WO2019019976A1 - 用于三相电整流的电路装置及三相电整流方法 - Google Patents

用于三相电整流的电路装置及三相电整流方法 Download PDF

Info

Publication number
WO2019019976A1
WO2019019976A1 PCT/CN2018/096693 CN2018096693W WO2019019976A1 WO 2019019976 A1 WO2019019976 A1 WO 2019019976A1 CN 2018096693 W CN2018096693 W CN 2018096693W WO 2019019976 A1 WO2019019976 A1 WO 2019019976A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
phase
circuit
inductor
rectification
Prior art date
Application number
PCT/CN2018/096693
Other languages
English (en)
French (fr)
Inventor
杨彬
鲍胜华
郭晓亮
余学进
吴军
郭虎
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019019976A1 publication Critical patent/WO2019019976A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to, but is not limited to, the field of power conversion and AC-DC boost converters for power factor correction.
  • Power systems have become an indispensable part of the world, and more and more power electronics are being put into use in the power grid.
  • Most power electronic devices need to input the DC voltage obtained by the rectification of AC power for later stage conversion.
  • Some of the power electronic devices input a large amount of harmonics and reactive power pollution to the power system due to the use of uncontrollable or phase-controlled rectifier circuits. .
  • An embodiment of the present disclosure provides a circuit device for three-phase electrical rectification, comprising: a first coupled inductor connected to a first phase of a three-phase power through a first inductor to obtain a first alternating current power source; a topology circuit connected to the first coupled inductor and rectifying the first alternating current power source to obtain a first direct current output; and a second coupled inductor connected to a second one of the three-phase power through the second inductor Phase, to obtain a second AC power supply; a second rectification topology circuit connected to the second coupled inductor, and rectifying the second AC power source to obtain a second DC output; a third coupled inductor, Connecting a third phase of the three-phase power through the third inductor to obtain a third alternating current power source; and a third rectifying topology circuit connecting the third coupled inductor and rectifying the third alternating current power source to Get the third DC output.
  • the embodiment of the present disclosure further provides a three-phase electric rectification method, comprising: obtaining a first alternating current power source by using a first coupled inductor connected to a first phase of a three-phase electric current through a first inductor; and using a first connecting the first coupled inductor a rectifying topology circuit rectifying the first alternating current power source to obtain a first direct current output; obtaining a second alternating current power source by using a second coupled inductor connected to the second phase of the three-phase electric power through the second inductor; The second rectifying topology circuit of the second coupled inductor rectifies the second AC power source to obtain a second DC output; and obtains a third coupled inductor that is connected to the third phase of the three-phase power through the third inductor a third alternating current power source; and rectifying the third alternating current power source by using a third rectifying topology circuit connected to the third coupled inductor to obtain a third direct current output.
  • Figure 1 shows a topology diagram of a conventional Vienna rectifier circuit
  • FIG. 2 is a block diagram of a circuit arrangement for three-phase electrical rectification in accordance with an embodiment of the present disclosure
  • FIG. 3 is a flow chart of a three-phase electrical rectification method in accordance with an embodiment of the present disclosure
  • FIG. 4 is a structural diagram of a three-phase electrical rectifier circuit device circuit when a power device is a diode according to an embodiment of the present disclosure
  • 5A through 5C illustrate schematic views of a power device group in accordance with an embodiment of the present disclosure
  • 6A-6D illustrate schematic views of a bidirectional switch in accordance with an embodiment of the present disclosure.
  • Figure 1 shows a topology of a conventional Vienna rectifier circuit.
  • the power diode for boosting requires a 1200V high-voltage power diode, which is costly.
  • a rectifying circuit device for three-phase electric power provides a three-phase electric rectifying circuit device that is easy to implement, low in cost, high in efficiency, and high in power density.
  • FIG. 2 is a block diagram of a circuit arrangement for three-phase electrical rectification in accordance with an embodiment of the present disclosure.
  • a circuit device for three-phase electric rectification may include: a first coupled inductor that connects a first phase of three-phase power through a first inductor to obtain a first AC power source a first rectification topology circuit connected to the first coupled inductor, and rectifying the first alternating current power source to obtain a first direct current output; and a second coupled inductor connected to the three-phase power through a second inductor a second phase to obtain a second AC power source; a second rectification topology circuit connected to the second coupled inductor, and rectifying the second AC power source to obtain a second DC output; a coupled inductor that connects the third phase of the three-phase power through the third inductor to obtain a third alternating current power source; and a third rectification topology circuit that connects the third coupled inductor and performs the third alternating current power supply Rectification processing to obtain a third DC output.
