WO2022210122A1 - Set of oligonucleotides for detecting plurality of types of viruses through multiplex pcr - Google Patents

Set of oligonucleotides for detecting plurality of types of viruses through multiplex pcr Download PDF

Info

Publication number
WO2022210122A1
WO2022210122A1 PCT/JP2022/013261 JP2022013261W WO2022210122A1 WO 2022210122 A1 WO2022210122 A1 WO 2022210122A1 JP 2022013261 W JP2022013261 W JP 2022013261W WO 2022210122 A1 WO2022210122 A1 WO 2022210122A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleic acid
nucleotide sequences
acid primers
primer
Prior art date
Application number
PCT/JP2022/013261
Other languages
French (fr)
Japanese (ja)
Inventor
健介 大地
千恵 川井
謙太 寺内
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2023511034A priority Critical patent/JPWO2022210122A1/ja
Publication of WO2022210122A1 publication Critical patent/WO2022210122A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms

Definitions

  • the present invention relates to a set of oligonucleotides capable of detecting nucleic acids derived from multiple viruses, including influenza A virus and influenza B virus, by nucleic acid amplification.
  • the method of the present invention allows highly sensitive detection of viruses in biological samples such as, for example, pharyngeal and nasal swabs, sputum and saliva.
  • the present invention can also be used for life science research, clinical diagnosis, food hygiene inspection, environmental inspection, and the like.
  • Nucleic acid amplification is a technology that amplifies a few copies of target nucleic acid to a level that can be visualized, that is, to hundreds of millions of copies or more. It is also widely used in microbiological examinations, etc.
  • a typical nucleic acid amplification method is PCR (Polymerase Chain Reaction).
  • PCR consists of (1) DNA denaturation by heat treatment (dissociation from double-stranded DNA to single-stranded DNA), (2) annealing of a primer to a template single-stranded DNA, and (3) conversion of the primer using a DNA polymerase. This is a method of amplifying a target nucleic acid in a sample by repeating three steps of elongation as one cycle. In some cases, annealing and extension are performed at the same temperature in two steps.
  • RT Reverse Transcription
  • This RT-PCR consists of (1) 2-step RT-PCR in which RT and PCR are performed discontinuously, (2) RT and PCR in succession using a single enzyme 1-step RT -PCR, and (3) a two-enzyme one-step RT-PCR in which RT and PCR are successively performed using two enzymes, reverse transcriptase and DNA polymerase.
  • PCR and RT-PCR are widely used for genetic testing and virus testing.
  • Typical examples of virus tests include pathogenic RNA viruses such as influenza viruses and coronaviruses.
  • Influenza virus is a causative virus of respiratory infections that is prevalent in winter and causes symptoms such as fever.
  • Influenza viruses are classified into a plurality of types according to the types of nucleoprotein (NP) and matrix protein (M), of which types A and B are frequently seen as seasonal influenza. It is known that, due to the difference in antigenicity between influenza A virus and influenza B virus, infection with one virus usually does not produce antibodies against the other virus, and thus, infection with both viruses is possible.
  • NP nucleoprotein
  • M matrix protein
  • Coronaviruses are causative viruses that cause respiratory infections including colds, and about 10 to 35% of colds are said to be caused by coronaviruses. Mutant viruses are also known to occur, and rarely SARS (Severe Acute Respiratory Syndrome) coronavirus, MERS (Middle East Respiratory Syndrome) coronavirus, novel coronavirus infectious disease (COVID-19) coronavirus (SARS) -nCOV-2, or SARS-CoV-2) are known to cause fatal serious respiratory diseases.
  • Non-Patent Document 1 One method of speeding up the identification of viruses that cause respiratory infections is to test for multiple types of viruses at the same time in a single test. In recent years, multiplex PCR targeting nucleic acids derived from multiple viruses has been used in genetic testing for respiratory infections (Non-Patent Document 1). Also known is a method of detecting a virus by contacting a sample containing a virus such as influenza virus with a solution containing a water-soluble organic solvent to extract nucleic acid derived from the virus and amplifying the nucleic acid (Patent Document 1).
  • RNA nucleic acids including RNA nucleic acids
  • multiple types of nucleic acid primer sets are included in one RT-PCR reaction system.
  • the reverse transcription reaction and the PCR reaction for multiple types of target nucleic acid RNA are carried out in one solution, the multiple types of primer sets contained in the reaction solution mutually affect the amplification reaction of each nucleic acid. It has been known.
  • the difference in the Tm value of each primer also affects the reaction system. As a result, non-specific amplification or fundamental amplification failure occurs in reverse transcription and PCR reactions, respectively.
  • Non-specific amplification is also caused in the absence of the target nucleic acid, and is known to be one of the causes of false positives in genetic testing. This is particularly a concern in the multiplex PCR method for detecting two or more target nucleic acids, in which the optimal nucleic acid amplification/detection conditions tend to differ and the reaction tends to be biased.
  • RNA samples such as pharyngeal and nasal swabs, sputum, and saliva are used for genetic testing by RT-PCR.
  • Biological samples contain many contaminants that inhibit RT-PCR and non-viral nucleic acids that cause non-specific amplification. Therefore, if the RT-PCR reaction is performed using such a biological sample containing contaminants as it is without isolating the nucleic acid, the reaction system becomes even more complicated.
  • influenza A virus, influenza B virus, and coronavirus have similar respiratory disease symptoms and are difficult to diagnose from symptoms.
  • coronavirus especially SARS-nCOV-2
  • pharyngeal and nasal swabs, saliva, fecal samples, swab environmental samples, etc. by one-step RT-PCR, detect these multiple viruses at the same time, and It is desired to develop a further useful method in which the occurrence is also suppressed.
  • the object of the present invention is to highly suppress the occurrence of non-specific reactions even in a multiplex one-step RT-PCR reaction containing contaminants derived from biological samples such as saliva, pharynx and nasal swabs.
  • An object of the present invention is to provide a method capable of detecting the presence or absence of target nucleic acids derived from a plurality of viruses, including influenza A virus and influenza B virus, contained in a sample with higher sensitivity.
  • the present inventors have found that by using a primer set composed of nucleic acid primers of specific oligonucleotides, the occurrence of non-specific reactions is highly suppressed, and non-specific amplification can be reduced, and the presence or absence of target nucleic acids derived from a plurality of viruses, including influenza A virus and influenza B virus, contained in a sample can be detected with higher sensitivity.
  • this oligonucleotide set it is possible to overcome the decrease in detection sensitivity caused by the introduction of contaminants, and the PCR reaction can be performed without prior isolation and purification of nucleic acids from a sample that may contain contaminants.
  • the inventors have found that the target nucleic acid can be detected only by performing the above, and arrived at the present invention.
  • a method for detecting the presence or absence of target nucleic acids derived from influenza A virus and influenza B virus in a sample comprising the following steps: (1) Any primer set selected from the following combinations of groups (I) and (II), combinations of groups (III) and (IV), or combinations of groups (V) and groups (VI) wherein the combination of primer sets comprises at least two pairs of primer sets, at least one pair each selected from each of the groups, step: (I) Primer set a and primer set b (II) Primer Set f and Primer Set g (III) primer set c (IV) Primer set e and primer set g (V) Primer set d (VI) Primer set e and primer set f [The primer sets a to g are as follows: (Primer set a): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 31 and SEQ ID NO: 33, or a set of nucleic acid
  • PCR reaction solution further comprises at least one pair of primer sets for detecting the presence or absence of a target nucleic acid derived from SARS-CoV-2 coronavirus selected from the following group (VII):
  • a set of nucleic acid primers a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 25 and SEQ ID NO: 26, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 28 and SEQ ID NO: 29, or each nucleic acid in these sets
  • a set of nucleic acid primers comprising nucleotide sequences complementary to the nucleotide sequences of the primers.
  • the PCR reaction solution further contains at least one nucleic acid probe consisting of a nucleotide sequence represented by any of SEQ ID NO: 35, SEQ ID NO: 41, or SEQ ID NO: 47 or a nucleotide sequence complementary thereto. Item 4. The method according to any one of items 1 to 3.
  • the PCR reaction solution further contains at least one nucleic acid probe consisting of a nucleotide sequence represented by any of SEQ ID NO: 38, SEQ ID NO: 44, or SEQ ID NO: 50 or a nucleotide sequence complementary thereto. Item 5. The method according to any one of Items 1 to 4.
  • the PCR reaction solution further contains SEQ ID NO: 3, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 18, SEQ ID NO: 21, SEQ ID NO: 24, SEQ ID NO: 27, or SEQ ID NO: Item 6.
  • the probe is a TaqMan probe.
  • the sample is at least one selected from the group consisting of a saliva sample, a sputum sample, a gargle, tears, a throat swab, a nasopharyngeal swab, a nasal swab, a stool sample, and a swab test sample. 10.
  • the sample is a suspension suspended in at least one selected from the group consisting of water, physiological saline, buffer, and sputazyme enzyme solution, or a centrifugal supernatant or concentrate thereof.
  • [Item 15] Item 13, wherein the contaminant-resistant DNA polymerase is at least one contaminant-resistant DNA polymerase selected from the group consisting of Tth, Hawk Z05, and variants thereof. Or the method according to 14.
  • [Claim 16] A DNA in which the mutant comprises an amino acid sequence exhibiting 90% or more identity with the amino acid sequence of Tth polymerase (SEQ ID NO: 51) or Hawk Z05 polymerase (SEQ ID NO: 52), and having contaminant resistance. Item 16. The method of Item 15, which is indicative of polymerase activity.
  • the mutant comprises an amino acid sequence having deletion, substitution and/or addition of one or several amino acids in the amino acid sequence of Tth polymerase (SEQ ID NO: 51) or Hawk Z05 polymerase (SEQ ID NO: 52). 17.
  • the method according to Item 15 or 16 which exhibits a DNA polymerase activity having contaminant resistance.
  • the reverse transcriptase is at least selected from the group consisting of reverse transcriptase derived from Moloney murine leukemia virus (MMLV), reverse transcriptase derived from avian myeloblastosis virus (AMV), and variants thereof Item 18.
  • MMLV Moloney murine leukemia virus
  • AMV avian myeloblastosis virus
  • variants thereof Item 18 The method according to any one of Items 13 to 17, wherein the reverse transcriptase is derived from 1 species.
  • a kit comprising a primer set for detecting the presence or absence of a target nucleic acid derived from influenza A virus and influenza B virus in a sample, the kit comprising a combination of the following group (I) and group (II) , a combination of Group (III) and Group (IV), or a combination of Group (V) and Group (VI), wherein said combination of primer sets is selected from each of said A kit comprising at least two pairs of primer sets, at least one pair each selected from the group: (I) Primer set a and primer set b (II) Primer Set f and Primer Set g (III) primer set c (IV) Primer set e and primer set g (V) Primer set d (VI) Primer set e and primer set f [The primer sets a to g are as follows: (Primer set a): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 31 and SEQ ID NO: 33, or a set of
  • a set of nucleic acid primers a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 25 and SEQ ID NO: 26, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 28 and SEQ ID NO: 29, or each nucleic acid in these sets
  • a set of nucleic acid primers comprising nucleotide sequences complementary to the nucleotide sequences of the primers.
  • the probe is a TaqMan probe.
  • the sample is at least one selected from the group consisting of a saliva sample, a sputum sample, a gargle, tears, a pharyngeal swab, a nasopharyngeal swab, a nasal swab, a fecal sample, and a swab sample.
  • the kit according to any one of items 19 to 26.
  • the sample is a suspension suspended in at least one selected from the group consisting of water, physiological saline, buffer, and sputazyme enzyme solution, or a centrifugal supernatant or concentrate thereof. Item 28. The kit according to any one of Items 19-27.
  • [Item 29] The kit according to any one of Items 19 to 28, further comprising a DNA polymerase.
  • [Item 31] The kit according to any one of Items 19 to 30, wherein the contaminant-resistant DNA polymerase is a DNA polymerase belonging to Family A.
  • the contaminant-resistant DNA polymerase is at least one contaminant-resistant DNA polymerase selected from the group consisting of Tth, Hawk Z05, and variants thereof. or the kit according to 31.
  • [Claim 33] A DNA in which the mutant comprises an amino acid sequence exhibiting 90% or more identity with the amino acid sequence of Tth polymerase (SEQ ID NO: 51) or Hawk Z05 polymerase (SEQ ID NO: 52), and having contaminant resistance.
  • the kit of Paragraph 32 which exhibits polymerase activity.
  • the mutant consists of an amino acid sequence having deletion, substitution and/or addition of one or several amino acids in the amino acid sequence of Tth polymerase (SEQ ID NO: 51) or Hawk Z05 polymerase (SEQ ID NO: 52). 34.
  • the kit according to Item 32 or 33 which exhibits a DNA polymerase activity having contaminant resistance.
  • the reverse transcriptase is at least selected from the group consisting of reverse transcriptase derived from Moloney murine leukemia virus (MMLV), reverse transcriptase derived from avian myeloblastosis virus (AMV), and variants thereof Item 35.
  • MMLV Moloney murine leukemia virus
  • AMV avian myeloblastosis virus
  • the kit according to any one of Items 30 to 34, wherein the reverse transcriptase is derived from 1 species.
  • target nucleic acids derived from two or more viruses including influenza A virus and influenza B virus can be detected only by RT-PCR reaction after adding the sample to the RT-PCR reaction solution. , it is possible to inspect with sufficient sensitivity while suppressing the occurrence of non-specific reactions to a high degree.
  • the present invention is also effective in detection from samples that may contain contaminants or insoluble substances, and thus has the advantage of being able to be easily tested without prior extraction of nucleic acids. Since it is possible to simultaneously test for multiple types of respiratory infection viruses in a single test, the virus test work will be more efficient. Improving the efficiency of testing for viruses such as influenza virus can shorten the time required to provide accurate treatment to patients, and increase the number of tests for subjects who are infected but do not show symptoms. It can also greatly contribute to disease prevention.
  • FIG. 1 is a diagram showing the results of Test Example 2.
  • FIG. 1 is a diagram showing the results of Test Example 2.
  • the present invention provides a method for examining the presence or absence of target nucleic acids derived from influenza A virus and influenza B virus in a sample in one PCR reaction solution, comprising at least the following (1) to Providing a method comprising the step of (3): (1) preparing a combination of specific primer sets; (2) mixing the combination of the primer set, the sample, and the PCR reaction solution; (3) A step of performing a PCR reaction after sealing the reaction container.
  • the step (1) of the present invention by preparing and using a combination of specific primer sets, the occurrence of non-specific reactions can be highly suppressed. This is based on the discovery that influenza A and B viruses can be detected with high sensitivity even when biological samples containing contaminants such as swabs are used as they are.
  • the method of the present invention is characterized by being a multiplex RT-PCR method that detects two or more target nucleic acids.
  • a target nucleic acid can be a nucleic acid region intended to be detected by nucleic acid amplification.
  • the region intended for amplification in each genomic nucleic acid of those viruses when testing for the presence of nucleic acids from more than one virus, it may be the region intended for amplification in each genomic nucleic acid of those viruses.
  • the PCR reaction solution contains an internal control or the like, the region intended to be amplified in the internal control nucleic acid can also be the target nucleic acid.
  • the number of targets to be processed is not particularly limited as long as it is two or more. For example, it can be three, four, or five or more. Although the upper limit of the number of targets is not particularly limited, it can be set to 10 or less, for example.
  • a primer set (also referred to as a primer pair) used in the present invention includes a pair of two primers in which one primer is mutually complementary to the DNA extension product of the other primer.
  • a primer set of degenerate primers may be included when the target nucleic acid consists of subtypes.
  • Primer sets used for the detection of influenza virus include the sequences described in the "Influenza Diagnosis Manual (4th Edition)” published by the National Institute of Infectious Diseases. (Combination of primer sets of SEQ ID NOS: 39, 40, 42, 43), “Research Use Only CDC Influenza SARS-CoV-2 (Flu SC2) Multiplex Assay Real-Time RT-PCR Primers and Probes” (combination of primer sets of SEQ ID NOs: 31 to 34, 36, and 37), sequences described in "WHO information for the molecular detection of influenza viruses” published by the World Health Organization (WHO) (SEQ ID NOS: 45, 46,48,49 primer set combinations) are known. However, it has not been known so far to use a primer set published by each institution in combination with a primer set published by another institution.
  • WHO World Health Organization
  • primer set a and group (II) primer set combinations characterized by using any combination selected from the combination of primer sets: (I) Primer set a and primer set b (II) Primer Set f and Primer Set g (III) primer set c (IV) Primer set e and primer set g (V) Primer set d (VI) Primer set e and primer set f
  • primer sets a to g are as follows: (Primer set a): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 31 and SEQ ID NO: 33, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences, (primer set b): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 32 and SEQ ID NO: 34, or
  • a nucleic acid primer consisting of a nucleotide sequence represented by SEQ ID NO: 45 and a nucleic acid primer represented by SEQ ID NO: 46 corresponding to primer set d of group (V) A set of a pair of nucleic acid primers consisting of a nucleic acid primer consisting of a base sequence of the group (VI), a nucleic acid primer consisting of a base sequence represented by SEQ ID NO: 36 and a base represented by SEQ ID NO: 37 corresponding to the primer set e of group (VI) and a set of a pair of nucleic acid primers composed of nucleic acid primers consisting of sequences.
  • at least two pairs of primer sets selected from each of the above groups should be included.
  • any combination of the above primer sets can be used as long as the effect of the present invention is exhibited. is preferred, and a combination of primer set d selected from group (V) and primer set e selected from group (VI) is more preferred.
  • the concentration of the combination of the primer sets in the PCR reaction solution is not particularly limited as long as the effects of the present invention are achieved. , is preferably 0.1 ⁇ M or more and 3 ⁇ M or less. In a specific embodiment, for example, the concentration of the forward primer is 0.1 ⁇ M or more and 2 ⁇ M or less relative to the entire reaction solution, and the concentration of the reverse primer is 0.5 ⁇ M or more and 2 ⁇ M or less relative to the entire reaction solution. can.
  • a target nucleic acid derived from SARS-CoV-2 coronavirus for detecting the presence or absence of a target nucleic acid derived from SARS-CoV-2 coronavirus, together with a combination of specific primer sets for detecting influenza A virus and influenza B virus.
  • An RT-PCR reaction can be performed additionally using at least one pair of primer sets.
  • the above primer sequences detect the nucleocapsid protein (N) region of SARS-nCOV-2 according to SEQ ID NOs: 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, and 17. Also, the RNA-dependent RNA polymerase (RdRp) region is detected by SEQ ID NOs: 19, 20, 22, 23, 25, and 26. Also, the envelope protein (E) region is detected by SEQ ID NOS:28 and 29.
  • nucleocapsid (N) region In the detection of coronaviruses including SARS-nCOV-2, nucleocapsid (N) region, envelope protein (E) region, spike protein (S) region, RNA-dependent RNA polymerase (RdRp) region, Open Reading Frame A gene such as an (ORF) region can be targeted for detection, but is not particularly limited to this.
  • a set of nucleic acid primers comprising base sequences complementary to the base sequences of the nucleic acid primers in the above combinations of primer sets can also be used.
  • any of the above primer sets can be used, but a primer set that can detect by amplifying a part of the nucleocapsid region is preferable.
  • the number of primer sets is not particularly limited, and a pair of primer sets. Alternatively, two or more pairs of primer sets may be used in combination.
  • one pair of them is a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NOS: 16 and 17, or a set of these base sequences, respectively A set of nucleic acid primers comprising complementary nucleotide sequences is preferred.
  • the concentration of the combination of primer sets for detecting SARS-CoV-2 coronavirus in the PCR reaction solution is not particularly limited, but for example, the concentration of each nucleic acid primer that constitutes the primer set is It is preferably 0.1 ⁇ M or more and 3 ⁇ M or less for the entire PCR reaction solution.
  • the forward primer concentration can be 0.1 ⁇ M or more and 2 ⁇ M or less
  • the reverse primer concentration can be 0.5 ⁇ M or more and 2 ⁇ M or less, based on the total reaction mixture.
  • a combination of primer sets for detecting influenza A virus and influenza B virus as described above, and, if necessary, SARS-CoV-2 coronavirus as described above is detected.
  • PCR reaction is performed by mixing the primer set, the sample, and the PCR reaction solution.
  • the influenza virus (and, if necessary, SARS-CoV-2 coronavirus) to be tested by the present invention has RNA as the target nucleic acid, so RT-PCR reaction is performed as the PCR reaction.
  • the PCR reaction solution in the step (2) is an RT-PCR reaction solution containing a DNA polymerase having both contaminant resistance and reverse transcription activity, or an RT-PCR reaction containing a contaminant-resistant DNA polymerase and a reverse transcriptase.
  • a liquid is preferred.
  • the RT-PCR reaction may be a two-enzyme reaction system containing both reverse transcriptase and DNA polymerase, or a one-enzyme reaction system containing a thermostable DNA polymerase having reverse transcription activity. good.
  • the steps (1) to (3) are preferably carried out in the same container. That is, it is preferable not to transfer all or part of the mixture to another container during any of the steps (1) to (3). Furthermore, in step (3), it is preferable not to open and close the lid of the reaction vessel after the reaction vessel is sealed.
  • the sample to be mixed in the step (2) is a sample that may contain contaminants and insoluble substances such as saliva, nasal swabs, and pharyngeal swabs that have not undergone nucleic acid isolation treatment
  • the sample should be prepared in advance.
  • a saliva sample or the like may be used as it is, or a solid sample such as a stool sample may be directly added to the PCR reaction solution.
  • the present invention targets at least the presence or absence of influenza A virus and influenza B virus in a sample, but also other target nucleic acids (for example, viruses causing respiratory diseases such as SARS-CoV-2 coronavirus). can be inspected for the presence or absence of
  • the present invention is characterized by detecting target nucleic acids derived from two or more viruses (influenza A virus and influenza B virus) that cause respiratory infections.
