WO2019017452A1 - Method for detecting presence or absence of non-enveloped rna virus - Google Patents

Method for detecting presence or absence of non-enveloped rna virus Download PDF

Info

Publication number
WO2019017452A1
WO2019017452A1 PCT/JP2018/027178 JP2018027178W WO2019017452A1 WO 2019017452 A1 WO2019017452 A1 WO 2019017452A1 JP 2018027178 W JP2018027178 W JP 2018027178W WO 2019017452 A1 WO2019017452 A1 WO 2019017452A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
solution
reaction
alkaline
pcr
Prior art date
Application number
PCT/JP2018/027178
Other languages
French (fr)
Japanese (ja)
Inventor
美和 秋友
上森 隆司
裕之 松本
Original Assignee
タカラバイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカラバイオ株式会社 filed Critical タカラバイオ株式会社
Priority to JP2019530603A priority Critical patent/JP7140762B2/en
Publication of WO2019017452A1 publication Critical patent/WO2019017452A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage

Definitions

  • the present invention relates to a method for detecting RNA virus.
  • the present invention can also be used for life science research, clinical diagnosis, food hygiene inspection, environmental inspection and the like.
  • Nucleic acid amplification is a technology that amplifies several copies of a target nucleic acid to detectable levels, that is, hundreds of millions of copies, and is not only in the field of life science research, but also in the medical field such as gene diagnosis and clinical examination, or in food and the environment. Are also widely used in the field of microbial testing and the like.
  • the samples to be tested using the nucleic acid amplification method vary depending on the purpose.
  • specimens in which the causative bacteria are present that is, urine, sputum, feces, blood, nasal fluid, vaginal fluid and the like.
  • food hygiene inspection it is food or feces and urine collected from a food handler, and in environmental hygiene inspection it is soil, river water, rain water, environmental water such as seawater, wipes from manufacturing facilities, etc.
  • food poisoning caused by microorganisms which have a latent period before the occurrence of characteristic symptoms, a rapid test method is required to prevent the spread of damage. It becomes a thing etc.
  • nucleic acid amplification reaction using an enzyme.
  • various methods for separating and purifying the nucleic acid basically, it comprises a step of separating the nucleic acid and other substances into a solid phase and a liquid phase and performing solid-liquid separation.
  • separating nucleic acid into solid phase by ethanol precipitation and separating it by centrifugation
  • a method of hybridizing target nucleic acid to nucleic acid on solid phase for example, beads
  • Patent Document 1 discloses a method in which an alkali-containing solution is added to a suspension supernatant of stool and a heat-treated sample is directly added to a reaction solution to carry out a nucleic acid amplification reaction.
  • Patent Document 2 discloses a method of performing a nucleic acid amplification reaction by directly adding a heat-treated sample to a reaction solution by subjecting a feces suspension supernatant solution to pectinase treatment.
  • Patent Documents 1 and 2 and Non-patent Documents 1 and 2 RT-PCR is performed as a nucleic acid amplification method to detect RNA in a sample.
  • heat treatment is performed in the RNA sample preparation of the above method.
  • Patent Document 2 describes the danger of hydrolysis of RNA due to heat treatment, but the need for heat treatment is described.
  • the heating step has been considered essential for nucleic acid extraction and reaction inhibitor inactivation in any method.
  • An object of the present invention is to enable detection of a target nucleic acid by a nucleic acid amplification reaction in which purification of nucleic acid from a sample is particularly unnecessary.
  • the present inventors have found a method that does not require a heat treatment step and that the nucleic acid in the sample can be subjected to an amplification reaction without purification with separation into another container.
  • the present invention has been completed.
  • the representative present invention is as follows.
  • a method for detecting the presence or absence of non-enveloped RNA virus in a sample derived from a sample to be excreted comprising: (A) preparing an alkaline mixture comprising a sample that may contain RNA virus; (B) leaving the mixed solution obtained in step (a) without heating, and (c) applying the mixed solution after leaving in step (b) to a cDNA synthesis reaction, Methods of detecting RNA viruses, including [2]
  • the step (a) is a step of preparing an alkaline mixed solution by adding a solution containing a strongly alkaline hydroxide to a sample possibly containing RNA virus, [1] Method described.
  • a method for detecting the presence or absence of a non-enveloped RNA virus in a sample derived from a biological excretion sample comprising: (A) preparing an alkaline mixture containing a sample possibly containing RNA virus; and (b ') subjecting the mixture obtained in step (a) to a cDNA synthesis reaction without heating.
  • Methods of detecting RNA viruses including [17] An alkaline mixed solution by adding a solution containing a strongly alkaline hydroxide after step (a) suspends a sample possibly containing RNA virus with a solution containing a chelating agent
  • the method according to the above [16] which is a step of preparing [18]
  • a kit for the method according to [1] or [16], (I) solutions containing strongly alkaline hydroxides, (Ii) reverse transcriptase, (Iii) Reagent for reverse transcription reaction, A kit comprising (iv) a thermostable DNA polymerase, and (v) a reagent for DNA polymerase chain reaction.
  • the kit according to the above [18] further comprising (vi) a solution containing a chelating agent.
  • the time and cost for separating and purifying nucleic acids prior to nucleic acid amplification reaction can be reduced. Furthermore, the risk that may occur when separating and purifying nucleic acids, that is, the risk of sample loss and carryover can be reduced. The effect becomes remarkable especially in the test which processes many specimens which make feces sample.
  • FIG. 1 to FIG. 5 the vertical axis of the graph is the Ct value. It is a figure which shows the result of pretreatment time and RT-PCR. It is a figure which shows the result of pretreatment temperature and RT-PCR. It is a figure which shows the result of RT-PCR at the time of adding a chelating agent at the time of pre-processing. It is a figure which shows the result of RT-PCR at the time of adding pretreatment temperature and a chelating agent.
  • the detection method of the present invention includes the step of leaving the sample rendered alkaline without heating, for example, treating it at room temperature and adding it directly to the reaction solution.
  • the sample to which the detection method of the present invention is applied is not particularly limited as long as it is a sample that may contain an RNA virus, but examples include samples derived from a biological excretion sample.
  • the excremented samples include feces, urine, vomits, nasal discharge, nasal smear, saliva, saliva smear, etc.
  • these excremented samples may be water (sterile water etc.), physiological saline, (PBS etc.) And the like, those suspended in a buffer solution, an organic solvent, a liquid medium, or a gel medium (for example, Calibra's medium), or a supernatant prepared from the above suspension, or the like.
  • Examples of the living body include humans, pets, livestock, wild animals, insects and any other animals.
  • the stool is composed of intestinal bacteria, intestinal epithelial cells, food-derived substances and the like, and is suitable as a sample of the present invention.
  • the biological excretion sample may be collected from the environment. Environments include any and all places where RNA viruses such as Norovirus may be present, but are not limited to the natural environment.
  • the facility itself such as a manufacturing facility or a cooking facility, or the equipment of the facility, etc., is exemplified by the surface of any material on which RNA virus may be present. For collecting samples from these environments, wiping operations and other known methods are used.
  • the sample that may contain RNA virus applied to the method of the present invention may be a biological discharge sample itself, or may be prepared by performing virus concentration, separation or other operations from a biological discharge sample. It may be a sample.
  • concentration, separation, and other operations include monosaccharide addition, polysaccharide addition, virus adsorption substance addition, virus adsorption bacteria addition, centrifugation, dilution, precipitation, filtration, agitation, ultrasonic disruption / dispersion and the like.
  • concentration, separation, and other operations include monosaccharide addition, polysaccharide addition, virus adsorption substance addition, virus adsorption bacteria addition, centrifugation, dilution, precipitation, filtration, agitation, ultrasonic disruption / dispersion and the like.
  • precipitation operation it can carry out using alcohols, such as ethanol and isopropanol.
  • the sample subjected to the separation operation may be, for example, in the case of stool, suspended in water (sterile water or the like), physiological saline, buffer solution or the like, and a supernatant obtained by removing solids by centrifugation.
  • RNA viruses to be detected by the detection method of the present invention include non-enveloped RNA viruses.
  • non-enveloped RNA viruses include viruses belonging to the calicivirus family (Norovirus (NoV), Sapovirus (SV), feline calicivirus (FCV), etc.), group A rotavirus (RotaA), echovirus (E), Enterovirus (EV) etc. are mentioned.
  • the feline calicivirus (FCV) mentioned above is a substitute virus widely used for evaluation of a disinfectant, a cleaning agent, etc. instead of the human norovirus (HuNoV) which can not be culture
  • a strong alkali is also referred to as a strong base, and refers to a base having a large base dissociation constant, and in a narrow sense, the degree of ionization is nearly 1 in aqueous solution to quantitatively generate hydroxide ions,
  • the dissociation constant is about pK b ⁇ 0 (K b > 1).
  • Those which are water soluble and which are strong bases in aqueous solution are particularly strong alkalis.
  • the pH is 11 or more, preferably 12 or more, and more preferably 13 or more.
  • the strongly alkaline hydroxide used in the present invention is not particularly limited, but exemplified is a Group 1 element hydroxide or a Group 2 element hydroxide, or a mixture thereof. Alternatively, it may be a hydroxide of tetraalkylammonium.
  • hydroxides of lithium, sodium, potassium, rubidium or cesium, beryllium, magnesium, calcium, strontium, barium or radium hydroxide, europium, thallium hydroxide and the like are exemplified.
  • potassium hydroxide (KOH), sodium hydroxide (NaOH), lithium hydroxide (LiOH), or calcium hydroxide (Ca (OH) 2 ), or a combination thereof is included. More preferably, it is NaOH.
  • the method of the present invention for detecting RNA virus comprises the step of contacting a sample with a solution containing, for example, a strongly alkaline hydroxide. According to the above-mentioned process, the nucleic acid contained in the RNA virus in the sample becomes detectable without heat treatment.
  • Step (a) is a step of preparing an alkaline mixture containing a sample that may contain RNA virus.
  • a specific method for preparing an alkaline mixed solution for example, a method of adding a solution containing a strongly alkaline hydroxide to a sample possibly containing an RNA virus can be mentioned.
  • the concentration of the hydroxide in the strongly alkaline hydroxide solution in this case may be appropriately adjusted according to the mixing ratio with the sample, but as the final concentration of the hydroxide in the “alkaline mixed liquid” after mixing, Preferably, it is 10 mM to 100 mM, more preferably 20 mM to 70 mM, still more preferably 30 mM to 60 mM, still more preferably 30 to 40 mM.
  • the total concentration of the respective hydroxides satisfies the above range.
  • the concentration of sodium hydroxide is preferably 20 to 70 mM, more preferably 30 to 40 mM.
  • the mixing ratio of the sample and the strongly alkaline hydroxide solution is also not particularly limited, but the mixing ratio of the sample and the strongly alkaline hydroxide solution is preferably 1: 9 to 1: 3, more preferably 1: 6 to 1: 4. , Particularly preferably 1: 5.
  • solution means “aqueous solution” unless otherwise noted.
  • means for preventing RNA degradation may be added upon contact with a strongly alkaline hydroxide.
  • the means for preventing RNA degradation is not particularly limited, and includes means for inhibiting ribonuclease (RNase) activity, and examples include RNase inhibitor and chelating agents for metal ions necessary for activation of RNase.
  • RNase inhibitor include Recombinant RNase Inhibitor (2313A manufactured by Takara Bio Inc.).
  • the chelating agent and RNase inhibitor can be added as an aqueous solution or a solution of a known buffer.
  • those which are multidentately coordinated around a target metal ion are preferable.
  • those which are hexadentately coordinated can be suitably used, and examples thereof include aminocarboxylic acid type and phosphonic acid type.
  • EDTA ethylenediaminetetraacetic acid
  • CDTA cyclohexanediaminetetraacetic acid
  • EGTA glycol ether diamine tetraacetic acid
  • NTA glycol ether diamine tetraacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • HEDTA ethylenediaminetriacetic acid
  • TTHA triethylenetetraamine hexaacetic acid
  • GLDA glutamic acid diacetic acid
  • DHEG dihydroxyethyl glycine
  • phosphonic acid chelating agents examples include hydroxyethane diphosphonic acid (HEDP), methylene phosphonic acid (NTMP), phosphonobutane tricarboxylic acid (PBTC), ethylene diamine tetramethylene phosphonic acid (EDTMP) and the like.
  • HEDP hydroxyethane diphosphonic acid
  • NTMP methylene phosphonic acid
  • PBTC phosphonobutane tricarboxylic acid
  • ETMP ethylene diamine tetramethylene phosphonic acid
  • any chelating agent that inhibits ribonuclease activity such as citric acid, oxalic acid, phytic acid, gluconic acid and the like can be used in the present invention.
  • a plurality of chelating agents may be used in combination.
  • the concentration when using RNase inhibitor can be a known concentration applied to inhibit ribonuclease activity.
  • the concentration when using a chelating agent is not particularly limited as long as it is an effective concentration for inhibition of ribonuclease activity in a sample or detection of RNA in a sample.
  • the final concentration of the chelating agent is preferably 1 mM or more, more preferably 2 mM or more, still more preferably 3 mM or more, still more preferably 4 mM or more.
  • the final concentration of the chelating agent in the alkaline mixed solution is preferably 20 mM or less, more preferably 15 mM or less, and still more preferably 10 mM or less. It is also possible to use a plurality of types of chelating agents, in which case it is preferable that the total concentration of each chelating agent satisfies the above upper limit value or lower limit value.
  • the final concentration of EGTA in the alkaline mixture is 2 mM to 50 mM, preferably 4 mM to 40 mM More preferably, 6 mM to 30 mM, still more preferably 8 mM to 20 mM, particularly preferably 9 to 15 mM.
  • the concentration of EGTA in the alkaline mixture may be adjusted appropriately according to the concentration of the stool suspension. For example, when the concentration of the stool suspension is 20% (w / v), it is desirable to make the final concentration of EGTA twice the concentration described above.
  • the final concentration of EDTA in the alkaline mixture containing the sample is 1 mM to 45 mM, preferably 2 mM to 35 mM, more preferably Is 3 mM to 25 mM, more preferably 4 mM to 15 mM.
  • the concentration of EDTA in the alkaline mixture may be appropriately adjusted depending on the concentration of the stool suspension. When the concentration of the stool suspension is 20% (w / v), it is desirable to make the final concentration of EDTA twice the concentration described above.
  • the RNA virus of the present invention can be prepared by preparing in advance a solution containing the above-mentioned strongly alkaline hydroxide and, if desired, a means for inhibiting ribonuclease activity (herein also referred to as “pretreatment solution”).
  • pretreatment solution a means for inhibiting ribonuclease activity
  • the treatment of “a sample possibly containing RNA virus”, in other words, pretreatment of complementary DNA (cDNA) synthesis of viral genomic RNA can be conveniently performed.
  • concentration of the strongly alkaline hydroxide or ribonuclease activity inhibiting means in the pretreatment solution may be determined in consideration of the mixing ratio between the pretreatment solution and the sample.
  • the shape of the "sample possibly containing RNA virus" applied to the method of the present invention is not particularly limited, but in the case of a solid sample like feces or in the case of a biodischarge sample accompanied by viscosity, It is preferable to handle the prepared suspension of biological excretion sample as a sample.
  • a biological excretion sample As the suspension, one containing a biological excretion sample of 20% (w / v) or less is preferable. More preferably, it is 1% (w / v) to 20% (w / v), more preferably 1% (w / v) to 10% (w / v).
  • the above-mentioned suspension for example, the supernatant of fecal suspension may be used as a sample.
  • a sample prepared from a single sample or a sample prepared from a single sample may also be a sample prepared from a mixture of X type (X represents an integer of 2 or more) samples.
  • X represents an integer of 2 or more
  • the sample of type X may be stool from an individual of type X or stool of type X excreted by the same individual.
  • the type of X is not particularly limited. For example, in the case of inspection of three bacterial species (enterohemorrhagic E. coli, salmonella and Shigella), it is common in the food inspection industry to mix 50 specimens. , Can be helpful.
  • the purpose of detection is norovirus
  • there is a virus epidemic period and mixing too many samples will return cost and increase the number of tests.
  • it is preferable to appropriately adjust the number of samples to be mixed for example, by referring to the past positive rate.
  • 40 or less preferably, 30 or less, more preferably, 20 or less, still more preferably, 10 or less, particularly preferably, a mixture of 5 or less samples, or prepared from the mixed sample.
  • stirring, spin down, inversion mixing, pipetting and the like are used, but the method and container used are not limited.
  • the pretreatment liquid may contain a known substance added for the purpose of improving the reactivity and the like.
  • a substance to be added include a protein such as bovine serum albumin (BSA), a surfactant such as Tween-20, betaine, an acidic polymer, and the like, but are not limited thereto.
  • the reducing agent may or may not be contained in the alkaline mixture.
  • one of the preferred embodiments of step (a) is by suspending a sample possibly containing RNA virus in a solution containing a chelating agent and then adding a solution containing a strongly alkaline hydroxide. It is a process of preparing an alkaline mixed solution.
  • the step (b) is a step of leaving the mixed solution obtained in the step (a) without heating and also referred to as "pretreatment". Unlike the prior art, the alkaline mixed solution obtained by mixing the sample and the pretreatment solution can obtain sufficiently accurate results even if it is left without heating.
  • one of the preferred embodiments of step (b) is to carry out step (b) by standing at room temperature.
  • room temperature refers to the ambient temperature at which workers can easily work.
  • the temperature at which the mixed solution is allowed to stand is preferably 30 ° C. or less, more preferably 25 ° C. or less.
  • the treatment time ie, the standing time is not particularly limited, and after adding the alkaline mixed solution, it may be immediately subjected to RT-PCR, or may be held for 2 to 60 minutes before being subjected to RT-PCR, the number of samples It can adjust suitably according to. There is no big difference in the reaction depending on the retention time.
  • the preferable temperature range in this step is about 0 ° C. to 30 ° C.
  • the temperature range in this step is more preferably 0 ° C. to 25 ° C., still more preferably 0 ° C. to 20 ° C., still more preferably 0 ° C. to 15 ° C., still more preferably 0 ° C. to 10 ° C., more preferably 0 ° C. ⁇ 5 ° C.
  • the treatment time is not particularly limited, and after adding the alkaline mixed solution, it may be immediately subjected to RT-PCR, or may be held for 2 to 60 minutes before being subjected to RT-PCR, depending on the number of samples. It can be adjusted appropriately.
  • the alkaline mixed solution containing the sample contains a chelating agent, sufficiently accurate results can be obtained without the cooling.
  • step (b) and step (c) are integrated. become.
  • a method for detecting an RNA virus which comprises the step of subjecting to a synthesis reaction.
  • the step (c) can be carried out by adding a component such as a reverse transcriptase described later to the mixed solution obtained in the step (a).
  • step (a) is carried out after suspending a sample possibly containing RNA virus in a solution containing a chelating agent.
  • step (a) is carried out after suspending a sample possibly containing RNA virus in a solution containing a chelating agent.
  • This is a step of preparing an alkaline mixed solution by adding a solution containing a strongly alkaline hydroxide.
  • Step (c) is a step of subjecting the mixture after leaving in step (b) to a cDNA synthesis reaction.
  • the alkaline mixed solution containing the sample treated in step (b) as described above (herein also described as “sample after pretreatment”) is subjected to reverse transcription reaction and contained in the mixed solution.
  • DNA (cDNA) complementary to the RNA can be synthesized.
  • the addition ratio of the sample after the pretreatment is not limited when it is used for reverse transcription, and it may be a rate at which reverse transcription can be appropriately performed.
  • the sample after pretreatment is added to the reverse transcription reaction solution in the range of 1 to 30% (v / v).
  • v / v a rate at which reverse transcription can be appropriately performed.
  • reaction solution composition of the reverse transcription reaction includes one containing a reverse transcription primer having a sequence complementary to the RNA to be detected, salts, deoxyribonucleotides (dNTP), reverse transcriptase, and a buffer.
  • salts MgCl 2 , KCl, etc. are used, but divalent metal ions (generally, Mg 2+ ions) are essential for reverse transcriptase activity. Adjustment of the final concentration of salts or change to other salts may be performed as appropriate.
  • metal ions consumed by the chelating agent may be supplemented to the reverse transcription reaction solution.
  • Mg 2+ ion may be added to the reverse transcription reaction liquid in consideration of the amount of EDTA carried into the reverse transcription reaction liquid.
  • other components capable of coexisting in the reverse transcription reaction may be added.
  • the reverse transcriptase used in this step is not particularly limited, and any known reverse transcriptase can be used.
  • Specific examples of reverse transcriptase include Tth DNA polymerase from Thermus thermophilus; reverse transcriptase from mouse retrovirus such as Moloney murine leukemia virus (MMLV); and Rous associated virus (RAV) and Avian myeloblastosis virus (AMV) And reverse transcriptases from avian retroviruses.
  • the sample after pretreatment is added to an enzyme reaction solution (for example, a reverse transcription reaction solution)
  • the sample is directly added to the enzyme reaction solution if the buffer capacity of the enzyme reaction solution is an effective range.
  • the neutralization step of strongly alkaline hydroxide by contact with a neutralizeable substance ie, mixing of alkalinity It may include contacting the liquid with a neutralizeable substance.
  • the sample after pretreatment may be neutralized by bringing it into contact with a neutralizeable substance, but it is more preferable to add a neutralizeable substance to the enzyme reaction solution in terms of simplification of the procedure.
  • the neutralizable substance used here is not particularly limited as long as it is an acidic substance which does not inhibit the enzyme reaction, and, for example, any organic acid or inorganic acid can be used.
  • Specific examples of the substance that can be neutralized include, for example, formic acid, acetic acid, citric acid, oxalic acid, succinic acid, lactic acid, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, boric acid and the like.
  • the range of the pH of the mixture after contact with the neutralizeable substance is preferably 6.0 to 8.0, more preferably 6.5 to 7.5.
  • the reverse transcription reaction solution may contain a known substance added for the purpose of improving the reactivity and the like.
  • the substance to be added include a protein such as bovine serum albumin (BSA), a surfactant such as Tween-20, betaine, an acidic polymer, and the like, but are not limited thereto.
  • BSA bovine serum albumin
  • a surfactant such as Tween-20
  • betaine an acidic polymer, and the like
  • dNTP is normally used in four types of dATP, dGTP, dCTP and dTTP
  • dUTP may be further added to the reaction solution in order to prevent contamination of the PCR amplification product as a template for other nucleic acid amplification reactions. .
  • the nucleic acid amplification product obtained in this reaction will be incorporated with dUTP, and the aforementioned nucleic acid amplification can be carried out by causing Uracil-N-glycosyrase (UNG) having the activity of degrading uracil-containing DNA to act before the nucleic acid amplification reaction. It can disassemble things. In this way, it is possible to prevent contamination resulting from the amplification product obtained in the previously performed reaction from being mixed into the later reaction.
  • Uracil-N-glycosyrase UNG
  • Step (d) is a step of nucleic acid amplification using the cDNA obtained in step (c) as a template.
  • nucleic acid amplification using the obtained cDNA as a template can be used to detect a trace amount of viral genomic RNA. Therefore, in the present invention, it is more preferable to further include the step (d).
  • the nucleic acid amplification method used in step (d) is not particularly limited, a method of synthesizing complementary DNA (cDNA) of RNA by reverse transcription reaction (RT) to amplify the cDNA, such as RT-LAMP method or the like RT-PCR can be used.
  • RT-LAMP method reverse transcription reaction
  • the One-Step method which is possible with the same reaction solution is preferred. That is, in the one-step method, it is one of the features that the step (c) and the step (d) proceed in the same reaction solution.
  • the addition ratio of the sample after the pretreatment or the solution obtained through the step (c) is not limited when used for nucleic acid amplification, as long as nucleic acid synthesis can be appropriately performed. good.
  • the sample after pretreatment or the solution obtained through step (c) is added in the range of 1 to 30% (v / v) in the reaction solution.
  • One-Step RT-PCR is performed with a reaction solution having a volume of 25 ⁇ L, 0.5 to 6 ⁇ L of the sample after pretreatment or the solution obtained through step (c) is added.
  • one primer is a pair of two pairs of PCR primer pairs complementary to each other to the DNA extension product of the other primer, salts, deoxyribonucleotides, thermostable DNA polymerase and buffer
  • a solution containing a solution there is a solution containing a solution.
  • salts MgCl 2 , KCl and the like are used, but a bivalent metal ion (generally Mg 2+ ion) is essential for DNA polymerase activity. Adjustment of the final concentration of salts or change to other salts may be performed as appropriate.
  • the metal ion consumed by the chelating agent may be replenished.
  • the amount of Mg 2+ ion may be adjusted in consideration of the amount of EDTA carried into the PCR reaction solution.
  • other components that can be made to coexist in PCR may be added.
  • An oligonucleotide complementary to a nucleotide sequence possessed by the virus to be detected is preferable as the pair of PCR primer pairs.
  • FCV feline calicivirus
  • norovirus (NoV) the base sequence described in SEQ ID NO: 4 in the sequence listing and the base sequence described in SEQ ID NO: 5 are used as a pair of two pairs of PCR primers.
  • nucleotide sequence of SEQ ID NO: 7 in the sequence listing and the nucleotide sequence of SEQ ID NO: 8 can be used as a pair of PCR primer pairs.
  • base sequences defined in these SEQ ID NOs those in which one or more (preferably 2 to 5) bases are deleted, substituted or added can also be used as a primer.
  • thermostable DNA polymerase is not particularly limited, and known ones can be used.
  • Taq DNA polymerase or Tth DNA polymerase belonging to family A Poly I type
  • KOD DNA polymerase belonging to family B alpha type
  • Pfu DNA polymerase, Pwo DNA polymerase, Ultima DNA polymerase, PrimeSTAR (registered trademark) DNA polymerase Series (HS, GXL, Max) etc. are mentioned. Two or more of these may be used in combination.
  • the nucleic acid amplification reaction solution may contain a known substance to be added for the purpose of improving the reactivity and the like.
  • the substance to be added include a protein such as bovine serum albumin (BSA), a surfactant such as Tween-20, betaine, an acidic polymer, and the like, but are not limited thereto.
  • BSA bovine serum albumin
  • a surfactant such as Tween-20
  • betaine an acidic polymer, and the like
  • dNTP may be further added to the reaction solution in order to prevent contamination of the PCR amplification product as a template for other nucleic acid amplification reactions. .
  • the nucleic acid amplification product obtained in this reaction will be incorporated with dUTP, and the aforementioned nucleic acid amplification can be carried out by causing Uracil-N-glycosyrase (UNG) having the activity of degrading uracil-containing DNA to act before the nucleic acid amplification reaction. It can disassemble things. In this way, it is possible to prevent contamination resulting from the amplification product obtained in the previously performed reaction from being mixed into the later reaction.
  • Uracil-N-glycosyrase UNG
  • RT-PCR An example of the “embodiment in which step (c) and step (d) are performed in the same reaction solution”, which is a preferred embodiment of the method of the present invention, includes RT-PCR.
  • a cDNA synthesis primer can double as one primer of a PCR primer pair.
  • Multiplex RT-PCR is a reaction including a plurality of primers for cDNA synthesis and a primer pair for PCR so as to obtain plural kinds of amplification products in one reaction.
  • a probe for detecting an amplification product may be used.
  • FCV feline calicivirus
  • an oligonucleotide having the base sequence shown in SEQ ID NO: 1 in the sequence listing can be used as an example.
  • NoV norovirus
  • an oligonucleotide having the base sequence shown in SEQ ID NO: 6 in the sequence listing or an oligonucleotide having the base sequence shown in SEQ ID NO: 9 in the sequence listing Can be mentioned.
  • those in which one or more (preferably 2 to 5) bases are deleted, substituted or added can also be used as a probe.
  • Such a probe may be labeled with a known fluorescent substance and / or a fluorescence suppressing substance.
  • a reaction solution for RT-PCR is prepared using the sample after pretreatment and a reverse transcriptase and the like, and steps (c) and (d) are performed using a known thermal cycler. And in the same reaction solution.
  • the reaction solution for RT-PCR includes various components as described above, for example, a sample after pretreatment, a buffer solution, a reverse transcriptase, a PCR enzyme, a divalent metal salt, dNTPs, a reducing agent, an appropriate primer, an appropriate probe, and sterilization. Water and the like are appropriately selected and combined and prepared.
  • the cDNA obtained from the RNA contained in the sample, and the DNA fragment amplified and generated using the cDNA as a template are obtained by electrophoresis, melting curve method, various probe methods (Q probe, scorpion probe, hybrid probe etc.) It can be detected and identified.
  • it is a device equipped with a temperature raising / lowering function and a fluorescence measurement function, using TaqMan (registered trademark) probes, intercalating dyes, etc., DNA fragments generated during the reaction can be detected and identified in real time. it can.
  • the non-enveloped RNA virus to be detected is specifically determined. It can be detected.
  • the present invention provides a kit for a method of detecting the presence or absence of the aforementioned non-enveloped RNA virus.
  • the kit of the present invention is characterized in that it contains the strongly alkaline hydroxide as a component for processing a sample to be subjected to detection of RNA virus.
  • Said strongly alkaline hydroxide is contained in the kit as a solution, preferably as an aqueous solution (e.g. as said pretreatment liquid).
  • the concentration of the strongly alkaline hydroxide may be adjusted to a final concentration suitable for the method of the present invention when added to the sample, and is not particularly limited.
  • the solution containing a strongly alkaline hydroxide may be a kit containing a solution containing a means for inhibiting ribonuclease activity (eg, a chelating agent and / or RNase inhibitor).
  • a means for inhibiting ribonuclease activity eg, a chelating agent and / or RNase inhibitor.
  • the solution containing the means for inhibiting the ribonuclease activity may be an independent component of the kit, or the solution containing the strongly alkaline hydroxide may be the component containing the means for inhibiting the ribonuclease activity.
  • the kit of the present invention may contain a solution for diluting or suspending samples and various reagents.
  • a reagent for detecting RNA from the target RNA virus is suitable.
  • a reagent for reverse transcription reaction for example, reverse transcriptase and reverse transcription reagent
  • a template for example, nucleic acid for amplifying the cDNA or a part thereof
  • reagents for amplification reactions eg, thermostable DNA polymerase and reagents for DNA polymerase chain reaction
  • reagents for detecting amplified nucleic acid fragments are also exemplified.
  • these reagents in addition to the above-mentioned reagents described for the method of the present invention, those used for known RNA detection techniques can be used.
  • the kit of the present invention contains primers and probes for specifically detecting the target RNA virus. These primers and probes can be synthesized based on the sequence of the genomic RNA of the RNA virus.
  • a preferred example of the kit of the present invention is a sample pretreatment solution (eg, a solution containing a strongly alkaline hydroxide, and optionally a chelating agent and / or RNase inhibitor) and a One-Step RT-PCR reaction solution.
  • a sample pretreatment solution eg, a solution containing a strongly alkaline hydroxide, and optionally a chelating agent and / or RNase inhibitor
  • Those containing components for preparation eg, reaction buffer, reverse transcriptase, DNA polymerase, dNTP mixture, primers, probes etc. prepared at appropriate concentrations
  • a kit in which some of the components described above are mixed can easily prepare a reaction solution.
  • Example 1 Examination of basic substance concentration at alkaline treatment VR-782, Feline calicivirus purchased from American Type Culture Collection (ATCC), F-9 (Caliciviridae), feline calicivirus (FCV) with physiological saline so as to be 20 times The dilution was made into a virus suspension. Separate FCV Primer / Probe Mix was created to detect FCV. 4 ⁇ L each of 6.25, 12.5, 25, 100 mM NaOH solution was added to 1 ⁇ L of the suspension to prepare an alkaline mixed solution of NaOH at a final concentration of 5 mM, 10 mM, 20 mM, 40 mM and 80 mM. The mixture was allowed to stand at room temperature (27 ° C.) for 5 minutes and then used as a sample after pretreatment.
  • ATCC American Type Culture Collection
  • F-9 Caliciviridae
  • FCV feline calicivirus
  • a reaction solution for RT-PCR of the following composition is prepared using the sample after this pretreatment and components of the TaKaRa norovirus GI / GII detection kit (for high-speed detection) (RR296A manufactured by Takara Bio Inc.).
  • the reaction solution was immediately subjected to RT-PCR under the following reaction conditions, and quantification by Ct value was performed according to the operation manual. Two experiments were performed per NaOH solution of one concentration, and the average value of Ct values was shown in the results.
  • the Ct value is the cycle number at which a specific fluorescence value is reached, and indicates the quantitative ratio of amplification products. That is, the smaller the Ct value, the larger the amplification amount.
  • the product Code No. TP-990 ThermalCycler Dice (registered trademark) RealTime System III was used as the nucleic acid amplification apparatus.
  • FCV Primer / Probe Mix 2 ⁇ M FCV detection primer CCATTGGTGCTAATAGGGAAAGG (SEQ ID NO: 1) 2 ⁇ M FCV detection primer CCACCACGAGCACCAGTTT (SEQ ID NO: 2) 2 ⁇ M FCV detection probe FAM-TGCGCATCAGCACGCTTTCCC-BHQ1 (SEQ ID NO: 3)
  • reaction solution for RT-PCR 5.0 ⁇ L pretreated sample 12.0 ⁇ L PCR Buffer (NV) 4 2.5 ⁇ L FCV Primer / Probe Mix 1.5 ⁇ L Enzyme Mix (NV) 4 4.0 ⁇ L sterile water
  • reaction conditions The reaction liquid (25 ⁇ L) was reacted in the following temperature cycle. 42 ° C 5min, 95 ° C 30 sec, 95 ° C 5sec-54 ° C 30sec 45 cycles (FAM, ROX, Cy5 fluorescence detection)
  • Example 2 Examination of storage time at room temperature 4 ⁇ L of 50 mM NaOH solution was added to 1 ⁇ L of the FCV suspension prepared in Example 1 to prepare 5 ⁇ L of an alkaline mixed solution of NaOH final concentration 40 mM and left at room temperature (27 ° C.) . The mixture was used as a pretreated sample. A reaction solution for RT-PCR of the same composition as in Example 1 was prepared using the sample after this pretreatment, subjected to RT-PCR under the same reaction conditions as in Example 1, and the Ct value was determined. The following tests 1 to 6 were conducted as examination of the room temperature standing time.
  • Test No. 1 After adding NaOH, PCR Buffer (NV) 4 etc. was immediately added and mixed to prepare a reaction solution for RT-PCR.
  • Test No. 2 was left at room temperature for 1 minute after addition of NaOH, and a reaction solution for RT-PCR was similarly prepared.
  • Test No. 3 was left at room temperature for 2 minutes after addition of NaOH, and a reaction solution for RT-PCR was similarly prepared.
  • Test No. 4 was left at room temperature for 5 minutes after addition of NaOH, and a reaction solution for RT-PCR was similarly prepared.
  • Test No. 5 was left at room temperature for 30 minutes after addition of NaOH, and a reaction solution for RT-PCR was similarly prepared.
  • Test No. 1 After adding NaOH, PCR Buffer (NV) 4 etc. was immediately added and mixed to prepare a reaction solution for RT-PCR.
  • Test No. 2 was left at room temperature for 1 minute after addition of NaOH, and a reaction solution for RT-PCR was similarly prepared.
  • Test No. 3 was left at room
  • Example 3 Confirmation of Reactivity by Environmental Temperature
  • 5 ⁇ L of 42 mM NaOH solution was added to prepare an alkaline mixed solution of NaOH with a final concentration of 35 mM.
  • the mixture was allowed to stand on ice at room temperature (27 ° C.), 37 ° C., and 50 ° C. for 10 minutes, respectively, to obtain a sample after pretreatment.
  • a reaction solution for RT-PCR having the same composition as in Example 1 was prepared using the sample after this pretreatment and the components of the TaKaRa norovirus GI / GII detection kit (for high-speed detection) (RR296A manufactured by Takara Bio Inc.). The reaction solution was immediately prepared for RT-PCR under the same conditions as in Example 1 to obtain a Ct value. The experiment was performed twice per one temperature condition, and the average value of the Ct value was shown in the result.
  • Example 4 Detection of Viral RNA Using a Fecal Sample
  • a norovirus positive fecal sample was suspended in PBS so as to be 5-10% (w / v), and then centrifuged at 15,000 rpm for 5 minutes. 12, 24, 42, 66, and 5 mM each of a 96 mM NaOH solution were added to 1 ⁇ L of the supernatant to prepare an alkaline mixed solution with a final NaOH concentration of 10, 20, 35, 55, 80 mM. The mixture was allowed to stand at room temperature (27 ° C.) for 5 minutes, and used as a sample after pretreatment. In addition, an NV Primer / Probe Mix was separately prepared to detect norovirus.
  • a reaction solution for RT-PCR of the following composition was prepared using the sample after this pretreatment and the components of the TaKaRa norovirus GI / GII detection kit (for high-speed detection) (RR296A manufactured by Takara Bio Inc.), The product was subjected to RT-PCR under the following reaction conditions to determine the Ct value.
  • NV Primer / Probe Mix 4 ⁇ M NV detection primer CGYTGGATGCGNTTYCATGA (SEQ ID NO: 4) 4 ⁇ M NV detection primer CTTAGACGCCATCATCATTYAC (SEQ ID NO: 5) 2 ⁇ M NV detection probe FAM-AGATYGCGATCYCCTGTCCA-BHQ1 (SEQ ID NO: 6) 4 ⁇ M NV detection primer CARGARBCNATGTYAAGRTGGATGAG (SEQ ID NO: 7) 4 ⁇ M NV detection primer TCGACGCCATCTTCATTCACA (SEQ ID NO: 8) 2 ⁇ M NV detection probe ROX-TGGGAGGGGSGATCGCRACTT-BHQ2 (SEQ ID NO: 9)
  • Norovirus GI can be detected by the combination of the primer and the probe shown in the above SEQ ID NO: 4 to 6, and norovirus GII can be detected by the combination of the primer and the probe shown above SEQ ID NO: 7 to 9 it can.
  • reaction solution for RT-PCR 6.0 ⁇ L pretreated sample 12.0 ⁇ L PCR Buffer (NV) 4 2.5 ⁇ L NV Primer / Probe Mix 4 1.5 ⁇ L Enzyme Mix (NV) 4 3.0 ⁇ L sterile water
  • reaction conditions The reaction liquid (25 ⁇ L) was reacted in the following temperature cycle. In addition, since fluorescence detection was not performed for the first 5 cycles, the result described Ct value which added 5 cycles. 42 ° C 5min, 95 ° C 30 sec, 95 ° C 5sec-56 ° C 40sec 5 cycles 90 ° C 5sec-56 ° C 40sec 35 cycles (FAM, ROX, Cy5 fluorescence detection)
  • Example 5 Examination of the room temperature standing time using a stool sample To 1 ⁇ L of the supernatant of the norovirus positive suspension prepared in the same manner as in Example 4, 5 ⁇ L of 42 mM NaOH solution was added to prepare an alkaline mixed solution. The mixture was allowed to stand at room temperature (27 ° C.) for 2, 5, 10, 20, and 30 minutes, respectively, to obtain a sample after pretreatment.
  • a reaction solution for RT-PCR having the same composition as in Example 4 was prepared using the sample after this pretreatment and components of the TaKaRa norovirus GI / GII detection kit (for high-speed detection) (RR296A manufactured by Takara Bio Inc.). It was prepared and subjected to RT-PCR under the same reaction conditions as in Example 4, and the Ct value was determined.
  • Example 6 Confirmation of reactivity by environmental temperature using a fecal sample: 5 ⁇ L of 42 mM NaOH solution is added to 1 ⁇ L of the supernatant of the norovirus positive suspension prepared in the same manner as in Example 4 and alkaline mixed with a final concentration of 35 mM of NaOH The solution was prepared. The mixture was allowed to stand on ice for 2, 5, 10, 20, 30 minutes, and used as a sample after pretreatment.
  • a reaction solution for RT-PCR having the same composition as in Example 4 was prepared using the sample after this pretreatment and components of the TaKaRa norovirus GI / GII detection kit (for high-speed detection) (RR296A manufactured by Takara Bio Inc.). It was prepared and subjected to RT-PCR under the same reaction conditions as in Example 4, and the Ct value was determined.
  • Example 7 Confirm the reactivity in the case of adding a chelating agent to the method of pretreatment at room temperature and the method of pretreatment at room temperature 42 mM NaOH solution for 1 ⁇ L of the supernatant of norovirus positive suspension prepared as in Example 4
  • An alkaline mixture (final volume 6 ⁇ L) was prepared by adding 5 ⁇ L (final concentration of NaOH is 35 mM).
  • the solution was prepared, subjected to RT-PCR under the same reaction conditions as in Example 4, and the Ct value was determined.
  • step (b) it was thought that by adding a chelating agent to the pretreatment step of step (b), it acts on Mg 2+ ions in the RT-PCR reaction solution to affect RT-PCR.
  • the other reaction conditions are the same as in Example 4.
  • the white bar is the result of pretreatment with an alkaline mixture containing EGTA at room temperature and subsequent Mg 2+ ion replenishment in the RT-PCR reaction.
  • the black bars are the results of pretreatment with an alkaline mixed solution containing no EGTA at room temperature.
  • a decrease in Ct value was observed by the addition of a chelating agent.
  • Example 8 Confirm the reactivity when adding a chelating agent to the method of pre-treating on ice and the method of pre-treating at room temperature 42 ⁇ M of the supernatant on 1 ⁇ L of the supernatant of the norovirus positive suspension prepared as in Example 4 5 ⁇ L of aqueous NaOH solution (final concentration 35 mM) was added to prepare an alkaline mixture (final volume 6 ⁇ L). The mixture was left on ice for 30 minutes.
  • the white bar graph is the result of performing step (b) on ice.
  • Black bars are the result of carrying out step (b) in the presence of EDTA at room temperature and subsequent Mg 2+ ion supplementation in the RT-PCR reaction.
  • a chelating agent was added to the method for treating on ice and the method for treating at room temperature, the results of RT-PCR showed similar reactivity.
  • Example 9 Timing of Chelating Agent Addition Norovirus-positive stool samples were suspended in 100 mM EGTA disodium solution to be a 10% (w / v) stool suspension. At this time, the EGTA concentration is 60 mM at the final concentration. Next, 5 ⁇ L of NaOH solution was added to 1 ⁇ L of the stool suspension. At this time, the NaOH concentration is 35 mM at the final concentration. Ct value when subjecting 6 ⁇ L of the alkaline mixture immediately to RT-PCR and Ct value when subjecting to RT-PCR after holding on room temperature (27 ° C.) or ice for 5 minutes, 15 minutes or 30 minutes respectively Compared.
  • the reaction solution for RT-PCR is the same as that of Example 4. Also in this example, as in Example 8, Mg 2+ ion was added to the RT-PCR solution so that the Mg 2+ ion concentration became 1 mM plus.
  • Mg 2+ ion was added to the RT-PCR solution so that the Mg 2+ ion concentration became 1 mM plus.
  • Four types of real samples namely fecal samples 18-016 and 18-017 of Norovirus GI collected from subjects, and GII positive samples 18-077 and 18-078 were used as test samples.
  • the reaction conditions were as follows.
  • the thermal cycler is the same as in Example 4.
  • the Ct values of RT-PCR were compared after they were kept for 5 minutes, 15 minutes or 30 minutes at room temperature or on ice, respectively, based on the Ct value when subjected to RT-PCR immediately after preparation of the alkaline mixed solution. Regardless of the temperature and the holding time, it was confirmed that the Ct values were almost the same as the reference Ct values. From this, even if the fecal sample is suspended in a solution containing a chelating agent first and then treated with alkali, the target non-enveloped virus can be efficiently detected regardless of the room temperature or the time of keeping on ice.
  • the present invention is used for food hygiene inspection, environmental inspection, clinical diagnosis and the like.