  • each of the first rectification topology circuit, the second rectification topology circuit, and the third rectification topology circuit may include: a first bidirectional switch having one end connected to a corresponding coupled inductor a first winding; a first power device group connected to one end of the first bidirectional switch; a second bidirectional switch having one end connected to the second winding of the corresponding coupled inductor and the other end connected to the first bidirectional switch The other end; a second power device group coupled to the illustrated end of the second bidirectional switch; and a DC output capacitor coupled to the first power device group and the second power device group.
  • each of the first rectification topology circuit, the second rectification topology circuit, and the third rectification topology circuit may further include: a third power device group connected to the The other end of the first bidirectional switch and the other end of the second bidirectional switch.
  • the first power device group may include two power devices connected in series in the same direction, a connection point of two series power devices of the first power device group being connected to the one end of the first bidirectional switch, and Both ends of the series circuit composed of two series-connected power devices of the first power device group are connected to the DC output capacitor.
  • the second power device group may include two power devices connected in series in the same direction, a connection point of two series power devices of the second power device group being connected to the one end of the second bidirectional switch, and
  • the DC output capacitor is connected to both ends of a series circuit composed of two series power devices of the second power device group.
  • the third power device group may include two power devices connected in series in the same direction, and a connection point of two series power devices of the third power device group is connected to the other end of the first bidirectional switch and the The other end of the second bidirectional switch, and the two ends of the series circuit of power devices of the third power device group are connected to the DC output capacitor.
  • the third power device group of each of the first rectification topology circuit, the second rectification topology circuit, and the third rectification topology circuit is connected to each other in a Y-connection manner, that is, each rectification topology circuit
  • the connection points of the two power devices in the third power device group are interconnected with each other.
  • the phases of the driving signals of the first bidirectional switch and the second bidirectional switch may be different from each other by a preset angle, the preset angle being greater than or equal to 90 degrees and less than or equal to 270 degrees.
  • the preset angle may be 180 degrees. .
  • the power device may use one of the following: a diode, a field effect transistor (MOSFET), an insulated gate bipolar transistor (IGBT), a potassium nitride switch tube, or the like.
  • MOSFET field effect transistor
  • IGBT insulated gate bipolar transistor
  • potassium nitride switch tube or the like.
  • circuit device of the embodiment of the present disclosure three-phase rectification and power factor correction can be realized, and the loss is small, the efficiency is high, and the cost is low.
  • a circuit arrangement for three-phase electrical rectification includes three coupled inductors and a three-way rectification topology.
  • Each of the coupled inductors respectively connects one of the three phases of electricity to the input of a rectifying topology, and the power devices for reflow in each rectifying topology are connected to each other in a Y-connected manner.
  • a circuit arrangement in accordance with an embodiment of the present disclosure has three DC outputs.
  • the circuit arrangement includes a plurality of pairs of power device groups (including but not limited to diodes, MOSFETs, IGBTs, potassium nitride switch tubes, etc.) and a plurality of controllable bidirectional switches.
  • the two inputs of each coupled inductor are connected, and each coupled inductor is coupled to an input of a rectifying topology.
  • Each output of each coupled inductor is connected to two power components and a controllable bidirectional switch that are connected in series in the same direction.
  • the power device group consisting of power devices connected in series is connected to the DC output capacitor and is controllable.
  • the bidirectional switch is connected to two other power device groups that are connected in series in the same direction for reflow, and is thus connected to other two-phase power device groups for reflow purposes.
  • FIG. 3 is a flow chart of a three-phase electrical rectification method in accordance with an embodiment of the present disclosure. The method is applicable to a circuit arrangement for three-phase electrical rectification according to an embodiment of the present disclosure.
  • the three-phase electric rectification method may include steps 1 and 2.
  • step 1 the first coupled inductor, the second coupled inductor, and the third coupled inductor of the first phase, the second phase, and the third phase of the three-phase power are connected through the first inductor, the second inductor, and the third inductor, respectively.
