WO2019017691A2 - Method of differentiation of human induced pluripotent stem cell to dermal papilla precursor cell and use thereof - Google Patents

Method of differentiation of human induced pluripotent stem cell to dermal papilla precursor cell and use thereof Download PDF

Info

Publication number
WO2019017691A2
WO2019017691A2 PCT/KR2018/008123 KR2018008123W WO2019017691A2 WO 2019017691 A2 WO2019017691 A2 WO 2019017691A2 KR 2018008123 W KR2018008123 W KR 2018008123W WO 2019017691 A2 WO2019017691 A2 WO 2019017691A2
Authority
WO
WIPO (PCT)
Prior art keywords
human
cells
pluripotent stem
cell
differentiated
Prior art date
Application number
PCT/KR2018/008123
Other languages
French (fr)
Korean (ko)
Other versions
WO2019017691A3 (en
WO2019017691A9 (en
Inventor
권오상
강보미
김진용
권유욱
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Priority to US16/632,472 priority Critical patent/US11629331B2/en
Priority claimed from KR1020180083386A external-priority patent/KR102122039B1/en
Publication of WO2019017691A2 publication Critical patent/WO2019017691A2/en
Publication of WO2019017691A3 publication Critical patent/WO2019017691A3/en
Publication of WO2019017691A9 publication Critical patent/WO2019017691A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0625Epidermal cells, skin cells; Cells of the oral mucosa
    • C12N5/0627Hair cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12N2500/25Insulin-transferrin; Insulin-transferrin-selenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin

Definitions

  • the present invention relates to a culture medium for differentiating human pluripotent stem cells into a papillary precursor cell, a differentiation method using the composition, and a use of inducing a hair follicle precursor cell differentiated by the method.
  • human dermal papilla cells Although mouse dermal papilla cells reported to have hair follicle forming ability in some studies, human dermal papilla cells have a limitation in that they can not be used to induce follicular dysgenesis when hair follicle cells are cultured in vitro. Therefore, many studies have been made to improve the hair follicle forming ability of human dermal papilla cells. However, there have not been any successful cases of inducing human hair follicle dermal papilla cells using dermal papilla cells.
  • dermal papilla precursor cells which are observed in the dermis in the hair follicle stage during embryonic development, exchange signals with epithelial placode cells at the start of embryonic hair follicle development It is known.
  • the first signal from the skin acts on the undifferentiated epidermis to form morphologically recognizable hair placodes, and the stabilized epidermal placodes signal to the sub dermal cells to allow the premature cells to collect. Thereby promoting the formation of dermal condensates.
  • the papillary precursor cells are known to signal to the epidermis to stimulate the growth and downgrowth of hair germs.
  • the papillary precursor cells become the adjoining dermal sheath adjacent to mature dermal papilla cells and mature hair follicles in the bulb region.
  • obtaining the hair follicle precursor cells having hair follicle-forming ability as in the embryo is an important step for human hair follicle production.
  • the inventors of the present invention have developed a specific differentiation medium composition from human-derived pluripotent stem cells to papillary precursor cells and established a differentiation method using the same.
  • Derived mammary epithelial progenitor cells and epidermal precursor cells differentiated from the human-derived pluripotent stem cells the present inventors have completed the present invention by developing a technique for inducing hair follicle neogenesis composed of only complete human cells, not hybrid.
  • the present invention also provides a hair follicle precursor cell and a skin follicle precursor cell comprising the composition as an effective ingredient, a method for inducing human hair follicle stimulation by delivering the composition to an individual, and a hair follicle neoplasm application for the composition For other purposes.
  • the present invention provides a method for producing fibroblast growth factor-2 (FGF2) in DMEM / F12 (Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12) glutamax medium, Derived mammalian stem cell, characterized in that it comprises a glycogen synthase kinase-3 (GSK-3) inhibitor, and bone morphogenetic protein 4 (BMP4) dermal papilla precursor cell).
  • FGF2 fibroblast growth factor-2
  • FGF2 fibroblast growth factor-2
  • FGF2 fibroblast growth factor-2
  • FGF2 fibroblast growth factor-2
  • FGF2 fibroblast growth factor-2
  • FGF2 fibroblast growth factor-2
  • FGF2 fibroblast growth factor-2
  • FGF2 fibroblast growth factor-2
  • FGF2 DMEM / F12 (Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12) glutamax medium
  • GSK-3 glycogen synthase
  • the GSK-3 inhibitor is selected from the group consisting of 6-bromoindirubin-3'-oxime (BIO), CHIR-99021 and SB-216763 It can be more than one.
  • the FGF2 may be included at a concentration of 5 to 30 ng / ml
  • the GSK-3 inhibitor may be 0.1 to 10 uM
  • the BMP4 may be contained at a concentration of 0.5 to 5 ng / ml.
  • the BIO may be included at a concentration of 0.5 to 5 uM or the CHIR 99021 at a concentration of 0.1 to 10 uM.
  • the medium for differentiation into the papillary precursor cells is a medium supplemented with DMEM / F12 (Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12) glutamax medium, Fetal Bovine Serum (FBS) , Fibroblast growth factor-2 (FGF2), GSK-3 inhibitor, and bone morphogenetic protein 4 (BMP4).
  • DMEM / F12 Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12
  • FBS Fetal Bovine Serum
  • FGF2 Fibroblast growth factor-2
  • GSK-3 inhibitor GSK-3 inhibitor
  • BMP4 bone morphogenetic protein 4
  • the differentiation medium composition may not contain human neonatal fetal tissue.
  • the human-derived pluripotent stem cell may be a human embryonic stem cell (ESC) or a human-derived dedifferentiated pluripotent stem cell.
  • the present invention also provides a method of differentiating human pluripotent stem cells into papillary precursor cells, comprising the steps of:
  • it may further comprise the following steps:
  • the neural ridge cell induction medium is selected from the group consisting of fibroblast growth factor-2 (FGF2), fibronectin, insulin, N2 (S), < / RTI > supplyment, and transferrin.
  • the step (c) may be performed by culturing the differentiated precursor mammary epithelial cells in a DMEM / F12 glutamax medium supplemented with FGF2 alone.
  • step (a) is carried out for 5 to 9 days
  • step (b) is carried out for 11 to 17 days
  • step (c) is carried out for 7 to 13 days .
  • the method of differentiating human pluripotent stem cells into papillary precursor cells may be performed for 26 days or more and 50 days or less.
  • the present invention provides human mammary dermat precursor cells differentiated from human pluripotent stem cells by the differentiation method, wherein the human mammary dermat precursor cells have follicle-forming ability.
  • the papillary precursor cells may be characterized in that they exhibit at least one characteristic selected from the group consisting of the following (a), (b) and (c).
  • ALP alkaline phosphatase
  • alpha SMA alpha smooth muscle actin
  • versican VCAN
  • nestin alpha SMA
  • the precancerous precursor cells may be CD133-negative.
  • the present invention provides a subcultured human dermal papillary precursor cell having a folliculating ability differentiated from human pluripotent stem cells by a differentiation method.
  • the present invention also relates to a method for the treatment and prophylactic treatment of follicular neoplasia comprising an epithelial stem cell differentiated from the human pluripotent stem cell and a human derived mammary epithelial progenitor cell having a hair follicle forming ability differentiated from the human pluripotent stem cell Thereby providing a composition for induction.
  • the present invention also relates to a method for inducing human hair follicle neovascularization by delivering epithelial stem cells differentiated from human pluripotent stem cells and human precursor cells derived from human pluripotent stem cells, . ≪ / RTI >
  • the present invention also provides a method for producing a human hair follicle by co-culturing a human-derived mammary epithelial precursor cell having a hair follicle-forming ability differentiated from the human-derived pluripotent stem cell and an epithelial stem cell differentiated from human-derived pluripotent stem cells .
  • the present invention also relates to a composition
  • a composition comprising an epithelial stem cell differentiated from a human-derived pluripotent stem cell and a human-derived mammary epithelial precursor cell having a hair follicle-forming ability differentiated from the human-derived pluripotent stem cell as an active ingredient, Provide a new use.
  • the present invention also relates to a method for treating hair loss, comprising an epithelial stem cell differentiated from human pluripotent stem cells and a human derived mammary epithelial precursor cell having hair follicle forming ability differentiated from the human pluripotent stem cell, Thereby providing a cell therapeutic agent.
  • the present invention also relates to a cell therapy agent comprising, as an active ingredient, an epithelial stem cell differentiated from human pluripotent stem cells and a human-derived mammary epithelial progenitor cell having a hair follicle forming ability differentiated from the human pluripotent stem cell, To a subject in need thereof.
  • the present invention provides an epithelial stem cell differentiated from human pluripotent stem cells and a human hair papilla precursor cell having hair follicle forming ability differentiated from the human pluripotent stem cell, for alopecia treatment.
  • the papillary precursor cells may be differentiated for 30 days to 50 days from the pluripotent stem cells.
  • the epidermal progenitor cells may be differentiated from the pluripotent stem cells for 15 to 21 days.
  • the present inventors have developed a method of differentiating human pluripotent stem cells into hair follicle precursor cells having hair follicle forming ability and a composition of the hair follicle precursor cell-specific differentiation medium for the above differentiation.
  • the human-derived papillary precursor cells and human- As described above, the present invention provides an in vitro model for the differentiation of human papilloma progenitor cells according to the present invention.
  • the present invention relates to a method for producing human papillomavirus And human hair follicle tissue produced by applying the present method of the present invention can be used as a therapeutic method for patients suffering from hair loss by overcoming the limitation of hair loss treatment It is expected.
  • Figure 1 shows the results of immunostaining for the expression of SDC1 and CD133 in hair placode, hair germ, and hair peg stage, respectively, in the scalp of the embryo.
  • FIGS. 2A to 2F are the results of examining the differentiation process and characteristics of the human papillary precursor cells.
  • FIG. 2A is a graph illustrating the process of differentiating human pre-differentiation pluripotent stem cells into human papillary precursor cells according to time, (Hi-NCSC), and HNK1 and p75NTR proteins.
  • FIG. 2C shows the morphology of the differentiated papillary precursor cells (hi-DPPC) Alkaline phosphatase activity (ALP activity).
  • Figure 2d shows the results of flow cytometric analysis to determine whether SDC1 + CD133 cells can be differentiated according to various factor combinations.
  • Figure 2e shows the results of Flow cytometric analysis of SDC1 + CD133 cells after treatment with CHIR-99021 as an alternative to BIO.
  • FIG. 2f shows the results that various human-derived pluripotent stem cells can be differentiated into SDC1 + CD133 DPPCs.
  • FIGS. 3A to 3C show the expression patterns of various genes in the differentiation stage from human de-differentiating pluripotent stem cells to papillary progenitor cells.
  • FIG. 3 A shows the results of flow cytometry analysis of differentiated cells (iPSC, NCSC , DPPC D25, DPPC D40, and DPPC P5).
  • Fig. 3B shows the results of stepwise gene expression changes in the cells of each differentiation stage.
  • Fig. 3C shows the changes in the expression of SDC1 and CD133 in the differentiation step. After isolating CD133 + and CD133- from the cells, genes expressing in the dermal papilla, ALX3 , CTNNB1 , SOX2 , LEF1 , and Of VCAN And the level of expression was compared.
  • FIGS. 4A to 4C show the results of comparing the characteristics of human dermal papillary precursor cells (hi-DPPC) according to the present invention with human dermal papilla cells (hDPC).
  • FIG. 4A shows the results of ALP activity activity and immune cell chemistry
  • Figure 4b shows the results of spontaneous sphere formation
  • Figure 4c shows the expression of the mammary epitope genes by quantitative RT-PCR analysis, The results are compared.
  • FIG. 5A and 5B are graphs showing results of patch assay using hi-DPPC 3D or hDPC 3D in order to examine the follicle-forming ability of the papillary precursor cells according to the present invention
  • FIG. 5A is a result of hypodermic transplantation of the two cells with the epidermal cells derived from C57BL / 6 mice
  • FIG. 5B shows the results of induction of hybridization with the cell tracker (CM-DiI) In the presence of the dermal papilla cells.
  • CM-DiI cell tracker
  • FIGS. 6A and 6B are diagrams for explaining the gene expression profile of the human papillary progenitor cells.
  • FIGS. 6A and 6B are graphs showing the expression profiles of human degenerating pluripotent stem cell-derived neural ridge cells (hi-NCSCs) (Fig. 6A) and a distance matrix (Fig. 6B) by performing RNA sequence analysis on human dermal papilla cells (cDPC 2D) and papillary precursor cell spheres (hi-DPPC 3D)
  • FIG. 6c is a result of analyzing the results of the RNA sequence analysis by the dimensional reduction approach
  • FIG. 6D is a result of comparing the expression levels of the mammalian signature gene and the stem cell marker genes in the cells.
  • FIGS. 7A and 7B are results of in vitro follicular neoplasia analysis according to co-culture of human dermal papillary precursor cells and human epidermal progenitor cells.
  • FIG. 7A is a result of microscopic observation of morphological changes due to co-cultivation of the two cells, (SDC1, LEF1, SOX2, Nestin, VCAN, and WIF1) and epidermal markers (CD133, BMP4, K15, K14, and WIF1) proteins in the hair follicles and human fetal scalp This is a result showing the expression.
  • FIG. 8A to 8C show the results of a hair follicle neogenesis according to a hippocampal progenitor cell (hi-DPPC) and a hippocampal progenitor cell (hi-EpSC) transplantation differentiated from human de-differentiated pluripotent stem cells in a mouse body through a chamber assay
  • FIG. 8A is a micrograph showing the multiple root sheath and the papilla structure as a result of H & E staining for the formed follicular tissue
  • FIG. 8B is a micrograph showing human COX4 (hCOX4) and human pancreatic epithelial cells in the hair follicles and human fetal Immunofluorescent staining for human mitochondria
  • FIG. 8c is the result of immunofluorescent staining for K14, K15, K17, and K75 in the hair follicles formed.
  • the present invention relates to a culture medium for differentiation from human-derived pluripotent stem cells to a papillary precursor cell, a differentiation method, and a use of inducing a hair follicle precursor cell using the differentiated papilloma precursor cells.
  • the present invention relates to a method for the treatment and prophylaxis of fibroblast growth factor-2 (FGF2), glycogen synthase kinase-3 (DMEM / F12, Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-
  • FGF2 fibroblast growth factor-2
  • DMEM / F12 glycogen synthase kinase-3
  • BMP4 bone morphogenetic protein 4
  • the inhibitor of glycogen synthase kinase-3 is 6-bromoindirubin-3'-oxime (BIO), CHIR- 99021 and SB-216763, but are not limited thereto, and any of those known in the art as glycogen synthesis canine-3 inhibitors can be used without limitation.
  • the FGF2 may be contained at a concentration of 5 to 30 ng / ml
  • the GSK-3 inhibitor may be 0.1 to 10 uM
  • the BMP4 may be contained at a concentration of 0.5 to 5 ng / ml. In this concentration range, differentiation from human-derived stem cells to papillary precursor cells may be most effective.
  • the BIO may be contained at a concentration of 0.5 to 5 uM, and the CHIR 99021 may be contained at a concentration of 0.1 to 10 uM. In this concentration range, differentiation from human-derived stem cells to papillary precursor cells may be most effective.
  • the human-derived pluripotent stem cell may be a human-derived embryonic stem cell or a human-derived re-pluripotent pluripotent stem cell.
  • the medium composition may preferably be one in which no human tissues are incorporated.
  • human tissue not incorporated means that the content of human tissue incorporated into the media composition is less than 5%, 3%, 1%, most preferably 0%, relative to the total media composition. This 0% incorporation means that no human tissue is incorporated into the medium composition.
  • the present invention also provides a method of differentiating human pluripotent stem cells into papillary precursor cells, comprising the steps of:
  • pluripotent stem cell &quot refers to pluripotent stem cells, which may include various stem cells known in the art, such as embryonic stem cells, Stem cells may be included, but are not limited thereto.
  • human-derived pluripotent stem cells &quot used in the present invention means that the source of pluripotent stem cells such as human tissues, tissues and blood is a human.
  • pluripotent stem cells include human-derived embryonic stem cells
  • Human pluripotent stem cells may include human fibroblast-derived hiPSC (FB-derived hiPSC) or dermal papilla cell-derived hiPSC (DPC-derived hiPSC) .
  • " induced pluripotent stem cell (iPSC) " used in the present invention refers to a pluripotent stem cell that is pluripotent, such as an embryonic stem cell, which has been transferred to a differentiated somatic cell, ≪ / RTI >
  • iPSC induced pluripotent stem cell
  • the DEA pluripotent stem cells according to the present invention are prepared from human-derived dermal fibroblasts, the types of the pluripotent pluripotent pluripotent stem cells are not limited as long as they are human-derived adult cells capable of producing the reprogrammed pluripotent stem cells.
  • the step (a) may further include culturing the human-derived pluripotent stem cells into an embryo. This step is preferably carried out for about 3 to 7 days.
  • the step (a) is a step of differentiating the human pluripotent stem cell into an embryoid body into neural ridge cells.
  • the neuronal ridge cell induction medium was supplemented with DMEM / F12 glutamax, fibroblast growth factor-2 (FGF2), fibronectin, insulin, N2 supplement, and transferrin- But is not limited thereto.
  • the characteristics of the neural ridge cells differentiated through the step (a) were examined.
  • the morphology of the neural ridge cells was observed under a microscope and the expression of the neural ridge markers HNK1 and p75NTR Confirming that the differentiation from the pluripotent stem cells into neural ridge cells was well performed.
  • the step (b) is a step of differentiating the precursor cells from the neural ridge cells differentiated in the step (a).
  • the inventors of the present invention have found that, in a general DMEM / F12 glutamax culture medium used for differentiation from conventional neural ridge cells to papillary-like cells, As a result, it was found that the addition of FGF2, GSK-3 inhibitor, and BMP4 as differentiation factors ultimately leads to the differentiation into the precursor cells of the mammary gland. As a result, Respectively.
  • the neural ridge cells differentiated in step (a) may be cultured in the culture medium for differentiating the precursor cells for 12 to 40 days to differentiate into precursor cells of the mammary epithelium.
  • step (b) the following steps may be further included:
  • the step (c) is a step of obtaining the precursor cells of a spherical sphere by propagating the precursor cells differentiated in the step (b) while subculturing.
  • the step (c) may be performed by culturing the differentiated precursor cells in a DMEM / F12 glutamax medium supplemented with FGF2 alone.
  • step (a) is carried out for 5 to 9 days
  • step (b) is carried out for 11 to 17 days
  • step (c) differentiation from human-derived pluripotent stem cells to papillary precursor cells can be performed most effectively.
  • the method of differentiating human pluripotent stem cells into papillary precursor cells is performed for 26 days or more and 50 days or less, more preferably 30 days or more and 45 days or less, still more preferably And can be performed for about 40 days. At this time, differentiation from human-derived pluripotent stem cells to papillary precursor cells can be performed most effectively.
  • the point of origin of "above 26 days and less than 50 days" is the time point when the human-derived pluripotent stem cells are started to be applied to the differentiation method of the present invention.
  • the embryoid body formation process of human-derived pluripotent stem cells may be included in the period from 26 days to 50 days.
  • the present invention provides human mammary dermat precursor cells differentiated from human pluripotent stem cells by the differentiation method, wherein the human mammary dermat precursor cells have follicle-forming ability.
  • the papillary precursor cells are characterized by exhibiting at least one characteristic selected from the group consisting of (a), (b) and (c) below.
  • ALP alkaline phosphatase
  • alpha SMA alpha smooth muscle actin
  • versican VCAN
  • nestin alpha SMA
  • the prefrontal precursor cells express CD133 negative. Or CD133 negative and SDC1 positive.
  • CD133 is known to be a surface marker of hair-inducing skin cells in mice.
  • the CD133 negative The expression of CD133 ( ALX3 ), catenin beta 1 ( CTNNB1 ), SOX2 , and lymphoid enhancer binding factor 1 ( LEF1 ) was significantly increased in the cells, positivity And the results were not shown in the cells.
  • the present invention provides a human mammary dermal precursor cell differentiated from human pluripotent stem cells by a differentiation method, wherein the human mammary dermal progenitor cell provides a subcultured human mammary dermal precursor cell having a hair follicle forming ability.
  • the present inventors examined whether the epidermal cells (mEPI) of C57BL / 6 neonatal mouse and the papillary progenitor cells were subcutaneously injected into immunodeficient mice in order to examine whether the differentiated papillary precursor cells had hair follicle forming ability And transplantation was performed. As a result, it was confirmed that mouse-human hybrid hair follicle development was induced two weeks later.
  • mEPI epidermal cells
  • gene expression profiling was analyzed after RNA sequencing was performed on the induction neural crest cell, inducible papillary precursor cell corpuscles, cultured dermal papilla cell protoplasts, and cultured dermal papilla cells.
  • the dermal papilla cells exhibited a gene expression pattern very different from that of neural ridge cells, and they were similar to human dermal papilla cells through high expression of core genes of dermal papilla cells and showed early-stage molecular signatures.
  • a chamber assay is performed using the papillary precursor cells and epidermal progenitor cells to verify that human hair follicle neogenesis is induced in the mouse.
  • human hair follicle neogenesis is induced in the mouse.
  • the present invention provides a composition for inducing human hair folliculogenesis, comprising an epithelial stem cell differentiated from the human pluripotent stem cell and the human-derived mammary epithelial progenitor cell as an active ingredient.
  • a method for inducing human hair follicle development by transferring epithelial stem cells differentiated from human pluripotent stem cells and human-derived mammary epithelial progenitor cells having hair follicle-forming ability differentiated from the human pluripotent stem cells to the individual to provide.
  • said " co-cultivation " can be carried out in vitro .
  • a human hair follicle neovasic application of a composition comprising an epithelial stem cell differentiated from a human-derived pluripotent stem cell and a human-derived mammary epithelial progenitor cell having a hair follicle-forming ability differentiated from the human pluripotent stem cell as an effective ingredient to provide.
  • human hair follicle &quot means a human hair follicle, but does not mean that the individual to be follicularized is limited to a human. May be included in the present invention.
  • various animals known in the art that can have such hair follicles can include mammals, and the mammals can include mice and the like.
  • human hair follicle neogenesis was induced in mice.
  • a cell therapy agent for treating hair loss comprising epidermal progenitor cells differentiated from human pluripotent stem cells and the human derived mammary prefrontal cells as an effective ingredient.
  • a cell treatment agent containing, as an active ingredient, an epithelial stem cell differentiated from a human-derived pluripotent stem cell and a human-derived mammary epithelial precursor cell having a hair follicle-forming ability differentiated from the human-derived pluripotent stem cell A method of treating hair loss.
  • the present invention also provides a method for inducing follicular neoplasia comprising the step of transplanting the human-derived epidermal progenitor cells and the human-derived epidermal precursor cells into a tissue other than the human body.
  • the mammary epithelial progenitor cells may be differentiated from the human-derived pluripotent stem cells for 30 days to 50 days, and the epidermal progenitor cells may be differentiated from the human-derived pluripotent stem cells for 15 days to 21 days.
  • the prefrontal precursor cells may be CD133 negative and the epidermal progenitor cells may be CD133 positive.
  • Human dermal fibroblasts (ATCC PCS-201-012) were subcultured three times and then reprogramming factors OCT4, SOX2, KLF4 and c-MYC were transduced with retrovirus. Twenty-four hours after transfection, the medium containing the virus was replaced with a new growth medium, and iPSC-like colonies were observed in transformed human dermal fibroblasts two weeks after transfection. Was removed and transferred to a new STO feeder. After 2 days of colonization, the culture medium was replaced with fresh embryonic stem cell culture medium supplemented with 10 ng / ml bFGF.
  • the embryonic stem cell culture medium was then changed daily and the cells were cultured in DMEM / F12 glutamax (Thermo Fisher, catalog No. 10565042) supplemented with 20% knockout serum (Thermo Fisher), 1% nonessential amino acid (Invitrogen), 2 mM glutamine Inactivated mouse STO feeder in human embryonic stem cell culture medium containing 0.1 mM [beta] -mercaptoethanol (Thermo Fisher), and 10 ng / ml bFGF (Thermo Fisher) O 2 conditions. Subculture was carried out every 5-7 days using the usual method or 1 mg / ml collagenase type IV (Thermo Fisher). All the cell lines maintained more than 50 passages, and OCT3 / 4, NANOG, and SSEA4 were stably expressed.
  • EB embryonic body
  • 2 mg / ml collagenase IV was cultured at 37 ° C for 1 hour when the colonies of the DEA pluripotent stem cells reached 80-90% And the differentiated colonies were removed with a pipette tip, and the loose colonies were gently recovered. The supernatant was discarded and resuspended in the culture medium of bFGF-deficient pluripotent stem cells. Then, the embryoid body was transferred to a 10 cm culture dish and cultured in a culture medium of 8 ml per culture dish. The next day, the medium was changed, the agglutinates were further cultured for 5 days, and the regenerated pluripotent stem cell culture medium was supplemented every other day.
  • the embryoid bodies were dispensed on a cell culture dish coated with 15 ug / ml poly-L-ornithine (Sigma-Aldrich) and 10 / / ml fibronectin (BD) and incubated overnight at room temperature in N2 medium Lt; / RTI > N2 medium Composition: DMEM / F12 Glutamax (Thermo Fisher, catalog no.
  • Thermo Fisher 20 ug / ml insulin (Sigma-Aldrich), 0.1 mg / ml transferrin , 20 ng / ml bFGF (Thermo Fisher), 2.5 ug / ml fibronectin (Sigma-Aldrich), 1X penicillin / streptomycin. The medium was changed daily.
  • the neural ridge cells induced differentiation in human pluripotent stem cells were cultured in DMEM / F12 glutamax (Thermo Fisher, catalog No. 10565042), 6-Bromoindirubin-3'-oxime (6-Bromoindubin-3'-oxime (BIO)), bFGF, and BMP4 in combination with GSK-3 alone or in combination with GSK 3 cells were treated with 3 inhibitors (6-Bromoindirubin-3'-oxime (BIO)), bFGF and BMP4, and about 2 weeks later, differentiated cells were analyzed using SDC1 and CD133, (6-Bromoindirubin-3'-oxime (BIO)), bFGF, and BMP4.
  • neural ridge cells were derived from embryonic bodies at 50-60% of the cultured area for 5 days.
  • the differentiation-induced neural ridge cells were treated with an inhibitor of DMEM / F12 glutamax (Thermo Fisher, catalog no. 10565042), 10% FBS, GSK-3 (1 uM of 6-Bromoindirubin-3'- Sigma-Aldrich), 20 ng / ml bFGF, 1X penicillin / streptomycin, and the medium was replaced every other day.
  • Fusiform neural ridge cells were changed when 1 ng / ml human recombinant BMP4 (bone morphogenetic protein 4) (R & D Systems) was added to the differentiation medium of the papillary progenitor cells at the point where they converted to fibroblast-like morphology for 2 days.
  • BMP4 bone morphogenetic protein 4
  • the separated preimplanted cells were washed with PBS, 1 ml of Tryple express (Life technologies) was added, and incubated at 37 ° C for 5 minutes.
  • the preimplantation cells were recovered with PBS and incubated at room temperature with 1200 rpm Gt; min. ≪ / RTI >
  • the initial passages were 1: 2 or 1: 3 cultures in uncoated culture dishes using a papillary precursor cell differentiation medium without BIO (Sigma-Aldrich) and human recombinant BMP4 (R & D Systems). After passage, most undifferentiated cells were not adhered and only the differentiated preformed mammary gland precursor cells survived.
  • 6-bromoindirubin-3'-oxime was used as an inhibitor of GSK-3 as a WNT signaling agent in the formation of a precursor cell culture medium for inducing differentiation from neural ridge cells to papillary precursor cells.
  • 3'-oxime (BIO) as well as CHIR-99021 at 0.1 uM, 1 uM, and 10 uM, respectively.
  • PBS containing 2% FBS in mouse anti-human SDC1, CD133 / 2 antibody were then stained cells were analyzed using a flow cytometer (BD Biosciences) Respectively.
  • the neural ridge cells induced differentiation in human pluripotent stem cells were cultured in DMEM / F12 glutamax (Thermo Fisher, catalog no. 10565042), 10% FBS basic medium with inhibitor of GSK-3 (CHIR-99021), bFGF, BMP4 Approximately two weeks after the treatment of all three, the differentiation efficiency was increased according to the concentration of GSK-3 inhibitor (CHIR-99021) when the differentiated cells were analyzed by flow cytometry using SDC1 and CD133, markers of papillary precursor cells In addition, we confirmed the significance of WNT signaling in inducing differentiation into papillary precursor cells as well as the induction of concentration - dependent differentiation.
  • Example 1-1 the differentiation from pluripotent pluripotent stem cells obtained by dediffering from human dermal fibroblasts into the epithelial stem cells (EpSCs) was carried out in Example 1-1. Briefly, pre-differentiation pluripotent stem cells were isolated by treatment with 2 mg / ml collagenase IV (Thermo Fisher) for 1 hour at 37 ° C prior to differentiation, and cell aggregates were treated with 1 ng / ml of human recombinant BMP4 Grown embryonic stem cell culture for 24 hours. On the second day, the embryoid bodies were collected, the supernatant was discarded, and the cultures were dispensed into mitomycin-C treated STO cells.
  • pre-differentiation pluripotent stem cells were isolated by treatment with 2 mg / ml collagenase IV (Thermo Fisher) for 1 hour at 37 ° C prior to differentiation, and cell aggregates were treated with 1 ng / ml of human recombinant BMP4
  • the cells were grown in a differentiation medium containing 1 ⁇ M of all-trans RA (Sigma-Aldrich). After 2 days, the cells of the ectoderm lineage migrated from the embryoid body, and 25 ng / ml of human recombinant BMP4, 20 ng / ml human EGF (Sigma-Aldrich), 1 uM all-trans RA, and cells were cultured in the differentiation medium until clones of epidermal cells were observed. The amount of CD200 + / ITGA6 + cells reached a maximum at about 18 days after culturing in the differentiated epidermal cells. The CD200 + / ITGA6 + cells were separated by MACS analysis and used for the hair follicle development experiment.
  • human dermal papilla cells a skin biopsy sample (a 1.5 ⁇ 1.0 cm scalp tissue sample at the larynx) was taken from healthy male volunteers without a scalp disease (mean age 36.6 ⁇ 9.4 years). Human dermal papilla cells were isolated from each hair follicle, which was considered to be morphologically growing. Separated dermal papilla cells were suspended in DMEM (Dulbecco ' s modified Eagle ' s medium) supplemented with 10% FBS (Thermo Fisher), 1X penicillin / streptomycin ) (cultured under Welgene) 37 °C, 5% CO 2 conditions.
  • DMEM Disulbecco ' s modified Eagle ' s medium
  • FBS Thermo Fisher
  • 1X penicillin / streptomycin cultured under Welgene
  • the human fetal scalp tissue was mounted on a Tissue-Tek cryo-OCT (Fisher Scientific) and frozen using methyl butane / dry ice.
  • the tissue block was cut to a thickness of 10 ⁇ m at 25 ° C and stored at 80 ° C until immunochemical staining.
  • tissue embedded in paraffin was cut to a thickness of 4 ⁇ m, and the cut sections were stained with hematoxylin and eosin.
  • citrate buffer (DAKO) at pH 9.0 was treated at 120 ° C for 15 min on sections of 4 ⁇ m thick microtitrated tissue for antigen detection.
  • the cut frozen tissue was fixed with 4% paraformaldehyde for 20 minutes, and the fixed tissue was incubated with the Ultravision protein blocking solution (Thermo Fisher) for 30 minutes.
  • the primary antibody was treated and cultured, and the secondary antibody was diluted with antibody dilution solution (Life technologies) at a ratio of 1: 200, followed by incubation for 1 hour and washing.
  • the cells were then counterstained with DAPI (4 ', 6-diamidino-2-phenylindole) (Thermo Fisher) and mounted with an immuno-mount (Thermo Fisher).
  • IPCs neural ridge cells
  • DPPCs papillary precursor cells
  • the cells were separated with a AriaTMII cell separator (BD Biosciences) at a concentration of 10 6 cells / ml in PBS.
  • AriaTMII cell separator BD Biosciences
  • a Miltenyi MACS bead separation system was used according to the manufacturer's instructions and separation conditions. The results were analyzed using FlowJo software (FlowJo, LLC).
  • SSEA3-cells were isolated from human demineralized pluripotent stem cells (hiPSC-derived DPPCs) by MACS analysis to remove undifferentiated cells. 20 [mu] l of 10% DMEM containing 1 x 10 < 4 > cells of selected human papilloma precursor cells or cultured human dermal papilla cells were dropped one by one over the lid of the Petri dish. Temporal dermal papilla cell or human de-differentiated pluripotent stem cell derived dermal papilloma precursor cell spheroids were obtained at 48 hours after dosing.
  • Human dermal papilla cells or human deregulated pluripotent stem cell derived mammary epithelial progenitor cells were cultured with epidermal cells of C57BL / 6 neonatal mice or with CD200 + / ITGA6 + / SSEA3 cells derived from human degenerated pluripotent stem cells.
  • human dermal papilla cells (1 ⁇ 10 6 total, 100 spherical bodies) or human demyelinated pluripotent stem cell derived papillary precursor cells (total 1 ⁇ 10 6 , 100 spheres) and epidermal cells ( 5 ⁇ 10 5 ) (SHO) female mice (18-20 g; Jackson Laboratory) which were mixed in F12 Glutamax medium and fed with 7 weeks of severe combined immunodeficiency.
  • the dermal papillary precursor cells were labeled with a fluorescent dye reagent, CM-DiI (invitrogen).
  • Host mice were sacrificed at 5-6 weeks post-transplant to obtain regenerated hair follicular structure. This experiment was approved by Seoul National University Hospital Clinical Trials Committee (Approval No. 15-0178-C1A0).
  • HiPSC-DPPC total 5X10 6 , 500 spheres
  • DMEM / F12 glutamax human degenerated pluripotent stem cell-derived epidermal progenitor cells
  • Alkaline phosphatase activity was assayed on cells plated on plates. More specifically, the cells were fixed with 4% paraformaldehyde for 20 minutes and NTMT buffer was diluted with NBT / BCIP (Roche) for 20 minutes.
  • a transcript library was prepared using Illumina's TruSeq stranded mRNA kit for 1 RNA of the RNA isolated from the above.
  • Poly (A) + RNA was isolated using AMPure XP beads (Beckman Coulter) and fragmented using the Ambion Fragmentation Reagents kit (Ambion, Austin, TX, USA).
  • cDNA synthesis, tail repair, base addition, and ligation of Illumina indexed adapters were all performed according to Illumina's protocol.
  • the library was selected with a size of 250,300 bp using BluePipin (Sage Science, MA, USA) and amplified by PCR using 14 cycles of Phusion DNA polymerase (New England Biolabs).
  • the amplified library was amplified using AMPure XP beads ≪ / RTI > Library quality was assessed by measuring the size and concentration using an Agilent 2100 Bioanalyzer.
  • RNA sequencing were obtained from accession number GSE100793 and NCBI Gene Expression Omnibus.
  • the inventors To induce human hair follicle development, the inventors have established a simple strategy to mimic the biological state of the hair placode period based on the morphogenesis of hair follicles occurring in human embryos. More specifically, the focus was on obtaining skin precursor cells in the dermal papillary precursor cells and the hair fracode stage.
  • SDC1 (Syndecan-1) is a well-known surface marker that is strongly expressed not only in mouse skin but also in the scalp of human fetus in the hair follicle stage, and is also known as a human breastmilk signature gene.
  • CD133 was originally known as a surface marker of hair-derived dermal papilla cells in mice, but it has been reported that expression pattern similar to that of mouse is not observed in CD133 in human dermal papilla cells. Therefore, the present inventors first examined the expression of SDC1 and CD133 in the scalp skin of a human 16-week embryo.
  • OCT4 octamer-binding transcription factor 4
  • SOX2 sex determining region Y-box 2
  • KLF4 Depleted pluripotent stem cells hiPSC
  • the dedifferentiated pluripotent stem cell clone showed a hESC form and exhibited a high level of alkaline phosphatase (ALP) activity.
  • SSEA4 surface antigen stage-specific embryonic antigen 4
  • endogenous stem cell potential genes including OCT3 / 4, SOX2, NANOG, REX1 and telomerase reverse transcriptase (TERT) is increased through quantitative real-time PCR (qPCR) Respectively.
  • qPCR quantitative real-time PCR
  • pluripotent pluripotent stem cell clones were verified for pluripotency by performing a teratoma formation assay, and the clones were used as pluripotent stem cells after 100 or more consecutive subcultures.
  • the present inventors tried to differentiate the precursor cells from the demodified pluripotential stem cells using the neural ridge cells as the intermediate.
  • FGF2 fibroblast growth factor-2
  • the cells cultured through immunocytochemistry were examined for the expression of the neural ridge markers HNK1 and p75NTR. As a result, it was confirmed that the HNK1 and p75NTR proteins were expressed as shown in FIG. 2B Respectively.
  • the inventors of the present invention used a DMEM (Dulbecco's modified Eagle's medium) / F12 glutamax supplemented with 10% fetal bovine serum (FBS) And essential factors for cell differentiation were screened.
  • DMEM Dulbecco's modified Eagle's medium
  • FBS fetal bovine serum
  • essential factors for cell differentiation were screened.
  • the focus was on identifying essential factors that can maintain the inherent and endogenous molecular signatures of human dermal papilla cells or recover the inherent dermal papilla characteristics during in vitro culture.
  • FGF fibroblast growth factor
  • BMP bone morphogenetic protein
  • PDGF platelet-derived growth factor
  • EPN3 endothelin 3
  • neural ridge cells induced differentiation in human pluripotent stem cells were cultured in DMEM / F12 glutamax (Thermo Fisher, catalog No. 10565042), 10% FBS basic medium with 6-Bromoindirubin-3 (6-Bromoindirubin-3'-oxime (BIO)), bFGF, and BMP4 in combination with GSK-3 inhibitor , Or inhibitors of GSK-3 (6-Bromoindirubin-3'-oxime (BIO)), bFGF, and BMP4. After about two weeks, the differentiated cells were analyzed using SDC1 and CD133.
  • CHIR-99021 as well as 6-bromoindirubin-3'-oxime (BIO) were added at 0.1 uM, 1 uM, 10 uM
  • BIO 6-bromoindirubin-3'-oxime
  • composition of the differentiation medium of the precursor cells of the mammary gland is universally applicable to various human cell-derived pluripotent stem cells including human-derived embryonic stem cells, one human-derived embryonic stem cell, a human fibroblast-derived pluripotent stem cell Two weeks, the ability to differentiate into human papillary progenitor cells was confirmed by using one human pluripotent stem cell-derived pluripotent stem cell as a source of human pluripotent stem cells.
  • the neural ridge cells induced differentiation in human pluripotent stem cells were cultured in DMEM / F12 glutamax (Thermo Fisher, catalog no.
  • human pre-differentiation pluripotent stem cells were differentiated into neural ridge cells (STAGE 1) , The differentiated cells were cultured in DMEM / F12 glutamax medium supplemented with FGF2 (10 ng / mL), GSK-g inhibitor and BMP4 (1 ng / mL) for a short period of time STAGE 2), followed by subculture of surrounding dermal papilla cells with DMEM / F12 glutamax medium supplemented with FGF2 (10 ng / mL) alone (STAGE 3).
  • the cells were differentiated into human pre-differentiated pluripotent stem cells, and then morphological changes were observed with a microscope and ALP activity was measured .
  • FIG. 2C it was observed that the cell morphology changed into a fusiform polygonal shape similar to that of human primary dermal papilla cells in a typical state, and the proliferated dermal papillary precursor cells were isolated, and the important characteristic of the inherent dermal papilla cells It was confirmed that a three-dimensional spherical body was produced.
  • Example 4 Hair follicles Placod In step Degenerate pluripotent stem cells origin Premature oocyte (hiPSC-derived DPPCs )
  • the present inventors observed flow cytometric analysis of the SDC1 and CD133 transient levels during the differentiation steps from the human de-differentiating pluripotent stem cells of Example 3 and Fig. 2A to the pre-papillary progenitor cells.
  • the expression of SDC1 gradually increased with the progress of differentiation into the precursor cells of the papilla, while the expression of the stem cell marker CD133 decreased.
  • the pluripotent stem cell (SSEA3 +) population also gradually decreased during the differentiation process.
  • iPSC iPSC, NCSC, DPPC D25, DPPC D40, DPPC P5
  • neuronal stem cells expressing NCSC, p75NTR, HNK1, and SOX10
  • reprogrammed pluripotent stem cells expressing iPSC, OCT3 / 4 and NANOG
  • Hs-related family BHLH transcription factor [HEY1] with SDC1, biglycan [BGN], WNT5A, BMP4, and YRPW motif 1 As a result, as shown in FIG.
  • CD133 is known as a surface marker of hair-inducing skin cells in mice.
  • FIG. 3C CD133 Expression of ALX homeobox3 ( ALX3 ), catenin beta 1 ( CTNNB1 ), SOX2 , and lymphoid enhancer binding factor 1 ( LEF1 ) was significantly increased in the cells expressing the typical dermal papilla.
  • ALX3 ALX homeobox3
  • CTNNB1 catenin beta 1
  • SOX2 oxide
  • LEF1 lymphoid enhancer binding factor 1
  • Example 5 Human Degenerate pluripotent stem cells origin Premature oocyte ( hiPSC -derived DPPCs) and Hair follicle formation ability analysis
  • HDPC human preform precursor cells differentiated according to the method of Example 3 described above.
  • immunocytochemistry was performed on human dermal papillary precursor cells (hi-DPPC) to determine the activity of alkaline phosphatase (ALP), ⁇ -smooth muscle actin, versican (VCAN), and nestin gene was expressed.
  • ALP alkaline phosphatase
  • VCAN versican
  • nestin gene was expressed.
  • FIG. 4A the activity of alkaline phosphatase was also observed in the papillary precursor cells (hi-DPPC) differentiated to human dermal papilla cells (hDPC), and it was confirmed that ⁇ SMA, VCAN and nestin were also strongly expressed Respectively.
  • spontaneous sphere formation similar to the in vivo papilla structure is an inherent characteristic of the papilla, which is related to the restoration of the hair-inducing ability and the inherent characteristics of human papilla cells.
  • FIG. 4B it was confirmed that the mammary goblet precursor cells effectively form a 3D spherical body structure at very low attachment conditions reflecting the characteristics of human dermal papilla cells.
  • human papillary precursor cell sphincters hi-DPPC 3D
  • human dermal papilla cells cDPC 2D
  • dermal papilla cell dendritic cells cDPC 3D
  • Signaling genes ALX3 , SOX2 , HEY1 , BMP4 , LEF1 , WNT inhibitory factor 1 [ WIF1 ], and VCAN were increased.
  • the expression of papillary transcription factor was rapidly decreased in the one-dimensional culture of dermal papilla cells, whereas the expression of ALX3, SOX2 and HEY1 was significantly increased in the hi-DPPC spheres compared to the other.
  • the factors involved in the WNT signaling pathway including LEF1 and WIF1
  • the factors involved in the support matrix during follicular morphogenesis such as VCAN
  • the prefrontal cells reflect the early precursor cell stage of human dermal papilla cells.
  • the inventors of the present invention conducted experiments to determine whether the hair follicle precursor cells according to the present invention can induce hair follicle formation when they are transplanted into a hairless hairless (SHO) mouse deficient in immunity, .
  • the human dermal papilla cell spheroid (cDPD 3D) or the 40 day dermal papillary precursor cell spheroid (hiDPPC 3D) was subcutaneously transplanted together with the epidermal cell (mEPI) of C57BL / 6 neonatal mouse. Since the SHO mouse has no hair follicle and an albino genetic background, it can easily distinguish black-colored follicles newly formed by C57BL / 6 mouse-derived epidermal cells.
  • the papillary precursor cells were labeled with a cell-tracer (CM-DiI) showing red fluorescence.
  • CM-DiI cell-tracer
  • the presence of red fluorescence in the dermal papilla of the hair follicle confirmed the presence of the dermal papillary precursor cells and contributed to the hair follicle neogenesis.
  • the quantitative results of the hybrid follicular neoplasms are shown in Table 2 below.
  • the inventors of the present invention used human papillomavirus-derived pluripotent stem cell-derived neural ridge cells (hi-NCSCs), human dermal papilla cell spheroids (cDPC 3D) 2D) was performed to analyze the RNA sequence of the human dermal papilla cell spheroid. As a result, a heat map was generated for a total of 3065 genes and hierarchical clustering was performed using a distance matrix. As shown in FIGS. 6A and 6B, the papillary precursor cells were clustered with papillary cell sphincters and papillary cells, Which is a very different gene expression pattern. Also, as can be seen in FIG. 6C, based on the diminishing approach, the group of mammary epithelial cells was observed as a distinct intermediate in the differentiation from neural ridge cells to the papillary cell sphere.
  • hi-NCSCs human papillomavirus-derived pluripotent stem cell-derived neural ridge cells
  • Example 7 Formation and characterization of human neonatal hair follicles in vitro
  • in vitro hair follicle formation analysis was performed by incubation with hi-EpSCs before analysis of body hair follicle formation.
  • the precursor cells of the mammary gland were divided into 10,000 cells / well on plates with very low adherence to form small spherical bodies having their basal membranes with recombinant human extracellular space proteins.
  • the epidermal progenitor cells were co-cultured in a number of 25,000 cells / well in a preform of premolar cell.
  • a mixture of the two cells produced a round structure (yield ⁇ 65%) which is very similar to that of hair follicular morphogenesis showing flat polarity and proliferation in the surrounding layer.
  • hair follicles showed expression patterns of skin markers (SDC1, LEF1, SOX2, Nestin, VCAN and WIF1) and epidermal markers (CD133, BMP4, K15, K14 and WIF1) Respectively.
  • CD133 expression was slightly increased in skin components of co-cultured hair follicles similar to hair germ or hair peg stage.
  • Example 8 Human Degenerate pluripotent stem cells origin Premature oocyte (iPSC -derived DPPCs) and human Degenerate pluripotent stem cells origin Epidermal progenitor cells (hiPSC-derived EpSC) Human by Follicular newborn Confirm
  • human hair follicle progenitor cells and epidermal progenitor cells differentiated from human reprogramming pluripotent stem cells were used to examine human hair follicle development.
  • a chamber assay was carried out according to the method of Example 1-11 to perform in vivo follicular neoplasia analysis, and the differentiation of prehyperidone precursor cell spheres (hi-DPPC D25, hi-DPPC D40, and hi- DPPC P25) was transplanted with 18-day-old epidermal progenitor cells (hi-EpSC D18) after the onset of differentiation and histological analysis was performed.
  • a new hair follicle having several layers of epidermis, a papilla structure, and a pigment-free morgan was formed in Fig. 8A.
  • the hair follicle showed a structure similar to the human fetal hair follicle, and clearly different from that of the incomplete hair follicle produced in the SHO mouse.
  • an interesting human hair follicle (hi-DPPC + hi-EpSC) is produced in the cytoplasm similar to the human fetal hair follicle (COC4) (anti-human cytochrome c oxidase subunit 4) And it was confirmed to be positive by antibody and anti-human mitochondrial antibody.
  • hair-specific keratin markers (K14, K15, K17, and K75) were expressed multilayered in the center circle of newly formed hair follicles.
  • K14 represents the outer root sheath
  • K15 represents the hair follicle stem cell
  • K17 represents the maternal quality and hair follicle quality
  • K75 reflects the presence of a companion layer in the new hair follicle.
  • quantitative results of follicular neoplasia through the chamber assay are shown in Table 3, and it was found that the hair follicle progenitor cells on the 40th day of differentiation and the epidermal progenitor cells on the 18th day were highly transfected, have.