Abstract

The present invention relates to a method for detecting the presence or absence of a non-enveloped RNA virus in a sample derived from a specimen discharged by a living organism. According to the present invention, the time and cost required for separating and purifying a nucleic acid before a nucleic acid amplification reaction can be reduced, and the risk of sample loss and carry-over can be lowered. The benefits exhibited by the present invention are particularly significant in tests processing several specimens of feces samples.

Description

非エンベロープ型RNAウイルスの有無を検出する方法Method for detecting the presence or absence of non-enveloped RNA virus
  本発明は、RNAウイルスの検出方法に関する。本発明は、生命科学研究、臨床診断や食品衛生検査、環境検査等にも利用できる。 The present invention relates to a method for detecting RNA virus. The present invention can also be used for life science research, clinical diagnosis, food hygiene inspection, environmental inspection and the like.
 核酸増幅法は数コピーの標的核酸を検出可能なレベル、すなわち数億コピー以上に増幅する技術であり、生命科学研究分野のみならず、遺伝子診断、臨床検査といった医療分野、あるいは、食品や環境中の微生物検査等においても、広く用いられている。 Nucleic acid amplification is a technology that amplifies several copies of a target nucleic acid to detectable levels, that is, hundreds of millions of copies, and is not only in the field of life science research, but also in the medical field such as gene diagnosis and clinical examination, or in food and the environment. Are also widely used in the field of microbial testing and the like.
 核酸増幅法を利用した検査の対象となる検体は、目的に応じて様々である。感染症原因菌の検出であれば、原因菌が存在しうる検体すなわち、尿、喀痰、糞便、血液、鼻腔液、膣分泌液などである。食品衛生検査であれば食品、あるいは食品取扱者から採取された糞便や尿、環境衛生検査であれば土壌や河川水、雨水、海水などの環境水、製造設備等の拭き取り物などである。特に特徴的な症状が発生するまでの潜伏期間がある微生物が原因の食中毒については被害拡大防止のために迅速な検査法が求められており、その場合の検体としては糞便、製造設備等の拭き取り物などになる。 The samples to be tested using the nucleic acid amplification method vary depending on the purpose. In the case of detection of infectious disease-causing bacteria, specimens in which the causative bacteria are present, that is, urine, sputum, feces, blood, nasal fluid, vaginal fluid and the like. In the case of food hygiene inspection, it is food or feces and urine collected from a food handler, and in environmental hygiene inspection it is soil, river water, rain water, environmental water such as seawater, wipes from manufacturing facilities, etc. With regard to food poisoning caused by microorganisms, which have a latent period before the occurrence of characteristic symptoms, a rapid test method is required to prevent the spread of damage. It becomes a thing etc.
 ところが検体によっては核酸以外の物質も多量に含んでおり、特に酵素を利用した核酸増幅反応を効率的に行うには通常は検体中の核酸の分離精製が必要とされている。前記核酸の分離精製には様々な手法があるが、基本的には核酸と他の物質を固体相と液体相に分けて固液分離する工程から構成される。例えばエタノール沈殿で核酸を固体相とし遠心分離で分離する方法、固相(例えばビーズ)上の核酸に標的核酸をハイブリダイズし、遠心分離や磁性化体で分離する方法がある。しかし、検体中の成分の分離をともなうこれらの精製法は、操作が煩雑で、かつ時間を要し、操作中に分解やコンタミネーションを生じる危険性がある。また、検体中の核酸含量が少ない場合には、増幅反応に必要な量を回収することができない場合もある。さらに核酸増幅法に要する時間は長くても数時間ほどであるが、このサンプル核酸調製に時間を要すると結果を得るまでの迅速性が失われることにもなる。したがって、検体を、別の容器への分離操作をともなう精製工程を経ることなく反応液へ持込み、標的核酸を増幅する方法が求められていた。 However, depending on the sample, a large amount of substances other than nucleic acids are contained, and in particular, separation and purification of the nucleic acid in the sample is usually required in order to efficiently perform a nucleic acid amplification reaction using an enzyme. Although there are various methods for separating and purifying the nucleic acid, basically, it comprises a step of separating the nucleic acid and other substances into a solid phase and a liquid phase and performing solid-liquid separation. For example, there is a method of separating nucleic acid into solid phase by ethanol precipitation and separating it by centrifugation, or a method of hybridizing target nucleic acid to nucleic acid on solid phase (for example, beads) and separating it by centrifugation or magnetizing agent. However, these purification methods involving separation of components in the sample are complicated and time-consuming to operate, and there is a risk of decomposition or contamination during the operation. In addition, when the nucleic acid content in the sample is low, it may not be possible to recover the amount necessary for the amplification reaction. Furthermore, although the time required for the nucleic acid amplification method is at most about several hours, if this sample nucleic acid preparation requires time, the rapidity until obtaining the result may be lost. Therefore, there has been a need for a method of amplifying a target nucleic acid by bringing a sample into a reaction solution without passing through a purification step involving separation operation into another container.
 このような方法として、例えば、特許文献1では糞便の懸濁上清液にアルカリ含有液を添加し加熱処理したサンプルを反応液に直接添加し核酸増幅反応を実施する方法が開示されている。また特許文献2では糞便の懸濁上清液に対しペクチナーゼ処理を行い加熱処理したサンプルを反応液に直接添加し核酸増幅反応を実施する方法が開示されている。 As such a method, for example, Patent Document 1 discloses a method in which an alkali-containing solution is added to a suspension supernatant of stool and a heat-treated sample is directly added to a reaction solution to carry out a nucleic acid amplification reaction. Further, Patent Document 2 discloses a method of performing a nucleic acid amplification reaction by directly adding a heat-treated sample to a reaction solution by subjecting a feces suspension supernatant solution to pectinase treatment.
 特許文献1、2及び非特許文献1、2の実施例では検体中のRNAを検出するため核酸増幅法としてRT-PCRが実施されている。しかし上記方法のRNAサンプル調製ではいずれも加熱処理が行われている。また特許文献2には、加熱処理によるRNAの加水分解の危険性が記載されているものの、加熱処理の必要性が記載されている。このように従来の方法では、いずれの方法においても核酸抽出及び反応阻害物失活のために、加熱工程は必須と考えられてきた。 In Examples of Patent Documents 1 and 2 and Non-patent Documents 1 and 2, RT-PCR is performed as a nucleic acid amplification method to detect RNA in a sample. However, in the RNA sample preparation of the above method, heat treatment is performed. Patent Document 2 describes the danger of hydrolysis of RNA due to heat treatment, but the need for heat treatment is described. Thus, in the conventional methods, the heating step has been considered essential for nucleic acid extraction and reaction inhibitor inactivation in any method.
WO2007/052765WO2007 / 052765 特開2015-119656Japanese Patent Application Publication No. 2015-119656
 本発明の目的は、試料からの核酸精製が特に不要な核酸増幅反応による標的核酸の検出を可能にすることである。 An object of the present invention is to enable detection of a target nucleic acid by a nucleic acid amplification reaction in which purification of nucleic acid from a sample is particularly unnecessary.
 本発明者らは、鋭意検討した結果、特に加熱処理工程を必要とせず、また試料中の核酸を別の容器への分離をともなう精製を行わずに増幅反応に供することができる方法を見出し、本発明を完成した。 As a result of intensive studies, the present inventors have found a method that does not require a heat treatment step and that the nucleic acid in the sample can be subjected to an amplification reaction without purification with separation into another container. The present invention has been completed.
 代表的な本願発明は以下の通りである。
[1] 排出検体に由来する試料中の、非エンベロープ型RNAウイルスの有無を検出する方法であって、
(a)RNAウイルスを含有する可能性のある試料を含むアルカリ性の混合液を調製する工程、
(b)工程(a)で得られた混合液を加熱せず放置する工程、及び
(c)工程(b)の放置後の混合液をcDNA合成反応に供する工程、
を包含する、RNAウイルスの検出方法。
[2] 工程(a)が、RNAウイルスを含有する可能性のある試料に強アルカリ性の水酸化物を含む溶液を添加することにより、アルカリ性の混合液を調製する工程である、前記[1]記載の方法。
[3] 工程(a)が、RNAウイルスを含有する可能性のある試料をキレート剤を含む溶液で懸濁した後に、強アルカリ性の水酸化物を含む溶液を添加することにより、アルカリ性の混合液を調製する工程である、前記[1]記載の方法。
[4] 強アルカリ性の水酸化物が、水酸化ナトリウム、水酸化カリウム、水酸化リチウム及び水酸化カルシウムからなる群より選択される1種以上である、前記[2]又は[3]記載の方法。
[5] 工程(a)におけるアルカリ性の混合液が水酸化ナトリウムを含有し、該水酸化ナトリウムの濃度が20~70mMである、前記[1]~[4]のいずれか1項に記載の方法。
[6] 工程(d)として、工程(c)で得られたcDNAを鋳型とする核酸増幅の工程をさらに含むことを特徴とする、前記[1]~[5]のいずれか1項に記載の方法。
[7] 工程(d)における核酸増幅が、PCRにより実施されることを特徴とする、前記[6]記載の方法。
[8] 工程(c)と工程(d)が、同一の反応液内で行われることを特徴とする、前記[6]又は[7]記載の方法。
[9] 工程(b)が、室温での放置により実施されることを特徴する、前記[1]~[8]のいずれか1項に記載の方法。
[10] 工程(b)が、30℃以下での放置により実施されることを特徴する、前記[1]~[9]のいずれか1項に記載の方法。
The representative present invention is as follows.
[1] A method for detecting the presence or absence of non-enveloped RNA virus in a sample derived from a sample to be excreted, comprising:
(A) preparing an alkaline mixture comprising a sample that may contain RNA virus;
(B) leaving the mixed solution obtained in step (a) without heating, and (c) applying the mixed solution after leaving in step (b) to a cDNA synthesis reaction,
Methods of detecting RNA viruses, including
[2] The step (a) is a step of preparing an alkaline mixed solution by adding a solution containing a strongly alkaline hydroxide to a sample possibly containing RNA virus, [1] Method described.
[3] An alkaline mixed solution by adding a solution containing a strongly alkaline hydroxide after step (a) suspends a sample possibly containing RNA virus with a solution containing a chelating agent The method according to [1] above, which is a step of preparing
[4] The method according to the above [2] or [3], wherein the strongly alkaline hydroxide is one or more selected from the group consisting of sodium hydroxide, potassium hydroxide, lithium hydroxide and calcium hydroxide .
[5] The method according to any one of the above [1] to [4], wherein the alkaline mixed solution in the step (a) contains sodium hydroxide, and the concentration of the sodium hydroxide is 20 to 70 mM. .
[6] The process according to any one of the above [1] to [5], which further comprises a step of nucleic acid amplification using the cDNA obtained in step (c) as a template as the step (d). the method of.
[7] The method according to [6] above, wherein the nucleic acid amplification in step (d) is performed by PCR.
[8] The method according to the above [6] or [7], wherein the step (c) and the step (d) are carried out in the same reaction solution.
[9] The method according to any one of the above [1] to [8], wherein the step (b) is carried out by leaving at room temperature.
[10] The method according to any one of the above [1] to [9], wherein the step (b) is carried out by leaving at 30 ° C. or less.
[11] 生体排出検体が糞便であることを特徴とする、前記[1]~[10]のいずれか1項に記載の方法。
[12] 工程(a)におけるRNAウイルスを含有する可能性のある試料が、糞便懸濁液上清であることを特徴とする、前記[1]~[11]のいずれか1項に記載の方法。
[13] 糞便懸濁液上清が、糞便を滅菌水、生理食塩水又はPBSに懸濁して、調製されたことを特徴とする、前記[12]記載の方法。
[14] アルカリ性の混合液を、中和可能な物質と接触させることを特徴とする、前記[1]~[13]のいずれか1項に記載の方法。
[15] 中和可能な物質が、工程(c)におけるcDNA合成反応を実施する反応液中に含まれることを特徴とする、前記[14]記載の方法。
[16] 生体排出検体に由来する試料中の、非エンベロープ型RNAウイルスの有無を検出する方法であって、
(a)RNAウイルスを含有する可能性のある試料を含むアルカリ性の混合液を調製する工程、及び
(b’)工程(a)で得られた混合液を加熱することなくcDNA合成反応に供する工程、
を包含する、RNAウイルスの検出方法。
[17] 工程(a)が、RNAウイルスを含有する可能性のある試料をキレート剤を含む溶液で懸濁した後に、強アルカリ性の水酸化物を含む溶液を添加することにより、アルカリ性の混合液を調製する工程である、前記[16]記載の方法。
[18] 前記[1]又は[16]記載の方法のためのキットであって、
(i)強アルカリ性の水酸化物を含む溶液、
(ii)逆転写酵素、
(iii)逆転写反応用試薬、
(iv)耐熱性DNAポリメラーゼ、及び
(v)DNAポリメラーゼ連鎖反応用試薬、を含むキット。
[19] さらに、(vi)キレート剤を含む溶液、を含む前記[18]記載のキット。
[11] The method according to any one of the above [1] to [10], wherein the biological elimination sample is feces.
[12] The sample according to any one of [1] to [11] above, wherein the sample possibly containing an RNA virus in step (a) is fecal suspension supernatant. Method.
[13] The method according to [12], wherein the stool suspension supernatant is prepared by suspending stool in sterile water, saline or PBS.
[14] The method according to any one of the above [1] to [13], which comprises contacting the alkaline mixture with a neutralizeable substance.
[15] The method of the above-mentioned [14], wherein the neutralizeable substance is contained in the reaction solution for carrying out the cDNA synthesis reaction in the step (c).
[16] A method for detecting the presence or absence of a non-enveloped RNA virus in a sample derived from a biological excretion sample, comprising:
(A) preparing an alkaline mixture containing a sample possibly containing RNA virus; and (b ') subjecting the mixture obtained in step (a) to a cDNA synthesis reaction without heating. ,
Methods of detecting RNA viruses, including
[17] An alkaline mixed solution by adding a solution containing a strongly alkaline hydroxide after step (a) suspends a sample possibly containing RNA virus with a solution containing a chelating agent The method according to the above [16], which is a step of preparing
[18] A kit for the method according to [1] or [16],
(I) solutions containing strongly alkaline hydroxides,
(Ii) reverse transcriptase,
(Iii) Reagent for reverse transcription reaction,
A kit comprising (iv) a thermostable DNA polymerase, and (v) a reagent for DNA polymerase chain reaction.
[19] The kit according to the above [18], further comprising (vi) a solution containing a chelating agent.
 本発明によって、核酸増幅反応に先立ち核酸を分離精製するための時間・コストを削減することができる。さらに核酸を分離精製する際に生じる可能性のあるリスク、すなわち試料ロスやキャリーオーバーの危険性を低減することができる。特に糞便を試料とする多数の検体を処理するような検査において、その効果は顕著となる。 According to the present invention, the time and cost for separating and purifying nucleic acids prior to nucleic acid amplification reaction can be reduced. Furthermore, the risk that may occur when separating and purifying nucleic acids, that is, the risk of sample loss and carryover can be reduced. The effect becomes remarkable especially in the test which processes many specimens which make feces sample.
前処理濃度とRT-PCRの結果を示す図である。なお、図1~図5において、グラフの縦軸はCt値である。It is a figure which shows the result of pretreatment concentration and RT-PCR. In FIG. 1 to FIG. 5, the vertical axis of the graph is the Ct value. 前処理時間とRT-PCRの結果を示す図である。It is a figure which shows the result of pretreatment time and RT-PCR. 前処理温度とRT-PCRの結果を示す図である。It is a figure which shows the result of pretreatment temperature and RT-PCR. 前処理時にキレート剤を添加した場合のRT-PCRの結果を示す図である。It is a figure which shows the result of RT-PCR at the time of adding a chelating agent at the time of pre-processing. 前処理温度とキレート剤を添加した場合のRT-PCRの結果を示す図である。It is a figure which shows the result of RT-PCR at the time of adding pretreatment temperature and a chelating agent.
 以下、本発明の実施形態を示しつつ、本発明についてさらに詳説する。 Hereinafter, the present invention will be described in more detail while showing embodiments of the present invention.
 本発明の検出方法は、アルカリ性とした試料を加熱せずに放置する、例えば室温処理した後に反応液へ直接添加する工程を包含する。 The detection method of the present invention includes the step of leaving the sample rendered alkaline without heating, for example, treating it at room temperature and adding it directly to the reaction solution.
 本発明の検出方法を適用する試料としては、RNAウイルスを含有する可能性のある試料であれば特に限定はないが、生体排出検体に由来する試料が挙げられる。前記生体排出検体には糞便、尿、吐瀉物、鼻汁、鼻汁塗沫、唾液、唾液塗沫等が含まれ、さらにこれらの生体排出検体を水(滅菌水等)、生理食塩水、(PBS等の)緩衝液、有機溶媒、液体培地、またはゲル培地(例えばキャリブレア培地)に懸濁したもの、前記の懸濁液から調製した上清など、何らかの処理をしたものも含まれる。前記生体としては、ヒト、ペット、家畜、野性動物、昆虫、その他あらゆる動物が挙げられる。 The sample to which the detection method of the present invention is applied is not particularly limited as long as it is a sample that may contain an RNA virus, but examples include samples derived from a biological excretion sample. The excremented samples include feces, urine, vomits, nasal discharge, nasal smear, saliva, saliva smear, etc. Furthermore, these excremented samples may be water (sterile water etc.), physiological saline, (PBS etc.) And the like, those suspended in a buffer solution, an organic solvent, a liquid medium, or a gel medium (for example, Calibra's medium), or a supernatant prepared from the above suspension, or the like. Examples of the living body include humans, pets, livestock, wild animals, insects and any other animals.
 なお糞便は腸内細菌、腸管上皮細胞、食物由来物質などから構成されており、本発明の検体として好適である。また、生体排出検体は環境から採取されたものであってもよい。環境には、ノロウイルス等のRNAウイルスが存在する可能性がある、ありとあらゆる場所が含まれるが、自然環境に限定されるものではない。特に製造施設や調理施設のような施設自体や、当該施設の備品等、RNAウイルスが存在しうるあらゆる物の表面が例示される。これら環境からの検体の採取には、拭き取り操作や、その他の公知方法などが使用される。 The stool is composed of intestinal bacteria, intestinal epithelial cells, food-derived substances and the like, and is suitable as a sample of the present invention. In addition, the biological excretion sample may be collected from the environment. Environments include any and all places where RNA viruses such as Norovirus may be present, but are not limited to the natural environment. In particular, the facility itself such as a manufacturing facility or a cooking facility, or the equipment of the facility, etc., is exemplified by the surface of any material on which RNA virus may be present. For collecting samples from these environments, wiping operations and other known methods are used.
 また、本発明の方法に適用される、RNAウイルスを含有する可能性のある試料は、生体排出検体そのものでもよいし、生体排出検体よりウイルスの濃縮、分離やその他の操作を行って調製された試料でもよい。濃縮、分離やその他の操作としては、単糖添加、多糖添加、ウイルス吸着物質添加、ウイルス吸着菌添加、遠心分離、希釈、沈殿、濾過、攪拌、超音波破砕・分散などの処理が挙げられる。例えば、沈殿操作の例としてはエタノール、イソプロパノールなどのアルコール類を用いて行うことができる。 Moreover, the sample that may contain RNA virus applied to the method of the present invention may be a biological discharge sample itself, or may be prepared by performing virus concentration, separation or other operations from a biological discharge sample. It may be a sample. Examples of concentration, separation, and other operations include monosaccharide addition, polysaccharide addition, virus adsorption substance addition, virus adsorption bacteria addition, centrifugation, dilution, precipitation, filtration, agitation, ultrasonic disruption / dispersion and the like. For example, as an example of precipitation operation, it can carry out using alcohols, such as ethanol and isopropanol.
 分離操作を行った試料としては、例えば糞便の場合は水(滅菌水等)、生理食塩水、緩衝液等に懸濁し、遠心分離によって固形物を除いた上清が挙げられる。 The sample subjected to the separation operation may be, for example, in the case of stool, suspended in water (sterile water or the like), physiological saline, buffer solution or the like, and a supernatant obtained by removing solids by centrifugation.
