WO2019019542A1 - 变桨装置以及具有该变桨装置的风力发电机组 - Google Patents

变桨装置以及具有该变桨装置的风力发电机组 Download PDF

Info

Publication number
WO2019019542A1
WO2019019542A1 PCT/CN2017/118244 CN2017118244W WO2019019542A1 WO 2019019542 A1 WO2019019542 A1 WO 2019019542A1 CN 2017118244 W CN2017118244 W CN 2017118244W WO 2019019542 A1 WO2019019542 A1 WO 2019019542A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
pitch
bearing
lands
inner ring
Prior art date
Application number
PCT/CN2017/118244
Other languages
English (en)
French (fr)
Inventor
郭拥军
袁春梅
代兴文
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to AU2017391882A priority Critical patent/AU2017391882B2/en
Priority to EP17890842.2A priority patent/EP3460233B1/en
Priority to US16/069,069 priority patent/US11306698B2/en
Priority to ES17890842T priority patent/ES2949544T3/es
Publication of WO2019019542A1 publication Critical patent/WO2019019542A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0658Arrangements for fixing wind-engaging parts to a hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/024Adjusting aerodynamic properties of the blades of individual blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/504Kinematic linkage, i.e. transmission of position using flat or V-belts and pulleys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/76Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to the field of wind power generation technology, and more particularly to a pitch device for a wind power generator set and a wind power generator set having the same.
  • the wind turbine is a large-scale power generation device that converts wind energy into electric energy by the rotation of the impeller.
  • the wind turbine uses a pitch device to adjust the blade angle of the blade according to the change of the wind speed to control the absorption of the wind energy by the impeller.
  • the blade angle of the blade is controlled by the pitch device to be between 0° and 30°, It is ensured that the rotational speed of the impeller is limited to the rated range, and the downtime is achieved by a pitching device, for example, by feathering the blade to a 90° position.
  • FIGS. 1 and 2 show a partial cross-sectional side view of the pitching device of Figure 1.
  • the pitching device includes a pitch bearing 2 including a bearing inner ring 21 and a bearing outer ring 22, and the hub 1 as a base of the wind power generator is connected to the pitch by the hub connecting bolt 7
  • the bearing inner ring 21 of the bearing 2 is fixedly connected, and the blade 6 of the wind turbine is fixedly connected to the bearing outer ring 22 of the pitch bearing 2 via the blade connecting bolt 8, and the transmission belt 3 is wound around the driving mechanism 4, the tensioning pulley 31 and the belt.
  • the device 32 is tensioned to the outer circumferential cylindrical surface of the bearing outer ring 22 of the pitch bearing 2.
  • the drive mechanism 4 drives the drive belt 3, thereby driving the bearing outer ring 22 of the pitch bearing 2 and the blade 6 of the wind turbine set with respect to the bearing inner ring 21 of the pitch bearing 2 and the hub of the wind turbine 1 rotation to achieve the pitch of the blade.
  • the pitch device of the prior art has the problems of low safety factor of the pitch bearing ring, low safety factor of the pitch bearing and the hub connecting bolt, and low safety factor of the transmission belt, thereby easily failing.
  • the present disclosure provides a pitch device for a wind power generator and a wind power generator having the pitch device capable of improving safety factors of various components of the pitch device Improve the safety performance of the pitching device.
  • a pitch device for a wind power generator set may include a hub and a blade
  • the pitch device may include a pitch bearing, a transmission element, and a drive transmission member a drive mechanism
  • the pitch bearing includes a bearing inner ring and a bearing outer ring
  • the bearing inner ring is fixedly coupled to the blade
  • the bearing outer ring is fixedly coupled to the hub
  • the transmission element is driven by the Driven by the mechanism, the blade and the bearing inner ring are rotated relative to the hub.
  • the pitch device may further include a lands, the transmission member being disposed on an outer circumferential surface of the lands, wherein the lands are disposed on the bearing inner ring and the Between the blades, or the lands are disposed on the outer periphery of the blade root of the blade.
  • the land may include an inner circumferential portion, an outer circumferential portion, and an intermediate transition portion connecting the inner circumferential portion and the outer circumferential portion in a radial direction.
  • the inner circumferential portion may be annular, having a plurality of first axial through holes arranged in a circumferential direction, the bearing inner ring having a plurality of first axial passages a plurality of second axial through holes corresponding to the holes, the bearing inner ring connecting bolts sequentially passing through the second axial through holes, the first axial through holes, and then fastened to the blades.
  • the lands may be annular or partially annular, and the inner circumferential portion may be fixed to the outer periphery of the blade root of the blade.
  • the inner circumferential portion may be provided with a plurality of insertion protrusions extending inward in the radial direction, and the outer periphery of the blade root of the blade is provided with a plurality of insertion grooves, the insertion protrusions may be fixed To the insertion groove.
  • the lands may be composed of a plurality of arc segments, each of which has a circumferential angle less than or equal to 180°.
  • the lands may have at least one of the following structural features: an axial thickness of the intermediate transition portion is less than or equal to an axial thickness of the outer circumferential portion; the intermediate transition portion is formed a plurality of lightening holes; the outer circumferential portion is annular or partially annular, or the outer circumferential portion and the intermediate transition portion are annular or partially annular; the outer circumferential portion of the lands A toothed structure is formed on the outer circumferential surface.
  • the transmission element may be disposed on a peripheral root of the blade root of the blade.
  • a groove for accommodating the transmission member may be formed on the outer periphery of the blade root.
  • a convex structure may be formed on the outer periphery of the blade root, and the transmission member is disposed on an outer circumferential surface of the convex structure.
  • the convex structure may be integrally formed with the blade.
  • the raised structure may be circular or partially annular.
  • the raised structure may include a radially extending portion that extends radially outward from the outer periphery of the blade root.
  • the protruding structure may further include an axially extending portion extending axially from an end of the radially extending portion.
  • a weight reducing hole may be disposed in the radially extending portion.
  • the bearing inner ring may have an extension extending axially outward, the blade being fixedly coupled to the extension, and the transmission element being disposed on an outer circumferential surface of the extension .
  • the extension portion may include a convex structure that protrudes radially outward, and the transmission member is disposed on an outer circumferential surface of the convex structure.
  • the convex structure may have a T-shaped or L-shaped cross section.
  • the transmission element may be a drive belt, a drive chain or a steel cord.
  • the drive belt can be a toothed belt or a toothed chain.
  • a wind power generator set is provided, the wind power generator set including a pitch device as described above.
  • the size of the pitch bearing used for the inner ring pitching through the inner ring lands is correspondingly increased, and the bolt pitch diameter is increased.
  • the number of bolts increases and the distribution diameter of the transmission components increases, which improves the load-resistance of the blade roots, reduces the load on the individual bolts, and reduces the load on the bearing rolling elements.
  • the pitch device for a wind power generator increases the blade root bending moment load level, improves the safety factor of the pitch bearing and the connecting bolt, and improves the safety factor of the inner ring and the outer ring of the pitch bearing. And improve the safety factor of the transmission components.
  • Figure 1 shows a schematic view of a pitching device of the prior art
  • Figure 2 shows a partial cross-sectional side view of the pitching device of Figure 1;
  • FIG. 3 is a perspective view of a pitch device according to a first embodiment of the present disclosure
  • FIG. 4 is a partial cross-sectional view of a pitch device according to a first embodiment of the present disclosure
  • Figure 5 is a perspective view of a lands of a pitch device according to a first embodiment of the present disclosure
  • 6A is a partial cross-sectional view of a pitch device according to a second embodiment of the present disclosure.
  • 6B is a plan view of a land of a pitch device according to a second embodiment of the present disclosure.
  • 6C is a front cross-sectional view of a lands of a pitch device according to a second embodiment of the present disclosure.
  • FIG. 7A and 7B are partial cross-sectional views of a pitch device according to a third embodiment of the present disclosure.
  • FIGS. 8A and 8B are partial cross-sectional views of a pitch device according to a fourth embodiment of the present disclosure.
  • 9A and 9B are partial cross-sectional views of a pitch device according to a fifth embodiment of the present disclosure.
  • the pitch device of the prior art connects the blade to the bearing outer ring of the pitch bearing and adopts the outer ring pitching scheme, there is a problem that the pitching device has a low safety factor.
  • the present disclosure proposes to connect the blade to the bearing inner ring of the pitch bearing by using an inner ring pitching scheme different from the prior art outer ring pitching scheme, and drive the blade through a transmission element (for example, a transmission belt). And the inner ring of the bearing rotates with a predetermined angle with respect to the outer ring of the bearing and the hub to realize the blade pitching.
  • the pitch diameter of the bearing rolling body, the diameter of the transmission component layout, the diameter of the connecting bolt, etc. can be correspondingly increased, thereby improving the pitch device.
  • the safety factor of each component improves the safety performance of the pitching device.
  • the present specification provides a number of exemplary embodiments that enable the blade to be coupled to the bearing inner ring and how it is coupled to the transmission element.
  • various specific embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
  • FIG. 3 is a perspective view of a pitch device according to a first embodiment of the present disclosure.
  • 4 is a partial cross-sectional view of a pitch device in accordance with a first embodiment of the present disclosure.