Abstract

The present invention relates to a medium composition for differentiation of a human induced pluripotent stem cell to a dermal papilla precursor cell, a differentiation method, and a use for inducing hair follicle neogenesis using the differentiated dermal papilla precursor cell. The present inventors have developed a method for differentiating a human induced pluripotent stem cell into a dermal papilla precursor cell having hair follicle forming ability and a composition of a dermal papilla precursor cell specific differentiation medium for the above differentiation, and have effectively induced hair follicle neogenesis consisting only of human cells without conventional mouse-human hybrid hair follicles by using the human induced dermal papilla precursor cell and a human induced epidermal precursor cell obtained through the differentiation method. Human hair follicle tissue produced by applying the technique for differentiating the dermal papilla precursor cell according to the present invention is expected to be useful as a therapeutic method for patients suffering from hair loss by overcoming the limitations of hair loss treatments.

Description

인간 유래 만능줄기세포에서 모유두전구세포로의 분화방법 및 이의 용도METHODS FOR DERIVATIVES FROM HUMAN-GENERATED ALLOCYTE STEM CELLS TO MYULEOID PREGNANCYCULARS
본 발명은 인간 유래 만능줄기세포로부터 모유두전구세포로의 분화용 배지 조성물, 상기 조성물을 이용한 분화방법, 및 상기 방법으로 분화된 모유두전구세포를 이용한 모낭신생 유도 용도에 관한 것이다.The present invention relates to a culture medium for differentiating human pluripotent stem cells into a papillary precursor cell, a differentiation method using the composition, and a use of inducing a hair follicle precursor cell differentiated by the method.
본 출원은 2017년 7월 19일에 출원된 한국특허출원 제10-2017-0091727호 및 2018년 7월 18일에 출원된 한국특허출원 제10-2018-0083386호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다. This application claims priority based on Korean Patent Application No. 10-2017-0091727, filed on July 19, 2017, and Korean Patent Application No. 10-2018-0083386, filed on July 18, 2018, The entire contents of the application and drawings are incorporated herein by reference.
영구 탈모의 치료를 위해서는 환자 자신에게서 모발이식의 공여부로 사용해야 할 기존의 건강한 모발을 채취하여 모발이식을 고려할 수 있다. 그러나 난치성 영구 탈모 환자는 이용 가능한 모낭의 수가 충분하지 않기 때문에 남성형 탈모 또는 소아암 생존자 등의 환자들은 자가 모낭 이식이 제한적이다. 따라서 모낭신생을 위해 모낭형성능을 갖는 환자의 모유두세포(dermal papilla cells; DPCs) 및 표피세포(epithelial cells)를 배양하여 이를 이용하는 기술은 오랫동안 실현 가능한 치료법으로 제안되어 왔다. 이에 마우스 모유두세포는 몇몇 연구에서 모낭형성능이 있음을 보고하였으나, 인간 모유두세포는 체외에서 배양하는 경우 모낭형성능이 급속히 소실되어 모낭신생 유도에 이용할 수 없는 한계점이 있다. 따라서 인간 모유두세포의 모낭형성능을 향상시키기 위한 많은 연구들이 시도되어 왔으나, 아직까지 모유두세포를 이용해 인간의 모낭신생을 유도하는데 성공한 사례는 없었다. For the treatment of permanent hair loss, hair transplantation can be considered by taking the existing healthy hair that should be used as donor for the hair transplantation in the patient himself. However, patients with intractable permanent hair loss have limited hair follicle transplantation in patients with male hair loss or pediatric cancer survivors because the number of available hair follicles is not sufficient. Therefore, techniques for culturing and using dermal papilla cells (DPCs) and epidermal cells of patients having hair follicle forming ability for hair follicle development have been proposed as long-feasible treatments. Although mouse dermal papilla cells reported to have hair follicle forming ability in some studies, human dermal papilla cells have a limitation in that they can not be used to induce follicular dysgenesis when hair follicle cells are cultured in vitro. Therefore, many studies have been made to improve the hair follicle forming ability of human dermal papilla cells. However, there have not been any successful cases of inducing human hair follicle dermal papilla cells using dermal papilla cells.
인간 모유두세포 또는 모유두유사세포(dermal papilla-like cells; DPLCs)의 모낭형성능은 일반적으로 마우스 신생 표피세포(neonatal epidermal cells)와 결합하여 마우스-인간 잡종(hybrid) 모낭를 생성하는 연구를 통해 입증되었다(Gnedeva et al., PLoS One 10, e0116892, 2015). 그러나 아직까지 인간 신생 태아 조직을 이용하지 않고 오직 인간 세포를 이용하여 인간 모낭을 신생해낸 결과는 보고된 바가 없다. 따라서 역분화만능줄기세포(induced pluripotent stem cells; iPSCs)를 포함하는 만능줄기세포 또는 성체 세포로부터의 직접적인 재프로그래밍을 통한 초기 배아-유사 모유두세포의 생성은 고도로 유도된 많은 수의 모유두세포를 얻기 위한 잠재적인 전략으로 제시되어 왔다. 그러나 인간 모유두세포 계통의 생물학적 조건에 대한 불충분한 이해 때문에 모낭형성능을 갖는 모유두세포로 분화시킬 수 있는 확실한 프로토콜은 아직까지 없는 실정이다. 또한, 최근 인간 역분화만능줄기세포로부터 모낭신생에 요구되는 표피전구세포로 분화시킨 연구가 보고된 바 있으나, 인간 역분화만능줄기세포를 포함해 인간 만능줄기세포로부터 표피세포와 함께 모낭신생에 필요한 모유두세포로 분화시키는 기술은 아직까지 확립되지 않았다. The hair follicle-forming ability of human dermal papilla cells or dermal papilla-like cells (DPLCs) has been demonstrated in studies that generally produce mouse-human hybrid hair follicles in combination with neonatal epidermal cells Gnedeva et al., PLoS One 10 , e0116892, 2015). However, there is no report yet on the results of human hair follicle initiation using only human cells without the use of human fetal tissue. Thus, early embryonic-like dermal papilla formation through direct reprogramming from pluripotent stem cells (iPSCs) or from pluripotent stem cells or adult cells can be used to obtain a large number of highly induced dermal papilla cells It has been suggested as a potential strategy. However, due to insufficient understanding of the biological conditions of the human dermal papilla cell line, there is no definitive protocol to differentiate into dermal papilla cells with follicular ability. Recently, studies have been carried out on human pluripotent stem cells to differentiate into epidermal progenitor cells required for hair follicle neogenesis. However, it has been reported that human pluripotent stem cells, including human pluripotent stem cells, Techniques to differentiate into dermal papilla cells have not yet been established.
한편, 배아 발달 단계에서 모낭 플라코드 시기에 진피 쪽에서 관찰되는 모유두전구세포(Dermal papilla precursor cells; DPPCs)는 배아의 모낭신생의 시작 단계에서 표피 플라코드 세포(epithelial placode cells)와 신호를 교환하는 것으로 알려져 있다. 피부에서 나오는 첫 번째 신호를 통해 불특정한 표피에서 작용하여 형태학적으로 인식 가능한 모낭 플라코드(hair placodes) 형성이 이루어지며, 안정화된 표피 플라코드는 하위 진피 세포에 신호를 보내 모유두전구세포가 모이도록 하여 진피체(dermal condensates)형성을 촉진시킨다. 마지막으로, 상기 모유두전구세포는 털싹(hair germ)의 증식 및 하강(downgrowth)을 자극하기 위해 표피로 신호를 보내는 것으로 알려져 있다. 모낭 형성이 완료된 후, 모유두전구세포는 전구 영역(bulb region)에서 성숙한 모유두세포 및 성숙한 모낭에 인접한 모근진피결직초(adjoining dermal sheath)가 된다. 따라서 배아에서와 같은 모낭형성능을 갖는 모유두전구세포를 수득하는 것은 인간의 모낭 생성을 위한 중요한 단계이다. 그러나 생체 내 모낭 플라코드 시기에서 인간 모유두전구세포에 대해 상대적으로 알려진 것이 거의 없는 실정이다.On the other hand, dermal papilla precursor cells (DPPCs), which are observed in the dermis in the hair follicle stage during embryonic development, exchange signals with epithelial placode cells at the start of embryonic hair follicle development It is known. The first signal from the skin acts on the undifferentiated epidermis to form morphologically recognizable hair placodes, and the stabilized epidermal placodes signal to the sub dermal cells to allow the premature cells to collect. Thereby promoting the formation of dermal condensates. Finally, the papillary precursor cells are known to signal to the epidermis to stimulate the growth and downgrowth of hair germs. After hair follicle formation is complete, the papillary precursor cells become the adjoining dermal sheath adjacent to mature dermal papilla cells and mature hair follicles in the bulb region. Thus, obtaining the hair follicle precursor cells having hair follicle-forming ability as in the embryo is an important step for human hair follicle production. However, little is known about human mammary epithelial cells in the in vivo follicular plaque stage.
본 발명자들은 상기와 같은 종래의 문제점을 극복하기 위해 예의 연구한 결과, 인간 유래 만능줄기세포로부터 모유두전구세포로의 특이적인 분화배지 조성을 개발하여 이를 이용한 분화방법을 확립하였고, 상기 방법으로 분화시킨 인간 유래 모유두전구세포 및 상기 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포를 이용하여 잡종이 아닌 완전한 인간 세포로만 구성된 모낭신생을 유도하는 기술을 개발함으로써 본 발명을 완성하였다.As a result of intensive studies to overcome the above-mentioned conventional problems, the inventors of the present invention have developed a specific differentiation medium composition from human-derived pluripotent stem cells to papillary precursor cells and established a differentiation method using the same. Derived mammary epithelial progenitor cells and epidermal precursor cells differentiated from the human-derived pluripotent stem cells, the present inventors have completed the present invention by developing a technique for inducing hair follicle neogenesis composed of only complete human cells, not hybrid.
이에, 본 발명은 인간 유래 만능줄기세포로부터 모유두전구세포(dermal papilla precursor cell)로의 분화용 배지 조성물을 제공하는 것을 목적으로 한다. Accordingly, it is an object of the present invention to provide a medium composition for the differentiation of human pluripotent stem cells into dermal papilla precursor cells.
또한, 본 발명은 인간 유래 만능줄기세포에서 모유두전구세포로의 분화방법 및 상기 방법에 의해 분화된 모유두전구세포를 제공하는 것을 다른 목적으로 한다. It is another object of the present invention to provide a method of differentiating human pluripotent stem cells into human papillary precursor cells and to provide a papillary precursor cell differentiated by the above method.
또한, 본 발명은 상기 모유두전구세포 및 상기 표피전구세포를 유효성분으로 포함하는 모낭신생 유도용 조성물, 상기 조성물을 개체에 전달하여 인간 모낭신생을 유도하는 방법, 및 상기 조성물의 모낭 신생 용도를 제공하는 것을 다른 목적으로 한다.The present invention also provides a hair follicle precursor cell and a skin follicle precursor cell comprising the composition as an effective ingredient, a method for inducing human hair follicle stimulation by delivering the composition to an individual, and a hair follicle neoplasm application for the composition For other purposes.
또한, 본 발명은 상기 모유두전구세포 및 상기 표피전구세포를 공동배양하여 인간 모낭을 제조하는 방법을 제공하는 것을 다른 목적으로 한다. It is another object of the present invention to provide a method for producing human hair follicles by co-culturing the mammary gland precursor cells and the epidermal progenitor cells.
또한, 본 발명은 상기 모유두전구세포 및 상기 표피전구세포를 유효성분으로 포함하는, 탈모 치료용 세포치료제를 제공하는 것을 또 다른 목적으로 한다. It is still another object of the present invention to provide a cell therapy agent for treating hair loss, which comprises the mammary gland precursor cells and the epidermal progenitor cells as an active ingredient.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 DMEM/F12(Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12) 글루타맥스 배지에 섬유아세포성장인자-2(fibroblast growth factor-2; FGF2), 글리코겐 합성 카이네이즈-3(glycogen synthase kinase-3 ; GSK-3) 억제제, 및 골형성단백질 4(bone morphogenetic protein 4; BMP4)를 포함하는 것을 특징으로 하는, 인간 유래 만능줄기세포로부터 모유두전구세포(dermal papilla precursor cell)로의 분화용 배지 조성물을 제공한다.In order to achieve the above object, the present invention provides a method for producing fibroblast growth factor-2 (FGF2) in DMEM / F12 (Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12) glutamax medium, Derived mammalian stem cell, characterized in that it comprises a glycogen synthase kinase-3 (GSK-3) inhibitor, and bone morphogenetic protein 4 (BMP4) dermal papilla precursor cell).
본 발명의 일구현예로, 상기 GSK-3 억제제는 6-브로모인디루빈-3'-옥심(6-bromoindirubin-3'-oxime; BIO), CHIR-99021 및 SB-216763으로 이루어진 군에서 선택된 하나 이상일 수 있다. In one embodiment of the invention, the GSK-3 inhibitor is selected from the group consisting of 6-bromoindirubin-3'-oxime (BIO), CHIR-99021 and SB-216763 It can be more than one.
본 발명의 일구현예로, 상기 FGF2는 5 내지 30 ng/ml, GSK-3 억제제는 0.1 내지 10 uM, 및 BMP4는 0.5 내지 5 ng/ml의 농도로 포함될 수 있다.In one embodiment of the present invention, the FGF2 may be included at a concentration of 5 to 30 ng / ml, the GSK-3 inhibitor may be 0.1 to 10 uM, and the BMP4 may be contained at a concentration of 0.5 to 5 ng / ml.
본 발명의 일구현예로, 상기 BIO는 0.5 내지 5 uM 또는 상기 CHIR 99021은 0.1 내지 10 uM의 농도로 포함될 수 있다. In one embodiment of the present invention, the BIO may be included at a concentration of 0.5 to 5 uM or the CHIR 99021 at a concentration of 0.1 to 10 uM.
본 발명의 일구현예로, 상기 모유두전구세포로의 분화용 배지는 DMEM/F12(Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12) 글루타맥스 배지에 소태아혈청(Fetal Bovine Serum, FBS), 항생제, 섬유아세포성장인자-2(fibroblast growth factor-2; FGF2), GSK-3 억제제, 및 골형성단백질 4(bone morphogenetic protein 4; BMP4)가 첨가된 것으로 이루어질 수 있다. In one embodiment of the present invention, the medium for differentiation into the papillary precursor cells is a medium supplemented with DMEM / F12 (Dulbecco's Modified Eagle's Medium / Nutrient Mixture F-12) glutamax medium, Fetal Bovine Serum (FBS) , Fibroblast growth factor-2 (FGF2), GSK-3 inhibitor, and bone morphogenetic protein 4 (BMP4).
본 발명의 일구현예로, 상기 분화용 배지 조성물에는 인간 신생 태아 조직이 혼입되지 않은 것일 수 있다.In one embodiment of the present invention, the differentiation medium composition may not contain human neonatal fetal tissue.
본 발명의 일구현예로, 상기 인간 유래 만능줄기세포는 인간 유래 배아줄기세포(human embryonic stem cell (ESC)) 또는 인간 유래 역분화 만능줄기세포일 수 있다.In one embodiment of the present invention, the human-derived pluripotent stem cell may be a human embryonic stem cell (ESC) or a human-derived dedifferentiated pluripotent stem cell.
또한, 본 발명은 하기의 단계를 포함하는, 인간 유래 만능줄기세포에서 모유두전구세포로의 분화방법을 제공한다:The present invention also provides a method of differentiating human pluripotent stem cells into papillary precursor cells, comprising the steps of:
(a) 인간 유래 만능줄기세포의 배아체를 신경능선세포(neural crest stem cell) 유도배지에서 배양하여 신경능선세포로 분화시키는 단계; 및  (a) culturing an embryoid body of human-derived pluripotent stem cells in a neural crest stem cell-inducing medium to differentiate into neural ridge cells; And
(b) 상기 분화된 신경능선세포를 상기 분화용 배지 조성물에서 배양하여 모유두전구세포로 분화시키는 단계. (b) culturing the differentiated neural ridge cells in the differentiation medium composition to differentiate into papillary precursor cells.
본 발명의 다른 구현예로, 하기 단계를 추가로 포함하는 것일 수 있다: In another embodiment of the present invention, it may further comprise the following steps:
(c) 분화된 모유두전구세포를 성숙시켜 구형체(sphere)의 모유두전구세포를 수득하는 단계.(c) matured differentiated precursor cells to obtain precursor cells of a spherical sphere.
본 발명의 일구현예로, 상기 신경능선세포 유도배지는 DMEM/F12 글루타맥스 배지에 섬유아세포성장인자-2(fibroblast growth factor-2; FGF2), 피브로넥틴(fibronectin), 인슐린(insulin), N2 보충제(supplyment), 및 트랜스페린(transferrin)이 포함된 것일 수 있다. In one embodiment of the present invention, the neural ridge cell induction medium is selected from the group consisting of fibroblast growth factor-2 (FGF2), fibronectin, insulin, N2 (S), < / RTI > supplyment, and transferrin.
본 발명의 다른 구현예로, 상기 (c) 단계는 분화된 모유두전구세포를 FGF2를 단독으로 첨가한 DMEM/F12 글루타맥스 배지에서 배양하여 이루어지는 것일 수 있다. In another embodiment of the present invention, the step (c) may be performed by culturing the differentiated precursor mammary epithelial cells in a DMEM / F12 glutamax medium supplemented with FGF2 alone.
본 발명의 일구현예로, (a) 단계는 5일 내지 9일 동안 수행, (b) 단계는 11 내지 17일 동안 수행, 및 (c) 단계는 7일 내지 13일 동안 수행하는 것일 수 있다. In one embodiment of the present invention, step (a) is carried out for 5 to 9 days, step (b) is carried out for 11 to 17 days, and step (c) is carried out for 7 to 13 days .
본 발명의 일구현예로, 인간 유래 만능줄기세포에서 모유두전구세포로의 분화방법은 26일 이상 50일 이하 동안 수행하는 것일 수 있다. In one embodiment of the present invention, the method of differentiating human pluripotent stem cells into papillary precursor cells may be performed for 26 days or more and 50 days or less.
또한, 본 발명은 상기 분화방법에 의해, 인간 유래 만능줄기세포에서 분화된 인간 모유두전구세포로서, 상기 인간 모유두전구세포는 모낭 형성능을 갖는 것을 특징으로 하는 인간 모유두전구세포를 제공한다. In addition, the present invention provides human mammary dermat precursor cells differentiated from human pluripotent stem cells by the differentiation method, wherein the human mammary dermat precursor cells have follicle-forming ability.
본 발명의 일구현예로, 상기 모유두전구세포는 하기 (a), (b) 및 (c)로 이루어진 군으로부터 선택된 하나 이상의 특성을 나타내는 것을 특징으로 하는 것일 수 있다.In one embodiment of the present invention, the papillary precursor cells may be characterized in that they exhibit at least one characteristic selected from the group consisting of the following (a), (b) and (c).
(a) ALP(alkaline phosphatase), αSMA(α-smooth muscle actin), versican(VCAN), 및 nestin에 대하여 양성의 면역학적 특성을 나타냄;(a) exhibits positive immunological properties for ALP (alkaline phosphatase), alpha SMA (alpha smooth muscle actin), versican (VCAN), and nestin;
(b) 자발적으로 구(sphere)를 형성하는 모유두세포의 구조적 특성을 나타냄; 및(b) demonstrates the structural characteristics of dermal papilla cells that spontaneously form spheres; And
(c) 모유두 시그니처 유전자인 ALX3(ALX Homeobox 3), SOX2(SRY-Box 2), HEY1(Hes Related Family BHLH Transcription Factor With YRPW Motif 1), BMP4(Bone Morphogenetic Protein 4), LEF1(Lymphoid Enhancer Binding Factor 1), WIF1(WNT inhibitory factor 1), 및 VCAN(Versican)으로 구성된 군으로부터 선택되는 하나 이상을 발현하는 유전적 특성을 나타냄.(b), (b), (c), and (c), the genes for human breastpox signature genes ALX3 (ALX Homeobox 3), SOX2 (SRY-Box 2), HEY1 (Hes Related Family BHLH Transcription Factor With YRPW Motif 1), BMP4 (Bone Morphogenetic Protein 4) and Lymphoid Enhancer Binding Factor 1), WIF1 (WNT inhibitory factor 1), and VCAN (Versican).
본 발명의 일구현예로, 상기 모유두전구세포는 CD133 음성인 것일 수 있다. In one embodiment of the present invention, the precancerous precursor cells may be CD133-negative.
또한, 본 발명은 분화방법에 의해, 인간 유래 만능줄기세포에서 분화된 모낭 형성능을 갖는 계대 배양 인간 모유두전구세포를 제공한다. In addition, the present invention provides a subcultured human dermal papillary precursor cell having a folliculating ability differentiated from human pluripotent stem cells by a differentiation method.
또한, 본 발명은 상기 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포(epithelial stem cell) 및 상기 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 유효성분으로 포함하는, 모낭신생 유도용 조성물을 제공한다.The present invention also relates to a method for the treatment and prophylactic treatment of follicular neoplasia comprising an epithelial stem cell differentiated from the human pluripotent stem cell and a human derived mammary epithelial progenitor cell having a hair follicle forming ability differentiated from the human pluripotent stem cell Thereby providing a composition for induction.
또한, 본 발명은 인간 유래 만능줄기세포로부터 분화된 표피전구세포(epithelial stem cell) 및 상기 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 개체에 전달하여 인간 모낭신생을 유도하는 방법을 제공한다. The present invention also relates to a method for inducing human hair follicle neovascularization by delivering epithelial stem cells differentiated from human pluripotent stem cells and human precursor cells derived from human pluripotent stem cells, . ≪ / RTI >
또한, 본 발명은 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포(epithelial stem cell) 및 상기 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 인체를 제외한 조직에 이식하는 단계를 포함하는, 모낭신생 유도방법을 제공한다.The present invention also relates to a method for producing a stem cell, comprising the steps of transplanting an epithelial stem cell differentiated from human pluripotent stem cells and a human-derived mammary epithelial progenitor cell having a hair follicle-forming ability differentiated from the human-derived pluripotent stem cell, Lt; RTI ID = 0.0 > follicle < / RTI >
또한, 본 발명은 상기 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포와 인간 유래 만능줄기세포로부터 분화된 표피전구세포(epithelial stem cell)를 공동배양하여 인간 모낭을 제조하는 방법을 제공한다. The present invention also provides a method for producing a human hair follicle by co-culturing a human-derived mammary epithelial precursor cell having a hair follicle-forming ability differentiated from the human-derived pluripotent stem cell and an epithelial stem cell differentiated from human-derived pluripotent stem cells .
또한, 본 발명은 인간 유래 만능줄기세포로부터 분화된 표피전구세포(epithelial stem cell) 및 상기 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 유효성분으로 포함하는 조성물의 인간 모낭신생 용도를 제공한다. The present invention also relates to a composition comprising an epithelial stem cell differentiated from a human-derived pluripotent stem cell and a human-derived mammary epithelial precursor cell having a hair follicle-forming ability differentiated from the human-derived pluripotent stem cell as an active ingredient, Provide a new use.
또한, 본 발명은 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포(epithelial stem cell) 및 상기 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 유효성분으로 포함하는, 탈모치료용 세포치료제를 제공한다.The present invention also relates to a method for treating hair loss, comprising an epithelial stem cell differentiated from human pluripotent stem cells and a human derived mammary epithelial precursor cell having hair follicle forming ability differentiated from the human pluripotent stem cell, Thereby providing a cell therapeutic agent.
또한, 본 발명은 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포(epithelial stem cell) 및 상기 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 유효성분으로 포함하는 세포치료제를 개체에 투여하는 단계를 포함하는, 탈모 치료방법을 제공한다.The present invention also relates to a cell therapy agent comprising, as an active ingredient, an epithelial stem cell differentiated from human pluripotent stem cells and a human-derived mammary epithelial progenitor cell having a hair follicle forming ability differentiated from the human pluripotent stem cell, To a subject in need thereof.
또한, 본 발명은 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포(epithelial stem cell) 및 상기 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포의, 탈모 치료용도를 제공한다. In addition, the present invention provides an epithelial stem cell differentiated from human pluripotent stem cells and a human hair papilla precursor cell having hair follicle forming ability differentiated from the human pluripotent stem cell, for alopecia treatment.
본 발명의 일구현예로, 상기 모유두전구세포는 상기 만능줄기세포부터 30일 내지 50일 동안 분화된 것일 수 있다. In one embodiment of the present invention, the papillary precursor cells may be differentiated for 30 days to 50 days from the pluripotent stem cells.
본 발명의 다른 구현예로, 상기 표피전구세포는 상기 만능줄기세포로부터 15 내지 21일 동안 분화된 것일 수 있다. In another embodiment of the present invention, the epidermal progenitor cells may be differentiated from the pluripotent stem cells for 15 to 21 days.
본 발명자들은 인간 유래 만능줄기세포로부터 모낭형성능을 갖는 모유두전구세포로 분화시키는 방법, 및 상기 분화를 위한 모유두전구세포 특이적 분화배지 조성을 개발하였으며, 상기 분화방법으로 얻은 인간 유래 모유두전구세포 및 인간 유래 표피전구세포를 이용하여 종래의 마우스-인간 잡종 모낭이 아닌 인간 세포로만 구성된 모낭신생을 효과적으로 유도하였는바, 본 발명에 따른 모유두전구세포 분화에 관한 생체외 모델을 만들어 모유두세포의 발달 단계와 분화 과정에 대한 연구 모델로 이용할 수 있으며, 또한 본 발명의 모유두전구세포 분화기술을 적용하여 생성된 인간 모낭 조직은 탈모 치료의 한계점을 극복하여 탈모로 고통받는 환자들을 위한 치료법으로 유용하게 이용될 수 있을 것으로 기대된다.The present inventors have developed a method of differentiating human pluripotent stem cells into hair follicle precursor cells having hair follicle forming ability and a composition of the hair follicle precursor cell-specific differentiation medium for the above differentiation. The human-derived papillary precursor cells and human- As described above, the present invention provides an in vitro model for the differentiation of human papilloma progenitor cells according to the present invention. The present invention relates to a method for producing human papillomavirus And human hair follicle tissue produced by applying the present method of the present invention can be used as a therapeutic method for patients suffering from hair loss by overcoming the limitation of hair loss treatment It is expected.
