WO2019019841A1 - 变流器柜体级并联方法及系统 - Google Patents
变流器柜体级并联方法及系统 Download PDFInfo
- Publication number
- WO2019019841A1 WO2019019841A1 PCT/CN2018/092106 CN2018092106W WO2019019841A1 WO 2019019841 A1 WO2019019841 A1 WO 2019019841A1 CN 2018092106 W CN2018092106 W CN 2018092106W WO 2019019841 A1 WO2019019841 A1 WO 2019019841A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- converter
- mgc
- sgc
- cabinet
- plc
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/325—Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
Definitions
- the present invention relates to the field of converters, and more particularly to a method and system for parallelizing cabinet stages.
- AC-DC-AC converters have been widely used in locomotive traction, wind power generation, etc.
- the capacity of single cabinet converters can no longer meet the actual demand, using large-capacity power.
- the cost of the device is too high, so in order to increase the capacity of the system, it is usually operated in parallel with a double or multiple cabinet converter.
- FIG. 1 is a parallel connection of the prior art double cabinet converters according to the present invention.
- the double cabinet converter includes the main and slave cabinet side converter and the grid side converter, wherein the machine side PWM pulse signal is generated by the main cabinet side converter, the master and slave cabinet
- the side converters share a PWM pulse signal and a common DC bus.
- the main and slave side converters are connected to the same load motor M via their respective current sharing reactances.
- the parallel scheme of the above-mentioned double cabinet converter has certain limitations.
- the line impedance values of the main and slave cabinet side converters are inconsistent or the PWM pulse signals are not synchronized, which causes current to flow between the main and slave cabinet converters.
- the circulation is generated, which causes the output current to be distorted, which makes the load unbalanced and affects the performance of the entire system.
- the main cabinet side converter fails or the DC bus fails, the converter from the cabinet side will not operate normally, reducing the utilization of the entire system.
- the invention provides a converter level parallel method and system for improving system performance and utilization.
- the present invention provides a converter-level parallel method for a converter, which is applied to a converter-level parallel system, and the converter-level parallel system includes a main cabinet converter and a converter flow.
- the main cabinet converter includes a main cabinet side converter MGC, a main cabinet grid side converter MLC
- the slave cabinet converter includes a cabinet side converter SGC, from the cabinet side converter SLC, where
- the main cabinet converter and the slave cabinet converter are connected by an optical fiber, and the main cabinet converter and the slave cabinet converter are synchronously operated;
- the main cabinet converter and the slave cabinet converter are respectively connected to the PLC through a CAN bus, and the MGC sends a synchronization signal instruction to the SGC, and the synchronization signal instruction is used to indicate the SGC and the SGC.
- the MGC synchronizes the current command value and the angle value, and the method includes:
- the PLC sends a running control instruction to the MGC
- the PLC Determining, by the PLC, whether the MGC is faulty according to an operation parameter of the MGC, and if a fault occurs, the PLC sends a running instruction to the SGC, where the running instruction is used to instruct the SGC to stop receiving the MGC.
- the synchronization signal is commanded, and the SGC is operated separately.
- the operating status of the MGC includes: normal operation, fault stop, and fault reset.
- the method further includes:
- the PLC sends a parallel operation instruction to the SGC according to the operating state of the MGC, and the parallel operation instruction is used to instruct the SGC to receive a synchronization signal instruction of the MGC.
- the present invention provides a converter-level parallel method for a converter, which is applied to a converter-level parallel system, wherein the converter-level parallel system includes a main cabinet converter and a converter flow.
- the main cabinet converter includes a main cabinet side converter MGC, a main cabinet grid side converter MLC
- the slave cabinet converter includes a cabinet side converter SGC, from the cabinet side converter SLC, where
- the main cabinet converter and the slave cabinet converter are connected by an optical fiber, and the main cabinet converter and the slave cabinet converter are synchronously operated;
- the main cabinet converter and the slave cabinet converter are respectively connected to the PLC through a CAN bus, and the MGC sends a synchronization signal instruction to the SGC, and the synchronization signal instruction is used to indicate the SGC and the SGC.
- the MGC synchronizes the current command value and the angle value, and the method includes:
- the MGC receives an operation control instruction sent by the PLC
- an operating parameter of the MGC according to the operation control instruction, where the operating parameter includes an operating state of the MGC, a bus voltage value of the MGC, and a current value;
- the operating status of the MGC includes: normal operation, fault stop, and fault reset.
- the present invention provides a converter-level parallel method for a converter, which is applied to a converter-level parallel system, wherein the converter-level parallel system includes a main cabinet converter and a converter flow.
- the main cabinet converter includes a main cabinet side converter MGC, a main cabinet grid side converter MLC
- the slave cabinet converter includes a cabinet side converter SGC, from the cabinet side converter SLC, where
- the main cabinet converter and the slave cabinet converter are connected by an optical fiber, and the main cabinet converter and the slave cabinet converter are synchronously operated;
- the main cabinet converter and the slave cabinet converter are respectively connected to the PLC through a CAN bus, and the MGC sends a synchronization signal instruction to the SGC, and the synchronization signal instruction is used to indicate the SGC and the SGC.
- the MGC synchronizes the current command value and the angle value, and the method includes:
- the SGC acquires an operating parameter of the SGC according to the operation control instruction, where the operating parameter includes an operating state of the SGC, a bus voltage value of the SGC, and a current value;
- the SGC sends an operation parameter of the SGC to the PLC, and receives a synchronization signal command sent by the MGC, where the synchronization signal instruction is used to instruct the SGC to synchronize the current command value with the MGC and the Angle value
- the SGC receives a running command sent by the PLC, and the running instruction is used to instruct the SGC to stop receiving a synchronization signal command of the MGC, and the SGC runs separately.
- the operating status of the SGC includes: normal operation, fault stop, and fault reset.
- the method further includes:
- the SGC receives a parallel operation command sent by the PLC, and the parallel operation instruction is used to instruct the SGC to receive a synchronization signal instruction of the MGC.
- the present invention provides a converter cabinet-level parallel system, comprising: a main cabinet converter, a slave cabinet converter, and a programmable logic controller PLC, wherein the main cabinet converter includes a main cabinet machine a side converter MGC, a main cabinet network side converter MLC, the slave cabinet converter includes a cabinet side converter SGC, and a cabinet side converter SLC;
- the PLC is configured to perform the method described in any of the above embodiments;
- the MGC is configured to perform the method described in any of the above embodiments;
- the SGC is for performing the method described in any of the above embodiments.
- the converter-level parallel method and system provided by the invention provide parallel operation of the main-slave converters by using software control on the basis of the existing converter hardware structure, and the main-slave converters pass the optical fibers.
- the connection realizes the carrier signal synchronization
- the master-slave converter connects with the programmable logic controller PLC through the CAN bus to realize real-time data communication.
- the PLC obtains the current operating parameters of the MGC by sending a running control command to the MGC. If the running state in the MGC operating parameter is a fault stop, the PLC sends a running command to the SGC for instructing the SGC to operate separately, and stops receiving the synchronization signal command of the MGC. .