  • Fig. 5 is a perspective view of a lands of a pitch device according to a first embodiment of the present disclosure.
  • the pitch device includes a pitch bearing 2, a land 10, a drive mechanism 4, and a transmission element.
  • the pitch bearing 2 includes a bearing inner ring 21, a bearing outer ring 22, and rolling elements 23 (for example, balls or rollers) disposed between the bearing inner ring 21 and the bearing outer ring 22, the bearing outer ring 22 being sleeved on the bearing
  • the outer circumference of the inner ring 21 is rotatable relative to the bearing inner ring 21.
  • the bearing outer ring 22 can be fixedly connected to the hub 1 via a bearing outer ring connecting bolt 7, and the bearing inner ring 21 can be fixedly connected to the blade 6 through the bearing inner ring connecting bolt 8.
  • the lands 10 are located between the bearing inner ring 21 and the vanes 6.
  • the transmission mode between the driving mechanism 4 and the transmission component can adopt a belt transmission, a chain transmission, a hoisting transmission, a steel rope transmission and the like.
  • the transmission element may be a transmission belt, a transmission chain, a steel cord, or the like as long as the driving force can be transmitted to the blade 6 to rotate the blade 6.
  • the transmission element is taken as an example of a transmission belt.
  • the bearing outer ring 22 is fixedly coupled to the hub 1 of the wind power generator set, and the land 10 is fixedly coupled between the bearing inner ring 21 and the vane 6. More specifically, the axial first end of the lands 10 contacts the bearing inner ring 21, and the axial second end of the lands 10 contacts the blade root end of the blade 6.
  • the connecting plate 10 is provided with a corresponding axial through hole 14 (which will be described in detail below), and the bearing inner ring connecting bolt 8 passes through the bearing inner ring in turn.
  • the through hole on the 21 and the through hole in the splicing plate 10 are then screwed into the blind hole of the blade root of the blade 6, and after being fastened by the fastening nut, the bearing inner ring 21, the lands 10 and the blade 6 are fixedly connected. Together.
  • the drive mechanism 4 is disposed on the hub 1 of the wind turbine, the drive belt 3 spans the drive mechanism 4, and is sleeved on the outer circumference of the lands 10, and both ends are pre-tensioned on the outer circumferential surface of the lands 10 by the pretensioning device 32.
  • the driving mechanism 4 When it is necessary to adjust the blade angle of the blade 6, the driving mechanism 4 is operated, and the driving belt 3 drives the connecting plate 10, the bearing inner ring 21 and the blade 6 to rotate relative to the bearing outer ring 22 and the hub 1 by a predetermined angle under the driving of the driving mechanism 4, Thereby the pitching of the blades 6 is achieved.
  • the drive mechanism 4 is constituted by a pitch drive gear
  • the pitch device may further include a tension pulley 31 that is tensioned on the lands 10 by the tension pulley 31 and the pitch drive gear 4 On the outer circumference.
  • the lands 10 are annular disk-like structures.
  • the land 10 can be divided into an inner circumferential portion 11, an outer circumferential portion 13, and an intermediate transition portion 12 connecting the outer circumferential portion 13 and the inner circumferential portion 11 in the radial direction.
  • a plurality of first axial through holes 14 are opened in the inner circumferential portion 11, and the plurality of first axial through holes 14 extend in the axial direction and are uniformly arranged in the circumferential direction.
  • a plurality of second axial through holes (which may be threaded holes) corresponding to the plurality of first axial through holes 14 are disposed on the bearing inner ring 21, and a corresponding plurality of threaded holes are provided at the blade root of the blade 6.
  • the threaded hole of the root of the blade 6 may be a blind hole.
  • the bearing outer ring 22 is provided with a plurality of threaded holes or through holes.
  • the bearing outer ring 22 is fixedly connected to the hub 1 of the wind turbine by the bearing outer ring connecting bolt 7 passing through the bearing outer ring 22 and then being fastened to the corresponding threaded hole of the hub 1 of the wind power generator.
  • a stud may be embedded in the root of the blade 6, which is disposed in the circumferential direction on the root of the blade 6.
  • the surface axial thickness of the outer circumferential portion 13 of the land 10 in contact with the belt 3 is greater than or equal to the width of the belt 3, and thus the outer circumferential portion 13 of the tray 10. It may be made thicker; at the same time, in order to satisfy the strength requirement of bolting with the blade 6 and the bearing inner ring 21, the thickness of the inner circumferential portion 11 of the land 10 connected to the bearing inner ring connecting bolt 8 may also be large.
  • the outer circumferential portion 13 of the lands 10 can be formed into a non-rounded structure, for example, the inner circumferential portion 11 is a full circle structure, and the intermediate transition portion 12 and the outer circumferential portion 13 Formed as a non-rounded structure, but as part of a ring.
  • the pitch angle of the blade 6 during the actual pitching of the blade 6 is between 0° and 30°, and the winding angle of the belt 3 is as shown in FIG. 3, and is not wound around the entire circumference of the lands 10. Therefore, as long as the structure of the lands 10 can satisfy the winding requirements of the belt 3.
  • the outer peripheral portion of the lands 10 is designed to be a non-rounded structure, which can save material costs and reduce the weight of the lands 10.
  • the lands 10 can also be designed as a full circle structure according to actual needs.
  • the intermediate transition portion 12 may be arranged as a spoke-like structure, in other words, a plurality of spaced apart weight-reducing holes 15 may be provided in the intermediate transition portion 12 of the lands 10 to further reduce the weight of the lands 10. .
  • the intermediate transition portion 12 may be disposed to be thinner so that the axial thickness of the intermediate transition portion 12 is less than or equal to the axial thickness of the inner circumferential portion 11, or It is less than or equal to the axial thickness of the inner circumferential portion 11 and the outer circumferential portion 13, thereby further reducing the weight of the lands 10.
  • the inner circumferential portion 11 and the outer circumferential portion 13 are substantially cylindrical, and the sectional shape taken along the radial direction of the land 10 can be approximately "work" or "Z" shape.
  • the bearing outer ring 22 is fixedly connected with the hub 1 of the wind power generator through the bearing outer ring connecting bolt 7, and then the connecting plate 10 is placed.
  • the bearing inner ring 21 is fixedly coupled to the lands 10 and the blades 6 of the wind turbine by the bearing inner ring connecting bolts 8, so that the mounting sequence can avoid interference between the outer ring connecting bolts 7 and the lands 10.
  • the outer circumference of the lands 10 and the belt 3 are driven by friction. Therefore, according to the need, the corresponding anti-friction treatment or friction-increasing treatment can be performed on the outer circumferential surface of the lands 10 to change the friction coefficient of the mating surface to meet the transmission requirements of different transmission belts, and to avoid the transmission belt 3 and the lands 10 There is a risk of slipping between them.
  • the drive belt 3 may be a toothed belt or a toothed chain or the like.
  • a toothed structure may be provided on the outer circumferential surface of the lands 10 to engage the toothed belt or the toothed chain.
  • FIG. 6A is a partial cross-sectional view of a pitch device according to a second embodiment of the present disclosure.
  • 6B is a plan view of a land of a pitch device according to a second embodiment of the present disclosure.
  • 6C is a front cross-sectional view of a lands of a pitch device according to a second embodiment of the present disclosure.
  • the pitch device according to the second embodiment of the present disclosure also includes a land.
  • 6B and 6C are views showing the structure of a land of a pitch device according to a second embodiment of the present disclosure. Unlike the pitch device of the first embodiment, according to the pitch device of the second embodiment of the present disclosure, the arrangement position and structure of the land 40 are changed.
  • the structure of the pitch device according to the second embodiment of the present disclosure is the same as that of the pitch device according to the first embodiment except for the structure of the land 40 and the blade 6, and therefore, the description of the same portions is omitted here, and only the description is Different parts of the first embodiment.
  • the land 40 may also be in the shape of a circular disk, and includes an inner circumferential portion 41, an outer circumferential portion 43, and an inner circumferential portion 41 and an outer circumferential portion. Intermediate transition portion 42 of 43.
  • the inner circumferential portion 41 of the land 40 is coupled to the position of the blade 6 near the pitch bearing 2.
  • an insertion groove may be formed on the outer circumference of the blade root of the blade 6, and the inner circumferential portion 41 of the land 40 may be inserted into the insertion groove of the blade 6.
  • the inner circumferential portion 41 may be formed with a bolt hole, and in the case where the inner circumferential portion is inserted into the insertion groove of the blade 6, the lands 40 may be pre-embedded by the inner ring connecting bolt 8 at the insertion recess of the blade root of the blade 6. In the slot.
  • the drive belt 3 is coupled to the outer circumferential surface of the lands 40 by a belt pretensioning device to drive the blades 6 to rotate pitch.
  • the lands 40 may be formed as a plurality of arc segments that are spliced into a ring or a portion of a ring when mounted to the blade root.
  • Figure 6B shows that the lands 40 are constructed from two arc segments. The circumferential angle of each arc segment is less than or equal to 180 degrees.
  • the lands 40 may be constructed of 3-6 arc segments.
  • a plurality of arc segments may be embedded in the insertion grooves of the blade root of the blade 6, respectively, in the radial direction.
  • the inner circumferential portion 41 of the lands 40 is formed with a plurality of insertion projections 44 that extend in the radially inward direction and are evenly arranged in the circumferential direction.
  • An axial through hole 45 is formed in the insertion boss 44 for bolting with the blade 6.
  • the plurality of insertion projections 44 are embedded and connected to the insertion grooves of the vanes 6, and are fixedly coupled to the vanes 6 by bolts.
  • the manner of connecting the lands 40 to the blades 6 is not limited to the manner illustrated, and a pin connection, a wedge connection, a stop positioning, or the like may be employed.