도 1은 배아의 두피에서 각각 모낭 플라코드(hair placode), 모아기(hair germ), 및 모항기(hair peg stage)에 SDC1 및 CD133의 발현을 관찰하기 위해 면역염색을 실시한 결과이다.Figure 1 shows the results of immunostaining for the expression of SDC1 and CD133 in hair placode, hair germ, and hair peg stage, respectively, in the scalp of the embryo.
도 2a 내지 도 2f는 모유두전구세포의 분화과정 및 특성을 확인한 결과로서, 도 2a는 시간 흐름에 따른 인간 역분화만능줄기세포에서 모유두전구세포로의 분화 과정을 그림으로 도시한 것이고, 도 2b는 7일 동안 분화시킨 신경능선세포(hi-NCSC)에 대하여 현미경을 통한 형태 관찰, 및 HNK1과 p75NTR 단백질의 발현을 보여주는 결과이며, 도 2c는 분화시킨 모유두전구세포(hi-DPPC)의 형태관찰 및 알칼라인 포스파타아제 활성(ALP activity)을 보여주는 결과이다. 도 2d는 다양한 factor 조합에 따라 SDC1+CD133 세포로 분화 가능한지 Flow cytometric analysis 결과를 도시한 것이다. 도 2e는 BIO의 대체제로 CHIR-99021 를 처리한 후에 SDC1+CD133 세포를 Flow cytometric analysis 한 결과를 도시한 것이다. 도 2f는 다양한 인간 유래 만능 줄기세포가 SDC1+CD133 DPPCs로 분화 가능함을 보여주는 결과이다. FIGS. 2A to 2F are the results of examining the differentiation process and characteristics of the human papillary precursor cells. FIG. 2A is a graph illustrating the process of differentiating human pre-differentiation pluripotent stem cells into human papillary precursor cells according to time, (Hi-NCSC), and HNK1 and p75NTR proteins. FIG. 2C shows the morphology of the differentiated papillary precursor cells (hi-DPPC) Alkaline phosphatase activity (ALP activity). Figure 2d shows the results of flow cytometric analysis to determine whether SDC1 + CD133 cells can be differentiated according to various factor combinations. Figure 2e shows the results of Flow cytometric analysis of SDC1 + CD133 cells after treatment with CHIR-99021 as an alternative to BIO. FIG. 2f shows the results that various human-derived pluripotent stem cells can be differentiated into SDC1 + CD133 DPPCs.
도 3a 내지 도 3c는 인간 역분화만능줄기세포에서 모유두전구세포로의 분화단계에서 다양한 유전자들의 발현양상을 보여주는 결과로서, 도 3a는 유세포 분석을 통해 분화과정 동안 각 분화단계의 세포(iPSC, NCSC, DPPC D25, DPPC D40, DPPC P5)에서 SDC1 및 CD133의 발현 변화를 보여주는 결과이고, 도 3b는 상기 각 분화단계의 세포에서 단계별 유전자 발현변화를 보여주는 결과이며, 도 3c는 분화 25일째의 모유두전구세포에서 CD133+ 및 CD133-를 분리한 후 모유두에서 발현되는 유전자인 ALX3, CTNNB1, SOX2, LEF1 , VCAN 발현수준을 비교한 결과이다.FIGS. 3A to 3C show the expression patterns of various genes in the differentiation stage from human de-differentiating pluripotent stem cells to papillary progenitor cells. FIG. 3 A shows the results of flow cytometry analysis of differentiated cells (iPSC, NCSC , DPPC D25, DPPC D40, and DPPC P5). Fig. 3B shows the results of stepwise gene expression changes in the cells of each differentiation stage. Fig. 3C shows the changes in the expression of SDC1 and CD133 in the differentiation step. After isolating CD133 + and CD133- from the cells, genes expressing in the dermal papilla, ALX3 , CTNNB1 , SOX2 , LEF1 , and Of VCAN And the level of expression was compared.
도 4a 내지 도 4c는 본 발명에 따른 인간 모유두전구세포(hi-DPPC)의 특성을 인간 모유두세포(hDPC)와 비교한 결과로서, 도 4a는 상기 두 가지 세포에 대하여 ALP activity 활성 및 면역세포화학염색법을 통한 αSMA, VCAN, 및 nestin 유전자의 발현을 확인한 결과이고, 도 4b는 자발적 구(sphere) 형성능을 보여주는 결과이고, 도 4c는 정량적 RT-PCR을 통한 전사체 분석을 통해 모유두 시그니처 유전자들의 발현수준을 비교한 결과이다. FIGS. 4A to 4C show the results of comparing the characteristics of human dermal papillary precursor cells (hi-DPPC) according to the present invention with human dermal papilla cells (hDPC). FIG. 4A shows the results of ALP activity activity and immune cell chemistry Figure 4b shows the results of spontaneous sphere formation, Figure 4c shows the expression of the mammary epitope genes by quantitative RT-PCR analysis, The results are compared.
도 5a 및 도 5b는 본 발명에 따른 모유두전구세포의 모낭형성능을 알아보기 위해 모유두전구세포 구형체(hi-DPPC 3D) 또는 모유두세포 구형체(hDPC 3D)를 이용해 패치 어세이를 실시한 결과로서, 도 5a는 상기 두 가지 세포를 각각 C57BL/6 마우스 유래 표피세포와 함께 피하이식한 결과 잡종 모낭신생이 유도된 결과이고, 도 5b는 모유두전구세포에 세포 추적기(CM-DiI)를 표지하여 모낭신생에 모유두전구세포가 기여함을 확인한 결과이다. 5A and 5B are graphs showing results of patch assay using hi-DPPC 3D or hDPC 3D in order to examine the follicle-forming ability of the papillary precursor cells according to the present invention, FIG. 5A is a result of hypodermic transplantation of the two cells with the epidermal cells derived from C57BL / 6 mice, and FIG. 5B shows the results of induction of hybridization with the cell tracker (CM-DiI) In the presence of the dermal papilla cells.
도 6a 내지 도 6d는 모유두전구세포의 유전자 발현 프로파일을 확인하기 위한 것으로, 도 6a 및 도 6b는 인간 역분화만능줄기세포 유래 신경능선세포(hi-NCSCs), 인간 모유두세포 구형체(cDPC 3D), 인간 모유두세포(cDPC 2D), 및 모유두전구세포 구형체(hi-DPPC 3D)에 대한 RNA 서열분석을 실시하여 히트맵(도 6a) 및 거리행렬로 클러스터링한 결과(도 6b)를 나타낸 것이고, 도 6c는 RNA 서열분석 결과를 차원 감소 접근법으로 분석한 결과이며, 도 6d는 상기 세포들에서 모유두 시그니처 유전자 및 줄기세포 마커 유전자들의 발현수준을 비교한 결과이다. 6A and 6B are diagrams for explaining the gene expression profile of the human papillary progenitor cells. FIGS. 6A and 6B are graphs showing the expression profiles of human degenerating pluripotent stem cell-derived neural ridge cells (hi-NCSCs) (Fig. 6A) and a distance matrix (Fig. 6B) by performing RNA sequence analysis on human dermal papilla cells (cDPC 2D) and papillary precursor cell spheres (hi-DPPC 3D) FIG. 6c is a result of analyzing the results of the RNA sequence analysis by the dimensional reduction approach, and FIG. 6D is a result of comparing the expression levels of the mammalian signature gene and the stem cell marker genes in the cells.
도 7a 및 도 7b는 인간 모유두전구세포와 인간 표피전구세포의 공동배양에 따른 체외 모낭신생 분석 결과로서, 도 7a는 상기 두 가지 세포의 공동배양에 의한 형태 변화를 현미경으로 관찰한 결과이고, 도 7b는 체외에서 형성된 모낭 및 인간 태아의 두피에서 면역형광염색을 통해 진피 마커(SDC1, LEF1, SOX2, Nestin, VCAN, 및 WIF1) 및 표피마커(CD133, BMP4, K15, K14, 및 WIF1) 단백질의 발현여부를 보여주는 결과이다.FIGS. 7A and 7B are results of in vitro follicular neoplasia analysis according to co-culture of human dermal papillary precursor cells and human epidermal progenitor cells. FIG. 7A is a result of microscopic observation of morphological changes due to co-cultivation of the two cells, (SDC1, LEF1, SOX2, Nestin, VCAN, and WIF1) and epidermal markers (CD133, BMP4, K15, K14, and WIF1) proteins in the hair follicles and human fetal scalp This is a result showing the expression.
도 8a 내지 도 8c는 챔버 어세이를 통해 마우스 체내에서 인간 역분화만능줄기세포에서 분화시킨 모유두전구세포(hi-DPPC) 및 표피전구세포(hi-EpSC) 이식에 따른 모낭신생을 보여주는 결과로서, 도 8a는 형성된 모낭조직에 대한 H&E 염색결과, 다중 뿌리 덮게(multiple root sheath) 및 모유두 구조를 보여주는 현미경사진이고, 도 8b는 형성된 모낭 및 인간 태아(Fetal scalp)의 모낭에서 인간 COX4(hCOX4) 및 인간 미토콘드리아(human mitochondria)에 대한 면역형광염색 결과이며, 도 8c는 형성된 모낭에서 K14, K15, K17, 및 K75에 대한 면역형광염색을 실시한 결과이다.8A to 8C show the results of a hair follicle neogenesis according to a hippocampal progenitor cell (hi-DPPC) and a hippocampal progenitor cell (hi-EpSC) transplantation differentiated from human de-differentiated pluripotent stem cells in a mouse body through a chamber assay, FIG. 8A is a micrograph showing the multiple root sheath and the papilla structure as a result of H & E staining for the formed follicular tissue, and FIG. 8B is a micrograph showing human COX4 (hCOX4) and human pancreatic epithelial cells in the hair follicles and human fetal Immunofluorescent staining for human mitochondria, and FIG. 8c is the result of immunofluorescent staining for K14, K15, K17, and K75 in the hair follicles formed.
본 발명은 인간 유래 만능줄기세포로부터 모유두전구세포로의 분화용 배지 조성물, 분화방법, 및 상기 방법으로 분화된 모유두전구세포를 이용한 모낭신생 유도 용도에 관한 것이다.The present invention relates to a culture medium for differentiation from human-derived pluripotent stem cells to a papillary precursor cell, a differentiation method, and a use of inducing a hair follicle precursor cell using the differentiated papilloma precursor cells.
이에, 본 발명은 DMEM/F12(Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12) 글루타맥스에 섬유아세포성장인자-2(fibroblast growth factor-2; FGF2), 글리코겐 합성 카이네이즈-3(glycogen synthase kinase-3: GSK-3) 억제제, 및 골형성단백질 4(bone morphogenetic protein 4; BMP4)을 포함하는 것을 특징으로 하는, 인간 유래 만능줄기세포로부터 모유두전구세포(dermal papilla precursor cell)로의 분화용 배지 조성물을 제공한다.Accordingly, the present invention relates to a method for the treatment and prophylaxis of fibroblast growth factor-2 (FGF2), glycogen synthase kinase-3 (DMEM / F12, Dulbecco's Modified Eagle's Medium / Nutrient Mixture F- Wherein the culture medium for the differentiation from human-derived pluripotent stem cells into dermal papilla precursor cells is characterized by comprising an inhibitor of GSK-3: GSK-3, and bone morphogenetic protein 4 (BMP4) to provide.
상기 배지 조성물에서, 상기 글리코겐 합성 카이네이즈-3(glycogen synthase kinase-3: GSK-3) 억제제는 6-브로모인디루빈-3'-옥심(6-bromoindirubin-3'-oxime; BIO), CHIR-99021 및 SB-216763으로 이루어진 군에서 선택된 하나 이상일 수 있으며, 이에 제한되지 않고, 글리코겐 합성 카이네이즈-3 억제제로 당업계에 공지된 것이면 제한없이 사용할 수 있다. In this medium composition, the inhibitor of glycogen synthase kinase-3 (GSK-3) is 6-bromoindirubin-3'-oxime (BIO), CHIR- 99021 and SB-216763, but are not limited thereto, and any of those known in the art as glycogen synthesis canine-3 inhibitors can be used without limitation.
상기 배지 조성물에서, 바람직하게, 상기 FGF2는 5 내지 30 ng/ml, GSK-3 억제제는 0.1 내지 10 uM, 및 BMP4는 0.5 내지 5 ng/ml의 농도로 포함될 수 있다. 상기 농도 범위에서 인간 유래 줄기세포로부터 모유두전구세포로의 분화가 가장 효과적일 수 있다. In the above-mentioned medium composition, preferably, the FGF2 may be contained at a concentration of 5 to 30 ng / ml, the GSK-3 inhibitor may be 0.1 to 10 uM, and the BMP4 may be contained at a concentration of 0.5 to 5 ng / ml. In this concentration range, differentiation from human-derived stem cells to papillary precursor cells may be most effective.
상기 배지 조성물에서, 바람직하게, 상기 BIO는 0.5 내지 5 uM, 상기 CHIR 99021은 0.1 내지 10 uM의 농도로 포함될 수 있다. 상기 농도 범위에서 인간 유래 줄기세포로부터 모유두전구세포로의 분화가 가장 효과적일 수 있다. In the above-mentioned culture medium composition, preferably, the BIO may be contained at a concentration of 0.5 to 5 uM, and the CHIR 99021 may be contained at a concentration of 0.1 to 10 uM. In this concentration range, differentiation from human-derived stem cells to papillary precursor cells may be most effective.
상기 배지 조성물에서, 상기 인간 유래 만능줄기세포는 인간 유래 배아줄기세포 또는 인간 유래 역분화 만능줄기세포일 수 있으나, 이에 제한되지 않는다. In the above-mentioned medium composition, the human-derived pluripotent stem cell may be a human-derived embryonic stem cell or a human-derived re-pluripotent pluripotent stem cell.
상기 배지 조성물에는, 바람직하게, 인간 조직이 혼입되지 않은 것일 수 있다. 상기 용어, “인간 조직이 혼입되지 않은”은 배지 조성물에 혼입되는 인간 조직의 함유량이 전체 배지 조성물 대비 5% 이하, 3% 이하, 1% 이하, 가장 바람직하게 0% 혼입된 것을 의미한다. 상기 0% 혼입된 것은 배지 조성물에 인간 조직이 전혀 혼입되지 않은 것을 의미한다. The medium composition may preferably be one in which no human tissues are incorporated. The term "human tissue not incorporated" means that the content of human tissue incorporated into the media composition is less than 5%, 3%, 1%, most preferably 0%, relative to the total media composition. This 0% incorporation means that no human tissue is incorporated into the medium composition.
또한, 본 발명은 하기의 단계를 포함하는, 인간 유래 만능줄기세포에서 모유두전구세포로의 분화방법을 제공한다:The present invention also provides a method of differentiating human pluripotent stem cells into papillary precursor cells, comprising the steps of:
(a) 인간 유래 만능줄기세포의 배아체를 신경능선세포(neural crest stem cell) 유도배지에서 배양하여 신경능선세포로 분화시키는 단계; 및 (a) culturing an embryoid body of human-derived pluripotent stem cells in a neural crest stem cell-inducing medium to differentiate into neural ridge cells; And
(b) 상기 분화된 신경능선세포를 제1항의 분화용 배지 조성물에서 배양하여 모유두전구세포로 분화시키는 단계.(b) culturing the differentiated neural ridge cells in the differentiation medium composition of claim 1 to differentiate into pre-papillary precursor cells.
이하, 상기 배지 조성물 내지 분화방법의 각 단계에 대하여 상세히 설명하고자 한다.Hereinafter, each step of the above-mentioned culture medium composition or method of differentiation will be described in detail.
본 발명에서 사용되는 용어, “만능줄기세포(pluripotent stem cell; PSC)”는 만능성을 가진 줄기세포를 의미하며, 당업계 공지된 다양한 줄기세포가 포함될 수 있으며, 예컨대 배아줄기세포 또는 역분화 만능줄기세포가 포함될 수 있고, 이에 제한되지 않는다. As used herein, the term " pluripotent stem cell " (PSC) refers to pluripotent stem cells, which may include various stem cells known in the art, such as embryonic stem cells, Stem cells may be included, but are not limited thereto.
본 발명에서 사용되는 용어, “인간 유래 만능줄기세포”는 예컨대 인간의 조직, 조직, 혈액 등, 만능줄기세포의 원천이 인간인 것을 의미하며, 예컨대, 인간 유래 배아줄기세포, 인간의 섬유아세포 유래 만능줄기세포(fibroblast-derived hiPSC (FB-derived hiPSC)), 또는 인간의 모낭세포 유래 만능줄기세포(dermal papilla cell-derived hiPSC (DPC-derived hiPSC)) 등이 인간 유래 만능줄기세포에 포함될 수 있다. The term " human-derived pluripotent stem cells " used in the present invention means that the source of pluripotent stem cells such as human tissues, tissues and blood is a human. Examples of such pluripotent stem cells include human-derived embryonic stem cells, Human pluripotent stem cells may include human fibroblast-derived hiPSC (FB-derived hiPSC) or dermal papilla cell-derived hiPSC (DPC-derived hiPSC) .
본 발명에서 사용되는 용어, “역분화만능줄기세포(induced pluripotent stem cell; iPSC)”는 분화가 끝난 체세포에 세포 분화 관련 유전자를 주입하여 분화 이전의 세포 단계로 되돌린, 배아 줄기세포처럼 만능성을 유도해낸 세포를 의미한다. 2006년 교토대 야마나카 신야 교수는 생쥐의 피부 섬유아세포에 몇 가지 유전자를 도입하여 배아줄기세포처럼 만능성을 가진 줄기세포를 만들었으며, 2007년 성인의 피부세포에 유전자를 도입하여 유도만능 줄기세포를 만드는데 성공했다. 상기 유전자들은 야마나카 인자라고도 불리는 SOX2, c-MYC, OCT4, 및 KLF4이며, 본 발명에서도 인간에서 분리한 피부 섬유아세포에서 역분화만능줄기세포를 제조하기 위해 상기 4가지 유전자를 도입하였다.The term " induced pluripotent stem cell (iPSC) " used in the present invention refers to a pluripotent stem cell that is pluripotent, such as an embryonic stem cell, which has been transferred to a differentiated somatic cell, ≪ / RTI > In 2006, Professor Shinya Yamanaka of Kyoto University introduced several genes into the skin fibroblasts of mice to create pluripotent stem cells as embryonic stem cells. In 2007, we introduced genes into adult skin cells to induce pluripotent stem cells It succeeded in making. These genes are SOX2, c-MYC, OCT4, and KLF4, also called Yamanaka factors. In the present invention, the four genes were introduced to produce the dedifferentiated pluripotent stem cells from human fibroblasts.
본 발명에 따른 상기 역분화만능줄기세포는 인간 유래 피부 섬유아세포로부터 제조하였으나, 역분화만능줄기세포를 제조할 수 있는 인간 유래 성체세포라면 그 종류가 제한되지 않는다. Although the DEA pluripotent stem cells according to the present invention are prepared from human-derived dermal fibroblasts, the types of the pluripotent pluripotent pluripotent stem cells are not limited as long as they are human-derived adult cells capable of producing the reprogrammed pluripotent stem cells.
상기 단계 (a) 전에, 추가적으로, 상기 인간 유래 만능줄기세포를 배아체로 배양하는 단계가 포함될 수 있다. 본 단계는 바람직하게 약 3 내지 7일 동안 수행될 수 있다. The step (a) may further include culturing the human-derived pluripotent stem cells into an embryo. This step is preferably carried out for about 3 to 7 days.
상기 단계 (a)는 상기 인간 유래 만능줄기세포의 배아체에서 신경능선세포로 분화시키는 단계이다. 상기 신경능선세포 유도배지는 DMEM/F12 글루타맥스, 섬유아세포성장인자-2(fibroblast growth factor-2; FGF2), 피브로넥틴(fibronectin), 인슐린(insulin), N2 보충제, 및 트랜스페린(transferrin)첨가된 것일 수 있으나, 이에 제한되는 것은 아니다. The step (a) is a step of differentiating the human pluripotent stem cell into an embryoid body into neural ridge cells. The neuronal ridge cell induction medium was supplemented with DMEM / F12 glutamax, fibroblast growth factor-2 (FGF2), fibronectin, insulin, N2 supplement, and transferrin- But is not limited thereto.
본 발명의 일실시예에서, 상기 단계 (a)를 통해 분화된 신경능선세포의 특성을 검증한 결과, 현미경으로 신경능선세포의 형태를 관찰하였고, 신경능선 마커인 HNK1 및 p75NTR 단백질이 발현되는 것을 확인함으로써 상기 만능줄기세포로부터 신경능선세포로의 분화가 잘 이루어졌음을 확인하였다. In one embodiment of the present invention, the characteristics of the neural ridge cells differentiated through the step (a) were examined. As a result, the morphology of the neural ridge cells was observed under a microscope and the expression of the neural ridge markers HNK1 and p75NTR Confirming that the differentiation from the pluripotent stem cells into neural ridge cells was well performed.
상기 단계 (b)는 상기 단계(a)에서 분화시킨 신경능선세포로부터 모유두전구세포로 분화시키는 단계이다. 본 발명자들은 상기 신경능선세포로부터 모유두전구세포로 분화시키기 위해, 종래의 신경능선세포에서 모유두유사세포로의 분화 시 이용된 일반적인 DMEM/F12 글루타맥스 배양배지에 모유두전구세포로의 분화에 필수적인 인자들을 스크리닝한 결과 최종적으로 FGF2, GSK-3 억제제, 및 BMP4를 분화 인자로 첨가하였을 때 비로소 모유두전구세포로의 분화가 가능하다는 결과를 도출하였는바, 상기 인자들을 첨가한 모유두전구세포 분화용 배지 조성을 개발하였다. The step (b) is a step of differentiating the precursor cells from the neural ridge cells differentiated in the step (a). In order to differentiate the mesenchymal precursor cells from the neural ridge cells, the inventors of the present invention have found that, in a general DMEM / F12 glutamax culture medium used for differentiation from conventional neural ridge cells to papillary-like cells, As a result, it was found that the addition of FGF2, GSK-3 inhibitor, and BMP4 as differentiation factors ultimately leads to the differentiation into the precursor cells of the mammary gland. As a result, Respectively.
따라서 상기 단계 (a)에서 분화된 신경능선세포를 상기 모유두전구세포 분화용 배지에서 12일 내지 40일 동안 배양하여 모유두전구세포로 분화시킬 수 있다.Thus, the neural ridge cells differentiated in step (a) may be cultured in the culture medium for differentiating the precursor cells for 12 to 40 days to differentiate into precursor cells of the mammary epithelium.
또한, 단계 (b) 이후에, 하기 단계를 추가로 포함할 수 있다: Further, after step (b), the following steps may be further included:
(c) 분화된 모유두전구세포를 성숙시켜 구형체(sphere)의 모유두전구세포를 수득하는 단계.(c) matured differentiated precursor cells to obtain precursor cells of a spherical sphere.
상기 단계 (c)는 상기 단계 (b)에서 분화시킨 모유두전구세포를 계대배양하면서 증식시켜 구형체(sphere)의 모유두전구세포를 수득하는 단계이다.The step (c) is a step of obtaining the precursor cells of a spherical sphere by propagating the precursor cells differentiated in the step (b) while subculturing.
상기 단계 (c)는 상기 분화된 모유두전구세포를 FGF2를 단독으로 첨가한 DMEM/F12 글루타맥스 배지에서 배양하는 과정을 통해 이루어질 수 있다.The step (c) may be performed by culturing the differentiated precursor cells in a DMEM / F12 glutamax medium supplemented with FGF2 alone.
본 발명의 일실시예에서는, 상기 방법을 통해 모유두전구세포로 분화가 잘 이루어졌는지 검증하기 위하여 현미경으로 관찰한 결과 성상에서 일차 모유두세포와 유사한 방추형의 다각형 형태로 변한 것을 확인하였고, 구형체를 형성하며 알칼라인 포스파타아제 활성을 나타내는 것을 확인하였다.In an embodiment of the present invention, in order to verify whether the differentiation into the precursor cells of the mammary epithelium was accomplished through the above-described method, it was confirmed by microscopic observation that the morphology changed into a fusiform polygonal shape similar to that of the primary dermal papilla cells, And showed alkaline phosphatase activity.
본 발명의 분화방법에서, 바람직하게, (a) 단계는 5일 내지 9일 동안 수행, (b) 단계는 11 내지 17일 동안 수행, 또는 (c) 단계는 7일 내지 13일 동안 수행할 수 있으며, 이 때 인간 유래 만능줄기세포에서 모유두전구세포로의 분화가 가장 효과적으로 수행될 수 있다. In the differentiation method of the present invention, preferably, step (a) is carried out for 5 to 9 days, step (b) is carried out for 11 to 17 days, or step (c) . In this case, differentiation from human-derived pluripotent stem cells to papillary precursor cells can be performed most effectively.
본 발명의 분화방법에서, 바람직하게, 인간 유래 만능줄기세포에서 모유두전구세포로의 분화방법은 26일 이상 50일 이하 동안 수행할 수 있으며, 더욱 바람직하게 30일 이상 45일 이하, 더 더욱 바람직하게 40일 내외 동안 수행할 수 있으며, 이 때 인간 유래 만능줄기세포에서 모유두전구세포로의 분화가 가장 효과적으로 수행될 수 있다. 상기 “26일 이상 50일 이하”의 기산점은 인간 유래 만능줄기세포를 본 발명의 분화방법에 적용하기 시작하는 시점이며, 예컨대 인간 유래 만능줄기세포를 본 발명의 분화방법에 적용함에 있어서, 상기 (a) 단계 이전에 인간 유래 만능줄기세포의 배아체 형성 과정이 포함된다면, 상기 26일 이상 50일 이하의 기간에는 인간 유래 만능줄기세포의 배아체 형성 과정도 포함될 수 있다. In the differentiation method of the present invention, preferably, the method of differentiating human pluripotent stem cells into papillary precursor cells is performed for 26 days or more and 50 days or less, more preferably 30 days or more and 45 days or less, still more preferably And can be performed for about 40 days. At this time, differentiation from human-derived pluripotent stem cells to papillary precursor cells can be performed most effectively. The point of origin of "above 26 days and less than 50 days" is the time point when the human-derived pluripotent stem cells are started to be applied to the differentiation method of the present invention. For example, in applying the human-derived pluripotent stem cells to the differentiation method of the present invention, If the embryoid body formation process of human-derived pluripotent stem cells is included before step a), the embryoid body formation process of human-derived pluripotent stem cells may be included in the period from 26 days to 50 days.
또한, 본 발명은 상기 분화방법에 의해, 인간 유래 만능줄기세포에서 분화된 인간 모유두전구세포로서, 상기 인간 모유두전구세포는 모낭 형성능을 갖는 것을 특징으로 하는 인간 모유두전구세포를 제공한다. In addition, the present invention provides human mammary dermat precursor cells differentiated from human pluripotent stem cells by the differentiation method, wherein the human mammary dermat precursor cells have follicle-forming ability.
상기 모유두전구세포는 하기 (a), (b) 및 (c)로 이루어진 군으로부터 선택된 하나 이상의 특성을 나타내는 것을 특징으로 한다. The papillary precursor cells are characterized by exhibiting at least one characteristic selected from the group consisting of (a), (b) and (c) below.
(a) ALP(alkaline phosphatase), αSMA(α-smooth muscle actin), versican(VCAN), 및 nestin에 대하여 양성의 면역학적 특성을 나타냄;(a) exhibits positive immunological properties for ALP (alkaline phosphatase), alpha SMA (alpha smooth muscle actin), versican (VCAN), and nestin;
(b) 자발적으로 구(sphere)를 형성하는 모유두세포의 구조적 특성을 나타냄; 및(b) demonstrates the structural characteristics of dermal papilla cells that spontaneously form spheres; And
(c) 모유두 시그니처 유전자인 ALX3(ALX Homeobox 3), SOX2(SRY-Box 2), HEY1(Hes Related Family BHLH Transcription Factor With YRPW Motif 1), BMP4(Bone Morphogenetic Protein 4), LEF1(Lymphoid Enhancer Binding Factor 1), WIF1(WNT inhibitory factor 1), 및 VCAN(Versican)으로 구성된 군으로부터 선택되는 하나 이상을 발현하는 유전적 특성을 나타냄.(b), (b), (c), and (c), the genes for human breastpox signature genes ALX3 (ALX Homeobox 3), SOX2 (SRY-Box 2), HEY1 (Hes Related Family BHLH Transcription Factor With YRPW Motif 1), BMP4 (Bone Morphogenetic Protein 4) and Lymphoid Enhancer Binding Factor 1), WIF1 (WNT inhibitory factor 1), and VCAN (Versican).
상기 모유두전구세포는 CD133 음성을 나타낸다. 또는, CD133 음성 및 SDC1 양성을 나타낸다. The prefrontal precursor cells express CD133 negative. Or CD133 negative and SDC1 positive.
CD133은 마우스에서 모발 유도성 피부세포의 표면 마커로 알려져 있다. 그러나, 본 발명에 따른 모유두전구세포의 경우, 도 3c에 나타낸 바와 같이, CD133 음성 세포에서는 전형적인 모유두에서 발현되는 유전자 즉, ALX homeobox3(ALX3), catenin beta 1(CTNNB1), SOX2, 및 lymphoid enhancer binding factor 1(LEF1)의 발현이 유의하게 증가하는데 반해, CD133 양성 세포에서는 상기와 같은 결과가 나타나지 않는 것을 확인하였다.CD133 is known to be a surface marker of hair-inducing skin cells in mice. However, in the case of the papillary precursor cells according to the present invention, as shown in Fig. 3C, the CD133 negative The expression of CD133 ( ALX3 ), catenin beta 1 ( CTNNB1 ), SOX2 , and lymphoid enhancer binding factor 1 ( LEF1 ) was significantly increased in the cells, positivity And the results were not shown in the cells.