- the method and system provided by the invention not only improve the utilization rate of the parallel system, but also effectively suppress the circulation of the parallel system.
- FIG. 1 is a schematic structural view of a parallel connection of a dual cabinet converter according to the prior art of the present invention
- FIG. 2 is a schematic structural view of a converter-level parallel system of a converter provided by the present invention
- FIG. 3 is a schematic diagram of communication connection of a converter-level parallel system provided by the present invention.
- Embodiment 4 is a schematic flow chart of Embodiment 1 of a method for parallelizing a cabinet of a converter according to the present invention
- FIG. 5 is a schematic flow chart of a second embodiment of a method for parallelizing a cabinet of a converter according to the present invention.
- FIG. 6 is a schematic flow chart of a third embodiment of a method for parallelizing a cabinet of a converter according to the present invention.
- FIG. 7 is a schematic flow chart of Embodiment 4 of a method for parallelizing a cabinet of a converter according to the present invention.
- FIG. 2 is a schematic structural diagram of the converter-level parallel system of the converter provided by the present invention, as shown in FIG.
- the converter cabinet-level parallel system includes a main cabinet converter (MC, Master Converter), a slave cabinet converter (SC, Slave Converter) and a programmable logic controller PLC.
- the main cabinet converter includes a main cabinet converter (MGC, Master Generator Converter) and a main cabinet converter (MLC, Master Line Converter);
- the slave converter includes a converter from the cabinet side.
- SGC Slave Generator Converter
- SLC slave network side converter
- the above-mentioned grid-side converter is a four-quadrant rectifier, and the machine-side converter is an inverter.
- the connection relationship of the converter-level parallel system of the converter is briefly described.
- the main cabinet converter and the slave converter are connected by optical fibers, and the main cabinet converter and the converter are changed.
- the device runs synchronously.
- the MGC and the MLC in the main cabinet converter are connected by an optical fiber;
- the SGC and the SLC in the cabinet converter are connected by an optical fiber.
- the parallel main cabinet converter and the slave converter are connected by fiber optic connection to realize the carrier signal synchronization, so that the main cabinet converter and the PWM pulse output from the cabinet converter are consistent, and the circulation of the system in the parallel operation state is suppressed.
- the main cabinet converter and the slave converter are respectively connected to the PLC through the CAN bus, and the MGC sends a synchronization signal command to the SGC, and the synchronization signal command is used to indicate the synchronous current command value and the angle value of the SGC and the MGC.
- 3 is a schematic diagram of communication connection of a converter-level parallel system provided by the present invention.
- the CAN bus is divided into CAN1 and CAN2, wherein each converter is connected to the PLC through CAN1 to realize each variable current. Real-time data communication between the device and the PLC, and each converter is also connected via CAN1.
- CAN2 is specially used for MGC to transmit synchronization signal commands to SGC to realize common current and common angle command control, thereby suppressing system circulation.
- the embodiment of the present invention adopts software control to realize the parallel connection of the main and slave cabinet converters, and does not need to re-design the hardware according to the parallel demand for the products that have been mass-produced, the master-slave
- the cabinet converters are independent of each other, increasing the flexibility of the entire system.
- the execution body of the software control is the digital signal processor inside the converters, that is, the DSP, the control algorithm and the logic are all realized based on the chip, the PLC is responsible for issuing the instructions, etc., and each converter receives the PLC.
- the transmitted commands are specifically calculated in the respective control chip DSP, and the parameter values corresponding to the commands are sent through the CAN bus, and the data communication between the converters and the PLC is realized through the CAN bus.
- the specific implementation process is as follows.
- FIG. 4 is a schematic flow chart of a first embodiment of a method for parallelizing a cabinet of a converter according to the present invention.
- the main body of the method is a programmable logic controller PLC, and the commands and data sent and received are transmitted through CAN1, such as As shown in FIG. 4, the method of this embodiment includes:
- Step 101 The PLC sends a running control instruction to the MGC.
- the running control commands sent by the PLC include: a running command, an operating parameter obtaining command, a bus voltage command, and a torque percentage command.
- the running command is used to indicate the operating mode of the converter (single or parallel operation)
- the operating parameter acquisition command is used to obtain the operating state parameter of the converter
- the bus voltage command is used for the voltage setting of the voltage closed-loop control
- the torque percentage is used to calculate the current reference for current closed loop control.
- the above-mentioned operation control instructions are not limited to the above several types of instructions, and include other control commands used by the PLC to control the converter, which are not limited herein.
- the PLC periodically sends a running control instruction to each converter including the MGC, and the running parameter acquisition instruction in the instruction is used to acquire the running of each converter in real time.
- the parameters are convenient for the PLC to independently control each converter including the MGC.
- Step 102 The PLC receives an operation parameter sent by the MGC.
- the operating parameters include the operating state of the MGC, the bus voltage value of the MGC, and the current value.
- the operating status of the MGC includes normal operation, fault stop, and fault reset.
- the fault reset state means that after the MGC fault is cleared, the MGC actively sends its running status information to the PLC, which is used to indicate that the PLC can add the MGC to the parallel system to realize the parallel operation of the master-slave converter.
- the current command value of the MGC is that after the MGC receives the torque percentage command sent by the PLC, the MGC calculates the current set value of the current MGC according to the obtained torque percentage and the current value corresponding to the MGC rated torque;
- the angle value of the MGC is the angle value required by the control chip DSP inside the MGC to calculate the coordinate transformation of the vector control based on the motor speed currently connected to the MGC output. At present, most motor control adopts vector control. It is necessary to transform the three-phase static ABC coordinate system into a two-phase dq rotating coordinate system. This angle is needed for coordinate transformation, which is the angle between the d-axis and the A-axis.
- the PLC integrates the data parameters of each converter to independently control each converter.
- Step 103 The PLC determines whether the MGC is faulty according to the operating parameter of the MGC. If a fault occurs, the PLC sends a running instruction to the SGC.
- the running command is used to instruct the SGC to stop receiving the synchronization signal command of the MGC, and the SGC operates separately.
- the PLC when the operating state information of the MGC received by the PLC is a fault stop, it indicates that the MGC does not function in the parallel system. At this time, the PLC sends a running instruction to the SGC according to the fault information, which is used to instruct the SGC to operate separately. And stop receiving the sync signal command from the MGC.
- the MGC in order to effectively suppress the circulating current in the parallel system, in the normal operating state of the MGC, the MGC sends a synchronization signal command to the SGC in each communication cycle to ensure that the operating parameter values of the two are consistent.
- a CAN communication CAN2 is added, and the communication cycle is one switching cycle.
- the MGC ensures that the current command value and the angle value are calculated in one switching cycle and the data is sent to the SGC.
- the data loading of the registers in the MGC and SGC is completed in the same cycle, so that the command current value and the angle value of the two are synchronized in real time.
- MGC and SGC respectively have a current closed-loop controller to realize the control of the actual current following the command current, so that the effect of sharing a PMW pulse in the prior art can be obtained, and the PWM pulse is synchronized to achieve an effective suppression of the system circulation. .