  • the number of respiratory infection viruses to be tested is not particularly limited as long as it is two or more, and may be three or more.
  • the upper limit of the number of respiratory infection viruses to be tested is not particularly limited, but may be, for example, 10 or less. From the viewpoint of enabling more accurate and highly sensitive detection, 2 to 3 types of respiratory infection viruses are preferable.
  • Influenza viruses are known to cause serious respiratory illnesses, as well as complications such as bronchitis, pneumonia, otitis media, and acute encephalopathy.
  • Two types of glycoproteins called hemagglutinin (HA) and neuraminidase (NA) are present on the surface of influenza virus particles and are involved in human infection.
  • HA hemagglutinin
  • NA neuraminidase
  • viruses that can be the subject of the present invention include enveloped RNA viruses.
  • Enveloped RNA viruses include, but are not limited to, Coronaviridae viruses (eg, SARS coronavirus, MERS coronavirus, SARS-CoV-2 coronavirus).
  • Coronaviridae viruses eg, SARS coronavirus, MERS coronavirus, SARS-CoV-2 coronavirus.
  • it is the detection of coronaviruses that are difficult to diagnose from symptoms, especially coronaviruses (SARS coronavirus, MERS coronavirus, SARS-CoV-2 coronavirus), especially SARS-CoV-2 coronavirus, It is useful for detecting influenza A virus and human influenza B virus.
  • Non-Patent Document 2 Non-Patent Document 3
  • Non-Patent Document 4 a method for detecting SARS-CoV-2 is described in the "Pathogen Detection Manual 2019-nCoV" of the National Institute of Infectious Diseases. In these techniques, detection of coronavirus contained in a sample involves extraction and purification of viral RNA from the sample.
  • RNA extraction and purification steps of viral RNA are complicated and require a lot of working hours.
  • rapid one-step RT-PCR without RNA extraction and purification steps is available from biological and environmental swab samples such as pharyngeal/nasal swabs, saliva, sputum, and fecal samples containing coronaviruses, especially SARS-CoV-2.
  • Reagents and the like that can detect the
  • investigation of reagents that can detect influenza A and B viruses and SARS-CoV-2 with high sensitivity directly in one-step RT-PCR from biological samples that have not undergone such a purification process is still insufficient. I can't say.
  • the method of the present invention further comprises the step of detecting the nucleic acid amplification products amplified by each of the primer sets described above, using identifiable probes.
  • a nucleic acid probe labeled with a fluorescent compound can be used as the probe.
  • at least one labeled hybridization probe and a double-stranded DNA-binding fluorescent compound can be combined for detection using two or more fluorescent compounds.
  • Double-stranded DNA-binding fluorescent compounds include, for example, SYBR (registered trademark) Green I, SYBR (registered trademark) Gold, SYTO-9, SYTP-13, SYTO-82 (Life Technologies), EvaGreen (registered trademark; Biotium) , LC Green (Idaho), LightCycler (registered trademark) 480 ResoLight (Roche Applied Science), and the like.
  • Hybridization probes include, for example, TaqMan probes (U.S. Pat. Nos. 5,210,015, 5,538,848, 5,487,972, 5,804 , 375), molecular beacons (U.S. Pat. No. 5,118,801), FRET hybridization probes (WO 97/46707, WO 97/46712, WO 97/46714 pamphlet), etc. Preferred are TaqMan probes.
  • any fluorescent compound known in the art can be used as the fluorescent compound that can be used for the hybridization probe.
  • fluorescent compounds include rhodamine (ROX) or derivatives thereof (e.g., 5-carboxy-X-rhodamine, 6-carboxy-X-rhodamine, 5-carboxyrhodamine 6G (CR6G), tetramethylrhodamine (TAMRA )), or rhodamine compounds such as salts thereof; fluorescein or derivatives thereof (e.g., FAM (carboxyfluorescein), JOE (6-carboxy-4′,5′-dichloro2′,7′-dimethoxyfluorescein), FITC (fluorescein isothiocyanate), TET (tetrachlorofluorescein), HEX (5′-hexachloro-fluorescein-CE phosphoramidite)), VI
  • a quenching substance suitable for the fluorescent substance to be used can be used as the fluorescent compound, if necessary.
  • quenching substances corresponding to the above fluorescent substances include TAMRA (tetramethyl-rhodamine), DABCYL (4-(4-dimethylaminophenylazo)benzoic acid), BHQ1 (BHQ: Black Hole Quencher (registered trademark) )), BHQ2, BHQ3, and the like, but are not limited thereto.
  • the nucleotide sequences of the nucleic acid probes used for the detection of influenza viruses include the sequences (SEQ ID NOs: 41 and 44) described in the "Influenza Diagnosis Manual (4th Edition)” published by the National Institute of Infectious Diseases. "Research Use Only CDC Influenza SARS-CoV-2 (Flu SC2) Multiplex Assay Real-Time RT-PCR Primers and Probes” (SEQ ID NOS: 35, 38) announced by the Centers for Disease Control and Prevention, announced by the World Health Organization (WHO)
  • the sequences described in "WHO information for the molecular detection of influenza viruses” (SEQ ID NOS: 47 and 50) can be mentioned, and can be preferably used in the present invention, but are not limited thereto.
  • the fluorescence-labeled probe for detecting influenza A virus is a nucleic acid probe consisting of a nucleotide sequence represented by any of SEQ ID NO: 35, SEQ ID NO: 41, or SEQ ID NO: 47 or a nucleotide sequence complementary thereto.
  • Preferred fluorescence-labeled probes for detecting type B influenza virus are nucleic acid probes consisting of the base sequence shown in any of SEQ ID NO: 38, SEQ ID NO: 44, or SEQ ID NO: 50 or a base sequence complementary thereto. obtain.
  • the present invention preferably further uses probes capable of detecting coronaviruses (eg, SARS-CoV-2 coronavirus).
  • coronaviruses eg, SARS-CoV-2 coronavirus.
  • the nucleotide sequences of the SARS-CoV-2 coronavirus detection probes include the sequences (SEQ ID NOS: 3 and 6) described in the "Pathogen Detection Manual 2019-nCoV” published by the National Institute of Infectious Diseases, and the American disease "2019-Novel Coronavirus (2019-nCoV) Real-time RT-pCR Panel Primers and Probes" (SEQ ID NOS: 9, 12, 15) and “Research Use Only CDC Influenza SARS-CoV-2 (Flu SC2) Multiplex Assay Real-Time RT-PCR Primers and Probes" (SEQ ID NO: 18) "Research Use Only 2019-Novel Coronavirus (2019-nCoV) Real-time RT-PCR Primers and Probes” (SEQ ID
  • the probe sequences described above detect the nucleocapsid protein (N) region of SARS-CoV-2 according to SEQ ID NOs: 3, 6, 9, 12, 15, and 18. Also, the RNA-dependent RNA polymerase (RdRp) region is detected by SEQ ID NOs: 21, 24, and 27. Also, the envelope protein (E) region is detected by SEQ ID NO:30. Furthermore, if the targeted nucleic acid consists of subtypes, it may contain degenerate sequences. In the detection of coronaviruses such as SARS-CoV-2, genes such as the N region, E region, S region, RdRp region, and ORF region can be targeted for detection, but are not particularly limited to these. do not have.
  • nucleic acid probe capable of detecting a nucleic acid amplification product of the nucleocapsid region
  • the nucleic acid probe consists of the nucleotide sequence of SEQ ID NO: 3, 6, 9, 12, 15 or 18 or a nucleotide sequence complementary thereto. is more preferable.
  • the nucleic acid probe may be labeled with the fluorescent compound described above.
  • the fluorescently labeled nucleic acid probe may be added to the PCR reaction solution after performing the RT-PCR reaction in the step (3), or the PCR reaction solution used in the step (2) may contain the fluorescently labeled nucleic acid probe. may contain. More conveniently, it is preferable to use a PCR reaction solution containing a fluorescently labeled nucleic acid probe in the step (2).
  • concentration of such nucleic acid probes is not particularly limited, for example, it is preferably 0.01 ⁇ M or more and 1.0 ⁇ M or less, and preferably 0.015 ⁇ M or more and 0.75 ⁇ M or less, relative to the entire PCR reaction solution. More preferably, it is 0.02 ⁇ M or more and 0.5 ⁇ M or less.
  • Samples used in the present invention include, for example, pharyngeal swabs, nasal swabs, nasopharyngeal swabs, sputum, vomit, saliva, gargle, tears, feces (excretion, rectal stool) and the like, but particularly It is not limited, and can be used for all substances derived from living organisms.
  • RNA samples there is an advantage that it is not necessary to isolate RNA from these samples using a commercially available RNA purification kit or the like and subject it to RT-PCR reaction.
  • the sample may be directly subjected to detection, or a sample in which the sample is suspended in water, physiological saline, or a buffer solution in order to reduce the influence of contaminants on the reaction and obtain more stable test results.
  • a buffer solution include, but are not limited to, Hank's buffer, Tris buffer, phosphate buffer, glycine buffer, HEPES buffer, and tricine buffer.
  • the sample may be treated with a sputazyme enzyme solution, although not particularly limited.
  • the sample used in the present invention is mixed with a solution containing a buffer solution, an acid or alkaline solution, an organic solvent, etc., in order to facilitate the extraction of RNA or DNA from robust structures such as capsids and cell walls. It may be a sample that has been
  • the acidic solution contained in the solution is not particularly limited as long as it is an acidic solution.
  • acidic solutions include aqueous formic acid, aqueous acetic acid, aqueous butyric acid, aqueous hydrochloric acid, aqueous nitric acid, aqueous sulfuric acid, aqueous citric acid, aqueous lactic acid, aqueous phosphoric acid, aqueous benzoic acid, aqueous oxalic acid, aqueous tartaric acid, and aqueous ascorbic acid. , an aqueous sulfonic acid solution, etc., and can be used singly or in combination of two or more.
  • the alkaline solution is not particularly limited as long as it is an alkaline solution.
  • alkaline solutions include potassium hydroxide aqueous solution, sodium hydroxide aqueous solution, lithium hydroxide aqueous solution, magnesium hydroxide aqueous solution, calcium hydroxide aqueous solution, barium hydroxide aqueous solution, potassium carbonate aqueous solution, sodium carbonate aqueous solution, magnesium carbonate aqueous solution, calcium carbonate.
  • organic solvents include ethanol, methanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, triethylamine, dimethylformamide, hexamethylphosphorictriamide, dimethylsulfoxide, acetone, acetonitrile, ethanol, and methanol. , 1-propanol, 2-propanol, 1-butanol, pyridine and the like, but are not limited thereto.
  • the sample used in the present invention may be subjected to heat treatment after being mixed with the solution.
  • the conditions for the heat treatment are not particularly limited, but may be 60° C. or higher, preferably 70° C. or higher, more preferably 80° C. or higher, and still more preferably 90° C. or higher for 1 second or longer.
  • a sample of another aspect of the present invention is a swab test sample.
  • Wiping inspections are useful for clarifying the contamination route and grasping the contamination status of the facility environment.
  • the wiping test is not particularly limited, but for example, the relevant section or equipment is wiped with a cotton swab or the like, eluted in water or a buffer solution, and concentrated by polyethylene glycol (PEG) precipitation.
  • Specific examples of swabbing test procedures include "Improvement of swabbing test method for norovirus" (http://idsc.nih.go.jp/iasr/32/382/dj3824.html). It is not particularly limited, and includes a wide range of similar methods.
  • Examples of areas to be wiped include kitchen utensils such as cutting boards, kitchen knives, dish towels, tableware, refrigerator handles, toilets, bathroom doorknobs, washrooms, kitchens, toilets, bathroom faucets, cooks' hands and fingers, and bathrooms. , toilets, washrooms, handrails, living rooms, and other facilities.
  • kitchen utensils such as cutting boards, kitchen knives, dish towels, tableware, refrigerator handles, toilets, bathroom doorknobs, washrooms, kitchens, toilets, bathroom faucets, cooks' hands and fingers, and bathrooms.
  • toilets, washrooms, handrails, living rooms, and other facilities Moreover, although it is not a wiping test, it can also be applied to a concentrated sewage sample as an environmental test. Since these test samples contain a large amount of dirt and dust at the test site, this technique with enhanced contamination resistance in samples that can contain contaminants and insoluble substances is beneficial for these tests.
  • one feature of the method of the present invention is to use a sample that has not undergone nucleic acid isolation treatment.
  • nucleic acids are isolated from various samples using commercially available nucleic acid purification kits, or genomic nucleic acids are exposed from viral structures (e.g., cell membrane, capsid structure) by prior heat treatment or the like.
  • No untreated sample can be used. It is preferable to use these untreated samples from the viewpoint of convenience because no troublesome pretreatment is required.
  • it may be a sample that has undergone nucleic acid extraction without separation and purification to remove contaminants.
  • the sample subjected to nucleic acid extraction without separation and purification means that the nucleic acid is exposed in the sample.
  • nucleic acids can be amplified satisfactorily even in samples prepared without such isolation and purification, and it is possible to stably obtain test results for a plurality of respiratory infections.
  • Such a nucleic acid extraction treatment without separation and purification can be performed prior to the step (2).
  • Contaminants and insoluble substances that may be contained in the sample used in step (2) include feces (excretion, rectal stool), vomit, saliva, sputum, gargle, nasal swab, pharyngeal swab, and nasopharyngeal swab. , tear fluid, blood, and those derived from swab test samples, but are not limited to those derived from living organisms and can be used for environmental test samples in general, especially feces (excretion, rectal stool), saliva, sputum, gargle, tear, pharyngeal swab, nasopharyngeal swab, nasal swab.
  • the concentration of insoluble substances that can be contained varies depending on the test sample, but if it is contained in the PCR reaction solution or RT-PCR reaction solution at a turbidity of OD660, for example, 0.01 Abs / ⁇ L or more, the test sensitivity may be affected.
  • the turbidity OD660 may be 0.05 Abs/ ⁇ L or more, 0.1 Abs/ ⁇ L or more, 0.5 Abs/ ⁇ L or more, or 1 Abs/ ⁇ L or more, but is not particularly limited.
  • the upper limit of the concentration of the insoluble substance that can be contained is not particularly limited as long as the effects of the present invention are exhibited. According to the present invention, it may be possible to detect two or more target nucleic acids with two or more types of fluorescent compounds even when a high turbidity test sample is mixed with a PCR reaction solution.
  • the work of purifying nucleic acids derived from microorganisms from samples is a cause of complication and an increase in work time.
  • the work of dispensing the PCR reaction solution into a reaction container such as a PCR tube or a PCR plate is a work that can be performed hundreds or thousands of times depending on the number of samples. Continuous dispensing work into the reaction container may cause mistakes such as omission of dispensing into the reaction container and multiple dispensing. These mistakes make it impossible to carry out the inspection correctly, and cause additional work such as re-inspection, resulting in loss of time and money.
  • the present invention simplifies the work at the work site in such virus inspections and enables rapid inspections, thereby preventing further spread of infection.
  • the PCR cycle in the step (3) is 1. 2. heat treatment; A reverse transcription reaction step may be included. Moreover, before and after each step, a heat treatment step for activating the hot start enzyme may be included.
  • One heat treatment step can include disrupting the virus to expose the nucleic acid within the virus and/or activating hot start enzymes in a nucleic acid amplification reaction.
  • the temperature and time of the heat treatment step may be 60° C. or higher and 1 second or longer, preferably 70° C. for 30 seconds or longer, more preferably 80° C. for 30 seconds or longer, and particularly preferably 85° C. for 30 seconds or longer. seconds or more.
  • the temperature of the reverse transcription reaction in 2 is determined by the reverse transcription activity of the reverse transcriptase used and the Tm values of the primers and probes, and may be at least 25°C or higher. More preferably, it is 37°C or higher.
  • [1] DNA denaturation by heat treatment (dissociation from double-stranded DNA to single-stranded DNA), [2] annealing of primers to template single-stranded DNA, [3] the above using DNA polymerase Extension of the primer may be included, and [2] and [3] may be performed at the same temperature to form two steps.
  • the thermal cycler used for the RT-PCR reaction has a total elongation time of steps [2] and [3] of 15 seconds or less, more preferably 10 seconds or less. It is desirable to set up a measurement program for As used herein, the term "PCR elongation time" refers to the time set in the thermal cycler.
  • any DNA polymerase known in the art can be used as the DNA polymerase contained in the PCR reaction solution.
  • any DNA polymerase known in the art that is resistant to contaminants can be used.
  • Contaminant resistance refers to the property of a DNA polymerase having high enzymatic activity sufficient for nucleic acid amplification reaction even in the presence of PCR inhibitors.
  • the contaminant-resistant DNA polymerase is not particularly limited, but includes Tth, Bst, KOD, Pfu, Pwo, Tbr, Tfi, Tfl, Tma, Tne, Vent, DEEP VENT, HawkZ05, and mutants thereof. Examples include, but are not limited to.
  • Tth SEQ ID NO: 51
  • HawkZ05 SEQ ID NO: 52
  • Tth or variants thereof DNA polymerases such as Taq, which normally do not have contamination resistance, can be used if they are mutants that have contamination resistance due to amino acid mutation.
  • the total amount of the contaminant-resistant DNA polymerase contained in the PCR reaction solution may be at least 4.2 ng/ ⁇ L or more, preferably 5.0 ng/ ⁇ L or more, and 5.8 ng/ ⁇ L. It is more preferable to be above. Among them, it is preferably 8.3 ng/ ⁇ L or more.
  • the upper limit of the total amount of the contaminant-resistant DNA polymerase is not particularly limited, but as an example, it can be 20 ng/ ⁇ L or less, and even if it is 16.7 ng/ ⁇ L or less, the effect of the present invention can be sufficiently obtained. can be done.
  • the amount of polymerase is a value quantified by the Bradford method or Nanodrop (Thermo Fisher), and may be estimated from the Safety Data Sheet (SDS). When protein such as BSA is included, it is desirable to calculate by the latter method.
  • enzymatic activity of DNA polymerase is suppressed until the start of PCR reaction by using it in combination with an anti-DNA polymerase antibody or introducing a thermolabile blocking group into DNA polymerase by chemical modification. , preferably applicable to hot-start PCR.
  • the PCR reaction solution used in step (2) contains DNA polymerase and, if necessary, reverse transcriptase.
  • the origin of the reverse transcriptase contained in the PCR reaction solution is not particularly limited as long as it can convert RNA into DNA.
  • -RT EIAV-RT
  • Carboxydothermus hydrogenoformam DNA polymerase and variants thereof.
  • Particularly preferred examples include MMLV-RT, AMV-RT, or variants thereof.
  • the PCR reaction solution used in the step (2) may contain a DNA polymerase that also has reverse transcriptase activity.
  • a DNA polymerase with reverse transcription activity is a DNA polymerase that has both the ability to convert RNA into cDNA and the ability to amplify DNA.
  • a DNA polymerase having reverse transcription activity preferably has heat resistance in addition to reverse transcription activity and contaminant resistance.
  • heat resistance means that the enzymatic activity does not decrease by more than half even after heat treatment at 70°C for 1 minute or more.
  • DNA polymerase derived from Thermus aquaticus (Taq)
  • DNA polymerase derived from Thermus thermophilus HB8 (Tth)
  • DNA polymerase derived from Thermus sp Z05 Z05
  • DNA polymerase derived from Thermotoga maritima have been used.
  • thermostable DNA polymerase that also has Especially preferred are DNA polymerases having reverse transcription activity selected from the group consisting of Tth, Z05 and variants thereof.
  • a DNA polymerase mutant having contaminant resistance refers to, for example, 85% or more, preferably 90% or more, more preferably 95% or more of the amino acid sequence of the wild-type DNA polymerase from which it is derived. Further preferably, it has a sequence identity of 98% or more, particularly preferably 99% or more, and has a high DNA polymerase activity even in the presence of contaminants. In the case of a DNA polymerase that also has a reverse transcription activity, it has the activity of converting RNA into cDNA and the activity of amplifying DNA even in the presence of contaminants.
  • any method known in the art can be used to calculate the identity of amino acid sequences.
  • BLAST Basic local alignment search tool
  • NCBI National Center for Biotechnology Information
  • Mutants that can be used in the present invention have one or several amino acid substitutions, deletions, insertions and/or additions (hereinafter collectively referred to as " It may be a polypeptide consisting of an amino acid sequence that has been mutated (also referred to as “mutated”), and have the same activities as wild-type DNA polymerase to convert RNA into cDNA and to amplify DNA.
  • 1 or several may be, for example, 1 to 80, preferably 1 to 40, more preferably 1 to 10, still more preferably 1 to 5, but is not particularly limited.
  • the PCR reaction solution used in the present invention includes a buffer, an appropriate salt, a magnesium salt or a manganese salt, deoxynucleotide triphosphates, a virus to be detected, or a detection target region of a nucleic acid derived from a virus. It may contain a pair of primers that are compatible with each other and, if necessary, additives.
  • the buffer used in the present invention is not particularly limited, but includes Tris, Tricine, Bis-Tricine, Bicine and the like. It is adjusted to pH 6-9, more preferably pH 7-9, with sulfuric acid, hydrochloric acid, acetic acid, phosphoric acid, or the like. Moreover, the concentration of the added buffer is 10 to 200 mM, preferably 20 to 150 mM.
  • a salt solution is added to provide suitable ionic conditions for the reaction. Salt solutions include potassium chloride, potassium acetate, potassium sulfate, ammonium sulfate, ammonium chloride, ammonium acetate, and the like.
  • dNTPs used in the present invention dATP, dCTP, dGTP, and dTTP are each added at 0.1 to 0.5 mM, most generally about 0.2 mM. Precautions against cross-contamination may be taken by using dUTP instead of and/or as part of dTTP. Inclusion of Uracil-N-glycosylase (UNG) is preferred when taking precautions against cross-contamination.
  • UNG Uracil-N-glycosylase
  • the PCR reaction solution preferably contains divalent cations. Containing divalent cations in this way makes it possible to obtain more stable and high contamination resistance and to perform highly sensitive detection.
  • divalent cations include, but are not limited to, magnesium ions, manganese ions, calcium ions, copper ions, iron ions, nickel ions, zinc ions, and the like.
  • magnesium ions and manganese ions are included as divalent cations.
  • magnesium ions, manganese ions, or the like are added to the PCR reaction solution, magnesium or manganese may be added, or salts thereof may be added.
  • magnesium or salts thereof include magnesium, magnesium chloride, magnesium sulfate, magnesium acetate, etc.
  • manganese or salts thereof include manganese, manganese chloride, manganese sulfate, manganese acetate, and the like.
  • Magnesium, manganese, or a salt thereof is preferably added to the PCR reaction solution in an amount of about 1 to 10 mM. In the test method of the present invention, manganese or a salt thereof is preferably contained from the viewpoint of easily obtaining high sensitivity in a stable manner when performing single-enzyme RT-PCR.
  • the RT-PCR reaction solution preferably contains 1 mM or more manganese or a salt thereof, preferably 1.5 mM or more manganese or a salt thereof, and 2.0 mM or more manganese or a salt thereof. It is more preferable to include Moreover, when performing a two-enzyme system RT-PCR, it is preferable to contain magnesium or a salt thereof from the viewpoint of easily obtaining high sensitivity stably. In a specific embodiment, the PCR reaction solution preferably contains 1 mM or more magnesium or a salt thereof, preferably 1.5 mM or more magnesium or a salt thereof, and 2.0 mM or more magnesium or a salt thereof. is more preferred.
  • a quaternary ammonium salt having a structure in which three methyl groups are added to the amino group of an amino acid hereinafter referred to as "betaine-like quaternary ammonium”
  • a polypeptide hereinafter referred to as "betaine-like quaternary ammonium”
  • BPF blocking peptide fragment
  • Glycerol glycol and surfactants.
  • the polypeptide used in the present invention is not particularly limited as long as it has a molecular weight of 5-500 kDa, but preferably 6-400 kDa.
  • molecular weights when molecular weights are indicated, they refer to values determined using SDS-PAGE, unless clearly indicated otherwise.
  • the measurement of molecular weight by SDS-PAGE can be carried out using commercially available molecular weight markers and the like using techniques and devices commonly used in the field.
  • a "molecular weight of 50 kDa” refers to a range in which a person skilled in the art normally determines that there is a band at the position of 50 kDa when the molecular weight is measured by SDS-PAGE.
  • the polypeptide used in the present invention may be a mixture of polypeptides within the above molecular weight range.
  • the polypeptide used in the present invention is not particularly limited as long as the effect of the present invention is exhibited, and refers to a protein formed by connecting a plurality of amino acids via peptide bonds.
  • the polypeptide used in the present invention may be, for example, a heat-denatured polypeptide (eg, gelatin) whose three-dimensional structure is unfolded by heat denaturation or the like, as long as it has a polypeptide structure in which amino acids are linked.
  • polypeptides that can be used in the present invention include, for example, albumin (eg, bovine serum albumin, lactalbumin, human serum albumin, egg-derived albumin), gelatin (eg, fish gelatin, porcine gelatin), sericin, Naturally derived proteins (naturally derived polypeptides) such as casein and fibroin; blocking peptide fragments (hereinafter also referred to as BPF), collagen hydrolysates, polypeptones, yeast extracts, beef extracts, etc. artificially produced by synthesis/decomposition Polypeptides and the like can be used.
  • albumin eg, bovine serum albumin, lactalbumin, human serum albumin, egg-derived albumin
  • gelatin eg, fish gelatin, porcine gelatin
  • sericin Naturally derived proteins (naturally derived polypeptides) such as casein and fibroin
  • Naturally derived proteins naturally derived polypeptides
  • BPF blocking peptide fragments
  • the polypeptide used in the present invention is preferably bovine serum albumin, gelatin, blocking peptide fragment (hereinafter BPF), and/or sericin.
  • BPF blocking peptide fragment
  • Bovine serum albumin and gelatin are more preferably used from the viewpoint that a high effect can be exhibited even in a small amount.
  • These polypeptides may be used alone or in combination of two or more.
  • these polypeptides may be prepared by means of extraction from nature, synthesis, or the like, and commercially available products can also be suitably used.
  • the amount of the polypeptide used is not particularly limited as long as the effect of the present invention is achieved.
  • the final concentration is 0.0001 to 200 mg / mL, preferably 0.01 to 150 mg / mL, more preferably 0.1 to 130 mg / mL, more preferably 0.5 to 100 mg / mL can do.
  • a preferred amount for exhibiting a better effect may vary depending on the type of polypeptide used, the degree of desired effect, and the like. For example, the following amounts can be used.
  • the final concentration in the PCR reaction solution is, for example, 0.5 mg/mL or higher, preferably 1 mg/mL or higher, more preferably 2 mg/mL or higher, and still more preferably 3 mg/mL or higher. Although the upper limit is not particularly limited, it can be, for example, 10 mg/mL or less.
  • final concentration in the PCR reaction solution is, for example, 0.1 mg/mL or higher, preferably 1 mg/mL or higher, more preferably 5 mg/mL or higher, even more preferably 7.5 mg/mL or higher, and even more preferably is greater than or equal to 15 mg/mL.
  • the upper limit is not particularly limited, it can be, for example, 50 mg/mL or less.
  • the final concentration in the PCR reaction solution is, for example, 1 mg/mL or higher, preferably 5 mg/mL or higher, more preferably 10 mg/mL or higher, even more preferably 20 mg/mL or higher, and even more preferably 50 mg/mL. that's all.
  • the upper limit is not particularly limited, it can be, for example, 100 mg/mL or less.
  • final concentration in the PCR reaction solution is, for example, 1 mg/mL or more, preferably 5 mg/mL or more, more preferably 10 mg/mL or more, still more preferably 20 mg/mL or more, and even more preferably 30 mg/mL that's all.
  • the upper limit is not particularly limited, it can be, for example, 50 mg/mL or less.
  • Surfactants contained in the PCR reaction solution include Triton X-100, Triton X-114, Tween20, Nonidet P40, Briji35, Briji58, SDS, CHAPS, CHAPSO, Emulgen 420, etc., but not particularly limited.
  • concentration of the surfactant in the PCR reaction solution is not particularly limited, it is preferably 0.0001% or more, more preferably 0.002% or more, and still more preferably 0.005% or more, and good detection is possible. becomes.
  • the upper limit is not particularly limited, it can be 0.1% or less as an example.
  • betaine-like quaternary ammonium contained in the PCR reaction solution examples include betaine (trimethylglycine) and carnitine, but are not particularly limited.
  • the betaine structure is a stable compound with both positive and negative charges in the molecule, and it is thought to exhibit surfactant-like properties and cause destabilization of the virus structure.
  • a preferred concentration of said betaine-like quaternary ammonium is 0.1M to 2M, more preferably 0.2M to 1.2M.
  • Facilitators useful in the present invention include, for example, glycerol, polyols, protease inhibitors, single-strand binding protein (SSB), T4 gene 32 protein, tRNA, sulfur or acetic acid containing compounds, dimethylsulfoxide (DMSO), glycerol, ethylene Glycol, propylene glycol, trimethylene glycol, formamide, acetamide, ectoine, trehalose, dextran, polyvinylpyrrolidone (PVP), tetramethylammonium chloride (TMAC), tetramethylammonium hydroxide (TMAH), tetramethylammonium acetate (TMAA), Examples include, but are not limited to, polyethylene glycol.
  • PVP polyvinylpyrrolidone
  • TMAC tetramethylammonium chloride
  • TMAH tetramethylammonium hydroxide
  • TMAA tetramethylammonium acetate
  • Examples include, but are not limited
  • ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), 1,2-bis(o-aminophenoxy)ethane- A chelating agent such as N,N,N',N'-tetraacetic acid (BAPTA) may be included.
  • kits containing The kit of the present invention comprises any combination selected from the following group (I) and group (II) combinations; group (III) and group (IV) combinations; or group (V) and group (VI) combinations.
  • a primer set combination comprising: (I) Primer set a and primer set b (II) Primer Set f and Primer Set g (III) primer set c (IV) Primer set e and primer set g (V) Primer set d (VI) Primer set e and primer set f
  • the primer sets a to f are the same as those described for the method of testing for the presence or absence of target nucleic acids derived from influenza A virus and influenza B virus in a sample using one PCR reaction solution. obtain.
  • the at least two pairs of primer sets may be included in the kit as one reagent, or may be included in the kit as separate reagents and provided in a manner that they are mixed and prepared before use.
  • the present invention may also be provided in the form of a composition comprising a combination of the primer sets.
  • the kit or composition of the present invention may contain other components (for example, the type and amount of other primer sets or nucleic acid probes, the type and amount of contaminant-resistant DNA polymerase, the kit or composition
  • the type of sample used for the test using , the virus to be tested, etc. can be the same as those detailed in the test method.
  • these other components are also Either or both of the above two pairs of primer sets may be included in the kit as one reagent, or may be included in the kit as separate reagents.
  • Test example 1 Evaluation of Primer Sets for Detection of SARS-CoV-2 Coronavirus and Influenza Virus (Negative Control) (1-1) Reaction solution Detection of SARS-CoV-2 coronavirus and influenza virus type A or B in the reaction solution in one-step RT-PCR using the reaction solution and enzyme solution having the compositions shown below. reaction was performed. ⁇ Reaction solution and enzyme solution (SARS-CoV-2 Detection Kit -Multi- (Toyobo) accessories)
  • the reaction solution and enzyme solution were mixed with the primer/probe solution described in (2-2) below to prepare an RT-PCR reaction solution with a final volume of 40 ⁇ L.
  • 8 ⁇ L of sterilized water and 3 ⁇ L of pretreatment solution SARS-CoV-2 Detection Kit -Multi- (Toyobo) accessory
  • pretreatment solution SARS-CoV-2 Detection Kit -Multi- (Toyobo) accessory
  • the primer set and probe for detecting SARS-CoV-2 coronavirus are a forward primer consisting of the nucleotide sequence of SEQ ID NO: 16, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 17, and a fluorescence-labeled nucleic acid consisting of the nucleotide sequence of SEQ ID NO: 18. used the probe.
  • the primer set and probe for detecting influenza A virus used a forward primer consisting of the nucleotide sequence of SEQ ID NO: 31, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 33, and a fluorescence-labeled nucleic acid probe consisting of the nucleotide sequence of SEQ ID NO: 35.
  • a forward primer consisting of the nucleotide sequence of SEQ ID NO: 36, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 37, and a fluorescence-labeled probe consisting of the nucleotide sequence of SEQ ID NO: 38 were used as the primer set and probe for detecting influenza B virus.
  • TaqMan® corresponding to SARS-CoV-2 coronavirus (ROX channel), influenza A (CY5 channel) and B (FAM channel), internal control (NED channel).
  • ROX channel SARS-CoV-2 coronavirus
  • influenza A CY5 channel
  • B FAM channel
  • NBD channel internal control
  • the primer set and probe for detecting SARS-CoV-2 coronavirus are a forward primer consisting of the nucleotide sequence of SEQ ID NO: 16, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 17, and a fluorescence-labeled nucleic acid probe consisting of the nucleotide sequence of SEQ ID NO: 18. was used.
  • the primer set and probe for detecting influenza A virus used a forward primer consisting of the nucleotide sequence of SEQ ID NO: 45, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 46, and a fluorescence-labeled nucleic acid probe consisting of the nucleotide sequence of SEQ ID NO: 47.
  • the primer set and probe for detecting type B influenza virus used a forward primer consisting of the base sequence of SEQ ID NO: 36, a reverse primer consisting of the base sequence of SEQ ID NO: 37, and a fluorescence-labeled nucleic acid probe consisting of the base sequence of SEQ ID NO: 38. .
  • TaqMan® corresponding to SARS-CoV-2 coronavirus (ROX channel), influenza A (Cy5 channel) and B (FAM channel), internal control (NED channel).
  • ROX channel SARS-CoV-2 coronavirus
  • influenza A Cy5 channel
  • B FAM channel
  • NBD channel internal control
  • Results Table 1 shows the measurement results when negative control reactions were performed using each primer set.
  • Primer Set 1 was used under the present test conditions, some influenza A virus signals were detected in spite of the negative control.
  • primer set 2 was used, only the internal control was detected, confirming that the occurrence of non-specific reactions could be highly suppressed.
  • Test example 2 Multiplex detection study of SARS-CoV-2 coronavirus and influenza virus in the presence of specimen (1-1) Preparation of each virus RNA SARS-CoV-2 coronavirus (SeraCare) and influenza virus type A (Vircell), type B (Vircell) template RNA was prepared in sterilized water to 500, 50 and 25 copies/ ⁇ L, respectively.
  • reaction solution and enzyme solution were mixed with the primer/probe solution described in (2-2) below to prepare an RT-PCR reaction solution with a final volume of 40 ⁇ L.
  • RT-PCR reactions were performed.
  • the primer set and probe for detecting SARS-CoV-2 coronavirus are a forward primer consisting of the nucleotide sequence of SEQ ID NO: 16, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 17, and SEQ ID NO: 18
  • the primer set and probe for detecting influenza A virus used a forward primer consisting of the nucleotide sequence of SEQ ID NO: 45, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 46, and a fluorescence-labeled nucleic acid probe consisting of the nucleotide sequence of SEQ ID NO: 47.
  • the primer set and probe for detecting type B influenza virus used a forward primer consisting of the base sequence of SEQ ID NO: 36, a reverse primer consisting of the base sequence of SEQ ID NO: 37, and a fluorescence-labeled nucleic acid probe consisting of the base sequence of SEQ ID NO: 38.
  • TaqMan® probes corresponding to SARS-CoV-2 coronavirus (ROX channel), influenza A (Cy5 channel) and B (FAM channel) were utilized for detection of each amplicon. Concentrations of probes and primers in the RT-PCR reaction solution were added as described in the same document.
  • the present invention can be suitably used in clinical examinations, examinations aimed at preventing the spread of infectious diseases, as well as molecular biological research.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a set of oligonucleotides with which it is possible to detect target nucleic acids derived from a plurality of viruses, including type A and type B influenza viruses, at high sensitivity through PCR. The present invention provides: a kit for detecting the presence of target nucleic acids derived from type A influenza virus and type B influenza virus in a sample, the kit including a set of nucleic acid primers in a specific combination that includes nucleic acid primers comprising a base sequence represented by any of SEQ ID NOS: 31-34, 36-37, 39-40, 42-43, 45-46, or 48-49, or comprising a base sequence complementary thereto; a method for using the kit; etc.

Description

マルチプレックスPCRにより複数種類のウイルスを検出するためのオリゴヌクレオチドのセットA set of oligonucleotides for detecting multiple types of viruses by multiplex PCR
 本発明は、核酸増幅によりA型インフルエンザウイルス及びB型インフルエンザウイルスを含む複数のウイルス由来の核酸を検出可能なオリゴヌクレオチドのセットに関する。本発明の方法により、例えば、咽頭および鼻腔ぬぐい液、喀痰、唾液等の生体試料におけるウイルスを高感度で検出することが可能である。本発明は、生命科学研究、臨床診断や食品衛生検査、環境検査等にも利用できる。 The present invention relates to a set of oligonucleotides capable of detecting nucleic acids derived from multiple viruses, including influenza A virus and influenza B virus, by nucleic acid amplification. The method of the present invention allows highly sensitive detection of viruses in biological samples such as, for example, pharyngeal and nasal swabs, sputum and saliva. The present invention can also be used for life science research, clinical diagnosis, food hygiene inspection, environmental inspection, and the like.
 核酸増幅法は数コピーの標的核酸を可視化可能なレベル、すなわち数億コピー以上に増幅する技術であり、生命科学研究分野のみならず、遺伝子診断、臨床検査といった医療分野、あるいは、食品や環境中の微生物検査等においても、広く用いられている。代表的な核酸増幅法は、PCR(Polymerase Chain Reaction)である。PCRは、(1)熱処理によるDNA変性(2本鎖DNAから1本鎖DNAへの解離)、(2)鋳型1本鎖DNAへのプライマーのアニーリング、(3)DNAポリメラーゼを用いた前記プライマーの伸長、という3ステップを1サイクルとし、このサイクルを繰り返すことによって、試料中の標的核酸を増幅する方法である。アニーリングと伸長を同温度で、2ステップで行う場合もある。 Nucleic acid amplification is a technology that amplifies a few copies of target nucleic acid to a level that can be visualized, that is, to hundreds of millions of copies or more. It is also widely used in microbiological examinations, etc. A typical nucleic acid amplification method is PCR (Polymerase Chain Reaction). PCR consists of (1) DNA denaturation by heat treatment (dissociation from double-stranded DNA to single-stranded DNA), (2) annealing of a primer to a template single-stranded DNA, and (3) conversion of the primer using a DNA polymerase. This is a method of amplifying a target nucleic acid in a sample by repeating three steps of elongation as one cycle. In some cases, annealing and extension are performed at the same temperature in two steps.
 RNAを分析する場合、このPCRの前段として、鋳型RNAをcDNAに変換する逆転写(Reverse Transcription;RT)を実施する。これをRT-PCRという。このRT-PCRは、(1)RT、PCRを非連続に実施する2ステップRT-PCR、(2)RT、PCRを、単一酵素を利用して連続して実施する一酵素系1ステップRT-PCR、(3)逆転写酵素とDNAポリメラーゼの2種類の酵素を利用して、RT、PCRを連続的に実施する二酵素系1ステップRT-PCRの3つに大別される。 When analyzing RNA, Reverse Transcription (RT), which converts the template RNA into cDNA, is performed as the first stage of this PCR. This is called RT-PCR. This RT-PCR consists of (1) 2-step RT-PCR in which RT and PCR are performed discontinuously, (2) RT and PCR in succession using a single enzyme 1-step RT -PCR, and (3) a two-enzyme one-step RT-PCR in which RT and PCR are successively performed using two enzymes, reverse transcriptase and DNA polymerase.
 PCRおよびRT-PCRは、遺伝子検査やウイルス検査に広く用いられている。ウイルス検査の代表例として、インフルエンザウイルスやコロナウイルスなどの病原性RNAウイルスが挙げられる。
 インフルエンザウイルスは、冬季に流行し、発熱等の症状を引き起こす呼吸器感染症の原因ウイルスである。インフルエンザウイルスは、核タンパク質(NP)およびマトリックスタンパク質(M)の種類に応じて複数の型に分類されるが、このうち季節性インフルエンザとして頻繁に見られるのはA型とB型である。A型インフルエンザウイルスとB型インフルエンザウイルスは、その抗原性の違いから、一方に罹患しても他方に対する抗体が通常は生成されないため、両方に罹患する場合もあることが知られている。
 コロナウイルスは、風邪を含む呼吸器感染症引き起こす原因ウイルスであり、風邪の流行期において約10~35%程度はコロナウイルスが原因と言われている。変異型ウイルスが発生することも知られており、稀にSARS(重症急性呼吸器症候群)コロナウイルスやMERS(中東呼吸器症候群)コロナウイルス、新型コロナウイルス感染症(COVID-19)コロナウイルス(SARS-nCOV-2、又はSARS-CoV-2などと呼ばれる)など致死性の重篤な呼吸器疾患を齎すものが発生することが知られている。
PCR and RT-PCR are widely used for genetic testing and virus testing. Typical examples of virus tests include pathogenic RNA viruses such as influenza viruses and coronaviruses.
Influenza virus is a causative virus of respiratory infections that is prevalent in winter and causes symptoms such as fever. Influenza viruses are classified into a plurality of types according to the types of nucleoprotein (NP) and matrix protein (M), of which types A and B are frequently seen as seasonal influenza. It is known that, due to the difference in antigenicity between influenza A virus and influenza B virus, infection with one virus usually does not produce antibodies against the other virus, and thus, infection with both viruses is possible.
Coronaviruses are causative viruses that cause respiratory infections including colds, and about 10 to 35% of colds are said to be caused by coronaviruses. Mutant viruses are also known to occur, and rarely SARS (Severe Acute Respiratory Syndrome) coronavirus, MERS (Middle East Respiratory Syndrome) coronavirus, novel coronavirus infectious disease (COVID-19) coronavirus (SARS) -nCOV-2, or SARS-CoV-2) are known to cause fatal serious respiratory diseases.
 呼吸器疾患の原因となるウイルスは数多く存在するが、疾病の症状からの原因の特定は難しいとされる。加えて、原因となっているウイルスにより、治療法や対処法も異なるため、早期な原因の特定は患者の治療に対する身体的な負担および致死率を低下させる意味合いにおいて、また感染拡大防止の観点からも、非常に重要となる。したがって、インフルエンザウイルス、コロナウイルスをはじめとする呼吸器感染症を引き起こすウイルスを簡便、迅速、高感度に検出および特定することは、臨床診断、食品衛生検査、環境検査等で重要であることは言うまでもない。 There are many viruses that cause respiratory diseases, but it is difficult to identify the cause from the symptoms of the disease. In addition, since treatment methods and countermeasures differ depending on the causative virus, early identification of the cause has the implications of reducing the physical burden of treatment for patients and reducing the mortality rate, and from the perspective of preventing the spread of infection. is also very important. Therefore, it goes without saying that simple, rapid, and highly sensitive detection and identification of viruses that cause respiratory infections, such as influenza viruses and coronaviruses, are important in clinical diagnosis, food hygiene inspections, environmental inspections, and the like. stomach.
 呼吸器感染症の原因となるウイルスの特定の迅速化の一つの方法として、一回の検査において同時に複数種のウイルスに対して検査する方法が挙げられる。近年、呼吸器感染症に関する遺伝子検査では、複数種のウイルス由来の核酸をターゲットとするマルチプレックスPCRが用いられている(非特許文献1)。また、インフルエンザウイルス等のウイルスを含む試料と水溶性有機溶媒を含む溶液とを接触させて前記ウイルス由来の核酸を抽出し、核酸増幅することによりウイルスを検出する方法も知られている(特許文献1)。 One method of speeding up the identification of viruses that cause respiratory infections is to test for multiple types of viruses at the same time in a single test. In recent years, multiplex PCR targeting nucleic acids derived from multiple viruses has been used in genetic testing for respiratory infections (Non-Patent Document 1). Also known is a method of detecting a virus by contacting a sample containing a virus such as influenza virus with a solution containing a water-soluble organic solvent to extract nucleic acid derived from the virus and amplifying the nucleic acid (Patent Document 1).
 一般的に、1ステップRT-PCR反応を用いてRNA核酸を含む複数の種類の核酸を標的として同時に増幅し、検出を行う場合、1つのRT-PCR反応系に複数種類の核酸プライマーセットが含まれることになる。このとき複数種類の標的核酸RNAに対する逆転写反応およびPCR反応が1液中にて行われるため、反応液中に含まれる複数種類のプライマーセットが、各核酸の増幅反応へ相互に影響しあうことが知られている。各プライマーのTm値が異なる点も反応系に影響を与える。その結果、逆転写反応、PCR反応それぞれにおいて、非特異的な増幅、または根本的な増幅不良を引き起こす。非特異的な増幅は標的の核酸が存在しない場合にも引き起こされ、遺伝子検査においてこれは擬陽性の原因の一つとなることが知られている。これは特に、最適な核酸増幅・検出条件が異なり易く、反応にバイアスが生じやすい2以上のターゲット核酸を検出するマルチプレックスPCR法において懸念される。 In general, when multiple types of nucleic acids including RNA nucleic acids are targeted for simultaneous amplification and detection using a one-step RT-PCR reaction, multiple types of nucleic acid primer sets are included in one RT-PCR reaction system. will be At this time, since the reverse transcription reaction and the PCR reaction for multiple types of target nucleic acid RNA are carried out in one solution, the multiple types of primer sets contained in the reaction solution mutually affect the amplification reaction of each nucleic acid. It has been known. The difference in the Tm value of each primer also affects the reaction system. As a result, non-specific amplification or fundamental amplification failure occurs in reverse transcription and PCR reactions, respectively. Non-specific amplification is also caused in the absence of the target nucleic acid, and is known to be one of the causes of false positives in genetic testing. This is particularly a concern in the multiplex PCR method for detecting two or more target nucleic acids, in which the optimal nucleic acid amplification/detection conditions tend to differ and the reaction tends to be biased.
 また、呼吸器感染症の遺伝子検査では、咽頭および鼻腔ぬぐい液、喀痰、唾液等の生体試料をサンプルとしRT-PCRによる遺伝子検査が行われる。生体試料は、RT-PCRを阻害する夾雑物や、非特異的な増幅を引き起こすウイルス由来以外の核酸を多く含んでいる。従って、核酸の単離処理をせずに、このような生体試料を夾雑物を含む状態でそのまま用いてRT-PCR反応を行う場合、反応系はより一層複雑となる。 In addition, in genetic testing for respiratory infections, biological samples such as pharyngeal and nasal swabs, sputum, and saliva are used for genetic testing by RT-PCR. Biological samples contain many contaminants that inhibit RT-PCR and non-viral nucleic acids that cause non-specific amplification. Therefore, if the RT-PCR reaction is performed using such a biological sample containing contaminants as it is without isolating the nucleic acid, the reaction system becomes even more complicated.
 現在、類似の呼吸器疾患の症状を呈し、症状からの診断が難しいものとして、A型インフルエンザウイルス、B型インフルエンザウイルス、コロナウイルス(特にSARS-nCOV-2)等がある。これらの迅速かつ簡便な検査のために、咽頭および鼻腔ぬぐい液や唾液、糞便試料、ふき取り環境試料等より、1ステップRT-PCRによって、これらの複数のウイルスを同時に検出し、かつ非特異反応の発生も抑えられた更なる有用な方法の開発が望まれている。 Currently, influenza A virus, influenza B virus, and coronavirus (especially SARS-nCOV-2) have similar respiratory disease symptoms and are difficult to diagnose from symptoms. For these quick and easy tests, pharyngeal and nasal swabs, saliva, fecal samples, swab environmental samples, etc., by one-step RT-PCR, detect these multiple viruses at the same time, and It is desired to develop a further useful method in which the occurrence is also suppressed.
特開2017-023110号公報Japanese Patent Application Laid-Open No. 2017-023110
 本発明者は、かかる従来技術の課題を解決するために検討を行っていたところ、従来知られていたA型インフルエンザウイルス及びB型インフルエンザウイルスを検出するためのプライマーセットの組合せをそのまま用いると、RT-PCRの反応系によっては、時として偽陽性に繋がる非特異反応が発生する場合があることを経験した。そこで、本発明の目的は、例えば、唾液、咽頭および鼻腔ぬぐい液等の生体試料に由来する夾雑物を含む状態でのマルチプレックス1ステップRT-PCR反応においても非特異反応の発生を高度に抑え、より高感度に試料中に含まれるA型インフルエンザウイルス及びB型インフルエンザウイルスを含む複数のウイルスに由来するターゲット核酸の有無を検出できる手法を提供することである。 The inventors of the present invention conducted studies in order to solve the problems of the prior art, and found that when using the conventionally known combination of primer sets for detecting influenza A virus and influenza B virus as they are, We have experienced that depending on the RT-PCR reaction system, non-specific reactions that sometimes lead to false positives may occur. Therefore, the object of the present invention is to highly suppress the occurrence of non-specific reactions even in a multiplex one-step RT-PCR reaction containing contaminants derived from biological samples such as saliva, pharynx and nasal swabs. An object of the present invention is to provide a method capable of detecting the presence or absence of target nucleic acids derived from a plurality of viruses, including influenza A virus and influenza B virus, contained in a sample with higher sensitivity.
 本発明者は、上記事情に鑑み、鋭意研究を行った結果、特定のオリゴヌクレオチドの核酸プライマーで構成されるプライマーセットを用いることで、非特異反応の発生を高度に抑え、非特異的な増幅を低減し、試料中に含まれるA型インフルエンザウイルス及びB型インフルエンザウイルスを含む複数のウイルスに由来するターゲット核酸の有無をより高感度に検出できることを見出した。また、このオリゴヌクレオチドのセットを使用することで夾雑物の持ち込みにより引き起こされる検出感度の低下をも克服でき、夾雑物を含みうる試料から事前に核酸の単離精製作業を実施することなくPCR反応を行うだけでターゲット核酸を検出可能であることを見出し、本発明に到達した。 In view of the above circumstances, as a result of intensive research, the present inventors have found that by using a primer set composed of nucleic acid primers of specific oligonucleotides, the occurrence of non-specific reactions is highly suppressed, and non-specific amplification can be reduced, and the presence or absence of target nucleic acids derived from a plurality of viruses, including influenza A virus and influenza B virus, contained in a sample can be detected with higher sensitivity. In addition, by using this oligonucleotide set, it is possible to overcome the decrease in detection sensitivity caused by the introduction of contaminants, and the PCR reaction can be performed without prior isolation and purification of nucleic acids from a sample that may contain contaminants. The inventors have found that the target nucleic acid can be detected only by performing the above, and arrived at the present invention.
 代表的な本願発明は、以下の通りである。
 [項1] 以下の工程を含む、試料中のA型インフルエンザウイルス及びB型インフルエンザウイルスに由来するターゲット核酸の有無を検出する方法:
(1)以下の群(I)及び群(II)の組合せ、群(III)及び群(IV)の組合せ、又は群(V)及び群(VI)の組合せから選択されるいずれかのプライマーセットの組合せを用意する工程であって、ここで前記プライマーセットの組合せは、前記各群からそれぞれ少なくとも一対ずつ選択される少なくとも二対のプライマーセットを含む、工程:
 (I)プライマーセットa及びプライマーセットb
 (II)プライマーセットf及びプライマーセットg
 (III)プライマーセットc
 (IV)プライマーセットe及びプライマーセットg
 (V)プライマーセットd
 (VI)プライマーセットe及びプライマーセットf
[前記プライマーセットa~gは、以下の通り:
 (プライマーセットa):配列番号31及び配列番号33で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットb):配列番号32及び配列番号34で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットc):配列番号39及び配列番号40で示される塩基配列からなる核酸プライマーのーセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットd):配列番号45及び配列番号46で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットe):配列番号36及び配列番号37で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットf):配列番号42及び配列番号43で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットg):配列番号48及び配列番号49で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット]
(2)前記工程(1)で用意したプライマーセットの組合せと、試料と、PCR反応液とを混合する工程、並びに
(3)反応容器を密閉後、PCR反応を実施する工程。
 [項2] 前記PCR反応液が、さらに以下の群(VII)から選択されるSARS-CoV-2コロナウイルスに由来するターゲット核酸の有無を検出するための少なくとも一対のプライマーセットを含む、項1に記載の方法:
 (VII)配列番号1及び配列番号2で示される塩基配列からなる核酸プライマーのセット、配列番号4及び配列番号5で示される塩基配列からなる核酸プライマーのセット、配列番号7及び配列番号8で示される塩基配列からなる核酸プライマーのセット、配列番号10及び配列番号11で示される塩基配列からなる核酸プライマーのセット、配列番号13及び配列番号14で示される塩基配列からなる核酸プライマーのセット、配列番号16及び配列番号17で示される塩基配列からなる核酸プライマーのセット、配列番号19及び配列番号20で示される塩基配列からなる核酸プライマーのセット、配列番号22及び配列番号23で示される塩基配列からなる核酸プライマーのセット、配列番号25及び配列番号26で示される塩基配列からなる核酸プライマーのセット、配列番号28及び配列番号29で示される塩基配列からなる核酸プライマーのセット、又はこれらのセットにおける各核酸プライマーの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット。
 [項3] 前記PCR反応液が、群(V)及び群(VI)のプライマーセットの組合せ、並びに、群(VII)のプライマーセットを含む、項2に記載の方法。
 [項4] 前記PCR反応液が、更に配列番号35、配列番号41、若しくは配列番号47のいずれかで示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブを少なくとも一つ含有する、項1~3のいずれかに記載の方法。
 [項5] 前記PCR反応液が、更に配列番号38、配列番号44、若しくは配列番号50のいずれかで示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブを少なくとも一つ含有する、項1~4のいずれかに記載の方法。
 [項6] 前記PCR反応液が、更に配列番号3、配列番号6、配列番号9、配列番号12、配列番号15、配列番号18、配列番号21、配列番号24、配列番号27、若しくは配列番号30で示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブを少なくとも一つ含有する、項1~5のいずれかに記載の方法。
 [項7] 前記プローブがTaqManプローブである、項4~6のいずれかに記載の方法。
 [項8] 前記試料が核酸の単離処理を行っていない試料である項1~7のいずれかに記載の方法。
 [項9] 前記工程(2)及び(3)が同一容器で行われることを特徴とする、項1~8のいずれかに記載の方法。
 [項10] 前記試料が唾液試料、喀痰試料、うがい液、涙液、咽頭ぬぐい液試料、鼻咽頭ぬぐい液、鼻腔ぬぐい液試料、糞便試料及び拭き取り検査試料からなる群より選択される少なくとも1種である、項1~9のいずれかに記載の方法。
 [項11] 試料が水、生理食塩水、緩衝液、及びスプタザイム酵素液からなる群より選択される少なくとも1種に懸濁された懸濁液、又はそれらの遠心上清若しくは濃縮物である、項1~10のいずれかに記載の方法。
 [項12] 前記工程(2)におけるPCR反応液が、DNAポリメラーゼを含む、項1~11のいずれかに記載の方法。
 [項13] 前記工程(2)におけるPCR反応液が、夾雑物耐性と逆転写活性を併せ持つDNAポリメラーゼを含むか、又は夾雑物耐性を有するDNAポリメラーゼ及び逆転写酵素を含むRT-PCR反応液である、項1~12のいずれかに記載の方法。
 [項14] 夾雑物耐性を有するDNAポリメラーゼがFamily Aに属するDNAポリメラーゼである、項13に記載の方法。
 [項15] 夾雑物耐性を有するDNAポリメラーゼが、Tth、Hawk Z05およびそれらの変異体からなる群から選択される少なくとも1種の夾雑物耐性を有するDNAポリメラーゼであることを特徴とする、項13又は14に記載の方法。
 [項16] 前記変異体が、Tthポリメラーゼ(配列番号51)又はHawk Z05ポリメラーゼ(配列番号52)のアミノ酸配列と90%以上の同一性を示すアミノ酸配列からなり、且つ、夾雑物耐性を有するDNAポリメラーゼ活性を示すものである、項15に記載の方法。
 [項17] 前記変異体が、Tthポリメラーゼ(配列番号51)又はHawk Z05ポリメラーゼ(配列番号52)のアミノ酸配列において1又は数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列からなり、且つ、夾雑物耐性を有するDNAポリメラーゼ活性を示すものである、項15又は16に記載の方法。
 [項18] 逆転写酵素が、モロニーマウス白血病ウイルス(MMLV)由来の逆転写酵素、トリ骨髄芽球症ウイルス(AMV)由来の逆転写酵素、およびこれらの変異体からなる群より選択される少なくとも1種に由来する逆転写酵素である、項13~17のいずれかに記載の方法。
 [項19] 試料中のA型インフルエンザウイルス及びB型インフルエンザウイルスに由来するターゲット核酸の有無を検出するためのプライマーセットを含むキットであって、以下の群(I)及び群(II)の組合せ、群(III)及び群(IV)の組合せ、又は群(V)及び群(VI)の組合せから選択されるいずれかのプライマーセットの組合せを含み、ここで前記プライマーセットの組合せは、前記各群からそれぞれ少なくとも一対ずつ選択される少なくとも二対のプライマーセットを含む、キット:
(I)プライマーセットa及びプライマーセットb
(II)プライマーセットf及びプライマーセットg
(III)プライマーセットc
(IV)プライマーセットe及びプライマーセットg
(V)プライマーセットd
(VI)プライマーセットe及びプライマーセットf
[前記プライマーセットa~gは、以下の通り:
 (プライマーセットa):配列番号31及び配列番号33で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットb):配列番号32及び配列番号34で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットc):配列番号39及び配列番号40で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットd):配列番号45及び配列番号46で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットe):配列番号36及び配列番号37で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットf):配列番号42及び配列番号43で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットg):配列番号48及び配列番号49で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット]
 [項20] 以下の群(VII)から選択されるSARS-CoV-2コロナウイルスに由来するターゲット核酸の有無を検出するための少なくとも一対のプライマーセットを更に含む、項19に記載のキット:
 (VII)配列番号1及び配列番号2で示される塩基配列からなる核酸プライマーのセット、配列番号4及び配列番号5で示される塩基配列からなる核酸プライマーのセット、配列番号7及び配列番号8で示される塩基配列からなる核酸プライマーのセット、配列番号10及び配列番号11で示される塩基配列からなる核酸プライマーのセット、配列番号13及び配列番号14で示される塩基配列からなる核酸プライマーのセット、配列番号16及び配列番号17で示される塩基配列からなる核酸プライマーのセット、配列番号19及び配列番号20で示される塩基配列からなる核酸プライマーのセット、配列番号22及び配列番号23で示される塩基配列からなる核酸プライマーのセット、配列番号25及び配列番号26で示される塩基配列からなる核酸プライマーのセット、配列番号28及び配列番号29で示される塩基配列からなる核酸プライマーのセット、又はこれらのセットにおける各核酸プライマーの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット。
 [項21] 群(V)及び群(VI)のプライマーセットの組合せ、並びに、群(VII)のプライマーセットを含む、項20に記載のキット。
 [項22] 更に配列番号35、配列番号41、若しくは配列番号47のいずれかで示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブを少なくとも一つ含有する、項19~21のいずれかに記載のキット。
 [項23] 更に配列番号38、配列番号44、若しくは配列番号50のいずれかで示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブを少なくとも一つ含有する、項19~22のいずれかに記載のキット。
 [項24] 更に配列番号3、配列番号6、配列番号9、配列番号12、配列番号15、配列番号18、配列番号21、配列番号24、配列番号27、若しくは配列番号30で示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブを少なくとも一つ含有する、項19~23のいずれかに記載のキット。
 [項25] 前記プローブがTaqManプローブである、項22~24のいずれかに記載のキット。
 [項26] 前記試料が核酸の単離処理を行っていない試料である、項19~25のいずれかに記載のキット。
 [項27] 前記試料が唾液試料、喀痰試料、うがい液、涙液、咽頭ぬぐい液試料、鼻咽頭ぬぐい液、鼻腔ぬぐい液試料、糞便試料及び拭き取り検査試料からなる群より選択される少なくとも1種である、項19~26のいずれかに記載のキット。
 [項28] 試料が水、生理食塩水、緩衝液、及びスプタザイム酵素液からなる群より選択される少なくとも1種に懸濁された懸濁液、又はそれらの遠心上清若しくは濃縮物である、項19~27のいずれかに記載のキット。
 [項29] DNAポリメラーゼを更に含む、項19~28のいずれかに記載のキット。
 [項30] 夾雑物耐性と逆転写活性を併せ持つDNAポリメラーゼを含むか、又は夾雑物耐性を有するDNAポリメラーゼ及び逆転写酵素を含む、項19~29のいずれかに記載のキット。
 [項31] 夾雑物耐性を有するDNAポリメラーゼがFamily Aに属するDNAポリメラーゼである、項19~30のいずれかに記載のキット。
 [項32] 夾雑物耐性を有するDNAポリメラーゼが、Tth、Hawk Z05およびそれらの変異体からなる群から選択される少なくとも1種の夾雑物耐性を有するDNAポリメラーゼであることを特徴とする、項30又は31に記載のキット。
 [項33] 前記変異体が、Tthポリメラーゼ(配列番号51)又はHawk Z05ポリメラーゼ(配列番号52)のアミノ酸配列と90%以上の同一性を示すアミノ酸配列からなり、且つ、夾雑物耐性を有するDNAポリメラーゼ活性を示すものである、項32に記載のキット。
 [項34] 前記変異体が、Tthポリメラーゼ(配列番号51)又はHawk Z05ポリメラーゼ(配列番号52)のアミノ酸配列において1又は数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列からなり、且つ、夾雑物耐性を有するDNAポリメラーゼ活性を示すものである、項32又は33に記載のキット。
 [項35] 逆転写酵素が、モロニーマウス白血病ウイルス(MMLV)由来の逆転写酵素、トリ骨髄芽球症ウイルス(AMV)由来の逆転写酵素、およびこれらの変異体からなる群より選択される少なくとも1種に由来する逆転写酵素である、項30~34のいずれかに記載のキット。
The representative invention of the present application is as follows.
[Item 1] A method for detecting the presence or absence of target nucleic acids derived from influenza A virus and influenza B virus in a sample, comprising the following steps:
(1) Any primer set selected from the following combinations of groups (I) and (II), combinations of groups (III) and (IV), or combinations of groups (V) and groups (VI) wherein the combination of primer sets comprises at least two pairs of primer sets, at least one pair each selected from each of the groups, step:
(I) Primer set a and primer set b
(II) Primer Set f and Primer Set g
(III) primer set c
(IV) Primer set e and primer set g
(V) Primer set d
(VI) Primer set e and primer set f
[The primer sets a to g are as follows:
(Primer set a): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 31 and SEQ ID NO: 33, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
(primer set b): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 32 and SEQ ID NO: 34, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences;
(primer set c): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 39 and SEQ ID NO: 40, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences;
(Primer set d): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 45 and SEQ ID NO: 46, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
(Primer set e): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 36 and SEQ ID NO: 37, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences,
(Primer set f): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 42 and SEQ ID NO: 43, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
(Primer set g): A set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 48 and SEQ ID NO: 49, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences]
(2) a step of mixing the combination of the primer sets prepared in the step (1), the sample, and the PCR reaction solution; and (3) a step of performing the PCR reaction after sealing the reaction vessel.
[Section 2] Section 1, wherein the PCR reaction solution further comprises at least one pair of primer sets for detecting the presence or absence of a target nucleic acid derived from SARS-CoV-2 coronavirus selected from the following group (VII): The method described in:
(VII) a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 1 and SEQ ID NO: 2, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 4 and SEQ ID NO: 5, and a set of nucleic acid primers shown in SEQ ID NO: 7 and SEQ ID NO: 8 a set of nucleic acid primers consisting of the nucleotide sequences of SEQ ID NO: 10 and SEQ ID NO: 11; a set of nucleic acid primers consisting of the nucleotide sequences of SEQ ID NO: 13 and SEQ ID NO: 14; 16 and SEQ ID NO: 17, a set of nucleic acid primers consisting of the nucleotide sequences of SEQ ID NO: 19 and SEQ ID NO: 20, and a nucleic acid primer set of SEQ ID NO: 22 and SEQ ID NO: 23. A set of nucleic acid primers, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 25 and SEQ ID NO: 26, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 28 and SEQ ID NO: 29, or each nucleic acid in these sets A set of nucleic acid primers comprising nucleotide sequences complementary to the nucleotide sequences of the primers.
[Item 3] The method according to item 2, wherein the PCR reaction solution contains a combination of group (V) and group (VI) primer sets and a group (VII) primer set.
[Claim 4] The PCR reaction solution further contains at least one nucleic acid probe consisting of a nucleotide sequence represented by any of SEQ ID NO: 35, SEQ ID NO: 41, or SEQ ID NO: 47 or a nucleotide sequence complementary thereto. Item 4. The method according to any one of items 1 to 3.
[Claim 5] The PCR reaction solution further contains at least one nucleic acid probe consisting of a nucleotide sequence represented by any of SEQ ID NO: 38, SEQ ID NO: 44, or SEQ ID NO: 50 or a nucleotide sequence complementary thereto. Item 5. The method according to any one of Items 1 to 4.
[Item 6] The PCR reaction solution further contains SEQ ID NO: 3, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 18, SEQ ID NO: 21, SEQ ID NO: 24, SEQ ID NO: 27, or SEQ ID NO: Item 6. The method according to any one of items 1 to 5, comprising at least one nucleic acid probe consisting of the nucleotide sequence represented by 30 or a complementary nucleotide sequence thereto.
[Item 7] The method according to any one of items 4 to 6, wherein the probe is a TaqMan probe.
[Item 8] The method according to any one of Items 1 to 7, wherein the sample is a sample that has not undergone nucleic acid isolation treatment.
[Item 9] The method according to any one of Items 1 to 8, wherein the steps (2) and (3) are performed in the same vessel.
[Item 10] The sample is at least one selected from the group consisting of a saliva sample, a sputum sample, a gargle, tears, a throat swab, a nasopharyngeal swab, a nasal swab, a stool sample, and a swab test sample. 10. The method according to any one of Items 1 to 9.
[Item 11] The sample is a suspension suspended in at least one selected from the group consisting of water, physiological saline, buffer, and sputazyme enzyme solution, or a centrifugal supernatant or concentrate thereof. Item 11. The method according to any one of items 1 to 10.
[Item 12] The method according to any one of Items 1 to 11, wherein the PCR reaction solution in step (2) contains a DNA polymerase.
[Claim 13] The PCR reaction solution in the step (2) contains a DNA polymerase having both contaminant resistance and reverse transcription activity, or an RT-PCR reaction solution containing a contaminant-resistant DNA polymerase and a reverse transcriptase. Item 13. The method according to any one of Items 1 to 12.
[Item 14] The method according to Item 13, wherein the contaminant-resistant DNA polymerase belongs to Family A.
[Item 15] Item 13, wherein the contaminant-resistant DNA polymerase is at least one contaminant-resistant DNA polymerase selected from the group consisting of Tth, Hawk Z05, and variants thereof. Or the method according to 14.
[Claim 16] A DNA in which the mutant comprises an amino acid sequence exhibiting 90% or more identity with the amino acid sequence of Tth polymerase (SEQ ID NO: 51) or Hawk Z05 polymerase (SEQ ID NO: 52), and having contaminant resistance. Item 16. The method of Item 15, which is indicative of polymerase activity.
[Item 17] The mutant comprises an amino acid sequence having deletion, substitution and/or addition of one or several amino acids in the amino acid sequence of Tth polymerase (SEQ ID NO: 51) or Hawk Z05 polymerase (SEQ ID NO: 52). 17. The method according to Item 15 or 16, which exhibits a DNA polymerase activity having contaminant resistance.
[Claim 18] The reverse transcriptase is at least selected from the group consisting of reverse transcriptase derived from Moloney murine leukemia virus (MMLV), reverse transcriptase derived from avian myeloblastosis virus (AMV), and variants thereof Item 18. The method according to any one of Items 13 to 17, wherein the reverse transcriptase is derived from 1 species.
[Item 19] A kit comprising a primer set for detecting the presence or absence of a target nucleic acid derived from influenza A virus and influenza B virus in a sample, the kit comprising a combination of the following group (I) and group (II) , a combination of Group (III) and Group (IV), or a combination of Group (V) and Group (VI), wherein said combination of primer sets is selected from each of said A kit comprising at least two pairs of primer sets, at least one pair each selected from the group:
(I) Primer set a and primer set b
(II) Primer Set f and Primer Set g
(III) primer set c
(IV) Primer set e and primer set g
(V) Primer set d
(VI) Primer set e and primer set f
[The primer sets a to g are as follows:
(Primer set a): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 31 and SEQ ID NO: 33, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
(primer set b): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 32 and SEQ ID NO: 34, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences;
(Primer set c): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 39 and SEQ ID NO: 40, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences,
(Primer set d): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 45 and SEQ ID NO: 46, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
(Primer set e): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 36 and SEQ ID NO: 37, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences,
(Primer set f): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 42 and SEQ ID NO: 43, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
(Primer set g): A set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 48 and SEQ ID NO: 49, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences]
[Item 20] The kit according to Item 19, further comprising at least one pair of primer sets for detecting the presence or absence of a target nucleic acid derived from a SARS-CoV-2 coronavirus selected from the following group (VII):
(VII) a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 1 and SEQ ID NO: 2, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 4 and SEQ ID NO: 5, and a set of nucleic acid primers shown in SEQ ID NO: 7 and SEQ ID NO: 8 a set of nucleic acid primers consisting of the nucleotide sequences of SEQ ID NO: 10 and SEQ ID NO: 11; a set of nucleic acid primers consisting of the nucleotide sequences of SEQ ID NO: 13 and SEQ ID NO: 14; 16 and SEQ ID NO: 17, a set of nucleic acid primers consisting of the nucleotide sequences of SEQ ID NO: 19 and SEQ ID NO: 20, and a nucleic acid primer set of SEQ ID NO: 22 and SEQ ID NO: 23. A set of nucleic acid primers, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 25 and SEQ ID NO: 26, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 28 and SEQ ID NO: 29, or each nucleic acid in these sets A set of nucleic acid primers comprising nucleotide sequences complementary to the nucleotide sequences of the primers.
[Item 21] The kit according to Item 20, which comprises a combination of group (V) and group (VI) primer sets and a group (VII) primer set.
[Item 22] Any of Items 19 to 21, further comprising at least one nucleic acid probe consisting of a nucleotide sequence represented by any of SEQ ID NO: 35, SEQ ID NO: 41, or SEQ ID NO: 47 or a nucleotide sequence complementary thereto. The kit described in Crab.
[Item 23] Any of Items 19 to 22, further comprising at least one nucleic acid probe consisting of a nucleotide sequence represented by any of SEQ ID NO: 38, SEQ ID NO: 44, or SEQ ID NO: 50 or a nucleotide sequence complementary thereto. The kit described in Crab.
[Item 24] Further, the nucleotide sequence represented by SEQ ID NO: 3, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 18, SEQ ID NO: 21, SEQ ID NO: 24, SEQ ID NO: 27, or SEQ ID NO: 30 or a kit according to any one of Items 19 to 23, which contains at least one nucleic acid probe consisting of a base sequence complementary thereto.
[Item 25] The kit according to any one of Items 22 to 24, wherein the probe is a TaqMan probe.
[Item 26] The kit according to any one of Items 19 to 25, wherein the sample is a sample that has not undergone nucleic acid isolation treatment.
[Item 27] The sample is at least one selected from the group consisting of a saliva sample, a sputum sample, a gargle, tears, a pharyngeal swab, a nasopharyngeal swab, a nasal swab, a fecal sample, and a swab sample. Item 27. The kit according to any one of items 19 to 26.
[Item 28] The sample is a suspension suspended in at least one selected from the group consisting of water, physiological saline, buffer, and sputazyme enzyme solution, or a centrifugal supernatant or concentrate thereof. Item 28. The kit according to any one of Items 19-27.
[Item 29] The kit according to any one of Items 19 to 28, further comprising a DNA polymerase.
[Item 30] The kit according to any one of Items 19 to 29, which contains a DNA polymerase having both contaminant resistance and reverse transcription activity, or a DNA polymerase and a reverse transcriptase having contaminant resistance.
[Item 31] The kit according to any one of Items 19 to 30, wherein the contaminant-resistant DNA polymerase is a DNA polymerase belonging to Family A.
[Item 32] Item 30, wherein the contaminant-resistant DNA polymerase is at least one contaminant-resistant DNA polymerase selected from the group consisting of Tth, Hawk Z05, and variants thereof. or the kit according to 31.
[Claim 33] A DNA in which the mutant comprises an amino acid sequence exhibiting 90% or more identity with the amino acid sequence of Tth polymerase (SEQ ID NO: 51) or Hawk Z05 polymerase (SEQ ID NO: 52), and having contaminant resistance. 33. The kit of Paragraph 32, which exhibits polymerase activity.
[Claim 34] The mutant consists of an amino acid sequence having deletion, substitution and/or addition of one or several amino acids in the amino acid sequence of Tth polymerase (SEQ ID NO: 51) or Hawk Z05 polymerase (SEQ ID NO: 52). 34. The kit according to Item 32 or 33, which exhibits a DNA polymerase activity having contaminant resistance.
[Claim 35] The reverse transcriptase is at least selected from the group consisting of reverse transcriptase derived from Moloney murine leukemia virus (MMLV), reverse transcriptase derived from avian myeloblastosis virus (AMV), and variants thereof Item 35. The kit according to any one of Items 30 to 34, wherein the reverse transcriptase is derived from 1 species.
 本発明によって、試料をRT-PCR反応液に添加後、RT-PCR反応するだけで、A型インフルエンザウイルス及びB型インフルエンザウイルスを含む2つ以上のウイルスに由来するターゲット核酸の検出を行う場合でも、非特異反応の発生を高度に抑えつつ、十分な感度で検査することが可能となる。また、本発明は夾雑物質や不溶性物質を含みうる試料からの検出においても有効であるので、事前に核酸を抽出しなくてもよく、簡便に検査できるという利点も有する。一回の検査において複数種類の呼吸器感染症ウイルスの検査が同時に可能となるため、ウイルス検査業務がさらに効率化する。インフルエンザウイルスなどのウイルス検査業務の効率化は、患者に対して正確な治療を行えるまでの時間が短縮できるとともに、感染していても症状が顕れない被験者の検査数を増やすことができるため、感染症予防にも大いに寄与し得る。 According to the present invention, target nucleic acids derived from two or more viruses including influenza A virus and influenza B virus can be detected only by RT-PCR reaction after adding the sample to the RT-PCR reaction solution. , it is possible to inspect with sufficient sensitivity while suppressing the occurrence of non-specific reactions to a high degree. In addition, the present invention is also effective in detection from samples that may contain contaminants or insoluble substances, and thus has the advantage of being able to be easily tested without prior extraction of nucleic acids. Since it is possible to simultaneously test for multiple types of respiratory infection viruses in a single test, the virus test work will be more efficient. Improving the efficiency of testing for viruses such as influenza virus can shorten the time required to provide accurate treatment to patients, and increase the number of tests for subjects who are infected but do not show symptoms. It can also greatly contribute to disease prevention.
図1は、試験例2の結果を示す図である。FIG. 1 is a diagram showing the results of Test Example 2. FIG.
 以下、本発明の実施形態を示しつつ、本発明についてさらに詳説する。 Hereinafter, the present invention will be described in further detail while showing embodiments of the present invention.
 一つの実施形態において、本発明は、試料中のA型インフルエンザウイルス及びB型インフルエンザウイルスに由来するターゲット核酸の有無を1つのPCR反応液で検査する方法であって、少なくとも以下の(1)~(3)の工程を含む方法を提供する:
(1)特定のプライマーセットの組合せを用意する工程、
(2)前記プライマーセットの組合せと、試料と、PCR反応液とを混合する工程、
(3)反応容器を密閉後、PCR反応を実施する工程。
 本発明は、前記工程(1)において、特定のプライマーセットの組合せを用意して使用することにより、非特異反応の発生を高度に抑えることができ、また、例えば、唾液、鼻腔ぬぐい液、咽頭ぬぐい液等の夾雑物質を含む生体試料をそのまま用いる場合においてもA型インフルエンザウイルス及びB型インフルエンザウイルスを高感度に検出できることを見出したことに基づく。
In one embodiment, the present invention provides a method for examining the presence or absence of target nucleic acids derived from influenza A virus and influenza B virus in a sample in one PCR reaction solution, comprising at least the following (1) to Providing a method comprising the step of (3):
(1) preparing a combination of specific primer sets;
(2) mixing the combination of the primer set, the sample, and the PCR reaction solution;
(3) A step of performing a PCR reaction after sealing the reaction container.
In the step (1) of the present invention, by preparing and using a combination of specific primer sets, the occurrence of non-specific reactions can be highly suppressed. This is based on the discovery that influenza A and B viruses can be detected with high sensitivity even when biological samples containing contaminants such as swabs are used as they are.
 本発明の前記方法は、2以上のターゲット核酸を検出するマルチプレックスRT-PCR法であることを特徴とする。ここで「ターゲット核酸」とは、核酸増幅により検出することを目的とした核酸領域であり得る。例えば、2つ以上のウイルスに由来する核酸の有無を検査する場合は、それらのウイルスの各ゲノム核酸における増幅を意図する領域であり得る。また、PCR反応液がインターナルコントロール等を含む場合は、インターナルコントロール核酸における増幅を意図する領域もターゲット核酸とすることができる。本発明の方法では、対象となるターゲットの数は2個所以上であれば特に制限はなく、例えば、3個所、4個所、5個所以上とすることもできる。ターゲット数の上限は特に制限されないが、例えば、10箇所以下とすることができる。 The method of the present invention is characterized by being a multiplex RT-PCR method that detects two or more target nucleic acids. As used herein, a "target nucleic acid" can be a nucleic acid region intended to be detected by nucleic acid amplification. For example, when testing for the presence of nucleic acids from more than one virus, it may be the region intended for amplification in each genomic nucleic acid of those viruses. In addition, when the PCR reaction solution contains an internal control or the like, the region intended to be amplified in the internal control nucleic acid can also be the target nucleic acid. In the method of the present invention, the number of targets to be processed is not particularly limited as long as it is two or more. For example, it can be three, four, or five or more. Although the upper limit of the number of targets is not particularly limited, it can be set to 10 or less, for example.
 本発明に用いられるプライマーセット(プライマー対ともいう)としては、一方のプライマーが他方のプライマーのDNA伸長生成物に互いに相補的である2種一対のプライマーが挙げられる。ターゲットとする核酸が亜型からなる場合、縮重プライマーのプライマーセットを含んでもよい。 A primer set (also referred to as a primer pair) used in the present invention includes a pair of two primers in which one primer is mutually complementary to the DNA extension product of the other primer. A primer set of degenerate primers may be included when the target nucleic acid consists of subtypes.
 エンベロープRNAウイルスの1種であるインフルエンザウイルスの検出のために用いられるプライマーセットとしては、これまでに、国立感染症研究所が発表している「インフルエンザ診断マニュアル(第4版)」に記載の配列(配列番号39、40、42、43のプライマーセットの組合せ)、アメリカ疾病予防管理センターが発表する「Research Use Only CDC Influenza SARS-CoV-2 (Flu SC2) Multiplex Assay Real-Time RT-PCR Primers and Probes」(配列番号31~34、36、37のプライマーセットの組合せ)、世界保健機関(WHO)が発表している「WHO information for the molecular detection of influenza viruses」に記載の配列(配列番号45,46,48,49のプライマーセットの組合せ)が知られている。しかしながら、各機関が発表するプライマーセットを、別の機関が発表するプライマーセットと組み合わせて用いることについては、これまでに知られていない。 Primer sets used for the detection of influenza virus, which is a type of enveloped RNA virus, include the sequences described in the "Influenza Diagnosis Manual (4th Edition)" published by the National Institute of Infectious Diseases. (Combination of primer sets of SEQ ID NOS: 39, 40, 42, 43), "Research Use Only CDC Influenza SARS-CoV-2 (Flu SC2) Multiplex Assay Real-Time RT-PCR Primers and Probes" (combination of primer sets of SEQ ID NOs: 31 to 34, 36, and 37), sequences described in "WHO information for the molecular detection of influenza viruses" published by the World Health Organization (WHO) (SEQ ID NOS: 45, 46,48,49 primer set combinations) are known. However, it has not been known so far to use a primer set published by each institution in combination with a primer set published by another institution.
 一つの実施形態において、本発明では、以下の群(I)及び群(II)のプライマーセットの組合せ;群(III)及び群(IV)のプライマーセットの組合せ;又は群(V)及び群(VI)のプライマーセットの組合せから選択されるいずれかの組合せを使用することを特徴する:
 (I)プライマーセットa及びプライマーセットb
 (II)プライマーセットf及びプライマーセットg
 (III)プライマーセットc
 (IV)プライマーセットe及びプライマーセットg
 (V)プライマーセットd
 (VI)プライマーセットe及びプライマーセットf
[前記プライマーセットa~gは、以下の通り:
 (プライマーセットa):配列番号31及び配列番号33で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットb):配列番号32及び配列番号34で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットc):配列番号39及び配列番号40で示される塩基配列からなる核酸プライマーのーセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットd):配列番号45及び配列番号46で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットe):配列番号36及び配列番号37で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットf):配列番号42及び配列番号43で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
 (プライマーセットg):配列番号48及び配列番号49で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット]
 ここで、前記プライマーセットの組合せは、前記の各群からそれぞれ少なくとも一対ずつ選択される少なくとも二対のプライマーセットを含むことを更なる特徴としている。例えば、群(V)及び群(VI)のプライマーセットの組合せの場合には、群(V)のプライマーセットdに相当する配列番号45で示される塩基配列からなる核酸プライマー及び配列番号46で示される塩基配列からなる核酸プライマーで構成される一対の核酸プライマーのセットと、群(VI)のプライマーセットeに相当する配列番号36で示される塩基配列からなる核酸プライマー及び配列番号37で示される塩基配列からなる核酸プライマーで構成される一対の核酸プライマーのセットとを両方含むものとすればよい。他の群又はプライマーセットを選択する場合も同様にして、前記の各群からそれぞれ少なくとも一対ずつ選択される少なくとも二対のプライマーセットを含むものとすればよい。
In one embodiment, in the present invention, the following group (I) and group (II) primer set combinations; group (III) and group (IV) primer set combinations; or group (V) and group ( VI) characterized by using any combination selected from the combination of primer sets:
(I) Primer set a and primer set b
(II) Primer Set f and Primer Set g
(III) primer set c
(IV) Primer set e and primer set g
(V) Primer set d
(VI) Primer set e and primer set f
[The primer sets a to g are as follows:
(Primer set a): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 31 and SEQ ID NO: 33, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
(primer set b): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 32 and SEQ ID NO: 34, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences;
(primer set c): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 39 and SEQ ID NO: 40, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences;
(Primer set d): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 45 and SEQ ID NO: 46, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
(Primer set e): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 36 and SEQ ID NO: 37, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences,
(Primer set f): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 42 and SEQ ID NO: 43, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
(Primer set g): A set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 48 and SEQ ID NO: 49, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences]
Here, the combination of primer sets is further characterized by including at least two pairs of primer sets, at least one pair of which is selected from each of the above groups. For example, in the case of a combination of group (V) and group (VI) primer sets, a nucleic acid primer consisting of a nucleotide sequence represented by SEQ ID NO: 45 and a nucleic acid primer represented by SEQ ID NO: 46 corresponding to primer set d of group (V) A set of a pair of nucleic acid primers consisting of a nucleic acid primer consisting of a base sequence of the group (VI), a nucleic acid primer consisting of a base sequence represented by SEQ ID NO: 36 and a base represented by SEQ ID NO: 37 corresponding to the primer set e of group (VI) and a set of a pair of nucleic acid primers composed of nucleic acid primers consisting of sequences. Similarly, when selecting other groups or primer sets, at least two pairs of primer sets selected from each of the above groups should be included.
 本発明の効果を奏する限り、本発明では、上記のいずれのプライマーセットの組合せも使用され得るが、より一層高い効果が得られ易いという観点から、群(V)及び群(VI)のプライマーセットの組合せが好ましく、群(V)から選択されるプライマーセットdと群(VI)から選択されるプライマーセットeの組合せがより好ましい。 In the present invention, any combination of the above primer sets can be used as long as the effect of the present invention is exhibited. is preferred, and a combination of primer set d selected from group (V) and primer set e selected from group (VI) is more preferred.
 PCR反応液中における前記プライマーセットの組合せの濃度は、本発明の効果を奏する限り特に限定されないが、例えば、該プライマーセットの組合せを構成する各核酸プライマーの濃度が、PCR反応液全体に対して、それぞれ0.1μM以上3μM以下であることが好ましい。特定の実施態様では、例えば、フォワードプライマーの濃度が反応液全体に対して0.1μM以上2μM以下であり、かつリバースプライマーの濃度が反応液全体に対して0.5μM以上2μM以下とすることもできる。 The concentration of the combination of the primer sets in the PCR reaction solution is not particularly limited as long as the effects of the present invention are achieved. , is preferably 0.1 μM or more and 3 μM or less. In a specific embodiment, for example, the concentration of the forward primer is 0.1 μM or more and 2 μM or less relative to the entire reaction solution, and the concentration of the reverse primer is 0.5 μM or more and 2 μM or less relative to the entire reaction solution. can.
 特定の好ましい実施形態では、前記のA型インフルエンザウイルス及びB型インフルエンザウイルスを検出するための特定のプライマーセットの組合せと共に、SARS-CoV-2コロナウイルスに由来するターゲット核酸の有無を検出するための少なくとも一対のプライマーセットを更に用いてRT-PCR反応を行うことができる。A型又はB型インフルエンザウイルスによる感染症の症状と、SARS-CoV-2コロナウイルスによる感染症の症状は臨床上判断が難しい場合も多く、これらを判別して高感度に検出できる遺伝子検査法は非常に有益である。 In certain preferred embodiments, for detecting the presence or absence of a target nucleic acid derived from SARS-CoV-2 coronavirus, together with a combination of specific primer sets for detecting influenza A virus and influenza B virus. An RT-PCR reaction can be performed additionally using at least one pair of primer sets. Clinically, it is often difficult to distinguish between the symptoms of infection caused by type A or B influenza virus and the symptoms of infection caused by SARS-CoV-2 coronavirus. Very informative.
 エンベロープRNAウイルスの1種であるコロナウイルス(SARS-CoV-2)の検出のために用いられるプライマーセットとしては、これまでに、国立感染症研究所が発表している「病原体検出マニュアル2019-nCoV」に記載の配列(配列番号1,2,4,5)、アメリカ疾病予防管理センターが発表する「2019-Novel Coronavirus(2019-nCoV)Real-time RT-pCR Panel Primers and Probes」(配列番号7及び8のプライマーセットの組合せ,配列番号10及び11のプライマーセットの組合せ,配列番号13及び14のプライマーセットの組合せ)および「Research Use Only CDC Influenza SARS-CoV-2(Flu SC2) Multiplex Assay Real-Time RT-PCR Primers and Probes」(配列番号16及び17のプライマーセットの組合せ)および「Research Use Only 2019-Novel Coronavirus (2019-nCoV)Real-time RT-PCR Primers and Probes」(配列番号19及び20のプライマーセットの組合せ)およびパスツール研究所が発表している「Protocol: Real-time RT-PCR assays for the detection of SARS-CoV-2」(配列番号22及び23のプライマーセットの組合せ、配列番号25及び26のプライマーセットの組合せ、配列番号28及び29のプライマーセットの組合せ)が挙げられ、本発明においても好適に使用することができるが、これに限るものではない。前記のプライマー配列では、配列番号1,2,4,5,7,8,10,11,13,14,16,17によりSARS-nCOV-2のヌクレオキャプシドタンパク質(N)領域を検出する。また、配列番号19,20,22,23,25,26によりRNA-dependent RNA polymerase(RdRp)領域を検出する。また、配列番号28,29によりエンベロープタンパク質(E)領域を検出する。SARS-nCOV-2をはじめとするコロナウイルスの検出においては、ヌクレオキャプシド(N)領域、エンベロープタンパク質(E)領域、スパイクタンパク質(S)領域、RNA-dependent RNA polymerase(RdRp)領域、Open Reading Frame(ORF)領域等の遺伝子を検出の対象とすることができるが、特にこれに限るものではない。また、本発明においては、上記の各プライマーセットの組合せにおける核酸プライマーの塩基配列にそれぞれ相補的な塩基配列からなる核酸プライマーのセットも使用することができる。 As a primer set used for the detection of coronavirus (SARS-CoV-2), which is a type of enveloped RNA virus, the National Institute of Infectious Diseases has so far published "Pathogen Detection Manual 2019-nCoV ” (SEQ ID NOS: 1, 2, 4, 5), “2019-Novel Coronavirus (2019-nCoV) Real-time RT-pCR Panel Primers and Probes” (SEQ ID NO: 7 and 8 primer set combinations, SEQ ID NOS: 10 and 11 primer set combinations, SEQ ID NOS: 13 and 14 primer set combinations) and "Research Use Only CDC Influenza SARS-CoV-2 (Flu SC2) Multiplex Assay Real- Time RT-PCR Primers and Probes" (combination of primer sets of SEQ ID NOS: 16 and 17) and "Research Use Only 2019-Novel Coronavirus (2019-nCoV) Real-time RT-PCR Primers and Probes" (SEQ ID NOS: 19 and 20 ) and "Protocol: Real-time RT-PCR assays for the detection of SARS-CoV-2" published by the Pasteur Institute (combination of primer sets of SEQ ID NOS: 22 and 23, SEQ ID NO: 25 and 26, and a combination of SEQ ID NOs: 28 and 29), which can also be preferably used in the present invention, but is not limited to these. The above primer sequences detect the nucleocapsid protein (N) region of SARS-nCOV-2 according to SEQ ID NOs: 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, and 17. Also, the RNA-dependent RNA polymerase (RdRp) region is detected by SEQ ID NOs: 19, 20, 22, 23, 25, and 26. Also, the envelope protein (E) region is detected by SEQ ID NOS:28 and 29. In the detection of coronaviruses including SARS-nCOV-2, nucleocapsid (N) region, envelope protein (E) region, spike protein (S) region, RNA-dependent RNA polymerase (RdRp) region, Open Reading Frame A gene such as an (ORF) region can be targeted for detection, but is not particularly limited to this. In addition, in the present invention, a set of nucleic acid primers comprising base sequences complementary to the base sequences of the nucleic acid primers in the above combinations of primer sets can also be used.
 本発明では、上記のいずれのプライマーセットも使用され得るが、ヌクレオキャプシド領域の一部を増幅して検出可能なプライマーセットであることが好ましく、配列番号1及び2のプライマーセットの組合せ、配列番号4及び5のプライマーセットの組合せ、配列番号7及び8のプライマーセットの組合せ、配列番号10及び11のプライマーセットの組合せ、配列番号13及び14のプライマーセットの組合せ、配列番号16及び17のプライマーセットの組合せ、又はこれらのセットにおける各核酸プライマーの塩基配列にそれぞれ相補的な塩基配列からなる核酸プライマーのセットから選択される少なくとも一対のプライマーセットが好ましい。 In the present invention, any of the above primer sets can be used, but a primer set that can detect by amplifying a part of the nucleocapsid region is preferable. 4 and 5 primer set combination, SEQ ID NO: 7 and 8 primer set combination, SEQ ID NO: 10 and 11 primer set combination, SEQ ID NO: 13 and 14 primer set combination, SEQ ID NO: 16 and 17 primer set or a set of at least one pair of primers selected from the set of nucleic acid primers each comprising a nucleotide sequence complementary to the nucleotide sequence of each nucleic acid primer in these sets.
 本発明の前記方法が、SARS-CoV-2コロナウイルスに由来するターゲット核酸の有無を検出するためのプライマーセットを使用する場合、該プライマーセットの数は特に限定されず、一対のプライマーセットであってもよいし、二対以上のプライマーセットを組み合わせて使用してもよい。二対以上のSARS-CoV-2コロナウイルス検出用のプライマーセットを使用する場合、そのうちの一対は、配列番号16及び17で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列にそれぞれ相補的な塩基配列からなる核酸プライマーのセットであることが好ましい。 When the method of the present invention uses a primer set for detecting the presence or absence of a target nucleic acid derived from SARS-CoV-2 coronavirus, the number of primer sets is not particularly limited, and a pair of primer sets. Alternatively, two or more pairs of primer sets may be used in combination. When using two or more pairs of primer sets for detecting SARS-CoV-2 coronavirus, one pair of them is a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NOS: 16 and 17, or a set of these base sequences, respectively A set of nucleic acid primers comprising complementary nucleotide sequences is preferred.
 PCR反応液(RT-PCR反応液)中における前記SARS-CoV-2コロナウイルス検出用のプライマーセットの組合せの濃度は特に限定されないが、例えば、該プライマーセットを構成する各核酸プライマーの濃度が、PCR反応液全体に対して、それぞれ0.1μM以上3μM以下であることが好ましい。特定の実施態様では、例えば、フォワードプライマー濃度が反応液全体に対して0.1μM以上2μM以下であり、かつリバースプライマー濃度が反応液全体に対して0.5μM以上2μM以下とすることもできる。 The concentration of the combination of primer sets for detecting SARS-CoV-2 coronavirus in the PCR reaction solution (RT-PCR reaction solution) is not particularly limited, but for example, the concentration of each nucleic acid primer that constitutes the primer set is It is preferably 0.1 µM or more and 3 µM or less for the entire PCR reaction solution. In certain embodiments, for example, the forward primer concentration can be 0.1 μM or more and 2 μM or less, and the reverse primer concentration can be 0.5 μM or more and 2 μM or less, based on the total reaction mixture.
 一つの実施形態において、本発明では、上記のようなA型インフルエンザウイルス及びB型インフルエンザウイルスを検出するプライマーセットの組合せ、及び必要に応じて、上記のようなSARS-CoV-2コロナウイルスを検出するプライマーセットと、試料と、PCR反応液とを混合して、PCR反応を実施する。ここで、本発明が検査対象とするインフルエンザウイルス(及び、必要に応じてSARS-CoV-2コロナウイルス)はターゲット核酸がRNAとなるため、PCR反応としてRT-PCR反応を行うことになる。従って、前記工程(2)のPCR反応液は、夾雑物耐性と逆転写活性を併せ持つDNAポリメラーゼを含むRT-PCR反応液、又は夾雑物耐性を有するDNAポリメラーゼ及び逆転写酵素を含むRT-PCR反応液であることが好ましい。 In one embodiment, in the present invention, a combination of primer sets for detecting influenza A virus and influenza B virus as described above, and, if necessary, SARS-CoV-2 coronavirus as described above is detected. PCR reaction is performed by mixing the primer set, the sample, and the PCR reaction solution. Here, the influenza virus (and, if necessary, SARS-CoV-2 coronavirus) to be tested by the present invention has RNA as the target nucleic acid, so RT-PCR reaction is performed as the PCR reaction. Therefore, the PCR reaction solution in the step (2) is an RT-PCR reaction solution containing a DNA polymerase having both contaminant resistance and reverse transcription activity, or an RT-PCR reaction containing a contaminant-resistant DNA polymerase and a reverse transcriptase. A liquid is preferred.
 上記の実施態様において、RT-PCR反応は、逆転写酵素とDNAポリメラーゼの両者を含む2酵素反応系であっても、逆転写活性を有する耐熱性DNAポリメラーゼを含む1酵素反応系であってもよい。前記工程(1)~(3)は、同一容器で行われることが好ましい。すなわち、工程(1)~(3)のいずれの工程の間においても、混合液の全部または一部を別容器へ移し替えないことが好ましい。更には、工程(3)において、反応容器を密閉後、反応容器の蓋の開閉を行わないことが好ましい。また、前記工程(2)で混合する試料が、核酸の単離処理を行っていない唾液、鼻腔ぬぐい液、咽頭ぬぐい液等の夾雑物質および不溶性物質を含みうる試料である場合、当該試料は事前に水または緩衝液等にて懸濁した懸濁液であってよく、唾液試料等であればそのまま使用してもよく、糞便試料等の固形試料をPCR反応液に直接添加してもよい。 In the above embodiment, the RT-PCR reaction may be a two-enzyme reaction system containing both reverse transcriptase and DNA polymerase, or a one-enzyme reaction system containing a thermostable DNA polymerase having reverse transcription activity. good. The steps (1) to (3) are preferably carried out in the same container. That is, it is preferable not to transfer all or part of the mixture to another container during any of the steps (1) to (3). Furthermore, in step (3), it is preferable not to open and close the lid of the reaction vessel after the reaction vessel is sealed. In addition, if the sample to be mixed in the step (2) is a sample that may contain contaminants and insoluble substances such as saliva, nasal swabs, and pharyngeal swabs that have not undergone nucleic acid isolation treatment, the sample should be prepared in advance. A saliva sample or the like may be used as it is, or a solid sample such as a stool sample may be directly added to the PCR reaction solution.
 本発明は、少なくとも試料中のA型インフルエンザウイルス及びB型インフルエンザウイルスの有無を検査対象とするが、更に他のターゲット核酸(例えば、SARS-CoV-2コロナウイルス等の呼吸器疾患の原因ウイルス)の有無を検査対象とすることができる。 The present invention targets at least the presence or absence of influenza A virus and influenza B virus in a sample, but also other target nucleic acids (for example, viruses causing respiratory diseases such as SARS-CoV-2 coronavirus). can be inspected for the presence or absence of
 一つの実施形態において、本発明は、呼吸器感染症の原因となる2つ以上のウイルス(A型インフルエンザウイルス及びB型インフルエンザウイルス)に由来するターゲット核酸の検出を行うことを特徴とする。ここで検査対象となる呼吸器感染症ウイルスの数は、2種類以上であれば特に限定されず、3種類以上であってもよい。検査対象となる呼吸器感染症ウイルスの数の上限は特に限定されないが、例えば、10種類以下であり得る。より精度よく高感度な検出が可能になるという観点から、好ましくは2~3種類の呼吸器感染症ウイルスである。 In one embodiment, the present invention is characterized by detecting target nucleic acids derived from two or more viruses (influenza A virus and influenza B virus) that cause respiratory infections. The number of respiratory infection viruses to be tested is not particularly limited as long as it is two or more, and may be three or more. The upper limit of the number of respiratory infection viruses to be tested is not particularly limited, but may be, for example, 10 or less. From the viewpoint of enabling more accurate and highly sensitive detection, 2 to 3 types of respiratory infection viruses are preferable.
 インフルエンザウイルスは、しばしば重篤な呼吸器疾患を引き起こすほか、合併症として気管支炎、肺炎、中耳炎、急性脳症などを引き起こすことが知られている。インフルエンザは、主にA型、B型、C型の3型があり、毎年の流行的な広がりをみせるのはA型とB型である。インフルエンザウイルス粒子表面には赤血球凝集素(HA)とノイラミニダーゼ(NA)と呼ばれる2種類の糖タンパク質が存在し、これらがヒトへの感染に関与している。HAには15種類、NAには9種類の異なる亜型が存在し、これらの様々な組み合わせを持つウイルスが広く分布している。上述した2種類の糖タンパク質の異なる亜型の組み合わせが定期的に出現するため、A型インフルエンザは数年から数十年ごとに、変異型ウイルスによる世界的な大流行が起こる。本発明では、このうちA型、B型の両方のインフルエンザウイルスを高感度に検出することが可能である。 Influenza viruses are known to cause serious respiratory illnesses, as well as complications such as bronchitis, pneumonia, otitis media, and acute encephalopathy. There are three main types of influenza, A, B, and C, with types A and B spreading epidemics every year. Two types of glycoproteins called hemagglutinin (HA) and neuraminidase (NA) are present on the surface of influenza virus particles and are involved in human infection. There are 15 different subtypes of HA and 9 different subtypes of NA, and viruses with various combinations of these are widely distributed. Due to the regular emergence of combinations of different subtypes of the two glycoproteins described above, influenza A epidemics occur every few years to decades due to mutated virus worldwide. In the present invention, it is possible to detect both type A and type B influenza viruses with high sensitivity.
 上記のA型及びB型インフルエンザウイルスに加えて、本発明の対象となり得るウイルスとしては、エンベロープRNAウイルスが挙げられる。エンベロープRNAウイルスとしては、コロナウイルス科ウイルス(例えば、SARSコロナウイルス、MERSコロナウイルス、SARS-CoV-2コロナウイルス)などが挙げられるが、特に限定されるものではない。好ましくは、症状から診断が難しいコロナウイルス科ウイルス、なかでもコロナウイルス(SARSコロナウイルス、MERSコロナウイルス、SARS-CoV-2コロナウイルス)の検出であり、特に、SARS-CoV-2コロナウイルスと、A型インフルエンザウイルス及びB型ヒトインフルエンザウイルスとの検出に有用である。 In addition to the above influenza A and B viruses, viruses that can be the subject of the present invention include enveloped RNA viruses. Enveloped RNA viruses include, but are not limited to, Coronaviridae viruses (eg, SARS coronavirus, MERS coronavirus, SARS-CoV-2 coronavirus). Preferably, it is the detection of coronaviruses that are difficult to diagnose from symptoms, especially coronaviruses (SARS coronavirus, MERS coronavirus, SARS-CoV-2 coronavirus), especially SARS-CoV-2 coronavirus, It is useful for detecting influenza A virus and human influenza B virus.
 2019年に中国湖北省武漢市にて発生が確認された変異型コロナウイルスSARS-CoV-2(SARS-nCOV-2と呼ばれることもある)においては、ウイルスゲノムRNAの解析が完了次第、核酸増幅技術を用いた検査方法が樹立された(例えば、非特許文献2、非特許文献3)。日本においても、国立感染症研究所の「病原体検出マニュアル2019-nCoV」にてSARS-CoV-2の検出するための方法が記載されている(非特許文献4)。これらの手法において、試料中に含まれるコロナウイルスの検出には、試料からのウイルスRNAの抽出および精製工程を伴う。ウイルスRNAの抽出および精製工程は煩雑であり、多くの作業時間を要していた。現在、コロナウイルス、特にSARS-CoV-2を含む咽頭・鼻腔ぬぐい液や唾液、喀痰、糞便試料などの生体試料やふき取り環境試料から、RNAの抽出および精製工程なく、1ステップRT-PCRによって迅速に検出できる試薬等も開発されてきている。しかしながら、A型インフルエンザウイルス及びB型インフルエンザウイルスと、SARS-CoV-2とを、このような精製工程を経ていない生体試料から直接1ステップRT-PCRにおいて高感度に検出できる試薬の検討は未だ十分とはいえない。 In the mutated coronavirus SARS-CoV-2 (also called SARS-nCOV-2), which was confirmed to occur in Wuhan City, Hubei Province, China in 2019, nucleic acid amplification will be carried out as soon as the analysis of the viral genome RNA is completed. An inspection method using the technology has been established (for example, Non-Patent Document 2, Non-Patent Document 3). Also in Japan, a method for detecting SARS-CoV-2 is described in the "Pathogen Detection Manual 2019-nCoV" of the National Institute of Infectious Diseases (Non-Patent Document 4). In these techniques, detection of coronavirus contained in a sample involves extraction and purification of viral RNA from the sample. The extraction and purification steps of viral RNA are complicated and require a lot of working hours. Currently, rapid one-step RT-PCR without RNA extraction and purification steps is available from biological and environmental swab samples such as pharyngeal/nasal swabs, saliva, sputum, and fecal samples containing coronaviruses, especially SARS-CoV-2. Reagents and the like that can detect the However, investigation of reagents that can detect influenza A and B viruses and SARS-CoV-2 with high sensitivity directly in one-step RT-PCR from biological samples that have not undergone such a purification process is still insufficient. I can't say.
 一つの好ましい実施形態において、本発明の方法は、上記の各プライマーセットにより増幅された核酸増幅産物を識別可能なプローブにより検出する工程をさらに包含する。プローブとしては、蛍光化合物で標識された核酸プローブを用いることができる。さらに別の態様としては、少なくとも1種類の標識されたハイブリダイゼーションプローブと、2本鎖DNA結合蛍光化合物とを組み合わせて2種類以上の蛍光化合物を利用する検出することもできる。このように蛍光化合物を利用することによって、増幅産物の分析を通常の電気泳動ではなく、蛍光シグナルのモニタリングで監視することができ、解析労力が低減される。さらには、反応容器を開放する必要がなく、コンタミネーションのリスク低減が可能である。ウイルスおよび微生物の種類や、サブタイプに対応する、それぞれのハイブリダイゼーションプローブを異なる蛍光色素で標識することによって、各標的の核酸を別々に識別することも可能となる。 In one preferred embodiment, the method of the present invention further comprises the step of detecting the nucleic acid amplification products amplified by each of the primer sets described above, using identifiable probes. A nucleic acid probe labeled with a fluorescent compound can be used as the probe. In still another embodiment, at least one labeled hybridization probe and a double-stranded DNA-binding fluorescent compound can be combined for detection using two or more fluorescent compounds. By utilizing fluorescent compounds in this way, the analysis of amplification products can be monitored by monitoring fluorescent signals instead of ordinary electrophoresis, thus reducing analytical effort. Furthermore, it is possible to reduce the risk of contamination since there is no need to open the reaction vessel. By labeling the respective hybridization probes corresponding to the types and subtypes of viruses and microorganisms with different fluorescent dyes, it is also possible to identify each target nucleic acid separately.
 2本鎖DNA結合蛍光化合物としては、例えば、SYBR(登録商標) Green I,SYBR(登録商標) Gold、SYTO-9、SYTP-13、SYTO-82(Life Technologies),EvaGreen(登録商標;Biotium)、LCGreen(Idaho),LightCycler(登録商標) 480 ResoLight(Roche Applied Science)などが挙げられる。 Double-stranded DNA-binding fluorescent compounds include, for example, SYBR (registered trademark) Green I, SYBR (registered trademark) Gold, SYTO-9, SYTP-13, SYTO-82 (Life Technologies), EvaGreen (registered trademark; Biotium) , LC Green (Idaho), LightCycler (registered trademark) 480 ResoLight (Roche Applied Science), and the like.
 ハイブリダイゼーションプローブとしては、例えば、TaqManプローブ(米国特許第5,210,015号公報、米国特許第5,538,848号公報、米国特許第5,487,972号公報、米国特許第5,804,375号公報)、モレキュラービーコン(米国特許第5,118,801号公報)、FRETハイブリダイゼーションプローブ(国際公開第97/46707号パンフレット,国際公開第97/46712号パンフレット,国際公開第97/46714号パンフレット)などが挙げられる。好ましくは、TaqManプローブである。 Hybridization probes include, for example, TaqMan probes (U.S. Pat. Nos. 5,210,015, 5,538,848, 5,487,972, 5,804 , 375), molecular beacons (U.S. Pat. No. 5,118,801), FRET hybridization probes (WO 97/46707, WO 97/46712, WO 97/46714 pamphlet), etc. Preferred are TaqMan probes.
 ハイブリダイゼーションプローブに用いられ得る蛍光化合物は、当該分野で公知の任意のものを使用することができ、例えば、使用したいqPCR機器に合わせて選択することができる。蛍光化合物の具体例としては、例えば、ローダミン(ROX)若しくはその誘導体(例えば、5-カルボキシ-X-ローダミン、6-カルボキシ-X-ローダミン、5-カルボキシローダミン6G(CR6G)、テトラメチルローダミン(TAMRA))、又はそれらの塩などのローダミン系化合物;フルオロセイン又はその誘導体(例えば、FAM(カルボキシフルオレセイン)、JOE(6-カルボキシ-4’,5’-ジクロロ2’,7’-ジメトキシフルオレセイン)、FITC(フルオレセインイソチオシアネート)、TET(テトラクロロフルオレセイン)、HEX(5’-ヘキサクロロ-フルオレセイン-CEホスホロアミダイト))、VIC(登録商標)、BODIPY(登録商標)シリーズ、ローダミン又はその誘導体(例えば、5-カルボキシローダミン6G(CR6G)やテトラメチルローダミン(TAMRA))、Cy(登録商標)色素(例えば、Cy3、Cy5)、若しくはそれらの誘導体、又はそれらの塩等の非ローダミン系化合物等があげられるが、これらに限定されない。蛍光化合物は、必要に応じて、使用する蛍光物質にあった消光物質を使用することができる。上記のような蛍光物質に対応した消光物質としては、例えば、TAMRA(テトラメチル-ローダミン)、DABCYL(4-(4-ジメチルアミノフェニルアゾ)安息香酸)、BHQ1(BHQ:Black Hole Quencher(登録商標))、BHQ2、BHQ3等が挙げられるが、これらに限定されない。 Any fluorescent compound known in the art can be used as the fluorescent compound that can be used for the hybridization probe. For example, it can be selected according to the qPCR equipment that you want to use. Specific examples of fluorescent compounds include rhodamine (ROX) or derivatives thereof (e.g., 5-carboxy-X-rhodamine, 6-carboxy-X-rhodamine, 5-carboxyrhodamine 6G (CR6G), tetramethylrhodamine (TAMRA )), or rhodamine compounds such as salts thereof; fluorescein or derivatives thereof (e.g., FAM (carboxyfluorescein), JOE (6-carboxy-4′,5′-dichloro2′,7′-dimethoxyfluorescein), FITC (fluorescein isothiocyanate), TET (tetrachlorofluorescein), HEX (5′-hexachloro-fluorescein-CE phosphoramidite)), VIC (registered trademark), BODIPY (registered trademark) series, rhodamine or derivatives thereof (for example, 5-carboxyrhodamine 6G (CR6G), tetramethylrhodamine (TAMRA)), Cy (registered trademark) dyes (e.g., Cy3, Cy5), derivatives thereof, and non-rhodamine compounds such as salts thereof. but not limited to these. A quenching substance suitable for the fluorescent substance to be used can be used as the fluorescent compound, if necessary. Examples of quenching substances corresponding to the above fluorescent substances include TAMRA (tetramethyl-rhodamine), DABCYL (4-(4-dimethylaminophenylazo)benzoic acid), BHQ1 (BHQ: Black Hole Quencher (registered trademark) )), BHQ2, BHQ3, and the like, but are not limited thereto.
 インフルエンザウイルスの検出のために用いられる核酸プローブの塩基配列としては、国立感染症研究所が発表している「インフルエンザ診断マニュアル(第4版)」に記載の配列(配列番号41,44)、アメリカ疾病予防管理センターが発表する「Research Use Only CDC Influenza SARS-CoV-2 (Flu SC2) Multiplex Assay Real-Time RT-PCR Primers and Probes」(配列番号35,38)、世界保健機関(WHO)が発表している「WHO information for the molecular detection of influenza viruses」に記載の配列(配列番号47,50)が挙げられ、本発明においても好適に使用することができるが、これに限るものではない。好ましくは、A型インフルエンザウイルスを検出するための蛍光標識プローブは、配列番号35、配列番号41、若しくは配列番号47のいずれかで示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブであり得る。B型インフルエンザウイルスを検出するための好ましい蛍光標識プローブとしては、配列番号38、配列番号44、若しくは配列番号50のいずれかで示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブであり得る。本発明では、A型インフルエンザウイルス検出用の前記核酸プローブ及びB型インフルエンザウイルス検出用の前記核酸プローブを、それぞれ少なくとも1つ使用することが好ましい。 The nucleotide sequences of the nucleic acid probes used for the detection of influenza viruses include the sequences (SEQ ID NOs: 41 and 44) described in the "Influenza Diagnosis Manual (4th Edition)" published by the National Institute of Infectious Diseases. "Research Use Only CDC Influenza SARS-CoV-2 (Flu SC2) Multiplex Assay Real-Time RT-PCR Primers and Probes" (SEQ ID NOS: 35, 38) announced by the Centers for Disease Control and Prevention, announced by the World Health Organization (WHO) The sequences described in "WHO information for the molecular detection of influenza viruses" (SEQ ID NOS: 47 and 50) can be mentioned, and can be preferably used in the present invention, but are not limited thereto. Preferably, the fluorescence-labeled probe for detecting influenza A virus is a nucleic acid probe consisting of a nucleotide sequence represented by any of SEQ ID NO: 35, SEQ ID NO: 41, or SEQ ID NO: 47 or a nucleotide sequence complementary thereto. could be. Preferred fluorescence-labeled probes for detecting type B influenza virus are nucleic acid probes consisting of the base sequence shown in any of SEQ ID NO: 38, SEQ ID NO: 44, or SEQ ID NO: 50 or a base sequence complementary thereto. obtain. In the present invention, it is preferable to use at least one nucleic acid probe for detecting influenza A virus and at least one nucleic acid probe for detecting influenza B virus.
 特定の実施形態において、本発明では、コロナウイルス(例えば、SARS-CoV-2コロナウイルス)を検出できるプローブを更に使用することが好ましい。SARS-CoV-2コロナウイルス検出用のプローブの塩基配列としては、国立感染症研究所が発表している「病原体検出マニュアル2019-nCoV」に記載の配列(配列番号3,6)および、アメリカ疾病予防管理センターが発表する「2019-Novel Coronavirus (2019-nCoV)Real-time RT-pCR Panel Primers and Probes」(配列番号9,12,15)および「Research Use Only CDC Influenza SARS-CoV-2 (Flu SC2)Multiplex Assay Real-Time RT-PCR Primers and Probes」(配列番号18)「Research Use Only 2019-Novel Coronavirus (2019-nCoV) Real-time RT-PCR Primers and Probes」(配列番号21)およびパスツール研究所が発表している「Protocol:Real-time RT-PCR assays for the detection of SARS-CoV-2」(配列番号24,27,30)が挙げられ、本発明においても好適に使用することができるが、これに限るものではない。前記記載のプローブ配列では配列番号3,6,9,12,15,18によりSARS-CoV-2のヌクレオキャプシドタンパク質(N)領域を検出する。また、配列番号21,24,27によりRNA-dependent RNA polymerase(RdRp)領域を検出する。また、配列番号30によりエンベロープタンパク質(E)領域を検出する。さらに、ターゲットとする核酸が亜型からなる場合、縮重配列を含んでもよい。SARS-CoV-2をはじめとするコロナウイルスの検出においては、N領域、E領域、S領域、RdRp領域、ORF領域等の遺伝子を検出の対象とすることができるが、特にこれに限るものではない。好ましくは、ヌクレオキャプシド領域の核酸増幅産物を検出可能な核酸プローブであることが好ましく、配列番号3、6、9、12、15又は18の塩基配列又はこれらに相補的な塩基配列からなる核酸プローブであることがより好ましい。前記核酸プローブは、上記の蛍光化合物により標識されたものであり得る。 In certain embodiments, the present invention preferably further uses probes capable of detecting coronaviruses (eg, SARS-CoV-2 coronavirus). The nucleotide sequences of the SARS-CoV-2 coronavirus detection probes include the sequences (SEQ ID NOS: 3 and 6) described in the "Pathogen Detection Manual 2019-nCoV" published by the National Institute of Infectious Diseases, and the American disease "2019-Novel Coronavirus (2019-nCoV) Real-time RT-pCR Panel Primers and Probes" (SEQ ID NOS: 9, 12, 15) and "Research Use Only CDC Influenza SARS-CoV-2 (Flu SC2) Multiplex Assay Real-Time RT-PCR Primers and Probes" (SEQ ID NO: 18) "Research Use Only 2019-Novel Coronavirus (2019-nCoV) Real-time RT-PCR Primers and Probes" (SEQ ID NO: 21) Examples include "Protocol: Real-time RT-PCR assays for the detection of SARS-CoV-2" (SEQ ID NOs: 24, 27, 30) announced by the research institute, which can also be preferably used in the present invention. It is possible, but not limited to this. The probe sequences described above detect the nucleocapsid protein (N) region of SARS-CoV-2 according to SEQ ID NOs: 3, 6, 9, 12, 15, and 18. Also, the RNA-dependent RNA polymerase (RdRp) region is detected by SEQ ID NOs: 21, 24, and 27. Also, the envelope protein (E) region is detected by SEQ ID NO:30. Furthermore, if the targeted nucleic acid consists of subtypes, it may contain degenerate sequences. In the detection of coronaviruses such as SARS-CoV-2, genes such as the N region, E region, S region, RdRp region, and ORF region can be targeted for detection, but are not particularly limited to these. do not have. Preferably, it is a nucleic acid probe capable of detecting a nucleic acid amplification product of the nucleocapsid region, and the nucleic acid probe consists of the nucleotide sequence of SEQ ID NO: 3, 6, 9, 12, 15 or 18 or a nucleotide sequence complementary thereto. is more preferable. The nucleic acid probe may be labeled with the fluorescent compound described above.
 蛍光標識した核酸プローブは、前記工程(3)においてRT-PCR反応を実施後に、当該PCR反応液に添加してもよいし、前記工程(2)で用いるPCR反応液が蛍光標識した核酸プローブを含むものであってもよい。より簡便には、前記工程(2)において、蛍光標識した核酸プローブを含むPCR反応液を用いることが好ましい。このような核酸プローブの濃度は特に限定されないが、例えば、PCR反応液全体に対して、それぞれ0.01μM以上1.0μM以下であることが好ましく、0.015μM以上0.75μM以下であることがより好ましく、0.02μM以上0.5μM以下であることがさらに好ましい。 The fluorescently labeled nucleic acid probe may be added to the PCR reaction solution after performing the RT-PCR reaction in the step (3), or the PCR reaction solution used in the step (2) may contain the fluorescently labeled nucleic acid probe. may contain. More conveniently, it is preferable to use a PCR reaction solution containing a fluorescently labeled nucleic acid probe in the step (2). Although the concentration of such nucleic acid probes is not particularly limited, for example, it is preferably 0.01 μM or more and 1.0 μM or less, and preferably 0.015 μM or more and 0.75 μM or less, relative to the entire PCR reaction solution. More preferably, it is 0.02 μM or more and 0.5 μM or less.
 本発明において用いられる試料として、例えば咽頭ぬぐい液、鼻腔ぬぐい液、鼻咽頭ぬぐい液、喀痰、嘔吐物、唾液、うがい液、涙液、糞便(排泄便、直腸便)などが挙げられるが、特に限定されるものではなく、生体に由来するもの全般に用いることが可能である。特には、咽頭ぬぐい液、鼻腔ぬぐい液、鼻咽頭ぬぐい液、喀痰、肺吸引物、脳脊髄液、うがい液、唾液、涙液、糞便、培養細胞、培養上清からの検出に有用であり、なかでも唾液試料、喀痰試料、うがい液、涙液、咽頭ぬぐい液試料、鼻咽頭ぬぐい液、鼻腔ぬぐい液試料、糞便試料の検出に有用である。本発明によれば、これら試料から市販のRNA精製キット等を用いてRNAを単離してRT-PCR反応に供する必要がないという利点がある。前記試料は直接検出に供してもよいし、夾雑物の反応への影響を低減し、より安定した検査結果を得るために、水、生理食塩水または緩衝液に前記試料を懸濁した試料であってもよい。前記緩衝液としては、特に限定されるものではないが、ハンクス緩衝液、トリス緩衝液、リン酸緩衝液、グリシン緩衝液、HEPES緩衝液、トリシン緩衝液などが挙げられる。また、粘性の強い生体試料(例えば、粘性の強い喀痰を含む試料)の場合は、特に限定されないが、スプタザイム酵素液で処理した試料であってもよい。 Samples used in the present invention include, for example, pharyngeal swabs, nasal swabs, nasopharyngeal swabs, sputum, vomit, saliva, gargle, tears, feces (excretion, rectal stool) and the like, but particularly It is not limited, and can be used for all substances derived from living organisms. In particular, it is useful for detection from pharyngeal swab, nasal swab, nasopharyngeal swab, sputum, lung aspirate, cerebrospinal fluid, gargle, saliva, tears, feces, cultured cells, and culture supernatant, Among others, it is useful for detection of saliva samples, sputum samples, gargles, tears, pharyngeal swabs, nasopharyngeal swabs, nasal swabs, and fecal samples. According to the present invention, there is an advantage that it is not necessary to isolate RNA from these samples using a commercially available RNA purification kit or the like and subject it to RT-PCR reaction. The sample may be directly subjected to detection, or a sample in which the sample is suspended in water, physiological saline, or a buffer solution in order to reduce the influence of contaminants on the reaction and obtain more stable test results. There may be. Examples of the buffer include, but are not limited to, Hank's buffer, Tris buffer, phosphate buffer, glycine buffer, HEPES buffer, and tricine buffer. In the case of a highly viscous biological sample (eg, a sample containing highly viscous sputum), the sample may be treated with a sputazyme enzyme solution, although not particularly limited.
 更に、本発明において用いられる試料は、キャプシドや細胞壁などの堅牢な構造からRNAまたはDNAを抽出しやすくするために、前記試料を緩衝液や、酸またはアルカリ性溶液、有機溶媒などを含む溶液と混合した試料であってもよい。前記溶液に含まれるものとして、酸性溶液としては、酸性の溶液であれば特に限定されない。酸性溶液としては、例えば、ギ酸水溶液、酢酸水溶液、酪酸水溶液、塩酸水溶液、硝酸水溶液、硫酸水溶液、クエン酸水溶液、乳酸水溶液、リン酸水溶液、安息香酸水溶液、シュウ酸水溶液、酒石酸水溶液、アスコルビン酸水溶液、スルホン酸水溶液などが挙げられ、1種単独又は2種以上組み合わせて使用できる。アルカリ性溶液においても、アルカリ性の溶液であれば特に限定されない。アルカリ性溶液としては、例えば水酸化カリウム水溶液、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化マグネシウム水溶液、水酸化カルシウム水溶液、水酸化バリウム水溶液、炭酸カリウム水溶液、炭酸ナトリウム水溶液、炭酸マグネシウム水溶液、炭酸カルシウム水溶液、トリス緩衝液、グリシン緩衝液、リン酸緩衝液、ホウ酸緩衝液、グッド緩衝液(TAPSO,POPSO、HEPSO、EPPS、Tricine、Bicine、TAPS、CHES、CAPS)などが挙げられ、1種単独又は2種以上組み合わせて使用できる。有機溶媒として、具体的にはエタノール、メタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、トリエチルアミン、ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、ジメチルスルホキシド、アセトン、アセトニトリル、エタノール、メタノール、1-プロパノール、2-プロパノール、1-ブタノール、ピリジン等が挙げられるがこれに限られるものではない。さらには、本発明に用いられる試料は、前記溶液と混合後熱処理に供されたものであっても良い。熱処理の条件は、特に限定されないが、60℃以上、好ましくは70℃以上、より好ましくは80℃以上、更により好ましくは90℃以上で、1秒以上処理されたものであってよい。 Furthermore, the sample used in the present invention is mixed with a solution containing a buffer solution, an acid or alkaline solution, an organic solvent, etc., in order to facilitate the extraction of RNA or DNA from robust structures such as capsids and cell walls. It may be a sample that has been The acidic solution contained in the solution is not particularly limited as long as it is an acidic solution. Examples of acidic solutions include aqueous formic acid, aqueous acetic acid, aqueous butyric acid, aqueous hydrochloric acid, aqueous nitric acid, aqueous sulfuric acid, aqueous citric acid, aqueous lactic acid, aqueous phosphoric acid, aqueous benzoic acid, aqueous oxalic acid, aqueous tartaric acid, and aqueous ascorbic acid. , an aqueous sulfonic acid solution, etc., and can be used singly or in combination of two or more. The alkaline solution is not particularly limited as long as it is an alkaline solution. Examples of alkaline solutions include potassium hydroxide aqueous solution, sodium hydroxide aqueous solution, lithium hydroxide aqueous solution, magnesium hydroxide aqueous solution, calcium hydroxide aqueous solution, barium hydroxide aqueous solution, potassium carbonate aqueous solution, sodium carbonate aqueous solution, magnesium carbonate aqueous solution, calcium carbonate. Aqueous solutions, Tris buffers, glycine buffers, phosphate buffers, borate buffers, Good's buffers (TAPSO, POPSO, HEPSO, EPPS, Tricine, Bicine, TAPS, CHES, CAPS) and the like, one type alone Or it can be used in combination of two or more. Examples of organic solvents include ethanol, methanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, triethylamine, dimethylformamide, hexamethylphosphorictriamide, dimethylsulfoxide, acetone, acetonitrile, ethanol, and methanol. , 1-propanol, 2-propanol, 1-butanol, pyridine and the like, but are not limited thereto. Furthermore, the sample used in the present invention may be subjected to heat treatment after being mixed with the solution. The conditions for the heat treatment are not particularly limited, but may be 60° C. or higher, preferably 70° C. or higher, more preferably 80° C. or higher, and still more preferably 90° C. or higher for 1 second or longer.
 本発明における別の態様の試料としては、拭き取り検査試料である。汚染経路の解明や施設環境等の汚染状況の把握には、ふき取り検査が有用である。本発明において、拭き取り検査とは、特に限定されるものでないが、例えば綿棒等で該当区画や設備等を拭き取り、水や緩衝液に溶出し、ポリエチレングリコール(PEG)沈澱などで濃縮した試料である。具体的な拭き取り検査の要領としては、「ふきとり検体のノロウイルス検査法の改良」(http://idsc.nih.go.jp/iasr/32/382/dj3824.html)などが例示されるが、特に限定はされるものではなく、これに準ずる方法が広く含まれる。拭き取り箇所の例としては、まな板や包丁、ふきん、食器などの調理器具類、冷蔵庫の取手やトイレ、浴室のドアノブ、洗面所、厨房、トイレ、浴室などの蛇口、調理者の手や指、浴室、トイレ、洗面、手すり、居室などの施設などが挙げられる。また、拭き取り検査ではないが、環境検査として、下水試料の濃縮試料にも適用できる。これらの検査試料は、検査場所の汚れやほこりを多量含むことから、夾雑物や不溶性物質を含みうる試料において夾雑耐性を強化した本手法は、これらの検査に対して有益である。 A sample of another aspect of the present invention is a swab test sample. Wiping inspections are useful for clarifying the contamination route and grasping the contamination status of the facility environment. In the present invention, the wiping test is not particularly limited, but for example, the relevant section or equipment is wiped with a cotton swab or the like, eluted in water or a buffer solution, and concentrated by polyethylene glycol (PEG) precipitation. . Specific examples of swabbing test procedures include "Improvement of swabbing test method for norovirus" (http://idsc.nih.go.jp/iasr/32/382/dj3824.html). It is not particularly limited, and includes a wide range of similar methods. Examples of areas to be wiped include kitchen utensils such as cutting boards, kitchen knives, dish towels, tableware, refrigerator handles, toilets, bathroom doorknobs, washrooms, kitchens, toilets, bathroom faucets, cooks' hands and fingers, and bathrooms. , toilets, washrooms, handrails, living rooms, and other facilities. Moreover, although it is not a wiping test, it can also be applied to a concentrated sewage sample as an environmental test. Since these test samples contain a large amount of dirt and dust at the test site, this technique with enhanced contamination resistance in samples that can contain contaminants and insoluble substances is beneficial for these tests.
 特定の実施形態において、本発明の方法は、核酸の単離処理を行っていない試料を使用することを一つの特徴とする。例えば、本発明は、各種試料から市販の核酸精製キットで核酸を単離したり、あるいはゲノム核酸をウイルスの構造(例えば、細胞膜、キャプシド構造)から露出させるための事前の熱処理等をしたりしていない未処理試料を用いることができる。手間のかかる前処理が不要となるため簡便であるという観点から、これらの未処理試料を用いることが好ましい。また、夾雑物質を除去するような分離精製を伴わない核酸抽出を行った試料であってもよい。ここで、分離精製を伴わない核酸抽出を行った試料とは、試料中で核酸を露出させた状態にすることを意味し、例えば、試料中で細胞膜やカプシド、エンベロープ等を破壊し、これらに内包されていた核酸を抽出して露出させること(但し、破壊後に残存する細胞膜やカプシド、エンベロープの断片等は除去しないこと)をいう。本発明では、このような単離精製の手間を省いて用意した試料であっても良好に核酸増幅でき、安定して複数の呼吸器感染症の検査結果を得ることが可能となる。このような分離精製を伴わない核酸抽出処理は、前記工程(2)に先立って行うことができる。 In a specific embodiment, one feature of the method of the present invention is to use a sample that has not undergone nucleic acid isolation treatment. For example, in the present invention, nucleic acids are isolated from various samples using commercially available nucleic acid purification kits, or genomic nucleic acids are exposed from viral structures (e.g., cell membrane, capsid structure) by prior heat treatment or the like. No untreated sample can be used. It is preferable to use these untreated samples from the viewpoint of convenience because no troublesome pretreatment is required. Alternatively, it may be a sample that has undergone nucleic acid extraction without separation and purification to remove contaminants. Here, the sample subjected to nucleic acid extraction without separation and purification means that the nucleic acid is exposed in the sample. Extraction and exposure of encapsulated nucleic acids (however, cell membranes, capsids, envelope fragments, etc. remaining after disruption should not be removed). In the present invention, nucleic acids can be amplified satisfactorily even in samples prepared without such isolation and purification, and it is possible to stably obtain test results for a plurality of respiratory infections. Such a nucleic acid extraction treatment without separation and purification can be performed prior to the step (2).