또한, 본 발명은 분화방법에 의해, 인간 유래 만능줄기세포에서 분화된 인간 모유두전구세포로서, 상기 인간 모유두전구세포는 모낭 형성능을 갖는 계대 배양 인간 모유두전구세포를 제공한다. In addition, the present invention provides a human mammary dermal precursor cell differentiated from human pluripotent stem cells by a differentiation method, wherein the human mammary dermal progenitor cell provides a subcultured human mammary dermal precursor cell having a hair follicle forming ability.
본 발명의 일실시예에서는, 본 발명자들은 상기 분화된 모유두전구세포가 모낭형성능을 가지고 있는지 검증하기 위해 상기 모유두전구세포와 C57BL/6 신생아 마우스의 표피세포(mEPI)를 함께 면역결핍 마우스의 피하에 이식하여 패치 어세이를 실시하였다. 그 결과 2주 후 마우스-인간의 잡종 모낭신생이 유도된 것을 확인하였다.In one embodiment of the present invention, the present inventors examined whether the epidermal cells (mEPI) of C57BL / 6 neonatal mouse and the papillary progenitor cells were subcutaneously injected into immunodeficient mice in order to examine whether the differentiated papillary precursor cells had hair follicle forming ability And transplantation was performed. As a result, it was confirmed that mouse-human hybrid hair follicle development was induced two weeks later.
본 발명의 다른 실시예에서는, 유도 신경능선세포, 유도 모유두전구세포 구형체, 배양 모유두세포 구형체 및 배양 모유두세포에 대하여 RNA 서열분석을 실시한 후 유전자 발현 프로파일링을 분석하였다. 그 결과, 상기 모유두세포는 신경능선세포와는 매우 다른 유전자 발현패턴을 나타내었으며, 모유두세포 핵심 유전자들을 높게 발현하는 것을 통해 인간 모유두세포와 유사하며 초기 단계의 분자 시그니처를 나타내는 것을 알 수 있었다. In another embodiment of the present invention, gene expression profiling was analyzed after RNA sequencing was performed on the induction neural crest cell, inducible papillary precursor cell corpuscles, cultured dermal papilla cell protoplasts, and cultured dermal papilla cells. As a result, the dermal papilla cells exhibited a gene expression pattern very different from that of neural ridge cells, and they were similar to human dermal papilla cells through high expression of core genes of dermal papilla cells and showed early-stage molecular signatures.
상기 결과들을 바탕으로, 본 발명의 또 다른 실시예에서는 상기 표피전구세포와 모유두전구세포를 체외에서 공동배양한 결과 모낭 형태발생과 매우 유사한 둥근 구조를 형성하며 인간 태아 두피와 유사한 유전자 발현패턴을 관찰하였다. Based on the above results, in another embodiment of the present invention, when the epidermal progenitor cells and the papillary precursor cells are co-cultured in vitro, a circular structure very similar to that of the hair follicle formation is formed and a gene expression pattern similar to that of the human fetal scalp is observed Respectively.
본 발명의 또 다른 실시예에서는, 상기 모유두전구세포와 표피전구세포를 이용해 챔버 어세이를 실시하여 마우스에서 인간 모낭신생이 유도되는지 검증하였다. 그 결과, 분화 시작 후 40일 된 모유두전구세포 및 18일 된 표피전구세포를 함께 마우스에 이식하였을 때 인간 태아의 모낭과 구조 및 유전적 특성이 유사한 것을 확인함으로써 인간 세포로만 이루어진 모유두전구세포와 표피전구세포를 이용해 인간 모낭신생을 유도할 수 있음을 확인하였다.In another embodiment of the present invention, a chamber assay is performed using the papillary precursor cells and epidermal progenitor cells to verify that human hair follicle neogenesis is induced in the mouse. As a result, it was confirmed that the morphological and structural characteristics of human fetal hair follicles were similar to that of human fetal hair follicles when they were transplanted into mouse together with 40-day-old and 18-day-old epidermal progenitor cells after the start of differentiation, It was confirmed that human hair follicle development could be induced by using precursor cells.
이에, 본 발명은 상기 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포(epithelial stem cell) 및 상기 인간 유래 모유두전구세포를 유효성분으로 포함하는, 인간 모낭신생 유도용 조성물을 제공한다. Accordingly, the present invention provides a composition for inducing human hair folliculogenesis, comprising an epithelial stem cell differentiated from the human pluripotent stem cell and the human-derived mammary epithelial progenitor cell as an active ingredient.
또한, 인간 유래 만능줄기세포로부터 분화된 표피전구세포(epithelial stem cell) 및 상기 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 개체에 전달하여 인간 모낭신생을 유도하는 방법을 제공한다. In addition, a method for inducing human hair follicle development by transferring epithelial stem cells differentiated from human pluripotent stem cells and human-derived mammary epithelial progenitor cells having hair follicle-forming ability differentiated from the human pluripotent stem cells to the individual to provide.
또한, 상기 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포와 인간 유래 만능줄기세포로부터 분화된 표피전구세포(epithelial stem cell)를 공동배양하여 인간 모낭을 제조하는 방법을 제공한다. 본 방법에 있어서, 바람직하게, 상기 “공동배양”은 in vitro 에서 수행될 수 있다. Also provided is a method for producing a human hair follicle by co-culturing human-derived mammary epithelial precursor cells having hair follicle-forming ability differentiated from the human-derived pluripotent stem cells and epithelial stem cells differentiated from human-derived pluripotent stem cells . In the present method, preferably, said " co-cultivation " can be carried out in vitro .
또한, 인간 유래 만능줄기세포로부터 분화된 표피전구세포(epithelial stem cell) 및 상기 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 유효성분으로 포함하는 조성물의 인간 모낭신생 용도를 제공한다. In addition, a human hair follicle neovasic application of a composition comprising an epithelial stem cell differentiated from a human-derived pluripotent stem cell and a human-derived mammary epithelial progenitor cell having a hair follicle-forming ability differentiated from the human pluripotent stem cell as an effective ingredient to provide.
본 발명에서 사용되는 용어, “인간 모낭”은 인간의 모낭을 의미하되, 모낭을 신생하고자 하는 개체가 인간으로 제한되는 것을 의미하는 것은 아니며, 인간 모낭을 신생하고자 하는 개체에는 인간을 포함해 모낭을 가질 수 있는 당업계 공지된 다양한 동물이 포함될 수 있다. 예컨대, 상기 모낭을 가질 수 있는 당업계 공지된 다양한 동물에는 포유동물이 포함될 수 있으며, 상기 포유동물에는 마우스 등이 포함될 수 있다. 본 발명의 구체예에 따르면, 마우스에서 인간의 모낭 신생을 유도하였다. The term " human hair follicle " as used in the present invention means a human hair follicle, but does not mean that the individual to be follicularized is limited to a human. May be included in the present invention. For example, various animals known in the art that can have such hair follicles can include mammals, and the mammals can include mice and the like. According to embodiments of the present invention, human hair follicle neogenesis was induced in mice.
또한, 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포 및 상기 인간 유래 모유두전구세포를 유효성분으로 포함하는, 탈모치료용 세포치료제를 제공한다.Also provided is a cell therapy agent for treating hair loss, comprising epidermal progenitor cells differentiated from human pluripotent stem cells and the human derived mammary prefrontal cells as an effective ingredient.
또한, 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포(epithelial stem cell) 및 상기 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 유효성분으로 포함하는 세포치료제를 개체에 투여하는 단계를 포함하는, 탈모 치료방법을 제공한다. In addition, it is possible to administer to a subject a cell treatment agent containing, as an active ingredient, an epithelial stem cell differentiated from a human-derived pluripotent stem cell and a human-derived mammary epithelial precursor cell having a hair follicle-forming ability differentiated from the human-derived pluripotent stem cell A method of treating hair loss.
또한, 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포(epithelial stem cell) 및 상기 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 유효성분으로 포함하는 조성물의 탈모 치료용도를 제공한다. Further, there is provided an application for treating hair loss in an epithelial stem cell differentiated from a human-derived pluripotent stem cell and a composition comprising as an active ingredient a human-derived mammary epithelial precursor cell having a hair follicle-forming ability differentiated from the human-derived pluripotent stem cell do.
또한, 본 발명은 상기 인간 유래 표피전구세포 및 상기 인간 유래 모유두전구세포를 인체를 제외한 조직에 이식하는 단계를 포함하는, 모낭신생 유도방법을 제공한다.The present invention also provides a method for inducing follicular neoplasia comprising the step of transplanting the human-derived epidermal progenitor cells and the human-derived epidermal precursor cells into a tissue other than the human body.
상기 모유두전구세포는 상기 인간 유래 만능줄기세포부터 30일 내지 50일 동안 분화된 것일 수 있고, 상기 표피전구세포는 상기 인간 유래 만능줄기세포로부터 15일 내지 21일 동안 분화된 것일 수 있다.The mammary epithelial progenitor cells may be differentiated from the human-derived pluripotent stem cells for 30 days to 50 days, and the epidermal progenitor cells may be differentiated from the human-derived pluripotent stem cells for 15 days to 21 days.
상기 모유두전구세포는 CD133 음성을 나타내는 것일 수 있고, 상기 표피전구세포는 CD133 양성을 나타내는 것일 수 있다.The prefrontal precursor cells may be CD133 negative and the epidermal progenitor cells may be CD133 positive.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.
[[ 실시예Example ]]
실시예Example 1. 실험준비 및 실험방법 1. Experimental Preparation and Experimental Methods
1-1. 인간 피부 섬유아세포로부터 1-1. From human skin fibroblasts 역분화만능줄기세포의Of differentiated pluripotent stem cells 제조 Produce
인간 피부 섬유아세포(ATCC PCS-201-012)를 3회 계대배양한 후 재프로그래밍 인자인 OCT4, SOX2, KLF4 및 c-MYC를 레트로바이러스를 이용해 형질도입하였다. 형질도입 후 24시간째에, 바이러스를 함유하는 배지를 새로운 성장 배지로 교체해주었고, 형질도입 2주 후에 형질전환된 인간 피부 섬유아세포에서 역분화만능줄기세포(iPSC) 유사 콜로니를 관찰하였다, 상기 콜로니를 집어내어 새로운 STO 피더(feeder)로 옮기고 콜로니 부착 2일 후 배양배지를 10 ng/ml의 bFGF가 첨가된 새로운 배아줄기세포 배양배지로 교체하였다.Human dermal fibroblasts (ATCC PCS-201-012) were subcultured three times and then reprogramming factors OCT4, SOX2, KLF4 and c-MYC were transduced with retrovirus. Twenty-four hours after transfection, the medium containing the virus was replaced with a new growth medium, and iPSC-like colonies were observed in transformed human dermal fibroblasts two weeks after transfection. Was removed and transferred to a new STO feeder. After 2 days of colonization, the culture medium was replaced with fresh embryonic stem cell culture medium supplemented with 10 ng / ml bFGF.
이후 상기 배아줄기세포 배양배지를 매일 교체하였고, DMEM/F12 글루타맥스 (Thermo Fisher, catalog no. 10565042) 20% 녹아웃 혈청 대체제(Thermo Fisher), 1% 비필수 아미노산(Invitrogen), 2 mM 글루타민(Thermo Fisher), 0.1 mM β-머캅토에탄올(Thermo Fisher), 및 10 ng/ml bFGF(Thermo Fisher)을 함유하는 인간 배아줄기세포 배지에서 미토마이신 C-불활성화 마우스 STO 피더(feeder)상에서 5% O2조건으로 배양하였다. 계대배양은 일반적인 방법 또는 1 mg/ml의 콜라게나제 타입 IV(collagenase type IV)(Thermo Fisher)를 이용하여 5-7일마다 수행하였다. 모든 모세포 계통은 50 계대 이상 유지하였으며, OCT3/4, NANOG, 및 SSEA4가 안정하게 발현되는 것을 확인하였다.The embryonic stem cell culture medium was then changed daily and the cells were cultured in DMEM / F12 glutamax (Thermo Fisher, catalog No. 10565042) supplemented with 20% knockout serum (Thermo Fisher), 1% nonessential amino acid (Invitrogen), 2 mM glutamine Inactivated mouse STO feeder in human embryonic stem cell culture medium containing 0.1 mM [beta] -mercaptoethanol (Thermo Fisher), and 10 ng / ml bFGF (Thermo Fisher) O 2 conditions. Subculture was carried out every 5-7 days using the usual method or 1 mg / ml collagenase type IV (Thermo Fisher). All the cell lines maintained more than 50 passages, and OCT3 / 4, NANOG, and SSEA4 were stably expressed.
1-2. 인간 1-2. human 역분화만능줄기세포로부터From the differentiated pluripotent stem cells 신경능선세포로의Into neural ridge cells 분화 differentiation
먼저 배아체(embryonic body; EB)를 만들기 위해, 상기 역분화만능줄기세포의 콜로니가 배양용기 면적의 80-90%에 달했을 때 2 mg/ml 콜라게나아제(collagenase) Ⅳ를 37℃에서 1시간 동안 처리하고 분화된 콜로니를 파이펫 팁으로 떼어낸 후 떨어진 콜로니들을 부드럽게 회수하였다. 이후 상층액을 버리고 bFGF가 없는 상기 역분화만능줄기세포의 배양배지에 재현탁시킨 다음 배아체를 10 cm 배양접시에 옮겼으며, 배양접시 당 8 ml의 배지에서 배양하였다. 다음날 배지를 교체하고, 응집체를 5일 동안 추가로 배양하였으며, 상기 역분화만능줄기세포 배양배지를 격일로 보충하였다.In order to make an embryonic body (EB), 2 mg / ml collagenase IV was cultured at 37 ° C for 1 hour when the colonies of the DEA pluripotent stem cells reached 80-90% And the differentiated colonies were removed with a pipette tip, and the loose colonies were gently recovered. The supernatant was discarded and resuspended in the culture medium of bFGF-deficient pluripotent stem cells. Then, the embryoid body was transferred to a 10 cm culture dish and cultured in a culture medium of 8 ml per culture dish. The next day, the medium was changed, the agglutinates were further cultured for 5 days, and the regenerated pluripotent stem cell culture medium was supplemented every other day.
배양 후 배아체를 15 ug/ml 폴리-L-오르니틴(Sigma-Aldrich) 및 10 ㎍/ml 피브로넥틴(BD)이 코팅된 세포 배양접시 상에 분주하고, 다음 조성의 N2 배지로 실온에서 하룻밤 동안 배양하였다. N2 배지 조성: DMEM/F12 글루타맥스(Thermo Fisher, catalog no. 10565042), 1% N2 supplyment(Thermo Fisher), 20 ug/ml 인슐린(Sigma-Aldrich), 0.1 mg/ml 트랜스페린 (Sigma-Aldrich), 20 ng/ml bFGF(Thermo Fisher), 2.5 ug/ml 피브로넥틴(Sigma-Aldrich), 1X 페니실린/스트렙토마이신. 상기 배지는 매일 교체해주었다.After incubation, the embryoid bodies were dispensed on a cell culture dish coated with 15 ug / ml poly-L-ornithine (Sigma-Aldrich) and 10 / / ml fibronectin (BD) and incubated overnight at room temperature in N2 medium Lt; / RTI > N2 medium Composition: DMEM / F12 Glutamax (Thermo Fisher, catalog no. 10565042), 1% N2 supply (Thermo Fisher), 20 ug / ml insulin (Sigma-Aldrich), 0.1 mg / ml transferrin , 20 ng / ml bFGF (Thermo Fisher), 2.5 ug / ml fibronectin (Sigma-Aldrich), 1X penicillin / streptomycin. The medium was changed daily.
1-3. 1-3. 신경능선세포에서In neural ridge cells 모유두전구세포로의To breast milk precursor cells 분화 differentiation
(1)(One) 배지 조성의 개발Development of medium composition
신경능선세포에서 모유두전구세포로 분화를 유도하기 위한 모유두전구세포 배지 조성을 개발하기 위하여 모유두세포 분화에 중요한 물질로 알려져 있는 여러가지 인자들을 단독 및 복합 처리하여 모유두전구세포로의 분화 가능성을 확인하였다. 모유두전구세포로의 분화 여부는 마우스 anti-human SDC1, CD133/2 항체에 2% FBS가 첨가된 PBS를 이용하여 염색을 실시하고, 이후 염색된 세포에 대하여 유세포 분석기(BD Biosciences)를 이용하여 분석하였다.In order to develop the precursor cell culture media for inducing the differentiation into mesodermal precursor cells from the neural ridge cells, various factors known to be important for the differentiation of the dermal papilla cells were isolated and combined to confirm the possibility of differentiation into the precursor cells of the dermal papilla. To differentiate into pre-papillary progenitor cells, the cells were stained with PBS containing 2% FBS in mouse anti-human SDC1, CD133 / 2 antibody, and then stained cells were analyzed using a flow cytometer (BD Biosciences) Respectively.
인간 만능줄기세포에서 분화가 유도된 신경능선세포를 DMEM/F12 글루타맥스 (Thermo Fisher, catalog no. 10565042), 10% FBS 기본 배지에 GSK-3 의 억제제(6-Bromoindirubin-3'-oxime(BIO)), bFGF, BMP4, purmophamine, EGF 를 각각 단독으로 처리하거나, GSK-3 의 억제제(6-Bromoindirubin-3'-oxime(BIO)), bFGF, BMP4 를 두가지 씩 조합하여 처리하건, 혹은 GSK-3 의 억제제(6-Bromoindirubin-3'-oxime(BIO)), bFGF, BMP4 세가지 모두를 이용하여 처리하고 약 2주 후, 분화된 세포를 SDC1, CD133 을 이용하여 분석하였을 때 GSK-3 의 억제제(6-Bromoindirubin-3'-oxime(BIO)), bFGF, BMP4 세가지 모두를 처리한 군에서만 유의하게 증가하는 모습을 확인하였다.The neural ridge cells induced differentiation in human pluripotent stem cells were cultured in DMEM / F12 glutamax (Thermo Fisher, catalog No. 10565042), 6-Bromoindirubin-3'-oxime (6-Bromoindubin-3'-oxime (BIO)), bFGF, and BMP4 in combination with GSK-3 alone or in combination with GSK 3 cells were treated with 3 inhibitors (6-Bromoindirubin-3'-oxime (BIO)), bFGF and BMP4, and about 2 weeks later, differentiated cells were analyzed using SDC1 and CD133, (6-Bromoindirubin-3'-oxime (BIO)), bFGF, and BMP4.
(1)(One) 신경능선세포에서In neural ridge cells 모유두전구세포로의To breast milk precursor cells 분화 differentiation
신경능선세포에서 모유두전구세포로 분화를 유도하기 위해, 5일 동안 배양면적의 50-60%에서 배아체로부터 신경능선세포를 유도하였다. 상기 분화가 유도된 신경능선세포를 DMEM/F12 글루타맥스 (Thermo Fisher, catalog no. 10565042), 10% FBS, GSK-3 의 억제제( 1 uM의 6-Bromoindirubin-3'-oxime(BIO)(Sigma-Aldrich)), 20 ng/ml의 bFGF, 1X 페니실린/스트렙토마이신을 포함하는 모유두전구세포 분화배지에서 계대배양 없이 배양하였으며, 배지는 격일로 교체하였다. 방추형의 신경능선세포는 2일 동안 섬유아세포와 유사한 형태로 변환되는 지점에서 모유두전구세포의 분화 배지에 1 ng/ml 인간 재조합 BMP4(bone morphogenetic protein 4) (R&D Systems)를 첨가할 때 변화하였다.In order to induce differentiation from neural ridge cells to papillary progenitor cells, neural ridge cells were derived from embryonic bodies at 50-60% of the cultured area for 5 days. The differentiation-induced neural ridge cells were treated with an inhibitor of DMEM / F12 glutamax (Thermo Fisher, catalog no. 10565042), 10% FBS, GSK-3 (1 uM of 6-Bromoindirubin-3'- Sigma-Aldrich), 20 ng / ml bFGF, 1X penicillin / streptomycin, and the medium was replaced every other day. Fusiform neural ridge cells were changed when 1 ng / ml human recombinant BMP4 (bone morphogenetic protein 4) (R & D Systems) was added to the differentiation medium of the papillary progenitor cells at the point where they converted to fibroblast-like morphology for 2 days.
약 2주 후, 분리된 모유두전구세포를 PBS로 세척하고 1 ml의 Tryple express(Life technologies)를 첨가한 후 37℃에서 5분 동안 배양하였고, PBS로 모유두전구세포를 회수하고 실온에서 1200rpm으로 5분 동안 원심분리 하였다. 초기 계대는 BIO(Sigma-Aldrich) 및 인간 재조합 BMP4(R&D Systems)가 없는 모유두전구세포 분화배지를 이용해 코팅되지 않은 배양접시에서 1:2 또는 1:3 배양을 수행하였다. 계대 후, 대부분의 미분화 세포는 부착되지 않았고 분화된 모유두전구세포만이 생존한 것을 확인하였다.After about 2 weeks, the separated preimplanted cells were washed with PBS, 1 ml of Tryple express (Life technologies) was added, and incubated at 37 ° C for 5 minutes. The preimplantation cells were recovered with PBS and incubated at room temperature with 1200 rpm Gt; min. ≪ / RTI > The initial passages were 1: 2 or 1: 3 cultures in uncoated culture dishes using a papillary precursor cell differentiation medium without BIO (Sigma-Aldrich) and human recombinant BMP4 (R & D Systems). After passage, most undifferentiated cells were not adhered and only the differentiated preformed mammary gland precursor cells survived.
(1)(One) GSKGSK -- 3 의3 of 억제제로서  As an inhibitor CHIRCHIR -99021의 사용Use of -99021
신경능선세포에서 모유두전구세포로 분화를 유도하기 위한 모유두전구세포 배지 조성에서 WNT 신호 활성제로서의 GSK-3 의 억제제의 역할을 확인하기 위하여 6-브로모인디루빈-3'-옥심(6-bromoindirubin-3'-oxime; BIO) 뿐만 아니라 CHIR-99021 를 0.1 uM, 1 uM, 10 uM 로 처리하여 모유두전구세포로의 분화 가능성을 확인하였다. 모유두전구세포로의 분화 여부는 마우스 anti-human SDC1, CD133/2 항체에 2% FBS가 첨가된 PBS를 이용하여 염색을 실시하고, 이후 염색된 세포에 대하여 유세포 분석기(BD Biosciences)를 이용하여 분석하였다.6-bromoindirubin-3'-oxime was used as an inhibitor of GSK-3 as a WNT signaling agent in the formation of a precursor cell culture medium for inducing differentiation from neural ridge cells to papillary precursor cells. 3'-oxime (BIO) as well as CHIR-99021 at 0.1 uM, 1 uM, and 10 uM, respectively. To differentiate into pre-papillary progenitor cells, the cells were stained with PBS containing 2% FBS in mouse anti-human SDC1, CD133 / 2 antibody, and then stained cells were analyzed using a flow cytometer (BD Biosciences) Respectively.
인간 만능줄기세포에서 분화가 유도된 신경능선세포를 DMEM/F12 글루타맥스 (Thermo Fisher, catalog no. 10565042), 10% FBS 기본 배지에 GSK-3 의 억제제(CHIR-99021), bFGF, BMP4 를 세가지 모두를 처리하고 약 2주 후, 분화된 세포를 모유두전구세포의 마커인 SDC1, CD133 를 이용하여 유세포분석 하였을 때 GSK-3 의 억제제(CHIR-99021) 농도에 따라 분화 효율이 증가하는 양상을 확인하고 이를 통해서 모유두전구세포로의 분화에 있어서 WNT 신호 활성의 중요성과 함께 농도 의존성 분화 유도 양상을 확인하였다.The neural ridge cells induced differentiation in human pluripotent stem cells were cultured in DMEM / F12 glutamax (Thermo Fisher, catalog no. 10565042), 10% FBS basic medium with inhibitor of GSK-3 (CHIR-99021), bFGF, BMP4 Approximately two weeks after the treatment of all three, the differentiation efficiency was increased according to the concentration of GSK-3 inhibitor (CHIR-99021) when the differentiated cells were analyzed by flow cytometry using SDC1 and CD133, markers of papillary precursor cells In addition, we confirmed the significance of WNT signaling in inducing differentiation into papillary precursor cells as well as the induction of concentration - dependent differentiation.
1-4. 인간 1-4. human 역분화만능줄기세포로부터From the differentiated pluripotent stem cells 표피전구세포로의To epidermal progenitor cells 분화 differentiation
종래에 공지되어 있는 분화 프로토콜에 따라 상기 실시예 1-1에서 인간의 피부 섬유아세포로부터 역분화시켜 얻은 역분화만능줄기세포로부터 표피전구세포(epithelial stem cells; EpSCs)로 분화를 진행하였다. 간단하게, 분화 진행 이전에 2 mg/ml 콜라게나아제 Ⅳ (Thermo Fisher)를 37℃에서 1시간 동안 처리하여 역분화만능줄기세포를 분리하고, 세포 응집체를 1 ng/ml의 인간 재조합 BMP4가 함유된 배아줄기세포 배지에서 24시간 동안 성장시켰다. 2일째에, 배아체를 수집하고 상층액은 버린 후 상기 배양체를 미토마이신-C가 처리된 STO세포에 분주하였다. 상기 분주된 세포를 1 μM의 all-trans RA(Sigma-Aldrich)가 함유된 분화배지에서 성장시키고 2일 후 배아체로부터 외배엽 계통의 세포가 이동하였고, 25 ng/ml의 인간 재조합 BMP4, 20 ng/ml의 인간 EGF(Sigma-Aldrich), 1 uM의 all-trans RA를 포함하는 분화배지로 교체한 후 표피세포의 클론이 관찰될 때까지 분화배지에서 세포를 배양하였으며 약 11일째에 분리하였다. 분화된 표피세포에서 배양 후 약 18 일경에 CD200+/ITGA6+ 세포의 양이 최대에 도달하였으며, 상기 CD200+/ITGA6+ 세포를 MACS 분석을 통해 분리한 후 모낭신생 실험에 이용하였다. According to a conventionally known differentiation protocol, the differentiation from pluripotent pluripotent stem cells obtained by dediffering from human dermal fibroblasts into the epithelial stem cells (EpSCs) was carried out in Example 1-1. Briefly, pre-differentiation pluripotent stem cells were isolated by treatment with 2 mg / ml collagenase IV (Thermo Fisher) for 1 hour at 37 ° C prior to differentiation, and cell aggregates were treated with 1 ng / ml of human recombinant BMP4 Grown embryonic stem cell culture for 24 hours. On the second day, the embryoid bodies were collected, the supernatant was discarded, and the cultures were dispensed into mitomycin-C treated STO cells. The cells were grown in a differentiation medium containing 1 μM of all-trans RA (Sigma-Aldrich). After 2 days, the cells of the ectoderm lineage migrated from the embryoid body, and 25 ng / ml of human recombinant BMP4, 20 ng / ml human EGF (Sigma-Aldrich), 1 uM all-trans RA, and cells were cultured in the differentiation medium until clones of epidermal cells were observed. The amount of CD200 + / ITGA6 + cells reached a maximum at about 18 days after culturing in the differentiated epidermal cells. The CD200 + / ITGA6 + cells were separated by MACS analysis and used for the hair follicle development experiment.
1-5. 인간의 1-5. human's 모유두세포Dermal papilla cells 분리 및 배양 Isolation and Culture
인간의 모유두세포(hDPCs)를 얻기 위해, 두피 질환이 없는 건강한 남성 지원자(평균 나이 36.6±9.4세)들에게서 피부 생검 샘플(후두 부위에서 1.5×1.0 cm의 두피 조직 샘플)을 채취하였다. 형태학적으로 성장기에 있다고 판단되는 각각의 모낭에서 인간 모유두세포를 분리하였으며, 분리된 모유두세포를 10% FBS(Thermo Fisher), 1X 페니실린/스트렙토마이신(Thermo Fisher)이 첨가된 DMEM(Dulbecco's modified Eagle's medium)(Welgene)에서 37℃, 5% CO2 조건하에 배양하였다. To obtain human dermal papilla cells (hDPCs), a skin biopsy sample (a 1.5 × 1.0 cm scalp tissue sample at the larynx) was taken from healthy male volunteers without a scalp disease (mean age 36.6 ± 9.4 years). Human dermal papilla cells were isolated from each hair follicle, which was considered to be morphologically growing. Separated dermal papilla cells were suspended in DMEM (Dulbecco ' s modified Eagle ' s medium) supplemented with 10% FBS (Thermo Fisher), 1X penicillin / streptomycin ) (cultured under Welgene) 37 ℃, 5% CO 2 conditions.
1-6. 조직학 및 면역화학염색법(1-6. Histology and immunochemical staining immunofluoresceneceimmunofluorescence ))
인간 태아의 두피 조직을 Tissue-Tek cryo-OCT(Fisher Scientific)에 마운팅하고, 메틸 부테인(methyl butane)/드라이아이스(dry ice)를 이용하여 동결시켰다. 조직 블록은 25℃에서 10 μm의 두께로 절단하였으며, 면역화학염색법을 실시하기 전까지 80℃에서 보관하였다. The human fetal scalp tissue was mounted on a Tissue-Tek cryo-OCT (Fisher Scientific) and frozen using methyl butane / dry ice. The tissue block was cut to a thickness of 10 μm at 25 ° C and stored at 80 ° C until immunochemical staining.