  • the outer circumferential portion 43 of the lands 40 may not be formed into a full circle structure or the intermediate transition portion 42 in the case where the installation requirements and strength requirements are satisfied.
  • the axial thickness is thin, and a weight reducing hole or the like is formed at the intermediate transition portion.
  • the cross-sectional shape taken along the radial direction of the lands 40 may be approximately "work", “Z", "L” or "T".
  • the shape of the land 40 is not limited to the shape illustrated and the shape described above as long as the outer circumferential surface of the land 40 can satisfy the mating requirements of the belt and the mounting requirements and strength requirements.
  • the pitch device according to the third embodiment also includes a land, but unlike the first embodiment and the second embodiment, the land according to the third embodiment is formed integrally with the blade 6, that is, the inner portion
  • the circumferential portion is formed integrally with the blade root.
  • a convex structure 60 may be integrally formed on the outer peripheral surface of the blade root portion of the blade 6 instead of the lands in the first embodiment and the second embodiment.
  • the raised structure 60 and the outer peripheral surface of the blade root may also be detachable.
  • the drive belt 3 is coupled to the outer circumferential surface of the raised structure by a pretensioning device to directly drive the blade 6 to rotate the pitch.
  • the raised structure 60 may include a radially extending portion extending radially outward from the outer periphery of the blade root, and the belt 3 may be wound around the outer circumferential surface of the radially extending portion. Still further, the raised structure 60 may further include an axially extending portion extending axially from an outer end portion of the radially extending portion, and the belt 3 may be wound on an outer circumferential surface of the axially extending portion.
  • the convex structure 60 may also be formed in a circular or partial circular shape, and the outer circumferential portion of the convex structure 60 may not be formed into a full circular structure. It is also possible to form a light reducing hole or the like in the radial extension.
  • the shape of the raised structure 60 may be the same as or similar to the shape of the land 10 shown in FIG. 5 and the land 40 shown in FIG. 6B, and will not be described in detail herein.
  • the raised structure 60 can be formed using the same material as the blade material.
  • FIG. 7B in the case where the material of the blade 6 cannot meet the strength requirements of the pitching operation, other suitable materials may be selected to process the blade root and the raised structure 60 to meet the strength requirements.
  • the shape of the convex structure 60 according to the present embodiment is not limited to the illustrated shape as long as the outer circumferential surface of the convex structure 60 can satisfy the fitting requirement of the power transmission belt.
  • the outer circumferential surface of the convex structure 60 may be subjected to corresponding friction reducing or friction increasing treatment to change the friction coefficient of the mating surface.
  • the transmission belt 3 may be a toothed belt or a toothed chain, and therefore, a toothed structure may be provided on the outer circumferential surface of the convex structure to cooperate with the toothed belt or the toothed chain.
  • FIGS. 8A and 8B illustrate partial cross-sectional views of a pitch device in accordance with a fourth embodiment of the present disclosure.
  • the pitching device according to the fourth embodiment omits the lands, but is similar to the third embodiment according to the present disclosure, the belt 3 is directly passed through the belt pretensioning device Connected to the blade root of the blade 6, thereby driving the blade 6 to rotate pitch.
  • the convex structure 60 is not formed on the outer periphery of the blade root of the blade 6, but the drive belt 3 is directly wound around the outer periphery of the blade root.
  • a groove 601 or the like may be provided at the joint portion of the blade root and the belt to stably set the belt 3 in the groove 601 to prevent the belt 3 from being stably disposed in the groove 601.
  • the belt 3 is tilted up and down.
  • the mating surface of the blade 6 with the drive belt 3 can be subjected to a corresponding antifriction or antifriction treatment to change the friction coefficient of the mating surface.
  • the transmission belt 3 may be a toothed belt or a toothed chain, and therefore, a toothed structure may be provided on the outer circumferential surface of the blade root of the blade 6 to cooperate with the toothed belt or the toothed chain.
  • FIGS. 9A and 9B show partial cross-sectional views of a pitch device according to a fifth embodiment of the present disclosure.
  • the bearing inner ring 21 of the pitch bearing 2 extends axially outward beyond the predetermined length of the bearing outer ring 22, in other words, the bearing inner ring 21 faces the blade in the axial direction.
  • the direction of 6 is formed with extensions 210, 310, and the axial through holes on the bearing inner ring 21 also extend through the extensions 210, 310, so that the bearing inner ring connection bolt 8 can pass through the bearing inner ring 21 and the extension After 210, 310 is fastened to the blade 6, thereby fixedly connecting the blade 6 to the bearing inner ring 21.
  • the drive belt 3 is coupled to the outer circumferential surface of the extensions 210, 310 of the bearing inner ring 21 by a pretensioning device to drive the bearing inner ring 21 to rotate, and the blade inner ring 21 drives the blade 6 to rotate and pitch.
  • the extending portion 210 may extend from the bearing inner ring 21 by a predetermined length in the axial direction, and has a substantially cylindrical shape.
  • the predetermined length is greater than the width of the drive belt 3.
  • the outer circumferential surface of the extending portion 210 may be subjected to corresponding treatment, for example, the outer circumferential surface may be subjected to friction-increasing or anti-friction treatment.
  • the drive belt 3 may be a toothed belt or a toothed chain, and therefore, a toothed structure may be formed on the outer circumferential surface to engage the toothed belt or the toothed chain.
  • the extension portion 310 is different from the extension portion 210 in FIG. 9A, and the extension portion 310 further includes a convex structure on the basis of the extension portion 210 shown in FIG. 9A to further increase the pitch circle of the transmission belt 3. diameter.
  • the extension 310 may include an axially extending portion 312 and a raised structure formed on the outer circumference of the axially extending portion 312.
  • the raised structure may include a radially extending portion 314 that extends radially outward, in which case the drive belt 3 may be wrapped around the outer circumferential surface of the radially extending portion 314.
  • the protruding structure may further include a transmission member mounting portion 316 extending axially from the outer end portion of the radially extending portion 314, and the transmission belt 3 may be wound around the outer circumferential surface of the transmission member mounting portion 316.
  • the convex structure may be integrally formed with the axially extending portion 312, or may be formed as a separate member inserted into the outer circumference of the axially extending portion 312 as the lands 40 shown in the second embodiment.
  • the inner circumference of the radially extending portion 314 may be formed with a radially inwardly extending insertion protrusion, and the outer circumference of the axially extending portion 312 may be formed with a corresponding insertion groove such that the protrusion structure is inserted into the protrusion and the insertion recess
  • the slots are mated in a manner that is coupled to the axially extending portion 314.
  • the cross-sectional shape of the raised structure may be "one", "T” or "L” shaped.
  • the raised structure may be formed in a toroidal shape or a partial circular shape, and the radially extending portion 314 may also be formed with a lightening hole.
  • the embodiment shown in Fig. 9B can be obtained by forming the lands 10 according to the first embodiment of the present disclosure and the bearing inner ring 21 into a unitary structure.
  • the pitching device shown in FIG. 9B also includes a lands 80 integrally formed with the bearing inner ring 21, the lands 80 including an inner circumferential portion, an outer circumferential portion, and an inner circumferential portion and an outer circumferential portion. The middle transition part. A plurality of axial through holes of the bearing inner ring 21 extend through the inner circumferential portion.
  • the lands 80 (i.e., the extensions 310) shown in Fig. 9B are similar in construction to the lands 10, lands 40, and lands 60 of the previously described embodiments, and the radial cross section of the lands 80 may be "work". Shape or "Z" shape.
  • the other structure of the pitch device is the same as that of the pitch structure in the previously described embodiment, and therefore, the repeated description will not be repeated.
  • the pitch device of the present disclosure can be applied to a wind turbine, and therefore, the present disclosure provides a wind power generator having the pitch device described above.
  • the blades are subjected to the same bending moment.
  • the pitch bearing 2 is small in size in the case of blades of the same specification, and the corresponding pitch bearing and The hub connecting bolt 7, the pitch diameter of the bearing steel ball, and the diameter of the transmission belt are all small. Since the load is proportional to the bending moment and inversely proportional to the diameter of the pitch circle, the load on the steel ball and the load on the bolt are large when the bending moment is the same. This results in the pitch bearing 2 being subjected to a large pitch load during blade pitching. Therefore, the bolt of the pitch bearing 2 connected to the hub 1 and the ball of the pitch bearing 2 are subjected to a large load, and the pitch bearing 2 itself and its own members are easily damaged.
  • the size of the pitch bearing increases correspondingly, the diameter of the bolt pitch circle increases and the number of bolts increases, and the distribution diameter of the transmission belt increases accordingly, which improves the load resistance of the blade root, reduces the load on the single bolt, and reduces the bearing rolling. The load on the body.
  • a pitch device for a wind power generator increases a blade root bending moment load level, improves a safety factor of a pitch bearing and a connecting bolt, and improves safety of a pitch bearing inner ring and an outer ring.
  • the coefficient and the improvement of the safety factor of the belt reduce the risk of fracture failure of the pitch bearing and the risk of failure of the belt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种用于风力发电机组的变桨装置,该风力发电机组包括轮毂(1)和叶片(6),变桨装置包括变桨轴承(2)、传动元件以及用于驱动传动元件的驱动机构(4),变桨轴承包括轴承内圈(21)和轴承外圈(22),轴承内圈与叶片固定连接,轴承外圈与轮毂固定连接,传动元件在驱动机构的驱动下,带动叶片和轴承内圈相对于轮毂旋转。变桨装置能够提高叶根极限弯矩载荷水平、变桨装置的安全系数,降低了变桨轴承的失效风险、螺栓的失效风险以及传动带的失效风险。还披露了一种具有变桨装置的风力发电机组。