  • a first alternating current power source, a second alternating current power source, and a third alternating current power source are obtained.
  • step 2 the first alternating current power source, the first rectifying topology circuit, the second rectifying topology circuit, and the third rectifying topology circuit are respectively connected by using the first coupled inductor, the second coupled inductor, and the third coupled inductor,
  • the second AC power source and the third AC power source are rectified to obtain a first DC output, a second DC output, and a third DC output.
  • FIG. 4 is a structural diagram of a three-phase electric rectifier circuit device circuit when the power device is a diode according to an embodiment of the present disclosure.
  • the coupling modes of the three two-phase coupled inductors are negatively coupled, and the driving signals of the two controllable bidirectional switches corresponding to each of the coupled inductors are different in phase by a preset angle, and the preset angle is greater than or equal to 90. Degree, and less than or equal to 270 degrees.
  • the input of the three-phase electrical rectifier circuit arrangement shown in Figure 4 is connected to a three-phase voltage source via a three-phase electromagnetic compatibility (EMC) circuit.
  • the input electric energy is connected to the power device group (power diode) and the bidirectional switch (power switch tube) through three boost inductors La, Lb, Lc and coupled inductors Ta, Tb, Tc respectively corresponding to the three-phase power.
  • each coupled inductor includes two windings, each winding being connected by each pair of diodes (or other set of power devices) to a DC output capacitance corresponding to each phase, for example, a pair of diodes Da1 and Da2.
  • the diodes, the diodes Da3 and Da4 are a pair of diodes, one winding of the coupled inductor Ta is connected to the DC output capacitor corresponding to the A phase by the diodes Da1 and Da2, and the other winding of the coupled inductor Ta is connected to the diodes Da3 and Da4 through the diodes Da3 and Da4.
  • the DC output capacitor is Ca.
  • the two windings of the coupled inductors are also connected to the power device group for reflow by bidirectional switches (Ka1 and Ka2, Kb1 and Kb2, Kc1, and Kc2) (for example, diode pairs Da5 and Da6, Diode pairs Db5 and Db6, diode pairs Dc5 and Dc6) are connected to the DC output capacitors (Ca, Cb and Cc) corresponding to each phase.
  • the three-way reflow power device group (for example, diode pair Da5 and Da6 corresponding to phase A, diode pair Db5 and Db6 corresponding to phase B, diode pair Dc5 and Dc6 corresponding to phase C) are connected in a Y-connection manner. Together, the point O is as shown in FIG.
  • 5A-5C show schematic diagrams of a power device group in accordance with an embodiment of the present disclosure.
  • the power device may employ the diode shown in FIG. 5A, the MOSFET shown in FIG. 5B, or the IGBT shown in FIG. 5C, and other forms of power devices may be employed.
  • the source of the MOSFET shown in FIG. 5B is connected to the anode of the diode, and the drain is connected to the cathode of the diode.
  • the source of the IGBT shown in FIG. 5C is connected to the anode of the diode, and the drain is connected to the cathode of the diode.
  • 6A-6D illustrate schematic views of a bidirectional switch in accordance with an embodiment of the present disclosure.
  • the bidirectional switch form may take several forms as shown in FIGS. 6A to 6D, and other forms of bidirectional switches may be employed.
  • the bidirectional switch shown in FIG. 6A includes two MOSFETs whose sources are connected, the source of each MOSFET can be connected to the anode of the diode, and the drain of each MOSFET can be connected to the cathode of the diode.
  • the bidirectional switch shown in FIG. 6B includes two IGBTs whose sources are connected, and the source of each IGBT can be connected to the anode of the diode, and the drain of each IGBT can be connected to the cathode of the diode.
  • the bidirectional switch shown in Figure 6C includes one MOSFET and four diodes.
  • the bidirectional switch shown in Fig. 6D includes one IGBT and four diodes.
  • the multi-level converter reduces the voltage value and the current passing through the controllable bidirectional switch by increasing the number of levels of the topology circuit to achieve the purpose of using a smaller voltage withstand voltage and a low-cost power device.
  • the disclosed embodiments pertain to a three level converter.
  • the advantage of using two rectifier circuits per phase is to reduce the voltage on the power switching device and the current passing through by increasing the number of power switching devices in the topology.
  • the reduction of voltage and current on the power switching device can effectively reduce the required cooling and increase the power density of the rectifying device.
  • the voltage values of all power device groups are DC output voltages of each channel, which greatly reduces the voltage value of the power device group, can reduce the cost of the three-phase rectifier device, and greatly increases Wide optional device specification models.
  • the use of a coupled inductor allows the reactive component to switch operation at twice the frequency. Since the working frequency is increased, which helps to reduce the volume, size and weight of the reactive component, the EMC performance is better improved while the volume of the rectifying device is greatly reduced compared with the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