 本発明の検出方法で検出対象とするRNAウイルスは、非エンベロープ型RNAウイルスが挙げられる。非エンベロープ型RNAウイルスとしては、例えばカリシウイルス科に属するウイルス(ノロウイルス(NoV)、サポウイルス(SV)、ネコカリシウイルス(FCV)等)やA群ロタウイルス(RotaA)、エコーウイルス(E)、エンテロウイルス(EV)等が挙げられる。なお、上記に挙げたネコカリシウイルス(FCV)は、容易に培養できないヒトノロウイルス(HuNoV)に代わって、消毒剤や洗浄剤の評価等に広く用いられている代替ウイルスである。 Examples of RNA viruses to be detected by the detection method of the present invention include non-enveloped RNA viruses. Examples of non-enveloped RNA viruses include viruses belonging to the calicivirus family (Norovirus (NoV), Sapovirus (SV), feline calicivirus (FCV), etc.), group A rotavirus (RotaA), echovirus (E), Enterovirus (EV) etc. are mentioned. In addition, the feline calicivirus (FCV) mentioned above is a substitute virus widely used for evaluation of a disinfectant, a cleaning agent, etc. instead of the human norovirus (HuNoV) which can not be culture | cultivated easily.
 本発明において強アルカリとは、強塩基(strong base)とも言い、塩基解離定数の大きい塩基を指し、狭義には水溶液中において電離度が1に近く水酸化物イオンを定量的に生成し、塩基解離定数がpK < 0 (K > 1 ) 程度のものを言う。水溶性でかつ水溶液中において強塩基であるものは特に強アルカリである。例えば、pHが11以上、好ましくは12以上、さらに好ましくは13以上である。 In the present invention, a strong alkali is also referred to as a strong base, and refers to a base having a large base dissociation constant, and in a narrow sense, the degree of ionization is nearly 1 in aqueous solution to quantitatively generate hydroxide ions, The dissociation constant is about pK b <0 (K b > 1). Those which are water soluble and which are strong bases in aqueous solution are particularly strong alkalis. For example, the pH is 11 or more, preferably 12 or more, and more preferably 13 or more.
 本発明に用いられる強アルカリ性の水酸化物は特に限定されないが、1族元素の水酸化物あるいは2族元素の水酸化物、あるいはそれらの混合物が例示される。あるいは、テトラアルキルアンモニウムの水酸化物であってもよい。特に限定はされないが、リチウム、ナトリウム、カリウム、ルビジウムあるいはセシウムの水酸化物、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムあるいはラジウムの水酸化物、ユーロピウム、タリウムの水酸化物などが例示される。好ましくは、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、水酸化リチウム(LiOH)、もしくは、水酸化カルシウム(Ca(OH))、またはそれらの組合せを含む。さらに好ましくは、NaOHである。 The strongly alkaline hydroxide used in the present invention is not particularly limited, but exemplified is a Group 1 element hydroxide or a Group 2 element hydroxide, or a mixture thereof. Alternatively, it may be a hydroxide of tetraalkylammonium. Although not particularly limited, hydroxides of lithium, sodium, potassium, rubidium or cesium, beryllium, magnesium, calcium, strontium, barium or radium hydroxide, europium, thallium hydroxide and the like are exemplified. Preferably, potassium hydroxide (KOH), sodium hydroxide (NaOH), lithium hydroxide (LiOH), or calcium hydroxide (Ca (OH) 2 ), or a combination thereof is included. More preferably, it is NaOH.
 本発明のRNAウイルスの検出方法は、試料を例えば強アルカリ性の水酸化物を含む溶液と接触させる工程を包含する。前記の工程により、熱処理を行うことなく、試料中のRNAウイルスに含有されている核酸が検出可能な状態となる。 The method of the present invention for detecting RNA virus comprises the step of contacting a sample with a solution containing, for example, a strongly alkaline hydroxide. According to the above-mentioned process, the nucleic acid contained in the RNA virus in the sample becomes detectable without heat treatment.
 工程(a)は、RNAウイルスを含有する可能性のある試料を含むアルカリ性の混合液を調製する工程である。
 アルカリ性の混合液を調製するための具体的な方法としては、例えば、RNAウイルスを含有する可能性のある試料に、強アルカリ性の水酸化物を含む溶液を添加する方法が挙げられる。この場合の強アルカリ性の水酸化物溶液中の水酸化物の濃度は、試料との混合比により適宜調整すればよいが、混合後の「アルカリ性の混合液」における水酸化物の終濃度として、好ましくは10mM~100mM、より好ましくは20mM~70mM、更に好ましくは30mM~60mM、更に好ましくは30~40mMである。強アルカリ性の水酸化物を複数種使用する場合、各水酸化物の濃度の合計が上記範囲を満たすことが好ましい。
Step (a) is a step of preparing an alkaline mixture containing a sample that may contain RNA virus.
As a specific method for preparing an alkaline mixed solution, for example, a method of adding a solution containing a strongly alkaline hydroxide to a sample possibly containing an RNA virus can be mentioned. The concentration of the hydroxide in the strongly alkaline hydroxide solution in this case may be appropriately adjusted according to the mixing ratio with the sample, but as the final concentration of the hydroxide in the “alkaline mixed liquid” after mixing, Preferably, it is 10 mM to 100 mM, more preferably 20 mM to 70 mM, still more preferably 30 mM to 60 mM, still more preferably 30 to 40 mM. When two or more strongly alkaline hydroxides are used, it is preferable that the total concentration of the respective hydroxides satisfies the above range.
 例えば、工程(a)におけるアルカリ性の混合液が水酸化ナトリウムを含有する場合、該水酸化ナトリウムの濃度は好ましくは20~70mMであり、より好ましくは30~40mMである。 For example, when the alkaline mixture in step (a) contains sodium hydroxide, the concentration of sodium hydroxide is preferably 20 to 70 mM, more preferably 30 to 40 mM.
 試料と強アルカリ性水酸化物溶液の混合比も特に限定されないが、試料と強アルカリ性水酸化物溶液の混合比は、好ましくは1:9~1:3、更に好ましくは1:6~1:4、特に好ましくは1:5である。 The mixing ratio of the sample and the strongly alkaline hydroxide solution is also not particularly limited, but the mixing ratio of the sample and the strongly alkaline hydroxide solution is preferably 1: 9 to 1: 3, more preferably 1: 6 to 1: 4. , Particularly preferably 1: 5.
 なお、特に断りのない限り、本明細書において「溶液」とは「水溶液」のことを意味する。 In the present specification, "solution" means "aqueous solution" unless otherwise noted.
 本発明の方法では、さらに強アルカリ性の水酸化物との接触の際にRNA分解の防止手段を加えてもよい。RNA分解防止手段としては特に限定されないが、リボヌクレアーゼ(RNase)活性の阻害手段が挙げられ、例えば、RNase inhibitorやRNaseの活性化に必要な金属イオンのキレート剤が挙げられる。RNase inhibitorの具体例としては、Recombinant RNase Inhibitor(タカラバイオ株式会社製2313A)が挙げられる。キレート剤やRNase inhibitorは、水溶液や公知の緩衝液の溶液として、添加することができる。 In the method of the present invention, means for preventing RNA degradation may be added upon contact with a strongly alkaline hydroxide. The means for preventing RNA degradation is not particularly limited, and includes means for inhibiting ribonuclease (RNase) activity, and examples include RNase inhibitor and chelating agents for metal ions necessary for activation of RNase. Specific examples of RNase inhibitor include Recombinant RNase Inhibitor (2313A manufactured by Takara Bio Inc.). The chelating agent and RNase inhibitor can be added as an aqueous solution or a solution of a known buffer.
 当該キレート剤としては、目的の金属イオンを中心に多座配位するものが好ましく、例えば六座配位するものが好適に使用でき、アミノカルボン酸系やホスホン酸系が挙げられる。アミノカルボン酸系のキレート剤としては、エチレンジアミン四酢酸(EDTA)、シクロヘキサンジアミン四酢酸(CDTA)、グリコールエーテルジアミン四酢酸(EGTA)、ニトリロ三酢酸(NTA)、ジエチレントリアミン五酢酸(DTPA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、トリエチレンテトラアミン六酢酸(TTHA)、グルタミン酸二酢酸(GLDA)、ジヒドロキシエチルグリシン(DHEG)等がある。また、ホスホン酸系のキレート剤としては、ヒドロキシエタンジホスホン酸(HEDP)、メチレンホスホン酸(NTMP)、ホスホノブタントリカルボン酸(PBTC)、エチレンジアミンテトラメチレンホスホン酸(EDTMP)等がある。その他、クエン酸、シュウ酸、フィチン酸、グルコン酸等、リボヌクレアーゼ活性を阻害する、あらゆるキレート剤が、本発明に使用可能である。また、複数のキレート剤を組み合わせて使用してもよい。 As the chelating agent, those which are multidentately coordinated around a target metal ion are preferable. For example, those which are hexadentately coordinated can be suitably used, and examples thereof include aminocarboxylic acid type and phosphonic acid type. As chelating agents of aminocarboxylic acid type, ethylenediaminetetraacetic acid (EDTA), cyclohexanediaminetetraacetic acid (CDTA), glycol ether diamine tetraacetic acid (EGTA), nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), hydroxyethyl There are ethylenediaminetriacetic acid (HEDTA), triethylenetetraamine hexaacetic acid (TTHA), glutamic acid diacetic acid (GLDA), dihydroxyethyl glycine (DHEG) and the like. Examples of phosphonic acid chelating agents include hydroxyethane diphosphonic acid (HEDP), methylene phosphonic acid (NTMP), phosphonobutane tricarboxylic acid (PBTC), ethylene diamine tetramethylene phosphonic acid (EDTMP) and the like. In addition, any chelating agent that inhibits ribonuclease activity such as citric acid, oxalic acid, phytic acid, gluconic acid and the like can be used in the present invention. Also, a plurality of chelating agents may be used in combination.
 RNase inhibitorを使用する際の濃度は、リボヌクレアーゼ活性を阻害するために適用される公知の濃度を採用することができる。 The concentration when using RNase inhibitor can be a known concentration applied to inhibit ribonuclease activity.
 キレート剤を使用する際の濃度は、試料中のリボヌクレアーゼ活性の阻害、もしくは試料中のRNAの検出に有効な濃度であれば特に限定はない。例えば、アルカリ性の混合液中、キレート剤の終濃度は好ましくは1mM以上、より好ましくは2mM以上、更に好ましくは3mM以上、更に好ましくは4mM以上である。一方、費用対効果の観点から、アルカリ性の混合液中、キレート剤の終濃度は好ましくは20mM以下、より好ましくは15mM以下、更に好ましくは10mM以下である。複数種のキレート剤を用いることも可能であり、その場合、各キレート剤の濃度の合計が上記上限値又は下限値を満たすことが好ましい。 The concentration when using a chelating agent is not particularly limited as long as it is an effective concentration for inhibition of ribonuclease activity in a sample or detection of RNA in a sample. For example, in the alkaline mixed solution, the final concentration of the chelating agent is preferably 1 mM or more, more preferably 2 mM or more, still more preferably 3 mM or more, still more preferably 4 mM or more. On the other hand, from the viewpoint of cost effectiveness, the final concentration of the chelating agent in the alkaline mixed solution is preferably 20 mM or less, more preferably 15 mM or less, and still more preferably 10 mM or less. It is also possible to use a plurality of types of chelating agents, in which case it is preferable that the total concentration of each chelating agent satisfies the above upper limit value or lower limit value.
 例えば10%(w/v)の糞便を含む糞便懸濁液を強アルカリ性の水酸化物とEGTAで処理する場合、アルカリ性の混合液中のEGTAの終濃度は2mM~50mM、好ましくは4mM~40mM、より好ましくは6mM~30mM、更に好ましくは、8mM~20mM、特に好ましくは、9~15mMである。EGTAのアルカリ性の混合液中の濃度は糞便懸濁液の濃度によって適宜調整してもよい。例えば、糞便懸濁液の濃度が20%(w/v)の場合はEGTAの終濃度を上記濃度の倍の濃度とすることが望ましい。 For example, when a stool suspension containing 10% (w / v) stool is treated with a strongly alkaline hydroxide and EGTA, the final concentration of EGTA in the alkaline mixture is 2 mM to 50 mM, preferably 4 mM to 40 mM More preferably, 6 mM to 30 mM, still more preferably 8 mM to 20 mM, particularly preferably 9 to 15 mM. The concentration of EGTA in the alkaline mixture may be adjusted appropriately according to the concentration of the stool suspension. For example, when the concentration of the stool suspension is 20% (w / v), it is desirable to make the final concentration of EGTA twice the concentration described above.
 また、またキレート剤として、EDTAを上記の糞便懸濁液の処理に用いる場合は、試料を含むアルカリ性の混合液中のEDTAの終濃度は、1mM~45mM、好ましくは、2mM~35mM、より好ましくは、3mM~25mM、更に好ましくは、4mM~15mMである。EDTAのアルカリ性の混合液中の濃度は糞便懸濁液の濃度によって適宜調整してもよい。糞便懸濁液の濃度が20%(w/v)の場合はEDTAの終濃度を上記濃度の倍の濃度とすることが望ましい。 In addition, when EDTA is used as a chelating agent in the treatment of the above fecal suspension, the final concentration of EDTA in the alkaline mixture containing the sample is 1 mM to 45 mM, preferably 2 mM to 35 mM, more preferably Is 3 mM to 25 mM, more preferably 4 mM to 15 mM. The concentration of EDTA in the alkaline mixture may be appropriately adjusted depending on the concentration of the stool suspension. When the concentration of the stool suspension is 20% (w / v), it is desirable to make the final concentration of EDTA twice the concentration described above.
 前記の強アルカリ性の水酸化物、及び所望によりリボヌクレアーゼ活性の阻害手段を含有する溶液(本明細書において、「前処理液」ともいう)を予め調製しておくことにより、本発明のRNAウイルスの検出方法における「RNAウイルスを含有する可能性のある試料」の処理、言い換えればウイルスゲノムRNAの相補的DNA(cDNA)合成の前処理を簡便に実施することができる。前処理液中の強アルカリ性の水酸化物やリボヌクレアーゼ活性の阻害手段の濃度は、当該前処理液と試料との混合比等を考慮して決定すればよい。 The RNA virus of the present invention can be prepared by preparing in advance a solution containing the above-mentioned strongly alkaline hydroxide and, if desired, a means for inhibiting ribonuclease activity (herein also referred to as “pretreatment solution”). In the detection method, the treatment of “a sample possibly containing RNA virus”, in other words, pretreatment of complementary DNA (cDNA) synthesis of viral genomic RNA can be conveniently performed. The concentration of the strongly alkaline hydroxide or ribonuclease activity inhibiting means in the pretreatment solution may be determined in consideration of the mixing ratio between the pretreatment solution and the sample.
 本発明の方法に適用する、「RNAウイルスを含有する可能性のある試料」の形状はとくに限定されないが、糞便のように固形であったり、粘性を伴ったりする生体排出試料の場合は、あらかじめ作製した生体排出検体の懸濁液を試料として取り扱うことが好適である。懸濁液としては、20%(w/v)以下の生体排出検体を含むものが好ましい。より好ましくは、1%(w/v)~20%(w/v)、更に好ましくは、1%(w/v)~10%(w/v)である。さらに、前記の懸濁液、例えば糞便懸濁液の上清を試料としてもよい。 The shape of the "sample possibly containing RNA virus" applied to the method of the present invention is not particularly limited, but in the case of a solid sample like feces or in the case of a biodischarge sample accompanied by viscosity, It is preferable to handle the prepared suspension of biological excretion sample as a sample. As the suspension, one containing a biological excretion sample of 20% (w / v) or less is preferable. More preferably, it is 1% (w / v) to 20% (w / v), more preferably 1% (w / v) to 10% (w / v). Furthermore, the above-mentioned suspension, for example, the supernatant of fecal suspension may be used as a sample.
 また本発明では、単独検体からなる試料または単独検体から調製された試料のほか、X種(Xは2以上の整数を示す)の検体の混合物から調製した試料でもよい。例えば、検体が糞便の場合、X種の検体とは、X種の個体からの糞便である場合や、同一個体が排泄したX種の便である場合もある。Xについては、特に限定されないが、例えば、三菌種(腸管出血性大腸菌、サルモネラ菌、赤痢菌)の検査の場合では、50検体を混合することが食品検査業界において、一般的になっているので、参考に出来る。しかし、検出目的がノロウイルスの場合はウイルスの流行時期があり、過剰な数の検体を混合すると返ってコストや試験回数を増やすことになる。このため、過去の陽性率を参考するなど、混合する検体の数を適宜調整することが好ましい。例えば40検体以下、好ましくは、30検体以下、より好ましくは、20検体以下、更に好ましくは、10検体以下、特に好ましくは、5検体以下の検体が混合されたもの、もしくは当該混合検体から調製された試料が本発明方法に供される。 In the present invention, a sample prepared from a single sample or a sample prepared from a single sample may also be a sample prepared from a mixture of X type (X represents an integer of 2 or more) samples. For example, when the sample is feces, the sample of type X may be stool from an individual of type X or stool of type X excreted by the same individual. The type of X is not particularly limited. For example, in the case of inspection of three bacterial species (enterohemorrhagic E. coli, salmonella and Shigella), it is common in the food inspection industry to mix 50 specimens. , Can be helpful. However, when the purpose of detection is norovirus, there is a virus epidemic period, and mixing too many samples will return cost and increase the number of tests. For this reason, it is preferable to appropriately adjust the number of samples to be mixed, for example, by referring to the past positive rate. For example, 40 or less, preferably, 30 or less, more preferably, 20 or less, still more preferably, 10 or less, particularly preferably, a mixture of 5 or less samples, or prepared from the mixed sample The sample is subjected to the method of the present invention.
 試料と前処理液の混合には、攪拌、スピンダウン、転倒混和、ピペッティングなどが用いられるが、その方法及び使用容器等を限定するものではない。 For mixing of the sample and the pretreatment liquid, stirring, spin down, inversion mixing, pipetting and the like are used, but the method and container used are not limited.
 前処理液は、反応性改善などを目的として添加される公知の物質を含有していてもよい。添加する物質としては、ウシ血清アルブミン(BSA)のようなタンパク質、Tween-20などの界面活性剤、ベタイン、酸性高分子等が例示されるが、これらに限定されるものではない。 The pretreatment liquid may contain a known substance added for the purpose of improving the reactivity and the like. Examples of the substance to be added include a protein such as bovine serum albumin (BSA), a surfactant such as Tween-20, betaine, an acidic polymer, and the like, but are not limited thereto.
 アルカリ性の混合液において、還元剤は含まれていても含まれていなくてもよい。 The reducing agent may or may not be contained in the alkaline mixture.
 従って、工程(a)の好ましい態様の一つは、RNAウイルスを含有する可能性のある試料をキレート剤を含む溶液で懸濁した後に、強アルカリ性の水酸化物を含む溶液を添加することにより、アルカリ性の混合液を調製する工程である。 Thus, one of the preferred embodiments of step (a) is by suspending a sample possibly containing RNA virus in a solution containing a chelating agent and then adding a solution containing a strongly alkaline hydroxide. It is a process of preparing an alkaline mixed solution.
 工程(b)は、工程(a)で得られた混合液を加熱せず放置する工程であり、「前処理」ともいう。
 試料と前処理液を混合して得られるアルカリ性の混合液は、従来技術とは異なり、加熱せずに放置しても十分精度の高い結果を得ることができる。
 本発明においては、アルカリ性溶液のみ、あるいは前述のキレート剤とアルカリ性溶液の組み合わせのいずれにおいても、室温で実施することが可能である。従って、工程(b)の好ましい態様の一つは、工程(b)を室温での放置により実施することである。ここで、室温とは作業員が作業しやすい環境温度を言う。混合液を放置する温度としては、好ましくは、30℃以下、より好ましくは、25℃以下である。処理時間、即ち放置時間は、特に限定はなく、アルカリ性混合液を入れた後、直ちにRT-PCRに供してもよく、2~60分間保持してからRT-PCRに供してもよく、検体数に応じて適宜調整することができる。保持時間による反応に大差はない。
The step (b) is a step of leaving the mixed solution obtained in the step (a) without heating and also referred to as "pretreatment".
Unlike the prior art, the alkaline mixed solution obtained by mixing the sample and the pretreatment solution can obtain sufficiently accurate results even if it is left without heating.
In the present invention, it is possible to carry out at room temperature with either only the alkaline solution or the combination of the above-mentioned chelating agent and the alkaline solution. Thus, one of the preferred embodiments of step (b) is to carry out step (b) by standing at room temperature. Here, room temperature refers to the ambient temperature at which workers can easily work. The temperature at which the mixed solution is allowed to stand is preferably 30 ° C. or less, more preferably 25 ° C. or less. The treatment time, ie, the standing time is not particularly limited, and after adding the alkaline mixed solution, it may be immediately subjected to RT-PCR, or may be held for 2 to 60 minutes before being subjected to RT-PCR, the number of samples It can adjust suitably according to. There is no big difference in the reaction depending on the retention time.