- the converter parallel stage method of the converter provided by the embodiment realizes the parallel operation of the main and slave cabinet converters by using software control, and the main slave cabinet converter is connected through the optical fiber.
- the carrier signal synchronization is realized, and the main slave cabinet converter is connected with the programmable logic controller PLC through the CAN bus to realize real-time data communication.
- the PLC sends a running control command to the MGC to obtain the current operating parameters of the MGC. If the running state in the MGC running parameter is a fault stop, the PLC sends a running command to the SGC for instructing the SGC to operate separately and stopping receiving the synchronization signal command of the MGC.
- the method provided in this embodiment not only improves the utilization of the parallel system, but also effectively suppresses the circulation of the parallel system.
- FIG. 5 is a schematic flow chart of a second embodiment of a method for parallelizing a cabinet of a converter according to the present invention.
- the main body of the method is a programmable logic controller PLC.
- PLC programmable logic controller
- Step 201 The PLC receives a request connection instruction sent by the MGC, where the request connection instruction is used to indicate that the operating state of the MGC is a fault reset.
- the PLC executes a control command to instruct the SGC to operate separately to ensure the normal operation of the parallel system.
- the PLC receives the request connection command sent by the MGC actively, the request connection instruction is used to indicate that the operating state of the MGC is a fault reset, and the PLC restores the system operation mode to the parallel operation mode according to the request connection indication. .
- Step 202 The PLC sends a parallel operation instruction to the SGC according to the operating state of the MGC.
- the parallel running command is used to instruct the SGC to receive the synchronization signal command of the MGC.
- the PLC sends a parallel operation command to the SGC according to the running status sent by the MGC, and is used to instruct the SGC to end the single operation mode, and start receiving the synchronization signal command sent by the MGC to achieve synchronization with the MGC current command value and the angle value, and suppress the parallel system. Circulation.
- the converter-level parallel method of the converter provided in this embodiment is used for the MGC fault reset in the system, and the PLC sends a parallel running command to the SGC according to the request connection command sent by the received MGC, and the method of the embodiment implements the system by The separate operation mode is switched to the parallel operation mode to improve the utilization of the entire system.
- FIG. 6 is a schematic flowchart of a third embodiment of a method for parallelizing a cabinet of a converter according to the present invention.
- the main body of the method is a main cabinet-side converter MGC.
- the method in this embodiment includes:
- Step 301 The MGC receives an operation control instruction sent by the PLC.
- the MGC periodically receives the operation control command sent by the PLC, and the operation parameter acquisition instruction in the instruction is used to acquire the operating parameters of the MGC.
- the operating parameters include the operating state, the bus voltage value, and the current value, but are not limited to the above-mentioned parameters.
- the specific functions of the parameters are the same as those in the first embodiment, and are not described here.
- Step 302 The MGC acquires an operating parameter of the MGC according to the operation control instruction.
- the operating parameters include the operating state of the MGC, the bus voltage value of the MGC, and the current value.
- the operating status of the MGC includes: normal operation, fault stop, and fault reset.
- normal operation normal operation
- fault stop fault stop
- fault reset for the function of the fault reset state, refer to the first embodiment, and details are not described herein again.
- the MGC detects its own operating state, bus voltage value, and current value according to the operation control command sent by the PLC.
- the MGC then transmits the operating parameter data corresponding to the operating parameter acquisition command to the PLC via the CAN1 bus.
- the detection calculation principles of the other converters MLC, SGC, and SLC are the same as those of the MGC, and are not described here.
- the MLC and SLC realize the smoothness of the bus voltage by voltage closed-loop control according to the bus voltage command sent by the PLC and the actually detected voltage value.
- the carrier synchronization signal transmitted by the optical fiber and the above-mentioned voltage closed-loop control realize real-time synchronization of the MLC and SLC bus voltages, and obtain the same bus voltage similar to the prior art common DC bus scheme, ensuring that the output current is normal. Otherwise, the MGC and SGC on the system side will cause the PWM pulses to be out of sync due to the inconsistent bus voltage, which will result in a large circulating current in the output current.
- Step 303 The MGC sends an operating parameter of the MGC to the PLC, and simultaneously sends a synchronization signal instruction to the SGC.
- the synchronization signal command is used to indicate that the SGC and the MGC synchronize the current command value and the angle value.
- the MGC needs to send a synchronization signal command to the SGC, where
- the synchronization signal command includes a current command and an angle
- the current command is used to indicate that the SGC and the MGC's current value are synchronized in real time
- the angle is used to indicate that the SGC and the MGC's angle value are synchronized in real time.
- FIG. 7 is a schematic flowchart of a fourth embodiment of a method for parallelizing a cabinet of a converter according to the present invention.
- the main body of the method is a converter SGC from the cabinet side.
- the method in this embodiment includes:
- Step 401 The SGC receives an operation control instruction sent by the PLC.
- the operation control command sent by the PLC is the same as that in the first embodiment, and details are not described herein again.
- Step 402 The SGC acquires an operation parameter of the SGC according to the operation control instruction.
- the operating parameters include the operating state of the SGC, the bus voltage value of the SGC, and the current value.
- the SGC detects its own operating state, bus voltage value, and current value according to the operation control command sent by the PLC.
- the SGC transmits the above-mentioned detection data to the PLC through the CAN1 bus to the operation parameter data corresponding to the operation parameter acquisition instruction. Realize real-time control of PLC to SGC.
- the operating status of the SGC includes: normal operation, fault stop, and fault reset.
- the SGC In the system parallel operation mode, if the SGC suddenly fails, the same as the MGC, the SGC sends the status information of the SGC fault stop to the PLC, and after the PLC receives the current running status information of the SGC, the method of the embodiment further includes:
- the PLC sends a stop synchronization command to the MGC, the stop synchronization command is used to instruct the MGC to stop sending a synchronization signal command to the SGC, and the MGC operates separately to improve system utilization.
- the SGC when the SGC fault is reset, together with the MGC, the SGC will actively send a request connection command to the PLC.
- the request connection command is used to indicate that the operating state of the SGC is a fault reset, and the PLC restores the system mode to the parallel operation mode according to the request connection command. .
- Step 403 The SGC sends an operating parameter of the SGC to the PLC, and receives a synchronization signal command sent by the MGC.
- the synchronization signal command is used to indicate that the SGC and the MGC synchronize the current command value and the angle value.
- the SGC receives a running command sent by the PLC, and the running command is used to instruct the SGC to stop receiving the synchronization signal command of the MGC, and the SGC operates separately.
- the SGC obtains the operating parameters of the SGC according to the operation control command sent by the PLC.
- the operating parameters include the operating state of the SGC, the bus voltage value of the SGC, and the current value of the SGC for the PLC. Real-time monitoring of the operation of the SGC.
- the MGC operating in parallel with the SGC sends a synchronization signal command to the SGC, which includes a current command and an angle command for simultaneous real-time operation of the two, thereby suppressing system loops.
- the SGC When the MGC fails, the SGC receives a running command sent by the PLC, and the running command is used to instruct the SGC to stop receiving the synchronization signal command of the MGC and enter an independent running state.
- the failure of the main cabinet converter will not affect the normal operation of the slave converter and improve the utilization of the system.
