WO2019019425A1 - 一种利用激光校正光学系统波前分布的方法 - Google Patents

一种利用激光校正光学系统波前分布的方法 Download PDF

Info

Publication number
WO2019019425A1
WO2019019425A1 PCT/CN2017/106245 CN2017106245W WO2019019425A1 WO 2019019425 A1 WO2019019425 A1 WO 2019019425A1 CN 2017106245 W CN2017106245 W CN 2017106245W WO 2019019425 A1 WO2019019425 A1 WO 2019019425A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
wavefront
optical
distribution
refractive index
Prior art date
Application number
PCT/CN2017/106245
Other languages
English (en)
French (fr)
Inventor
赵晓杰
陶沙
Original Assignee
英诺激光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英诺激光科技股份有限公司 filed Critical 英诺激光科技股份有限公司
Priority to US16/234,930 priority Critical patent/US20190155023A1/en
Publication of WO2019019425A1 publication Critical patent/WO2019019425A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient

Definitions

  • the present invention relates to the field of optoelectronics, and more particularly to a method of correcting the wavefront distribution of an optical system using a laser.
  • Wavefront distortion occurs when the beam passes through some optics.
  • Conventional wavefront distortion correction methods include the use of multiple lens combinations, or the doping of optical components to correct their refractive index, or curved surfaces of different thicknesses.
  • all of the above methods require complex optical structure design, and many optical systems are complicated. If the design of these complex optical structures is added to correct the wavefront distortion, the entire optical system will be more complicated.
  • the present solution discloses a method for correcting the wavefront distribution of an optical system by using a laser, which specifically includes the following steps:
  • the optical device described in S3 is placed in an optical system to correct for wavefront distortion present in the original optical system, or to obtain a special optical system having a desired arbitrary wavefront distribution.
  • the actual wavefront distribution before the optical system to be corrected is uncorrected can be measured or calculated by an instrument.
  • the wavefront distortion existing in the optical system is first acquired, and the spatial distribution of the refractive index required for the corrected optical device is calculated according to the wavefront distortion.
  • the required spatial distribution of the refractive index can be determined according to the calculation and simulation of the wavefront distribution obtained in the step S1.
  • step S3 after the laser is applied to the optical device, the optical device is measured for the spatial distribution of the refractive index, and if the desired spatial distribution of the refractive index is achieved, the processing of the optical device is completed; To achieve the desired spatial distribution of the refractive index, it is repeated from the S2 step until the optical device reaches the desired spatial distribution of the refractive index.
  • the optical device for correction may be any at least one optical device in the optical system from the start of the optical path to the end of the optical path.
  • the optical device may be an optical compensation device added to the optical system.
  • the present invention provides a novel method for correcting the wavefront distribution of an optical system using a laser, and may also be a special optical system for wavefront correction of an optical device system or for generating an arbitrary arbitrary wavefront distribution.
  • Laser processing method The method mainly achieves the spatial distribution of the refractive index required by the action of the laser, thereby achieving the purpose of calibration.
  • the optical device processed by this method can effectively correct the wavefront distortion existing in the optical system, or generate a special optical system having an arbitrary arbitrary wavefront distribution to meet specific use requirements, and can be used for various optical systems.
  • the method has the characteristics of fast speed, computer-assisted one-shot molding and no need for subsequent processing. It is a new optical system design and wavefront distortion correction method.
  • FIG. 1 is a flow chart of an embodiment of a novel laser processing method for wavefront correction of an optical system according to the present invention
  • FIG. 2 is a structural view of an optical system according to an embodiment of the present invention.
  • 1-IP 2-laser
  • 3-expansion device 4-optical compensation device
  • 5-galvanometer 6-lens
  • 7-laser beam 8-processing platform.
  • optical system 2 which is an already constructed optical system, which in turn comprises an industrial computer 1, a laser 2, a beam expanding device 3, a galvanometer 5, a lens 6 and a processing platform 8, and a laser beam 7 from the laser. 2 is emitted, and then passes through a series of optical components to reach the processing platform 8 and acts on the workpiece to be processed on the processing platform 8, and obtains the desired processing effect. Due to the problems of the optical components themselves or the optical path system, the entire optical system may have some wavefront distortion more or less.