1-7. 세포막 단백질에 대한 항체 염색1-7. Antibody staining for cell membrane protein
파라핀에 포매된 조직을 4 μm 두께로 절단하고, 절단하여 얻은 절편을 헤마톡실린 및 에오신(hematoxylin & eosin)으로 염색하였다. 다른 경우에는 항원 검색을 위해 4 μm 두께의 미세절단된 조직의 절편에 pH 9.0의 시트르산염 완충액(citrate buffer)(DAKO)을 120℃에서 15분 동안 처리하였다. The tissue embedded in paraffin was cut to a thickness of 4 μm, and the cut sections were stained with hematoxylin and eosin. In other cases, citrate buffer (DAKO) at pH 9.0 was treated at 120 ° C for 15 min on sections of 4 μm thick microtitrated tissue for antigen detection.
한편, 항체 염색을 위해 절단된 동결 조직을 4% 파라포름알데히드(paraformaldehyde)로 20분 동안 고정한 후, 고정된 조직을 Ultravision 단백질 블로킹 용액(Thermo Fisher)과 함께 30분 동안 배양하였다. 다음으로, 1차 항체를 처리하여 배양한 후 2차 항체를 항체 희석 용액(Life technologies)과 1:200 비율로 희석하여 처리한 후 1시간 동안 배양한 다음 세척하였다. 이후, DAPI(4′,6-diamidino-2-phenylindole)(Thermo Fisher)로 대조염색한 다음 immuno-mount (Thermo Fisher)로 마운팅하였다.On the other hand, for the antibody staining, the cut frozen tissue was fixed with 4% paraformaldehyde for 20 minutes, and the fixed tissue was incubated with the Ultravision protein blocking solution (Thermo Fisher) for 30 minutes. Next, the primary antibody was treated and cultured, and the secondary antibody was diluted with antibody dilution solution (Life technologies) at a ratio of 1: 200, followed by incubation for 1 hour and washing. The cells were then counterstained with DAPI (4 ', 6-diamidino-2-phenylindole) (Thermo Fisher) and mounted with an immuno-mount (Thermo Fisher).
1-8. 전사인자에 대한 항체 염색1-8. Antibody staining for transcription factor
4% 파라포름알데히드로 고정시켜 놓은 동결 절편 조직 또는 형성된 인간의 모낭에 0.01% 사포닌(saponin)(Sigma-Aldrich), 0.25% 피쉬 젤라틴(fish gelatin)(Sigma-Aldrich)을 함유하는 블로킹 용액을 처리하여 세포막의 투과성을 높였다. 이후 블로킹 용액을 이용해 1차 항체 및 2차 항체 염색을 실시하였고, 각 실험에서 배경 염색을 확인하기 위해 이소타입 대조군(Isotype control)을 처리하였다. Treatment of the blocking solution containing 0.01% saponin (Sigma-Aldrich), 0.25% fish gelatin (Sigma-Aldrich) in frozen section tissue or human hair follicles fixed with 4% paraformaldehyde Thereby increasing the permeability of the cell membrane. The primary antibody and the secondary antibody were stained using blocking solution. Isotype control was performed to confirm background staining in each experiment.
1-9. 1-9. 유세포Flow cell 분석 및 세포 선별(cell sorting) Analysis and cell sorting
역분화만능줄기세포(iPSCs), 신경능선세포(NCSCs), 및 모유두전구세포(DPPCs)(Day 25, 40, Passage 5)를 마우스 anti-human SDC1, CD133/2 및 SSEA3와 배양하였고, 염색은 2% FBS가 첨가된 PBS를 이용하여 실시하였다. 이후 염색된 세포에 대하여 LSRII 유세포 분석기(BD Biosciences)를 이용하여 분석하였다.(IPSCs), neural ridge cells (NCSCs), and papillary precursor cells (DPPCs) ( Day 25, 40, Passage 5) were cultured with mouse anti-human SDC1, CD133 / 2 and SSEA3, 2% FBS in PBS. The stained cells were then analyzed using an LSRII flow cytometer (BD Biosciences).
세포 선별을 위해, 세포를 AriaTMII 세포 분리기(BD Biosciences)를 이용해 PBS에서 106 cells/㎖의 농도로 분리하였다. 마그네틱 비드 분리를 위해 Miltenyi MACS 비드 분리 시스템을 제조사의 지침 및 분리 조건에 따라 이용하였다. 결과는 FlowJo 소프트웨어(FlowJo, LLC)를 이용하여 분석하였다. For cell sorting, the cells were separated with a AriaTMII cell separator (BD Biosciences) at a concentration of 10 6 cells / ml in PBS. For magnetic bead separation, a Miltenyi MACS bead separation system was used according to the manufacturer's instructions and separation conditions. The results were analyzed using FlowJo software (FlowJo, LLC).
1-10. 패치 1-10. patch 어세이(patch assay)를The patch assay 통한  through 모낭신생Follicular newborn 분석 analysis
모낭신생 분석을 실시하기 전, MACS 분석을 통해 인간 역분화만능줄기세포 유래 모유두전구세포(hiPSC-derived DPPCs)에서 SSEA3- 세포를 분리하여 미분화된 세포들을 제거하였다. 선별된 모유두전구세포 또는 배양된 인간 모유두세포를 1X104개씩 만큼 포함하는 20 ul의 10% DMEM을 패트리디쉬 뚜껑 위로 하나씩 떨어뜨렸다. 모유두세포 구형체 또는 인간 역분화만능줄기세포 유래 모유두전구세포 구형체는 분주하고 48시간 후에 수득하였다. 배양된 인간의 모유두세포 또는 인간 역분화만능줄기세포 유래 모유두전구세포를 C57BL/6 신생아 마우스의 표피세포 또는 인간 역분화만능줄기세포 유래 CD200+/ITGA6+/SSEA3 세포와 함께 배양하였다. 모든 실험에서 배양된 인간 모유두세포(총 1X106개, 100 구형체) 또는 인간 역분화만능줄기세포 유래 모유두전구세포(총 1X106개, 100 구형체)와 표피세포(5X105개)를 DMEM/F12 글루타맥스 배지에서 혼합하고 7주 된 심각한 복합 면역결핍인 털이 없는 (SHO) 암컷 마우스(18-20g; Jackson Laboratory)에 피하 주사하였다. 형성된 모낭에서 인간 모유두전구세포의 기원을 확인하기 위해, 상기 모유두전구세포를 형광 염료 시약, CM-DiI(invitrogen)로 표지하였다. 숙주 마우스는 재생된 모낭 구조를 얻기 위해, 이식 후 5-6주째에 희생시켰다. 본 실험은 서울대학교 병원 임상시험위원회(승인번호 15-0178-C1A0)의 승인을 받아 진행한 것이다.Prior to the analysis of the hair follicle, SSEA3-cells were isolated from human demineralized pluripotent stem cells (hiPSC-derived DPPCs) by MACS analysis to remove undifferentiated cells. 20 [mu] l of 10% DMEM containing 1 x 10 < 4 > cells of selected human papilloma precursor cells or cultured human dermal papilla cells were dropped one by one over the lid of the Petri dish. Temporal dermal papilla cell or human de-differentiated pluripotent stem cell derived dermal papilloma precursor cell spheroids were obtained at 48 hours after dosing. Cultured human dermal papilla cells or human deregulated pluripotent stem cell derived mammary epithelial progenitor cells were cultured with epidermal cells of C57BL / 6 neonatal mice or with CD200 + / ITGA6 + / SSEA3 cells derived from human degenerated pluripotent stem cells. In all experiments, human dermal papilla cells (1 × 10 6 total, 100 spherical bodies) or human demyelinated pluripotent stem cell derived papillary precursor cells (total 1 × 10 6 , 100 spheres) and epidermal cells ( 5 × 10 5 ) (SHO) female mice (18-20 g; Jackson Laboratory) which were mixed in F12 Glutamax medium and fed with 7 weeks of severe combined immunodeficiency. To confirm the origin of human dermal papillary precursor cells in the formed hair follicle, the dermal papillary precursor cells were labeled with a fluorescent dye reagent, CM-DiI (invitrogen). Host mice were sacrificed at 5-6 weeks post-transplant to obtain regenerated hair follicular structure. This experiment was approved by Seoul National University Hospital Clinical Trials Committee (Approval No. 15-0178-C1A0).
1-11. 1-11. 챔버chamber 어세이(chamber assay)를Chamber assay. 통한  through 모낭신생Follicular newborn 분석 analysis
세포 준비는 상기 패치 어세이에 기술한 것과 동일하게 하였다. 간단하게, DMEM/F12 글루타맥스에서 함께 배양한 인간 역분화만능줄기세포 유래 모유두전구세포(hiPSC-DPPC)(총 5X106개, 500 구형체) 및 인간 역분화만능줄기세포 유래 표피전구세포(5×106개)를 SHO 마우스의 뒷면 표피에 이식된 실리콘 챔버로 옮겼다. 2주 후 챔버를 제거하고 이식된 부위를 드레싱 한 다음, 5주 후 이식된 부위를 수득하여 조직학적 분석을 실시하였다.Cell preparation was performed as described in the patch assay. (HiPSC-DPPC) (total 5X10 6 , 500 spheres) and human degenerated pluripotent stem cell-derived epidermal progenitor cells (DMEM / F12 glutamax) 5 x 10 < 6 >) were transferred to a silicon chamber implanted in the back skin of SHO mice. After 2 weeks, the chamber was removed and the implanted area was dressed and after 5 weeks the implanted area was obtained and histological analysis was performed.
1-12. 정량적 1-12. Quantitative 역전사Reverse transcription 중합효소 연쇄 반응(Quantitative reverse transcription polymerase chain reaction) Quantitative reverse transcription polymerase chain reaction (PCR)
역분화만능줄기세포, 신경능줄기세포, 모유두전구세포, 2D 배양된 모유두세포, 및 3D 배양된 모유두세포로부터 RNAiso Plus(Takara Bio)를 이용하여 총 RNA를 분리하였다. 상기 분리된 RNA를 주형으로 Revert First strand cDNA synthesis kit(Thermo Fisher)를 이용해 cDNA를 합성하였다. 이후 SYBR premix Ex Taq II(Takara Bio)를 이용해 정량적 역전사 중합효소 연쇄 반응 분석을 실시하였으며, 사용한 프라이머 서열을 하기 표 1에 나타내었다.Total RNA was isolated from degenerate pluripotent stem cells, neural stem cells, papillary precursor cells, 2D cultured dermal papilla cells, and 3D cultured dermal papilla cells using RNAiso Plus (Takara Bio). CDNA was synthesized using Revert First strand cDNA synthesis kit (Thermo Fisher) using the separated RNA as a template. Then, quantitative RT-PCR analysis was carried out using SYBR premix Ex Taq II (Takara Bio). The primer sequences used were shown in Table 1 below.
Figure PCTKR2018008123-appb-T000001
Figure PCTKR2018008123-appb-T000001
Figure PCTKR2018008123-appb-I000001
Figure PCTKR2018008123-appb-I000001
Figure PCTKR2018008123-appb-I000002
Figure PCTKR2018008123-appb-I000002
Figure PCTKR2018008123-appb-I000003
Figure PCTKR2018008123-appb-I000003
1-13. 1-13. 알칼라인Alkaline 포스파타아제 활성 Phosphatase activity
플레이트에 분주된 세포에 대하여 알칼라인 포스파타아제 활성을 분석하였다. 보다 구체적으로, 세포를 4% 파라포름알데히드로 20분 동안 고정시킨 후 NTMT 버퍼에 NBT/BCIP(Roche)를 희석하여 20분 동안 처리하였다. Alkaline phosphatase activity was assayed on cells plated on plates. More specifically, the cells were fixed with 4% paraformaldehyde for 20 minutes and NTMT buffer was diluted with NBT / BCIP (Roche) for 20 minutes.
1-14. RNA 서열분석1-14. RNA sequence analysis
인간 신경능선세포, 인간 모유두전구세포, 배양된 모유두세포, 및 배양된 모유두세포 구형체에서 RNAiso Plus (Takara Bio)를 이용하여 총 RNA를 분리하였다. 다음으로, 상기에서 분리한 RNA 1 ㎍에 대하여 Illumina's TruSeq Stranded mRNA kit를 이용하여 전사체 라이브러리를 제조하였다. Poly(A)+ RNA는 AMPure XP 비드(Beckman Coulter)를 이용하여 분리하고 Ambion Fragmentation Reagents kit(Ambion, Austin, TX, USA)를 이용해 단편화하였다. cDNA 합성, 말단 수리, 염기 첨가, 및 Illumina indexed 어댑터의 접합은 모두 Illumina's 프로토콜에 따라 실시하였다. 라이브러리는 BluePipin(Sage Science, MA, USA)을 이용하여 250300 bp의 크기로 선택하였고, Phusion DNA 중합효소(New England Biolabs)를 이용해 14 사이클로 PCR을 실시하여 증폭시켰으며, 증폭된 라이브러리를 AMPure XP 비드로 정제하였다. 라이브러리 품질은 Agilent 2100 Bioanalyzer를 이용해 크기 및 농도를 측정하여 평가하였다. Total RNA was isolated from human neural ridge cells, human dermal papilla cells, cultured dermal papilla cells, and cultured dermal papilla cell sphere using RNAiso Plus (Takara Bio). Next, a transcript library was prepared using Illumina's TruSeq stranded mRNA kit for 1 RNA of the RNA isolated from the above. Poly (A) + RNA was isolated using AMPure XP beads (Beckman Coulter) and fragmented using the Ambion Fragmentation Reagents kit (Ambion, Austin, TX, USA). cDNA synthesis, tail repair, base addition, and ligation of Illumina indexed adapters were all performed according to Illumina's protocol. The library was selected with a size of 250,300 bp using BluePipin (Sage Science, MA, USA) and amplified by PCR using 14 cycles of Phusion DNA polymerase (New England Biolabs). The amplified library was amplified using AMPure XP beads ≪ / RTI > Library quality was assessed by measuring the size and concentration using an Agilent 2100 Bioanalyzer.
이후 Illumina HiSeq 2000(2 × 100 뉴클레오타이드 판독 길이)를 이용하여 쌍방향 말단 라이브러리에 대해 서열분석을 실시하였으며, Illumina BaseCall 소프트웨어의 순도 필터를 통과한 판독물을 후속 분석에 이용하였다. 차등적으로 발현되는 유전자 분석에는 R 패키지 "Cuffdiff"를 이용하였고, 총 3065개 유전자의 히트 맵을 제작하기 위해 q 값이 0.05 미만인 유전자에 대하여 계층적 클러스터링 분석을 실시하였다. 또한, R 패키지 "CummeRbund"를 이용하여 거리 행열 분석, 다차원 스케일링 플롯, 및 유전자 클러스터 분석을 수행하였다. 총 3471개의 유전자 중 50개의 클러스터를 생성하기 위해 알파 값(alpha value)이 0.01 미만인 중요한 유전자에 대해서 유전자 클러스터 분석을 실시하였다.Sequence analysis was then performed on the bidirectional end libraries using Illumina HiSeq 2000 (2 x 100 nucleotides read length) and the readings passed through the purity filter of the Illumina BaseCall software were used for subsequent analysis. The R package "Cuffdiff" was used for the differential expression of the genes and a hierarchical clustering analysis was performed on genes with a q value of less than 0.05 in order to produce a total of 3065 genes. In addition, distance matrix analysis, multidimensional scaling plot, and gene cluster analysis were performed using R package "CummeRbund". To generate 50 clusters out of a total of 3471 genes, gene clustering analysis was performed on important genes with an alpha value of less than 0.01.
1-15. Accession codes1-15. Accession codes
RNA 서열분석의 로우데이터는 accession number GSE100793 를 받고 NCBI Gene Expression Omnibus에 기탁하였다.Raw data for RNA sequencing were obtained from accession number GSE100793 and NCBI Gene Expression Omnibus.
1-16. 통계분석1-16. Statistical analysis
Student's t test 또는 ANOVA를 이용해 유전자 발현 및 유세포 분석 결과를 분석하였고, qPCR 결과는 베타-액틴(β-actin)으로 보정한 후 분석하였다. 통계적 유의성은 p < 0.05일 때로 간주하였다. Gene expression and flow cytometry were analyzed using Student's t test or ANOVA, and the qPCR results were analyzed after correction with β-actin. Statistical significance was considered as p <0.05.
실시예Example 2. 생체 내 인간의 모낭  2. In vivo human hair follicles 플라코드Placod 단계에서  In step SDC1SDC1 및 CD133의 발현 분석 And CD133 Expression Analysis
인간의 모낭신생을 유도하기 위해, 본 발명자들은 인간 배아에서 일어나는 모낭의 형태발생에 기초하여 모낭 플라코드(hair placode) 시기의 생물학적 상태를 모방하는 간단한 전략을 수립하였다. 보다 구체적으로, 진피에서 모유두전구세포 및 모낭 플라코드 단계에서 피부전구세포를 얻는 데에 중점을 두었다.To induce human hair follicle development, the inventors have established a simple strategy to mimic the biological state of the hair placode period based on the morphogenesis of hair follicles occurring in human embryos. More specifically, the focus was on obtaining skin precursor cells in the dermal papillary precursor cells and the hair fracode stage.
분화 과정을 모니터하기 위해서는, 인간 모유두전구세포에 대한 특이적인 표면 마커가 필요하였다. SDC1(Syndecan-1)은 마우스 피부뿐만 아니라 모낭 플라코드 시기에서 인간 태아의 두피에서도 강하게 발현되는 잘 알려진 표면 마커이며, 또한 인간의 모유두 시그니처 유전자로 알려져 있다. 한편, CD133은 원래 마우스에서 모발 유도 모유두세포의 표면 마커로 알려져 있었으나, 인간 모유두세포에서는 CD133에 대하여 마우스에서와 유사한 발현 패턴이 나타나지 않는다는 결과가 보고된 바 있다. 따라서 본 발명자들은 먼저 인간의 16주된 배아의 두피 피부에서 SDC1과 CD133 발현여부를 검증하였다. In order to monitor the differentiation process, a specific surface marker for human mammary dermal progenitor cells was required. SDC1 (Syndecan-1) is a well-known surface marker that is strongly expressed not only in mouse skin but also in the scalp of human fetus in the hair follicle stage, and is also known as a human breastmilk signature gene. On the other hand, CD133 was originally known as a surface marker of hair-derived dermal papilla cells in mice, but it has been reported that expression pattern similar to that of mouse is not observed in CD133 in human dermal papilla cells. Therefore, the present inventors first examined the expression of SDC1 and CD133 in the scalp skin of a human 16-week embryo.
그 결과, 도 1에 나타낸 바와 같이 표피 플라코드 및 진피가 형성되는 시기에, SDC1이 진피에서 우세하게 발현되는 것을 확인하였다. 또한, 매우 초기 단계의 진피에서는 CD133의 발현이 관찰되지 않았으나, 이러한 결과는 마우스 배아에서 모낭의 형태발생에서 관찰되는 것과 유사하다. 표피 플라코드 세포에서 CD133은 인간 태아의 두피에서의 보고와 일치하게 세포와 세포의 정점과 측면을 따라 발현되고 있었다.As a result, as shown in Fig. 1, it was confirmed that SDC1 was predominantly expressed in the dermis at the time when the epidermal pleocade and the dermis were formed. In addition, CD133 expression was not observed in the very early stage dermis, but this result is similar to that observed in morphogenesis in mouse embryos. In epidermal plicated cells, CD133 was expressed along the apical and lateral sides of cells and cells consistent with the reports in human scalp.
실시예Example 3. 인간  3. Human 모유두전구세포의Papillary progenitor cells 분화배지의Of the differentiation medium 제조 Produce
(1)(One) 인간 유래 Human origin 역분화만능줄기세포(hiPSC)의Of differentiated pluripotent stem cells (hiPSC) 제조 Produce
본 발명자들은 공지되어 있는 방법(Cell 131, 861-872.)에 따라, 야마나카 인자로 불리는 4가지 유전자 즉, OCT4(octamer-binding transcription factor 4), SOX2(sex determining region Y-box 2), KLF4(Kruppel-like factor 4), 및 c-MYC을 이용하여 분리된 인간의 피부 섬유아세포(adult dermal fibroblasts)로부터 역분화만능줄기세포(hiPSC)를 제조하였다. 상기 방법으로 역분화시킨 역분화만능줄기세포 클론은 인간 배아줄기세포(hESC) 형태를 보였고, 높은 수준의 알칼라인 포스파타아제(alkaline phosphatase; ALP) 활성을 나타내었으며, OCT3/4와 NANOG뿐만 아니라 SSEA4(surface antigen stage-specific embryonic antigen 4)를 포함하는 다양한 다능성 마커를 발현하는 것을 확인하였다. 또한, 정량적 실시간 중합효소 연쇄 반응(qPCR)을 통해 OCT3/4, SOX2, NANOG, REX1, 및 텔로머라아제 역전사 효소(telomerase reverse transcriptase; TERT)를 포함하는 내인성 줄기세포능 유전자의 발현이 증가하는 것을 확인하였다. 이에 더하여, 테라토마 형성 분석을 실시하여 상기 역분화만능줄기세포 클론의 만능성을 확인하였으며, 상기 클론을 100번 이상의 연속적인 계대배양한 후에 만능줄기세포로서 이용하였다.According to a known method (Cell 131 , 861-872.), The present inventors have discovered that four genes called Yamanaka factor: OCT4 (octamer-binding transcription factor 4), SOX2 (sex determining region Y-box 2), KLF4 Depleted pluripotent stem cells (hiPSC) were prepared from human dermal fibroblasts isolated using Kruppel-like factor 4, and c-MYC. The dedifferentiated pluripotent stem cell clone showed a hESC form and exhibited a high level of alkaline phosphatase (ALP) activity. In addition to OCT3 / 4 and NANOG, SSEA4 (surface antigen stage-specific embryonic antigen 4). In addition, the expression of endogenous stem cell potential genes including OCT3 / 4, SOX2, NANOG, REX1 and telomerase reverse transcriptase (TERT) is increased through quantitative real-time PCR (qPCR) Respectively. In addition, the pluripotent pluripotent stem cell clones were verified for pluripotency by performing a teratoma formation assay, and the clones were used as pluripotent stem cells after 100 or more consecutive subcultures.
(1)(One) 인간 유래 만능줄기세포로부터 From human-derived pluripotent stem cells 모유두전구세포로의To breast milk precursor cells 분화 differentiation
다음으로, 배아발달 단계에서 모유두전구세포가 신경능선세포에서 기원한다는 연구결과에 기초하여, 본 발명자들은 신경능선세포를 중간체로 하여 상기 역분화만능줄기세포로부터 모유두전구세포를 분화시키고자 하였다. 이를 위해, 먼저 상기 인간 역분화만능줄기세포로부터 신경능선세포를 제조하기 위해, 역분화만능줄기세포의 배아체를 섬유아세포성장인자-2(fibroblast growth factor-2; FGF2), 피브로넥틴(fibronectin) 등이 첨가된 N2 분화배지에서 배양하였다. 1주 동안 배양한 후, 면역세포화학염색법을 통해 배양된 세포에 대하여 신경능선 마커인 HNK1 및 p75NTR 단백질의 발현 여부를 검증한 결과, 도 2b에 나타낸 바와 같이 상기 HNK1 및 p75NTR 단백질들이 발현되는 것을 확인하였다.Next, based on the results that the precursor cells of the mammary gland originate from the neural ridge cells in the embryonic development stage, the present inventors tried to differentiate the precursor cells from the demodified pluripotential stem cells using the neural ridge cells as the intermediate. For this purpose, in order to prepare neural ridge cells from the human de-differentiating pluripotent stem cells, the embryoid bodies of the reprogramming pluripotent stem cells are cultured in the presence of fibroblast growth factor-2 (FGF2), fibronectin Lt; RTI ID = 0.0 &gt; N2 &lt; / RTI &gt; differentiation medium. After incubation for 1 week, the cells cultured through immunocytochemistry were examined for the expression of the neural ridge markers HNK1 and p75NTR. As a result, it was confirmed that the HNK1 and p75NTR proteins were expressed as shown in FIG. 2B Respectively.
(2-1) (2-1) 모유두전구세포에In the breast milk precursor cells 대한 특이적인  Specific for 분화배지Differentiation medium 조성의 개발 Development of composition
다음으로, 본 발명자들은 모유두전구세포에 대한 특이적인 분화배지 조성을 개발하기 위하여, 10% 우태아혈청(fetal bovine serum; FBS)이 첨가된 DMEM(Dulbecco's modified Eagle's medium)/F12 글루타맥스 이외에 모유두전구세포의 분화에 필수적인 인자들을 스크리닝하였다. 특히, in vitro에서 배양하는 동안 인간 모유두세포의 고유의 특성 및 내인성 분자적 시그니처를 유지하거나 내재적인 모유두 특성을 복구할 수 있는 필수적인 인자를 발굴하는 데에 초점을 맞추었다. 실험 결과 WNT, 섬유아세포성장인자(fibroblast growth factor; FGF), 골형성단백질 4(bone morphogenetic protein; BMP), 혈소판유래성장인자(platelet-derived growth factor; PDGF), 소닉 헤지호그(Sonic hedgehog; SHH), 및 엔도텔린(endothelin 3; EDN3) 등의 신호전달 분자를 포함하는 초기 후보들을 얻었으며, 최종적으로 3가지 필수인자로 FGF2, 6-브로모인디루빈-3'-옥심(6-bromoindirubin-3'-oxime; BIO), 및 BMP4를 사용하였을 때, 모유두전구세포의 분화를 유도할 수 있음을 확인하였다. Next, in order to develop a specific differentiation medium composition for the papillary precursor cells, the inventors of the present invention used a DMEM (Dulbecco's modified Eagle's medium) / F12 glutamax supplemented with 10% fetal bovine serum (FBS) And essential factors for cell differentiation were screened. In particular, the focus was on identifying essential factors that can maintain the inherent and endogenous molecular signatures of human dermal papilla cells or recover the inherent dermal papilla characteristics during in vitro culture. The results showed that WNT, fibroblast growth factor (FGF), bone morphogenetic protein (BMP), platelet-derived growth factor (PDGF), sonic hedgehog ) And endothelin 3 (EDN3), and eventually received three essential factors, FGF2, 6-bromoindirubin-3'-oxime, 3'-oxime (BIO), and BMP4 were used to induce differentiation of papillary precursor cells.
보다 구체적으로, 인간 만능줄기세포에서 분화가 유도된 신경능선세포를 DMEM/F12 글루타맥스 (Thermo Fisher, catalog no. 10565042), 10% FBS 기본 배지에 GSK-3 의 억제제(6-Bromoindirubin-3'-oxime(BIO)), bFGF, BMP4, purmophamine, EGF 를 각각 단독으로 처리, 또는 GSK-3 의 억제제(6-Bromoindirubin-3'-oxime(BIO)), bFGF, BMP4 를 두가지 씩 조합하여 처리, 또는 GSK-3 의 억제제(6-Bromoindirubin-3'-oxime(BIO)), bFGF, BMP4 세가지 모두를 이용하여 처리하고, 약 2주 후, 분화된 세포를 SDC1, CD133 을 이용하여 분석하였다. 그 결과, GSK-3 의 억제제(6-Bromoindirubin-3'-oxime(BIO)), bFGF, BMP4 세가지 모두를 처리한 군에서만 모유두전구세포의 마커인 SDC1+/CD133- 세포 분획이 유의하게 증가하는 모습을 확인하였다. (도 2d)More specifically, neural ridge cells induced differentiation in human pluripotent stem cells were cultured in DMEM / F12 glutamax (Thermo Fisher, catalog No. 10565042), 10% FBS basic medium with 6-Bromoindirubin-3 (6-Bromoindirubin-3'-oxime (BIO)), bFGF, and BMP4 in combination with GSK-3 inhibitor , Or inhibitors of GSK-3 (6-Bromoindirubin-3'-oxime (BIO)), bFGF, and BMP4. After about two weeks, the differentiated cells were analyzed using SDC1 and CD133. As a result, SDC1 + / CD133- cell fraction, which is a marker of papillary precursor cells, was significantly increased only in the group treated with all three inhibitors of GSK-3 (6-Bromoindirubin-3'-oxime (BIO)), bFGF and BMP4 Respectively. (Figure 2d)
(2-2) GSK-3 의 억제제로서 CHIR-99021의 사용 (도 2e)(2-2) Use of CHIR-99021 as an inhibitor of GSK-3 (Figure 2e)
모유두전구세포 분화 배지 조성에서 WNT 신호 활성제로서의 GSK-3 의 억제제의 역할을 확인하기 위하여 6-브로모인디루빈-3'-옥심(BIO) 뿐만 아니라 CHIR-99021 를 0.1 uM, 1 uM, 10 uM 로 처리하여 모유두전구세포로의 분화 가능성을 확인하였다. 인간 만능줄기세포에서 분화가 유도된 신경능선세포를 DMEM/F12 글루타맥스 (Thermo Fisher, catalog no. 10565042), 10% FBS 기본 배지에 GSK-3 의 억제제(CHIR-99021), bFGF, BMP4 를 세가지 모두를 처리하고 약 2주 후, 분화된 세포를 모유두전구세포의 마커인 SDC1, CD133 를 이용하여 유세포분석 하였을 때 GSK-3 의 억제제(CHIR-99021) 농도에 따라 분화 효율이 증가하는 양상을 확인하고 이를 통해서 모유두전구세포로의 분화에 있어서 WNT 신호 활성의 중요성과 함께 농도 의존성 분화 유도 양상을 확인하였다. (도 2e)To confirm the role of the inhibitor of GSK-3 as a WNT signaling agent in the formation of a precursor cell precursor cell culture medium, CHIR-99021 as well as 6-bromoindirubin-3'-oxime (BIO) were added at 0.1 uM, 1 uM, 10 uM To confirm the possibility of differentiation into the precursor cells of the mammary gland. The neural ridge cells induced differentiation in human pluripotent stem cells were cultured in DMEM / F12 glutamax (Thermo Fisher, catalog no. 10565042), 10% FBS basic medium with inhibitor of GSK-3 (CHIR-99021), bFGF, BMP4 Approximately two weeks after the treatment of all three, the differentiation efficiency was increased according to the concentration of GSK-3 inhibitor (CHIR-99021) when the differentiated cells were analyzed by flow cytometry using SDC1 and CD133, markers of papillary precursor cells In addition, we confirmed the significance of WNT signaling in inducing differentiation into papillary precursor cells as well as the induction of concentration - dependent differentiation. (Figure 2E)
(2-3) (2-3) 역분화만능줄기세포를Degenerate pluripotent stem cells 포함한 다양한 만능줄기세포로부터  From a variety of pluripotent stem cells 모유두전구세포의Papillary progenitor cells 분화 (도 2f) Differentiation (Figure 2f)
