während eines Betriebs des Kraftfahrzeugs kann es dazu kommen, dass die Energiespeicher jeweiliger Teilbordnetze in einem unterschiedlichen Ausmaß belastet werden. Dabei hängt das Ausmaß der Belastung von dem Ausmaß der angeforderten oder eingespeisten Leistung ab, welche aus dem jeweiligen Teilbordnetz angefragt bzw. in das jeweilige Teilbordnetz eingespeist wird. Dies kann dazu führen, dass ein Energiespeicher, welcher nur unter einem hohen Wartungsaufwand ausgewechselt werden kann, schneller verschleißt als ein Energiespeicher, welcher sich unter einem geringen Wartungsaufwand austauschen lässt. Um den Wartungsaufwand und die Wartungskosten zu reduzieren , ist es erstrebenswert, Energiespeicher zu schonen, welche sich nur unter einem hohen Aufwand ersetzen lassen. Der Erfindung liegt die Aufgabe zugrunde, ein Gesamtbord netz eines Kraftfahrzeugs, welches mehrere Energiespeicher umfasst, der Art zu betreiben, dass der Wartungsaufwand betreffend die Energiespeicher minimal bleibt. A motor vehicle may comprise a plurality of energy stores, which differ in their production costs and their maintenance costs. The energy storage devices may be provided in different electrical systems of the motor vehicle, which are referred to here as sub-systems of an entire on-board network. During operation of the motor vehicle, it may happen that the energy storage of respective sub-network are charged to a different extent. The extent of the load depends on the extent of the requested or injected power, which is requested from the respective sub-board network or fed into the respective sub-board network. This can lead to an energy store, which can be replaced only with a high level of maintenance, wears out faster than an energy store, which can be replaced with minimal maintenance. To reduce the maintenance and maintenance costs, it is desirable to conserve energy storage, which can be replaced only at great expense. The invention is based on the object, an entire board network of a motor vehicle, which includes a plurality of energy storage, the way to operate, that the maintenance costs regarding the energy storage remains minimal.
Die Aufgabe wird durch die Gegenstände der unabhängigen Patentansprü- che gelöst. Vorteilhafte Weiterbildungen der Erfindung sind durch die Merkmale der abhängigen Patentansprüche, die folgende Beschreibung sowie die Figuren offenbart Durch die Erfindung ist ein Verfahren zum Betreiben eines elektrischen Gesamtbordnetzes bereitgestellt. Dabei werden zumindest zwei Teilbordnetze des Gesamtbordnetzes, welche jeweils zumindest einen elektrischen Energiespeicher umfassen, mittels eines jeweiligen Spannungswandlers mitei- nander verbunden oder gekoppelt. Wird durch zumindest eine elektrische Komponente zumindest eines der Teilbordnetze eine elektrische Leistung in das jeweilige Teilbordnetz eingespeist oder aus diesem bezogen, so wird ein jeweiliger Belastungsgrad der Energiespeicher durch eine Überwachungseinheit, welche auch als Observer bezeichnet wird, erfasst. In Abhängigkeit des jeweiligen Belastungsgrads und einem jeweiligen Wartungsprofil der Energiespeicher wird durch eine Steuereinheit eine jeweilige Zielleistung für den jeweiligen Energiespeicher berechnet und es wird der Spannungswandler oder es werden die Spannungswandler der Art durch die Steuereinheit gesteuert, dass die jeweilige elektrische Leistung der zumindest einen Kom- ponente gemäß der berechneten Zielleistungen in die jeweiligen Energiespeicher eingespeist oder aus den jeweiligen Energiespeicher bezogen wird. Kennzeichnend für das Verfahren ist also, dass ein jeweiliges Wartungsprofil einen Wert betreffend einen Wartungsaufwand des jeweiligen Energiespeichers umfasst. Mit anderen Worten besteht das Gesamtbordnetzes aus zumindest zwei Teilbordnetzen, an denen jeweils ein elektrischer Energiespeicher und eine elektrische Komponente angeschlossen sein können. Über einen jeweiligen Spannungswandler kann elektrische Leistung zwischen den zumindest zwei Teilbordnetzen übertragen werden. Wird einem der Teilbordnetze elektrische Leistung zugeführt oder von diesem angefor- dert, so bestimmt die Überwachungseinheit die Belastung eines jeden Energiespeichers. In Abhängigkeit von den ermittelten Belastungsgraden und jeweiliger Wartungsprofile der Energiespeicher teilt die Steuereinheit die zugeführte oder angeforderte Leistung auf die Energiespeicher auf und steuert hierzu die Spannungswandler dementsprechend an. Der für jeden Ener- giespeicher vorgesehene jeweilige Anteil an der Leistung ist die besagte Zielleistung. Für die Bestimmung der Zieileistungen kann beispielsweise vorgesehen sein, dass der Belastungsgrad mittels des Wartungsprofils gewichtet wird. Beispielsweise kann der Wert des Wartungsprofils betreffend den Wartungsaufwand ein multiplikativer Faktor sein, mit welchem der Belas- tungsgrad multipliziert wird und der umso größer ist, je größer der Wartungsaufwand ist. Es wird also ein fiktiver, vom Wartungsaufwand abhängiger Belastungsgrad berechnet. Es können dann bei den Energiespeichern gleiche fiktive Belastungsgrade vorgesehen werden, woraus der Wert der jeweiligen Zielleistung resultiert. Kennzeichnend ist also, dass die Aufteilung unter Berücksichtigung eines jeweiligen Wartungsaufwandes und eines jeweiligen Belastungsgrads eines jeweiligen Energiespeichers erfolgt. Wird beispielsweise durch eine elektri- sehe Maschine elektrische Leistung in eines der Teilbordnetze eingespeist oder aus diesem entnommen, so kann die Steuereinheit zumindest einen Spannungswandler der Art ansteuern, dass die elektrische Leistung unter Berücksichtigung jeweiliger Wartungsprofile und jeweiliger aktueller Belastungsgrade gemäß jeweiliger Zielleistungen in Energiespeicher eingespeist oder aus diesen entnommen wird. Die jeweiligen Wartungsprofile umfassen dabei den Wert, welcher einen Wartungsaufwand des jeweiligen Energiespeichers beschreibt. Die Zielleistungen werden dabei so gewählt, dass bevorzugt Energiespeicher, welche einen geringen Wartungsaufwand aufweisen, mehr belastet werden, wohingegen Energiespeicher, welche einen hohen Wartungsaufwand aufweisen, weniger belastet werden. Durch die Erfindung ergibt sich der Vorteil, dass ein Gesamtbordnetzes der Art betrieben werden kann, dass der Wartungsaufwand für das Gesamtbordnetz insgesamt minimal ist. Genauso wie der Wert des Wartungsaufwands können weitere Werte z.B. als Faktoren in den Wartungsprofilen vorgesehen sein. Eine Weiterbildung der Erfindung sieht vor, dass ein jeweiliges Wartungsprofil einen Wert betreffend eine Systemrelevanz des jeweiligen Energiespeichers umfasst. Mit anderen Worten ist in einem jeweiligen Wartungsprofil ein Wert hinterlegt, welcher die Relevanz des jeweiligen Energiespeichers für ein Funktionieren des Kraftfahrzeugs beschreibt. Das Wartungsprofil eines Energiespeichers eines Teilbordnetzes der Klimaanlage kann beispielsweise einen Wert aufweisen, welcher dem jeweiligen Energiespeicher eine geringe Priorität oder Systemrelevanz zuordnet, während das Wartungsprofil eines Energiespei- chers einer Antriebsvorrichtung in Vergleich dazu einen Wert aufweist, welcher dem jeweiligen Energiespeicher eine hohe Priorität oder System rele- vanz zuordnet. Dies kann durch die Steuereinheit bei der Berechnung der Zielleistung ebenfalls berücksichtigt