  • the effect of the laser on the transparent material can be utilized, and the spatial distribution of the refractive index therein can be changed by laser action, and then placed in the original optical system, thereby correcting the wavefront distortion of the optical system.
  • the following steps are included:
  • the optical device described in S3 is placed in an optical system to correct wavefront distortion existing in the original optical system;
  • the actual wavefront distribution before the optical system to be corrected is uncorrected can be measured or calculated by an instrument.
  • the distortion existing in the optical system is first acquired, and the refractive index spatial distribution required for the corrected optical device is calculated according to the distortion.
  • the optical system is distorted, and the correction of the optical device is to eliminate the distortion. Therefore, the spatial distribution of the refractive index corresponding to the optical component can be calculated according to the distortion.
  • the optical device is measured for spatial distribution of the refractive index, and if the desired spatial distribution of the refractive index is achieved, the processing of the optical device is completed; If the desired spatial distribution of the refractive index is not achieved, then repeating from the S2 step until the optical device reaches the desired spatial distribution of the refractive index.
  • the use of laser-acting optics to change the spatial distribution of the refractive index allows for a desired spatial distribution of the refractive index by computer-assisted one-shot molding.
  • the processed optical device can be measured for the spatial distribution of the refractive index after processing once, according to the actual refractive index spatial distribution at this time, And the wavefront distortion at this time, to determine whether it is necessary to re-process, if not, then directly molding. If necessary, the optical component can be repeatedly applied by the laser according to the operation in step S2 until the desired spatial distribution of the refractive index is achieved, and the wavefront distortion existing in the optical system is eliminated.
  • the optical device for correction may be any at least one optical device in the optical system from the start of the optical path to the end of the optical path.
  • the wavefront distortion becomes distortion in the entire optical system, and the distortion is eliminated. It may be selected from any one of the optical path starting point to the end point in the optical path system, according to the distortion of the system and the spatial distribution of the refractive index of the selected optical device itself. The situation, to determine how to process, and after processing, the spatial distribution of the refractive index that the selected optics itself needs to achieve, and ultimately eliminate the wavefront distortion that exists in the system.
  • the optical device for correction may be an optical compensation device added to the optical system.
  • the processed optical device is any optical component in the optical path, and may of course be an optical compensation device added thereto, and also performs laser according to the wavefront distortion existing in the optical path system and the spatial distribution of the refractive index of the optical compensation device itself.
  • the processing enables the optical compensation device to achieve a desired spatial distribution of the refractive index and ultimately eliminates the wavefront distortion present in the optical system.
  • the invention provides a novel method for correcting the wavefront distribution of an optical system by using a laser, mainly selecting an optical device from the start point to the end point of the optical path, or an additional optical compensation plate, combined with the wavefront distortion of the entire optical system.
  • the spatial distribution of the refractive index of the optical device required for the correction is calculated, and then the desired spatial distribution of the refractive index is generated inside the optical device by the action of the laser to eliminate the wavefront distortion in the optical system, thereby achieving the purpose of calibration.
  • the optical device processed by this method can effectively correct the wavefront distortion in the optical system to meet specific use requirements and can be used in various optical systems.
  • the method has the characteristics of high speed, computer-assisted molding, and no subsequent processing. It is a new method of optical system design and wavefront distortion correction.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Lenses (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种新型的用于光学系统波前分布校正的方法,同时也可以是一种用于光学器件系统波前校正、或生成具有所需的任意波前分布的特殊光学系统的激光加工方法。方法主要通过激光的作用,使光学器件内部形成特定的折射率空间分布,从而实现对光学系统中存在的波前畸变进行校正、或生成具有所需的任意波前分布的光学系统之目的。通过方法处理的光学器件能有效地校正光学系统中的波前畸变,满足特定的使用需求,可用于各种光学系统,同时方法具有速度快、计算机辅助一次成型、无需后续处理的特点,是一种全新的光学系统设计和波前畸变校正的方法。