一种用于三相电整流的电路装置及三相电整流方法,所述电路装置包括:第一耦合电感(Ta),其通过第一电感(La)连接三相电中的第一相,以得到第一交流电源;第一整流拓扑电路,其连接所述第一耦合电感(Ta),并且对所述第一交流电源进行整流处理,以得到第一路直流输出;第二耦合电感(Tb),其通过第二电感(Lb)连接三相电中的第二相,以得到第二交流电源;第二整流拓扑电路,其连接所述第二耦合电感(Tb),并且对所述第二交流电源进行整流处理,以得到第二路直流输出;第三耦合电感(Tc),其通过第三电感(Lc)连接三相电中的第三相,以得到第三交流电源;以及第三整流拓扑电路,其连接所述第三耦合电感(Tc),并且对所述第三交流电源进行整流处理,以得到第三路直流输出。

Description

用于三相电整流的电路装置及三相电整流方法 技术领域
本公开涉及(但不限于)功率转换和用于功率因数校正的交流-直流(AC-DC)升压变换器技术领域。
背景技术
电力系统已经成为当今世界不可缺少的重要组成部分,越来越多的电力电子设备在电网中投入使用。大部分电力电子装置需要通过输入交流电的整流环节获得的直流电压以用于后级变换,其中一部分电力电子装置因采用不可控或相控整流电路,对电力系统输入大量的谐波及无功污染。
发明内容
本公开实施例提供了一种用于三相电整流的电路装置,包括:第一耦合电感,其通过第一电感连接三相电中的第一相,以得到第一交流电源;第一整流拓扑电路,其连接所述第一耦合电感,并且对所述第一交流电源进行整流处理,以得到第一路直流输出;第二耦合电感,其通过第二电感连接三相电中的第二相,以得到第二交流电源;第二整流拓扑电路,其连接所述第二耦合电感,并且对所述第二交流电源进行整流处理,以得到第二路直流输出;第三耦合电感,其通过第三电感连接三相电中的第三相,以得到第三交流电源;以及第三整流拓扑电路,其连接所述第三耦合电感,并且对所述第三交流电源进行整流处理,以得到第三路直流输出。
本公开实施例还提供一种三相电整流方法,包括:利用通过第一电感连接三相电中第一相的第一耦合电感得到第一交流电源;利用连接所述第一耦合电感的第一整流拓扑电路对所述第一交流电源进行整流处理,以得到第一路直流输出;利用通过第二电感连接三相电中第二相的第二耦合电感得到第二交流电源;利用连接所述第二耦合电感的第二整流拓扑电路对所述第二交流电源进行整流处理,以得到 第二路直流输出;利用通过第三电感连接三相电中第三相的第三耦合电感得到第三交流电源;以及利用连接所述第三耦合电感的第三整流拓扑电路对所述第三交流电源进行整流处理,以得到第三路直流输出。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了传统Vienna整流电路的拓扑图;
图2是根据本公开实施例的用于三相电整流的电路装置的框图;
图3是根据本公开实施例的三相电整流方法的流程图;
图4是根据本公开实施例的功率器件为二极管时的三相电整流电路装置电路的结构图;
图5A至图5C示出了根据本公开实施例的功率器件组的示意图;
以及
图6A至图6D示出了根据本公开实施例的双向开关的示意图。
具体实施方式
以下结合附图对本公开的实施例进行详细说明,应当理解,以下所说明的实施例仅用于说明和解释本公开,并不用于限定本公开。
解决电力电子装置的谐波污染问题,需要开关电源在整流过程中能够很好的完成功率因数校正的功能。图1示出了传统Vienna整流电路的拓扑图。在图1所示的电路中,升压用的功率二极管需要采用1200V高压功率二极管,成本较高。
根据本公开实施例的用于三相电的整流电路装置提供了一种易于实现、低成本、高效率、高功率密度要求的三相电的整流电路装置。
图2是根据本公开实施例的用于三相电整流的电路装置的框图。
如图2所示,根据本公开实施例的用于三相电整流的电路装置可以包括:第一耦合电感,其通过第一电感连接三相电中的第一相, 以得到第一交流电源;第一整流拓扑电路,其连接所述第一耦合电感,并且对所述第一交流电源进行整流处理,以得到第一路直流输出;第二耦合电感,其通过第二电感连接三相电中的第二相,以得到第二交流电源;第二整流拓扑电路,其连接所述第二耦合电感,并且对所述第二交流电源进行整流处理,以得到第二路直流输出;第三耦合电感,其通过第三电感连接三相电中的第三相,以得到第三交流电源;以及第三整流拓扑电路,其连接所述第三耦合电感,并且对所述第三交流电源进行整流处理,以得到第三路直流输出。