Description

变桨装置以及具有该变桨装置的风力发电机组 技术领域
本公开涉及风力发电技术领域,更具体地,涉及一种用于风力发电机组的变桨装置以及具有该变桨装置的风力发电机组。
背景技术
风力发电机组是一种通过叶轮转动将风能转化为电能的大型发电装置,风力发电机组利用变桨装置根据风速的变化对叶片的桨叶角度进行调节以控制叶轮对风能的吸收。
具体地,在风力发电机组正常运行期间,当风速超过风力发电机组的额定风速时,为了控制风力发电机组的功率输出,通过变桨装置控制叶片的桨叶角度在0°~30°之间,保证叶轮的转速限定在额定范围内,并且通过变桨装置例如将叶片顺桨到90°位置实现停机。
图1示出了现有技术中的一种变桨装置的示意图。图2示出了图1中的变桨装置的局部剖视侧视图。如图1和2所示,变桨装置包括变桨轴承2,变桨轴承2内包括轴承内圈21和轴承外圈22,作为风力发电机组的基体的轮毂1通过轮毂连接螺栓7与变桨轴承2的轴承内圈21固定连接,风力发电机组的叶片6通过叶片连接螺栓8与变桨轴承2的轴承外圈22固定连接,传动带3绕过驱动机构4、张紧轮31和传动带预紧装置32张紧连接于变桨轴承2的轴承外圈22的外周圆柱面上。当需要进行变桨作业时,驱动机构4驱动传动带3,从而带动变桨轴承2的轴承外圈22和风力发电机组的叶片6相对于变桨轴承2的轴承内圈21和风力发电机组的轮毂1转动,实现叶片的变桨。
然而,现有技术中的变桨装置存在变桨轴承套圈安全系数较低、变桨轴承与轮毂连接螺栓安全系数较低、传动带安全系数较低,从而容易失效的问题。
发明内容
为了解决上述现有技术的问题,本公开提供一种用于风力发电机组的变桨装置以及具有该变桨装置的风力发电机组,所述变桨装置能够提高变桨装置的各个部件的安全系数,提升变桨装置的安全性能。
根据本公开的一方面,提供一种用于风力发电机组的变桨装置,所述风力发电机组可包括轮毂和叶片,所述变桨装置可包括变桨轴承、传动元件以及用于驱动传动元件的驱动机构,所述变桨轴承包括轴承内圈和轴承外圈,所述轴承内圈与所述叶片固定连接,所述轴承外圈与所述轮毂固定连接,所述传动元件在所述驱动机构的驱动下,带动所述叶片和所述轴承内圈相对于轮毂旋转。
根据本公开的一方面,所述变桨装置还可包括连接盘,所述传动元件设置在所述连接盘的外圆周表面上,其中,所述连接盘设置在所述轴承内圈与所述叶片之间,或者所述连接盘设置在所述叶片的叶根外周上。
根据本公开的一方面,所述连接盘可沿径向方向包括内圆周部分、外圆周部分以及连接所述内圆周部分和外圆周部分的中间过渡部分。
根据本公开的一方面,所述内圆周部分可为圆环状,具有沿着圆周方向布置的多个第一轴向通孔,所述轴承内圈具有与所述多个第一轴向通孔对应的多个第二轴向通孔,轴承内圈连接螺栓依次穿过所述第二轴向通孔、所述第一轴向通孔后紧固到所述叶片。
根据本公开的一方面,所述连接盘可为圆环状或部分圆环状,所述内圆周部分可固定到所述叶片的叶根外周。
根据本公开的一方面,所述内圆周部分可设置有沿径向向内延伸的多个插入凸起,所述叶片的叶根外周设置有多个插入凹槽,所述插入凸起可固定到所述插入凹槽中。
根据本公开的一方面,所述连接盘可由多个弧段部分构成,每个弧段部分的圆周角小于或等于180°。
根据本公开的一方面,所述连接盘可具有如下结构特征中的至少一种:所述中间过渡部分的轴向厚度小于或等于所述外圆周部分的轴向厚度;所述中间过渡部分形成有多个减重孔;所述外圆周部分为圆环形或部分圆环形,或者所述外圆周部分以及中间过渡部分为圆环形或部分圆环状;所述连接盘的外圆周部分的外圆周表面上形成有齿形结构。
根据本公开的一方面,所述传动元件可设置在所述叶片的叶根外周上。
根据本公开的一方面,所述叶根外周上可开设有容纳所述传动元件的凹槽。
根据本公开的一方面,所述叶根外周上可形成有凸起结构,所述传动元件设置在所述凸起结构的外圆周表面上。
根据本公开的一方面,所述凸起结构可与所述叶片一体成型。
根据本公开的一方面,所述凸起结构可为圆环形或部分圆环形。
根据本公开的一方面,所述凸起结构可包括从所述叶根外周沿径向向外延伸的径向延伸部分。
根据本公开的一方面,所述凸起结构还可包括从所述径向延伸部分的端部沿轴向延伸的轴向延伸部分。
根据本公开的一方面,所述径向延伸部分中可设置有减重孔。
根据本公开的一方面,所述轴承内圈可具有沿轴向向外延伸的延伸部,所述叶片与所述延伸部固定连接,所述传动元件设置在所述延伸部的外圆周表面上。
根据本公开的一方面,所述延伸部可包括径向向外凸出的凸起结构,所述传动元件设置在所述凸起结构的外圆周表面上。
根据本公开的一方面,所述凸起结构的径向截面可为T形或L形。
根据本公开的一方面,所述传动元件可为传动带、传动链或钢绳。所述传动带可为齿形带或齿形链。
根据本公开的另一方面,提供了一种风力发电机组,所述风力发电机组包括如上所述的变桨装置。
根据本公开的实施例的用于风力发电机组的变桨装置,在保证叶片规格相同的情况下,通过内圈连接盘进行内圈变桨所用变桨轴承尺寸相应增大,螺栓节圆直径增大且螺栓数量增加,传动元件分布直径随之增大,提高了叶根的抗载能力,降低了单个螺栓所受的载荷,降低了轴承滚动体所受的载荷。
因此,根据本公开的实施例的用于风力发电机组的变桨装置提高叶根极限弯矩载荷水平、提高变桨轴承与连接螺栓的安全系数、提高变桨轴承内圈和外圈的安全系数以及提高传动元件的安全系数。
附图说明
通过下面结合附图对实施例进行的描述,本公开的上述和/或其它目的和 优点将会变得更加清楚,其中:
图1示出了现有技术中的一种变桨装置的示意图;
图2示出了图1中的变桨装置的局部剖视侧视图;
图3是根据本公开第一实施例的变桨装置的立体图;
图4是根据本公开第一实施例的变桨装置的局部剖视图;
图5是根据本公开第一实施例的变桨装置的连接盘的立体图;
图6A是根据本公开第二实施例的变桨装置的局部剖视图;
图6B是根据本公开第二实施例的变桨装置的连接盘的平面图;
图6C是根据本公开第二实施例的变桨装置的连接盘的主视剖视图;
图7A和7B是根据本公开第三实施例的变桨装置的局部剖视图;
图8A和8B是根据本公开第四实施例的变桨装置的局部剖视图;
图9A和9B是根据本公开第五实施例的变桨装置的局部剖视图。
具体实施方式
由于现有技术的变桨装置将叶片与变桨轴承的轴承外圈连接而采用外圈变桨方案,因此,存在变桨装置安全系数低的问题。为了解决上述问题,本公开提出,采用与现有技术的外圈变桨方案不同的内圈变桨方案,使叶片与变桨轴承的轴承内圈连接,通过传动元件(例如,传动带)带动叶片和轴承内圈相对于轴承外圈以及轮毂旋转预定角度,实现叶片旋转变桨。因此,与现有技术的外圈变桨方案相比,在同等叶片情况下,即叶根直径保持不变的情况下,由于叶根与轴承内圈连接,则轴承内圈以及轴承外圈的尺寸均需要相应增大,轮毂连接法兰的直径也相应增加,相应地,轴承滚动体的节圆直径、传动元件布局直径、连接螺栓的直径等均可相应增加,从而能够改善变桨装置中各个部件的安全系数,提高变桨装置的安全性能。
针对本公开提出的内圈变桨方案,本说明书提供了实现叶片与轴承内圈连接以及如何与传动元件连接的多个示例性实施方式。下面,将参照附图来详细说明本公开的各个具体实施例。
第一实施例
图3是根据本公开的第一实施例的变桨装置的立体图。图4是根据本公开的第一实施例的变桨装置的局部剖视图。图5是根据本公开第一实施例的 变桨装置的连接盘的立体图。
如图3和图4所示,根据本公开第一实施例的变桨装置包括变桨轴承2、连接盘10、驱动机构4以及传动元件。变桨轴承2包括轴承内圈21、轴承外圈22以及设置在轴承内圈21和轴承外圈22之间的滚动体23(例如,滚珠或滚柱),该轴承外圈22套设在轴承内圈21的外周,且能够相对于轴承内圈21旋转。轴承外圈22可通过轴承外圈连接螺栓7与轮毂1固定连接,轴承内圈21可通过轴承内圈连接螺栓8与叶片6固定连接。连接盘10位于轴承内圈21与叶片6之间。