- the method of the embodiment is the slave-side converter SGC.
- the method in this embodiment further includes:
- the SGC receives the parallel running command sent by the PLC, and the parallel running command is used to instruct the SGC to receive the synchronization signal command of the MGC.
- the parallel running command is used to instruct the SGC to receive the synchronization signal command of the MGC.
- the converter cabinet-level parallel system comprises: a main cabinet converter MC, a slave converter SC and a programmable logic controller PLC, and the main cabinet converter comprises a main cabinet side converter MGC.
- the main cabinet network side converter MLC, the slave converter includes the cabinet side converter SGC and the cabinet side converter SLC.
- connection relationship between the above-mentioned converters and the connection relationship between the converters and the PLC refer to the method side embodiment, which is not described here.
- the aforementioned program can be stored in a computer readable storage medium.
- the steps including the foregoing method embodiments are performed; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, an SRAM, a DRAM, a FLASH, a magnetic disk, or an optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
一种变流器柜体级并联方法及系统,在现有变流器硬件结构的基础上,通过采用软件控制实现主从柜变流器(MC,SC)的并联运行。主从柜变流器通过光纤连接实现载波信号同步,同时主从柜变流器通过CAN总线与可编程逻辑控制器(PLC)连接实现实时的数据通信。可编程逻辑控制器向主柜机侧变流器(MGC)发送运行控制指令获取主柜机侧变流器当前的运行参数,若主柜机侧变流器运行参数中的运行状态为故障停止,则可编程逻辑控制器向从柜机侧变流器(SGC)发送运行指令,用于指示从柜机侧变流器单独运行,并且停止接收主柜机侧变流器的同步信号指令。该方法及系统不仅提高了并联系统的利用率,而且有效抑制了并联系统的环流。
Description
本发明涉及变流器领域,尤其涉及一种变流器柜体级并联方法及系统。
目前交-直-交型变流器已经广泛应用于机车牵引、风力发电等领域,随着各领域系统容量的不断增大,单柜变流器的容量已经不能满足实际需求,采用大容量功率器件成本又太高,因此为了提高系统的容量,通常采用双柜或者多柜变流器并联运行。
其中,现有的双柜变流器并联多为硬件并联方案,该方案通过更改硬件结构才能满足双柜变流器的并联需求,图1为本发明现有技术的双柜变流器并联的结构示意图,如图1所示,双柜变流器包括主从柜机侧变流器和网侧变流器,其中机侧PWM脉冲信号由主柜机侧变流器生成,主从柜机侧变流器共用一个PWM脉冲信号并且共直流母线,主从柜机侧变流器分别经过各自均流电抗连接同一负载电机M。
然而,上述双柜变流器并联方案具有一定的局限性,主从柜机侧变流器的线路阻抗值不一致或者PWM脉冲信号不同步等因素会导致电流在主从柜变流器之间流动,产生环流,环流会引起输出电流畸变,使负载不平衡,影响整个系统的性能。进一步的,当主柜机侧变流器故障或者直流母线故障时,从柜机侧变流器也将无法正常运行,降低整个系统的利用率。
发明内容
本发明提供一种变流器柜体级并联方法及系统,用于提高系统性能和利用率。
第一方面,本发明提供一种变流器柜体级并联方法,应用于变流器柜体级并联系统,所述变流器柜体级并联系统包括主柜变流器、从柜变流器和可编程逻辑控制器PLC,所述主柜变流器包括主柜机侧变流器MGC、主柜网侧变流器MLC,所述从柜变流器包括从柜机侧变流器SGC、从柜网侧变流器SLC,其中,
所述主柜变流器与所述从柜变流器通过光纤连接,所述主柜变流器与所述从柜变流器同步运行;
所述主柜变流器与所述从柜变流器分别通过CAN总线与所述PLC连接,所述MGC向所述SGC发送同步信号指令,所述同步信号指令用于指示所述SGC与所述MGC同步电流指令值和角度值,所述方法包括:
所述PLC向所述MGC发送运行控制指令;
所述PLC接收所述MGC发送的运行参数,所述运行参数包括所述MGC的运行状态、所述MGC的母线电压值、电流值;
所述PLC根据所述MGC的运行参数判断所述MGC是否出现故障,若出现故障,则 所述PLC向所述SGC发送运行指令,所述运行指令用于指示所述SGC停止接收所述MGC的同步信号指令,所述SGC单独运行。
可选的,所述MGC的运行状态包括:正常运行、故障停止、故障复位。
可选的,所述PLC向所述SGC发送运行指令之后,所述方法还包括:
所述PLC接收所述MGC发送的请求连接指令,所述请求连接指令用于指示所述MGC的所述运行状态为故障复位;
所述PLC根据所述MGC的所述运行状态向所述SGC发送并联运行指令,所述并联运行指令用于指示所述SGC接收所述MGC的同步信号指令。
第二方面,本发明提供一种变流器柜体级并联方法,应用于变流器柜体级并联系统,所述变流器柜体级并联系统包括主柜变流器、从柜变流器和可编程逻辑控制器PLC,所述主柜变流器包括主柜机侧变流器MGC、主柜网侧变流器MLC,所述从柜变流器包括从柜机侧变流器SGC、从柜网侧变流器SLC,其中,
所述主柜变流器与所述从柜变流器通过光纤连接,所述主柜变流器与所述从柜变流器同步运行;
所述主柜变流器与所述从柜变流器分别通过CAN总线与所述PLC连接,所述MGC向所述SGC发送同步信号指令,所述同步信号指令用于指示所述SGC与所述MGC同步电流指令值和角度值,所述方法包括:
所述MGC接收所述PLC发送的的运行控制指令;
所述MGC根据所述运行控制指令获取所述MGC的运行参数,所述运行参数包括所述MGC的运行状态、所述MGC的母线电压值、电流值;
所述MGC向所述PLC发送所述MGC的运行参数,同时向所述SGC发送同步信号指令,所述同步信号指令用于指示所述SGC与所述MGC同步所述电流指令值和所述角度值。
可选的,所述MGC的运行状态包括:正常运行、故障停止、故障复位。
第三方面,本发明提供一种变流器柜体级并联方法,应用于变流器柜体级并联系统,所述变流器柜体级并联系统包括主柜变流器、从柜变流器和可编程逻辑控制器PLC,所述主柜变流器包括主柜机侧变流器MGC、主柜网侧变流器MLC,所述从柜变流器包括从柜机侧变流器SGC、从柜网侧变流器SLC,其中,