werden, sodass beispielsweise einem Energiespeicher weniger Zielleistung zugeordnet wird, als es der Wartungs- aufwand erlauben würde, um somit den Verschleiß systemrelevanter Energiespeicher zu minimieren. Dadurch ergibt sich der Vorteil, dass der Verschleiß von systemrelevanten Energiespeichern minimiert werden kann. Die Kombination des Werts betreffend einen Wartungsaufwand und des Werts betreffend die Systemrelevanz kann z.B. durch Gewichten jedes der Werte und anschließendes Verknüpfen, z.B. mittels einer Addition, erfolgen. Die Gewichtung kann multiplikativ mittels Faktoren erfolgen, die zuvor z.B. durch einen Benutzer oder bei der Herstellung festgelegt werden können. Eine Weiterbildung der Erfindung sieht vor, dass ein jeweiliges Wartungsprofil einen Wert umfasst, welche einen Energiespeicher als Hauptenergiespeicher oder als Wartungsenergiespeicher identifiziert. Mit anderen Worten kann das Wartungsprofil einen Energiespeicher als Energiespeicher identifizieren, welcher in einem geringeren Ausmaß belastet werden kann, oder als Energiespeicher, welcher bevorzugt und/oder in einem im Vergleich höheren Ausmaß belastet werden kann. So ist es beispielsweise möglich, dass die Steuereinheit vorbestimmte Wartungsenergiespeicher zugunsten der Hauptenergiespeicher belastet. Es kann auch sein, dass als Wartungsenergiespeicher bestimmte Energiespeicher mit höheren Toleranzen, beispiels- weise bei dem Zyklisierungsverhalten des Energiespeichers, der Arbeitstemperatur und dem Ladestrom, verwendet werden als bei den Hauptenergiespeichern. Eine solche systematische Trennung in Hauptenergiespeicher und Wartungsenergiespeicher wird auch als Master-Slave- Energiespeicherkonfiguration bezeichnet. Dadurch ergibt sich der Vorteil, dass vorbestimmte Energiespeicher für einen stärkeren Verschleiß vorgesehen werden können, wodurch der Verschleiß eines Hauptenergiespeichers minimiert werden kann. Die Kombination der zu berücksichtigenden Wert kann in der beschriebenen Weise mittels Gewichtung erfolgen. Eine Weiterbildung der Erfindung sieht vor, dass Zielleistungen für die jeweiligen Energiespeicher nur berechnet werden, wenn ein vorbestimmter Belastungsgrad des Energiespeichers, der sich in dem Teil bordnetz der einspeisenden oder beziehenden elektrischen Komponente befindet, überschritten wird. Mit anderen Worten erfolgt eine Aufteilung der eingespeisten oder be- zogenen elektrischen Leistung auf mehrere Energiespeicher nicht standardmäßig oder immer. Stattdessen erfolgt dies nur in dem Fall, dass ein vorbestimmter Belastungsgrad des für die einspeisende oder beziehende elektrische Komponente vorgesehenen Energiespeichers überschritten wird. So ist es beispielsweise möglich, dass eine elektrische Komponente standardmä- ßig elektrische Leistung in den Energiespeicher des gleichen Teilbordnetzes einspeist und die Steuereinheit diese elektrische Leistung nur auf andere Energiespeicher zumindest eines anderen Teilbordnetzes verteilt und zumindest einen Spannungswandler dementsprechend ansteuert, wenn ein vorbestimmter Belastungsgrad, z.B. ein Ladezustand des Energiespeichers des gleichen Teilbordnetzes, überschritten oder unterschritten wird. Dadurch ergibt sich der Vorteil, dass primär der zuständige Energiespeicher genutzt wird, welcher für ein Lastprofil des jeweiligen Teilbordnetzes optimiert sein kann. The object is achieved by the subject matters of the independent patent claims. Advantageous developments of the invention are disclosed by the features of the dependent claims, the following description and the figures The invention provides a method for operating an electrical overall on-board network. In this case, at least two sub-systems of the entire on-board network, which in each case comprise at least one electrical energy store, are connected or coupled to one another by means of a respective voltage converter. If an electrical power is fed into or from the respective sub-board network by at least one electrical component of at least one of the sub-board systems, a respective load level of the energy store is detected by a monitoring unit, which is also referred to as an observer. Depending on the respective load level and a respective maintenance profile of the energy storage is calculated by a control unit, a respective target performance for each energy storage and it is the voltage converter or the voltage converter of the type controlled by the control unit that the respective electrical power of at least one Kom Component is fed according to the calculated target services in the respective energy storage or related from the respective energy storage. Characteristic of the method is thus that a respective maintenance profile includes a value relating to a maintenance of the respective energy storage. In other words, the entire on-board network consists of at least two sub-board networks, to each of which an electrical energy store and an electrical component can be connected. Electrical power can be transmitted between the at least two sub-board networks via a respective voltage converter. If electrical power is supplied to or requested from one of the sub-electrical systems, then the monitoring unit determines the load on each energy storage device. Depending on the determined load levels and respective maintenance profiles of the energy storage, the control unit divides the supplied or requested power on the energy storage and controls for this purpose the voltage converter accordingly. The respective share of the power intended for each energy store is the said target power. For the determination of the draw power, it may be provided, for example, that the load level is weighted by means of the maintenance profile. For example, the value of the maintenance profile relating to the maintenance effort may be a multiplicative factor with which the degree of loading is multiplied and which is greater the greater the maintenance effort. It is thus calculated a fictitious, dependent on the maintenance effort load. It can then be provided in the energy storage same fictitious load levels, resulting in the value of the respective target performance. Characteristic is therefore that the division takes into account a respective maintenance effort and a respective load level of a respective energy storage. For example, if electric power is fed into or taken out of one of the sub-electrical systems by an electric machine, the control unit can drive at least one voltage converter such that the electric power is fed into energy storage taking account of respective maintenance profiles and respective current load levels according to the respective target power is taken from these. The respective maintenance profiles in this case include the value which describes a maintenance effort of the respective energy store. The target performance is chosen so that preferably energy storage, which have a low maintenance, are charged more, whereas energy storage, which have a high maintenance, are less burdened. The invention provides the advantage that an entire on-board network of the type can be operated, that the total maintenance of the entire on-board network is minimal. As well as the value of the maintenance effort, additional values may be provided as factors in the maintenance profiles, for