Description

一种利用激光校正光学系统波前分布的方法
技术领域
本发明涉及光电领域,尤其是指一种利用激光校正光学系统波前分布的方法。
背景技术
光束在经过一些光学器件时会发生波前畸变,传统的波前畸变校正方法包括使用多镜片组合,或光学器件掺杂以修正其折射率等方式,或不同厚度的曲面设计。但是,以上方式都需要复杂的光学结构设计,很多光学系统都较为复杂,若为了校正波前畸变而加入这些复杂的光学结构的设计,会使得整个光学系统更为复杂。
发明内容
为了解决上述技术问题,本方案公开了一种利用激光校正光学系统波前分布的方法,具体包括以下步骤:
S1、获取待校正光学系统未校正前实际的波前分布;
S2、根据S1获取的波前分布,计算用于波前校正的光学器件所需达到的折射率空间分布;
S3、利用激光作用于S2所述的光学器件,在其内产生所需的折射率空间分布;
S4、将S3所述的光学器件置于光学系统中,以校正原光学系统中存在的波前畸变,或得到具有所需的任意波前分布的特殊光学系统。
进一步的,所述S1步骤中,待校正光学系统未校正前实际的波前分布可通过仪器测量或计算得到。
进一步的,所述S2步骤中,先获取光学系统存在的波前畸变,根据该波前畸变计算用于校正的光学器件所需的折射率空间分布。
进一步的,所述S2步骤中,所需的折射率空间分布可根据S1步骤中获得的波前分布进行计算、模拟而确定。
进一步的,所述S3步骤中,利用激光作用于所述光学器件后,对光学器件进行折射率空间分布的测量,若达到所需的折射率空间分布,则完成该光学器件的加工;若未达到所需的折射率空间分布,则又重复从S2步骤开始,直至该光学器件达到所需的折射率空间分布。
进一步的,所述用于校正的光学器件可以是光学系统中从光路起始点到光路终点间任意至少一个光学器件。
进一步的,所述的光学器件可以为添加至所述光学系统中的光学补偿器件。
本发明创造提供了一种新型的利用激光校正光学系统波前分布的方法,同时也可以是一种用于光学器件系统波前校正、或生成具有所需的任意波前分布的特殊光学系统的激光加工方法。该方法主要通过激光的作用,使光学器件内部形成所需的折射率空间分布,从而达到校正的目的。通过该方法处理的光学器件能有效地校正光学系统中存在的波前畸变,或生成具有所需的任意波前分布的特殊光学系统,从而满足特定的使用需求,可用于各类光学系统。同时该方法具有速度快、计算机辅助一次成型、无需后续处理的特点,是一种全新的光学系统设计和波前畸变校正的方法。
附图说明
下面结合附图详述本发明的具体方案
图1为本发明的一种新型的光学系统波前校正的激光加工方法一实施例的流程图;
图2为本发明实施例的光学系统结构图。
图中,1-工控机、2-激光器、3-扩束装置、4-光学补偿器件、5-振镜、6-透镜、7-激光光束、8-加工平台。
具体实施方式
为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明如何具体利用该方法来校正一光学系统所存在的波前畸变问题。
结合附图2,其为一已经搭建好的光学系统,该光学系统中,依次包括工控机1、激光器2、扩束装置3、振镜5、透镜6和加工平台8,激光光束7从激光器2发出,然后经过一系列的光学元器件而到达加工平台8并作用加工平台8上的被加工工件,并获得预期的加工效果。由于各光学元器件自身或光路系统的问题,整个光学系统或多或少都可能存在一些波前畸变。
结合图1,为了校正上述波前畸变,可以利用激光对透明材质的作用,通过激光作用来改变其内的折射率空间分布,然后置于原光学系统中,从而达到校正光学系统波前畸变的目的。具体包括以下步骤:
S1、获取待校正光学系统未校正前实际的波前分布;
S2、计算用于校正的光学器件校正后所需达到的折射率空间分布,即从理论上,完成此光学系统的波前畸变校正时,该光学器件所需达到的折射率空间分布;
S3、利用激光作用所述光学器件,在其内获得所需的折射率空间分布;
S4、将S3所述的光学器件置于光学系统中,以校正原光学系统中存在的波前畸变;
优选的,所述S1步骤中,待校正光学系统未校正前实际的波前分布可通过仪器测量或计算得到。
优选的,所述S2步骤中,先获取光学系统存在的畸变,根据该畸变计算用于校正的光学器件所需的折射率空间分布。光学系统存在畸变,光学器件的校正则正是为了消除这种畸变,故可根据该畸变来计算校正后畸变消除情况下该光学元器件所对应的折射率空间分布。
优选的,所述S3步骤中,利用激光作用于所述光学器件后,对该光学器件进行折射率空间分布的测量,若达到所需的折射率空间分布,则完成该光学器件的加工;若未达到所需的折射率空间分布,则又重复从S2步骤开始,直至该光学器件达到所需的折射率空间分布。利用激光作用光学器件来改变其折射率空间分布,可以通过计算机辅助一次成型而达到所需的折射率空间分布。同时,由于实际加工误差,或者某些光学器件需多次加工来提高精度,可在加工一次后,对加工后的光学器件进行折射率空间分布的测量,根据此时的实际折射率空间分布,以及此时的波前畸变情况,来决定是否需要再次加工,若不需要,则直接一次成型。若需要,则可按照步骤S2中的操作,利用激光反复对该光学元器件进行作用,直至达到所需的折射率空间分布,消除光学系统所存在的波前畸变。
优选的,所述的用于校正的光学器件可以是光学系统中从光路起始点到光路终点间任意至少一个光学器件。波前畸变为整个光学系统中的畸变,消除该畸变,可以是选择该光路系统中光路起点到终点中任意一个光学器件,根据该系统的畸变情况以及被选择的光学器件自身的折射率空间分布情况,来确定如何加工,以及加工后,被选择的光学器件自身所需达到的折射率空间分布,并最终消除该系统存在的波前畸变。
优选的,所述的用于校正的光学器件可以为添加至所述光学系统中的光学补偿器件。被加工的光学器件为光路中任一光学元器件,当然也可以是加入其中的光学补偿器件,同样也是根据光路系统存在的波前畸变以及该光学补偿器件自身的折射率空间分布情况来进行激光加工,使得该光学补偿器件达到所需的折射率空间分布,并最终消除该光学系统所存在的波前畸变。
本发明创造提供了一种新型的利用激光校正光学系统波前分布的方法,主要是选择光路起点到终点任意一光学器件,或额外的光学补偿板,结合整个光学系统存在的波前畸变情况,计算用于校正所需的光学器件折射率空间分布,然后通过激光的作用,在该光学器件内部产生所需的折射率空间分布,来消除光学系统中的波前畸变,从而达到校正的目的。通过该方法处理的光学器件能有效地校正光学系统中的波前畸变,从而满足特定的使用需求,可用于各类光学系统。同时该方法具有速度快、计算机辅助一次成型、无需后续处理的特点, 是一种全新的光学系统设计和波前畸变校正的方法。
此处,上、下、左、右、前、后只代表其相对位置而不表示其绝对位置。以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (7)

  1. 一种利用激光校正光学系统波前分布的方法,其特征在于,包括以下步骤:
    S1、获取待校正光学系统未校正前实际的波前分布;
    S2、根据S1获取的波前分布,计算用于波前校正的光学器件所需达到的折射率空间分布;
    S3、利用激光作用于S2所述的光学器件,在其内产生所需的折射率空间分布;
    S4、将S3所述的光学器件置于光学系统中,以校正原光学系统中存在的波前畸变,或得到具有所需的任意波前分布的特殊光学系统。
  2. 如权利要求1所述的一种利用激光校正光学系统波前分布的方法,其特征在于:所述S1步骤中,待校正光学系统未校正前实际的波前分布可通过仪器测量或计算得到。
  3. 如权利要求1所述的一种利用激光校正光学系统波前分布的方法,其特征在于:所述S2步骤中,先获取光学系统存在的波前畸变,根据该波前畸变计算用于校正的光学器件所需的折射率空间分布。
  4. 如权利要求1所述的一种利用激光校正光学系统波前分布的方法,其特征在于:所述S2步骤中,所需的折射率空间分布可根据S1步骤中获得的波前分布进行计算、模拟而确定。
  5. 如权利要求1所述的一种利用激光校正光学系统波前分布的方法,其特征在于:所述S3步骤中,利用激光作用于所述光学器件后,对光学器件进行折射率空间分布的测量,若达到所需的折射率空间分布,则完成该光学器件的加工;若未达到所需的折射率空间分布,则又重复从S2步骤开始,直至该光学器件达到所需的折射率空间分布。
  6. 如权利要求1-5任一项所述的一种利用激光校正光学系统波前分布的方法,其特征在于:所述用于校正的光学器件可以是光学系统中从光路起始点到光路终点间任意至少一个光学器件。
  7. 如权利要求6所述的一种利用激光校正光学系统波前分布的方法,其特征在于:所述的光学器件可以为添加至所述光学系统中的光学补偿器件。
PCT/CN2017/106245 2017-07-27 2017-10-16 一种利用激光校正光学系统波前分布的方法 WO2019019425A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/234,930 US20190155023A1 (en) 2017-07-27 2018-12-28 Method for correcting wavefront distribution of an optical system by laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710623727.9A CN107272195A (zh) 2017-07-27 2017-07-27 一种利用激光校正光学系统波前分布的方法
CN201710623727.9 2017-07-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/234,930 Continuation US20190155023A1 (en) 2017-07-27 2018-12-28 Method for correcting wavefront distribution of an optical system by laser

Publications (1)

Publication Number Publication Date
WO2019019425A1 true WO2019019425A1 (zh) 2019-01-31

Family

ID=60078773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106245 WO2019019425A1 (zh) 2017-07-27 2017-10-16 一种利用激光校正光学系统波前分布的方法

Country Status (3)

Country Link
US (1) US20190155023A1 (zh)
CN (1) CN107272195A (zh)
WO (1) WO2019019425A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117928384A (zh) * 2024-03-13 2024-04-26 广东普洛宇飞生物科技有限公司 一种图像引导的激光聚焦扫描系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020154271A1 (en) * 2000-02-16 2002-10-24 Christof Donitzky Method for producing an artificial ocular lense
CN1687986A (zh) * 2005-03-23 2005-10-26 中国科学院上海光学精密机械研究所 双波长光学头装置
CN1941523A (zh) * 2005-09-30 2007-04-04 中国科学院物理研究所 一种校正谐振腔内波前畸变的激光装置
CN1971341A (zh) * 2006-12-13 2007-05-30 中国科学院光电技术研究所 能校正人眼高阶像差的隐形眼镜及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113531A (ja) * 1995-10-16 1997-05-02 Mitsubishi Electric Corp 流速分布測定装置および流速分布測定方法
CN100378442C (zh) * 2004-06-30 2008-04-02 中国科学院上海光学精密机械研究所 光波波前探测装置及其探测方法
US20080001320A1 (en) * 2006-06-28 2008-01-03 Knox Wayne H Optical Material and Method for Modifying the Refractive Index
US9144491B2 (en) * 2011-06-02 2015-09-29 University Of Rochester Method for modifying the refractive index of an optical material
CN102957085A (zh) * 2012-11-19 2013-03-06 中国电子科技集团公司第十一研究所 用于激光光束波前校正的光学装置及波前校正方法
CN103076674A (zh) * 2013-01-11 2013-05-01 中国科学院长春光学精密机械与物理研究所 一种利用光热效应改变激光传输特性的装置
CN105730019B (zh) * 2016-02-03 2017-12-29 英诺激光科技股份有限公司 一种反馈型激光打标机及激光打标方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020154271A1 (en) * 2000-02-16 2002-10-24 Christof Donitzky Method for producing an artificial ocular lense
CN1687986A (zh) * 2005-03-23 2005-10-26 中国科学院上海光学精密机械研究所 双波长光学头装置
CN1941523A (zh) * 2005-09-30 2007-04-04 中国科学院物理研究所 一种校正谐振腔内波前畸变的激光装置
CN1971341A (zh) * 2006-12-13 2007-05-30 中国科学院光电技术研究所 能校正人眼高阶像差的隐形眼镜及其制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUOT ET AL.: "Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass", OPTICS EXPRESS, vol. 15, no. 19, 14 September 2007 (2007-09-14), pages 12395 - 12408, XP055572814 *
SAKAKURA, M. ET AL.: "Initial Temporal and Spatial Changes of the Refractive Index Induced By Focused Femtosecond Pulsed Laser Irradiation Inside Glass", PHYSICAL REVIEW B, vol. 71, 26 January 2005 (2005-01-26), pages 024113-1 - 024113-12, XP055572817 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117928384A (zh) * 2024-03-13 2024-04-26 广东普洛宇飞生物科技有限公司 一种图像引导的激光聚焦扫描系统
CN117928384B (zh) * 2024-03-13 2024-06-04 广东普洛宇飞生物科技有限公司 一种图像引导的激光聚焦扫描系统

Also Published As

Publication number Publication date
CN107272195A (zh) 2017-10-20
US20190155023A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
Wang et al. Nonlinear correction for fringe projection profilometry with shifted-phase histogram equalization
Wang et al. Study on an effective one-dimensional ion-beam figuring method
CN103837093B (zh) 光谱共焦传感器校准系统及方法
JP2017517759A5 (zh)
Yang et al. Flexible digital projector calibration method based on per-pixel distortion measurement and correction
KR101899190B1 (ko) 반도체 검사 도구에서 샘플 스테이지 모션을 시간 지연 적분 전하 결합 소자와 동기화시키는 장치 및 방법
CA2520625A1 (en) Method of using a manhattan layout to realize non-manhattan shaped optical structures
JP2019508748A (ja) 電子照射を用いて光学要素の面形状を変化させるためのデバイス
CN110111384A (zh) 一种tof深度模组的标定方法、装置及系统
CN109031659A (zh) 一种同轴光学系统的计算机辅助装调方法
JP7001835B2 (ja) 位相シフト偏向測定法で非線形応答特性を補償するためのシステム及び方法
US20110225554A1 (en) Method for the Reproducible Determination of the Position of Structures on a Mask with a Pellicle Frame
WO2019019425A1 (zh) 一种利用激光校正光学系统波前分布的方法
CN104890131B (zh) 一种基于面形误差斜率的确定性修形加工方法
KR102110567B1 (ko) 광 세기 변조 방법
CN102914945A (zh) 一种分布式曝光剂量控制系统及方法
Hand et al. Ion beam figuring and optical metrology system for synchrotron x-ray mirrors
US20150253680A1 (en) Method of calculating amount of aberration and method of calculating amount of misalignment
Tu et al. Rapid on-site recalibration for binocular vision galvanometric laser scanning system
CN106462077B (zh) 包括用于影像尺寸控制的投影系统的光刻装置
CN113126442B (zh) 一种套刻设备的误差补偿方法、装置、设备及介质
CN112305874B (zh) 一种衡量光瞳之间匹配程度的评价方法
CN104655056A (zh) 一种红外成像产品的角度零位标定系统及方法
Zabrodin et al. Ion-beam methods for high-precision processing of optical surfaces
KR20130009603A (ko) 소형 보정 패턴을 이용한 카메라 네트웍 보정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918729

Country of ref document: EP

Kind code of ref document: A1