所述主柜变流器与所述从柜变流器通过光纤连接,所述主柜变流器与所述从柜变流器同步运行;
所述主柜变流器与所述从柜变流器分别通过CAN总线与所述PLC连接,所述MGC向所述SGC发送同步信号指令,所述同步信号指令用于指示所述SGC与所述MGC同步电流指令值和角度值,所述方法包括:
所述SGC接收所述PLC发送的运行控制指令;
所述SGC根据所述运行控制指令获取所述SGC的运行参数,所述运行参数包括所述SGC的运行状态、所述SGC的母线电压值、电流值;
所述SGC向所述PLC发送所述SGC的运行参数,同时接收所述MGC发送的同步信 号指令,所述同步信号指令用于指示所述SGC与所述MGC同步所述电流指令值和所述角度值;
若所述MGC出现故障,所述SGC接收所述PLC发送的运行指令,所述运行指令用于指示所述SGC停止接收所述MGC的同步信号指令,所述SGC单独运行。
可选的,所述SGC的运行状态包括:正常运行、故障停止、故障复位。
可选的,所述SGC接收所述PLC发送的运行指令之后,所述方法还包括:
所述SGC接收所述PLC发送的并联运行指令,所述并联运行指令用于指示所述SGC接收所述MGC的同步信号指令。
第四方面,本发明提供一种变流器柜体级并联系统,包括:主柜变流器、从柜变流器和可编程逻辑控制器PLC,所述主柜变流器包括主柜机侧变流器MGC、主柜网侧变流器MLC,所述从柜变流器包括从柜机侧变流器SGC、从柜网侧变流器SLC;
所述PLC用于执行上述任一实施例所述的方法;
所述MGC用于执行上述任一实施例所述的方法;
所述SGC用于执行上述任一实施例所述的方法。
本发明提供的变流器柜体级并联方法及系统,在现有变流器硬件结构的基础上,通过采用软件控制实现主从柜变流器的并联运行,主从柜变流器通过光纤连接实现载波信号同步,同时主从柜变流器通过CAN总线与可编程逻辑控制器PLC连接实现实时的数据通信。PLC通过向MGC发送运行控制指令获取MGC当前的运行参数,若MGC运行参数中的运行状态为故障停止,则PLC向SGC发送运行指令,用于指示SGC单独运行,并且停止接收MGC的同步信号指令。本发明提供的方法及系统,不仅提高了并联系统的利用率,而且有效抑制了并联系统的环流。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明现有技术的双柜变流器并联的结构示意图;
图2为本发明提供的变流器柜体级并联系统的结构示意图;
图3为本发明提供的变流器柜体级并联系统的通信连接示意图;
图4为本发明提供的变流器柜体级并联方法实施例一的流程示意图;
图5为本发明提供的变流器柜体级并联方法实施例二的流程示意图;
图6为本发明提供的变流器柜体级并联方法实施例三的流程示意图;
图7为本发明提供的变流器柜体级并联方法实施例四的流程示意图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施 例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供的变流器柜体级并联方法,应用于变流器柜体级并联系统,图2为本发明提供的变流器柜体级并联系统的结构示意图,如图2所示,变流器柜体级并联系统包括主柜变流器(MC,Master Converter)、从柜变流器(SC,Slave Converter)和可编程逻辑控制器PLC。其中,主柜变流器包括主柜机侧变流器(MGC,Master Generator Converter)、主柜网侧变流器(MLC,Master Line Converter);从柜变流器包括从柜机侧变流器(SGC,Slave Generator Converter)、从柜网侧变流器(SLC,Slave Line Converter)。上述网侧变流器即四象限整流器,机侧变流器即逆变器。
下面对本实施例变流器柜体级并联系统的连接关系作简要说明,如图2所示,主柜变流器与从柜变流器通过光纤连接,主柜变流器与从柜变流器同步运行。其中,主柜变流器中的MGC与MLC通过光纤连接;从柜变流器中的SGC与SLC通过光纤连接。并联的主柜变流器与从柜变流器通过光纤连接实现载波信号同步,从而实现主柜变流器与从柜变流器输出的PWM脉冲一致,抑制并联运行状态下系统的环流。
另外,主柜变流器与从柜变流器分别通过CAN总线与PLC连接,MGC向SGC发送同步信号指令,同步信号指令用于指示SGC与MGC同步电流指令值和角度值。图3为本发明提供的变流器柜体级并联系统的通信连接示意图,如图3所示,CAN总线分为CAN1和CAN2,其中,各变流器通过CAN1与PLC连接,实现各变流器与PLC之间实时的数据通信,同时各变流器之间也通过CAN1连接。对于MGC与SGC,两者之间除了CAN1之外,还有一条高速通信线路CAN2,CAN2专门用于MGC向SGC传输同步信号指令,实现共电流、共角度指令控制,进而抑制系统环流。
在上述各变流器通信连接关系的基础上,本发明实施例采用软件控制来实现主从柜变流器的并联,对已经批量生产的产品不需要根据并联需求而重新进行硬件设计,主从柜变流器间是相互独立的,提高整个系统的灵活性。需要指出的是,软件控制的执行主体为各变流器内部的数字信号处理器即DSP,控制算法和逻辑都是基于该芯片来实现的,PLC负责下发指令等,各变流器接收PLC发送的指令,在各自控制芯片DSP中进行具体计算,并通过CAN总线发送指令对应的参数值,各变流器之间通过CAN总线实现与PLC进行数据通信,具体实施过程见下述实施例。
下面以具体实施例对本发明的技术方案进行详细说明。以下各具体实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图4为本发明提供的变流器柜体级并联方法实施例一的流程示意图,该方法的执行主体为可编程逻辑控制器PLC,发送和接收的指令或数据是通过CAN1进行传输的,如图4所示,本实施例的方法包括:
步骤101、PLC向MGC发送运行控制指令。
其中,PLC发送的运行控制指令包括:运行指令、运行参数获取指令、母线电压 指令、转矩百分比指令。运行指令用于指示变流器的运行模式(单独运行或者并联运行),运行参数获取指令用于获取变流器的运行状态参数,母线电压指令用于电压闭环控制的电压给定,转矩百分比指令用于计算电流闭环控制的电流给定值。上述运行控制指令并不限定于以上几种指令,还包括PLC用于控制变流器的的其他控制指令,此处不作限定。
本实施例提供的变流器柜体级并联系统中,PLC定期向包括MGC在内的各变流器发送运行控制指令,该指令中的运行参数获取指令用于实时获取各变流器的运行参数,便于PLC对包括MGC在内的各变流器进行独立控制。
步骤102、PLC接收MGC发送的运行参数。
其中,运行参数包括MGC的运行状态、MGC的母线电压值、电流值。
MGC的运行状态包括正常运行、故障停止、故障复位。其中,故障复位状态是指在MGC故障清除之后,MGC主动向PLC发送其运行状态信息,用于指示PLC可以将MGC加入到并联系统中,实现主从柜变流器的并联运行。
MGC的电流指令值是在MGC接收到PLC发送的转矩百分比指令后,MGC根据获取的转矩百分比以及MGC额定转矩对应的电流值,计算当前MGC的电流给定值;
MGC的角度值是MGC内部的控制芯片DSP根据当前与MGC输出端连接的电机转速计算矢量控制的坐标变换所需的角度值。目前大部分电机控制采用矢量控制,需要将三相静止ABC坐标系变换为两相dq旋转坐标系,坐标变换时需要用到这个角度,该角度是d轴相对于A轴的夹角。
综上所述,PLC在接收到MGC发送的运行参数之后,综合各变流器的数据参数,对各变流器进行独立控制。
步骤103、PLC根据MGC的运行参数判断MGC是否出现故障,若出现故障,则PLC向SGC发送运行指令。
其中,运行指令用于指示SGC停止接收MGC的同步信号指令,SGC单独运行。