모유두전구세포 분화 배지 조성을 인간 유래 배아줄기세포를 포함한 다양한 인간 세포 유래 역분화만능줄기세포에서 범용적으로 적용 가능한 것인지에 대해서 확인하기 위하여 인간 유래 배아줄기세포 1주, 인간 섬유모세포 유래 역분화만능줄기세포 2주, 인간 모유두세포 유래 역분화만능줄기세포 1주를 인간 유래 만능줄기세포 기원으로 이용하여 모유두전구세포로의 분화 가능성을 확인하였다. 인간 만능줄기세포에서 분화가 유도된 신경능선세포를 DMEM/F12 글루타맥스 (Thermo Fisher, catalog no. 10565042), 10% FBS 기본 배지에 GSK-3 의 억제제(CHIR-99021), bFGF, BMP4 를 세가지 모두를 처리하고 약 2주 후, 분화된 세포를 모유두전구세포의 마커인 SDC1, CD133 를 이용하여 유세포분석 하였을 때 만능줄기세포 기원 별로 일부 분화 효율의 차이는 있지만 모든 만능줄기세포 주에서 모유두전구세포의 마커인 SDC1+/CD133- 세포 분획이 유의하게 증가하는 모습을 확인하였다. (도 2f)In order to confirm whether the composition of the differentiation medium of the precursor cells of the mammary gland is universally applicable to various human cell-derived pluripotent stem cells including human-derived embryonic stem cells, one human-derived embryonic stem cell, a human fibroblast-derived pluripotent stem cell Two weeks, the ability to differentiate into human papillary progenitor cells was confirmed by using one human pluripotent stem cell-derived pluripotent stem cell as a source of human pluripotent stem cells. The neural ridge cells induced differentiation in human pluripotent stem cells were cultured in DMEM / F12 glutamax (Thermo Fisher, catalog no. 10565042), 10% FBS basic medium with inhibitor of GSK-3 (CHIR-99021), bFGF, BMP4 After about two weeks of treatment, the differentiated cells were analyzed by flow cytometry using SDC1 and CD133, the markers of the papillary progenitor cells, and there was a difference in the differentiation efficiencies of all pluripotent stem cell origin. However, And a significant increase in the SDC1 + / CD133- cell fraction, which is a marker of the cell, was confirmed. (Figure 2f)
(2-4) (2-4) 모유두전구세포의Papillary progenitor cells 분화 유도 Induction of differentiation
상기에서 선별한 필수 인자들을 이용하여 모유두전구세포의 분화를 유도하기 위해, 도 2a에 그림으로 도시한 바와 같이, 상기 방법으로 인간 역분화만능줄기세포를 신경능선세포로 분화시킨 후(STAGE 1), 상기 분화된 세포를 FGF2(10 ng/mL), GSK-g inhibitor, 및 짧은 시간 동안 BMP4(1 ng/mL)를 첨가한 DMEM/F12 글루타맥스 배지에서 배양하여 모유두전구세포로 분화시켰고(STAGE 2), 이어서 FGF2(10 ng/mL)를 단독으로 첨가한 DMEM/F12 글루타맥스 배지로 주변의 모유두세포 형태의 세포를 계대배양하여 증식시켰다(STAGE 3). As shown in FIG. 2A, in order to induce the differentiation of the precursor cells of the mammary gland using the essential factors selected above, human pre-differentiation pluripotent stem cells were differentiated into neural ridge cells (STAGE 1) , The differentiated cells were cultured in DMEM / F12 glutamax medium supplemented with FGF2 (10 ng / mL), GSK-g inhibitor and BMP4 (1 ng / mL) for a short period of time STAGE 2), followed by subculture of surrounding dermal papilla cells with DMEM / F12 glutamax medium supplemented with FGF2 (10 ng / mL) alone (STAGE 3).
상기 단계에 따라 인간 역분화만능줄기세포로부터 모유두전구세포로의 분화를 진행한 후 분화가 잘 이루어졌는지 확인하기 위해 현미경으로 세포의 형태변화를 관찰하고 알칼라인 포스파타아제 활성(ALP activity)을 측정하였다. 그 결과, 도 2c에 나타낸 바와 같이, 세포 형태가 전형적인 성상에서 인간 일차 모유두세포와 유사한 방추형의 다각형 형태로 변한 것을 관찰하였으며, 증식된 모유두전구세포를 분리하였고 고유의 모유두세포의 중요한 특징인 자연적으로 3차원 구형체가 만들어지는 것을 확인하였다. In accordance with the above steps, the cells were differentiated into human pre-differentiated pluripotent stem cells, and then morphological changes were observed with a microscope and ALP activity was measured . As a result, as shown in FIG. 2C, it was observed that the cell morphology changed into a fusiform polygonal shape similar to that of human primary dermal papilla cells in a typical state, and the proliferated dermal papillary precursor cells were isolated, and the important characteristic of the inherent dermal papilla cells It was confirmed that a three-dimensional spherical body was produced.
실시예Example 4. 모낭  4. Hair follicles 플라코드Placod 단계에서 인간  In step 역분화만능줄기세포Degenerate pluripotent stem cells 유래  origin 모유두전구세포Premature oocyte (hiPSC-derived (hiPSC-derived DPPCsDPPCs )의 제조)
본 발명자들은 상기 실시예 3 및 도 2a의 인간 역분화만능줄기세포에서 모유두전구세포로의 분화과정 동안의 각 단계에 걸쳐 유세포분석을 실시하여 SDC1과 CD133의 일시적인 발현수준의 변화를 관찰하였다. 그 결과, 도 3a에 나타낸 바와 같이 SDC1의 발현은 모유두전구세포로의 분화가 진행됨에 따라 점차적으로 증가하는 반면, 줄기세포 마커인 CD133의 발현은 감소하는 것을 확인하였다. 상기 결과를 통해, SDC1+/CD133- 세포 집단을 얻기 위해서는 분화 시작 후 25일째부터 40일까지가 상기 세포의 비율이 99%로 정점에 도달하는 특정 기간임을 알 수 있었다. 상기 결과와 일치하게, 만능성 줄기세포(SSEA3+) 집단 또한 분화과정 동안 점진적으로 감소하였다.The present inventors observed flow cytometric analysis of the SDC1 and CD133 transient levels during the differentiation steps from the human de-differentiating pluripotent stem cells of Example 3 and Fig. 2A to the pre-papillary progenitor cells. As a result, as shown in FIG. 3A, the expression of SDC1 gradually increased with the progress of differentiation into the precursor cells of the papilla, while the expression of the stem cell marker CD133 decreased. From the above results, it can be seen that for the SDC1 + / CD133- cell population, the period from the 25th day to the 40th day after the initiation of differentiation reaches a peak of 99% of the cells. Consistent with the above results, the pluripotent stem cell (SSEA3 +) population also gradually decreased during the differentiation process.
상기 결과에 더하여, 본 발명자들은 각 분화단계의 세포(iPSC, NCSC, DPPC D25, DPPC D40, DPPC P5)에서 일시적인 유전자 발현 프로파일을 분석하고자 하였다. 이를 위해, 분화 유도 약 7일 후 역분화만능줄기세포(iPSC, OCT3/4 및 NANOG를 발현)에서 신경능줄기세포(NCSC, p75NTR, HNK1, 및 SOX10을 발현)로, 이어 모유두전구세포(DPPC, SDC1, biglycan [BGN], WNT5A, BMP4, 및 YRPW 모티프 1을 갖는 Hes-related family BHLH transcription factor [HEY1])로의 단계별 진행을 확인하였다. 그 결과, 도 3b에 나타낸 바와 같이 모유두 시그니처 유전자들의 발현은 분화 후 약 25일부터 증가하였고 40일째에 가장 높은 발현수준을 보였으며, 인간의 체외 배양된 모유두세포와 유사하게 연속적인 계대배양에 따라 발현수준이 감소한 것을 확인하였다. 이러한 발현 패턴은 유세포분석에 의한 SDC1 발현과 일치하는 것이다. In addition to the above results, the present inventors tried to analyze transient gene expression profiles in cells of differentiation stage (iPSC, NCSC, DPPC D25, DPPC D40, DPPC P5). To this end, neuronal stem cells (expressing NCSC, p75NTR, HNK1, and SOX10) were transfected into reprogrammed pluripotent stem cells (expressing iPSC, OCT3 / 4 and NANOG) approximately 7 days after induction of differentiation, , Hs-related family BHLH transcription factor [HEY1] with SDC1, biglycan [BGN], WNT5A, BMP4, and YRPW motif 1). As a result, as shown in FIG. 3B, the expression of human breast markers genes increased from about 25 days after differentiation and showed the highest expression level at 40 days, and was similar to that of human in vitro cultured dermal papilla cells And the level of expression was decreased. This expression pattern is consistent with SDC1 expression by flow cytometry.
한편, CD133은 마우스에서 모발 유도성 피부세포의 표면 마커로 알려져 있다. 이에, 본 발명자들은 분화 25일째의 모유두전구세포에서 마그네틱 비드를 이용해 CD133+ 및 CD133 세포를 분리하여 특성을 분석하고자 하였다. 그 결과, 도 3c에 나타낸 바와 같이 CD133 세포에서 전형적인 모유두에서 발현되는 유전자 즉, ALX homeobox3(ALX3), catenin beta 1(CTNNB1), SOX2, 및 lymphoid enhancer binding factor 1(LEF1)의 발현이 유의하게 증가하였다. 이에 반해, CD133+ 세포에서는 상기와 같은 결과가 나타나지 않는 것을 확인하였다.On the other hand, CD133 is known as a surface marker of hair-inducing skin cells in mice. Thus, the present inventors have used CD133 + and CD133 &lt; RTI ID = 0.0 &gt; The cells were separated and analyzed for their characteristics. As a result, as shown in FIG. 3C, CD133 Expression of ALX homeobox3 ( ALX3 ), catenin beta 1 ( CTNNB1 ), SOX2 , and lymphoid enhancer binding factor 1 ( LEF1 ) was significantly increased in the cells expressing the typical dermal papilla. On the other hand, it was confirmed that the above results were not observed in CD133 + cells.
실시예Example 5. 인간  5. Human 역분화만능줄기세포Degenerate pluripotent stem cells 유래  origin 모유두전구세포Premature oocyte (( hiPSChiPSC -derived DPPCs)의 특성 및 -derived DPPCs) and 모낭형성능Hair follicle formation ability 분석 analysis
상기 실시예 3의 방법에 따라 분화시킨 모유두전구세포에 대하여 인간의 초기 모유두세포(hDPC)와 유사한 특성을 나타내는지 검증하고자 하였다. 이를 위해, 인간 모유두전구세포(hi-DPPC)에서 면역세포화학염색법을 실시하여 알칼라인 포스파타아제(alkaline phosphatase; ALP)의 활성 및 αSMA(α-smooth muscle actin), versican(VCAN), 및 nestin 유전자의 발현여부를 검증하였다. 그 결과, 도 4a에 나타낸 바와 같이 인간 모유두세포(hDPC)와 유사하게 분화시킨 모유두전구세포(hi-DPPC)에서도 알칼라인 포스파타아제의 활성이 관찰되었으며, αSMA, VCAN 및 nestin도 강하게 발현되는 것을 확인하였다. (HDPC) of human preform precursor cells differentiated according to the method of Example 3 described above. For this purpose, immunocytochemistry was performed on human dermal papillary precursor cells (hi-DPPC) to determine the activity of alkaline phosphatase (ALP), α-smooth muscle actin, versican (VCAN), and nestin gene Was expressed. As a result, as shown in FIG. 4A, the activity of alkaline phosphatase was also observed in the papillary precursor cells (hi-DPPC) differentiated to human dermal papilla cells (hDPC), and it was confirmed that αSMA, VCAN and nestin were also strongly expressed Respectively.
이에 더하여 생체 내 모유두 구조와 유사한 자발적 구(sphere) 형성은 모유두의 고유의 특성이며, 이는 모발 유도능 및 인간 모유두세포의 내재적 특성의 복원과 관련이 있는 것인바, 본 발명의 모유두전구세포가 구 형태를 이루는지 검증하였다. 그 결과, 도 4b에 나타낸 바와 같이 인간 모유두세포의 특성을 반영한 매우 낮은 부착 조건에서 모유두전구세포가 효과적으로 3D 구형체 구조를 형성하는 것을 확인하였다. In addition, spontaneous sphere formation similar to the in vivo papilla structure is an inherent characteristic of the papilla, which is related to the restoration of the hair-inducing ability and the inherent characteristics of human papilla cells. . As a result, as shown in FIG. 4B, it was confirmed that the mammary goblet precursor cells effectively form a 3D spherical body structure at very low attachment conditions reflecting the characteristics of human dermal papilla cells.
또한, 정량적 PCR을 통한 전사체 분석 결과, 도 4c에 나타낸 바와 같이 인간 모유두세포(cDPC 2D) 및 모유두세포 구형체(cDPC 3D)와 비교하여 인간 모유두전구세포 구형체(hi-DPPC 3D)에서 모유두 시그니처 유전자인 ALX3, SOX2, HEY1, BMP4, LEF1, WNT inhibitory factor 1 [WIF1], 및 VCAN의 발현이 증가된 것을 확인하였다. 특히, 모유두 전사 인자는 모유두세포의 일차원 배양에서 발현이 급속히 감소한 반면, ALX3, SOX2 및 HEY1의 경우 다른 것과 비교하여 hi-DPPC 구형체에서 유의하게 발현이 증가한 것을 알 수 있었다. 또한 LEF1과 WIF1을 포함하는 WNT 신호 전달 경로에 관여되는 인자 및 VCAN과 같은 모낭 형태발생 동안 지지 매트릭스에 관여하는 인자 또한 모유두전구세포 구형체에서 유의하게 발현이 증가하였다. 이러한 결과는 모유두전구세포가 인간 모유두세포의 초기 전구 세포 단계를 반영함을 의미하는 것이다.As a result of analysis of transcripts by quantitative PCR, human papillary precursor cell sphincters (hi-DPPC 3D) were compared with human dermal papilla cells (cDPC 2D) and dermal papilla cell dendritic cells (cDPC 3D) Signaling genes ALX3 , SOX2 , HEY1 , BMP4 , LEF1 , WNT inhibitory factor 1 [ WIF1 ], and VCAN were increased. In particular, the expression of papillary transcription factor was rapidly decreased in the one-dimensional culture of dermal papilla cells, whereas the expression of ALX3, SOX2 and HEY1 was significantly increased in the hi-DPPC spheres compared to the other. In addition, the factors involved in the WNT signaling pathway, including LEF1 and WIF1, and the factors involved in the support matrix during follicular morphogenesis, such as VCAN, also increased significantly in the papillary precursor cell populations. These results indicate that the prefrontal cells reflect the early precursor cell stage of human dermal papilla cells.
나아가, 본 발명자들은 본 발명에 따른 상기 모유두전구세포가 면역력이 결핍된 털이 없는 (SHO) 마우스에 이식할 경우 모낭 형성을 유도할 수 있는지 알아보기 위해 상기 실시예 1-10의 방법에 따라 패치 어세이를 실시하였다. 구체적으로, 인간 모유두세포 구형체(cDPD 3D) 또는 분화 40일째의 모유두전구세포 구형체(hiDPPC 3D)를 C57BL/6 신생아 마우스의 표피세포(mEPI)와 함께 피하 이식 하였다. 상기 SHO 마우스는 모낭이 없고 알비노인 유전적 배경을 가지므로 C57BL/6 마우스 유래 표피세포에 의해 새롭게 형성되는 검게 착색된 모낭을 쉽게 구별할 수 있다. Furthermore, the inventors of the present invention conducted experiments to determine whether the hair follicle precursor cells according to the present invention can induce hair follicle formation when they are transplanted into a hairless hairless (SHO) mouse deficient in immunity, . Specifically, the human dermal papilla cell spheroid (cDPD 3D) or the 40 day dermal papillary precursor cell spheroid (hiDPPC 3D) was subcutaneously transplanted together with the epidermal cell (mEPI) of C57BL / 6 neonatal mouse. Since the SHO mouse has no hair follicle and an albino genetic background, it can easily distinguish black-colored follicles newly formed by C57BL / 6 mouse-derived epidermal cells.
그 결과, 도 5a에 나타낸 바와 같이 실험을 진행하고 2주 후, 모유두전구세포 구형체 및 모유두세포를 이식한 부위에서 상당수의 신생 잡종 모낭이 관찰되었다. 이에 더하여 이식된 모유두전구세포 구형체가 신생 모낭의 모유두에 기여하는지 여부를 알아보기 위해 상기 모유두전구세포에 빨강 형광을 나타내는 세포 추적기(CM-DiI)로 표지한 결과, 도 5b에 나타낸 바와 같이 재구성된 모낭의 모유두에서 빨강 형광이 존재하는 것을 통해 모유두전구세포가 존재하여 모낭신생에 기여한다는 것을 확인하였다. 또한, 상기 잡종 모낭신생의 정량적 결과를 하기 표 2에 나타내었다.As a result, as shown in FIG. 5A, a large number of new hybrid follicles were observed at the site where the papillary precursor cell sphere and the papilla cell were transplanted two weeks after the experiment. In addition, in order to determine whether or not the transplanted mammary epithelial cell spheroid contributes to the dermal papilla of the neonatal hair follicle, the papillary precursor cells were labeled with a cell-tracer (CM-DiI) showing red fluorescence. As a result, The presence of red fluorescence in the dermal papilla of the hair follicle confirmed the presence of the dermal papillary precursor cells and contributed to the hair follicle neogenesis. The quantitative results of the hybrid follicular neoplasms are shown in Table 2 below.
Figure PCTKR2018008123-appb-T000002
Figure PCTKR2018008123-appb-T000002
실시예Example 6. 인간  6. Human 역분화만능줄기세포Degenerate pluripotent stem cells 유래  origin 모유두전구세포Premature oocyte (( hiPSChiPSC -derived DPPCs)로부터 분리된 전체 RNA의 유전자 발현 프로파일링 분석Analysis of gene expression profiling of total RNA isolated from -derived DPPCs
본 발명자들은 본 발명에 따른 모유두전구세포의 유전자 발현 프로파일을 확인하기 위해, 인간 역분화만능줄기세포 유래 신경능선세포(hi-NCSCs), 인간 모유두세포 구형체(cDPC 3D) 및 인간 모유두세포(cDPC 2D)와 함께 인간 모유두전구세포 구형체에 대한 RNA 서열분석을 실시하였다. 그 결과, 총 3065개 유전자에 대한 히트맵을 만들고 거리 행열로 계층적으로 클러스터링한 결과, 도 6a 및 도 6b에 나타낸 바와 같이 상기 모유두전구세포는 모유두세포 구형체 및 모유두세포와 클러스터링되었고 신경능선세포와는 매우 다른 유전자 발현패턴을 나타내었다. 또한, 도 6c에서 볼 수 있는 바와 같이, 차원 감소 접근법에 근거하여 모유두전구세포 집단은 신경능선세포에서 모유두세포 구형체로의 분화에서 구별되는 중간 집단으로 관찰되었다.To confirm the gene expression profile of the papillary precursor cells according to the present invention, the inventors of the present invention used human papillomavirus-derived pluripotent stem cell-derived neural ridge cells (hi-NCSCs), human dermal papilla cell spheroids (cDPC 3D) 2D) was performed to analyze the RNA sequence of the human dermal papilla cell spheroid. As a result, a heat map was generated for a total of 3065 genes and hierarchical clustering was performed using a distance matrix. As shown in FIGS. 6A and 6B, the papillary precursor cells were clustered with papillary cell sphincters and papillary cells, Which is a very different gene expression pattern. Also, as can be seen in FIG. 6C, based on the diminishing approach, the group of mammary epithelial cells was observed as a distinct intermediate in the differentiation from neural ridge cells to the papillary cell sphere.
특히 다양한 유전자들의 발현을 관찰한 결과, 도 6d에 나타낸 바와 같이WNT5A, SHH, transcriptional repressor GATA binding 1(TRPS1), HEY1, LEF1, 및 FOXO1과 같은 많은 모유두 시그니처 유전자들이 모유두세포 구형체 및 모유두세포에 비해 모유두전구세포에서 매우 높게 발현된 것을 확인하였다. 반대로, NANOG 및 LIN28A와 같은 줄기세포 마커의 발현은 분화된 모유두전구세포에서 거의 발견되지 않았다. 이러한 결과는 모유두전구세포가 분화 전의 신경능선세포와는 대조적으로, 모유두세포보다 인간 모유두세포 구형체와 더 유사하거나 초기 단계의 전구 분자 시그니처를 공유한다는 것을 의미하는 것이다. In particular, as shown in FIG. 6D, many of the mammalian signature genes such as WNT5A , SHH , transcriptional repressor GATA binding 1 ( TRPS1 ), HEY1 , LEF1 , and FOXO1 were observed in the dermal papilla cell and dermal papilla cells Compared to the control group. In contrast, expression of stem cell markers such as NANOG and LIN28A was rarely found in differentiated papillary progenitor cells. This result implies that, in contrast to the neural ridge cells before the differentiation, the precursor cells of the mammary epithelium share a more similar or early precursor molecule signature than the human dermal papilla cell protoplasts rather than the dermal papilla cells.
실시예Example 7. 체외에서 인간의 신생모낭 형성 및 이의 특성 분석 7. Formation and characterization of human neonatal hair follicles in vitro
체외에서 인간 모낭신생을 유도하기 위해, 본 발명자들은 상기 실시예 1-4에 개시된 공지된 방법에 따라 인간 역분화만능줄기세포로부터 모낭 표피전구세포(folliculogenic EpSCs)로의 분화를 유도하였다. 상기 방법에 따라 분화시킨 모낭 표피전구세포(hi-EpSCs)는 분화유도 후 18일째에 케라틴 14(keratin 14; K14), 케라틴 15(keratin 15; K15) 및 인테그린 α6(integrin α6)를 지속적으로 발현하였고, 마우스 신생아 피부세포와 결합할 때 잡종 모낭을 유도하였다(Figure S5). 놀랍게도, 상기 인간 표피전구세포는 모낭 플라코드 시기에 체내 표피 플라코드 세포와 유사한 베타-카테닌(β-catenin) 축적과 함께 세포막에서 CD133을 발현하였다.To induce human hair follicle development in vitro, we induced differentiation from human de-differentiating pluripotent stem cells into folliculogenic EpSCs according to the known methods described in Examples 1-4 above. The hair follicle epidermal precursor cells (hi-EpSCs) differentiated according to the above method continuously express keratin 14 (keratin 14; K14), keratin 15 (K15) and integrin 6 (integrin 6) And hybrid follicles were induced upon binding to mouse neonatal skin cells (Figure S5). Surprisingly, the human epidermal progenitor cells expressed CD133 in the plasma membrane at the time of hair fracode with the accumulation of beta-catenin (beta-catenin) similar to that of human epidermal plastocytes.
나아가 인간 모유두전구세포의 모낭형성능을 알아보기 위해, 체내 모낭 형성 분석 이전에 hi-EpSCs와 함께 배양하여 체외 모낭 형성 분석을 실시하였다. 먼저, 모유두전구세포를 부착성이 매우 낮은 플레이트에 10,000 cells/well의 수만큼 각각 분주하고 재조합 인간 세포외기실 단백질을 갖는 자신의 기저막을 갖는 작은 구형체를 형성하도록 하였다. Furthermore, in order to examine the hair follicle-forming ability of human dermal papillary precursor cells, in vitro hair follicle formation analysis was performed by incubation with hi-EpSCs before analysis of body hair follicle formation. First, the precursor cells of the mammary gland were divided into 10,000 cells / well on plates with very low adherence to form small spherical bodies having their basal membranes with recombinant human extracellular space proteins.
다음으로, 상기 표피전구세포를 25,000 cells/well의 수만큼 모유두전구세포 구형체에 처리하여 공동 배양하였다. 배양결과, 도 7a에 나타낸 바와 같이, 놀랍게도, 상기 두 가지 세포의 혼합을 통해 편평한 극성과 주변 레이어에서 증식을 나타내는 모낭 형태발생과 매우 유사한 둥근 구조를 생산하였다(수율 ~65%).Next, the epidermal progenitor cells were co-cultured in a number of 25,000 cells / well in a preform of premolar cell. As a result of the cultivation, as shown in FIG. 7A, surprisingly, a mixture of the two cells produced a round structure (yield ~ 65%) which is very similar to that of hair follicular morphogenesis showing flat polarity and proliferation in the surrounding layer.
다음으로, 피부 및 표피 성분의 특성을 인간 태아 두피의 생체 내 단계와 비교하였다. 그 결과, 도 7b에 나타낸 바와 같이 모낭은 모낭 플라코드 단계와 유사한 피부 마커(SDC1, LEF1, SOX2, Nestin, VCAN 및 WIF1) 및 표피 마커(CD133, BMP4, K15, K14 및 WIF1)의 발현 패턴을 나타내었다. 흥미롭게도, CD133 발현은 모원배(hair germ) 또는 모항기(hair peg stage)와 유사하게 공배양된 모낭의 피부 구성성분에서 약간 증가한 것으로 나타났다.Next, the characteristics of the skin and epidermal constituents were compared with in vivo steps of the human fetal scalp. As a result, hair follicles showed expression patterns of skin markers (SDC1, LEF1, SOX2, Nestin, VCAN and WIF1) and epidermal markers (CD133, BMP4, K15, K14 and WIF1) Respectively. Interestingly, CD133 expression was slightly increased in skin components of co-cultured hair follicles similar to hair germ or hair peg stage.
실시예Example 8. 인간  8. Human 역분화만능줄기세포Degenerate pluripotent stem cells 유래  origin 모유두전구세포Premature oocyte (( iPSCiPSC -derived DPPCs)와-derived DPPCs) and 인간 human 역분화만능줄기세포Degenerate pluripotent stem cells 유래  origin 표피전구세포(hiPSC-derived EpSC)Epidermal progenitor cells (hiPSC-derived EpSC) 에 의한 인간 Human by 모낭신생Follicular newborn 확인 Confirm
마우스에서 본 발명에서 인간 역분화만능줄기세포에서 분화시킨 모유두전구세포 및 표피전구세포를 이용하여 인간 모낭신생을 검증하고자 하였다. 이를 위해, 상기 실시예 1-11의 방법에 따라 챔버 어세이를 실시하여 생체 내 모낭신생 분석을 수행하였으며, 다른 시점의 모유두전구세포 구형체(hi-DPPC D25, hi-DPPC D40, 및 hi-DPPC P25)를 분화 시작 후 18일 된 표피전구세포(hi-EpSC D18)와 함께 이식한 후 조직학적 분석을 실시하였다.In the present invention, human hair follicle progenitor cells and epidermal progenitor cells differentiated from human reprogramming pluripotent stem cells were used to examine human hair follicle development. For this purpose, a chamber assay was carried out according to the method of Example 1-11 to perform in vivo follicular neoplasia analysis, and the differentiation of prehyperidone precursor cell spheres (hi-DPPC D25, hi-DPPC D40, and hi- DPPC P25) was transplanted with 18-day-old epidermal progenitor cells (hi-EpSC D18) after the onset of differentiation and histological analysis was performed.
그 결과, 도 8a에 여러 층의 표피와 모유두 구조 및 색소가 없는 모간을 갖는 신생 모낭이 형성된 것을 관찰되었다. 상기 모낭은 인간 태아의 모낭과 유사한 구조를 나타내었으며, SHO 마우스에서 생성된 불완전한 구조의 모낭과는 분명히 다른 것을 확인하였다.As a result, it was observed that a new hair follicle having several layers of epidermis, a papilla structure, and a pigment-free morgan was formed in Fig. 8A. The hair follicle showed a structure similar to the human fetal hair follicle, and clearly different from that of the incomplete hair follicle produced in the SHO mouse.
또한, 도 8b에 나타낸 바와 같이, 흥미롭게도 생성된 인간의 모낭(hi-DPPC+hi-EpSC)은 인간 태아의 모낭(Fetal scalp)과 유사하게 세포질에서 COX4(anti-human cytochrome c oxidase subunit 4) 항체와 anti-human mitochondria 항체에 의해 양성으로 염색된 것을 확인하였다.In addition, as shown in FIG. 8B, an interesting human hair follicle (hi-DPPC + hi-EpSC) is produced in the cytoplasm similar to the human fetal hair follicle (COC4) (anti-human cytochrome c oxidase subunit 4) And it was confirmed to be positive by antibody and anti-human mitochondrial antibody.
더욱이, 모발 특이적인 케라틴 마커(K14, K15, K17, 및 K75)가 새롭게 형성된 모낭의 중심원에서 다층적으로 발현되는 것을 관찰하였다. K14는 외모근소(outer root sheath)를 표시하고, K15는 모낭줄기세포를 나타내고, K17은 모수질 및 모낭 기질을 나타내며, K75는 신생모낭에서 컴패니언층(companion layer)의 존재를 반영한다. 또한, 상기 챔버 어세이를 통한 모낭신생의 정량적 결과를 하기 표 3에 나타내었으며, 분화 40일째의 모유두전구세포와 18일째의 표피전구세포를 함께 이식한 경우 모낭신생 효율이 매우 높게 나타난 것을 알 수 있다.Furthermore, it was observed that hair-specific keratin markers (K14, K15, K17, and K75) were expressed multilayered in the center circle of newly formed hair follicles. K14 represents the outer root sheath, K15 represents the hair follicle stem cell, K17 represents the maternal quality and hair follicle quality, and K75 reflects the presence of a companion layer in the new hair follicle. In addition, quantitative results of follicular neoplasia through the chamber assay are shown in Table 3, and it was found that the hair follicle progenitor cells on the 40th day of differentiation and the epidermal progenitor cells on the 18th day were highly transfected, have.
Figure PCTKR2018008123-appb-T000003
Figure PCTKR2018008123-appb-T000003
상기 결과를 통해 인간 역분화만능줄기세포로부터 분화시킨 모유두전구세포 및 표피전구세포를 함께 이용하여 마우스에서 인간 모낭신생을 유도할 수 있음을 확인하였다.From the above results, it was confirmed that human hair follicle neogenesis could be induced in mouse by using both pre-papillary precursor cells and epidermal progenitor cells differentiated from human reprogramming pluripotent stem cells.
상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. There will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