驱动机构4与传动元件之间的传动方式可以采用带传动、链条传动、卷扬传动、钢绳传动等方式。相应地,传动元件可以是传动带、传动链、钢绳等,只要能够将驱动力传递给叶片6以使叶片6旋转即可。在下面的描述中,以传动元件为传动带为例进行描述。
在变桨装置安装到风力发电机组的状态下,轴承外圈22固定连接到风力发电机组的轮毂1上,连接盘10固定连接在轴承内圈21与叶片6之间。更具体地,连接盘10的轴向第一端接触轴承内圈21,连接盘10的轴向第二端接触叶片6的叶根端部。在与轴承内圈21的法兰连接通孔对应的位置,连接盘10上设置有相应的轴向通孔14(将在下面进行详细描述),轴承内圈连接螺栓8依次穿过轴承内圈21上的通孔和连接盘10上的通孔,然后旋拧到叶片6的叶根部螺纹盲孔中,通过紧固螺母紧固后,将轴承内圈21、连接盘10和叶片6固定连接在一起。驱动机构4设置在风力发电机组的轮毂1上,传动带3跨过驱动机构4,并套设在连接盘10的外周,两端通过预紧装置32预紧在连接盘10的外圆周表面上。当需要调整叶片6的桨叶角时,驱动机构4运行,传动带3在驱动机构4的驱动下带动连接盘10、轴承内圈21和叶片6相对于轴承外圈22和轮毂1旋转预定角度,从而实现叶片6的变桨。
在根据本公开的实施例中,驱动机构4由变桨驱动齿轮构成,变桨装置还可包括张紧轮31,传动带3通过张紧轮31和变桨驱动齿轮4张紧在连接盘10的外周上。
如图3-5所示,在本公开的实施例中,连接盘10为圆环盘状结构。为了便于描述连接盘10的结构,可沿着径向方向将连接盘10划分为内圆周部分11、外圆周部分13以及连接外圆周部分13和内圆周部分11的中间过渡部分12。
如图5所示,内圆周部分11中开设有多个第一轴向通孔14,多个第一轴向通孔14沿着轴向延伸并沿圆周方向均匀布置。在轴承内圈21上设置有与该多个第一轴向通孔14对应的多个第二轴向通孔(可以为螺纹孔),在叶片6的叶根部设置有对应的多个螺纹孔,叶片6的根部的螺纹孔可为盲孔。在连接轴承内圈21、连接盘10与叶片6时,将轴承内圈21、连接盘10与叶片6同轴对准,并使三者的螺纹孔或通孔在轴向上相应对准,轴承内圈连接螺栓8依次穿过轴承内圈21的第二轴向通孔和连接盘10上的第一轴向通孔14之后,旋拧到风力发电机组的叶片6的螺纹孔中,然后通过螺母进行紧固,从而实现将风力发电机组的叶片6与变桨轴承2的轴承内圈21的固定连接(如图3和4所示)。
此外,在实施例中,轴承外圈22设置有多个螺纹孔或通孔。通过轴承外圈连接螺栓7穿过轴承外圈22后紧固到风力发电机组的轮毂1的对应螺纹孔,从而实现将轴承外圈22和风力发电机组的轮毂1固定连接。
除了上述在叶片6的根部设置螺纹孔的方式之外,也可以在叶片6的根部预埋一圈螺柱,所述螺柱在叶片6的根部上沿圆周方向设置。当将叶片6与连接盘10以及轴承内圈21连接时,叶片6的螺柱依次穿过连接盘10的第一轴向通孔14和轴承内圈21的第二轴向通孔,然后通过螺母进行紧固。
由于传动带3具有一定的宽度,为了满足传动带3的安装要求,连接盘10与传动带3接触的外圆周部分13的表面轴向厚度大于或等于传动带3的宽度,因此连接盘10的外圆周部分13可能会做的较厚;同时为了满足与叶片6以及轴承内圈21进行螺栓连接的强度要求,连接盘10的与轴承内圈连接螺栓8连接的内圆周部分11的厚度也可能较大。
因此,为了降低连接盘10的重量,节约成本,连接盘10的外圆周部分13可以形成为非整圆结构,例如,内圆周部分11为整圆结构,而中间过渡部分12和外圆周部分13形成为非整圆结构,而是为圆环的一部分。这是因为在叶片6的实际变桨过程中叶片6的变桨角度是在0°~30°之间,且传动带3的缠绕角度如图3所示,并未缠绕连接盘10的整个圆周上,因此只要连接盘10的结构能够满足传动带3的缠绕要求即可。在本实施例中,将连接盘10的外周部分设计为非整圆结构,能够节约材料成本且减轻连接盘10的自重。显然,在实际实施过程中,根据实际需要也可以将连接盘10设计为整圆结构。
此外,还可以将中间过渡部分12设置为轮辐状结构,换句话说,可以在连接盘10的中间过渡部分12中设置有多个间隔开的减重孔15,以进一步减轻连接盘10的自重。
除了上述构造之外,在满足安装需要和强度要求的情况下,中间过渡部分12还可以设置得较薄,使中间过渡部分12的轴向厚度小于或等于内圆周部分11的轴向厚度,或者小于或等于内圆周部分11和外圆周部分13的轴向厚度,从而进一步减轻连接盘10的重量。在这种情况下,内圆周部分11和外圆周部分13大体为圆筒形,沿连接盘10的半径方向截取的截面形状可近似为“工”或“Z”形。
在本公开中,对于连接盘10的各部分的径向宽度以及轴向厚度等尺寸,没有特别的限制,只要在安装过程中以及安装之后,连接盘10与轴承外圈22以及轴承外圈连接螺栓7之间不发生干涉即可。
在将本实施例的变桨装置与风力发电机组装配时,可以采用如下方式:首先通过轴承外圈连接螺栓7将轴承外圈22与风力发电机组的轮毂1固定连接,再将连接盘10放置就位,通过轴承内圈连接螺栓8将轴承内圈21与连接盘10和风力发电机组的叶片6固定连接,这样安装顺序能够避免外圈连接螺栓7与连接盘10之间的干涉。
在本公开的示例性实施例中,连接盘10的外周与传动带3依靠摩擦进行传动。因此,根据需要,可以在连接盘10的外圆周面上进行相应的减摩处理或增摩处理,改变配合表面的摩擦系数,以满足不同传动带的传动要求,并避免传动带3与连接盘10之间出现打滑的风险。
可选地,传动带3可以为齿形带或齿形链等。在传动带3为齿形带或齿形链的情况下,还可在连接盘10的外圆周面上设置齿形结构,以与齿形带或齿形链配合。
第二实施例
图6A是根据本公开第二实施例的变桨装置的局部剖视图。图6B是根据本公开第二实施例的变桨装置的连接盘的平面图。图6C是根据本公开第二实施例的变桨装置的连接盘的主视剖视图。
如图6A所示,根据本公开第二实施例的变桨装置也包括连接盘。图6B和6C示出了根据本公开第二实施例的变桨装置的连接盘的结构示意图。与第 一实施例的变桨装置不同的是,根据本公开第二实施例的变桨装置,连接盘40的设置位置和结构发生了改变。除了连接盘40与叶片6的结构,根据本公开第二实施例的变桨装置的结构与根据第一实施例的变桨装置的结构相同,因此,这里省略相同部分的描述,而仅描述与第一实施例不同的部分。
如图6B和6C所示,在本公开的第二实施例中,连接盘40也可为圆环盘状,并且包括内圆周部分41、外圆周部分43以及连接内圆周部分41和外圆周部分43的中间过渡部分42。连接盘40的内圆周部分41结合到叶片6的靠近变桨轴承2的位置处。作为示例,叶片6的叶根外圆周上可形成有插入凹槽,连接盘40的内圆周部分41可插入到叶片6的插入凹槽中。内圆周部分41上可形成有螺栓孔,在内圆周部分插入叶片6的插入凹槽中的情况下,可以通过内圈连接螺栓8将连接盘40预埋连接在叶片6的叶根部的插入凹槽中。传动带3通过传动带预紧装置连接到连接盘40的外圆周表面上,从而驱动叶片6旋转变桨。
为了便于将连接盘40连接到叶片6的叶根外圆周上,连接盘40可以形成为多个弧段,在安装到叶根上时拼接成圆环或圆环的一部分。图6B示出了连接盘40由两个弧段部分构成。每个弧段部分的圆周角小于或等于180度。为了便于安装连接盘40,优选地,连接盘40可由3-6个弧段部分构成。
可沿径向将多个弧段部分分别嵌入到叶片6的叶根的插入凹槽中。优选地,连接盘40的内圆周部分41形成有多个插入凸起44,所述多个插入凸起44沿着径向向内的方向延伸,并沿着圆周方向均匀布置。插入凸起44上可形成有轴向通孔45,用于与叶片6进行螺栓连接。所述多个插入凸起44嵌入并连接到叶片6的插入凹槽中,通过螺栓与叶片6固定连接。
在第二实施例中,连接盘40与叶片6的连接方式不限于图示的方式,也可以采用销连接、楔形连接、止口定位等方式。
与根据本公开第一实施例的连接盘10类似地,在满足安装需要和强度要求的情况下,连接盘40的外圆周部分43也可以不形成为整圆结构,也可以使中间过渡部分42的轴向厚度较薄,以及在中间过渡部分形成有减重孔等。此外,沿连接盘40的半径方向截取的截面形状可近似为“工”形、“Z”形、“L”形或“T”形。