在一示例性实施例中,所述第一整流拓扑电路、所述第二整流拓扑电路和所述第三整流拓扑电路中的每个电路可包括:第一双向开关,其一端连接相应耦合电感的第一绕组;第一功率器件组,其连接所述第一双向开关的一端;第二双向开关,其一端连接所述相应耦合电感的第二绕组,其另一端连接所述第一双向开关的另一端;第二功率器件组,其连接所述第二双向开关的所示一端;以及直流输出电容,其连接所述第一功率器件组和所述第二功率器件组。
在一示例性实施例中,所述第一整流拓扑电路、所述第二整流拓扑电路和所述第三整流拓扑电路中的每个电路还可包括:第三功率器件组,其连接所述第一双向开关的所述另一端和所述第二双向开关的所述另一端。
所述第一功率器件组可以包括同向串联的两个功率器件,所述第一功率器件组的两个串联的功率器件的连接点连接所述第一双向开关的所述一端,并且所述第一功率器件组的两个串联的功率器件组成的串联电路的两端连接所述直流输出电容。
所述第二功率器件组可以包括同向串联的两个功率器件,所述第二功率器件组的两个串联的功率器件的连接点连接所述第二双向开关的所述一端,并且所述第二功率器件组的两个串联的功率器件组成的串联电路的两端连接所述直流输出电容。
所述第三功率器件组可以包括同向串联的两个功率器件,所述第三功率器件组的两个串联的功率器件的连接点连接所述第一双向开关的所述另一端和所述第二双向开关的所述另一端,并且所述第三 功率器件组的两个串联的功率器件组成的串联电路的两端连接所述直流输出电容。
所述第一整流拓扑电路、所述第二整流拓扑电路、所述第三整流拓扑电路中的每个电路的第三功率器件组以Y型连接的方式相互连接,即,每个整流拓扑电路的第三功率器件组中两个功率器件的连接点彼此互连。
所述第一双向开关和所述第二双向开关的驱动信号相位可以相差预设角度,该预设角度大于或等于90度,且小于或等于270度,例如,该预设角度可以为180度。
所述功率器件可以采用下列之一:二极管、场效应管(MOSFET)、绝缘栅双极型晶体管(IGBT)、氮化钾开关管等。
根据本公开实施例的电路装置,可以实现三相整流及功率因数校正,且损耗较小、效率较高,成本较低。
根据本公开实施例的用于三相电整流的电路装置包括三个耦合电感和三路整流拓扑。每一个耦合电感分别将三相电中的一相与一路整流拓扑的输入端相连,每路整流拓扑中的回流用的功率器件以Y型连接的方式连彼此接在一起。根据本公开实施例的电路装置共有三路直流输出。
所述电路装置包括多对功率器件组(包括但不限于二极管、MOSFET、IGBT、氮化钾开关管等器件)和多个可控双向开关。每一个耦合电感的两个输入端相连,并且每一个耦合电感与一路整流拓扑的输入端相连。每一个耦合电感的每一个输出端均连接到两个同向串联在一起的功率组件及可控双向开关,通过串联在一起的功率器件组成的功率器件组连接到直流输出电容,并且通过可控双向开关连接到另外两个同向串联在一起的作为回流用途的功率器件组,进而与其他两相的回流用途的功率器件组相连。
图3是根据本公开实施例的三相电整流方法的流程图。该方法可应用于根据本公开实施例的用于三相电整流的电路装置。
如图3所示,根据本公开实施例的三相电整流方法可以包括步骤1及步骤2。
在步骤1中,分别利用通过第一电感、第二电感和第三电感连接三相电中第一相、第二相和第三相的第一耦合电感、第二耦合电感和第三耦合电感得到第一交流电源、第二交流电源和第三交流电源。
在步骤2中,分别利用连接所述第一耦合电感、第二耦合电感和第三耦合电感的第一整流拓扑电路、第二整流拓扑电路和第三整流拓扑电路对所述第一交流电源、第二交流电源和第三交流电源进行整流处理,以得到第一路直流输出、第二路直流输出和第三路直流输出。