Claims (25)

  1. DMEM/F12(Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12) 글루타맥스 배지에 섬유아세포성장인자-2(fibroblast growth factor-2; FGF2), 글리코겐 합성 카이네이즈-3(glycogen synthase kinase-3: GSK-3) 억제제, 및 골형성단백질 4(bone morphogenetic protein 4; BMP4)를 포함하는 것을 특징으로 하는, 인간 유래 만능줄기세포로부터 모유두전구세포(dermal papilla precursor cell)로의 분화용 배지 조성물.Fibroblast growth factor-2 (FGF2), glycogen synthase kinase-3 (GSK-3) were added to DMEM / F12 (Dulbecco's Modified Eagle's Medium / Nutrient Mixture F- 3) inhibitor, and bone morphogenetic protein 4 (BMP4). 2. The composition according to claim 1, wherein the bone morphogenetic protein is BMP4.
  2. 제1항에 있어서,The method according to claim 1,
    상기 글리코겐 합성 카이네이즈-3(glycogen synthase kinase-3: GSK-3) 억제제는 6-브로모인디루빈-3'-옥심(6-bromoindirubin-3'-oxime; BIO), CHIR-99021 및 SB-216763으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는, 분화용 배지 조성물. The inhibitor of glycogen synthase kinase-3 (GSK-3) is 6-bromoindirubin-3'-oxime (BIO), CHIR-99021 and SB-216763 &Lt; RTI ID = 0.0 &gt; 1, &lt; / RTI &gt;
  3. 제1항에 있어서, 상기 FGF2는 5 내지 30 ng/ml, GSK-3 억제제는 0.1 내지 10 uM, 및 BMP4는 0.5 내지 5 ng/ml의 농도로 포함되는 것을 특징으로 하는, 분화용 배지 조성물.The differentiation medium composition according to claim 1, wherein the FGF2 is contained at a concentration of 5 to 30 ng / ml, the GSK-3 inhibitor is 0.1 to 10 uM, and the BMP4 is contained at a concentration of 0.5 to 5 ng / ml.
  4. 제2항에 있어서, 상기 BIO는 0.5 내지 5 uM, 또는 상기 CHIR 99021은 0.1 내지 10 uM의 농도로 포함되는 것을 특징으로 하는, 분화용 배지 조성물.The culture medium for differentiation according to claim 2, wherein the BIO is contained at a concentration of 0.5 to 5 uM, or the CHIR 99021 is contained at a concentration of 0.1 to 10 uM.
  5. 제1항에 있어서,The method according to claim 1,
    상기 인간 유래 만능줄기세포는 인간 유래 배아줄기세포 또는 인간 유래 역분화 만능줄기세포인 것을 특징으로 하는, 분화용 배지 조성물.Wherein said human-derived pluripotent stem cells are human-derived embryonic stem cells or human-derived pluripotent pluripotent stem cells.
  6. 제1항에 있어서, 상기 분화용 배지 조성물에는 인간 신생 태아 조직이 혼입되지 않은 것을 특징으로 하는, 분화용 배지 조성물.The differentiation medium composition according to claim 1, wherein the differentiation medium composition is free of human neonatal fetal tissue.
  7. 하기의 단계를 포함하는, 인간 유래 만능줄기세포에서 모유두전구세포로의 분화방법:A method of differentiating human pluripotent stem cells into papillary progenitor cells, comprising the steps of:
    (a) 인간 유래 만능줄기세포의 배아체를 신경능선세포(neural crest stem cell) 유도배지에서 배양하여 신경능선세포로 분화시키는 단계; 및 (a) culturing an embryoid body of human-derived pluripotent stem cells in a neural crest stem cell-inducing medium to differentiate into neural ridge cells; And
    (b) 상기 분화된 신경능선세포를 제1항의 분화용 배지 조성물에서 배양하여 모유두전구세포로 분화시키는 단계.(b) culturing the differentiated neural ridge cells in the differentiation medium composition of claim 1 to differentiate into pre-papillary precursor cells.
  8. 제7항에 있어서, 하기 단계를 추가로 포함하는 것을 특징으로 하는, 분화방법:8. The method according to claim 7, further comprising the step of:
    (c) 분화된 모유두전구세포를 성숙시켜 구형체(sphere)의 모유두전구세포를 수득하는 단계.(c) matured differentiated precursor cells to obtain precursor cells of a spherical sphere.
  9. 제7항에 있어서,8. The method of claim 7,
    상기 신경능선세포 유도배지는 DMEM/F12 글루타맥스 배지에 섬유아세포성장인자-2(fibroblast growth factor-2; FGF2), 피브로넥틴(fibronectin), 인슐린(insulin), N2 보충제(supplyment), 및 트랜스페린(transferrin)이 포함된 것을 특징으로 하는, 분화방법.The neural ridge cell induction medium was supplemented with DMEM / F12 glutamax medium supplemented with fibroblast growth factor-2 (FGF2), fibronectin, insulin, N2 supplementation, and transferrin transferrin). &lt; / RTI &gt;
  10. 제8항에 있어서,9. The method of claim 8,
    상기 단계 (c)는 상기 분화된 모유두전구세포를 FGF2를 단독으로 첨가한 DMEM/F12 글루타맥스 배지에서 배양하여 이루어지는 것을 특징으로 하는, 분화방법.Wherein the step (c) comprises culturing the differentiated precursor cells in a DMEM / F12 glutamax medium to which FGF2 alone is added.
  11. 제7항 또는 제8항에 있어서, (a) 단계는 5일 내지 9일 동안 수행, (b) 단계는 11 내지 17일 동안 수행, 또는 (c) 단계는 7일 내지 13일 동안 수행하는 것을 특징으로 하는, 분화방법. The method according to claim 7 or 8, wherein (a) is performed for 5 to 9 days, (b) is performed for 11 to 17 days, or (c) Wherein said method comprises the steps of:
  12. 제7항에 있어서, 인간 유래 만능줄기세포에서 모유두전구세포로의 분화방법은 26일 이상 50일 이하 동안 수행하는 것을 특징으로 하는, 분화방법. 8. The differentiation method according to claim 7, wherein the method of differentiating human pluripotent stem cells into a mammary gland precursor cell is performed for 26 days or more and 50 days or less.
  13. 제7항 내지 제12항 중 어느 한 항의 분화방법에 의해, 인간 유래 만능줄기세포에서 분화된 인간 모유두전구세포로서, 상기 인간 모유두전구세포는 모낭 형성능을 갖는 것을 특징으로 하는 인간 모유두전구세포.13. A human mammary dermal progenitor cell differentiated from human pluripotent stem cells by the differentiation method according to any one of claims 7 to 12, wherein the human dermal papilla precursor cell has follicle-forming ability.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 모유두전구세포는 하기 (a), (b) 및 (c)로 이루어진 군으로부터 선택된 하나 이상의 특성을 나타내는 것을 특징으로 하는, 모유두전구세포:Wherein said papillary precursor cells exhibit at least one characteristic selected from the group consisting of (a), (b) and (c):
    (a) ALP(alkaline phosphatase), αSMA(α-smooth muscle actin), versican(VCAN), 및 nestin에 대하여 양성의 면역학적 특성을 나타냄;(a) exhibits positive immunological properties for ALP (alkaline phosphatase), alpha SMA (alpha smooth muscle actin), versican (VCAN), and nestin;
    (b) 자발적으로 구(sphere)를 형성하는 모유두세포의 구조적 특성을 나타냄; 및(b) demonstrates the structural characteristics of dermal papilla cells that spontaneously form spheres; And
    (c) 모유두 시그니처 유전자인 ALX3(ALX Homeobox 3), SOX2(SRY-Box 2), HEY1(Hes Related Family BHLH Transcription Factor With YRPW Motif 1), BMP4(Bone Morphogenetic Protein 4), LEF1(Lymphoid Enhancer Binding Factor 1), WIF1(WNT inhibitory factor 1), 및 VCAN(Versican)으로 이루어진 군으로부터 선택되는 하나 이상을 발현하는 유전적 특성을 나타냄.(b), (b), (c), and (c), the genes for human breastpox signature genes ALX3 (ALX Homeobox 3), SOX2 (SRY-Box 2), HEY1 (Hes Related Family BHLH Transcription Factor With YRPW Motif 1), BMP4 (Bone Morphogenetic Protein 4) and Lymphoid Enhancer Binding Factor 1), WIF1 (WNT inhibitory factor 1), and VCAN (Versican).
  15. 제13항에 있어서, 상기 모유두전구세포는 CD133 음성인 것을 특징으로 하는, 모유두전구세포.14. The method of claim 13, wherein the papillary precursor cells are CD133 negative.
  16. 제7항 내지 제12항 중 어느 한 항의 분화방법에 의해, 인간 유래 만능줄기세포에서 분화된 모낭 형성능을 갖는 계대 배양 인간 모유두전구세포.A subculture human mammary papillary precursor cell having a hair follicle-forming ability differentiated from human-derived pluripotent stem cells by the differentiation method according to any one of claims 7 to 12.
  17. 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포(epithelial stem cell) 및 제13항의 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 유효성분으로 포함하는, 인간 모낭신생 유도용 조성물.A composition for inducing human hair follicular growth comprising an epithelial stem cell differentiated from human pluripotent stem cells and a human derived mammary epithelial precursor cell having a hair follicle forming ability differentiated from the human pluripotent stem cell of paragraph 13 as an active ingredient .
  18. 제17항에 있어서,18. The method of claim 17,
    상기 모유두전구세포는 상기 인간 유래 만능줄기세포부터 30일 내지 50일 동안 분화된 것을 특징으로 하는, 인간 모낭신생 유도용 조성물.Wherein the mammary gland precursor cells are differentiated from the human-derived pluripotent stem cells for 30 days to 50 days.
  19. 제17항에 있어서,18. The method of claim 17,
    상기 표피전구세포는 상기 인간 유래 만능줄기세포로부터 15일 내지 21일 동안 분화된 것을 특징으로 하는, 인간 모낭신생 유도용 조성물.Wherein the epidermal progenitor cells are differentiated from the human-derived pluripotent stem cells for 15 days to 21 days.
  20. 인간 유래 만능줄기세포로부터 분화된 표피전구세포(epithelial stem cell) 및 제13항의 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 개체에 전달하여 인간 모낭신생을 유도하는 방법.A method for inducing human hair follicular neoplasia by transferring epithelial stem cells differentiated from human pluripotent stem cells and human precursor cells derived from human pluripotent stem cells differentiated from the human pluripotent stem cell of claim 13 to a subject.
  21. 제13항의 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포와 인간 유래 만능줄기세포로부터 분화된 표피전구세포(epithelial stem cell)를 공동배양하여 인간 모낭을 제조하는 방법. A method for producing a human hair follicle by co-culturing a human-derived mammary epithelial progenitor cell having a hair follicle-forming ability differentiated from the human-derived pluripotent stem cell of claim 13 and an epithelial stem cell differentiated from human-derived pluripotent stem cell.
  22. 인간 유래 만능줄기세포로부터 분화된 표피전구세포(epithelial stem cell) 및 제13항의 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 유효성분으로 포함하는 조성물의 인간 모낭신생 용도.An epithelial stem cell differentiated from human pluripotent stem cells and a human hair follicle precursor cell having a hair follicle forming ability differentiated from the human pluripotent stem cell of claim 13 as an active ingredient.
  23. 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포(epithelial stem cell) 및 제13항의 인간 유래 모유두전구세포를 유효성분으로 포함하는, 탈모치료용 세포치료제.An epithelial stem cell differentiated from human pluripotent stem cells and a human derived mammalian precursor cell of paragraph 13 as an active ingredient.
  24. 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포(epithelial stem cell) 및 상기 제13항의 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 유효성분으로 포함하는 세포치료제를 개체에 투여하는 단계를 포함하는, 탈모 치료방법.An epithelial stem cell differentiated from human pluripotent stem cells and a human cell precursor cell having hair follicle forming ability differentiated from the human pluripotent stem cell of item 13 above as an active ingredient are administered to an individual &Lt; / RTI &gt;
  25. 인간 유래 만능줄기세포로부터 분화시킨 표피전구세포(epithelial stem cell) 및 상기 제13항의 인간 유래 만능줄기세포로부터 분화된 모낭 형성능을 갖는 인간 유래 모유두전구세포를 유효성분으로 포함하는 조성물의 탈모 치료용도.An epithelial stem cell differentiated from human pluripotent stem cells and a human hairpin progenitor cell having hair follicle forming ability differentiated from the human pluripotent stem cell of claim 13 as an active ingredient.
PCT/KR2018/008123 2017-07-19 2018-07-18 Method of differentiation of human induced pluripotent stem cell to dermal papilla precursor cell and use thereof WO2019017691A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/632,472 US11629331B2 (en) 2017-07-19 2018-07-18 Method of differentiation of human induced pluripotent stem cell to dermal papilla precursor cell and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170091727 2017-07-19
KR10-2017-0091727 2017-07-19
KR10-2018-0083386 2018-07-18
KR1020180083386A KR102122039B1 (en) 2017-07-19 2018-07-18 Method for differentiation of dermal papilla precursor cells from human pluripotent stem cells and uses thereof