example. A development of the invention provides that a respective maintenance profile comprises a value relating to a systemic relevance of the respective energy store. In other words, a value is stored in a respective maintenance profile, which describes the relevance of the respective energy store for the functioning of the motor vehicle. The maintenance profile of an energy store of a partial onboard network of the air conditioning system can for example have a value which assigns a low priority or system relevance to the respective energy store, whereas the maintenance profile of an energy store of a drive device has a value in comparison to which the respective energy store has a high priority or system assigns relevance. This can also be taken into account by the control unit in the calculation of the target power, so that, for example, an energy store is assigned less target power than the maintenance effort would allow, in order to minimize the wear of system-relevant energy storage. This results in the advantage that the wear of system-relevant energy storage can be minimized. The combination of the value relating to a maintenance effort and the value relating to the systemic relevance can be determined, for example, by weighting each of the values and then linking, for example by means of an addition done. The weighting can be done multiplicatively by means of factors that can previously be determined, for example, by a user or during manufacture. A development of the invention provides that a respective maintenance profile comprises a value which identifies an energy store as a main energy store or as a maintenance energy store. In other words, the maintenance profile can identify an energy store as an energy store, which can be charged to a lesser extent, or as an energy store, which can be loaded preferably and / or in a comparatively higher extent. For example, it is possible for the control unit to load predetermined maintenance energy storage in favor of the main energy storage. It may also be the case that energy storage devices with higher tolerances, for example the cyclization behavior of the energy store, the working temperature and the charging current, are used as maintenance energy storage devices than in the case of the main energy storage devices. Such a systematic separation into main energy storage and maintenance energy storage is also referred to as master-slave energy storage configuration. This results in the advantage that predetermined energy storage can be provided for a greater wear, whereby the wear of a main energy storage can be minimized. The combination of the value to be considered can be done in the manner described by weighting. A development of the invention provides that target performance for the respective energy storage are calculated only when a predetermined load level of the energy storage, which is located in the part of the on-board electrical system of the feeding or related electrical component is exceeded. In other words, a distribution of the fed or related electrical power to a plurality of energy stores is not done by default or always. Instead, this is done only in the case that a predetermined load level of the energy storage device provided for the feeding or related electrical component is exceeded. Thus, it is possible, for example, for an electrical component to supply electric power to the energy store of the same sub-board network by default and the control unit distributes this electrical power only to other energy stores of at least one other sub-board network and accordingly drives at least one voltage converter when a predetermined load level, eg a state of charge of the energy storage of the same sub-board network, exceeded or fallen short of. This results in the advantage that primarily the responsible energy storage is used, which can be optimized for a load profile of the respective sub-board network.
Eine Weiterbildung der Erfindung sieht vor, dass zumindest eine weitere elektrische Komponente durch die Steuereinheit der Art angesteuert wird, dass die in die Energiespeicher einzuspeisende oder aus den Energiespeichern zu beziehende elektrische Zielleistung verringert wird. Mit anderen Worten wird zumindest eine elektrische Komponente durch die Steuereinheit angesteuert, um eine durch Energiespeicher einzuspeisende oder abzugebende elektrische Leistung zu verringern. So kann beispielsweise eine Drehzahl eines Lüfter durch die Steuereinheit angehoben werden, wenn durch eine elektrische Maschine elektrische Leistung in das Gesamtbordnetzes eingespeist wird. Somit kann ein Teil der überschüssigen elektrischen Leistung durch den Lüfter aufgenommen werden, wodurch die durch die Energiespeicher aufzunehmende elektrische Leistung verringert wird. Dadurch ergibt sich der Vorteil, dass mittels elektrischer Komponenten des Gesamtbordnetzes Leistungsvorhalte aufgebaut werden können, wodurch die Belas- tung der Energiespeicher verringert werden kann. A development of the invention provides that at least one further electrical component is controlled by the control unit of the type that the electrical target power to be fed into the energy store or to be obtained from the energy stores is reduced. In other words, at least one electrical component is actuated by the control unit in order to reduce an electrical power to be supplied or to be output by energy storage. For example, a speed of a fan can be raised by the control unit, if electrical power is fed into the entire on-board network by an electric machine. Thus, a portion of the excess electrical power can be absorbed by the fan, whereby the electrical power to be absorbed by the energy storage is reduced. This results in the advantage that power reserves can be established by means of electrical components of the entire on-board network, as a result of which the load on the energy store can be reduced.
Eine Weiterbildung sieht vor, dass das Wartungsprofil eine Verschleißcharakteristik umfasst. Mit anderen Worten umfasst das Wartungsprofil Angaben, welche das Ausmaß des Verschleißes des jeweiligen Energiespeichers in Abhängigkeit dem aktuellen Belastungsgrad und/oder von zumindest einem Umweltparameter beschreiben. So kann beispielsweise in der Verschleißcharakteristik beschrieben sein, wie stark ein Energiespeicher durch einen Ladezyklus verschleißt, wobei auch der Zusammenhang des Verschleißes z.B. mit der aktuellen Temperatur der Speicherumgebung oder des Energiespeichers selbst in Zusammenhang gesetzt sein kann. Dadurch ergibt sich der Vorteil, dass das aktuelle Verschleißverhalten dynamisch ermittelt werden kann. A further development provides that the maintenance profile comprises a wear characteristic. In other words, the maintenance profile includes information describing the extent of wear of the respective energy store as a function of the current load level and / or of at least one environmental parameter. For example, it can be described in the wear characteristic how much an energy storage device wears through a charging cycle, whereby the connection of the wear, e.g. may be related to the current temperature of the storage environment or the energy storage itself. This results in the advantage that the current wear behavior can be determined dynamically.