为了提供低成本、高效率、高可靠性的三相整流方案,下面将通过实施例并且结合图4至图6D来阐述本公开实施例的具体工作机理。应当理解,此处所描述的实施例仅用于说明和解释本公开,并不用于限定本公开。在不冲突的情形下,本公开中的实施例及实施例中的特性可以相互的组合。
图4是根据本公开实施例的功率器件为二极管时的三相电整流电路装置电路的结构图。
如图4所示,三个两相耦合电感的耦合方式为负耦合,且与每个耦合电感对应的两路可控双向开关的驱动信号相位相差预设角度,所述预设角度大于等于90度,且小于等于270度。
图4所示的三相电整流电路装置的输入端通过一个三相电磁兼容(EMC)电路接三相电压源。输入的电能经过分别与三相电对应的三个升压电感La、Lb、Lc和耦合电感Ta、Tb、Tc连接到功率器件组(功率二极管)及双向开关(功率开关管)。在图4中,每一个耦合电感包括两个绕组,每个绕组通过每对二极管(或其他功率器件组)连接到分别对应于每一相的直流输出电容,例如,二极管Da1和Da2为一对二极管,二极管Da3和Da4为一对二极管,耦合电感Ta的一个绕组通过二极管Da1和Da2连接到对应于A相的直流输出电容为Ca,并且耦合电感Ta的另一个绕组通过二极管Da3和Da4连接到直流输出电容为Ca。此外,耦合电感(Ta、Tb和Tc)的两个绕组还分别通过双向开关(Ka1和Ka2、Kb1和Kb2、Kc1和Kc2)连接到回流用的功率器件组(例如,二极管对Da5和Da6、二极管对Db5和Db6、二极管对Dc5和Dc6)并连接到对应于每一相的直流输出电容(Ca、 Cb和Cc)。三路回流用功率器件组(例如、对应于A相的二极管对Da5和Da6、对应于B相的二极管对Db5和Db6、对应于C相的二极管对Dc5和Dc6)以Y型连接的方式连接到一起,如图4中示出的O点。
图5A至图5C示出了根据本公开实施例的功率器件组的示意图。
根据本公开实施例,功率器件可以采用图5A所示的二极管、图5B所示的MOSFET或者图5C所示的IGBT,也可以采用其他形式的功率器件。图5B所示的MOSFET的源极连接二极管的正极,漏极连接二极管的负极。图5C所示的IGBT的源极连接二极管的正极,漏极连接所述二极管的负极。
图6A至图6D示出了根据本公开实施例的双向开关的示意图。
根据本公开实施例,双向开关形式可以采用图6A至图6D示出的几种形式,也可以采用其他形式的双向开关。图6A所示的双向开关包括源极对接的两个MOSFET,每个MOSFET的源极可以连接二极管的正极,每个MOSFET的漏极可以连接二极管的负极。图6B所示的双向开关包括源极对接的两个IGBT,每个IGBT的源极可以连接二极管的正极,每个IGBT的漏极可以连接二极管的负极。图6C所示的双向开关包括1个MOSFET和4个二极管。图6D所示的双向开关包括1个IGBT和4个二极管。
综上所述,本公开的实施例具有以下技术效果。
1.多电平变换器通过增加拓扑电路工作时的电平数来降低可控双向开关上的电压值及通过的电流,来达到使用更小耐压等级及低成本的功率器件的目的,本公开实施例属于三电平变换器。
2.根据本公开实施例,每相采用两路整流电路的优点是通过增加拓扑中功率开关器件的数目来降低功率开关器件上的电压及通过的电流。功率开关器件上电压、电流的减少,可以有效的减小所需要的冷却物,并且提高整流装置的功率密度。
3.根据本公开实施例,共有三路直流输出,所有功率器件组的电压值为每一路直流输出电压,大大降低了功率器件组的电压值,可以降低三相整流装置的成本,并且大大加宽了可选的器件规格型号。
4.根据本公开实施例,耦合电感的使用可以使无功元器件以两倍的频率切换工作。由于工作频率的增加,有助于减小无功元器件体积、尺寸和重量,所以与现有技术比较,整流装置的体积大大减小的同时,EMC性能得到了更好的改善。
在本说明书中使用了电力电子技术领域内广泛采用的缩略语及概念,但并不因装置被提供具体名称、标签或缩略语而受限于这些对应的装置。本公开适用于可能与这些缩略语及概念相关联的各种系统。
尽管上文对本公开进行了详细说明,但是本公开不限于此,本技术领域技术人员可以根据本公开的原理进行各种修改。因此,凡按照本公开原理所作的修改,都应当理解为落入本公开的保护范围。