本实施例中,当PLC接收到的MGC的运行状态信息为故障停止时,说明MGC在并联系统中不起作用,此时PLC根据该故障信息向SGC发送运行指令,用于指示SGC单独运行,并且停止接收来自MGC的同步信号指令。
需要指出的是,为了有效抑制并联系统内的环流,在MGC正常运行状态下,MGC在每个通信周期内会向SGC发送同步信号指令,用于保证二者的运行参数值一致。为了减少延时,增加一个CAN通信CAN2,通信周期为一个开关周期,通过对通信时序进行优化调整,保证MGC在一个开关周期内完成电流指令值和角度值的计算并将数据发送给SGC,同时在同一周期内完成MGC和SGC中寄存器的数据装载,使二者指令电流值和角度值实时同步。其中,MGC和SGC分别有一个电流闭环控制器,实现实际电流跟随指令电流的控制,这样就可以得到类似现有技术中共用一个PMW脉冲的效果,使PWM脉冲同步,达到有效抑制系统环流的效果。
本实施例提供的变流器柜体级并联方法,在现有变流器硬件结构的基础上,通过采用软件控制实现主从柜变流器的并联运行,主从柜变流器通过光纤连接实现载波信号同步,同时主从柜变流器通过CAN总线与可编程逻辑控制器PLC连接实现实时的数据通信。PLC向MGC发送运行控制指令获取MGC当前的运行参数,若MGC运行参 数中的运行状态为故障停止,则PLC向SGC发送运行指令,用于指示SGC单独运行,并且停止接收MGC的同步信号指令。本实施例提供的方法,不仅提高了并联系统的利用率,而且有效抑制了并联系统的环流。
在上述实施例的基础上,如何实现系统由从柜单独运行模式转换为主从柜变流器并联运行模式,下述实施例给出详细说明。
图5为本发明提供的变流器柜体级并联方法实施例二的流程示意图,该方法的执行主体为可编程逻辑控制器PLC,如图6所示,在实施例一的基础上,PLC向SGC发送运行指令之后,本实施例的方法还包括:
步骤201、PLC接收MGC发送的请求连接指令,该请求连接指令用于指示MGC的运行状态为故障复位。
在上述实施例一中,MGC由于自身故障无法正常运行时,PLC执行控制指令指示SGC单独运行,确保并联系统的正常运行。当MGC自身故障复位可以正常运行时,PLC接收到MGC主动发送的请求连接指令,该请求连接指令用于指示MGC的运行状态为故障复位,PLC根据请求连接指示将系统运行模式恢复为并联运行模式。
步骤202、PLC根据MGC的运行状态向SGC发送并联运行指令。
其中,并联运行指令用于指示SGC接收MGC的同步信号指令。
PLC根据MGC发送的运行状态,向SGC发送并联运行指令,用于指示SGC结束单独运行模式,开始接收MGC发送的同步信号指令,以实现与MGC电流指令值与角度值的同步,抑制并联系统的环流。
本实施例提供的变流器柜体级并联方法,用于系统中MGC故障复位时,PLC根据接收到的MGC发送的请求连接指令,向SGC发送并联运行指令,本实施例的方法实现系统由单独运行模式转换为并联运行模式,提高整个系统的利用率。
图6为本发明提供的变流器柜体级并联方法实施例三的流程示意图,该方法的执行主体为主柜机侧变流器MGC,如图6所示,本实施例的方法包括:
步骤301、MGC接收PLC发送的的运行控制指令。
本实施例提供的变流器柜体级并联系统中,MGC定期接收PLC发送的运行控制指令,该指令中的运行参数获取指令用于获取MGC的运行参数。运行参数包括运行状态、母线电压值、电流值,但并不限定于上述几种参数,各参数的具体功能同实施例一,此处不再赘述。
步骤302、MGC根据运行控制指令获取MGC的运行参数。
其中,运行参数包括MGC的运行状态、MGC的母线电压值、电流值。
同样的,MGC的运行状态包括:正常运行、故障停止、故障复位。故障复位状态的功能参见实施例一,此处不再赘述。
具体的,MGC根据PLC发送的运行控制指令,检测自身运行状态、母线电压值、电流值。随后MGC通过CAN1总线将与运行参数获取指令对应的运行参数数据发送给PLC。实现PLC对MGC的实时控制。类似的,其他各变流器MLC、SGC、SLC的检测计算原理同MGC,此处不再赘述。
需要指出的是,MLC和SLC根据PLC发送的母线电压指令和实际检测的电压值,通过电压闭环控制实现母线电压平稳。光纤传输的载波同步信号和上述电压闭环控制相结合实现MLC和SLC母线电压实时同步,得到类似现有技术中共直流母线方案相同的母线电压,确保输出电流正常。否则,系统机侧MGC和SGC会因为母线电压不一致引起PWM脉冲不同步,进而导致输出电流中有很大的环流。
步骤303、MGC向PLC发送MGC的运行参数,同时向SGC发送同步信号指令。
其中,同步信号指令用于指示SGC与MGC同步电流指令值和角度值。
为了抑制系统环流,MGC需要向SGC发送同步信号指令,其中,
同步信号指令包括电流指令和角度,电流指令用于指示SGC与MGC的电流值实时同步,角度用于指示SGC与MGC的角度值实时同步。通过上述同步信号指令,实现在同一开关周期内MGC和SGC的电流值和角度值一致,从而达到有效抑制系统环流的效果。
图7为本发明提供的变流器柜体级并联方法实施例四的流程示意图,该方法的执行主体为从柜机侧变流器SGC,如图7所示,本实施例的方法包括:
步骤401、SGC接收PLC发送的运行控制指令。
PLC发送的运行控制指令同实施例一,此处不再赘述。
步骤402、SGC根据运行控制指令获取SGC的运行参数。
其中,运行参数包括SGC的运行状态、SGC的母线电压值、电流值。
具体的,SGC根据PLC发送的运行控制指令,分别检测自身运行状态、母线电压值、电流值。SGC将上述检测数据通过CAN1总线将与运行参数获取指令对应的运行参数数据发送给PLC。实现PLC对SGC的实时控制。
另外,SGC的运行状态包括:正常运行、故障停止、故障复位。
在系统并联运行模式下,若SGC突然出现故障,同MGC,SGC向PLC发送SGC故障停止的状态信息,PLC接收到SGC当前运行状态信息之后,本实施例的方法还包括:
PLC向MGC发送停止同步指令,该停止同步指令用于指示MGC停止向SGC发送同步信号指令,MGC单独运行,以提高系统利用率。
同样的,当SGC故障复位后,同MGC,SGC会主动向PLC发送请求连接指令,该请求连接指令用于指示SGC的运行状态为故障复位,PLC根据请求连接指令将系统模式恢复为并联运行模式。
步骤403、SGC向PLC发送SGC的运行参数,同时接收MGC发送的同步信号指令。
其中,同步信号指令用于指示SGC与MGC同步电流指令值和角度值。
若MGC出现故障,SGC接收PLC发送的运行指令,运行指令用于指示SGC停止接收MGC的同步信号指令,SGC单独运行。
在系统双柜并联运行模式下,SGC根据PLC发送的运行控制指令,获取SGC的运行参数,同样的,该运行参数包括SGC的运行状态、SGC的母线电压值、SGC的电流值,用于PLC实时监控SGC的运行情况。
在同一开关周期内,与SGC并联运行的MGC向SGC发送同步信号指令,该指令包 括电流指令和角度指令,用于两者实时同步运行,从而抑制系统环流。
当MGC出现故障时,SGC接收PLC发送的运行指令,该运行指令用于指示SGC停止接收MGC的同步信号指令,进入独立运行状态。主柜变流器故障不会影响到从柜变流器的正常运行,提高了系统的利用率。
在上述实施例的基础上,如何实现系统由从柜单独运行模式转换为主从柜变流器并联运行模式,下述实施例给出详细说明。
本实施例方法的执行主体为从柜机侧变流器SGC,在实施例四的基础上,SGC接收PLC发送的运行指令之后,本实施例的方法还包括:
SGC接收PLC发送的并联运行指令,并联运行指令用于指示SGC接收MGC的同步信号指令。具体过程和技术效果参见实施例二,此处不再赘述。
本发明提供的变流器柜体级并联系统,包括:主柜变流器MC、从柜变流器SC和可编程逻辑控制器PLC,主柜变流器包括主柜机侧变流器MGC、主柜网侧变流器MLC,从柜变流器包括从柜机侧变流器SGC、从柜网侧变流器SLC。
以上各变流器之间的连接关系以及各变流器与PLC的之间连接关系参见方法侧实施例,此处不再赘述。