连接盘40的形状不限于图示形状以及上面描述的形状,只要连接盘40的外圆周表面能够满足传动带的配合需求以及安装需要和强度要求即可。
第三实施例
图7A和图7B示出了根据本公开第三实施例的变桨装置的局部剖视图。根据第三实施例的变桨装置也包括连接盘,但是,与第一实施例和第二实施例不同的是,根据第三实施例的连接盘与叶片6形成为一体结构,即,使内圆周部分与叶根形成为一体结构。换句话说,可以在叶片6的叶根部的外周面上一体形成有凸起结构60,代替第一实施例和第二实施例中的连接盘。当然,凸起结构60与叶根的外周面之间也可以是可拆卸的。传动带3通过预紧装置连接在该凸起结构的外圆周表面上,直接驱动叶片6旋转变桨。
凸起结构60可包括从叶根外周沿径向向外延伸的径向延伸部分,传动带3可以缠绕在所述径向延伸部分的外圆周表面上。更进一步地,所述凸起结构60还可以包括从径向延伸部分的外端部沿轴向延伸的轴向延伸部分,传动带3可以缠绕在所述轴向延伸部分的外圆周表面上。
与第一实施例和第二实施例的连接盘类似,该凸起结构60也可以形成为圆环形或部分圆环形,凸起结构60的外圆周部分也可以不形成为整圆结构,也可以在径向延伸部中形成有减重孔等。关于凸起结构60的形状可以与图5所示的连接盘10和图6B中示出的连接盘40的形状相同或近似,这里不再详细描述。
如图7A所示,在制作叶片6的过程中,可以利用制作叶片材料相同的材料来形成凸起结构60。可选地,如图7B所示,在制作叶片6的材料不能满足变桨操作的强度要求的情况下,可以选取其他合适的材料加工叶根部以及凸起结构60,从而满足强度要求。
根据本实施例的凸起结构60的形状不限于图示形状,只要凸起结构60的外圆周表面能够满足传动带的配合需求即可。为了满足不同传动带的传动要求,可以对凸起结构60的外圆周面上进行相应的减摩或增摩处理,改变配合表面的摩擦系数。可选地,传动带3可以为齿形带或齿形链,因此,还可在凸起结构的外圆周面上设置齿形结构,以与齿形带或齿形链配合。
第四实施例
图8A和图8B示出了根据本公开第四实施例的变桨装置的局部剖视图。与根据本公开第一和第二实施例不同的是,根据第四实施例的变桨装置省略 了连接盘,而是与根据本公开的第三实施例类似,传动带3通过传动带预紧装置直接连接到叶片6的叶根部,从而驱动叶片6旋转变桨。但是,与第三实施例不同的是,在叶片6的叶根外周没有形成凸起结构60,而是将传动带3直接缠绕在叶根外周上。
为了进一步限定叶片6与传动带3的配合范围,如图8B所示,可以在叶根部与传动带配合部分开设有凹槽601或其他类似处理,以使传动带3稳定地设置在凹槽601内,防止传动带3上下窜动。
同样地,叶片6的与传动带3的配合表面可以采用相应的减摩或增摩处理,改变配合表面摩擦系数。可选地,传动带3可以为齿形带或齿形链,因此,还可在叶片6的叶根的外圆周面上设置齿形结构,以与齿形带或齿形链配合。
第五实施例
图9A和9B示出了根据本公开第五实施例的变桨装置的局部剖视图。与根据本公开的上述实施例不同的是,变桨轴承2的轴承内圈21沿着轴向向外延伸超过轴承外圈22预定长度,换句话说,轴承内圈21在轴向上面向叶片6的方向形成有延伸部210、310,轴承内圈21上的轴向通孔也延伸穿过延伸部210、310,因此,可以使轴承内圈连接螺栓8穿过轴承内圈21以及延伸部210、310之后紧固到叶片6,从而将叶片6与轴承内圈21固定连接。
传动带3通过预紧装置连接在轴承内圈21的延伸部210、310的外圆周表面上,驱动轴承内圈21旋转,通过轴承内圈21带动叶片6旋转变桨。
如图9A所示,延伸部210可沿着轴向方向从轴承内圈21延伸预定长度,形状大体为圆筒形。所述预定长度大于所述传动带3的宽度。为了与传动带3配合,可以对延伸部210的外圆周表面进行相应处理,例如,对该外圆周面进行增摩或减摩处理。可选地,传动带3可以为齿形带或齿形链,因此,还可在该外圆周表面上形成齿形结构,以与齿形带或齿形链啮合。
如图9B所示,延伸部310与图9A中的延伸部210不同,延伸部310是在图9A所示的延伸部210的基础上进一步包括凸起结构,以进一步增大传动带3的节圆直径。
如图9B所示,延伸部310可以包括轴向延伸部分312以及形成在轴向延伸部分312外周的凸起结构。
凸起结构可包括沿径向向外延伸的径向延伸部分314,在这种情况下,传动带3可缠绕在径向延伸部分314的外圆周表面上。进一步地,凸起结构还可以包括从径向延伸部分314的外端部沿轴向延伸的传动元件安装部316,传动带3可缠绕在传动元件安装部316的外圆周表面上。凸起结构可以与轴向延伸部分312一体形成,也可以如第二实施例所示的连接盘40那样,形成为单独的部件,插入到轴向延伸部分312的外周上。例如,径向延伸部分314的内周可形成有径向向内延伸的插入凸起,轴向延伸部分312的外周可形成有对应的插入凹槽,从而凸起结构以插入凸起和插入凹槽相配合的方式与轴向延伸部分314结合。与前面描述的实施例中的连接盘40的结构类似,凸起结构的截面形状可以为“一”形、“T”或“L”形。凸起结构可以形成为圆环形或部分圆环形,径向延伸部分314上还可以形成有减重孔。
换句话说,可以通过将根据本公开第一实施例的连接盘10与轴承内圈21形成一体结构来得到图9B所示的实施例。或者说,图9B所示的变桨装置也包括连接盘80,该连接盘80与轴承内圈21一体形成,该连接盘80包括内圆周部分、外圆周部分以及连接内圆周部分和外圆周部分的中间过渡部分。轴承内圈21的多个轴向通孔延伸穿过所述内圆周部分。
图9B中所示的连接盘80(即延伸部310)与前面描述的实施例中的连接盘10、连接盘40、连接盘60的结构类似,连接盘80的径向截面可以为“工”形或“Z”形。变桨装置的其他结构与前面描述的实施例中的变桨结构的相应部件相同,因此,不再进行重复描述。
虽然结合附图对上述五个实施例进行了分别描述,但是,对于本领域技术人员来说应该理解的是,在其中一个实例中描述的结构特征可以应用于其他实施例,在各个特征在不相互冲突的情况下,不同实施例中的特征可以相互组合而形成其他变型方实施例。例如,在图8B所示出的示例中,在叶根外圆周表面上开设凹槽,以防止传动带上下窜动,显然,该方式也可以适用于其他实施例中的变桨盘或延伸部等部件。
本公开的变桨装置可以应用于风力发电机组,因此,本公开提供了一种具有上述变桨装置的风力发电机组。
在同等规格叶片情况下,叶片所受的弯矩相同。参考图1和图2,由于在现有技术中叶片6与变桨轴承2的轴承外圈22连接,因此在同等规格叶片情况下,变桨轴承2的尺寸较小,相应的变桨轴承与轮毂连接螺栓7、轴承 钢球的节圆直径、传动带直径布局均较小。由于载荷与弯矩大小成正比,与节圆直径成反比,所以,弯矩相同的情况下,钢球所承受的载荷以及螺栓所受的载荷均较大。这导致在叶片变桨过程中,变桨轴承2承受较大的变桨载荷。因而,变桨轴承2的与轮毂1连接的螺栓、变桨轴承2的滚珠等均受到较大的载荷,容易造成变桨轴承2自身及自身构件的损坏等。
根据本公开的实施例的用于风力发电机组的变桨装置以及具有所述变桨装置的风力发电机组,在叶片规格相同的情况下,通过将叶片连接到轴承内圈上,使得所采用的变桨轴承的尺寸相应增大,螺栓节圆直径增大且螺栓数量增加,传动带分布直径随之增大,提高了叶根的抗载能力,降低了单个螺栓所受的载荷,降低了轴承滚动体所受的载荷。
具体地,根据本公开的实施例的用于风力发电机组的变桨装置提高叶根极限弯矩载荷水平、提高变桨轴承与连接螺栓的安全系数、提高变桨轴承内圈和外圈的安全系数以及提高传动带的安全系数,降低了变桨轴承断裂失效的风险以及传动带断裂失效的风险。
本公开的以上实施例仅仅是示例性的,而本公开并不受限于此。本领域技术人员应该理解:在不脱离本公开的原理和精神的情况下,可对这些实施例进行改变,其中,本公开的范围在权利要求及其等同物中限定。