Claims (10)

  1. 一种用于三相电整流的电路装置,包括:
    第一耦合电感,其通过第一电感连接三相电中的第一相,以得到第一交流电源;
    第一整流拓扑电路,其连接所述第一耦合电感,并且对所述第一交流电源进行整流处理,以得到第一路直流输出;
    第二耦合电感,其通过第二电感连接三相电中的第二相,以得到第二交流电源;
    第二整流拓扑电路,其连接所述第二耦合电感,并且对所述第二交流电源进行整流处理,得到第二路直流输出;
    第三耦合电感,其通过第三电感连接三相电中的第三相,以得到第三交流电源;以及
    第三整流拓扑电路,其连接所述第三耦合电感,并且对所述第三交流电源进行整流处理,得到第三路直流输出。
  2. 根据权利要求1所述的电路装置,其中,所述第一整流拓扑电路、所述第二整流拓扑电路和所述第三整流拓扑电路中的每个电路包括:
    第一双向开关,其一端连接相应耦合电感的第一绕组;
    第一功率器件组,其连接所述第一双向开关的所述一端;
    第二双向开关,其一端连接所述相应耦合电感的第二绕组,其另一端连接所述第一双向开关的另一端;
    第二功率器件组,其连接所述第二双向开关的所述一端;以及
    直流输出电容,其连接所述第一功率器件组和所述第二功率器件组。
  3. 根据权利要求2所述的电路装置,其中,所述第一功率器件组和所述第二功率器件组中的每个包括同向串联的两个功率器件,
    其中,所述第一功率器件组的两个串联的功率器件的连接点连 接所述第一双向开关的所述一端,并且所述第一功率器件组的两个串联的功率器件组成的串联电路的两端连接所述直流输出电容,
    其中,所述第二功率器件组的两个串联的功率器件的连接点连接所述第二双向开关的所述一端,并且所述第二功率器件组的两个串联的功率器件组成的串联电路的两端连接所述直流输出电容。
  4. 根据权利要求2所述的电路装置,其中,所述第一整流拓扑电路、所述第二整流拓扑电路、所述第三整流拓扑电路中的每个电路还包括:
    第三功率器件组,其连接所述第一双向开关的所述另一端和所述第二双向开关的所述另一端。
  5. 根据权利要求4所述的电路装置,其中,所述第三功率器件组包括同向串联的两个功率器件,其中,所述第三功率器件组的两个串联的功率器件的连接点连接所述第一双向开关的所述另一端和所述第二双向开关的所述另一端,并且所述第三功率器件组的两个串联的功率器件组成的串联电路的两端连接所述直流输出电容。
  6. 根据权利要求5所述的电路装置,其中,所述第一整流拓扑电路、所述第二整流拓扑电路、所述第三整流拓扑电路中的每个电路的第三功率器件组以Y型连接的方式相互连接。
  7. 根据权利要求2至6中任意一项所述的电路装置,其中,所述第一双向开关和所述第二双向开关的驱动信号相位相差预设角度。
  8. 根据权利要求7所述的电路装置,其中,所述预设角度大于或等于90度,并且小于或等于270度。
  9. 根据权利要求2至6中任一项所述的电路装置,其中,所述功率器件是下列之一:
    二极管;
    场效应管;
    绝缘栅双极型晶体管;以及
    氮化钾开关管。
  10. 一种三相电整流方法,包括:
    利用通过第一电感连接三相电中第一相的第一耦合电感得到第一交流电源;
    利用连接所述第一耦合电感的第一整流拓扑电路对所述第一交流电源进行整流处理,以得到第一路直流输出;
    利用通过第二电感连接三相电中第二相的第二耦合电感得到第二交流电源;
    利用连接所述第二耦合电感的第二整流拓扑电路对所述第二交流电源进行整流处理,以得到第二路直流输出;
    利用通过第三电感连接三相电中第三相的第三耦合电感得到第三交流电源;以及
    利用连接所述第三耦合电感的第三整流拓扑电路对所述第三交流电源进行整流处理,以得到第三路直流输出。
PCT/CN2018/096693 2017-07-22 2018-07-23 用于三相电整流的电路装置及三相电整流方法 WO2019019976A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710603044.7A CN109286329A (zh) 2017-07-22 2017-07-22 一种用于三相电的整流电路装置及实现方法
CN201710603044.7 2017-07-22

Publications (1)

Publication Number Publication Date
WO2019019976A1 true WO2019019976A1 (zh) 2019-01-31

Family

ID=65040933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096693 WO2019019976A1 (zh) 2017-07-22 2018-07-23 用于三相电整流的电路装置及三相电整流方法

Country Status (2)