 また冷却ブロック、クラッシュアイス等を用いて、低温で作業を行うことは、放置工程の温度条件を同一にできることから、試験の再現性を高めることに有効である。また、混合液を冷蔵庫や冷蔵室で放置することで、工程(b)を実施してもよい。ゆえに、本工程における好ましい温度範囲は0℃~30℃程度になる。本工程における温度範囲は、より好ましくは、0℃~25℃、更に好ましくは、0℃~20℃、更に好ましくは0℃~15℃、更に好ましくは0℃~10℃、更に好ましくは0℃~5℃である。処理時間としては、特に限定はなく、アルカリ性混合液を入れた後、直ちにRT-PCRに供してもよく、2~60分間保持してからRT-PCRに供してもよく、検体数に応じて適宜調整することができる。また、試料を含むアルカリ性の混合液がキレート剤を含む場合、前記冷却を行わなくとも十分精度の高い結果を得ることができる。 Further, working at a low temperature using a cooling block, crush ice or the like is effective in enhancing the reproducibility of the test since the temperature conditions of the standing step can be made the same. Moreover, you may implement a process (b) by leaving a liquid mixture in a refrigerator or a refrigerator compartment. Therefore, the preferable temperature range in this step is about 0 ° C. to 30 ° C. The temperature range in this step is more preferably 0 ° C. to 25 ° C., still more preferably 0 ° C. to 20 ° C., still more preferably 0 ° C. to 15 ° C., still more preferably 0 ° C. to 10 ° C., more preferably 0 ° C. ~ 5 ° C. The treatment time is not particularly limited, and after adding the alkaline mixed solution, it may be immediately subjected to RT-PCR, or may be held for 2 to 60 minutes before being subjected to RT-PCR, depending on the number of samples. It can be adjusted appropriately. In addition, when the alkaline mixed solution containing the sample contains a chelating agent, sufficiently accurate results can be obtained without the cooling.
 前述のように、工程(b)における放置時間が0の場合、即ち、アルカリ性混合液を入れた後、直ちにcDNA合成反応に供する場合、工程(b)と工程(c)とが統合されることになる。かかる態様、即ち、(a)RNAウイルスを含有する可能性のある試料を含むアルカリ性の混合液を調製する工程、及び(b’)工程(a)で得られた混合液を加熱することなくcDNA合成反応に供する工程、を包含する、RNAウイルスの検出方法も本発明の方法に包含される。この場合、工程(a)で得られた混合液に、後述の逆転写酵素等の成分を添加することで工程(c)の実施が可能となる。 As described above, when the standing time in step (b) is 0, that is, immediately after adding the alkaline mixed solution to the cDNA synthesis reaction, step (b) and step (c) are integrated. become. In this embodiment, (a) preparing an alkaline mixture containing a sample possibly containing RNA virus, and (b ') cDNA obtained without heating the mixture obtained in step (a) Also included in the method of the present invention is a method for detecting an RNA virus, which comprises the step of subjecting to a synthesis reaction. In this case, the step (c) can be carried out by adding a component such as a reverse transcriptase described later to the mixed solution obtained in the step (a).
 工程(a)及び工程(b’)を包含する前記方法の好ましい態様の一つは、工程(a)が、RNAウイルスを含有する可能性のある試料をキレート剤を含む溶液で懸濁した後に、強アルカリ性の水酸化物を含む溶液を添加することにより、アルカリ性の混合液を調製する工程である。 One of the preferred embodiments of the method including the step (a) and the step (b ') is that the step (a) is carried out after suspending a sample possibly containing RNA virus in a solution containing a chelating agent. This is a step of preparing an alkaline mixed solution by adding a solution containing a strongly alkaline hydroxide.
 工程(c)は工程(b)の放置後の混合液をcDNA合成反応に供する工程である。
 以上のように工程(b)で処理された試料を含むアルカリ性の混合液(本明細書において、「前処理後の試料」とも記載する)を逆転写反応に供して、当該混合液に含有されるRNAに相補的なDNA(cDNA)を合成することができる。なお、本発明の好適な態様では、前処理後の試料を含む逆転写反応液を作成する前に、当該前処理後の試料から特定の成分を除去する操作や加熱処理を行う必要はない。
Step (c) is a step of subjecting the mixture after leaving in step (b) to a cDNA synthesis reaction.
The alkaline mixed solution containing the sample treated in step (b) as described above (herein also described as “sample after pretreatment”) is subjected to reverse transcription reaction and contained in the mixed solution. DNA (cDNA) complementary to the RNA can be synthesized. In a preferred embodiment of the present invention, it is not necessary to perform an operation or heat treatment for removing a specific component from the sample after the pretreatment before preparing a reverse transcription reaction solution containing the sample after the pretreatment.
 本発明の方法において、前処理後の試料を逆転写に用いる際の当該試料の添加割合に限定はなく、適切に逆転写が実施できる割合であれば良い。例えば逆転写反応液中に1~30%(v/v)範囲内で前処理後の試料が添加される。例えば容量25μLの反応液でOne-Step RT-PCRを実施する場合、前処理後の試料は0.5~6μL添加される。 In the method of the present invention, the addition ratio of the sample after the pretreatment is not limited when it is used for reverse transcription, and it may be a rate at which reverse transcription can be appropriately performed. For example, the sample after pretreatment is added to the reverse transcription reaction solution in the range of 1 to 30% (v / v). For example, when One-Step RT-PCR is performed in a reaction solution with a volume of 25 μL, 0.5 to 6 μL of the sample after pretreatment is added.
 逆転写反応の反応液組成の一例としては、検出すべきRNAに相補的な配列を有する逆転写プライマー、塩類、デオキシリボヌクレオチド類(dNTP)、逆転写酵素、及び緩衝液を含むものが挙げられる。該塩類は、MgClやKClなどが用いられるが、逆転写酵素活性には二価金属イオン(一般的にはMg2+イオン)が必須である。塩類の終濃度の調整や他の塩類への変更は適宜行ってもよい。アルカリ性の混合液にキレート剤が含まれる場合は、該キレート剤で消費される金属イオンを逆転写反応液に補充してもよい。例えば二価金属イオンと1対1のモル比で結合するEDTAの場合、逆転写反応液に持ち込まれるEDTAの量を考慮してMg2+イオンを逆転写反応液に追加すればよい。さらに、逆転写反応に共存させることが可能な他の成分を添加してもよい。 An example of the reaction solution composition of the reverse transcription reaction includes one containing a reverse transcription primer having a sequence complementary to the RNA to be detected, salts, deoxyribonucleotides (dNTP), reverse transcriptase, and a buffer. As the salts, MgCl 2 , KCl, etc. are used, but divalent metal ions (generally, Mg 2+ ions) are essential for reverse transcriptase activity. Adjustment of the final concentration of salts or change to other salts may be performed as appropriate. When the alkaline mixture contains a chelating agent, metal ions consumed by the chelating agent may be supplemented to the reverse transcription reaction solution. For example, in the case of EDTA which is bound to a divalent metal ion at a molar ratio of 1 to 1, Mg 2+ ion may be added to the reverse transcription reaction liquid in consideration of the amount of EDTA carried into the reverse transcription reaction liquid. Furthermore, other components capable of coexisting in the reverse transcription reaction may be added.
 本工程で使用される逆転写酵素としては、特に限定されず、公知のものを使用することができる。逆転写酵素の具体例としては、Thermus thermophilus由来のTth DNAポリメラーゼ;Moloney murine leukemia virus(MMLV)等のマウスのレトロウイルス由来の逆転写酵素;並びにRous associated virus(RAV)及びAvian myeloblastosis virus(AMV)等のトリのレトロウイルス由来の逆転写酵素等が挙げられる。 The reverse transcriptase used in this step is not particularly limited, and any known reverse transcriptase can be used. Specific examples of reverse transcriptase include Tth DNA polymerase from Thermus thermophilus; reverse transcriptase from mouse retrovirus such as Moloney murine leukemia virus (MMLV); and Rous associated virus (RAV) and Avian myeloblastosis virus (AMV) And reverse transcriptases from avian retroviruses.
 前処理後の試料が酵素反応液(例えば逆転写反応液)へ添加される場合、前記酵素反応液の緩衝能が有効な範囲の量であれば、当該試料を直接酵素反応液に添加することができる。酵素反応液のpHがアルカリ側に移行し、酵素活性が低下することが懸念される場合には、中和可能な物質との接触による強アルカリ性水酸化物の中和ステップ、即ち、アルカリ性の混合液を中和可能な物質と接触させることを含んでいてもよい。前処理後の試料を中和可能な物質と接触させて中和してもよいが、酵素反応液にあらかじめ中和可能な物質を添加しておくのが手順の簡略化の点でより好ましい。 When the sample after pretreatment is added to an enzyme reaction solution (for example, a reverse transcription reaction solution), the sample is directly added to the enzyme reaction solution if the buffer capacity of the enzyme reaction solution is an effective range. Can. When there is a concern that the pH of the enzyme reaction solution shifts to the alkaline side and the enzyme activity is reduced, the neutralization step of strongly alkaline hydroxide by contact with a neutralizeable substance, ie, mixing of alkalinity It may include contacting the liquid with a neutralizeable substance. The sample after pretreatment may be neutralized by bringing it into contact with a neutralizeable substance, but it is more preferable to add a neutralizeable substance to the enzyme reaction solution in terms of simplification of the procedure.
 ここで使用される中和可能な物質としては、酵素反応を阻害しない酸性の物質であれば特に制限されず、例えば、有機酸や無機酸を問わず使用することができる。中和可能な物質の具体例としては、例えば、ギ酸、酢酸、クエン酸、シュウ酸、コハク酸、乳酸、硫酸、塩酸、硝酸、リン酸、ホウ酸等が挙げられる。中和可能な物質との接触後の混合液のpHの範囲としては、好ましくは6.0~8.0であり、より好ましくは6.5~7.5である。 The neutralizable substance used here is not particularly limited as long as it is an acidic substance which does not inhibit the enzyme reaction, and, for example, any organic acid or inorganic acid can be used. Specific examples of the substance that can be neutralized include, for example, formic acid, acetic acid, citric acid, oxalic acid, succinic acid, lactic acid, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, boric acid and the like. The range of the pH of the mixture after contact with the neutralizeable substance is preferably 6.0 to 8.0, more preferably 6.5 to 7.5.
 逆転写反応液は、反応性改善などを目的として添加される公知の物質を含有していてもよい。添加する物質としては、ウシ血清アルブミン(BSA)のようなタンパク質、Tween-20などの界面活性剤、ベタイン、酸性高分子等が例示されるが、これらに限定されるものではない。またdNTPは通常、dATP、dGTP、dCTP、dTTPの4種が用いられるが、PCR増幅物が他の核酸増幅反応の鋳型となる汚染を防止する目的でさらにdUTPを反応液に添加してもよい。この反応で得られた核酸増幅物には、dUTPが取り込まれることになり、ウラシル含有DNAの分解活性を有するUracil-N-glycosyrase(UNG)を核酸増幅反応前に作用させることで、前記核酸増幅物を分解することができる。こうして、先に実施された反応で得られた増幅物が後の反応に混入しておこる汚染を防止することができる。 The reverse transcription reaction solution may contain a known substance added for the purpose of improving the reactivity and the like. Examples of the substance to be added include a protein such as bovine serum albumin (BSA), a surfactant such as Tween-20, betaine, an acidic polymer, and the like, but are not limited thereto. In addition, although dNTP is normally used in four types of dATP, dGTP, dCTP and dTTP, dUTP may be further added to the reaction solution in order to prevent contamination of the PCR amplification product as a template for other nucleic acid amplification reactions. . The nucleic acid amplification product obtained in this reaction will be incorporated with dUTP, and the aforementioned nucleic acid amplification can be carried out by causing Uracil-N-glycosyrase (UNG) having the activity of degrading uracil-containing DNA to act before the nucleic acid amplification reaction. It can disassemble things. In this way, it is possible to prevent contamination resulting from the amplification product obtained in the previously performed reaction from being mixed into the later reaction.
 工程(d)は、工程(c)で得られたcDNAを鋳型とする核酸増幅の工程である。
 本発明の方法において、得られたcDNAを鋳型とした核酸増幅を利用すると、微量のウイルスゲノムRNAを検出することができる。従って、本発明において、かかる工程(d)をさらに含むことがより好ましい。
Step (d) is a step of nucleic acid amplification using the cDNA obtained in step (c) as a template.
In the method of the present invention, nucleic acid amplification using the obtained cDNA as a template can be used to detect a trace amount of viral genomic RNA. Therefore, in the present invention, it is more preferable to further include the step (d).
 工程(d)で用いられる核酸増幅法は特に限定はないが、逆転写反応(RT)によりRNAの相補的DNA(cDNA)の合成を行い、該cDNAを増幅する方法、例えばRT-LAMP法やRT-PCR法を用いることができる。なお逆転写反応とDNA増幅反応を独立した反応液で行うTwo-Step法もあるが、本発明においては、作業の簡略化の面では逆転写反応とDNA増幅反応がひとつの反応液組成、即ち、同一の反応液で可能なOne-Step法が好ましい。即ち、One-Step法においては、工程(c)と工程(d)が同一の反応液内で進行することが一つの特徴である。 Although the nucleic acid amplification method used in step (d) is not particularly limited, a method of synthesizing complementary DNA (cDNA) of RNA by reverse transcription reaction (RT) to amplify the cDNA, such as RT-LAMP method or the like RT-PCR can be used. There is also a two-step method in which the reverse transcription reaction and the DNA amplification reaction are carried out with independent reaction solutions, but in the present invention, the reaction composition of one reaction solution, ie, the reverse transcription reaction and the DNA amplification reaction, is simplified in terms of simplification of work. The One-Step method which is possible with the same reaction solution is preferred. That is, in the one-step method, it is one of the features that the step (c) and the step (d) proceed in the same reaction solution.
 本発明の方法において、前処理後の試料又は工程(c)を経て得られた溶液を核酸増幅に用いる際の当該試料の添加割合に限定はなく、適切に核酸合成が実施できる割合であれば良い。例えば反応液中に1~30%(v/v)範囲内で前処理後の試料又は工程(c)を経て得られた溶液が添加される。例えば容量25μLの反応液でOne-Step RT-PCRを実施する場合、前処理後の試料又は工程(c)を経て得られた溶液は0.5~6μL添加される。 In the method of the present invention, the addition ratio of the sample after the pretreatment or the solution obtained through the step (c) is not limited when used for nucleic acid amplification, as long as nucleic acid synthesis can be appropriately performed. good. For example, the sample after pretreatment or the solution obtained through step (c) is added in the range of 1 to 30% (v / v) in the reaction solution. For example, when One-Step RT-PCR is performed with a reaction solution having a volume of 25 μL, 0.5 to 6 μL of the sample after pretreatment or the solution obtained through step (c) is added.
 PCRの反応組成の一例としては、一方のプライマーが、他方のプライマーのDNA伸長生成物に互いに相補的である2種一組のPCR用プライマー対、塩類、デオキシリボヌクレオチド類、耐熱性DNAポリメラーゼ及び緩衝液を含むものが挙げられる。上記の塩類は、MgClやKClなどが用いられるが、DNAポリメラーゼ活性には二価金属イオン(一般的にはMg2+イオン)が必須である。塩類の終濃度の調整や他の塩類への変更は適宜行ってもよい。キレート剤を添加した前処理液によるアルカリ処理工程を行う場合は、該キレート剤で消費される、金属イオンを補充してもよい。例えば二価金属イオンと1対1のモル比で結合するEDTAの場合、PCR反応液に持ち込まれるEDTAの量を考慮してMg2+イオンの量を調整すればよい。さらにPCRに共存させることが可能な他の成分を添加してもよい。 As an example of the reaction composition of PCR, one primer is a pair of two pairs of PCR primer pairs complementary to each other to the DNA extension product of the other primer, salts, deoxyribonucleotides, thermostable DNA polymerase and buffer There is a solution containing a solution. As the above-mentioned salts, MgCl 2 , KCl and the like are used, but a bivalent metal ion (generally Mg 2+ ion) is essential for DNA polymerase activity. Adjustment of the final concentration of salts or change to other salts may be performed as appropriate. When an alkali treatment step with a pretreatment solution to which a chelating agent has been added is carried out, the metal ion consumed by the chelating agent may be replenished. For example, in the case of EDTA which is bound to a divalent metal ion at a molar ratio of 1 to 1, the amount of Mg 2+ ion may be adjusted in consideration of the amount of EDTA carried into the PCR reaction solution. Furthermore, other components that can be made to coexist in PCR may be added.
 前記2種一組のPCR用プライマー対としては、検出対象のウイルスが有する塩基配列に相補的なオリゴヌクレオチドが好ましい。具体的には、ネコカリシウイルス(FCV)を検出しようとする場合、一例として、配列表の配列番号:1に記載の塩基配列及び配列番号:2に記載の塩基配列を2種一組のPCR用プライマー対として用いることができる。あるいは、ノロウイルス(NoV)を検出しようとする場合、一例として、配列表の配列番号:4に記載の塩基配列及び配列番号:5に記載の塩基配列を2種一組のPCR用プライマー対として、又は配列表の配列番号:7に記載の塩基配列及び配列番号:8に記載の塩基配列を2種一組のPCR用プライマー対として用いることができる。これらの配列番号に規定された塩基配列において、1又は複数個(好ましくは2~5個)の塩基が欠失、置換又は付加されたものもプライマーとして使用することができる。 An oligonucleotide complementary to a nucleotide sequence possessed by the virus to be detected is preferable as the pair of PCR primer pairs. Specifically, when it is intended to detect feline calicivirus (FCV), as an example, the base sequence described in SEQ ID NO: 1 in the sequence listing and the base sequence described in SEQ ID NO: 2 It can be used as a primer pair. Alternatively, when detecting norovirus (NoV), as an example, the base sequence described in SEQ ID NO: 4 in the sequence listing and the base sequence described in SEQ ID NO: 5 are used as a pair of two pairs of PCR primers. Alternatively, the nucleotide sequence of SEQ ID NO: 7 in the sequence listing and the nucleotide sequence of SEQ ID NO: 8 can be used as a pair of PCR primer pairs. In the base sequences defined in these SEQ ID NOs, those in which one or more (preferably 2 to 5) bases are deleted, substituted or added can also be used as a primer.
 前記耐熱性DNAポリメラーゼは、特に限定されず、公知のものを使用することができる。例えば、ファミリーA(PolI型)に属するTaq DNAポリメラーゼやTth DNAポリメラーゼ、ファミリーB(α型)に属するKOD DNAポリメラーゼ、Pfu DNAポリメラーゼ、Pwo DNAポリメラーゼ、Ultima DNAポリメラーゼ、PrimeSTAR(登録商標) DNAポリメラーゼのシリーズ(HS、GXL、Max)などが挙げられる。これらのうち2以上を組み合わせて用いても良い。 The thermostable DNA polymerase is not particularly limited, and known ones can be used. For example, Taq DNA polymerase or Tth DNA polymerase belonging to family A (Pol I type), KOD DNA polymerase belonging to family B (alpha type), Pfu DNA polymerase, Pwo DNA polymerase, Ultima DNA polymerase, PrimeSTAR (registered trademark) DNA polymerase Series (HS, GXL, Max) etc. are mentioned. Two or more of these may be used in combination.
 核酸増幅反応液は、反応性改善などを目的として添加される公知の物質を含有していてもよい。添加する物質としては、ウシ血清アルブミン(BSA)のようなタンパク質、Tween-20などの界面活性剤、ベタイン、酸性高分子等が例示されるが、これらに限定されるものではない。またdNTPは通常、dATP、dGTP、dCTP、dTTPの4種が用いられるが、PCR増幅物が他の核酸増幅反応の鋳型となる汚染を防止する目的でさらにdUTPを反応液に添加してもよい。この反応で得られた核酸増幅物には、dUTPが取り込まれることになり、ウラシル含有DNAの分解活性を有するUracil-N-glycosyrase(UNG)を核酸増幅反応前に作用させることで、前記核酸増幅物を分解することができる。こうして、先に実施された反応で得られた増幅物が後の反応に混入しておこる汚染を防止することができる。 The nucleic acid amplification reaction solution may contain a known substance to be added for the purpose of improving the reactivity and the like. Examples of the substance to be added include a protein such as bovine serum albumin (BSA), a surfactant such as Tween-20, betaine, an acidic polymer, and the like, but are not limited thereto. In addition, although dNTP is normally used in four types of dATP, dGTP, dCTP and dTTP, dUTP may be further added to the reaction solution in order to prevent contamination of the PCR amplification product as a template for other nucleic acid amplification reactions. . The nucleic acid amplification product obtained in this reaction will be incorporated with dUTP, and the aforementioned nucleic acid amplification can be carried out by causing Uracil-N-glycosyrase (UNG) having the activity of degrading uracil-containing DNA to act before the nucleic acid amplification reaction. It can disassemble things. In this way, it is possible to prevent contamination resulting from the amplification product obtained in the previously performed reaction from being mixed into the later reaction.
 本発明の方法の好ましい態様である「工程(c)と工程(d)が同一の反応液内で行われる態様」としては、RT-PCR法が挙げられる。RT-PCR法ではcDNA合成用プライマーはPCR用プライマー対の一方のプライマーを兼ねることもできる。Multiplex RT-PCRと呼ばれる、1反応で複数種の増幅物を得られるように複数のcDNA合成用プライマーやPCR用プライマー対が含まれる反応の場合もある。 An example of the “embodiment in which step (c) and step (d) are performed in the same reaction solution”, which is a preferred embodiment of the method of the present invention, includes RT-PCR. In the RT-PCR method, a cDNA synthesis primer can double as one primer of a PCR primer pair. There is also a case called Multiplex RT-PCR, which is a reaction including a plurality of primers for cDNA synthesis and a primer pair for PCR so as to obtain plural kinds of amplification products in one reaction.
 RT-PCR法では、増幅物を検出するためのプローブを使用してもよい。例えば、ネコカリシウイルス(FCV)を検出しようとする場合、一例として、配列表の配列番号:1に示される塩基配列を有するオリゴヌクレオチドを使用することができる。あるいは、ノロウイルス(NoV)を検出しようとする場合、一例として、配列表の配列番号:6に示される塩基配列を有するオリゴヌクレオチドや、配列表の配列番号:9に示される塩基配列を有するオリゴヌクレオチドが挙げられる。これらの配列番号に規定された塩基配列において、1又は複数個(好ましくは2~5個)の塩基が欠失、置換又は付加されたものもプローブとして使用することができる。かかるプローブを、公知の、蛍光物質及び/又は蛍光抑制物質でラベルして用いても良い。 In the RT-PCR method, a probe for detecting an amplification product may be used. For example, when detecting feline calicivirus (FCV), an oligonucleotide having the base sequence shown in SEQ ID NO: 1 in the sequence listing can be used as an example. Alternatively, when it is intended to detect norovirus (NoV), as an example, an oligonucleotide having the base sequence shown in SEQ ID NO: 6 in the sequence listing or an oligonucleotide having the base sequence shown in SEQ ID NO: 9 in the sequence listing Can be mentioned. In the base sequences defined in these SEQ ID NOs, those in which one or more (preferably 2 to 5) bases are deleted, substituted or added can also be used as a probe. Such a probe may be labeled with a known fluorescent substance and / or a fluorescence suppressing substance.
 RT-PCR法を採用する場合、前処理後の試料と逆転写酵素等とを用いてRT-PCR用反応液を調製し、公知のサーマルサイクラーを利用して工程(c)と工程(d)とを同一の反応液内で進行させる。RT-PCR用反応液は、前述の各種成分、例えば、前処理後の試料、緩衝液、逆転写酵素、PCR酵素、二価金属塩、dNTPs、還元剤、適切なプライマー、適切なプローブ、滅菌水等を適宜取捨選択し、組み合わせて調製される。 When the RT-PCR method is employed, a reaction solution for RT-PCR is prepared using the sample after pretreatment and a reverse transcriptase and the like, and steps (c) and (d) are performed using a known thermal cycler. And in the same reaction solution. The reaction solution for RT-PCR includes various components as described above, for example, a sample after pretreatment, a buffer solution, a reverse transcriptase, a PCR enzyme, a divalent metal salt, dNTPs, a reducing agent, an appropriate primer, an appropriate probe, and sterilization. Water and the like are appropriately selected and combined and prepared.
 試料に含まれていたRNAより得られたcDNAや、該cDNAを鋳型として増幅生成されたDNA断片は、電気泳動法、融解曲線法、各種プローブ法(Qプローブ、スコーピオンプローブ、ハイブリプローブなど)で検出、識別することができる。また、温度昇降機能と蛍光測定機能を備えた機器であれば、TaqMan(登録商標)プローブ、インターカレーティング色素などを用いることにより、反応中に増幅生成したDNA断片をリアルタイムに検出識別することができる。ここで、検出対象の非エンベロープ型RNAウイルスの種類に応じた、逆転写反応用又は核酸増幅反応用のプライマー及び/又はプローブを使用することにより、検出対象の非エンベロープ型RNAウイルスを特異的に検出することができる。 The cDNA obtained from the RNA contained in the sample, and the DNA fragment amplified and generated using the cDNA as a template are obtained by electrophoresis, melting curve method, various probe methods (Q probe, scorpion probe, hybrid probe etc.) It can be detected and identified. In addition, if it is a device equipped with a temperature raising / lowering function and a fluorescence measurement function, using TaqMan (registered trademark) probes, intercalating dyes, etc., DNA fragments generated during the reaction can be detected and identified in real time. it can. Here, by using a primer and / or a probe for reverse transcription reaction or nucleic acid amplification reaction according to the type of non-enveloped RNA virus to be detected, the non-enveloped RNA virus to be detected is specifically determined. It can be detected.
 本発明は、前述の非エンベロープ型RNAウイルスの有無を検出する方法のためのキットを提供する。本発明のキットは、RNAウイルスの検出に供される試料を処理するための、前記の強アルカリ性の水酸化物をコンポーネントとして含有することを一つの特徴とする。前記の強アルカリ性の水酸化物は、溶液として、好ましくは水溶液として(例えば前記の前処理液として)キットに含有される。強アルカリ性の水酸化物の濃度は、試料に添加した際に、前記の、本発明の方法に好適な終濃度となるように調整されていればよく、特に限定はない。 The present invention provides a kit for a method of detecting the presence or absence of the aforementioned non-enveloped RNA virus. The kit of the present invention is characterized in that it contains the strongly alkaline hydroxide as a component for processing a sample to be subjected to detection of RNA virus. Said strongly alkaline hydroxide is contained in the kit as a solution, preferably as an aqueous solution (e.g. as said pretreatment liquid). The concentration of the strongly alkaline hydroxide may be adjusted to a final concentration suitable for the method of the present invention when added to the sample, and is not particularly limited.
 強アルカリ性の水酸化物を含む溶液に加えて、リボヌクレアーゼ活性の阻害手段(例えばキレート剤及び/又はRNase inhibitor)を含む溶液を含むキットであってもよい。リボヌクレアーゼ活性の阻害手段を含む溶液は、キットを構成する独立したコンポーネントであってもよく、強アルカリ性の水酸化物を含む溶液にリボヌクレアーゼ活性の阻害手段が含まれたコンポーネントであってもよい。さらに、本発明のキットは、試料や各種試薬を希釈もしくは懸濁するための溶液を含んでいてもよい。 In addition to the solution containing a strongly alkaline hydroxide, it may be a kit containing a solution containing a means for inhibiting ribonuclease activity (eg, a chelating agent and / or RNase inhibitor). The solution containing the means for inhibiting the ribonuclease activity may be an independent component of the kit, or the solution containing the strongly alkaline hydroxide may be the component containing the means for inhibiting the ribonuclease activity. Furthermore, the kit of the present invention may contain a solution for diluting or suspending samples and various reagents.
 本発明のキットとしては、さらに、目的のRNAウイルス由来のRNAを検出するための試薬を含むものが好適である。前記の試薬としては、目的のRNAウイルス由来のRNAを鋳型としてcDNAを合成する逆転写反応のための試薬(例えば逆転写酵素及び逆転写反応用試薬)、前記cDNA若しくはその一部を増幅する核酸増幅反応のための試薬(例えば耐熱性DNAポリメラーゼ及びDNAポリメラーゼ連鎖反応用試薬)が例示される。好ましくは、増幅された核酸断片を検出するための試薬も例示される。これら試薬は前記本発明の方法について記載した前述の試薬類の他、公知のRNA検出技術に使用されているものを利用することができる。 As the kit of the present invention, one further containing a reagent for detecting RNA from the target RNA virus is suitable. As the above-mentioned reagent, a reagent for reverse transcription reaction (for example, reverse transcriptase and reverse transcription reagent) for synthesizing cDNA using RNA from the target RNA virus as a template (for example, nucleic acid for amplifying the cDNA or a part thereof) Examples of reagents for amplification reactions (eg, thermostable DNA polymerase and reagents for DNA polymerase chain reaction) are illustrated. Preferably, reagents for detecting amplified nucleic acid fragments are also exemplified. As these reagents, in addition to the above-mentioned reagents described for the method of the present invention, those used for known RNA detection techniques can be used.
 本発明のキットには、目的のRNAウイルスを特異的に検出するためのプライマーやプローブが含まれていることがより好ましい。これらのプライマーやプローブは、当該RNAウイルスのゲノムRNAの配列に基づいて合成することができる。 More preferably, the kit of the present invention contains primers and probes for specifically detecting the target RNA virus. These primers and probes can be synthesized based on the sequence of the genomic RNA of the RNA virus.
 本発明のキットの好ましい一例としては、試料の前処理液(例えば、強アルカリ性の水酸化物、及び所望によりキレート剤及び/又はRNase inhibitorを含有する溶液)とOne-Step RT-PCR反応液を調製するためのコンポーネント(例えば、適切な濃度で調製された反応緩衝液、逆転写酵素、DNAポリメラーゼ、dNTP混合物、プライマー、プローブ等)とを含むものが例示される。例えば、前記の各コンポーネントのいくつかが混合された状態で含まれているキットは、反応液を簡便に調製することができる。 A preferred example of the kit of the present invention is a sample pretreatment solution (eg, a solution containing a strongly alkaline hydroxide, and optionally a chelating agent and / or RNase inhibitor) and a One-Step RT-PCR reaction solution. Those containing components for preparation (eg, reaction buffer, reverse transcriptase, DNA polymerase, dNTP mixture, primers, probes etc. prepared at appropriate concentrations) are exemplified. For example, a kit in which some of the components described above are mixed can easily prepare a reaction solution.
 以下実施例をもって本発明を具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 The present invention will be specifically described by way of the following examples. The present invention is not limited to the following examples.
実施例1. アルカリ処理時の塩基性物質濃度の検討
 American Type Culture Collection (ATCC)より購入したVR-782,Feline calicivirus,F-9 (Caliciviridae)、ネコカリシウイルス(FCV)を20倍になるよう生理食塩水で希釈してウイルス懸濁液を作成した。FCVが検出できるよう、別途FCV Primer/Probe Mixを作成した。該懸濁液1μLに対し6.25、12.5、25、100mMのNaOH溶液を4μLずつ添加し、NaOHの終濃度5mM、10mM、20mM、40mM、80mMのアルカリ性の混合液を調製した。該混合液を室温(27℃)にて5分間放置後、前処理後の試料とした。
Example 1 Examination of basic substance concentration at alkaline treatment VR-782, Feline calicivirus purchased from American Type Culture Collection (ATCC), F-9 (Caliciviridae), feline calicivirus (FCV) with physiological saline so as to be 20 times The dilution was made into a virus suspension. Separate FCV Primer / Probe Mix was created to detect FCV. 4 μL each of 6.25, 12.5, 25, 100 mM NaOH solution was added to 1 μL of the suspension to prepare an alkaline mixed solution of NaOH at a final concentration of 5 mM, 10 mM, 20 mM, 40 mM and 80 mM. The mixture was allowed to stand at room temperature (27 ° C.) for 5 minutes and then used as a sample after pretreatment.
 この前処理後の試料と、TaKaRaノロウイルスGI/GII検出キット(高速検出用)(タカラバイオ株式会社製RR296A)の構成品を用いて、下記の組成のRT-PCR用反応液を調製し、この反応液を速やかに下記の反応条件でRT-PCRに供しし、操作マニュアルに従ってCt値による定量を実施した。一つの濃度のNaOH溶液あたり実験を2回行い、Ct値の平均値を結果に示した。Ct値は特定の蛍光値に達したサイクル数であり、増幅産物の量比を示している。すなわちCt値が小さいほど、増幅量が多いということを示す。なお、核酸増幅装置には製品CodeNo,TP-990 ThermalCycler Dice(登録商標)RealTime SystemIII(タカラバイオ株式会社製)を用いた。 A reaction solution for RT-PCR of the following composition is prepared using the sample after this pretreatment and components of the TaKaRa norovirus GI / GII detection kit (for high-speed detection) (RR296A manufactured by Takara Bio Inc.). The reaction solution was immediately subjected to RT-PCR under the following reaction conditions, and quantification by Ct value was performed according to the operation manual. Two experiments were performed per NaOH solution of one concentration, and the average value of Ct values was shown in the results. The Ct value is the cycle number at which a specific fluorescence value is reached, and indicates the quantitative ratio of amplification products. That is, the smaller the Ct value, the larger the amplification amount. The product Code No. TP-990 ThermalCycler Dice (registered trademark) RealTime System III (manufactured by Takara Bio Inc.) was used as the nucleic acid amplification apparatus.
 (FCV Primer/Probe Mix)
2μM FCV検出プライマー CCATTGGTGCTAATAGGGAAAGG(配列番号1)
2μM FCV検出プライマー CCACCACGAGCACCAGTTT(配列番号2)
2μM FCV検出プローブ FAM-TGCGCATCAGCACGCTTCCC-BHQ1(配列番号3)
(FCV Primer / Probe Mix)
2 μM FCV detection primer CCATTGGTGCTAATAGGGAAAGG (SEQ ID NO: 1)
2 μM FCV detection primer CCACCACGAGCACCAGTTT (SEQ ID NO: 2)
2 μM FCV detection probe FAM-TGCGCATCAGCACGCTTTCCC-BHQ1 (SEQ ID NO: 3)
 (RT-PCR用反応液)
 5.0μL 前処理後の試料
 12.0μL PCR Buffer(NV)4
 2.5μL FCV Primer/Probe Mix
 1.5μL Enzyme Mix(NV)4
 4.0μL 滅菌水
(Reaction solution for RT-PCR)
5.0 μL pretreated sample 12.0 μL PCR Buffer (NV) 4
2.5 μL FCV Primer / Probe Mix
1.5 μL Enzyme Mix (NV) 4
4.0 μL sterile water
 (反応条件)
前記反応液25μLを以下の温度サイクルで反応した。
 42℃ 5min、
 95℃ 30sec、
 95℃ 5sec-54℃ 30sec 45サイクル(FAM、ROX、Cy5蛍光検出)
(Reaction conditions)
The reaction liquid (25 μL) was reacted in the following temperature cycle.
42 ° C 5min,
95 ° C 30 sec,
95 ° C 5sec-54 ° C 30sec 45 cycles (FAM, ROX, Cy5 fluorescence detection)
 結果を表1に示した。いずれの条件でも増幅物は検出されたものの、特に終濃度40mMのNaOHを共存させた際にもっとも低いCt値を示し、良好な結果を得ることが出来た。 The results are shown in Table 1. Although the amplification product was detected under any conditions, it showed the lowest Ct value particularly when coexisting with a final concentration of 40 mM NaOH, and good results could be obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例2. 室温放置時間の検討
 実施例1で調製したFCV懸濁液1μLに対し、50mMのNaOH溶液を4μL添加し、NaOHの終濃度40mMのアルカリ性の混合液5μLを調製し室温(27℃)に放置した。該混合液を前処理後の試料とした。
 この前処理後の試料を用いて実施例1と同様の組成物のRT-PCR用反応液を調製し、実施例1と同様の反応条件でRT-PCRに供し、Ct値を求めた。なお、室温放置時間の検討として以下1~6番までの試験を実施した。
Example 2 Examination of storage time at room temperature 4 μL of 50 mM NaOH solution was added to 1 μL of the FCV suspension prepared in Example 1 to prepare 5 μL of an alkaline mixed solution of NaOH final concentration 40 mM and left at room temperature (27 ° C.) . The mixture was used as a pretreated sample.
A reaction solution for RT-PCR of the same composition as in Example 1 was prepared using the sample after this pretreatment, subjected to RT-PCR under the same reaction conditions as in Example 1, and the Ct value was determined. The following tests 1 to 6 were conducted as examination of the room temperature standing time.
 試験番号1はNaOHを添加後、直ちにPCR Buffer(NV)4等を添加・混合してRT-PCR用反応液を調製した。試験番号2はNaOHを添加後、1分室温に放置し、同様にRT-PCR用反応液を調製した。試験番号3はNaOHを添加後、2分室温に放置し、同様にRT-PCR用反応液を調製した。試験番号4はNaOHを添加後、5分室温に放置し、同様にRT-PCR用反応液を調製した。試験番号5はNaOHを添加後、30分室温に放置し、同様にRT-PCR用反応液を調製した。試験番号6はNaOHを添加後、60分室温に放置し、同様にRT-PCR用反応液を調製した。実施例1と同条件で、各RT-PCR用反応液をただちにRT-PCRに供し、Ct値を求めた。一つの試験番号あたり実験を2回行い、Ct値の平均値を結果に示した。 In Test No. 1, after adding NaOH, PCR Buffer (NV) 4 etc. was immediately added and mixed to prepare a reaction solution for RT-PCR. Test No. 2 was left at room temperature for 1 minute after addition of NaOH, and a reaction solution for RT-PCR was similarly prepared. Test No. 3 was left at room temperature for 2 minutes after addition of NaOH, and a reaction solution for RT-PCR was similarly prepared. Test No. 4 was left at room temperature for 5 minutes after addition of NaOH, and a reaction solution for RT-PCR was similarly prepared. Test No. 5 was left at room temperature for 30 minutes after addition of NaOH, and a reaction solution for RT-PCR was similarly prepared. Test No. 6 was left at room temperature for 60 minutes after addition of NaOH, and a reaction solution for RT-PCR was similarly prepared. Under the same conditions as in Example 1, each reaction solution for RT-PCR was immediately subjected to RT-PCR, and the Ct value was determined. The experiment was performed twice per one test number, and the average value of the Ct value was shown in the result.
 結果を表2に示した。試験1~6について、室温での放置時間を長くしてもCt値の増加は認められなかった。 The results are shown in Table 2. In Tests 1 to 6, no increase in Ct value was observed even if the standing time at room temperature was increased.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例3. 環境温度による反応性の確認
 実施例1で調製したFCV懸濁液1μLに対し、42mMのNaOH溶液5μLを添加し、NaOHの終濃度35mMのアルカリ性の混合液を調製した。該混合液を氷上、室温(27℃)、37℃、50℃でそれぞれ10分放置後、前処理後の試料とした。
Example 3 Confirmation of Reactivity by Environmental Temperature To 1 μL of the FCV suspension prepared in Example 1, 5 μL of 42 mM NaOH solution was added to prepare an alkaline mixed solution of NaOH with a final concentration of 35 mM. The mixture was allowed to stand on ice at room temperature (27 ° C.), 37 ° C., and 50 ° C. for 10 minutes, respectively, to obtain a sample after pretreatment.
 この前処理後の試料と、TaKaRaノロウイルスGI/GII検出キット(高速検出用)(タカラバイオ株式会社製RR296A)の構成品を用いて、実施例1と同様の組成のRT-PCR用反応液を調製し、この反応液を実施例1と同条件で、ただちにRT-PCRに供し、Ct値を求めた。一つの温度条件あたり実験を2回行い、Ct値の平均値を結果に示した。 A reaction solution for RT-PCR having the same composition as in Example 1 was prepared using the sample after this pretreatment and the components of the TaKaRa norovirus GI / GII detection kit (for high-speed detection) (RR296A manufactured by Takara Bio Inc.). The reaction solution was immediately prepared for RT-PCR under the same conditions as in Example 1 to obtain a Ct value. The experiment was performed twice per one temperature condition, and the average value of the Ct value was shown in the result.
 結果を表3に示した。氷上、室温で特に良好な結果を示した。なお氷上、室温、37℃、50℃ともに極端なCt値の増加は認められなかった。 The results are shown in Table 3. Particularly good results have been shown on ice at room temperature. There was no significant increase in Ct value on ice, at room temperature, at 37 ° C., or at 50 ° C.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例4. 糞便検体を用いたウイルスRNAの検出
 ノロウイルス陽性の糞便検体を5~10%(w/v)となるようPBSに懸濁した後、15,000rpmにて5分間遠心処理を行った。該上清1μLに対し、12、24、42、66、96mMのNaOH溶液を5μLずつ添加し、NaOHの終濃度10、20、35、55、80mMのアルカリ性の混合液を調製した。該混合液を室温(27℃)にて5min放置後、前処理後の試料とした。なお、ノロウイルスが検出できるよう、別途NV Primer/Probe Mixを作成した。
Example 4 Detection of Viral RNA Using a Fecal Sample A norovirus positive fecal sample was suspended in PBS so as to be 5-10% (w / v), and then centrifuged at 15,000 rpm for 5 minutes. 12, 24, 42, 66, and 5 mM each of a 96 mM NaOH solution were added to 1 μL of the supernatant to prepare an alkaline mixed solution with a final NaOH concentration of 10, 20, 35, 55, 80 mM. The mixture was allowed to stand at room temperature (27 ° C.) for 5 minutes, and used as a sample after pretreatment. In addition, an NV Primer / Probe Mix was separately prepared to detect norovirus.
 この前処理後の試料と、TaKaRaノロウイルスGI/GII検出キット(高速検出用)(タカラバイオ株式会社製RR296A)の構成品を用いて、下記の組成のRT-PCR用反応液を調製し、下記の反応条件でRT-PCRに供し、Ct値を求めた。 A reaction solution for RT-PCR of the following composition was prepared using the sample after this pretreatment and the components of the TaKaRa norovirus GI / GII detection kit (for high-speed detection) (RR296A manufactured by Takara Bio Inc.), The product was subjected to RT-PCR under the following reaction conditions to determine the Ct value.
 試験用の検体として、ノロウイルスGII陽性検体#8(GII)、#27(GII)、#28(GII)、ノロウイルスGI陽性検体#360(GI)の4検体を用意し、結果に示した。なお、核酸増幅には製品CodeNo,TP-990 ThermalCycler Dice(登録商標)RealTime SystemIIIを用いた。 As specimens for the test, four specimens of Norovirus GII positive specimens # 8 (GII), # 27 (GII), # 28 (GII) and Norovirus GI positive specimens # 360 (GI) were prepared and shown in the results. The product Code No. TP-990 ThermalCycler Dice (registered trademark) RealTime System III was used for nucleic acid amplification.
 (NV Primer/Probe Mix)
4μM NV検出プライマー CGYTGGATGCGNTTYCATGA(配列番号4)
4μM NV検出プライマー CTTAGACGCCATCATCATTYAC(配列番号5)
2μM NV検出プローブ FAM-AGATYGCGATCYCCTGTCCA-BHQ1(配列番号6)
4μM NV検出プライマー CARGARBCNATGTTYAGRTGGATGAG(配列番号7)
4μM NV検出プライマー TCGACGCCATCTTCATTCACA(配列番号8)
2μM NV検出プローブ ROX-TGGGAGGGSGATCGCRATCT-BHQ2(配列番号9)
 上記配列番号:4~6で示されるプライマーとプローブの組み合わせによって、ノロウイルスGIを検出することができ、上記配列番号:7~9で示されるプライマーとプローブの組み合わせによって、ノロウイルスGIIを検出することができる。
 なお、上記配列番号:4及び配列番号:7における「N」とは、その塩基がアデニン、グアニン、シトシン又はチミンであることを示す記号である。
(NV Primer / Probe Mix)
4 μM NV detection primer CGYTGGATGCGNTTYCATGA (SEQ ID NO: 4)
4μM NV detection primer CTTAGACGCCATCATCATTYAC (SEQ ID NO: 5)
2 μM NV detection probe FAM-AGATYGCGATCYCCTGTCCA-BHQ1 (SEQ ID NO: 6)
4 μM NV detection primer CARGARBCNATGTYAAGRTGGATGAG (SEQ ID NO: 7)
4 μM NV detection primer TCGACGCCATCTTCATTCACA (SEQ ID NO: 8)
2 μM NV detection probe ROX-TGGGAGGGGSGATCGCRACTT-BHQ2 (SEQ ID NO: 9)
Norovirus GI can be detected by the combination of the primer and the probe shown in the above SEQ ID NO: 4 to 6, and norovirus GII can be detected by the combination of the primer and the probe shown above SEQ ID NO: 7 to 9 it can.
The “N” in the above-mentioned SEQ ID NO: 4 and SEQ ID NO: 7 is a symbol indicating that the base is adenine, guanine, cytosine or thymine.
 (RT-PCR用反応液)
 6.0μL 前処理後の試料
 12.0μL PCR Buffer(NV)4
 2.5μL NV Primer/Probe Mix4
 1.5μL Enzyme Mix(NV)4
 3.0μL 滅菌水
(Reaction solution for RT-PCR)
6.0 μL pretreated sample 12.0 μL PCR Buffer (NV) 4
2.5 μL NV Primer / Probe Mix 4
1.5 μL Enzyme Mix (NV) 4
3.0 μL sterile water
(反応条件)
 前記反応液25μLを以下の温度サイクルで反応した。なお、最初の5サイクルは蛍光検出を行っていないため、結果は5サイクルを足したCt値を表記した。
 42℃ 5min、
 95℃ 30sec、
 95℃ 5sec-56℃ 40sec 5サイクル
 90℃ 5sec-56℃ 40sec 35サイクル(FAM、ROX、Cy5蛍光検出)
(Reaction conditions)
The reaction liquid (25 μL) was reacted in the following temperature cycle. In addition, since fluorescence detection was not performed for the first 5 cycles, the result described Ct value which added 5 cycles.
42 ° C 5min,
95 ° C 30 sec,
95 ° C 5sec-56 ° C 40sec 5 cycles 90 ° C 5sec-56 ° C 40sec 35 cycles (FAM, ROX, Cy5 fluorescence detection)
 結果を図1に示す。NaOHの終濃度10、20、35、55、80mMの前処理後の試料、すべてにおいて増幅物の検出が認められ、終濃度20~55mMが好適であることが見出された。 The results are shown in FIG. Detection of the amplification product was observed in all of the samples after the pretreatment with a final concentration of 10, 20, 35, 55, 80 mM of NaOH, and a final concentration of 20 to 55 mM was found to be suitable.
実施例5. 糞便検体を用いた室温放置時間の検討
 実施例4と同様に調製したノロウイルス陽性懸濁液の上清1μLに対し、42mMのNaOH溶液5μLを添加し、アルカリ性の混合液を調製した。該混合液を室温(27℃)にそれぞれ、2、5、10、20、30分放置後、前処理後の試料とした。
Example 5 Examination of the room temperature standing time using a stool sample To 1 μL of the supernatant of the norovirus positive suspension prepared in the same manner as in Example 4, 5 μL of 42 mM NaOH solution was added to prepare an alkaline mixed solution. The mixture was allowed to stand at room temperature (27 ° C.) for 2, 5, 10, 20, and 30 minutes, respectively, to obtain a sample after pretreatment.
 この前処理後の試料と、TaKaRaノロウイルスGI/GII検出キット(高速検出用)(タカラバイオ株式会社製RR296A)の構成品を用いて、実施例4と同様の組成のRT-PCR用反応液を調製し、実施例4と同様の反応条件でRT-PCRに供し、Ct値を求めた。 A reaction solution for RT-PCR having the same composition as in Example 4 was prepared using the sample after this pretreatment and components of the TaKaRa norovirus GI / GII detection kit (for high-speed detection) (RR296A manufactured by Takara Bio Inc.). It was prepared and subjected to RT-PCR under the same reaction conditions as in Example 4, and the Ct value was determined.
 試験用の検体として、ノロウイルスGI陽性検体#362(GI)、ノロウイルスGII陽性検体#8(GII)、#27(GII)、#336(GII)の4検体を用意し、結果に示した。 As samples for the test, 4 samples of Norovirus GI positive sample # 362 (GI), Norovirus GII positive samples # 8 (GII), # 27 (GII) and # 336 (GII) were prepared and shown in the results.
 結果を図2に示す。2、5、10、20、30分放置後の前処理後の試料、すべてにおいて増幅が認められ2、5分がもっとも好適であることが見出された。また2~30minでCt値に大差は認められなかった。 The results are shown in FIG. It was found that amplification was observed in all of the samples after pre-treatment after standing for 2, 5, 10, 20, 30 minutes, with 2, 5 minutes being most preferable. Also, no significant difference was found in the Ct value in 2 to 30 minutes.
実施例6. 糞便検体を用いた環境温度による反応性の確認
 実施例4と同様に調製したノロウイルス陽性懸濁液の上清1μLに対し、42mMのNaOH溶液5μLを添加し、NaOHの終濃度35mMのアルカリ性の混合液を調製した。該混合液を氷上で、2、5、10、20、30分放置後、前処理後の試料とした。
Example 6 Confirmation of reactivity by environmental temperature using a fecal sample: 5 μL of 42 mM NaOH solution is added to 1 μL of the supernatant of the norovirus positive suspension prepared in the same manner as in Example 4 and alkaline mixed with a final concentration of 35 mM of NaOH The solution was prepared. The mixture was allowed to stand on ice for 2, 5, 10, 20, 30 minutes, and used as a sample after pretreatment.
 この前処理後の試料と、TaKaRaノロウイルスGI/GII検出キット(高速検出用)(タカラバイオ株式会社製RR296A)の構成品を用いて、実施例4と同様の組成のRT-PCR用反応液を調製し、実施例4と同様の反応条件でRT-PCRに供し、Ct値を求めた。 A reaction solution for RT-PCR having the same composition as in Example 4 was prepared using the sample after this pretreatment and components of the TaKaRa norovirus GI / GII detection kit (for high-speed detection) (RR296A manufactured by Takara Bio Inc.). It was prepared and subjected to RT-PCR under the same reaction conditions as in Example 4, and the Ct value was determined.
 試験用の検体として、ノロウイルスGI陽性検体#360(GI)、ノロウイルスGII陽性検体#8(GII)、#27(GII)、#91(GII)、#360(GII)の5検体を用意し、結果に示した。 As test samples, 5 samples of Norovirus GI positive sample # 360 (GI), Norovirus GII positive sample # 8 (GII), # 27 (GII), # 91 (GII) and # 360 (GII) are prepared, The results are shown.
 結果を図3に示す。2、5、10、20、30分放置後の前処理後の試料、すべてにおいて、増幅が認められ、放置時間によるCtの変化は認められなかった。 The results are shown in FIG. Amplification was observed in all of the samples after the pretreatment after leaving at 2, 5, 10, 20 and 30 minutes, and no change in Ct due to the leaving time was observed.
実施例7. 室温で前処理する方法と室温で前処理する方法にキレート剤を添加する場合の反応性を確認
 実施例4と同様に調製した、ノロウイルス陽性懸濁液の上清1μLに対し、42mMのNaOH溶液5μLを添加(NaOHの終濃度は35mM)して、アルカリ性の混合液(最終容量6μL)を調製した。一方で、ノロウイルス陽性懸濁液の上清1μLに対し、60mMのEGTA 1μL(終濃度10mM)を添加して撹拌して懸濁液を得、次いでこれに52.5mMのNaOH溶液4μLを添加(NaOHの終濃度35mM)して、アルカリ性の混合液(最終容量6μL)を調製した。これらのアルカリ性の混合液を室温(27℃)で30分放置した後、前処理後の試料とした。
Example 7 Confirm the reactivity in the case of adding a chelating agent to the method of pretreatment at room temperature and the method of pretreatment at room temperature 42 mM NaOH solution for 1 μL of the supernatant of norovirus positive suspension prepared as in Example 4 An alkaline mixture (final volume 6 μL) was prepared by adding 5 μL (final concentration of NaOH is 35 mM). On the other hand, 1 μL of 60 mM EGTA (final concentration 10 mM) is added to 1 μL of the supernatant of norovirus positive suspension and stirred to obtain a suspension, to which 4 μL of 52.5 mM NaOH solution is then added ( An alkaline mixture (final volume 6 μL) was prepared by final concentration of NaOH 35 mM). These alkaline mixed solutions were allowed to stand at room temperature (27 ° C.) for 30 minutes and then used as samples after pretreatment.
 この前処理後の試料の全量と、TaKaRaノロウイルスGI/GII検出キット(高速検出用)(タカラバイオ株式会社製RR296A)の構成品を用いて、実施例4と同様の組成のRT-PCR用反応液を調製し、実施例4と同様の反応条件でRT-PCRに供し、Ct値を求めた。 A reaction for RT-PCR having the same composition as that of Example 4 using the entire amount of the sample after this pretreatment and components of the TaKaRa norovirus GI / GII detection kit (for high-speed detection) (RR296A manufactured by Takara Bio Inc.) The solution was prepared, subjected to RT-PCR under the same reaction conditions as in Example 4, and the Ct value was determined.
 また、工程(b)である前処理工程に、キレート剤を添加することにより、RT-PCR反応液中のMg2+イオンに作用し、RT-PCRに影響することが考えられたので、あらかじめ、反応阻害がないことを確認している、上記のキットに同梱されている、ノロウイルスGI、GIIのポジティブコントロール及び、インターナルコントロールを用いて、RT-PCR反応液中のMg2+イオンの添加量を検討した。その結果、今回のRT-PCR反応条件では、1mMのMg2+イオンを添加すれば反応が改善することが分かった。よって本実施例及び以後の実施例において、キレート剤を使用する場合には、RT-PCR反応液に1mMのMg2+イオンを添加することにした。その他の反応条件は実施例4と同様である。 In addition, it was thought that by adding a chelating agent to the pretreatment step of step (b), it acts on Mg 2+ ions in the RT-PCR reaction solution to affect RT-PCR. The addition amount of Mg 2+ ion in RT-PCR reaction solution using Norovirus GI, GII positive control and internal control included in the above kit, which confirmed no reaction inhibition. It was investigated. As a result, it was found that, under the current RT-PCR reaction conditions, the reaction was improved by adding 1 mM Mg 2+ ion. Therefore, when using a chelating agent in this example and subsequent examples, it was decided to add 1 mM Mg 2+ ion to the RT-PCR reaction solution. The other reaction conditions are the same as in Example 4.
 また、試験用の検体として、ノロウイルスGII陽性検体#28、#288、#173、#289、#91、#248、#220、#139、#87、#251の10検体を用意し、結果に示した。なお、核酸増幅には製品CodeNo,TP-990 ThermalCycler Dice(登録商標)RealTime SystemIIIを用いた。 In addition, 10 samples of Norovirus GII positive samples # 28, # 288, # 173, # 289, # 91, # 248, # 220, # 139, # 87, and # 251 are prepared as test samples, and are used as results. Indicated. The product Code No. TP-990 ThermalCycler Dice (registered trademark) RealTime System III was used for nucleic acid amplification.
 結果を図4に示す。図中、白棒グラフは室温でEGTAを含むアルカリ性の混合液を用いて前処理を行い、その後のRT-PCR反応でMg2+イオン補充をした結果である。黒棒グラフは室温でEGTAを含まないアルカリ性の混合液を用いて前処理を行った結果である。本実験で使用した上記の10検体すべてで、キレート剤の添加によってCt値の低下が見られた。このように、EGTAを前処理工程に加えて常温処理した場合、反応改善の効果を示すことがわかった。 The results are shown in FIG. In the figure, the white bar is the result of pretreatment with an alkaline mixture containing EGTA at room temperature and subsequent Mg 2+ ion replenishment in the RT-PCR reaction. The black bars are the results of pretreatment with an alkaline mixed solution containing no EGTA at room temperature. In all of the above 10 samples used in this experiment, a decrease in Ct value was observed by the addition of a chelating agent. Thus, it has been found that when EGTA is added to the pretreatment step and subjected to normal temperature treatment, the effect of reaction improvement is shown.
実施例8. 氷上で前処理する方法と、室温で前処理する方法にキレート剤を添加した場合の反応性を確認
 実施例4と同様に調製したノロウイルス陽性懸濁液の上清1μLに対し、氷上で42mMのNaOH水溶液を5μL添加(終濃度35mM)し、アルカリ性の混合液(最終容量6μL)を調製した。該混合液は氷上で30分放置した。
Example 8 Confirm the reactivity when adding a chelating agent to the method of pre-treating on ice and the method of pre-treating at room temperature 42 μM of the supernatant on 1 μL of the supernatant of the norovirus positive suspension prepared as in Example 4 5 μL of aqueous NaOH solution (final concentration 35 mM) was added to prepare an alkaline mixture (final volume 6 μL). The mixture was left on ice for 30 minutes.
 一方、室温(27℃)でノロウイルス陽性懸濁液の上清1μLに対し、30mMのEDTAを1μL(終濃度5mM)を添加して撹拌して懸濁液を得、次いでこれに52.5mMのNaOH溶液4μLを添加(終濃度35mM)してアルカリ性の混合液(最終容量6μL)を調製し、該混合液を室温(27℃)で30分放置した。 On the other hand, 1 μL of 30 mM EDTA (final concentration 5 mM) is added to 1 μL of the supernatant of norovirus positive suspension at room temperature (27 ° C.) and stirred to obtain a suspension, which is then 52.5 mM 4 μL of NaOH solution was added (final concentration 35 mM) to prepare an alkaline mixture (final volume 6 μL), and the mixture was allowed to stand at room temperature (27 ° C.) for 30 minutes.
 このように調製し、それぞれの温度条件で30分の放置を終えた前処理後の試料の全量と、TaKaRaノロウイルスGI/GII検出キット(高速検出用)(タカラバイオ株式会社製RR296A)の構成品を用いて、実施例4と同様の組成のRT-PCR用反応液を調製し、実施例4と同様の反応条件でRT-PCRに供し、Ct値を求めた。 The total amount of samples after pretreatment prepared in this way and left to stand for 30 minutes under each temperature condition, and components of TaKaRa Norovirus GI / GII detection kit (for high-speed detection) (RR296A manufactured by Takara Bio Inc.) A reaction solution for RT-PCR having the same composition as in Example 4 was prepared using the above, and subjected to RT-PCR under the same reaction conditions as in Example 4 to obtain a Ct value.
 なお、EDTAを含む前処理後の試料でRT-PCR反応液を調製する際には、実施例7と同様にあらかじめMg2+イオンの添加量を検討し、RT-PCR反応液に1mMのMg2+イオンを添加した。その他の反応条件は実施例4と同様である。 When preparing an RT-PCR reaction solution with a sample after pretreatment containing EDTA, the addition amount of Mg 2+ ion was previously examined in the same manner as in Example 7, and 1 mM Mg 2+ was added to the RT-PCR reaction solution. Ions were added. The other reaction conditions are the same as in Example 4.
 また、試験用の検体として、ノロウイルスGII陽性検体#91、ノロウイルスGI/GIIの共感染モデルとして#360の2種類のサンプルを用意した。一つのサンプルあたり実験を2回行って、平均のCt値を求めた。なお、核酸増幅には製品CodeNo,TP-990 ThermalCycler Dice(登録商標)RealTime SystemIIIを用いた。 In addition, two types of samples, a Norovirus GII-positive specimen # 91 and a # 360 Norovirus GI / GII co-infection model, were prepared as test specimens. Two experiments were performed per sample to determine the average Ct value. The product Code No. TP-990 ThermalCycler Dice (registered trademark) RealTime System III was used for nucleic acid amplification.
 結果を図5に示す。図中、白棒グラフは氷上で工程(b)を実施した結果である。黒棒グラフは室温でEDTAの存在下で工程(b)を実施し、その後のRT-PCR反応液中にMg2+イオン補充をした結果である。氷上処理方法と室温処理方法にキレート剤を添加した場合、RT-PCRの結果は、同等の反応性を示した。 The results are shown in FIG. In the figure, the white bar graph is the result of performing step (b) on ice. Black bars are the result of carrying out step (b) in the presence of EDTA at room temperature and subsequent Mg 2+ ion supplementation in the RT-PCR reaction. When a chelating agent was added to the method for treating on ice and the method for treating at room temperature, the results of RT-PCR showed similar reactivity.
実施例9 キレート剤添加のタイミング
 ノロウイルス陽性の糞便検体を10%(w/v)糞便懸濁液となるように、100mM EGTA2ナトリウム溶液で懸濁した。この時、EGTA濃度は終濃度で60mMである。次に前記糞便懸濁液1μLにNaOH溶液5μLを添加した。この時、NaOH濃度は、終濃度で35mMである。当該アルカリ性の混合液6μLを直ちにRT-PCRに供した場合のCt値と室温(27℃)又は氷上で5分間、15分間又は30分間それぞれ保持した後にRT-PCRに供した場合のCt値とを比較した。
Example 9 Timing of Chelating Agent Addition Norovirus-positive stool samples were suspended in 100 mM EGTA disodium solution to be a 10% (w / v) stool suspension. At this time, the EGTA concentration is 60 mM at the final concentration. Next, 5 μL of NaOH solution was added to 1 μL of the stool suspension. At this time, the NaOH concentration is 35 mM at the final concentration. Ct value when subjecting 6 μL of the alkaline mixture immediately to RT-PCR and Ct value when subjecting to RT-PCR after holding on room temperature (27 ° C.) or ice for 5 minutes, 15 minutes or 30 minutes respectively Compared.
 RT-PCR用反応液は、実施例4のものと同じである。なお本実施例においても、実施例8と同様に、RT-PCR溶液にMg2+イオンを追加して、Mg2+イオン濃度が1mMプラスになるようにした。
 試験用の検体として実検体、即ち、被験者より採取されたノロウイルスGIの糞便検体18-016及び18-017、GII陽性検体18-077及び18-078の4種類の検体を使用した。
 反応条件は、以下の設定で行った。サーマルサイクラーは、実施例4と同じである。
The reaction solution for RT-PCR is the same as that of Example 4. Also in this example, as in Example 8, Mg 2+ ion was added to the RT-PCR solution so that the Mg 2+ ion concentration became 1 mM plus.
Four types of real samples, namely fecal samples 18-016 and 18-017 of Norovirus GI collected from subjects, and GII positive samples 18-077 and 18-078 were used as test samples.
The reaction conditions were as follows. The thermal cycler is the same as in Example 4.
 42℃ 5min
 95℃ 30sec(1サイクル)
 95℃ 5sec-56℃ 40sec (5サイクル)
 90℃ 5sec-56℃ 40sec (35サイクル)
(FAM、ROX、Cy5蛍光検出)
42 ° C 5 min
95 ° C 30 sec (one cycle)
95 ° C 5sec-56 ° C 40sec (5 cycles)
90 ° C 5sec-56 ° C 40sec (35 cycles)
(FAM, ROX, Cy5 fluorescence detection)
 アルカリ性の混合液調製後ただちにRT-PCRに供した場合のCt値を基準として、室温又は氷上で5分間、15分間又は30分間それぞれ保持した後のRT-PCRのCt値を比較したところ、保持温度及び保持時間にかかわらず、いずれも基準のCt値とほぼ同一のCt値であることが確認できた。このことから、糞便検体をまずキレート剤を含む溶液で懸濁した後、アルカリ処理する場合であっても、室温又は氷上保持の時間にかかわらず目的の非エンベロープウイルスを効率よく検出できた。 The Ct values of RT-PCR were compared after they were kept for 5 minutes, 15 minutes or 30 minutes at room temperature or on ice, respectively, based on the Ct value when subjected to RT-PCR immediately after preparation of the alkaline mixed solution. Regardless of the temperature and the holding time, it was confirmed that the Ct values were almost the same as the reference Ct values. From this, even if the fecal sample is suspended in a solution containing a chelating agent first and then treated with alkali, the target non-enveloped virus can be efficiently detected regardless of the room temperature or the time of keeping on ice.
 本発明は、食品衛生検査、環境検査、臨床診断等に用いられる。 The present invention is used for food hygiene inspection, environmental inspection, clinical diagnosis and the like.
SEQ ID No:1 ; PCR Forward Primer FCVgp2-F.
SEQ ID No:2 ; PCR Reverse Primer FCVgp2-R.
SEQ ID No:3 ; Probe FCVGP2-P. 5’-end is labeled FAM and 3’-end is labeled BHQ1.
SEQ ID No:4 ; PCR Forward Primer COG1F.
SEQ ID No:5 ; PCR Reverse Primer COG1R.
SEQ ID No:6 ; Probe RING1-TP(a). 5’-end is labeled FAM and 3’-end is labeled BHQ1.
SEQ ID No:7 ; PCR Forward Primer COG2F.
SEQ ID No:8 ; PCR Reverse Primer COG2R.
SEQ ID No:9 ; Probe RING2AL-TP. 5’end is labeled ROX and 3’-end is labeled BHQ2.
SEQ ID No: 1; PCR Forward Primer FCV gp2-F.
SEQ ID No: 2; PCR Reverse Primer FCV gp2-R.
SEQ ID No: 3; Probe FCVGP2-P. 5'-end is labeled FAM and 3'-end is labeled BHQ1.
SEQ ID No: 4; PCR Forward Primer COG1F.
SEQ ID No: 5; PCR Reverse Primer COG1R.
SEQ ID No: 6; Probe RING 1-TP (a). 5'-end is labeled FAM and 3'-end is labeled BHQ1.
SEQ ID No: 7; PCR Forward Primer COG2F.
SEQ ID No: 8; PCR Reverse Primer COG2R.
SEQ ID No: 9; Probe RING 2 AL-TP. 5 'end is labeled ROX and 3'-end is labeled BHQ2.

Claims (19)

  1.  排出検体に由来する試料中の、非エンベロープ型RNAウイルスの有無を検出する方法であって、
    (a)RNAウイルスを含有する可能性のある試料を含むアルカリ性の混合液を調製する工程、
    (b)工程(a)で得られた混合液を加熱せず放置する工程、及び
    (c)工程(b)の放置後の混合液をcDNA合成反応に供する工程、
    を包含する、RNAウイルスの検出方法。
    A method for detecting the presence or absence of a non-enveloped RNA virus in a sample derived from a sample to be excreted, comprising:
    (A) preparing an alkaline mixture comprising a sample that may contain RNA virus;
    (B) leaving the mixed solution obtained in step (a) without heating, and (c) applying the mixed solution after leaving in step (b) to a cDNA synthesis reaction,
    Methods of detecting RNA viruses, including
  2.  工程(a)が、RNAウイルスを含有する可能性のある試料に強アルカリ性の水酸化物を含む溶液を添加することにより、アルカリ性の混合液を調製する工程である、請求項1記載の方法。 The method according to claim 1, wherein the step (a) is a step of preparing an alkaline mixed solution by adding a solution containing a strongly alkaline hydroxide to a sample possibly containing RNA virus.
  3.  工程(a)が、RNAウイルスを含有する可能性のある試料をキレート剤を含む溶液で懸濁した後に、強アルカリ性の水酸化物を含む溶液を添加することにより、アルカリ性の混合液を調製する工程である、請求項1記載の方法。 Step (a) prepares an alkaline mixture by adding a solution containing a strongly alkaline hydroxide after suspending a sample possibly containing RNA virus in a solution containing a chelating agent The method according to claim 1, which is a step.
  4.  強アルカリ性の水酸化物が、水酸化ナトリウム、水酸化カリウム、水酸化リチウム及び水酸化カルシウムからなる群より選択される1種以上である、請求項2又は3記載の方法。 The method according to claim 2 or 3, wherein the strongly alkaline hydroxide is one or more selected from the group consisting of sodium hydroxide, potassium hydroxide, lithium hydroxide and calcium hydroxide.
  5.  工程(a)におけるアルカリ性の混合液が水酸化ナトリウムを含有し、該水酸化ナトリウムの濃度が20~70mMである、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the alkaline mixture in step (a) contains sodium hydroxide, and the concentration of sodium hydroxide is 20 to 70 mM.
  6.  工程(d)として、工程(c)で得られたcDNAを鋳型とする核酸増幅の工程をさらに含むことを特徴とする、請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, further comprising the step of nucleic acid amplification using the cDNA obtained in step (c) as a template as step (d).
  7.  工程(d)における核酸増幅が、PCRにより実施されることを特徴とする、請求項6記載の方法。 7. The method of claim 6, wherein the nucleic acid amplification in step (d) is performed by PCR.
  8.  工程(c)と工程(d)が、同一の反応液内で行われることを特徴とする、請求項6又は7記載の方法。 The method according to claim 6 or 7, wherein step (c) and step (d) are performed in the same reaction solution.
  9.  工程(b)が、室温での放置により実施されることを特徴する、請求項1~8のいずれか1項に記載の方法。 A method according to any one of the preceding claims, characterized in that step (b) is carried out by standing at room temperature.
  10.  工程(b)が、30℃以下での放置により実施されることを特徴する、請求項1~9のいずれか1項に記載の方法。 The method according to any one of claims 1 to 9, characterized in that step (b) is carried out by leaving at 30 属 C or less.
  11.  生体排出検体が糞便であることを特徴とする、請求項1~10のいずれか1項に記載の方法。 The method according to any one of claims 1 to 10, wherein the biological excretion sample is feces.
  12.  工程(a)におけるRNAウイルスを含有する可能性のある試料が、糞便懸濁液上清であることを特徴とする、請求項1~11のいずれか1項に記載の方法。 A method according to any one of the preceding claims, characterized in that the sample potentially containing the RNA virus in step (a) is a fecal suspension supernatant.
  13.  糞便懸濁液上清が、糞便を滅菌水、生理食塩水又はPBSに懸濁して、調製されたことを特徴とする、請求項12記載の方法。 13. The method according to claim 12, wherein the stool suspension supernatant is prepared by suspending stool in sterile water, saline or PBS.
  14.  アルカリ性の混合液を、中和可能な物質と接触させることを特徴とする、請求項1~13のいずれか1項に記載の方法。 A method according to any one of the preceding claims, characterized in that the alkaline mixture is brought into contact with a neutralizeable substance.
  15.  中和可能な物質が、工程(c)におけるcDNA合成反応を実施する反応液中に含まれることを特徴とする、請求項14記載の方法。 The method according to claim 14, wherein the neutralizeable substance is contained in a reaction solution for carrying out the cDNA synthesis reaction in step (c).
  16.  生体排出検体に由来する試料中の、非エンベロープ型RNAウイルスの有無を検出する方法であって、
    (a)RNAウイルスを含有する可能性のある試料を含むアルカリ性の混合液を調製する工程、及び
    (b’)工程(a)で得られた混合液を加熱することなくcDNA合成反応に供する工程、
    を包含する、RNAウイルスの検出方法。
    A method for detecting the presence or absence of a non-enveloped RNA virus in a sample derived from a biological excretion sample, comprising:
    (A) preparing an alkaline mixture containing a sample possibly containing RNA virus; and (b ') subjecting the mixture obtained in step (a) to a cDNA synthesis reaction without heating. ,
    Methods of detecting RNA viruses, including
  17.  工程(a)が、RNAウイルスを含有する可能性のある試料をキレート剤を含む溶液で懸濁した後に、強アルカリ性の水酸化物を含む溶液を添加することにより、アルカリ性の混合液を調製する工程である、請求項16記載の方法。 Step (a) prepares an alkaline mixture by adding a solution containing a strongly alkaline hydroxide after suspending a sample possibly containing RNA virus in a solution containing a chelating agent The method according to claim 16, which is a step.
  18.  請求項1又は16記載の方法のためのキットであって、
    (i)強アルカリ性の水酸化物を含む溶液、
    (ii)逆転写酵素、
    (iii)逆転写反応用試薬、
    (iv)耐熱性DNAポリメラーゼ、及び
    (v)DNAポリメラーゼ連鎖反応用試薬、を含むキット。
    17. A kit for the method of claim 1 or 16 wherein
    (I) solutions containing strongly alkaline hydroxides,
    (Ii) reverse transcriptase,
    (Iii) Reagent for reverse transcription reaction,
    A kit comprising (iv) a thermostable DNA polymerase, and (v) a reagent for DNA polymerase chain reaction.
  19.  さらに、(vi)キレート剤を含む溶液、を含む請求項18記載のキット。 The kit according to claim 18, further comprising (vi) a solution containing a chelating agent.
PCT/JP2018/027178 2017-07-21 2018-07-19 Method for detecting presence or absence of non-enveloped rna virus WO2019017452A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019530603A JP7140762B2 (en) 2017-07-21 2018-07-19 Method for detecting the presence or absence of non-enveloped RNA virus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-142280 2017-07-21
JP2017142280 2017-07-21
JP2017-203489 2017-10-20
JP2017203489 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019017452A1 true WO2019017452A1 (en) 2019-01-24

Family

ID=65015910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027178 WO2019017452A1 (en) 2017-07-21 2018-07-19 Method for detecting presence or absence of non-enveloped rna virus

Country Status (2)

Country Link
JP (1) JP7140762B2 (en)
WO (1) WO2019017452A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020380A1 (en) * 2019-07-30 2021-02-04 東洋紡株式会社 Improved virus detection method
JP2021019559A (en) * 2019-07-30 2021-02-18 東洋紡株式会社 Improved virus detection method
JP2021019558A (en) * 2019-07-30 2021-02-18 東洋紡株式会社 Improved virus detection method
WO2022221338A3 (en) * 2021-04-12 2022-11-24 Washington University Systems, microorganisms, or methods for waste pet valorization
JP7434742B2 (en) 2019-07-22 2024-02-21 株式会社島津製作所 Nucleic acid detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052765A1 (en) * 2005-11-02 2007-05-10 Shimadzu Corporation Rna extraction method and rna detection method
JP2016517699A (en) * 2013-05-07 2016-06-20 マイクロニクス, インコーポレイテッド Method for preparing nucleic acid-containing samples using clay minerals and alkaline solutions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052765A1 (en) * 2005-11-02 2007-05-10 Shimadzu Corporation Rna extraction method and rna detection method
JP2016517699A (en) * 2013-05-07 2016-06-20 マイクロニクス, インコーポレイテッド Method for preparing nucleic acid-containing samples using clay minerals and alkaline solutions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434742B2 (en) 2019-07-22 2024-02-21 株式会社島津製作所 Nucleic acid detection method
WO2021020380A1 (en) * 2019-07-30 2021-02-04 東洋紡株式会社 Improved virus detection method
JP2021019559A (en) * 2019-07-30 2021-02-18 東洋紡株式会社 Improved virus detection method
JP2021019558A (en) * 2019-07-30 2021-02-18 東洋紡株式会社 Improved virus detection method
WO2022221338A3 (en) * 2021-04-12 2022-11-24 Washington University Systems, microorganisms, or methods for waste pet valorization

Also Published As

Publication number Publication date
JP7140762B2 (en) 2022-09-21
JPWO2019017452A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
JP7140762B2 (en) Method for detecting the presence or absence of non-enveloped RNA virus
JP6760983B2 (en) Direct amplification and detection of viral and bacterial pathogens
DK2271767T3 (en) Amplikonredning-multiplex polymerase chain reaction for the amplification of multiple target
JP5290987B2 (en) Preparation method and preparation kit for nucleic acid amplification sample
JP6642045B2 (en) Improved virus detection method
JP5133991B2 (en) Shrimp pathogen diagnostic sequence
WO2022050141A1 (en) Respiratory infection testing method using multiplex pcr
CN102399866A (en) Generic buffer for amplification
JP2020156470A (en) Nucleic acid amplification method suppressed in non-specific amplification
JP2024026545A (en) Improved nucleic acid detection method
CN114080456A (en) RNA virus detection method
US10889810B2 (en) Methods and kits
WO2021221109A1 (en) Rna virus detection method
JP2016019495A (en) Nucleic acid amplification technique
JP7433217B2 (en) How to treat RNA viruses
WO2023131534A1 (en) Method for processing nucleic-acid containing samples
JP2019037149A (en) Methods for concentrating virus
JP2018166410A (en) Methods for long term storage of nucleic acid in biological samples
CN115989323A (en) Method for detecting SARS-CoV-2 infection
TW202202628A (en) Test method and test reagent for novel coronavirus
JP7385471B2 (en) PHI6 Internal Control Compositions, Devices, and Methods
CN112280894A (en) Method for detecting nucleic acid
JP6728657B2 (en) Nucleic acid amplification method
WO2022210122A1 (en) Set of oligonucleotides for detecting plurality of types of viruses through multiplex pcr
JP2019083789A (en) Virus concentration methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530603

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835627

Country of ref document: EP

Kind code of ref document: A1