Publications (3)

Publication Number Publication Date
WO2019017691A2 true WO2019017691A2 (en) 2019-01-24
WO2019017691A3 WO2019017691A3 (en) 2019-03-28
WO2019017691A9 WO2019017691A9 (en) 2019-05-09

Family

ID=65015799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008123 WO2019017691A2 (en) 2017-07-19 2018-07-18 Method of differentiation of human induced pluripotent stem cell to dermal papilla precursor cell and use thereof

Country Status (1)

Country Link
WO (1) WO2019017691A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021004933A1 (en) * 2019-07-10 2021-01-14 Kunz Helmuth Heinrich Methods for deriving autologous and hypoimmunogenic hair follicle containing sheets in vitro
CN115418341A (en) * 2022-09-22 2022-12-02 北京雍禾医疗投资管理有限公司 Method for transdifferentiation of fibroblasts into hair papilla cells and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6304818B2 (en) * 2014-04-21 2018-04-04 花王株式会社 Method for producing skin-derived pluripotent progenitor cells
EP3245289B1 (en) * 2015-01-16 2021-07-07 Agency For Science, Technology And Research Differentiation of macrophages from pluripotent stem cells
CA3002164A1 (en) * 2015-10-21 2017-04-27 Indiana University Research And Technology Corporation Derivation of human skin organoids from pluripotent stem cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021004933A1 (en) * 2019-07-10 2021-01-14 Kunz Helmuth Heinrich Methods for deriving autologous and hypoimmunogenic hair follicle containing sheets in vitro
CN115418341A (en) * 2022-09-22 2022-12-02 北京雍禾医疗投资管理有限公司 Method for transdifferentiation of fibroblasts into hair papilla cells and application thereof
CN115418341B (en) * 2022-09-22 2024-03-15 北京雍禾医疗投资管理有限公司 Method for transdifferentiation of fibroblast to hair papilla cell and application thereof

Also Published As

Publication number Publication date
WO2019017691A3 (en) 2019-03-28
WO2019017691A9 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
RU2576003C2 (en) Methods of deriving differentiated cells from stem cells
US11390852B2 (en) Compositions and methods of preparing airway cells
Galende et al. Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells
EP2090649A1 (en) Method for reprogramming differentiated cells
WO2010147395A2 (en) Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same
KR102212399B1 (en) Method for differentiation of dermal papilla precursor cells from human induced pluripotent stem cells and uses thereof
JP2016520291A (en) Production of medial ganglion progenitor cells in vitro
EP3483262B1 (en) Small molecule compound combination for reprogramming digestive tract derived epithelial cells to endodermal stem/progenitor cells, reprogramming method and application
Gonçalves et al. Generation of LIF-independent induced pluripotent stem cells from canine fetal fibroblasts
WO2017051978A1 (en) Method for differentiating induced pluripotent stem cells, which are prepared from endocardium-derived adult stem cells, into cardiovascular cells, and use thereof
WO2013180395A1 (en) Metabolite for promoting pluripotent stem cell generation, maintenance, and proliferation, and composition and culturing method containing same
WO2019017691A9 (en) Method of differentiation of human induced pluripotent stem cell to dermal papilla precursor cell and use thereof
WO2012008733A2 (en) Stem cells derived from primary placenta tissue and cellular therapeutic agent containing same
US9163214B2 (en) Method for culturing stem cells
WO2009111087A1 (en) Novel use of basic fibroblast growth factor in the de-differentiation of animal connective tissue cells
WO2011102680A9 (en) Cd49f promoting proliferation, multipotency and reprogramming of adult stem cells through pi3k/akt/gsk3 pathway
Al Abbar et al. Generation of induced pluripotent stem cells by a polycistronic lentiviral vector in feeder-and serum-free defined culture
US20230159887A1 (en) Methods for Generating Thymic Cells in Vitro
WO2019117454A1 (en) Medium additive for highly efficient cell transformation using cell organelle stress regulation factor
US11898168B2 (en) Methods of promoting esophageal differentiation of pluripotent stem cells
WO2018131872A2 (en) Differentiation method of follicular cell into germline stem cell and use thereof
WO2018101723A1 (en) Novel functionally enhanced mesenchymal progenitor cells, anti-inflammatory cell therapeutic agent composition containing same, and mesenchymal progenitor cell preparation method
WO2022255825A1 (en) Novel pluripotent cells
WO2024063531A1 (en) Stromal cell layer around intestinal organoid for enhancing engraftment and regeneration efficacy, and use thereof
WO2021034168A1 (en) Composition for proliferating stem cells and enhancing pluripotency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834701

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834701

Country of ref document: EP

Kind code of ref document: A2