Country Link
CN (1) CN109286329A (zh)
WO (1) WO2019019976A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115037172A (zh) * 2022-06-20 2022-09-09 深圳市优优绿能股份有限公司 一种三相整流装置和功率因数校正设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468649B2 (en) * 2007-03-14 2008-12-23 Flextronics International Usa, Inc. Isolated power converter
CN102290815A (zh) * 2011-08-22 2011-12-21 湖北三环发展股份有限公司 一种基于耦合电感的有源电力滤波装置
CN103700473A (zh) * 2013-12-12 2014-04-02 华为技术有限公司 耦合电感和功率变换器
CN204205997U (zh) * 2014-12-04 2015-03-11 艾默生网络能源有限公司 一种三相整流电路及不间断电源
CN106849692A (zh) * 2015-12-04 2017-06-13 艾默生网络能源系统北美公司 一种多态开关图腾柱电路的控制方法及装置
CN106936306A (zh) * 2015-12-30 2017-07-07 华为技术有限公司 多态图腾pfc电路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI316166B (en) * 2006-05-30 2009-10-21 Delta Electronics Inc Bridgeless pfc converter with low common-mode noise and high power density
CN100521442C (zh) * 2006-06-02 2009-07-29 台达电子工业股份有限公司 功率因子校正转换器
CN101442267B (zh) * 2008-12-22 2011-01-05 西安交通大学 多通道交错型功率因数校正整流器的拓扑结构
CN101621247B (zh) * 2009-07-23 2012-05-23 艾默生网络能源有限公司 一种功率因数校正电路
CN101860192B (zh) * 2010-03-30 2013-08-07 艾默生网络能源有限公司 一种三态三电平pfc电路及多态三电平pfc电路
CN102301574B (zh) * 2011-07-01 2014-06-04 华为技术有限公司 功率因数校正转换器以及功率因数校正转换设备
CN204498017U (zh) * 2015-04-16 2015-07-22 艾默生网络能源有限公司 一种多电平变换器电路
CN106208669A (zh) * 2016-09-07 2016-12-07 深圳市核达中远通电源技术有限公司 一种电源拓扑结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468649B2 (en) * 2007-03-14 2008-12-23 Flextronics International Usa, Inc. Isolated power converter
CN102290815A (zh) * 2011-08-22 2011-12-21 湖北三环发展股份有限公司 一种基于耦合电感的有源电力滤波装置
CN103700473A (zh) * 2013-12-12 2014-04-02 华为技术有限公司 耦合电感和功率变换器
CN204205997U (zh) * 2014-12-04 2015-03-11 艾默生网络能源有限公司 一种三相整流电路及不间断电源
CN106849692A (zh) * 2015-12-04 2017-06-13 艾默生网络能源系统北美公司 一种多态开关图腾柱电路的控制方法及装置
CN106936306A (zh) * 2015-12-30 2017-07-07 华为技术有限公司 多态图腾pfc电路

Also Published As

Publication number Publication date
CN109286329A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
EP3072229B1 (en) Soft switching inverter
US20140334199A1 (en) Five-Level Power Converter, and Control Method and Control Apparatus for the Same
US20130301314A1 (en) Multilevel Inverter Device and Method
RU2645726C2 (ru) Преобразователь переменного напряжения в переменное
CN104009666A (zh) 用于产生三相电流的方法和设备
CN104638940A (zh) 基于级联模块化多电平的电力电子变压器
US8982595B2 (en) T-connected autotransformer-based 40-pulse AC-DC converter for power quality improvement
Chen et al. A novel pulse-width modulation method for reactive power generation on a CoolMOS-and SiC-diode-based transformerless inverter
US11569746B2 (en) DC coupled electrical converter
CN108667321B (zh) 混合四电平整流器
CN106063110A (zh) 功率转换电子器件
CN105932885B (zh) 一种新型电力电子变压器拓扑结构
WO2019073904A1 (ja) Ac-acコンバータ回路
CN102082520A (zh) 一种五电平整流变换器
CN105048833B (zh) 一种低纹波电解电源及控制方法
WO2019019976A1 (zh) 用于三相电整流的电路装置及三相电整流方法
Lai et al. Parallel-operated single-stage flyback-type single-phase solar micro-inverter
Bakeer et al. A modified two switched-inductors quasi Z-Source Inverter
WO2017186030A1 (zh) 一种三相电路装置及其实现整流的方法、计算机存储介质
CN210745047U (zh) 一种基于航空三相pfc的电机控制装置
CN212811585U (zh) 一种能量双向流动型ac-dc变换器
CN104993721A (zh) 三相三倍压整流电路
CN110768539A (zh) 一种利用igbt或mos管的ac-ac变换器及其控制方法
CN204835962U (zh) 一种倍压整流电路
CN111082679B (zh) 一种九开关管三相高频隔离型整流电路及其调制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18839420

Country of ref document: EP

Kind code of ref document: A1