Claims (20)

  1. 一种用于风力发电机组的变桨装置,所述风力发电机组包括轮毂(1)和叶片(6),所述变桨装置包括变桨轴承(2)、传动元件以及用于驱动传动元件的驱动机构(4),其特征在于,
    所述变桨轴承(2)包括轴承内圈(21)和轴承外圈(22),所述轴承内圈(21)与所述叶片(6)固定连接,所述轴承外圈(22)与所述轮毂(1)固定连接,所述传动元件在所述驱动机构(4)的驱动下,带动所述叶片(6)和所述轴承内圈(21)相对于所述轮毂(1)旋转。
  2. 如权利要求1所述的变桨装置,其特征在于,所述变桨装置还包括连接盘(10、40),所述传动元件设置在所述连接盘(10、40)的外圆周表面上,其中,所述连接盘(10)设置在所述轴承内圈(21)与所述叶片(6)之间,或者所述连接盘(40)设置在所述叶片(6)的叶根外周上。
  3. 如权利要求2所述的变桨装置,其特征在于,所述连接盘(10、40)沿径向方向包括内圆周部分(11、41)、外圆周部分(13、43)以及连接所述内圆周部分(11、41)和外圆周部分(13、43)的中间过渡部分(12、42)。
  4. 如权利要求3所述的变桨装置,其特征在于,所述内圆周部分(11)为圆环状,具有沿着圆周方向布置的多个第一轴向通孔(14),所述轴承内圈(21)具有与所述多个第一轴向通孔(14)对应的多个第二轴向通孔,轴承内圈连接螺栓(8)依次穿过所述第二轴向通孔、所述第一轴向通孔(14)后紧固到所述叶片(6)。
  5. 如权利要求3所述的变桨装置,其特征在于,所述连接盘(40)为圆环状或部分圆环状,所述内圆周部分(41)固定到所述叶片(6)的叶根外周。
  6. 如权利要求5所述的变桨装置,其特征在于,所述内圆周部分(41)设置有沿径向向内延伸的多个插入凸起(44),所述叶片(6)的叶根外周设置有多个插入凹槽,所述插入凸起(44)固定到所述插入凹槽中。
  7. 如权利要求5所述的变桨装置,其特征在于,所述连接盘(40)由多个弧段部分构成,每个弧段部分的圆周角小于或等于180°。
  8. 如权利要求3所述的变桨装置,其特征在于,所述连接盘(10、40)具有如下结构特征中的至少一种:
    所述中间过渡部分(12、42)的轴向厚度小于或等于所述外圆周部分(13、 43)的轴向厚度;
    所述中间过渡部分(12)形成有多个减重孔(15);
    所述外圆周部分(13)为圆环形或部分圆环形,或者所述外圆周部分(13)以及中间过渡部分(12)为圆环形或部分圆环状;
    所述连接盘(10、40)的外圆周部分(13、43)的外圆周表面上形成有齿形结构。
  9. 如权利要求1所述的变桨装置,其特征在于,所述传动元件设置在所述叶片(6)的叶根外周上。
  10. 如权利要求9所述的变桨装置,其特征在于,所述叶根外周上开设有容纳所述传动元件的凹槽。
  11. 如权利要求9所述的变桨装置,其特征在于,所述叶根外周上形成有凸起结构(60),所述传动元件设置在所述凸起结构(60)的外圆周表面上。
  12. 如权利要求11所述的变桨装置,其特征在于,所述凸起结构(60)与所述叶片(6)一体成型。
  13. 如权利要求11所述的变桨装置,其特征在于,所述凸起结构(60)为圆环形或部分圆环形。
  14. 如权利要求11所述的变桨装置,其特征在于,所述凸起结构(60)包括从所述叶根外周沿径向向外延伸的径向延伸部分。
  15. 如权利要求14所述的变桨装置,其特征在于,所述凸起结构(60)还包括从所述径向延伸部分的外端部沿轴向延伸的轴向延伸部分。
  16. 如权利要求14或15所述的变桨装置,其特征在于,所述径向延伸部分中设置有减重孔。
  17. 如权利要求1所述的变桨装置,其特征在于,所述轴承内圈(21)具有沿轴向向外延伸的延伸部(210、310),所述叶片(6)与所述延伸部(210、310)固定连接,所述传动元件设置在所述延伸部(210、310)的外圆周表面上。
  18. 如权利要求17所述的变桨装置,其特征在于,所述延伸部(210、310)包括径向向外凸出的凸起结构,所述传动元件设置在所述凸起结构的外圆周表面上。
  19. 如权利要求18所述的变桨装置,其特征在于,所述凸起结构的径向截面为T形或L形。
  20. 一种风力发电机组,其特征在于,所述风力发电机组包括如权利要求1-19中任一项所述的变桨装置。
PCT/CN2017/118244 2017-07-28 2017-12-25 变桨装置以及具有该变桨装置的风力发电机组 WO2019019542A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2017391882A AU2017391882B2 (en) 2017-07-28 2017-12-25 Pitch apparatus and wind turbine having pitch apparatus
EP17890842.2A EP3460233B1 (en) 2017-07-28 2017-12-25 Variable-pitch device and wind turbine having same
US16/069,069 US11306698B2 (en) 2017-07-28 2017-12-25 Pitch apparatus and wind turbine having pitch apparatus
ES17890842T ES2949544T3 (es) 2017-07-28 2017-12-25 Dispositivo de paso variable y turbina eólica que tiene el mismo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710631152.5 2017-07-28
CN201710631152.5A CN107201990A (zh) 2017-07-28 2017-07-28 变桨装置以及具有该变桨装置的风力发电机组