Zu der Erfindung gehört auch die Steuereinheit für das Kraftfahrzeug. Die Steuereinheit weist eine Prozessoreinrichtung auf, die dazu eingerichtet ist, eine Ausführungsform des erfindungsgemäßen Verfahrens durchzuführen. Die Prozessoreinrichtung kann hierzu zumindest einen Mikroprozessor und/oder zumindest einen MikroController aufweisen. Des Weiteren kann die Prozessoreinrichtung Programmcode aufweisen, der dazu eingerichtet ist, bei Ausführen durch die Prozessoreinrichtung die Ausführungsform des erfindungsgemäßen Verfahrens durchzuführen. Der Programmcode kann in einem Datenspeicher der Prozessoreinrichtung gespeichert sein. Die Steuereinheit kann als Steuergerät für ein Kraftfahrzeug ausgestaltet sein. The control unit for the motor vehicle also belongs to the invention. The control unit has a processor device which is set up to carry out an embodiment of the method according to the invention. For this purpose, the processor device can have at least one microprocessor and / or at least one microcontroller. Furthermore, the processor device may comprise program code that is adapted to when executed by the processor device to carry out the embodiment of the method according to the invention. The program code may be stored in a data memory of the processor device. The control unit can be designed as a control unit for a motor vehicle.
Zu der Erfindung gehört auch ein Kraftfahrzeug, welches die Steuereinheit umfasst. Das Kraftfahrzeug kann als Kraftwagen, insbesondere als Personen kraftwage oder Lastkraftwagen, ausgestaltet sein. The invention also includes a motor vehicle, which comprises the control unit. The motor vehicle can be designed as a motor vehicle, in particular as a passenger cars or trucks.
Im Folgenden sind Ausführungsbeispiele der Erfindung beschrieben. Hierzu zeigt: In the following, embodiments of the invention are described. This shows:
Fig. 1 ein Gesamtbordnetzes eines erfindungsgemäßen Kraftfahrzeugs; Fig. 2 eine Hierarchie von Energiespeichern, wie sie bei dem Kraftfahrzeug von Fig. 1 in Wartungsprofilen festgelegt sein kann; und 1 shows an overall on-board network of a motor vehicle according to the invention; FIG. 2 shows a hierarchy of energy stores, as may be defined in maintenance profiles in the motor vehicle of FIG. 1; and
Fig. 3 einen Ablauf eines erfindungsgemäßen Verfahrens. 3 shows a sequence of a method according to the invention.
Bei den im Folgenden erläuterten Ausführungsbeispielen handelt es sich um bevorzugte Ausführungsformen der Erfindung. Bei den Ausführungsbeispielen stellen die beschriebenen Komponenten der Ausführungsformen jeweils einzelne, unabhängig voneinander zu betrachtende Merkmale der Erfindung dar, welche die Erfindung jeweils auch unabhängig voneinander weiterbilden und damit auch einzeln oder in einer anderen als der gezeigten Kombination als Bestandteil der Erfindung anzusehen sind. Des Weiteren sind die beschriebenen Au sf ü h ru ng sform en auch durch weitere der bereits beschriebenen Merkmale der Erfindung ergänzbar. The exemplary embodiments explained below are preferred embodiments of the invention. In the exemplary embodiments, the described components of the embodiments each represent individual features of the invention, which are to be considered independently of one another, which also develop the invention independently of each other and thus also individually or in a different combination than the one shown as part of the invention. Furthermore, the described embodiments can also be supplemented by further features of the invention already described.
In den Figuren sind funktionsgleiche Elemente jeweils mit denselben Bezugszeichen versehen. In the figures, functionally identical elements are each provided with the same reference numerals.
Fig. 1 zeigt ein Gesamtbordnetzes 1 eines erfindungsgemäßen Kraftfahrzeugs 2. Das Gesamtbordnetz 1 kann drei Teilbordnetze A, B, C mit einer jeweiligen Spannungslage umfassen. Dabei kann es sich beispielsweise um Teilbordnetze A, B, C in einer Niedervolt-, einer Mittel volt- und einer Hoch- voltspannungslage handeln. Beispielsweise kann die Hochvoltspannungsla- ge größer als 60V, die Niedervoltspannungslage kleiner 25V sein und die Mittelvoltspannungslage im Bereich von 25V bis 60V liegen. 1 shows an overall on-board network 1 of a motor vehicle 2 according to the invention. The entire on-board electrical system 1 may comprise three sub-electrical systems A, B, C with a respective voltage level. These may be, for example, sub-systems A, B, C in a low-voltage, a medium-voltage and a high-voltage voltage position. For example, the high-voltage voltage greater than 60V, the low voltage voltage position is less than 25V, and the mid-voltage voltage is in the range of 25V to 60V.