上述PLC、MGC、SGC的实现原理和技术效果与对应方法侧实施例类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、SRAM、DRAM、FLASH、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (9)
- 一种变流器柜体级并联方法,其特征在于,应用于变流器柜体级并联系统,所述变流器柜体级并联系统包括主柜变流器、从柜变流器和可编程逻辑控制器PLC,所述主柜变流器包括主柜机侧变流器MGC、主柜网侧变流器MLC,所述从柜变流器包括从柜机侧变流器SGC、从柜网侧变流器SLC,其中,所述主柜变流器与所述从柜变流器通过光纤连接,所述主柜变流器与所述从柜变流器同步运行;所述主柜变流器与所述从柜变流器分别通过CAN总线与所述PLC连接,所述MGC向所述SGC发送同步信号指令,所述同步信号指令用于指示所述SGC与所述MGC同步电流指令值和角度值,所述方法包括:所述PLC向所述MGC发送运行控制指令;所述PLC接收所述MGC发送的运行参数,所述运行参数包括所述MGC的运行状态、所述MGC的母线电压值、电流值;所述PLC根据所述MGC的运行参数判断所述MGC是否出现故障,若出现故障,则所述PLC向所述SGC发送运行指令,所述运行指令用于指示所述SGC停止接收所述MGC的同步信号指令,所述SGC单独运行。
- 根据权利要求1所述的方法,其特征在于,所述MGC的运行状态包括:正常运行、故障停止、故障复位。
- 根据权利要求2所述的方法,其特征在于,所述PLC向所述SGC发送运行指令之后,所述方法还包括:所述PLC接收所述MGC发送的请求连接指令,所述请求连接指令用于指示所述MGC的所述运行状态为故障复位;所述PLC根据所述MGC的所述运行状态向所述SGC发送并联运行指令,所述并联运行指令用于指示所述SGC接收所述MGC的同步信号指令。
- 一种变流器柜体级并联方法,其特征在于,应用于变流器柜体级并联系统,所述变流器柜体级并联系统包括主柜变流器、从柜变流器和可编程逻辑控制器PLC,所述主柜变流器包括主柜机侧变流器MGC、主柜网侧变流器MLC,所述从柜变流器包括从柜机侧变流器SGC、从柜网侧变流器SLC,其中,所述主柜变流器与所述从柜变流器通过光纤连接,所述主柜变流器与所述从柜变流器同步运行;所述主柜变流器与所述从柜变流器分别通过CAN总线与所述PLC连接,所述MGC向所述SGC发送同步信号指令,所述同步信号指令用于指示所述SGC与所述MGC同步电流指令值和角度值,所述方法包括:所述MGC接收所述PLC发送的的运行控制指令;所述MGC根据所述运行控制指令获取所述MGC的运行参数,所述运行参数包括所述MGC的运行状态、所述MGC的母线电压值、电流值;所述MGC向所述PLC发送所述MGC的运行参数,同时向所述SGC发送同步信号指令,所述同步信号指令用于指示所述SGC与所述MGC同步所述电流指令值和所述角度 值。
- 根据权利要求4所述的方法,其特征在于,所述MGC的运行状态包括:正常运行、故障停止、故障复位。
- 一种变流器柜体级并联方法,其特征在于,应用于变流器柜体级并联系统,所述变流器柜体级并联系统包括主柜变流器、从柜变流器和可编程逻辑控制器PLC,所述主柜变流器包括主柜机侧变流器MGC、主柜网侧变流器MLC,所述从柜变流器包括从柜机侧变流器SGC、从柜网侧变流器SLC,其中,所述主柜变流器与所述从柜变流器通过光纤连接,所述主柜变流器与所述从柜变流器同步运行;所述主柜变流器与所述从柜变流器分别通过CAN总线与所述PLC连接,所述MGC向所述SGC发送同步信号指令,所述同步信号指令用于指示所述SGC与所述MGC同步电流指令值和角度值,所述方法包括:所述SGC接收所述PLC发送的运行控制指令;所述SGC根据所述运行控制指令获取所述SGC的运行参数,所述运行参数包括所述SGC的运行状态、所述SGC的母线电压值、电流值;所述SGC向所述PLC发送所述SGC的运行参数,同时接收所述MGC发送的同步信号指令,所述同步信号指令用于指示所述SGC与所述MGC同步所述电流指令值和所述角度值;若所述MGC出现故障,所述SGC接收所述PLC发送的运行指令,所述运行指令用于指示所述SGC停止接收所述MGC的同步信号指令,所述SGC单独运行。
- 根据权利要求6所述的方法,其特征在于,所述SGC的运行状态包括:正常运行、故障停止、故障复位。
- 根据权利要求7所述的方法,其特征在于,所述SGC接收所述PLC发送的运行指令之后,所述方法还包括:所述SGC接收所述PLC发送的并联运行指令,所述并联运行指令用于指示所述SGC接收所述MGC的同步信号指令。
- 一种变流器柜体级并联系统,包括:主柜变流器、从柜变流器和可编程逻辑控制器PLC,所述主柜变流器包括主柜机侧变流器MGC、主柜网侧变流器MLC,所述从柜变流器包括从柜机侧变流器SGC、从柜网侧变流器SLC;所述PLC用于执行权利要求1至3任一项所述的方法;所述MGC用于执行权利要求4或5所述的方法;所述SGC用于执行权利要求6至8任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710630661.6A CN107508454B (zh) | 2017-07-28 | 2017-07-28 | 变流器柜体级并联方法及系统 |
CN201710630661.6 | 2017-07-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019019841A1 true WO2019019841A1 (zh) | 2019-01-31 |
Family
ID=60689747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/092106 WO2019019841A1 (zh) | 2017-07-28 | 2018-06-21 | 变流器柜体级并联方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107508454B (zh) |
WO (1) | WO2019019841A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113725918A (zh) * | 2021-09-23 | 2021-11-30 | 国电南瑞科技股份有限公司 | 一种大功率风电变流器多回路并联同步方法及系统 |
CN117424352A (zh) * | 2023-12-19 | 2024-01-19 | 浙江简捷物联科技有限公司 | 储能柜主从自主切换方法及系统 |
CN118300152A (zh) * | 2024-03-18 | 2024-07-05 | 北京索英电气技术股份有限公司 | 一种多储能变流器离网并联运行控制方法和控制装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107508454B (zh) * | 2017-07-28 | 2023-02-10 | 中车大连电力牵引研发中心有限公司 | 变流器柜体级并联方法及系统 |
ES2976580A1 (es) * | 2022-12-21 | 2024-08-05 | Power Electronics Espana S L | Variador de frecuencia multiparalelo y metodo de control del mismo |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102891501A (zh) * | 2012-09-25 | 2013-01-23 | 上海交通大学 | 一种大功率变流器分布式控制系统 |
CN102938565A (zh) * | 2012-09-28 | 2013-02-20 | 上海交通大学 | 基于大规模并联系统的分布式通讯系统及其控制方法 |
CN103378742A (zh) * | 2012-04-18 | 2013-10-30 | 台达电子企业管理(上海)有限公司 | 变流器系统及其控制方法 |
CN203398797U (zh) * | 2013-06-19 | 2014-01-15 | 许继电气股份有限公司 | 一种双模式储能装置的多机并联控制系统 |
JP2017038477A (ja) * | 2015-08-11 | 2017-02-16 | 富士電機株式会社 | 電力変換装置 |
CN107508454A (zh) * | 2017-07-28 | 2017-12-22 | 中车大连电力牵引研发中心有限公司 | 变流器柜体级并联方法及系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009187314A (ja) * | 2008-02-06 | 2009-08-20 | Fuji Electric Systems Co Ltd | 二重化コントローラ・システム、cpuモジュール、そのプログラム |
CN103236717B (zh) * | 2013-04-12 | 2014-02-19 | 湖南大学 | 基于同步参考电压的多台pwm变流器并联运行控制方法 |
CN205104918U (zh) * | 2015-11-12 | 2016-03-23 | 株洲南车时代电气股份有限公司 | 一种大功率变流器主从控制系统 |
-
2017
- 2017-07-28 CN CN201710630661.6A patent/CN107508454B/zh active Active
-
2018
- 2018-06-21 WO PCT/CN2018/092106 patent/WO2019019841A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103378742A (zh) * | 2012-04-18 | 2013-10-30 | 台达电子企业管理(上海)有限公司 | 变流器系统及其控制方法 |
CN102891501A (zh) * | 2012-09-25 | 2013-01-23 | 上海交通大学 | 一种大功率变流器分布式控制系统 |
CN102938565A (zh) * | 2012-09-28 | 2013-02-20 | 上海交通大学 | 基于大规模并联系统的分布式通讯系统及其控制方法 |
CN203398797U (zh) * | 2013-06-19 | 2014-01-15 | 许继电气股份有限公司 | 一种双模式储能装置的多机并联控制系统 |
JP2017038477A (ja) * | 2015-08-11 | 2017-02-16 | 富士電機株式会社 | 電力変換装置 |
CN107508454A (zh) * | 2017-07-28 | 2017-12-22 | 中车大连电力牵引研发中心有限公司 | 变流器柜体级并联方法及系统 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113725918A (zh) * | 2021-09-23 | 2021-11-30 | 国电南瑞科技股份有限公司 | 一种大功率风电变流器多回路并联同步方法及系统 |
CN117424352A (zh) * | 2023-12-19 | 2024-01-19 | 浙江简捷物联科技有限公司 | 储能柜主从自主切换方法及系统 |
CN117424352B (zh) * | 2023-12-19 | 2024-03-12 | 浙江简捷物联科技有限公司 | 储能柜主从自主切换方法及系统 |
CN118300152A (zh) * | 2024-03-18 | 2024-07-05 | 北京索英电气技术股份有限公司 | 一种多储能变流器离网并联运行控制方法和控制装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107508454A (zh) | 2017-12-22 |
CN107508454B (zh) | 2023-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019019841A1 (zh) | 变流器柜体级并联方法及系统 | |
JP7007522B2 (ja) | 単相インバータの並列制御方法、およびシステムならびにインバータ | |
CN106786777B (zh) | 一种基于内模控制的微电网并离网平滑切换控制方法 | |
CN103683517B (zh) | 一种应用于微电网的混合储能系统 | |
CN106233557B (zh) | 微网的控制 | |
CN110707742B (zh) | 一种多变流器并联离网启动控制系统及启动方法 | |
CN102780226B (zh) | 基于斩控均压的链式statcom直流侧电压控制方法及控制电路 | |
CN105356507A (zh) | 基于电网阻抗自适应的lc型并网逆变器双模式控制方法 | |
CN108462203B (zh) | 一种海上风电场接入常规高压直流系统的协同控制方法 | |
CN104578187A (zh) | 一种多端柔性直流输电系统级协调控制装置 | |
CN109038642B (zh) | 一种自储能多端柔直系统控制方法和装置 | |
CN115579944B (zh) | 一种具有自限流保护能力的构网型储能控制系统及方法 | |
CN110943468B (zh) | 双模式储能变换器的控制方法、装置和系统 | |
CN112909999B (zh) | 一种无锁相环高电能质量无缝切换系统及其控制方法 | |
CN107612043B (zh) | 一种基于相位前馈的虚拟同步发电机控制方法 | |
CN116937936A (zh) | 逆变器的控制方法、装置以及逆变器系统和存储介质 | |
Azimi et al. | Multi-purpose droop controllers incorporating a passivity-based stabilizer for unified control of electronically interfaced distributed generators including primary source dynamics | |
CN108808736A (zh) | 基于自动发电控制的柔性直流输电恢复电网的控制方法 | |
CN104377723A (zh) | 一种用于静止式中频电源组网系统的暂态过程控制方法 | |
CN111864790A (zh) | 一种虚拟同步并网逆变器相角补偿方法及系统 | |
CN115360773A (zh) | 储能系统的无通讯并机方法、协调控制器及存储介质 | |
CN115912450A (zh) | 基于虚拟同步控制的柔性直流输电系统控制方法和装置 | |
CN114825487A (zh) | 一种离网型风储荷发电系统及控制调试方法 | |
CN114899819A (zh) | 一种新能源电站储能系统暂态过电压控制方法及装置 | |
CN106877362A (zh) | 一种并网风电功率综合调控方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18838423 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18838423 Country of ref document: EP Kind code of ref document: A1 |