Publications (1)

Publication Number Publication Date
WO2019019542A1 true WO2019019542A1 (zh) 2019-01-31

Family

ID=59912155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118244 WO2019019542A1 (zh) 2017-07-28 2017-12-25 变桨装置以及具有该变桨装置的风力发电机组

Country Status (6)

Country Link
US (1) US11306698B2 (zh)
EP (1) EP3460233B1 (zh)
CN (1) CN107201990A (zh)
AU (1) AU2017391882B2 (zh)
ES (1) ES2949544T3 (zh)
WO (1) WO2019019542A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109838345A (zh) * 2019-02-26 2019-06-04 泗阳高传电机制造有限公司 一种风电机组变桨结构

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107201990A (zh) * 2017-07-28 2017-09-26 北京金风科创风电设备有限公司 变桨装置以及具有该变桨装置的风力发电机组
CN108131246B (zh) * 2017-12-19 2020-03-06 江苏金风科技有限公司 变桨系统的同步带、变桨系统和风力发电机组
CN109185056B (zh) * 2018-10-30 2020-03-17 新疆金风科技股份有限公司 变桨驱动装置、变桨驱动系统及风力发电机组
CN113048014B (zh) * 2019-12-27 2023-03-31 新疆金风科技股份有限公司 风力发电机组叶根螺栓紧固控制系统和控制方法
CN113738593B (zh) * 2020-05-29 2023-08-22 北京金风科创风电设备有限公司 风力发电机组液压变桨系统的测试系统
DE102022203808A1 (de) * 2022-04-14 2023-10-19 Contitech Antriebssysteme Gmbh Riemenbetriebene Verstelleinrichtung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202370752U (zh) * 2011-12-13 2012-08-08 北京金风科创风电设备有限公司 风机变桨装置及风力发电机组
CN203383979U (zh) * 2012-02-16 2014-01-08 通用电气公司 在风力涡轮转子叶片和转子轮毂之间的组件构造
CN103953504A (zh) * 2014-05-13 2014-07-30 成都瑞迪机械实业有限公司 电动直驱式风电变桨装置
CN104533728A (zh) * 2014-12-16 2015-04-22 北京金风科创风电设备有限公司 发电机组的变桨轴承的加强装置及叶轮结构
CN105673318A (zh) * 2016-03-24 2016-06-15 北京稳力科技有限公司 一种风力发电机的新型轮毂连接机构
CN206290366U (zh) * 2016-12-22 2017-06-30 北京金风科创风电设备有限公司 风力发电机组及其变桨系统
CN107165777A (zh) * 2017-07-28 2017-09-15 北京金风科创风电设备有限公司 变桨装置以及具有该变桨装置的风力发电机组
CN107201990A (zh) * 2017-07-28 2017-09-26 北京金风科创风电设备有限公司 变桨装置以及具有该变桨装置的风力发电机组

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004046260B4 (de) 2004-09-23 2007-05-16 Nordex Energy Gmbh Verfahren zum Betreiben einer Vorrichtung zum Verstellen eines Blatteinstellwinkels sowie eine Verstellvorrichtung
WO2007003866A1 (en) * 2005-07-05 2007-01-11 Vestas Wind Systems A/S A wind turbine pitch bearing, and use hereof
CN101424249A (zh) * 2007-10-31 2009-05-06 上海驰风机电科技有限公司 风力发动机叶片变桨装置
CN101230838B (zh) * 2007-11-19 2011-04-13 黄金伦 中心齿轮同步变桨距装置
DE102008013926B4 (de) * 2008-03-12 2019-07-25 Vensys Energy Ag Vorrichtung zur Verstellung des Anstellwinkels eines Rotorblattes einer Windenergieanlage
GB2486405B (en) * 2010-12-08 2013-09-11 Vestas Wind Sys As Mounting arrangement for pitch gear
EP2530301A1 (en) * 2011-05-31 2012-12-05 General Electric Company Blade root stiffening element and method of mounting a blade having said root stiffening element
DE102013206878A1 (de) * 2012-04-16 2013-10-17 Suzlon Energy Gmbh Verstellvorrichtung für ein Rotorblatt einer Windturbine
EP2679805B1 (en) * 2012-06-29 2015-02-18 General Electric Company Cone angle insert for wind turbine rotor
WO2015021994A1 (en) * 2013-08-13 2015-02-19 Aktiebolaget Skf Mounting assembly of a gear drive system
CN204436690U (zh) * 2015-01-29 2015-07-01 北车风电有限公司 一种风力发电机组叶片变桨装置
CN105863957B (zh) * 2016-05-17 2019-01-08 哈尔滨工业大学 一种可变桨距大功率垂直轴风力发电装置及气动启停控制方法
CN106594065B (zh) * 2016-12-27 2019-07-05 北京金风科创风电设备有限公司 轴承及风力发电机组的变桨轴承
CN206972437U (zh) * 2017-07-28 2018-02-06 北京金风科创风电设备有限公司 变桨装置以及具有该变桨装置的风力发电机组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202370752U (zh) * 2011-12-13 2012-08-08 北京金风科创风电设备有限公司 风机变桨装置及风力发电机组
CN203383979U (zh) * 2012-02-16 2014-01-08 通用电气公司 在风力涡轮转子叶片和转子轮毂之间的组件构造
CN103953504A (zh) * 2014-05-13 2014-07-30 成都瑞迪机械实业有限公司 电动直驱式风电变桨装置
CN104533728A (zh) * 2014-12-16 2015-04-22 北京金风科创风电设备有限公司 发电机组的变桨轴承的加强装置及叶轮结构
CN105673318A (zh) * 2016-03-24 2016-06-15 北京稳力科技有限公司 一种风力发电机的新型轮毂连接机构
CN206290366U (zh) * 2016-12-22 2017-06-30 北京金风科创风电设备有限公司 风力发电机组及其变桨系统
CN107165777A (zh) * 2017-07-28 2017-09-15 北京金风科创风电设备有限公司 变桨装置以及具有该变桨装置的风力发电机组
CN107201990A (zh) * 2017-07-28 2017-09-26 北京金风科创风电设备有限公司 变桨装置以及具有该变桨装置的风力发电机组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109838345A (zh) * 2019-02-26 2019-06-04 泗阳高传电机制造有限公司 一种风电机组变桨结构

Also Published As

Publication number Publication date
ES2949544T3 (es) 2023-09-29
US11306698B2 (en) 2022-04-19
AU2017391882A1 (en) 2019-02-14
EP3460233B1 (en) 2023-07-05
EP3460233A1 (en) 2019-03-27
EP3460233C0 (en) 2023-07-05
CN107201990A (zh) 2017-09-26
EP3460233A4 (en) 2019-11-27
AU2017391882B2 (en) 2019-11-14
US20210207581A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
WO2019019542A1 (zh) 变桨装置以及具有该变桨装置的风力发电机组
CN107165777A (zh) 变桨装置以及具有该变桨装置的风力发电机组
US8210810B2 (en) Rotor turning device for wind turbine generator and rotor turning method
US8287423B2 (en) Planetary gear system
US8506446B2 (en) Pin for planetary gear system
US9551324B2 (en) Pitch bearing assembly with stiffener
US8469664B2 (en) Yaw bearing assembly and tower for wind turbine
US10443575B2 (en) Wind turbine comprising a planetary gear system
US11725633B2 (en) Pitch bearing for a wind turbine
US20150056078A1 (en) Pitch bearing assembly with stiffener
CN206972436U (zh) 变桨装置以及具有该变桨装置的风力发电机组
US20120308386A1 (en) Chain Drive Train for a Wind Turbine
US20170002795A1 (en) Pitch assembly for a wind turbine rotor blade
US20120308387A1 (en) Hybrid Drive Train for a Wind Turbine
CN205841112U (zh) 一种发电机组内变桨轴承的加强装置
CN206972437U (zh) 变桨装置以及具有该变桨装置的风力发电机组
CN108798996B (zh) 偏航系统及风力发电机组
US20130294916A1 (en) Inverted Tooth Silent Drive Chain for Wind Turbine Powertrain Applications
CN109488530B (zh) 变桨装置、变桨系统及变桨方法
CN113446150A (zh) 变桨系统和风力发电机组
EP3614003B1 (en) Ball plug retention for a slewing ring bearing
US9200619B2 (en) Wind turbine yaw or pitch bearing utilizing a threaded bearing surface

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017890842

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017890842

Country of ref document: EP

Effective date: 20180809

ENP Entry into the national phase

Ref document number: 2017391882

Country of ref document: AU

Date of ref document: 20171225

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE