WO2019019255A1 - 建立预测模型的装置、方法、预测模型建立程序及计算机可读存储介质 - Google Patents

建立预测模型的装置、方法、预测模型建立程序及计算机可读存储介质 Download PDF

Info

Publication number
WO2019019255A1
WO2019019255A1 PCT/CN2017/100054 CN2017100054W WO2019019255A1 WO 2019019255 A1 WO2019019255 A1 WO 2019019255A1 CN 2017100054 W CN2017100054 W CN 2017100054W WO 2019019255 A1 WO2019019255 A1 WO 2019019255A1
Authority
WO
WIPO (PCT)
Prior art keywords
time series
target
feature
data
preset
Prior art date
Application number
PCT/CN2017/100054
Other languages
English (en)
French (fr)
Inventor
徐亮
李弦
吴双双
肖京
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2019019255A1 publication Critical patent/WO2019019255A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques

Definitions

  • the present invention relates to the field of data processing technologies, and in particular, to an apparatus, a method, a predictive model establishing program, and a computer readable storage medium for establishing a predictive model.
  • Time series is a very common type of data. Almost all commercial data sets have a time dimension. And many commercial data analysis, such as fluctuations in the stock market, the incidence of certain diseases, etc., the data has a pattern of changes with the flow of time.
  • Traditional time series data prediction models such as autoregressive moving average models, hidden Markov models, etc., these commonly used models have poor reusability, and their modeling processes often require a large amount of artificial participation in sample training, resulting in different When studying similar time series data in the scene, it is often necessary to adapt the model.
  • the invention provides an apparatus, a method, a program and a computer readable storage medium for establishing a prediction model, the main purpose of which is to reduce the amount of manual training intervention and improve the reusability of the model created based on the time series.
  • the present invention provides an apparatus for establishing a prediction model based on a time series, the apparatus comprising: a memory, a processor, and a prediction model establishing program stored on the memory and operable on the processor,
  • the predictive model building program is implemented by the processor to implement the following steps:
  • the acquired features of the plurality of sample groups are input into a preset classification/regression model for training, wherein the feature corresponding to the target time unit is a target variable, and other features of the feature other than the target variable are used as dependent variables ;
  • the predictor of the classification/regression model is obtained, and the preset classification/regression model after determining the predictor is used as the predictive model.
  • the present invention also provides a method for establishing a prediction model based on a time series, the method comprising:
  • the acquired features of the plurality of sample groups are input into a preset classification/regression model for training, wherein the feature corresponding to the target time unit is a target variable, and other features of the feature other than the target variable are used as dependent variables ;
  • the predictor of the classification/regression model is obtained, and the preset classification/regression model after determining the predictor is used as the predictive model.
  • the present invention further provides a computer readable storage medium having a prediction model establishing program stored thereon, the predictive model establishing program being executable by a processor to implement the following step:
  • the acquired features of the plurality of sample groups are input into a preset classification/regression model for training, wherein the feature corresponding to the target time unit is a target variable, and other features of the feature other than the target variable are used as dependent variables ;
  • the predictor of the classification/regression model is obtained, and the preset classification/regression model after determining the predictor is used as the predictive model.
  • the present invention also provides a prediction model establishing program, which is stored in a memory and can be executed by a processor to implement the following steps:
  • the predictor of the classification/regression model is obtained, and the preset classification/regression model after determining the predictor is used as the predictive model.
  • the apparatus, method, program and computer readable storage medium for establishing a prediction model acquire a target time series of a sample group, and extract time units of m interval preset periods from the target time series based on the target time unit
  • the historical data is used as the year-on-year data feature, and the historical data of n consecutive time units before the target time unit is extracted as the ring data feature, and then the mean and variance of the ring data feature are taken as statistical features, according to the above process respectively.
  • the year-on-year data feature, the ring-wise data feature, and the statistical feature of the plurality of sample groups and inputting the foregoing features of the plurality of sample groups into a preset classification/regression model for training, wherein the feature corresponding to the target time unit is For the target variable, and taking the other features of the feature other than the target variable as the dependent variable, the predictor of the classification/regression model is obtained, and the classification/regression model of the predictor is determined as the predictive model, and the present invention trains based on the time series. When modeling, you don’t need to manually participate in the training of the sample.
  • the input target time series is used for feature extraction, and then the features of multiple sample groups are acquired, input into the classification/regression model for training and predictive factors are generated, and the classification/regression model of the prediction factor is determined as a prediction model, which can be used
  • the prediction of the same type of time series in other scenarios as the sample group improves the reusability of the prediction model.
  • FIG. 1 is a schematic diagram of a preferred embodiment of an apparatus for establishing a prediction model based on a time series according to the present invention
  • FIG. 2 is a flow chart of a first embodiment of a method for establishing a prediction model based on a time series according to the present invention.
  • the present invention provides an apparatus for establishing a predictive model based on a time series.
  • FIG. 1 a schematic diagram of a preferred embodiment of an apparatus for establishing a prediction model based on a time series according to the present invention is shown.
  • the device for establishing a prediction model based on the time series may be a PC (Personal Computer), or may be a portable terminal device such as a smart phone, a tablet computer, or a portable computer.
  • PC Personal Computer
  • portable terminal device such as a smart phone, a tablet computer, or a portable computer.
  • the apparatus for establishing a prediction model based on a time series includes a memory 11, a processor 12, a communication bus 13, and a network interface 14.
  • the memory 11 includes at least one type of readable storage medium including a flash memory, a hard disk, a multimedia card, a card type memory (for example, SD or DX memory, etc.), a random access memory (RAM), and a static memory.
  • the memory 11 is at least one type of readable computer storage medium, and in some embodiments the memory 11 may be an internal storage unit of a device that builds a predictive model based on a time series, such as a hard disk or memory of the device that builds a predictive model based on a time series. .
  • the memory 11 may also be an external storage device of a device for establishing a prediction model based on a time series in other embodiments, such as a plug-in hard disk equipped on a device for establishing a prediction model based on a time series, a smart memory card (Smart Media Card, SMC) ), Secure Digital (SD) card, Flash Card, etc.
  • the memory 11 may also include an internal storage unit that includes both a device that builds a prediction model based on a time series, and an external storage device.
  • the memory 11 can be used not only for storing application software and various types of data installed in a device based on a time series to establish a prediction model, such as code for predicting a model building program, but also for temporarily storing data that has been output or is to be output.
  • the processor 12 may be a Central Processing Unit (CPU), controller, microcontroller, microprocessor or other data processing chip for running program code or processing stored in the memory 11. Data, such as executing a predictive model building program, and the like.
  • CPU Central Processing Unit
  • controller microcontroller
  • microprocessor or other data processing chip for running program code or processing stored in the memory 11.
  • Data such as executing a predictive model building program, and the like.
  • Communication bus 13 is used to implement connection communication between these components.
  • the network interface 14 can optionally include a standard wired interface, a wireless interface (such as a WI-FI interface), and is typically used to establish a communication connection between the device and other electronic devices. For example, you can establish a connection with the server to obtain historical data sent by the server.
  • a wireless interface such as a WI-FI interface
  • Figure 1 shows only a device based on a time series-based prediction model with components 11-14 and a predictive model building procedure, but it should be understood that not all illustrated components may be implemented, alternative implementations may be more or more Less components.
  • the device may further include a user interface
  • the user interface may include a display
  • an input unit such as a keyboard
  • the optional user interface may further include a standard wired interface and a wireless interface.
  • the display may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an OLED (Organic Light-Emitting Diode) touch sensor, or the like.
  • the display may also be suitably referred to as a display screen or display unit for displaying information processed in a device that builds a predictive model based on a time series and a user interface for displaying visualizations.
  • the device may also include a touch sensor.
  • the area provided by the touch sensor for the user to perform a touch operation is referred to as a touch area.
  • the touch sensor described herein may be a resistive touch sensor, a capacitive touch sensor, or the like.
  • the touch sensor includes not only a contact type touch sensor but also a proximity type touch sensor or the like.
  • the touch sensor may be a single sensor or a plurality of sensors arranged, for example, in an array.
  • the area of the display of the device may be the same as or different from the area of the touch sensor.
  • a display is stacked with the touch sensor to form a touch display. The device detects a user-triggered touch operation based on a touch screen display.
  • the device may further include a camera, an RF (Radio Frequency) circuit, a sensor, an audio circuit, a WiFi module, and the like.
  • sensors such as light sensors, motion sensors, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein if the device is a mobile terminal, the ambient light sensor may adjust the brightness of the display screen according to the brightness of the ambient light, and the proximity sensor may move when the mobile terminal moves to the ear. , turn off the display and / or backlight.
  • the gravity acceleration sensor can detect the magnitude of acceleration in each direction (usually three axes), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of the mobile terminal (such as horizontal and vertical screen switching, Related games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; of course, the mobile terminal can also be equipped with other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc. No longer.
  • an operating system and a predictive model establishing program may be included in the memory 11 as a computer storage medium; when the processor 12 executes the predictive model establishing program stored in the memory 11, the following steps are implemented:
  • the acquired features of the plurality of sample groups are input into a preset classification/regression model for training, wherein the feature corresponding to the target time unit is a target variable, and other features of the feature other than the target variable are used as dependent variables ;
  • the predictor of the classification/regression model is obtained, and the preset classification/regression model after determining the predictor is used as the predictive model.
  • the apparatus of this embodiment acquires in advance a target time series of each sample group that needs to extract features, and takes the target time series of the sample group as an object of the extracted features.
  • the time series involved in this embodiment refers to a sequence in which the numerical values of the same statistical index are arranged in chronological order in which they occur.
  • historical data on the incidence of each month from January 2014 to January 2017 can be obtained, in this example, a city's historical data corresponds to a sample group, the epidemic disease in each city's 2014 From January to January 2017, the incidence rate per month constitutes a sample group. The more the sample group, the higher the accuracy in training the classification/regression model.
  • the current incidence data of 15 cities such as city A, city B, and city O, respectively, the feature data of the 15 cities are extracted one by one.
  • the target time series composed of its historical data
  • the target time The sequence is the epidemic rate of the epidemic disease from January 2014 to January 2017, and the monthly incidence rate in city A is one time unit.
  • the nearest time to the current time can be selected.
  • a time unit is used as the target time unit, such as January 2017.
  • historical data of n consecutive time units before the target time unit is acquired from the target time series formed by chronologically arranging the 37 incidence data as the ring data characteristic of the target time unit, and if n is 15, The incidence rate of 15 months before January 2017 is required, that is, the incidence rate for 15 consecutive months from November 2015 to January 2017, and these 15 data are used as the characteristics of the ring data.
  • the mean and variance are taken as statistical features.
  • the number of features of the target time series obtained according to the above process is m+n+2. It should be noted that, in the above process, the historical data of the n consecutive time units before the target time unit is extracted includes the historical data corresponding to the target time unit.
  • the target time unit in this embodiment may be set by the user according to requirements as a reference for selecting a data feature.
  • the feature corresponding to the target time unit may be used as a target variable, and the target time unit is the whole.
  • the values of m and n are positive integers greater than 0, and the larger the values of m and n, the more the number of data features ultimately obtained from the target time series.
  • the values of m and n are both less than the total number of data in the target time series.
  • the preset period is an integer multiple of the time unit.
  • the data characteristics of the target time series of the other 14 cities are respectively obtained.
  • the acquired features of the 15 sample groups are input as training samples into a preset classification model or a regression model for training the model.
  • the classification model or the regression model involved in this embodiment may be an existing model for statistical classification or regression processing of data, wherein the regression model is a multiple regression model.
  • the model training among the obtained m+n+2 features, the feature corresponding to the target time unit is used as the target variable, and the remaining m+n+1 features are used as the dependent variables to train the model, that is, respectively Taking the m+n+1 characteristics selected from the incidence rate of a city in the past 36 months as a dependent variable, the 37th month incidence rate is taken as a target variable, and the data of the above 15 cities are composed of 15 For each sample, the model is trained to obtain the predictor of the model. That is, the target variable is based on a functional relationship between the predictor and the dependent variable, which is determined by the function corresponding to the regression model or the classification model, and will not be described here.
  • the predetermined classification/regression model after determining the prediction predictor constitutes a prediction model for predicting the incidence rate of future time units of a certain city, for example, continuous before the known current time unit of the city Z (including the current time unit) 36 months of the incidence of this epidemic, these data constitute A time series is obtained by extracting the characteristics of the time series according to the process of extracting data features as described above, and inputting the features into the prediction model can predict the incidence or incidence of the epidemic disease in the city Z in the next time unit. degree.
  • the classification model is selected or the regression model is selected can be selected according to the needs of the user. For example, if the user finally wants to obtain a specific incidence value, then select the retrospective model. If the user finally wants to obtain a high or low incidence rate, then the classification model can be selected. It can be understood that if the classification is selected For the model, when the model is trained, the target variable needs to be classified. Preferably, in some embodiments of the invention, a random forest that is not susceptible to overfitting may be selected as a classification model or a regression model.
  • the target variable is predicted by using the mean value and the variance of the preset period of the target variable as the dependent variable, and the target variable is compared with the common discrete feature. For better correlation, the established prediction model has better accuracy.
  • the apparatus for establishing a prediction model obtains a target time series of the sample group, and extracts, from the target time series, the historical data of the time units of the m interval preset periods as the year-on-year data feature, based on the target time unit, Extracting historical data of n consecutive time units before the target time unit as the ring data feature, and then taking the mean and variance of the ring data feature as statistical features, and obtaining the year-on-year data characteristics of the plurality of sample groups according to the above process.
  • the ring-shaped data feature and the statistical feature, the above-mentioned features of the plurality of sample groups are input into a preset classification/regression model for training, wherein the feature corresponding to the target time unit is a target variable, and the feature is divided Other characteristics outside the target variable are used as the dependent variables to obtain the predictor of the classification/regression model.
  • the classification/regression model of the predictor is determined as the predictive model.
  • the present invention does not require manual participation in the sample training based on time series.
  • Training capable of characterizing the input target time series Then, the features of multiple sample groups are acquired, input into the classification/regression model for training and predictive factors are generated, and the classification/regression model of the prediction factor is determined as a prediction model, which can be used in other scenarios as the sample group.
  • the prediction of the type of time series improves the reusability of the prediction model.
  • the training is performed in the classification/regression model, wherein the feature corresponding to the target time unit is the target variable, and the steps of the feature other than the target variable as the dependent variable include:
  • a preset feature selection algorithm feature selection processing is performed on the dependent variable to obtain a feature subset; wherein the feature corresponding to the target time unit is a target variable, and other features of the feature other than the target variable are used as dependent variables;
  • the feature subset is input as a training sample into a preset classification model for training.
  • the feature selection algorithm described above may be a feature selection algorithm based on a random forest, such as Filter, Wrapper and other algorithms, users can choose any algorithm to filter the features as dependent variables, eliminate some non-critical noise features, reduce the number of dependent variables, improve the accuracy of model training, and improve the established prediction.
  • the prediction accuracy rate of the model may be a feature selection algorithm based on a random forest, such as Filter, Wrapper and other algorithms.
  • the processor is further configured to execute the predictive model establishing program to extract m from the target time series based on the target time unit in the target time series of the acquired sample group
  • the historical data of the time unit of the preset period is set as the step of the year-on-year data feature to achieve the following steps:
  • the standard time series is taken as the target time series.
  • the input historical data of the item to be tested is received, and the historical data is collated based on a time dimension to generate an original time series of the item to be tested.
  • the original time series is subjected to moving average processing to obtain a moving average sequence thereof.
  • the moving average sequence is subjected to moving average processing according to a preset window length to obtain a moving average sequence, for example,
  • the above-mentioned original time series consisting of 37 months of incidence may have a window length of 3-5, for example, its window length is set to 5.
  • the data after smoothing and averaging has better stability.
  • the data after the moving average processing is normalized to obtain a dimensionless time series, which can be processed, for example, by Z-score standardization.
  • the standard time series obtained by the standardization process is used as the target time series for feature extraction and subsequent model training.
  • the data in the original time series is the specific incidence rate, while the data in the standard time series is a dimensionless value.
  • the predictive model building program may also be divided into one or more modules, one or more modules being stored in the memory 11 and being processed by one or more processors (this embodiment) Illustrated by processor 12) to accomplish the invention, a module as referred to herein refers to a series of computer program instructions that are capable of performing a particular function.
  • the predictive model building program can be segmented into an acquisition module, an extraction module, a training module, and a generation module, wherein:
  • the obtaining module is configured to: acquire a target time series of the sample group;
  • the extracting module is configured to: extract, according to the target time unit, historical data of time units of m preset periods from the target time series, as a year-on-year data feature, m ⁇ 1;
  • the training module is configured to: input the acquired features of the plurality of sample groups into a preset classification/regression model for training, wherein the feature corresponding to the target time unit is a target variable, and Other characteristics of the levy other than the target variable as the dependent variable;
  • the generating module is configured to: acquire a prediction factor of the classification/regression model, and use a preset classification/regression model after determining the prediction factor as a prediction model.
  • the present invention also provides a method of establishing a prediction model based on a time series.
  • FIG. 2 it is a flowchart of a first embodiment of a method for establishing a prediction model based on a time series according to the present invention. The method can be performed by a device that can be implemented by software and/or hardware.
  • the method for establishing a prediction model based on a time series includes:
  • Step S10 acquiring a target time series of the sample group, and extracting, from the target time series, historical data of the time units of the m interval preset periods as the year-on-year data feature, m ⁇ 1;
  • Step S20 extracting historical data of n consecutive time units before the target time unit from the target time series, as a ring data characteristic, n ⁇ 1;
  • Step S30 taking the mean value and the variance of the ring-shaped data features as a statistical feature
  • Step S40 the acquired features of the plurality of sample groups are input into a preset classification/regression model for training, wherein the feature corresponding to the target time unit is a target variable, and other features of the feature other than the target variable are selected.
  • the feature corresponding to the target time unit is a target variable, and other features of the feature other than the target variable are selected.
  • Step S50 Obtain a prediction factor of the classification/regression model, and use a preset classification/regression model after determining the prediction factor as a prediction model.
  • the target time series of each sample group that needs to extract features are acquired in advance, and the target time series of the sample group is taken as the object of the extracted feature.
  • the time series involved in this embodiment refers to a sequence in which the numerical values of the same statistical index are arranged in chronological order in which they occur.
  • historical data on the incidence of each month from January 2014 to January 2017 can be obtained, in this example, a city's historical data corresponds to a sample group, the epidemic disease in each city's 2014 From January to January 2017, the incidence rate per month constitutes a sample group. The more the sample group, the higher the accuracy in training the classification/regression model.
  • the current incidence data of 15 cities such as city A, city B, and city O, respectively, the feature data of the 15 cities are extracted one by one.
  • the target time series is the incidence of the epidemic disease from January 2014 to January 2017, and the monthly incidence rate in city A, one month That is, a time unit in which one time unit closest to the current time can be selected as the target time unit, for example, January 2017.
  • historical data of n consecutive time units before the target time unit is acquired from the target time series formed by chronologically arranging the 37 incidence data as the ring data characteristic of the target time unit, and if n is 15, The incidence rate of 15 months before January 2017 is required, that is, the incidence rate for 15 consecutive months from November 2015 to January 2017, and these 15 data are used as the characteristics of the ring data.
  • the mean and variance are taken as statistical features.
  • the number of features of the target time series obtained according to the above process is m+n+2. It should be noted that, in the above process, the historical data of the n consecutive time units before the target time unit is extracted includes the historical data corresponding to the target time unit.
  • the target time unit in this embodiment may be set by the user according to requirements as a reference for selecting a data feature.
  • the feature corresponding to the target time unit may be used as a target variable, and the target time unit is the whole.
  • the values of m and n are positive integers greater than 0, and the larger the values of m and n, the more the number of data features ultimately obtained from the target time series.
  • the values of m and n are both less than the total number of data in the target time series.
  • the preset period is an integer multiple of the time unit.
  • the data characteristics of the target time series of the other 14 cities are respectively obtained.
  • the acquired features of the 15 sample groups are input as training samples into a preset classification model or a regression model for training the model.
  • the classification model or the regression model involved in this embodiment may be an existing model for statistical classification or regression processing of data, wherein the regression model is a multiple regression model.
  • the model training among the obtained m+n+2 features, the feature corresponding to the target time unit is used as the target variable, and the remaining m+n+1 features are used as the dependent variables to train the model, that is, respectively Taking the m+n+1 characteristics selected from the incidence rate of a city in the past 36 months as a dependent variable, the 37th month incidence rate is taken as a target variable, and the data of the above 15 cities are composed of 15 For each sample, the model is trained to obtain the predictor of the model. That is, the target variable is based on a functional relationship between the predictor and the dependent variable, which is determined by the function corresponding to the regression model or the classification model, and will not be described here.
  • the predetermined classification/regression model after determining the prediction predictor constitutes a prediction model for predicting the incidence rate of future time units of a certain city, for example, continuous before the known current time unit of the city Z (including the current time unit) 36 months of the incidence of the epidemic disease, these data constitute a time series, according to the above process of extracting data features to extract the characteristics of the time series, input these characteristics into the above prediction model, then predict the next time unit
  • the incidence or incidence of this epidemic disease in urban Z is high or low.
  • the classification model is selected or the regression model is selected can be selected according to the needs of the user. For example, if the user finally wants to get a specific incidence value, then choose the retrospective model. If the user finally wants to get a high degree of incidence, then you can choose to classify.
  • the model it can be understood that if the classification model is selected, the classification of the target variable is required when the model training is performed.
  • a random forest that is not susceptible to overfitting may be selected as a classification model or a regression model.
  • the target variable is predicted by using the mean value and the variance of the preset period of the target variable as the dependent variable, and the target variable is compared with the common discrete feature. For better correlation, the established prediction model has better accuracy.
  • the method for establishing a prediction model in this embodiment obtains a target time series of a sample group, and extracts, from the target time series, historical data of time units of the interval preset periods from the target time unit as a year-on-year data feature. Extracting historical data of n consecutive time units before the target time unit as the ring data feature, and then taking the mean and variance of the ring data feature as statistical features, and obtaining the year-on-year data characteristics of the plurality of sample groups according to the above process.
  • the ring-shaped data feature and the statistical feature, the above-mentioned features of the plurality of sample groups are input into a preset classification/regression model for training, wherein the feature corresponding to the target time unit is a target variable, and the feature is divided Other characteristics outside the target variable are used as the dependent variables to obtain the predictor of the classification/regression model.
  • the classification/regression model of the predictor is determined as the predictive model.
  • the present invention does not require manual participation in the sample training based on time series.
  • Training capable of characterizing the input target time series Then, the features of multiple sample groups are acquired, input into the classification/regression model for training and predictive factors are generated, and the classification/regression model of the prediction factor is determined as a prediction model, which can be used in other scenarios as the sample group.
  • the prediction of the type of time series improves the reusability of the prediction model.
  • step S40 includes :
  • a preset feature selection algorithm feature selection processing is performed on the dependent variable to obtain a feature subset; wherein the feature corresponding to the target time unit is a target variable, and other features of the feature other than the target variable are used as dependent variables;
  • the feature subset is input as a training sample into a preset classification model for training.
  • the feature selection algorithm may be a feature selection algorithm based on random forests, such as Filter, Wrapper, etc.
  • the user may select any algorithm to filter the features as dependent variables according to requirements, and exclude some non-critical noise features from the
  • the number of dependent variables increases the accuracy of model training, which in turn increases the predictive accuracy of established predictive models.
  • the method further includes:
  • the standard time series is taken as the target time series.
  • the input historical data of the item to be tested is received, and the historical data is collated based on a time dimension to generate an original time series of the item to be tested.
  • the original time series is subjected to moving average processing to obtain a moving average sequence thereof.
  • the moving average sequence is subjected to moving average processing according to a preset window length to obtain a moving average sequence, for example,
  • the above-mentioned original time series consisting of 37 months of incidence may have a window length of 3-5, for example, its window length is set to 5.
  • the data after smoothing and averaging has better stability.
  • the data after the moving average processing is normalized to obtain a dimensionless time series, which can be processed, for example, by Z-score standardization.
  • the standard time series obtained by the standardization process is used as the target time series for feature extraction and subsequent model training.
  • the data in the original time series is the specific incidence rate, while the data in the standard time series is a dimensionless value.
  • an embodiment of the present invention further provides a computer readable storage medium, where the predictive model establishing program is stored on the computer readable storage medium, and the predictive model establishing program is executed by the processor to:
  • the acquired features of the plurality of sample groups are input into a preset classification/regression model for training, wherein the feature corresponding to the target time unit is a target variable, and other features of the feature other than the target variable are used as dependent variables ;
  • the predictor of the classification/regression model is obtained, and the preset classification/regression model after determining the predictor is used as the predictive model.
  • the standard time series is taken as the target time series.
  • feature selection processing is performed on the dependent variable to obtain a feature subset; wherein the feature corresponding to the target time unit is a target variable, and other features of the feature other than the target variable are used as dependent variables;
  • the feature subset is input as a training sample into a preset classification model for training.
  • the moving average sequence is normalized according to a preset data normalization algorithm to obtain the standard time series.
  • portions of the technical solution of the present invention that contribute substantially or to the prior art may be embodied in the form of a software product stored in a storage medium (such as a ROM/RAM as described above). , a disk, an optical disk, including a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a terminal device which may be a mobile phone, a computer, a server, or a network device, etc.

Abstract

一种基于时间序列建立预测模型的方法、装置、预测模型建立程序及计算机可读存储介质,其中,装置包括:存储器、处理器及存储在存储器上并可在处理器上运行的预测模型建立程序,该程序被处理器执行时实现如下步骤:获取样本组的目标时间序列,从中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征;从中提取目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,并取均值和方差作为统计学特征;将多个样本组的特征输入预设分类/回归模型中训练,获取分类/回归模型的预测因子,以获取预测模型。本发明降低了人工训练介入量,提高了基于时间序列创建的模型的可复用性。

Description

建立预测模型的装置、方法、预测模型建立程序及计算机可读存储介质
本申请申明享有2017年7月25日递交的申请号为201710614516.9、名称为“建立预测模型的装置、方法及计算机可读存储介质”的中国专利申请的优先权,该中国专利申请的整体内容以参考的方式结合在本申请中。
技术领域
本发明涉及数据处理技术领域,尤其涉及一种建立预测模型的装置、方法、预测模型建立程序及计算机可读存储介质。
背景技术
时间序列是一种十分常见的数据类型。几乎所有商业上的数据集,都有一个时间的维度。而很多商业的数据分析,例如股市的波动,某种疾病的发病率等,其数据具有随着时间的流动而发生变化的规律。传统的时间序列数据预测模型,例如自回归滑动平均模型,隐马尔可夫模型等,这些常用的模型的复用性较差,其建模流程往往需要较大量的人工参与样本训练,导致在不同场景下研究同类时间序列数据时,经常需要对模型进行适应性调整。
发明内容
本发明提供一种建立预测模型的装置、方法、程序及计算机可读存储介质,其主要目的在于降低人工训练介入量,提高基于时间序列创建的模型的可复用性。
为实现上述目的,本发明提供一种基于时间序列建立预测模型的装置,该装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的预测模型建立程序,所述预测模型建立程序被所述处理器执行时实现如下步骤:
获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征,m≥1;
从所述目标时间序列中提取所述目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,n≥1;
对所述环比数据特征取均值和方差,作为统计学特征;
将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
获取所述分类/回归模型的预测因子,将确定预测因子后的预设分类/回归模型作为预测模型。
此外,为实现上述目的,本发明还提供一种基于时间序列建立预测模型的方法,该方法包括:
获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征,m≥1;
从所述目标时间序列中提取所述目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,n≥1;
对所述环比数据特征取均值和方差,作为统计学特征;
将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
获取所述分类/回归模型的预测因子,将确定预测因子后的预设分类/回归模型作为预测模型。
此外,为实现上述目的,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有预测模型建立程序,所述预测模型建立程序可被处理器执行,以实现如下的步骤:
获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征,其中m≥1;
从所述目标时间序列中提取所述目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,其中n≥1;
对所述环比数据特征取均值和方差,作为统计学特征;
将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
获取所述分类/回归模型的预测因子,将确定预测因子后的预设分类/回归模型作为预测模型。
另外,为实现上述目的,本发明还提供一种预测模型建立程序,所述预测模型建立程序存储于存储器,可被处理器执行,以实现如下的步骤:
获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征,其中m≥1;
从所述目标时间序列中提取所述目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,其中n≥1;
对所述环比数据特征取均值和方差,作为统计学特征;
将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中, 将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
获取所述分类/回归模型的预测因子,将确定预测因子后的预设分类/回归模型作为预测模型。
本发明提出的建立预测模型的装置、方法、程序及计算机可读存储介质,获取样本组的目标时间序列,以目标时间单元为基准从该目标时间序列中提取m个间隔预设周期的时间单元的历史数据作为同比数据特征,从中提取该目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,然后对该环比数据特征取均值和方差作为统计学特征,按照上述过程分别获取多个样本组的同比数据特征、环比数据特征和统计学特征,将多个样本组的上述特征输入到预设的分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量,获取分类/回归模型的预测因子,将确定了预测因子的分类/回归模型作为预测模型,本发明在基于时间序列进行训练建模时,不需要人工参与样本的训练,能够对输入的目标时间序列进行特征提取,进而获取多个样本组的特征,将其输入到分类/回归模型中进行训练并生成预测因子,将确定了预测因子的分类/回归模型作为预测模型,可以用于其他场景的与样本组相同类型的时间序列的预测,提高了预测模型的可复用性。
附图说明
图1为本发明基于时间序列建立预测模型的装置较佳实施例的示意图;
图2为本发明基于时间序列建立预测模型的方法第一实施例的流程图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种基于时间序列建立预测模型的装置。参照图1所示,为本发明基于时间序列建立预测模型的装置较佳实施例的示意图。
在本实施例中,基于时间序列建立预测模型的装置可以是PC(Personal Computer,个人电脑),也可以是智能手机、平板电脑、便携计算机等可移动式终端设备。
该基于时间序列建立预测模型的装置包括存储器11、处理器12,通信总线13,以及网络接口14。其中,存储器11至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、 只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。
存储器11至少为一种类型的可读计算机存储介质,在一些实施例中存储器11可以是基于时间序列建立预测模型的装置的内部存储单元,例如该基于时间序列建立预测模型的装置的硬盘或内存。存储器11在另一些实施例中也可以是基于时间序列建立预测模型的装置的外部存储设备,例如基于时间序列建立预测模型的装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器11还可以既包括基于时间序列建立预测模型的装置的内部存储单元也包括外部存储设备。存储器11不仅可以用于存储安装于基于时间序列建立预测模型的装置的应用软件及各类数据,例如预测模型建立程序的代码等,还可以用于暂时地存储已经输出或者将要输出的数据。
处理器12在一些实施例中可以是一中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器或其他数据处理芯片,用于运行存储器11中存储的程序代码或处理数据,例如执行预测模型建立程序等。
通信总线13用于实现这些组件之间的连接通信。
网络接口14可选的可以包括标准的有线接口、无线接口(如WI-FI接口),通常用于在该装置与其他电子设备之间建立通信连接。例如,可以与服务器建立连接,获取服务器发送的历史数据。
图1仅示出了具有组件11-14以及预测模型建立程序的基于时间序列建立预测模型的装置,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。
可选地,该装置还可以包括用户接口,用户接口可以包括显示器(Display)、输入单元比如键盘(Keyboard),可选的用户接口还可以包括标准的有线接口、无线接口。可选地,在一些实施例中,显示器可以是LED显示器、液晶显示器、触控式液晶显示器以及OLED(Organic Light-Emitting Diode,有机发光二极管)触摸器等。其中,显示器也可以适当的称为显示屏或显示单元,用于显示在基于时间序列建立预测模型的装置中处理的信息以及用于显示可视化的用户界面。
可选地,该装置还可以包括触摸传感器。所述触摸传感器所提供的供用户进行触摸操作的区域称为触控区域。此外,这里所述的触摸传感器可以为电阻式触摸传感器、电容式触摸传感器等。而且,所述触摸传感器不仅包括接触式的触摸传感器,也可包括接近式的触摸传感器等。此外,所述触摸传感器可以为单个传感器,也可以为例如阵列布置的多个传感器。该装置的显示器的面积可以与所述触摸传感器的面积相同,也可以不同。可选地,将显示器与所述触摸传感器层叠设置,以形成触摸显示屏。该装置基于触摸显示屏侦测用户触发的触控操作。
可选地,该装置还可以包括摄像头、RF(Radio Frequency,射频)电路,传感器、音频电路、WiFi模块等。其中,传感器比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,若该装置为移动终端,环境光传感器可根据环境光线的明暗来调节显示屏的亮度,接近传感器可在移动终端移动到耳边时,关闭显示屏和/或背光。作为运动传感器的一种,重力加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;当然,移动终端还可配置陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
在图1所示的装置实施例中,作为一种计算机存储介质的存储器11中可以包括操作系统、以及预测模型建立程序;处理器12执行存储器11中存储的预测模型建立程序时实现如下步骤:
获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征,m≥1;
从所述目标时间序列中提取所述目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,n≥1;
对所述环比数据特征取均值和方差,作为统计学特征;
将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
获取所述分类/回归模型的预测因子,将确定预测因子后的预设分类/回归模型作为预测模型。
该实施例的装置预先获取需要提取特征的各个样本组的目标时间序列,将样本组的目标时间序列作为提取特征的对象。本实施例中涉及的时间序列是指同一统计指标的数值按其发生的时间先后顺序排列而成的数列。
以下为了便于对本发明的方案进行说明,以建立根据某流行性疾病在某城市前A个月的发病率预测第A+1个月的发病率的预测模型为例,假设A=36,则可以预先获取该流行性疾病在多个城市过去连续37个月内,每个月的发病率。例如,可以获取2014年1月至2017年1月期间,每个月的发病率的历史数据,在这个例子中,一个城市的历史数据对应一个样本组,该流行性疾病在每个城市的2014年1月至2017年1月期间,每个月的发病率构成一个样本组,样本组的数量越多,在对分类/回归模型进行训练时的准确性越高。假设当前分别有城市A、城市B……城市O等15个城市的发病率数据,则逐一对这15个城市的历史数据进行特征提取。
例如,对于城市A,获取其历史数据构成的目标时间序列,该目标时间 序列为该流行性疾病在2014年1月至2017年1月期间,每个月在城市A的发病率,则一个月即为一个时间单元,在这些时间单元中,可以选择距离当前时间最近的一个时间单元作为目标时间单元,例如2017年1月。
城市A的历史数据中一共有37个发病率数据,也就是说,对于城市A来说,其目标时间序列为上述37个发病率数据按照时间顺序排列而成。按照预设周期从其中提取m个发病率数据作为同比数据特征,其中,预设周期和m的个数均由用户根据需要预先设置,例如,预设周期为半年,m=6,则从上述目标时间序列中提取2014年7月、2015年1月、2015年7月、2016年1月、2016年7月、2017年1月的发病率,作为同比数据特征,在其他实施例中预设周期还可以为3个月等,m的值也可以为更大或者更小的值。
然后,从上述37个发病率数据按照时间顺序排列构成的目标时间序列中获取目标时间单元前的n个连续的时间单元的历史数据,作为目标时间单元的环比数据特征,假设n为15,则需要获取2017年1月前的15个月的发病率,即2015年11月至2017年1月连续15个月的发病率,将这15个数据作为环比数据特征。在获取到环比数据特征后,对其取均值和方差,将其作为统计学特征。按照上述过程获取到的目标时间序列的特征的数量为m+n+2。需要说明的是,上述过程中提取目标时间单元前的n个连续的时间单元的历史数据中,包含有目标时间单元对应的历史数据。
需要说明的是,该实施例中的目标时间单元可以由用户根据需要设置,作为选取数据特征的基准,在后期训练模型时,目标时间单元对应的特征可以作为目标变量,该目标时间单元为整个目标时间序列中在时间上最接近当前时间点的一个时间单元。m和n的值均为大于0的正整数,m与n的值越大,则最终从目标时间序列中得到的数据特征的个数也越多。m与n的值均小于目标时间序列中的数据的总数量。预设周期为时间单元的整数倍。
按照上述过程分别获取其他14个城市的目标时间序列的数据特征。将获取到的15个样本组的特征作为训练样本输入到预设的分类模型或者回归模型中进行模型的训练。需要说明的是,本实施例中涉及到的分类模型或者回归模型可以是现有的用于对数据进行统计分类或者回归处理的模型,其中,回归模型为多元回归模型。在进行模型训练时,将获取到的m+n+2个特征中,与目标时间单元对应的特征作为目标变量,将剩余的m+n+1个特征作为因变量对模型进行训练,即分别以从一个城市在过去36个月的发病率中选择的m+n+1个特征作为因变量,将第37个月的发病率作为目标变量作为一个样本,将上述15个城市的数据构成15个样本,对模型进行训练,获取该模型的预测因子。即目标变量基于预测因子与因变量之间构成函数关系,该函数关系由回归模型或者分类模型所对应的函数所确定,在此不再赘述。
确定预测预测因子后的预设分类/回归模型构成预测模型,用于对某个城市的未来时间单元的发病率进行预测,例如,已知城市Z当前时间单元(包括当前时间单元)前的连续36个月的该流行性疾病的发病率,这些数据构成 一个时间序列,按照上述提取数据特征的过程提取该时间序列的特征,将这些特征输入到上述预测模型中,则可以预测下一个时间单元该流行性疾病在城市Z的发病率或者发病率的高低程度。
需要说明的是,选择分类模型还是选择回归模型,可以根据用户的需要进行选择。例如,用户最终想要得到的是一个具体的发病率数值,则选择回顾模型,若用户最终想要得到的是一个发病率的高低程度,则可以选择分类模型,可以理解的是,如果选择分类模型,则在进行模型训练时,需要对目标变量进行类别的划分。优选地,在本发明的一些实施例中,可以选择不易发生过拟合的随机森林作为分类模型或者回归模型。
在本实施例中,将目标变量的预设周期的同比特征、环比特征以及环比特征的均值和方差作为其因变量,对目标目标变量进行预测,相对于普通的离散特征,上述特征对于目标变量来说具有更好的相关性,因此,建立的预测模型具有更好的精准度。
本实施例提出的建立预测模型的装置,获取样本组的目标时间序列,以目标时间单元为基准从该目标时间序列中提取m个间隔预设周期的时间单元的历史数据作为同比数据特征,从中提取该目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,然后对该环比数据特征取均值和方差作为统计学特征,按照上述过程分别获取多个样本组的同比数据特征、环比数据特征和统计学特征,将多个样本组的上述特征输入到预设的分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量,获取分类/回归模型的预测因子,将确定了预测因子的分类/回归模型作为预测模型,本发明在基于时间序列进行训练建模时,不需要人工参与样本的训练,能够对输入的目标时间序列进行特征提取,进而获取多个样本组的特征,将其输入到分类/回归模型中进行训练并生成预测因子,将确定了预测因子的分类/回归模型作为预测模型,可以用于其他场景的与样本组相同类型的时间序列的预测,提高了预测模型的可复用性。
进一步地,基于上述实施例,在其他实施例中,在对模型进行训练之前,先对因变量进行特征筛选以优化因变量,具体地,所述将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量的步骤包括:
按照预设的特征选择算法,对因变量进行特征筛选处理获取特征子集;其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;将所述特征子集作为训练样本输入到预设分类模型中进行训练。
上述特征选择算法可以是基于随机森林的特征选择算法,如Filter、 Wrapper等算法,用户可以根据需要选择任意一种算法对作为因变量的特征进行筛选,从中排除一部分非关键性的噪声特征,减少因变量的数量,提高模型训练的精准度,进而提高建立的预测模型的预测正确率。
进一步地,在一些实施例中,处理器还用于执行所述预测模型建立程序,以在所述获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征的步骤之前,以实现如下步骤:
对获取的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序列。
在该实施例中,接收输入的所述待测项目的历史数据,基于时间维度整理所述历史数据,以生成所述待测项目的原始时间序列。为了便于后期的数据处理,对该原始时间序列进行滑动平均处理,获取其滑动平均序列,具体地,按照预设的窗口长度对所述原始时间序列作滑动平均处理得到滑动平均序列,例如,对于上述由37个月的发病率构成的原始时间序列,其窗口长度可以设置为3-5,例如,其窗口长度设置为5。经过滑动平均处理后的数据有更好的平稳性。然后,为了减小训练时的计算量以及计算的精准度,对滑动平均处理后的数据进行标准化处理,以得到无量纲的时间序列,例如可以采用Z-score标准化的方式进行处理。将标准化处理得到的标准时间序列作为目标时间序列,进行特征提取以及后续的模型训练,具体过程请参照上述实施例,不再赘述,标准时间序列中的数据与原始的时间序列中的数据的区别在于,原始的时间序列中的数据为具体的发病率,而标准时间序列中的数据为一个无量纲的值。
可选地,在其他的实施例中,预测模型建立程序还可以被分割为一个或者多个模块,一个或者多个模块被存储于存储器11中,并由一个或多个处理器(本实施例为处理器12)所执行,以完成本发明,本发明所称的模块是指能够完成特定功能的一系列计算机程序指令段。
例如,在一实施例中,预测模型建立程序可以被分割为获取模块、提取模块、训练模块以及生成模块,其中:
所述获取模块用于:获取样本组的目标时间序列;
所述提取模块用于:以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征,m≥1;
从所述目标时间序列中提取所述目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,n≥1;
以及,对所述环比数据特征取均值和方差,作为统计学特征;
所述训练模块用于:将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特 征中除目标变量外的其他特征作为因变量;
所述生成模块用于:获取所述分类/回归模型的预测因子,将确定预测因子后的预设分类/回归模型作为预测模型。
此外,本发明还提供一种基于时间序列建立预测模型的方法。参照图2所示,为本发明基于时间序列建立预测模型的方法第一实施例的流程图。该方法可以由一个装置执行,该装置可以由软件和/或硬件实现。
在本实施例中,基于时间序列建立预测模型的方法包括:
步骤S10,获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征,m≥1;
步骤S20,从所述目标时间序列中提取所述目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,n≥1;
步骤S30,对所述环比数据特征取均值和方差,作为统计学特征;
步骤S40,将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
步骤S50,获取所述分类/回归模型的预测因子,将确定预测因子后的预设分类/回归模型作为预测模型。
该实施例中,预先获取需要提取特征的各个样本组的目标时间序列,将样本组的目标时间序列作为提取特征的对象。本实施例中涉及的时间序列是指同一统计指标的数值按其发生的时间先后顺序排列而成的数列。
以下为了便于对本发明的方案进行说明,以建立根据某流行性疾病在某城市前A个月的发病率预测第A+1个月的发病率的预测模型为例,假设A=36,则可以预先获取该流行性疾病在多个城市过去连续37个月内,每个月的发病率。例如,可以获取2014年1月至2017年1月期间,每个月的发病率的历史数据,在这个例子中,一个城市的历史数据对应一个样本组,该流行性疾病在每个城市的2014年1月至2017年1月期间,每个月的发病率构成一个样本组,样本组的数量越多,在对分类/回归模型进行训练时的准确性越高。假设当前分别有城市A、城市B……城市O等15个城市的发病率数据,则逐一对这15个城市的历史数据进行特征提取。
例如,对于城市A,获取其历史数据构成的目标时间序列,该目标时间序列为该流行性疾病在2014年1月至2017年1月期间,每个月在城市A的发病率,则一个月即为一个时间单元,在这些时间单元中,可以选择距离当前时间最近的一个时间单元作为目标时间单元,例如2017年1月。
城市A的历史数据中一共有37个发病率数据,也就是说,对于城市A来说,其目标时间序列为上述37个发病率数据按照时间顺序排列而成。按照预设周期从其中提取m个发病率数据作为同比数据特征,其中,预设周期和 m的个数均由用户根据需要预先设置,例如,预设周期为半年,m=6,则从上述目标时间序列中提取2014年7月、2015年1月、2015年7月、2016年1月、2016年7月、2017年1月的发病率,作为同比数据特征,在其他实施例中预设周期还可以为3个月等,m的值也可以为更大或者更小的值。
然后,从上述37个发病率数据按照时间顺序排列构成的目标时间序列中获取目标时间单元前的n个连续的时间单元的历史数据,作为目标时间单元的环比数据特征,假设n为15,则需要获取2017年1月前的15个月的发病率,即2015年11月至2017年1月连续15个月的发病率,将这15个数据作为环比数据特征。在获取到环比数据特征后,对其取均值和方差,将其作为统计学特征。按照上述过程获取到的目标时间序列的特征的数量为m+n+2。需要说明的是,上述过程中提取目标时间单元前的n个连续的时间单元的历史数据中,包含有目标时间单元对应的历史数据。
需要说明的是,该实施例中的目标时间单元可以由用户根据需要设置,作为选取数据特征的基准,在后期训练模型时,目标时间单元对应的特征可以作为目标变量,该目标时间单元为整个目标时间序列中在时间上最接近当前时间点的一个时间单元。m和n的值均为大于0的正整数,m与n的值越大,则最终从目标时间序列中得到的数据特征的个数也越多。m与n的值均小于目标时间序列中的数据的总数量。预设周期为时间单元的整数倍。
按照上述过程分别获取其他14个城市的目标时间序列的数据特征。将获取到的15个样本组的特征作为训练样本输入到预设的分类模型或者回归模型中进行模型的训练。需要说明的是,本实施例中涉及到的分类模型或者回归模型可以是现有的用于对数据进行统计分类或者回归处理的模型,其中,回归模型为多元回归模型。在进行模型训练时,将获取到的m+n+2个特征中,与目标时间单元对应的特征作为目标变量,将剩余的m+n+1个特征作为因变量对模型进行训练,即分别以从一个城市在过去36个月的发病率中选择的m+n+1个特征作为因变量,将第37个月的发病率作为目标变量作为一个样本,将上述15个城市的数据构成15个样本,对模型进行训练,获取该模型的预测因子。即目标变量基于预测因子与因变量之间构成函数关系,该函数关系由回归模型或者分类模型所对应的函数所确定,在此不再赘述。
确定预测预测因子后的预设分类/回归模型构成预测模型,用于对某个城市的未来时间单元的发病率进行预测,例如,已知城市Z当前时间单元(包括当前时间单元)前的连续36个月的该流行性疾病的发病率,这些数据构成一个时间序列,按照上述提取数据特征的过程提取该时间序列的特征,将这些特征输入到上述预测模型中,则可以预测下一个时间单元该流行性疾病在城市Z的发病率或者发病率的高低程度。
需要说明的是,选择分类模型还是选择回归模型,可以根据用户的需要进行选择。例如,用户最终想要得到的是一个具体的发病率数值,则选择回顾模型,若用户最终想要得到的是一个发病率的高低程度,则可以选择分类 模型,可以理解的是,如果选择分类模型,则在进行模型训练时,需要对目标变量进行类别的划分。优选地,在本发明的一些实施例中,可以选择不易发生过拟合的随机森林作为分类模型或者回归模型。
在本实施例中,将目标变量的预设周期的同比特征、环比特征以及环比特征的均值和方差作为其因变量,对目标目标变量进行预测,相对于普通的离散特征,上述特征对于目标变量来说具有更好的相关性,因此,建立的预测模型具有更好的精准度。
本实施例提出的建立预测模型的方法,获取样本组的目标时间序列,以目标时间单元为基准从该目标时间序列中提取m个间隔预设周期的时间单元的历史数据作为同比数据特征,从中提取该目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,然后对该环比数据特征取均值和方差作为统计学特征,按照上述过程分别获取多个样本组的同比数据特征、环比数据特征和统计学特征,将多个样本组的上述特征输入到预设的分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量,获取分类/回归模型的预测因子,将确定了预测因子的分类/回归模型作为预测模型,本发明在基于时间序列进行训练建模时,不需要人工参与样本的训练,能够对输入的目标时间序列进行特征提取,进而获取多个样本组的特征,将其输入到分类/回归模型中进行训练并生成预测因子,将确定了预测因子的分类/回归模型作为预测模型,可以用于其他场景的与样本组相同类型的时间序列的预测,提高了预测模型的可复用性。
进一步地,基于上述第一实施例提出本发明方法的第二实施例,在该实施例中,在对模型进行训练之前,先对因变量进行特征筛选以优化因变量,具体地,步骤S40包括:
按照预设的特征选择算法,对因变量进行特征筛选处理获取特征子集;其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;将所述特征子集作为训练样本输入到预设分类模型中进行训练。
上述特征选择算法可以是基于随机森林的特征选择算法,如Filter、Wrapper等算法,用户可以根据需要选择任意一种算法对作为因变量的特征进行筛选,从中排除一部分非关键性的噪声特征,减少因变量的数量,提高模型训练的精准度,进而提高建立的预测模型的预测正确率。
进一步地,基于上述第一实施例或者第二实施例,提出本发明方法的第三实施例,在该实施例中,步骤S10之前,该方法还包括:
对获取的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序列。
在该实施例中,接收输入的所述待测项目的历史数据,基于时间维度整理所述历史数据,以生成所述待测项目的原始时间序列。为了便于后期的数据处理,对该原始时间序列进行滑动平均处理,获取其滑动平均序列,具体地,按照预设的窗口长度对所述原始时间序列作滑动平均处理得到滑动平均序列,例如,对于上述由37个月的发病率构成的原始时间序列,其窗口长度可以设置为3-5,例如,其窗口长度设置为5。经过滑动平均处理后的数据有更好的平稳性。然后,为了减小训练时的计算量以及计算的精准度,对滑动平均处理后的数据进行标准化处理,以得到无量纲的时间序列,例如可以采用Z-score标准化的方式进行处理。将标准化处理得到的标准时间序列作为目标时间序列,进行特征提取以及后续的模型训练,具体过程请参照上述实施例,不再赘述,标准时间序列中的数据与原始的时间序列中的数据的区别在于,原始的时间序列中的数据为具体的发病率,而标准时间序列中的数据为一个无量纲的值。
此外,本发明实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有预测模型建立程序,所述预测模型建立程序被处理器执行时实现如下操作:
获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征,m≥1;
从所述目标时间序列中提取所述目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,n≥1;
对所述环比数据特征取均值和方差,作为统计学特征;
将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
获取所述分类/回归模型的预测因子,将确定预测因子后的预设分类/回归模型作为预测模型。
进一步地,所述预测模型建立程序被处理器执行时还实现如下操作:
对获取的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序列。
进一步地,所述预测模型建立程序被处理器执行时还实现如下操作:
接收输入的所述待测项目的历史数据,基于时间维度整理所述历史数据,以生成所述待测项目的原始时间序列。
进一步地,所述预测模型建立程序被处理器执行时还实现如下操作:
按照预设的特征选择算法,对因变量进行特征筛选处理获取特征子集;其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
将所述特征子集作为训练样本输入到预设分类模型中进行训练。
进一步地,所述预测模型建立程序被处理器执行时还实现如下操作:
按照预设的窗口长度对所述原始时间序列作滑动平均处理得到滑动平均序列;
按照预设的数据标准化算法对所述滑动平均序列进行标准化处理,以获取所述标准时间序列。
需要说明的是,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。并且本文中的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种基于时间序列建立预测模型的装置,其特征在于,所述装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的预测模型建立程序,所述预测模型建立程序被所述处理器执行时实现如下步骤:
    获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征,其中m≥1;
    从所述目标时间序列中提取所述目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,其中n≥1;
    对所述环比数据特征取均值和方差,作为统计学特征;
    将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
    获取所述分类/回归模型的预测因子,将确定预测因子后的预设分类/回归模型作为预测模型。
  2. 根据权利要求1所述的基于时间序列建立预测模型的装置,其特征在于,所述处理器还用于执行所述预测模型建立程序,以在所述获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征的步骤之前,以实现如下步骤:
    对获取的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序列。
  3. 根据权利要求2所述的基于时间序列建立预测模型的装置,其特征在于,所述处理器还用于执行所述预测模型建立程序,以在所述对输入的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序列的步骤之前,还实现以下步骤:
    接收输入的所述待测项目的历史数据,基于时间维度整理所述历史数据,以生成所述待测项目的原始时间序列。
  4. 根据权利要求1至3中任一项所述的基于时间序列建立预测模型的装置,其特征在于,所述将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量的步骤包括:
    按照预设的特征选择算法,对因变量进行特征筛选处理获取特征子集;其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
    将所述特征子集作为训练样本输入到预设分类模型中进行训练。
  5. 根据权利要求2所述的基于时间序列建立预测模型的装置,其特征在于,所述对获取的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序的步骤包括:
    按照预设的窗口长度对所述原始时间序列作滑动平均处理得到滑动平均序列;
    按照预设的数据标准化算法对所述滑动平均序列进行标准化处理,以获取所述标准时间序列。
  6. 一种基于时间序列建立预测模型的方法,其特征在于,所述方法包括:
    获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征,其中m≥1;
    从所述目标时间序列中提取所述目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,其中n≥1;
    对所述环比数据特征取均值和方差,作为统计学特征;
    将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
    获取所述分类/回归模型的预测因子,将确定预测因子后的预设分类/回归模型作为预测模型。
  7. 根据权利要求6所述的基于时间序列建立预测模型的方法,其特征在于,所述获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征的步骤之前,所述方法还包括:
    对获取的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序列。
  8. 根据权利要求7所述的基于时间序列建立预测模型的方法,其特征在于,所述对输入的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序列的步骤之前,所述方法还包括:
    接收输入的所述待测项目的历史数据,基于时间维度整理所述历史数据,以生成所述待测项目的原始时间序列。
  9. 根据权利要求6至8中任一项所述的基于时间序列建立预测模型的方法,其特征在于,所述将获取的多个样本组的特征输入到预设分类/回归模型 中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量的步骤包括:
    按照预设的特征选择算法,对因变量进行特征筛选处理获取特征子集;其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
    将所述特征子集作为训练样本输入到预设分类模型中进行训练。
  10. 根据权利要求7所述的基于时间序列建立预测模型的方法,其特征在于,所述对获取的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序的步骤包括:
    按照预设的窗口长度对所述原始时间序列作滑动平均处理得到滑动平均序列;
    按照预设的数据标准化算法对所述滑动平均序列进行标准化处理,以获取所述标准时间序列。
  11. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有预测模型建立程序,所述预测模型建立程序可被处理器执行,以实现如下的步骤:
    获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征,其中m≥1;
    从所述目标时间序列中提取所述目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,其中n≥1;
    对所述环比数据特征取均值和方差,作为统计学特征;
    将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
    获取所述分类/回归模型的预测因子,将确定预测因子后的预设分类/回归模型作为预测模型。
  12. 根据权利要求11所述的计算机可读存储介质,其特征在于,在所述获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征的步骤之前,所述预测模型建立程序被处理器执行,还实现如下步骤:
    对获取的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序列。
  13. 根据权利要求12所述的计算机可读存储介质,其特征在于,在所述对输入的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序列的步骤之前,所述预测模型建立程 序被处理器执行,还实现如下步骤:
    接收输入的所述待测项目的历史数据,基于时间维度整理所述历史数据,以生成所述待测项目的原始时间序列。
  14. 根据权利要求11-13任一项所述的计算机可读存储介质,其特征在于,所述将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量的步骤包括:
    按照预设的特征选择算法,对因变量进行特征筛选处理获取特征子集;其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
    将所述特征子集作为训练样本输入到预设分类模型中进行训练。
  15. 根据权利要求12所述的计算机可读存储介质,其特征在于,所述对获取的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序的步骤包括:
    按照预设的窗口长度对所述原始时间序列作滑动平均处理得到滑动平均序列;
    按照预设的数据标准化算法对所述滑动平均序列进行标准化处理,以获取所述标准时间序列。
  16. 一种预测模型建立程序,其特征在于,所述预测模型建立程序存储于存储器,可被处理器执行,以实现如下的步骤:
    获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征,其中m≥1;
    从所述目标时间序列中提取所述目标时间单元前的n个连续的时间单元的历史数据,作为环比数据特征,其中n≥1;
    对所述环比数据特征取均值和方差,作为统计学特征;
    将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
    获取所述分类/回归模型的预测因子,将确定预测因子后的预设分类/回归模型作为预测模型。
  17. 根据权利要求16所述的预测模型建立程序,其特征在于,在所述获取样本组的目标时间序列,以目标时间单元为基准,从所述目标时间序列中提取m个间隔预设周期的时间单元的历史数据,作为同比数据特征的步骤之前,所述预测模型建立程序被处理器执行,还实现如下步骤:
    对获取的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序列。
  18. 根据权利要求17所述的预测模型建立程序,其特征在于,在所述对输入的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序列的步骤之前,所述预测模型建立程序被处理器执行,还实现如下步骤:
    接收输入的所述待测项目的历史数据,基于时间维度整理所述历史数据,以生成所述待测项目的原始时间序列。
  19. 根据权利要求16-18任一项所述的预测模型建立程序,其特征在于,所述将获取的多个样本组的特征输入到预设分类/回归模型中进行训练,其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量的步骤包括:
    按照预设的特征选择算法,对因变量进行特征筛选处理获取特征子集;其中,将所述目标时间单元对应的特征为目标变量,并将特征中除目标变量外的其他特征作为因变量;
    将所述特征子集作为训练样本输入到预设分类模型中进行训练。
  20. 根据权利要求17所述的预测模型建立程序,其特征在于,所述对获取的原始时间序列作滑动平均处理和标准化处理得到标准时间序列,将所述标准时间序列作为所述目标时间序的步骤包括:
    按照预设的窗口长度对所述原始时间序列作滑动平均处理得到滑动平均序列;
    按照预设的数据标准化算法对所述滑动平均序列进行标准化处理,以获取所述标准时间序列。
PCT/CN2017/100054 2017-07-25 2017-08-31 建立预测模型的装置、方法、预测模型建立程序及计算机可读存储介质 WO2019019255A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710614516.9 2017-07-25
CN201710614516.9A CN107633254A (zh) 2017-07-25 2017-07-25 建立预测模型的装置、方法及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2019019255A1 true WO2019019255A1 (zh) 2019-01-31

Family

ID=61099463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100054 WO2019019255A1 (zh) 2017-07-25 2017-08-31 建立预测模型的装置、方法、预测模型建立程序及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN107633254A (zh)
WO (1) WO2019019255A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110059858A (zh) * 2019-03-15 2019-07-26 深圳壹账通智能科技有限公司 服务器资源预测方法、装置、计算机设备及存储介质
CN111178377A (zh) * 2019-10-12 2020-05-19 未鲲(上海)科技服务有限公司 可视化特征筛选方法、服务器及存储介质
CN111401940A (zh) * 2020-03-05 2020-07-10 杭州网易再顾科技有限公司 特征预测方法、装置、电子设备及存储介质
CN111400964A (zh) * 2020-03-16 2020-07-10 中国人民解放军海军航空大学 一种故障发生时间预测方法及装置
CN111626498A (zh) * 2020-05-25 2020-09-04 成都中电熊猫显示科技有限公司 设备运行状态预测方法、装置、设备及存储介质
CN111832150A (zh) * 2020-03-03 2020-10-27 天地科技股份有限公司 一种矿压预测方法、装置及电子设备
CN112308299A (zh) * 2020-10-19 2021-02-02 新奥数能科技有限公司 用于电力系统负荷预测模型的样本数据提取方法和装置
CN112508118A (zh) * 2020-12-16 2021-03-16 平安科技(深圳)有限公司 针对数据偏移的目标对象行为预测方法及其相关设备
CN112529450A (zh) * 2020-12-18 2021-03-19 未鲲(上海)科技服务有限公司 指标分析方法、装置、设备及可读存储介质
CN112613983A (zh) * 2020-12-25 2021-04-06 北京知因智慧科技有限公司 一种机器建模过程中的特征筛选方法、装置及电子设备
CN112712194A (zh) * 2020-12-16 2021-04-27 广西电网有限责任公司梧州供电局 一种用电成本智能优化分析的电量预测方法及装置
CN112862137A (zh) * 2019-11-27 2021-05-28 顺丰科技有限公司 件量预测方法、装置、计算机设备和计算机可读存储介质
CN112907267A (zh) * 2019-12-03 2021-06-04 顺丰科技有限公司 货物件量预测方法、装置、计算机设备和存储介质
CN113159131A (zh) * 2021-03-25 2021-07-23 中国市政工程中南设计研究总院有限公司 生物反应器运行状况分级预报预测方法及系统
CN113420887A (zh) * 2021-06-22 2021-09-21 平安资产管理有限责任公司 预测模型构建方法、装置、计算机设备及可读存储介质
CN113703923A (zh) * 2021-08-31 2021-11-26 深信服科技股份有限公司 一种业务问题的识别方法、装置、设备和介质
CN113780445A (zh) * 2021-09-16 2021-12-10 平安科技(深圳)有限公司 癌症亚型分类预测模型的生成方法及装置、存储介质
CN115906631A (zh) * 2022-11-21 2023-04-04 贵州电网有限责任公司 一种断路器油温预测方法、装置、设备及存储介质
CN116090666A (zh) * 2023-03-11 2023-05-09 北斗天下卫星导航有限公司 基于环境和时序的物资需求预测方法、装置、设备和介质
CN116757337A (zh) * 2023-08-18 2023-09-15 克拉玛依市鼎泰建设(集团)有限公司 一种基于人工智能的房建施工进度预测系统
CN117077871A (zh) * 2023-10-17 2023-11-17 山东理工昊明新能源有限公司 基于大数据的能源需求预测模型的构建方法及装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108389631A (zh) * 2018-02-07 2018-08-10 平安科技(深圳)有限公司 水痘发病预警方法、服务器及计算机可读存储介质
CN108537365A (zh) * 2018-03-16 2018-09-14 拉扎斯网络科技(上海)有限公司 一种配送时长的预测方法及装置
CN108630321B (zh) * 2018-04-11 2020-02-21 平安科技(深圳)有限公司 流行病预测方法、计算机装置及计算机可读存储介质
CN108763305A (zh) * 2018-04-20 2018-11-06 平安科技(深圳)有限公司 数据特征提取的方法、装置、计算机设备和存储介质
CN108805333A (zh) * 2018-05-08 2018-11-13 中国银行股份有限公司 核心银行系统的批量操作运行耗时预测方法及装置
CN109543904A (zh) * 2018-05-29 2019-03-29 平安医疗健康管理股份有限公司 医疗数据预测方法、装置、计算机设备和存储介质
CN109243619B (zh) * 2018-07-13 2023-03-31 平安科技(深圳)有限公司 预测模型的生成方法、装置及计算机可读存储介质
CN109558543A (zh) * 2018-12-11 2019-04-02 拉扎斯网络科技(上海)有限公司 一种样本采样方法、样本采样装置、服务器和存储介质
CN109740191B (zh) * 2018-12-12 2023-09-19 北京佳讯飞鸿电气股份有限公司 风传感器剩余使用寿命的预测方法、装置及设备
CN109783859A (zh) * 2018-12-13 2019-05-21 重庆金融资产交易所有限责任公司 模型构建方法、装置及计算机可读存储介质
CN109783877B (zh) * 2018-12-19 2024-03-01 平安科技(深圳)有限公司 时间序列模型建立方法、装置、计算机设备和存储介质
CN111966721A (zh) * 2019-05-20 2020-11-20 北京地平线机器人技术研发有限公司 数据处理方法、装置、计算机可读存储介质及电子设备
CN112506134A (zh) * 2019-09-16 2021-03-16 阿里巴巴集团控股有限公司 一种控制变量值的确定方法、装置及设备
CN110598797B (zh) * 2019-09-18 2022-07-08 北京明略软件系统有限公司 故障的检测方法及装置、存储介质和电子装置
CN111260085B (zh) * 2020-01-09 2023-12-12 杭州中恒电气股份有限公司 器件更换工时评估方法、装置、设备及介质
CN111401609B (zh) * 2020-03-04 2023-01-17 平安科技(深圳)有限公司 车流量时间序列的预测方法及预测装置
CN111489041B (zh) * 2020-06-23 2020-10-16 平安国际智慧城市科技股份有限公司 预测污染物异常排放的方法、装置、计算机设备
CN112182069B (zh) * 2020-09-30 2023-11-24 中国平安人寿保险股份有限公司 代理人留存预测方法、装置、计算机设备及存储介质
CN113420902A (zh) * 2020-12-09 2021-09-21 上海东普信息科技有限公司 件量预测模型训练方法、件量预测方法及相关设备
CN113158552B (zh) * 2021-03-25 2022-05-31 中国市政工程中南设计研究总院有限公司 基于时间序列的生物反应器运行状况分级预测方法及系统
CN113486080A (zh) * 2021-06-16 2021-10-08 中国安全生产科学研究院 数据处理方法、装置、电子设备及存储介质
CN114297454B (zh) * 2021-12-30 2023-01-03 医渡云(北京)技术有限公司 特征的离散化方法、装置、电子设备及计算机可读介质
CN114816926A (zh) * 2022-05-05 2022-07-29 华侨大学 流程监控方法和预测点筛选方法、装置、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673463A (zh) * 2009-09-17 2010-03-17 北京世纪高通科技有限公司 一种基于时间序列的交通信息预测方法及装置
CN105701559A (zh) * 2015-12-31 2016-06-22 国网上海市电力公司 一种基于时间序列的短期负荷预测方法
CN106156465A (zh) * 2015-04-10 2016-11-23 王琨喆 时间序列预测方法与装置
CN106530010A (zh) * 2016-11-15 2017-03-22 平安科技(深圳)有限公司 融合时间因素的协同过滤方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673463A (zh) * 2009-09-17 2010-03-17 北京世纪高通科技有限公司 一种基于时间序列的交通信息预测方法及装置
CN106156465A (zh) * 2015-04-10 2016-11-23 王琨喆 时间序列预测方法与装置
CN105701559A (zh) * 2015-12-31 2016-06-22 国网上海市电力公司 一种基于时间序列的短期负荷预测方法
CN106530010A (zh) * 2016-11-15 2017-03-22 平安科技(深圳)有限公司 融合时间因素的协同过滤方法和装置

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110059858A (zh) * 2019-03-15 2019-07-26 深圳壹账通智能科技有限公司 服务器资源预测方法、装置、计算机设备及存储介质
CN111178377A (zh) * 2019-10-12 2020-05-19 未鲲(上海)科技服务有限公司 可视化特征筛选方法、服务器及存储介质
CN112862137A (zh) * 2019-11-27 2021-05-28 顺丰科技有限公司 件量预测方法、装置、计算机设备和计算机可读存储介质
CN112907267A (zh) * 2019-12-03 2021-06-04 顺丰科技有限公司 货物件量预测方法、装置、计算机设备和存储介质
CN111832150A (zh) * 2020-03-03 2020-10-27 天地科技股份有限公司 一种矿压预测方法、装置及电子设备
CN111401940A (zh) * 2020-03-05 2020-07-10 杭州网易再顾科技有限公司 特征预测方法、装置、电子设备及存储介质
CN111401940B (zh) * 2020-03-05 2023-07-04 杭州网易再顾科技有限公司 特征预测方法、装置、电子设备及存储介质
CN111400964A (zh) * 2020-03-16 2020-07-10 中国人民解放军海军航空大学 一种故障发生时间预测方法及装置
CN111400964B (zh) * 2020-03-16 2023-12-22 中国人民解放军海军航空大学 一种故障发生时间预测方法及装置
CN111626498A (zh) * 2020-05-25 2020-09-04 成都中电熊猫显示科技有限公司 设备运行状态预测方法、装置、设备及存储介质
CN111626498B (zh) * 2020-05-25 2023-10-24 成都京东方显示科技有限公司 设备运行状态预测方法、装置、设备及存储介质
CN112308299A (zh) * 2020-10-19 2021-02-02 新奥数能科技有限公司 用于电力系统负荷预测模型的样本数据提取方法和装置
CN112308299B (zh) * 2020-10-19 2024-04-19 新奥数能科技有限公司 用于电力系统负荷预测模型的样本数据提取方法和装置
CN112712194A (zh) * 2020-12-16 2021-04-27 广西电网有限责任公司梧州供电局 一种用电成本智能优化分析的电量预测方法及装置
CN112508118A (zh) * 2020-12-16 2021-03-16 平安科技(深圳)有限公司 针对数据偏移的目标对象行为预测方法及其相关设备
CN112508118B (zh) * 2020-12-16 2023-08-29 平安科技(深圳)有限公司 针对数据偏移的目标对象行为预测方法及其相关设备
CN112529450A (zh) * 2020-12-18 2021-03-19 未鲲(上海)科技服务有限公司 指标分析方法、装置、设备及可读存储介质
CN112613983A (zh) * 2020-12-25 2021-04-06 北京知因智慧科技有限公司 一种机器建模过程中的特征筛选方法、装置及电子设备
CN112613983B (zh) * 2020-12-25 2023-11-21 北京知因智慧科技有限公司 一种机器建模过程中的特征筛选方法、装置及电子设备
CN113159131A (zh) * 2021-03-25 2021-07-23 中国市政工程中南设计研究总院有限公司 生物反应器运行状况分级预报预测方法及系统
CN113159131B (zh) * 2021-03-25 2023-11-24 中国市政工程中南设计研究总院有限公司 生物反应器运行状况分级预报预测方法及系统
CN113420887A (zh) * 2021-06-22 2021-09-21 平安资产管理有限责任公司 预测模型构建方法、装置、计算机设备及可读存储介质
CN113420887B (zh) * 2021-06-22 2024-04-05 平安资产管理有限责任公司 预测模型构建方法、装置、计算机设备及可读存储介质
CN113703923A (zh) * 2021-08-31 2021-11-26 深信服科技股份有限公司 一种业务问题的识别方法、装置、设备和介质
CN113780445A (zh) * 2021-09-16 2021-12-10 平安科技(深圳)有限公司 癌症亚型分类预测模型的生成方法及装置、存储介质
CN113780445B (zh) * 2021-09-16 2023-08-22 平安科技(深圳)有限公司 癌症亚型分类预测模型的生成方法及装置、存储介质
CN115906631A (zh) * 2022-11-21 2023-04-04 贵州电网有限责任公司 一种断路器油温预测方法、装置、设备及存储介质
CN116090666A (zh) * 2023-03-11 2023-05-09 北斗天下卫星导航有限公司 基于环境和时序的物资需求预测方法、装置、设备和介质
CN116757337B (zh) * 2023-08-18 2023-11-21 克拉玛依市鼎泰建设(集团)有限公司 一种基于人工智能的房建施工进度预测系统
CN116757337A (zh) * 2023-08-18 2023-09-15 克拉玛依市鼎泰建设(集团)有限公司 一种基于人工智能的房建施工进度预测系统
CN117077871A (zh) * 2023-10-17 2023-11-17 山东理工昊明新能源有限公司 基于大数据的能源需求预测模型的构建方法及装置
CN117077871B (zh) * 2023-10-17 2024-02-02 山东理工昊明新能源有限公司 基于大数据的能源需求预测模型的构建方法及装置

Also Published As

Publication number Publication date
CN107633254A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
WO2019019255A1 (zh) 建立预测模型的装置、方法、预测模型建立程序及计算机可读存储介质
US10929632B2 (en) Fingerprint information processing method and electronic device supporting the same
WO2019037260A1 (zh) 预测模型建立装置、方法及计算机可读存储介质
CN108012389B (zh) 灯光调节方法、终端设备及计算机可读存储介质
WO2019041773A1 (zh) 预测模型的更新装置、方法及计算机可读存储介质
US8751972B2 (en) Collaborative gesture-based input language
WO2019041519A1 (zh) 目标跟踪装置、方法及计算机可读存储介质
WO2018103718A1 (zh) 应用推荐的方法、装置及服务器
US20160063339A1 (en) Scrapped information providing method and apparatus
US10445485B2 (en) Lock screen output controlling method and electronic device for supporting the same
WO2022213465A1 (zh) 基于神经网络的图像识别方法、装置、电子设备及介质
WO2019056793A1 (zh) 简历识别装置、方法及计算机可读存储介质
US20200364457A1 (en) Emotion recognition-based artwork recommendation method and device, medium, and electronic apparatus
US10089332B2 (en) Method and electronic device for classifying contents
CN110717806B (zh) 产品信息推送方法、装置、设备及存储介质
WO2018120425A1 (zh) 个人财产状态评估方法、装置、设备和存储介质
US20200244759A1 (en) User behavior data processing method and device, and computer-readable storage medium
WO2019061664A1 (zh) 电子装置、基于用户上网数据的产品推荐方法及存储介质
WO2019056503A1 (zh) 门店监控评价方法、装置及存储介质
CN111104825A (zh) 人脸注册库更新方法、装置、设备及介质
US20150234799A1 (en) Method of performing text related operation and electronic device supporting same
WO2019071890A1 (zh) 产品推荐装置、方法及计算机可读存储介质
CN106156794B (zh) 基于文字风格识别的文字识别方法及装置
CN111797861A (zh) 信息处理方法、装置、存储介质及电子设备
CN106557770A (zh) 通过比较贝塞尔曲线来标识图像中的形状

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919480

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17919480

Country of ref document: EP

Kind code of ref document: A1