Die Teilbordnetze A,B,C können durch Spannungswandler DCDC 1 , DCDC 2 miteinander verbunden sein. Ein Teilbordnetz kann einen jeweiligen Energiespeicher NV, MV, HV und zumindest eine elektrische Komponente 3 umfassen. Bei den Energiespeichern NV, MV, HV kann es sich beispielsweise um Lithiumionenakkumulatoren oder um Bleiakkumulatoren handeln. Bei den elektrischen Komponenten 3 kann es sich beispielsweise um ohmsche Wi- derstände R, elektrische Verbraucher M oder Generatoren G handeln. Elektrische Verbraucher M können beispielsweise ein Elektromotor, eine Klimaanlage, eine Lüftung oder eine Fahrzeugbeleuchtung sein. Die Spannungswandler DCDC 1 , DCDC 2 können durch eine Steuereinheit 4 gesteuert werden. Dies kann beispielsweise direkt durch eine Spannungslagenvorgabe an ein Spannungswandler DCDC 1 , DCDC 2 erfolgen oder über eine Regelschleife die innerhalb der Spannungsgrenzen der jeweiligen Spannungslage die Leistung entsprechend ausregelt, sodass eine Zielleistung PNV, PMV, PHV in das gewünschte Teilbordnetz übertragen wird. Eine Erfassungseinheit 5 kann einen Belastungsgrad 6 eines jeweiligen Energiespeichers NV, MV, HV erfassen und an die Steuereinheit 4 übermitteln. Der BelastungsgradThe sub-bus systems A, B, C can be connected to one another by voltage converters DCDC 1, DCDC 2. A sub-board network may include a respective energy store NV, MV, HV and at least one electrical component 3. The energy stores NV, MV, HV can be, for example, lithium-ion batteries or lead-acid batteries. The electrical components 3 may be resistive resistors R, electrical consumers M or generators G, for example. Electrical consumers M may be, for example, an electric motor, air conditioning, ventilation or vehicle lighting. The voltage converters DCDC 1, DCDC 2 can be controlled by a control unit 4. This can for example be done directly by a voltage level specification to a voltage converter DCDC 1, DCDC 2 or via a control loop which corrects the power within the voltage limits of the respective voltage level accordingly, so that a target power PNV, PMV, PHV is transmitted to the desired sub-electrical system. A detection unit 5 can detect a load level 6 of a respective energy store NV, MV, HV and transmit it to the control unit 4. The load factor
6 kann von verschiedenen Belastungsarten abhängen. Die möglichen Parameter können beispielsweise eine Temperatur eines Speichers, der Strom, die Alterung, der Zelltyp, eine Bauweise und einen Ladungszustand umfassen. In der Steuereinheit 4 können Wartungsprofile 7 der jeweiligen Energie- Speicher NV, MV, HV gespeichert sein. Es kann auch sein, dass die jeweiligen Wartungsprofile 7 in den Energiespeichern NV, MV, HV gespeichert sind und von der Steuereinheit 4 ausgelesen werden können. Ein Wartungsprofil6 may depend on different types of stress. The possible parameters may include, for example, a temperature of a memory, the current, the aging, the cell type, a construction and a state of charge. In the control unit 4 maintenance profiles 7 of the respective energy storage NV, MV, HV can be stored. It may also be that the respective maintenance profiles 7 are stored in the energy stores NV, MV, HV and can be read out by the control unit 4. A maintenance profile
7 kann einen Wert 8 betreffend einen Wartungsaufwand des jeweiligen Energiespeichers umfassen. Dieser Wert 8 kann beispielsweise von den Kosten und/oder dem Aufwand eines Austausches des Energiespeichers NV, MV, HV abhängig sein. Ein Wartungsprofil 7 kann auch einen Wert 9 betreffend eine System relevanz des jeweiligen Energiespeichers NV, MV, HV umfassen. Dieser kann davon abhängen, ob der jeweilige Energiespeicher NV, MV, HV für einen Betrieb des Kraftfahrzeugs 2 notwendig ist oder nur für einen Betrieb von Komfortfunktionen wie beispielsweise zum Betreiben einer Klimaanlage. Das Wartungsprofil 7 kann auch einen Wert 10 umfassen, welcher den jeweiligen Energiespeicher NV, MV, HV als Hauptenergiespeicher 1 1 oder als Wartungsenergiespeicher 12 identifiziert. Ein Wartungsenergiespeicher 12 kann beispielsweise in Energiespeicher NV, MV, HV sein, welcher bevorzugt belastet werden soll, um somit einen Verschleiß eines Hauptenergiespeicher 1 1 zu minimieren. Wartungsenergiespeicher 12 können beispielsweise Energiespeicher NV, MV, HV sein, welche günstiger und einfacher auszutauschen sind. Das Wartungsprofil 7 kann auch eine Verschleißcharakteristik 13 des jeweiligen Energiespeichers NV, MV, HV umfassen. In der Verschleißcharakteristik 13 kann das Verschleißverhalten des Energiespeichers NV, MV, HV beispielsweise in Abhängigkeit der durchlaufenden Ladezyklen, der aktuellen Umgebungstemperatur oder des aktuellen Ladezustands definiert sein. Um die Belastung der Energiespeicher NV, MV, HV zu verringern kann es sein, dass die Steuereinheit 4 zumindest eine elektrische Komponente 3 ansteuert, um deren Leistungsaufnahme bzw. Einspeisung zu verändern. Es kann sein, dass ein Generator G, welcher sich in dem Teilbordnetz B befindet, Leistung P in das Teilbordnetz B einspeist. Dabei kann es sein, dass der Energiespeicher MV des Teilbordnetzes B bereits eine vorbestimmte Bauteiigrenze, beispielsweise einen vorbestimmten Belastungsgrad 6a, z.B. einen maximalen Ladezustand erreicht hat und dies von der Erfassungseinheit 5 registriert wird. Die Steuereinheit 4 kann daraufhin, unter Berücksichtigung der Wartungsprofile 7 und der Belastungsgrade 6 der Energiespeicher NV, MV, HV, Zielleistungen PNV, PMV, PHV berechnen, welche von den jeweiligen Energiespeichern NV, MV, HV aufgenommen werden sollen. Zielleistungen PNV, PMV, PHV können der Art bestimmt werden, dass der Wartungsaufwand ein Minimum aufweist. Dementsprechend kann die Steuereinheit 4 die Spannungswandler DCDC 1 , DCDC 2 ansteuern, sodass die jeweiligen Zielleistungen PNV, PMV, PHV von den Energiespeichern NV, MV, HV aufgenommen werden. 7 may include a value 8 relating to a maintenance effort of the respective energy store. This value 8 can be dependent, for example, on the costs and / or the expense of exchanging the energy store NV, MV, HV. A maintenance profile 7 can also include a value 9 relating to a system relevance of the respective energy store NV, MV, HV. This can depend on whether the respective energy storage NV, MV, HV for an operation of the motor vehicle 2 is necessary or only for operation of comfort functions such as for operating an air conditioner. The maintenance profile 7 can also comprise a value 10 which identifies the respective energy store NV, MV, HV as the main energy store 11 or as the maintenance energy store 12. A maintenance energy storage 12 can be used for example in energy storage NV, MV, HV, which should preferably be loaded so as to minimize wear of a main energy storage 1 1. Maintenance energy storage 12 may be, for example, energy storage NV, MV, HV, which are cheaper and easier to exchange. The maintenance profile 7 may also include a wear characteristic 13 of the respective energy storage NV, MV, HV. In the wear characteristic 13, the wear behavior of the energy storage device NV, MV, HV can be defined, for example, as a function of the continuous charging cycles, the current ambient temperature or the current state of charge. In order to reduce the load on the energy stores NV, MV, HV, it may be that the control unit 4 controls at least one electrical component 3 in order to change its power consumption or feed. It may be that a generator G, which is located in the sub-board network B, feeds power P into the sub-board network B. It may be that the energy storage MV of the sub-electrical system B has already reached a predetermined component limit, for example a predetermined load level 6a, eg a maximum state of charge, and this is registered by the detection unit 5. The control unit 4 can then, taking into account the maintenance profiles 7 and the load levels 6 of the energy storage NV, MV, HV, target performance PNV, PMV, PHV calculate which of the respective energy storage NV, MV, HV to be included. Target performance PNV, PMV, PHV can be determined by the way that the maintenance effort has a minimum. Accordingly, the control unit 4 can drive the voltage converters DCDC 1, DCDC 2, so that the respective target powers PNV, PMV, PHV are received by the energy stores NV, MV, HV.
Fig. 2 zeigt einen Hauptenergiespeicher 1 1 und zwei Wartungsenergiespeicher 12. Die Energiespeicher NV, MV, HV, können sich in jeweils unterschiedlichen Teilbordnetzen A, B, C befinden, welche über Spannungswand- ler DCDC 1 , DCDC 2, beispielsweise über DC/DC- Wandler, miteinander verbunden sein können. Die Spannungswandler DCDC 1 , DCDC 2 können durch die Steuereinheit 4 angesteuert werden. Der Hauptenergiespeicher 1 1 kann ein Energiespeicher NV, MV, HV sein, welcher in einem geringen Ausmaß verschleißen soll. Die zwei Wartungsenergiespeicher 12 können Ener- giespeicher NV, MV, HV sein, welche beispielsweise aufgrund eines geringen Wartungsaufwand bei einem Austausch bevorzugt belastet werden sollen. Die Einstufung eines Energiespeichers NV, MV, HV als Hauptenergiespeicher 1 1 oder als Wartungsenergiespeicher 12 kann in einem Wert des Wartungsprofils 7 festgelegt sein. Das Wartungsprofil 7 kann beispielsweise in der Steuereinheit 4 und/oder dem Energiespeicher NV, MV, HV gespeichert sein. Es kann sein, dass in einem Teilbordnetz A ein elektrischer Leistungsbedarf P vorliegt, der nicht optimal aus dem Energiespeicher HV der Teilbordnetzes A und den in dem Teilbordnetz A verbauten Generatoren G gedeckt werden kann. Daraufhin kann über die Spannungswandler DCDC 1 , DCDC 2 aus den restlichen Teilbordnetzen des Gesamtbordnetzes 1 elektrische Leistung PB,PC in das Teilbordnetz A übertragen werden. Dabei kann die Steuereinheit 4 für einen Wartungsenergiespeicher 12 eine Zielleistung PC bestimmen, welche über der Zielleistung des Hauptenergiespeichers PB liegt, wodurch der Verschleiß des Hauptenergiespeichers 1 1 zulasten des Wartungsenergiespeichers 12 reduziert wird. FIG. 2 shows a main energy store 1 1 and two maintenance energy stores 12. The energy stores NV, MV, HV can be located in different subbroad networks A, B, C, which are connected via voltage transformers DCDC 1, DCDC 2, for example via DC / DC - Transducers can be connected to each other. The voltage transformers DCDC 1, DCDC 2 can be controlled by the control unit 4. The main energy storage 1 1 may be an energy storage NV, MV, HV, which is to wear to a small extent. The two maintenance energy storages 12 may be energy storages NV, MV, HV, which should preferably be loaded, for example, due to a low maintenance outlay for an exchange. The classification of an energy store NV, MV, HV as a main energy storage 1 1 or as a maintenance energy storage 12 may be set in a value of the maintenance profile 7. The maintenance profile 7 can, for example be stored in the control unit 4 and / or the energy storage NV, MV, HV. It may be that there is an electrical power requirement P in a sub-electrical system A, which can not be optimally covered by the energy store HV of the sub-board network A and the generators G installed in the sub-bus system A. Then can be transmitted via the voltage converter DCDC 1, DCDC 2 from the remaining part of the on-board electrical systems of the entire on-board electrical system 1, PB power, PC in the sub-electrical system A. In this case, the control unit 4 for a maintenance energy storage 12 can determine a target power PC, which is above the target power of the main energy storage PB, whereby the wear of the main energy storage 1 1 is reduced to the maintenance energy storage 12.
Fig. 3 zeigt einen möglichen Ablauf eines erfindungsgemäßen Verfahrens. In einem ersten Schritt P1 kann zumindest eine elektrische Komponente 3 elektrische Leistung P aus einem Teilbordnetz A beziehen. Es kann sein, dass die Erfassungseinheit 5 einen jeweiligen Belastungsgrad 6 der Energiespeicher NV, MV, HV erfasst und an die Steuereinheit 4 übermittelt P2. Ein vorbestimmter Belastungsgrad 6a des Energiespeichers HV des Teilbordnet- zes A kann überschritten sein. Die Steuereinheit 4 kann in Abhängigkeit von den jeweiligen Belastungsgraden 6 der Energiespeicher NV, MV, HV und der jeweiligen Wartungsprofile 7 der Energiespeicher NV, MV, HV Zielleistungen PNV, PMV, PHV für die jeweiligen Energiespeicher NV, MV, HV bestimmen P3. Die Wartungsprofile 7 werden in Zusammenhang mit den Belastungsgraden 6 dynamisch, entsprechend der vorhandenen Generato- ren/Stromquellen G und Verbrauchern/Senken M, verwendet, um die elektrische Leistung L auf die Teilbordnetze zu verteilen, sodass kein Energiespeicher NV, MV, HV mehr belastet wird als notwendig und grenzwertige Belastungen und Belastungsarten der Energiespeicher vermindert sind. Mögliche Parameter der Belastungsarten sind eine Temperatur des Energiespeichers (θ), Strom(l), Spannung des Energiespeichers (U), Verlustleistung (Q), Temperatur der Energiespeicher Umgebung (tU), IRMS-Wert, Zyklisierung (Z), Alterung(t), Zelltyp(Typ), Bauweise(K), Ladezustand (SOC). Es kann sein, dass die Steuereinheit 4 eine weitere elektrische Komponente 3 ansteuert, um deren Leistungsbedarf zu senken P4. Die Steuereinheit 4 kann die Spannungswandler DCDC 1 , DCDC 2 derart ansteuern, dass die jeweiligen Zielleistungen PNV, PMV, PHV aus den Energiespeichern NV, MV, HV bezogen werden P5. Insgesamt zeigen die Beispiele, wie durch die Erfindung ein Gesamtbordnetz eines Kraftfahrzeugs der Art betrieben werden kann, dass der Wartungsaufwand minimal bleibt. Fig. 3 shows a possible sequence of a method according to the invention. In a first step P1, at least one electrical component 3 can draw electrical power P from a sub-electrical system A. It may be that the detection unit 5 detects a respective load level 6 of the energy store NV, MV, HV and transmits it to the control unit 4 P2. A predetermined load factor 6a of the energy store HV of the sub-unit A can be exceeded. Depending on the respective load levels 6 of the energy stores NV, MV, HV and the respective maintenance profiles 7 of the energy stores NV, MV, HV, the control unit 4 can determine target powers PNV, PMV, PHV for the respective energy stores NV, MV, HV P3. The maintenance profiles 7 are dynamically used in conjunction with the load levels 6, in accordance with the existing generators / current sources G and consumers / sinks M, in order to distribute the electrical power L to the sub-system, so that no energy store NV, MV, HV is loaded more is considered necessary and marginal loads and types of energy storage are reduced. Possible parameters of the load types are a temperature of the energy store ( θ ), current (l), voltage of the energy store (U), power loss (Q), temperature of the energy storage environment (tU), IRMS value, cyclization (Z), aging (t ), Cell type (type), design (K), state of charge (SOC). It may be that the control unit 4 controls a further electrical component 3 in order to reduce its power requirement P4. The control unit 4 can control the voltage transformers DCDC 1, DCDC 2 such that the respective target powers PNV, PMV, PHV are obtained from the energy stores NV, MV, HV P5. Overall, the examples show how can be operated by the invention, an entire on-board network of a motor vehicle of the kind that the maintenance costs remain minimal.

Claims

PATENTANSPRÜCHE: CLAIMS:
Verfahren zum Betreiben eines elektrischen Gesamtbordnetzes (1 ), wobei Method for operating an electrical overall on-board network (1), wherein
a) zumindest zwei Teilbordnetze (A,B) des Gesamtbordnetzes (1 ), welche jeweils zumindest einen elektrischen Energiespeicher (HV,MV) umfassen, mittels eines jeweiligen Spannungswandlers (DCDC 1 ) miteinander verbunden werden,  a) at least two sub-systems (A, B) of the entire on-board network (1), which in each case comprise at least one electrical energy store (HV, MV), are interconnected by means of a respective voltage converter (DCDC 1),
b) durch zumindest eine elektrische Komponente (3) zumindest eines der Teilbordnetze (A,B) eine elektrische Leistung (P) in das jeweilige Teilbordnetz (A,B) eingespeist oder aus diesem bezogen wird, c) ein jeweiliger Belastungsgrad (6) der Energiespeicher (HV,MV) durch eine Überwachungseinheit (5) erfasst wird,  b) by at least one electrical component (3) of at least one of the sub-electrical systems (A, B) an electrical power (P) in the respective sub-electrical system (A, B) is fed or obtained from this, c) a respective load level (6) of Energy storage (HV, MV) is detected by a monitoring unit (5),
d) durch eine Steuereinheit (4) in Abhängigkeit des jeweiligen Belastungsgrads (6) und eines jeweiligen Wartungsprofils (7) der Energiespeicher (HV,MV) eine jeweilige Zielleistung (PHV,PMV) für die Energiespeicher (HV.MV) berechnet wird,  d) a respective target power (PHV, PMV) for the energy store (HV.MV) is calculated by a control unit (4) as a function of the respective load level (6) and a respective maintenance profile (7) of the energy store (HV, MV),
e) die Spannungswandler (DCDC 1 ) derart durch die Steuereinheit (4) gesteuert werden, dass die jeweilige elektrische Leistung (P) der zumindest einen Komponente (3) gemäß der berechneten Zielleistungen (PHV,PMV) in die jeweiligen Energiespeicher (HV,MV) eingespeist oder aus den jeweiligen Energiespeichern (HV,MV) bezogen wird, wobei  e) the voltage converter (DCDC 1) are controlled by the control unit (4) such that the respective electrical power (P) of the at least one component (3) in accordance with the calculated target power (PHV, PMV) in the respective energy storage (HV, MV ) is fed or from the respective energy storage (HV, MV) is related, wherein
f) das jeweilige Wartungsprofil (7) einen Wert (8) betreffend einen Wartungsaufwand des jeweiligen Energiespeichers (HV.MV) um- fasst.  f) the respective maintenance profile (7) comprises a value (8) relating to a maintenance effort of the respective energy store (HV.MV).
Verfahren nach Anspruch 1 , dadurch gekennzeichnet ,dass das jeweilige Wartungsprofil (7) jeweils einen Wert (9) betreffend eine System re- levanz des jeweiligen Energiespeichers (HV.MV) umfasst. A method according to claim 1, characterized in that the respective maintenance profile (7) each comprise a value (9) relating to a system relevance of the respective energy store (HV.MV).
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das jeweilige Wartungsprofil (7) einen Wert (10) umfasst, welcher den jeweiligen Energiespeicher (HV.MV) als Hauptenergiespeicher (1 1 ) oder als Wartungsenergiespeicher (12) identifiziert. Method according to one of the preceding claims, characterized in that the respective maintenance profile (7) comprises a value (10) which identifies the respective energy store (HV.MV) as a main energy store (1 1) or as a maintenance energy store (12).
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die jeweilige Zielleistung (PHV.PMV) für den jewei- ligen Energiespeicher (HV,MV) nur berechnet wird, wenn ein vorbestimmter Belastungsgrad (6a) des Energiespeichers (HV,MV), der sich in dem Teilbordnetz (A,B) der einspeisenden oder beziehenden elektrischen Komponente (3) befindet, überschritten wird. 4. The method according to any one of the preceding claims, characterized in that the respective target power (PHV.PMV) for the respective Energy storage (HV, MV) is calculated only when a predetermined load level (6a) of the energy storage (HV, MV), which is in the sub-electrical system (A, B) of the feeding or related electrical component (3) is exceeded.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine weitere elektrische Komponente (3) durch die Steuereinheit (4) derart angesteuert wird, dass die in die Energiespeicher (HV.MV) einzuspeisende oder aus den Energiespeichern (HV.MV) zu beziehende elektrische Zielleistung (PHV.PMV) verringert wird. 5. The method according to any one of the preceding claims, characterized in that a further electrical component (3) is controlled by the control unit (4) such that in the energy storage (HV.MV) to be fed or from the energy storage (HV.MV) to be drawn electrical target power (PHV.PMV) is reduced.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das jeweilige Wartungsprofil (7) eine Verschleißcharakteristik (13) umfasst. 6. The method according to any one of the preceding claims, characterized in that the respective maintenance profile (7) comprises a wear characteristic (13).
7. Steuereinheit für ein Kraftfahrzeug, die Steuereinheit umfassend eine Prozessoreinrichtung, die dazu eingerichtet ist, ein Verfahren nach einem der vorhergehenden durchzuführen. 7. Control unit for a motor vehicle, the control unit comprising a processor device which is adapted to perform a method according to one of the preceding.
8. Kraftfahrzeug, umfassend eine Steuereinheit nach Anspruch 7. 8. Motor vehicle, comprising a control unit according to claim 7.
PCT/EP2018/069466 2017-07-24 2018-07-18 Method for operating an electric overall onboard power supply, control unit, and vehicle WO2019020446A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017212659.0 2017-07-24
DE102017212659.0A DE102017212659A1 (en) 2017-07-24 2017-07-24 Method for operating an electrical overall on-board network, control unit and motor vehicle

Publications (1)

Publication Number Publication Date
WO2019020446A1 true WO2019020446A1 (en) 2019-01-31

Family

ID=62981204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/069466 WO2019020446A1 (en) 2017-07-24 2018-07-18 Method for operating an electric overall onboard power supply, control unit, and vehicle

Country Status (2)

Country Link
DE (1) DE102017212659A1 (en)
WO (1) WO2019020446A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110775043A (en) * 2019-11-11 2020-02-11 吉林大学 Hybrid electric vehicle energy optimization method based on battery life attenuation pattern recognition
CN110775065A (en) * 2019-11-11 2020-02-11 吉林大学 Hybrid electric vehicle battery life prediction method based on working condition recognition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009041006A1 (en) * 2009-09-10 2011-03-24 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle power supply has two sub networks, which are electrically connected with one another by coupling element
DE102010046616A1 (en) * 2010-09-25 2012-03-29 Volkswagen Ag System and method for supplying electrically powered consumers and motor vehicles
US20150046109A1 (en) * 2012-04-23 2015-02-12 Hitachi, Ltd. Battery system maintenance management system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7826939B2 (en) * 2006-09-01 2010-11-02 Azure Dynamics, Inc. Method, apparatus, signals, and medium for managing power in a hybrid vehicle
US8760115B2 (en) * 2009-08-20 2014-06-24 GM Global Technology Operations LLC Method for charging a plug-in electric vehicle
DE102011011800B4 (en) * 2011-02-19 2015-09-17 Volkswagen Aktiengesellschaft Method for power supply for a vehicle and corresponding device and vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009041006A1 (en) * 2009-09-10 2011-03-24 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle power supply has two sub networks, which are electrically connected with one another by coupling element
DE102010046616A1 (en) * 2010-09-25 2012-03-29 Volkswagen Ag System and method for supplying electrically powered consumers and motor vehicles
US20150046109A1 (en) * 2012-04-23 2015-02-12 Hitachi, Ltd. Battery system maintenance management system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110775043A (en) * 2019-11-11 2020-02-11 吉林大学 Hybrid electric vehicle energy optimization method based on battery life attenuation pattern recognition
CN110775065A (en) * 2019-11-11 2020-02-11 吉林大学 Hybrid electric vehicle battery life prediction method based on working condition recognition

Also Published As

Publication number Publication date
DE102017212659A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
DE102012222102B4 (en) ACTIVE CONTROL SYSTEM FOR A LOW VOLTAGE DC-DC CONVERTER IN AN ELECTRIC VEHICLE
EP1784910B1 (en) Voltage regulator with over-voltage protection
DE102013200763A1 (en) SYSTEM AND METHOD FOR VEHICLE ENERGY MANAGEMENT
WO2011082856A2 (en) Energy storage system and method for the operation thereof
EP3544844B1 (en) Operating method for a dual-voltage battery
DE102007060691A1 (en) Dual voltage type-energy supply device for vehicle, has energy supply controller controlling energy generating operation such that high voltage and low voltage sided energy distribution methods are performed
EP2884620B1 (en) Method for the charging of batteries and converter for charging
WO2013092020A1 (en) Method and device for power management of an electrical drive for a hybrid vehicle
WO2015135729A1 (en) Arrangement for supplying electrical energy to a motor vehicle
DE102014007548A1 (en) Method for operating a vehicle electrical system of a motor vehicle and motor vehicle
DE102013225097A1 (en) Energy management method for operating an electrical system of a motor vehicle and motor vehicle
DE102010001817A1 (en) Control concept with limit value management for DC / DC converters in an energy system
DE102016215564A1 (en) Power supply of vehicle components in emergency mode
EP3067240B1 (en) Method for voltage regulation of an electrical system of a motor vehicle
DE102009057919A1 (en) Electric onboard electric power supply i.e. two voltage onboard power supply, for use in motor vehicle, has generator for producing electric voltage whose amplitude determines electric potential difference between voltage levels of loads
EP1683681B1 (en) System and method for controlling the power distribution within a vehicle distribution network
WO2019020446A1 (en) Method for operating an electric overall onboard power supply, control unit, and vehicle
WO2017076733A1 (en) Method for operating a battery, and battery
DE102018217255A1 (en) Method for regulating the voltage of an energy supply system
EP3470259B1 (en) Energy storage system with a plurality of parallel connected energy storage devices and method for operating an energy storage system
DE102012020298B4 (en) Method for stabilizing a vehicle electrical system in a motor vehicle
DE102020110155A1 (en) Battery resistance measuring device
DE102019217698A1 (en) Method for operating an electrical energy storage system and / or a device, electrical energy storage system and device
WO2018103946A1 (en) Method, machine-readable storage medium and electronic control unit for operating an electrical energy storage system, and corresponding electrical energy storage system
DE102012014186A1 (en) Method for controlling a voltage of a high voltage network (HVN) for a motor vehicle, involves controlling voltage in two control stages by controlling components of high volt network through central energy management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18743457

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18743457

Country of ref document: EP

Kind code of ref document: A1