 前記工程(2)において用いられる試料が含みうる夾雑物質や不溶性物質は、糞便(排泄便、直腸便)、嘔吐物、唾液、喀痰、うがい液、鼻腔ぬぐい液、咽頭ぬぐい液、鼻咽頭ぬぐい液、涙液、血液、拭き取り検査試料に由来するものが挙げられるが、限定されるものではなく、生体に由来するものや、環境検査試料全般に用いることが可能であり、特に糞便(排泄便、直腸便)、唾液、喀痰、うがい液、涙液、咽頭ぬぐい液、鼻咽頭ぬぐい液、鼻腔ぬぐい液からの検出に有用である。含みうる不溶性物質の濃度は、検査試料によっても異なるが、濁度OD660において、PCR反応液中又はRT-PCR反応液中に例えば0.01Abs/μL以上含まれる場合、検査感度の影響する可能性があるが、これに限定されるものではない。例えば、濁度OD660において0.05Abs/μL以上、0.1Abs/μL以上、0.5Abs/μL以上、1Abs/μL以上であり得るが、特に限定されない。また本発明の効果を奏する限り、含みうる不溶性物質の濃度の上限は特に限定されないが、例えば、5Abs/μL以下、3Abs/μL以下であり得るが、限定はされない。本発明によれば、このように高濁度の検査試料をPCR反応液と混合しても、2種類以上の蛍光化合物で2以上のターゲット核酸の検出を行うことが可能であり得る。 Contaminants and insoluble substances that may be contained in the sample used in step (2) include feces (excretion, rectal stool), vomit, saliva, sputum, gargle, nasal swab, pharyngeal swab, and nasopharyngeal swab. , tear fluid, blood, and those derived from swab test samples, but are not limited to those derived from living organisms and can be used for environmental test samples in general, especially feces (excretion, rectal stool), saliva, sputum, gargle, tear, pharyngeal swab, nasopharyngeal swab, nasal swab. The concentration of insoluble substances that can be contained varies depending on the test sample, but if it is contained in the PCR reaction solution or RT-PCR reaction solution at a turbidity of OD660, for example, 0.01 Abs / μL or more, the test sensitivity may be affected. There is, but not limited to. For example, the turbidity OD660 may be 0.05 Abs/μL or more, 0.1 Abs/μL or more, 0.5 Abs/μL or more, or 1 Abs/μL or more, but is not particularly limited. In addition, the upper limit of the concentration of the insoluble substance that can be contained is not particularly limited as long as the effects of the present invention are exhibited. According to the present invention, it may be possible to detect two or more target nucleic acids with two or more types of fluorescent compounds even when a high turbidity test sample is mixed with a PCR reaction solution.
 試料からの微生物由来の核酸の精製作業は、作業の煩雑化かつ作業時間を延ばす原因となる。これに加えて、PCRチューブまたはPCRプレート等の反応容器内にPCRの反応液を分注する作業は、サンプル数に応じて数百回、または数千回となりうる作業である。連続での反応容器内への分注作業を実施は、反応容器内への分注漏れや多数回分注などのミスが起こりうる。これらのミスは正しく検査が実施できなくなるとともに、再検査等により更なる作業が生じるため、結果的に時間的、金銭的な損失を招く。本発明では、このようなウイルスの検査において、作業現場での作業を簡略化し、迅速に検査を実施することを可能にすることで、さらなる感染拡大を未然に防ぐことにつながる。 The work of purifying nucleic acids derived from microorganisms from samples is a cause of complication and an increase in work time. In addition to this, the work of dispensing the PCR reaction solution into a reaction container such as a PCR tube or a PCR plate is a work that can be performed hundreds or thousands of times depending on the number of samples. Continuous dispensing work into the reaction container may cause mistakes such as omission of dispensing into the reaction container and multiple dispensing. These mistakes make it impossible to carry out the inspection correctly, and cause additional work such as re-inspection, resulting in loss of time and money. The present invention simplifies the work at the work site in such virus inspections and enables rapid inspections, thereby preventing further spread of infection.
 前記工程(3)におけるPCRサイクルは、1.熱処理や2.逆転写反応のステップを含んでよい。また、各ステップの前後に、ホットスタート酵素を活性化させるための熱処理工程を含んでもよい。1の熱処理工程では、ウイルスを破砕してウイルス内の核酸を露出させる、及び/もしくは核酸増幅反応においてホットスタート酵素を活性化させる工程を含み得る。前記熱処理工程の温度及び時間は、60℃以上であり、かつ1秒以上であればよく、好ましくは70℃、30秒以上、より好ましくは80℃、30秒以上、特に好ましくは85℃、30秒以上である。2の逆転写反応の温度は、使用する逆転写酵素の逆転写活性と、プライマー及びプローブのTm値によって決定され、少なくとも25℃以上であればよい。より好ましくは37℃以上である。3のPCRでは、[1]熱処理によるDNA変性(2本鎖DNAから1本鎖DNAへの解離)、[2]鋳型1本鎖DNAへのプライマーのアニーリング、[3]DNAポリメラーゼを用いた前記プライマーの伸長、の3ステップを含んでいればよく、[2]と[3]を同一の温度で実施して、2ステップとしてもよい。迅速なRT-PCRを実施するためには、前記RT-PCR反応に使用するサーマルサイクラーは、前記[2]と[3]のステップの伸長時間を合わせて15秒以下、より好ましくは10秒以下の測定プログラムを設定することが望ましい。なお、本明細書において「PCRの伸長時間」とは、サーマルサイクラーでの設定時間を指す。 The PCR cycle in the step (3) is 1. 2. heat treatment; A reverse transcription reaction step may be included. Moreover, before and after each step, a heat treatment step for activating the hot start enzyme may be included. One heat treatment step can include disrupting the virus to expose the nucleic acid within the virus and/or activating hot start enzymes in a nucleic acid amplification reaction. The temperature and time of the heat treatment step may be 60° C. or higher and 1 second or longer, preferably 70° C. for 30 seconds or longer, more preferably 80° C. for 30 seconds or longer, and particularly preferably 85° C. for 30 seconds or longer. seconds or more. The temperature of the reverse transcription reaction in 2 is determined by the reverse transcription activity of the reverse transcriptase used and the Tm values of the primers and probes, and may be at least 25°C or higher. More preferably, it is 37°C or higher. In the PCR of 3, [1] DNA denaturation by heat treatment (dissociation from double-stranded DNA to single-stranded DNA), [2] annealing of primers to template single-stranded DNA, [3] the above using DNA polymerase Extension of the primer may be included, and [2] and [3] may be performed at the same temperature to form two steps. In order to perform rapid RT-PCR, the thermal cycler used for the RT-PCR reaction has a total elongation time of steps [2] and [3] of 15 seconds or less, more preferably 10 seconds or less. It is desirable to set up a measurement program for As used herein, the term "PCR elongation time" refers to the time set in the thermal cycler.
 前記PCR反応液に含まれるDNAポリメラーゼとしては、当該分野で公知の任意のDNAポリメラーゼを用いることができる。好ましくは、夾雑物耐性を持つ当該分野で公知の任意のDNAポリメラーゼを用いることができる。夾雑物耐性とは、PCR阻害物質の存在下においても、核酸増幅反応に十分なDNAポリメラーゼの高い酵素活性を有する性質を指す。夾雑物耐性を持つDNAポリメラーゼとして、特に限定されるものではないが、Tth,Bst,KOD,Pfu,Pwo、Tbr,Tfi,Tfl,Tma,Tne、Vent,DEEP VENT、HawkZ05やこれらの変異体が挙げられるが、特に限定されない。好ましくは、Tth(配列番号51)およびHawkZ05(配列番号52)又はこれらの変異体の使用である。特に好ましくはTth又はその変異体の使用である。通常夾雑耐性を有しないTaqなどのDNAポリメラーゼにおいても、アミノ酸変異により夾雑耐性を有する変異体である場合は使用することが可能である。前記PCR反応液に含まれる前記夾雑物耐性を有するDNAポリメラーゼの総量は、一例として、少なくとも4.2ng/μL以上あればよく、5.0ng/μL以上であることが好ましく、5.8ng/μL以上であることがより好ましい。なかでも好ましくは、8.3ng/μL以上である。前記夾雑物耐性を有するDNAポリメラーゼの総量の上限は特に限定されないが、一例として、20ng/μL以下とすることができ、16.7ng/μL以下であっても十分に本発明の効果を得ることができる。ポリメラーゼの量は、Bradford法もしくはNanodrop(サーモフィッシャー社)により定量した値であり、安全データシート(SDS)から概算してもよい。BSAなどのタンパク質を含む場合は、後者の方法で算出することが望ましい。非特異的反応抑制の効果を高めるため、抗DNAポリメラーゼ抗体との併用、あるいは化学修飾により熱不安定ブロック基のDNAポリメラーゼへ導入することで、PCR反応開始までのDNAポリメラーゼの酵素活性を抑制し、ホットスタートPCRへの適用ができることが好ましい。 Any DNA polymerase known in the art can be used as the DNA polymerase contained in the PCR reaction solution. Preferably, any DNA polymerase known in the art that is resistant to contaminants can be used. Contaminant resistance refers to the property of a DNA polymerase having high enzymatic activity sufficient for nucleic acid amplification reaction even in the presence of PCR inhibitors. The contaminant-resistant DNA polymerase is not particularly limited, but includes Tth, Bst, KOD, Pfu, Pwo, Tbr, Tfi, Tfl, Tma, Tne, Vent, DEEP VENT, HawkZ05, and mutants thereof. Examples include, but are not limited to. Preference is given to using Tth (SEQ ID NO: 51) and HawkZ05 (SEQ ID NO: 52) or variants thereof. Particularly preferred is the use of Tth or variants thereof. Even DNA polymerases such as Taq, which normally do not have contamination resistance, can be used if they are mutants that have contamination resistance due to amino acid mutation. For example, the total amount of the contaminant-resistant DNA polymerase contained in the PCR reaction solution may be at least 4.2 ng/μL or more, preferably 5.0 ng/μL or more, and 5.8 ng/μL. It is more preferable to be above. Among them, it is preferably 8.3 ng/μL or more. The upper limit of the total amount of the contaminant-resistant DNA polymerase is not particularly limited, but as an example, it can be 20 ng/μL or less, and even if it is 16.7 ng/μL or less, the effect of the present invention can be sufficiently obtained. can be done. The amount of polymerase is a value quantified by the Bradford method or Nanodrop (Thermo Fisher), and may be estimated from the Safety Data Sheet (SDS). When protein such as BSA is included, it is desirable to calculate by the latter method. In order to enhance the effect of suppressing non-specific reactions, enzymatic activity of DNA polymerase is suppressed until the start of PCR reaction by using it in combination with an anti-DNA polymerase antibody or introducing a thermolabile blocking group into DNA polymerase by chemical modification. , preferably applicable to hot-start PCR.
 前記工程(2)において用いられるPCR反応液は、DNAポリメラーゼおよび必要に応じて逆転写酵素を含む。前記PCR反応液に含まれる逆転写酵素の由来としては、RNAをDNAに変換できれば特に限定されないが、MMLV(Moloney Murine Leukemia Virus)-RT、AMV-RT(Avian Myeloblastosis Virus)、HIV-RT、RAV2-RT、EIAV-RT、カルボキシドサーマス・ハイドロゲノフォルマン(Carboxydothermus hydrogenoformam)DNAポリメラーゼ)やその変異体が例示される。特に好ましい例としては、MMLV-RT、AMV-RT、またはそれらの変異体が挙げられる。 The PCR reaction solution used in step (2) contains DNA polymerase and, if necessary, reverse transcriptase. The origin of the reverse transcriptase contained in the PCR reaction solution is not particularly limited as long as it can convert RNA into DNA. -RT, EIAV-RT, Carboxydothermus hydrogenoformam DNA polymerase) and variants thereof. Particularly preferred examples include MMLV-RT, AMV-RT, or variants thereof.
 前記工程(2)において用いられるPCR反応液は、逆転写酵素活性を併せ持つDNAポリメラーゼを含むものであっても良い。逆転写活性を有するDNAポリメラーゼとは、RNAをcDNAに変換する能力とDNAを増幅する能力を兼ね備えたDNAポリメラーゼである。逆転写活性を有するDNAポリメラーゼは、逆転写活性及び夾雑物耐性に加えて、耐熱性を有することが好ましい。耐熱性とは、70℃で1分以上の熱処理を実施しても、酵素活性が半分以上低下しないことをいう。由来は特に限定されるものではないが、Taq、Tth,Bst,Bca,KOD,Pfu,Pwo、Tbr,Tfi,Tfl,Tma,Tne、Vent,DEEPVENTやこれらの変異体が挙げられる。これまでに逆転写活性を有するDNAポリメラーゼとして、Thermus aquaticus由来のDNAポリメラーゼ(Taq)、Thermus thermophilus HB8由来のDNAポリメラーゼ(Tth)やThermus sp Z05由来のDNAポリメラーゼ(Z05)、Thermotoga maritima由来のDNAポリメラーゼ(Tma)、Bacillus caldotenax由来のDNAポリメラーゼ(Bca)、Bacillus stearothermophilus由来のDNAポリメラーゼ(Bst)などが挙げられ、これらの逆転写活性と耐熱性DNAポリメラーゼ活性が失われていない変異体であってもよい。また、Thermococcus kodakaraensis由来のDNAポリメラーゼ(KOD)の変異体であって、逆転写活性を有するものが知られており(例えば、RTX:reverse transcription xenopolymerase)、本発明にはこのような逆転写酵素活性を併せ持つ耐熱性DNAポリメラーゼも使用できる。特に好ましくは、Tth、Z05及びこれらの変異体からなる群より選択される逆転写活性を有するDNAポリメラーゼが挙げられる。 The PCR reaction solution used in the step (2) may contain a DNA polymerase that also has reverse transcriptase activity. A DNA polymerase with reverse transcription activity is a DNA polymerase that has both the ability to convert RNA into cDNA and the ability to amplify DNA. A DNA polymerase having reverse transcription activity preferably has heat resistance in addition to reverse transcription activity and contaminant resistance. The term "heat resistance" means that the enzymatic activity does not decrease by more than half even after heat treatment at 70°C for 1 minute or more. Although the origin is not particularly limited, Taq, Tth, Bst, Bca, KOD, Pfu, Pwo, Tbr, Tfi, Tfl, Tma, Tne, Vent, DEEPVENT and variants thereof can be mentioned. As DNA polymerases having reverse transcription activity, DNA polymerase derived from Thermus aquaticus (Taq), DNA polymerase derived from Thermus thermophilus HB8 (Tth), DNA polymerase derived from Thermus sp Z05 (Z05), and DNA polymerase derived from Thermotoga maritima have been used. (Tma), Bacillus caldotenax-derived DNA polymerase (Bca), Bacillus stearothermophilus-derived DNA polymerase (Bst), etc., and even mutants that have not lost their reverse transcription activity and thermostable DNA polymerase activity good. In addition, mutants of Thermococcus kodakaraensis-derived DNA polymerase (KOD) having reverse transcription activity are known (e.g., RTX: reverse transcription xenopolymerase), and the present invention provides such a reverse transcriptase activity. A thermostable DNA polymerase that also has Especially preferred are DNA polymerases having reverse transcription activity selected from the group consisting of Tth, Z05 and variants thereof.
 本明細書において、夾雑物耐性を有するDNAポリメラーゼの変異体とは、その由来である野生型DNAポリメラーゼのアミノ酸配列に対して、例えば85%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、なかでも好ましくは99%以上の配列同一性を有し、且つ、夾雑物質の存在下においても高いDNAポリメラーゼ活性を有するものをいう。逆転写活性も兼ね備えたDNAポリメラーゼである場合、夾雑物質の存在下においてもRNAをcDNAに変換する活性及びDNAを増幅する活性を有するものをいう。ここで、アミノ酸配列の同一性を算出する方法としては、当該分野で公知の任意の手段で行うことができる。例えば、市販の又は電気通信回線(インターネット)を通じて利用可能な解析ツールを用いて算出することができ、一例として、全米バイオテクノロジー情報センター(NCBI)の相同性アルゴリズムBLAST(Basic local alignment search tool)http://www.ncbi.nlm.nih.gov/BLAST/においてデフォルト(初期設定)のパラメータを用いることにより、アミノ酸配列の同一性を算出することが可能である。また、本発明に用いられ得る変異体は、その由来である野生型DNAポリメラーゼのアミノ酸配列において、1又は数個のアミノ酸が置換、欠失、挿入および/または付加(以下、これらを纏めて「変異」ともいう)したアミノ酸配列からなるポリペプチドであり、且つ、野生型DNAポリメラーゼと同様にRNAをcDNAに変換する活性及びDNAを増幅する活性を有するものであってもよい。ここで1又は数個とは、例えば、1~80個、好ましくは1~40個、よりこのましくは1~10個、さらに好ましくは1~5個であり得るが、特に限定されない。 As used herein, a DNA polymerase mutant having contaminant resistance refers to, for example, 85% or more, preferably 90% or more, more preferably 95% or more of the amino acid sequence of the wild-type DNA polymerase from which it is derived. Further preferably, it has a sequence identity of 98% or more, particularly preferably 99% or more, and has a high DNA polymerase activity even in the presence of contaminants. In the case of a DNA polymerase that also has a reverse transcription activity, it has the activity of converting RNA into cDNA and the activity of amplifying DNA even in the presence of contaminants. Here, any method known in the art can be used to calculate the identity of amino acid sequences. For example, it can be calculated using a commercially available analysis tool or available through an electric communication line (Internet), for example, the homology algorithm BLAST (Basic local alignment search tool) of the National Center for Biotechnology Information (NCBI) http ://www. ncbi. nlm. nih. Amino acid sequence identity can be calculated by using default parameters in gov/BLAST/. Mutants that can be used in the present invention have one or several amino acid substitutions, deletions, insertions and/or additions (hereinafter collectively referred to as " It may be a polypeptide consisting of an amino acid sequence that has been mutated (also referred to as "mutated"), and have the same activities as wild-type DNA polymerase to convert RNA into cDNA and to amplify DNA. Here, 1 or several may be, for example, 1 to 80, preferably 1 to 40, more preferably 1 to 10, still more preferably 1 to 5, but is not particularly limited.
 本発明に用いられるPCR反応液には、DNAポリメラーゼの他、緩衝剤、適当な塩、マグネシウム塩又はマンガン塩、デオキシヌクレオチド三リン酸、検出対象のウイルスまたはウイルス由来の核酸の検出対象領域に対応するプライマー対、さらに必要に応じて添加剤を含んでいてもよい。 In addition to the DNA polymerase, the PCR reaction solution used in the present invention includes a buffer, an appropriate salt, a magnesium salt or a manganese salt, deoxynucleotide triphosphates, a virus to be detected, or a detection target region of a nucleic acid derived from a virus. It may contain a pair of primers that are compatible with each other and, if necessary, additives.
 本発明で使用される緩衝剤としては、特に限定されないが、トリス(Tris),トリシン(Tricine),ビスートリシン(Bis-Tricine),ビシン(Bicine)などが挙げられる。硫酸、塩酸、酢酸、リン酸などでpHを6~9、より好ましくはpH7~9に調整されたものである。また、添加する緩衝剤の濃度としては、10~200mM,より好ましくは20~150mMで使用される。この際、反応に適当なイオン条件とするために、塩溶液が加えられる。塩溶液としては、塩化カリウム、酢酸カリウム、硫酸カリウム、硫酸アンモニウム、塩化アンモニウム、酢酸アンモニウムなどが挙げられる。 The buffer used in the present invention is not particularly limited, but includes Tris, Tricine, Bis-Tricine, Bicine and the like. It is adjusted to pH 6-9, more preferably pH 7-9, with sulfuric acid, hydrochloric acid, acetic acid, phosphoric acid, or the like. Moreover, the concentration of the added buffer is 10 to 200 mM, preferably 20 to 150 mM. At this time, a salt solution is added to provide suitable ionic conditions for the reaction. Salt solutions include potassium chloride, potassium acetate, potassium sulfate, ammonium sulfate, ammonium chloride, ammonium acetate, and the like.
 本発明で使用されるdNTPとしては、dATP,dCTP,dGTP,dTTPがそれぞれ0.1~0.5mM、最も一般的には0.2mM程度加えられる。dTTPの代わり及び/又は一部としてdUTPを使用することによって、クロスコンタミネーションに対する予防処置をとってもよい。クロスコンタミネーションに対する予防処置を講じる場合、Uracil-N-glycosylase(UNG)を含むことが好ましい。  As dNTPs used in the present invention, dATP, dCTP, dGTP, and dTTP are each added at 0.1 to 0.5 mM, most generally about 0.2 mM. Precautions against cross-contamination may be taken by using dUTP instead of and/or as part of dTTP. Inclusion of Uracil-N-glycosylase (UNG) is preferred when taking precautions against cross-contamination.
 更に、本発明では、PCR反応液に、2価陽イオンを含むことが好ましい。このように2価陽イオンを含むことで、より安定して高い夾雑耐性が得られ高感度な検出が可能となる。2価陽イオンとしては、特に限定されないが、マグネシウムイオン、マンガンイオン、カルシウムイオン、銅イオン、鉄イオン、ニッケルイオン、亜鉛イオン等を挙げることができる。好ましくは、2価陽イオンとして、マグネシウムイオン、マンガンイオンを含むことが好ましい。本発明において、PCR反応液にマグネシウムイオンやマンガンイオン等を添加する場合は、マグネシウムやマンガンを添加してもよいし、これらの塩を添加してもよい。マグネシウム又はその塩としては、マグネシウム、塩化マグネシウム、硫酸マグネシウム、酢酸マグネシウム等が例示され、マンガン又はその塩としては、マンガン、塩化マンガン、硫酸マンガン、酢酸マンガンなどが例示される。このようなマグネシウム、マンガン、又はこれらの塩は、PCR反応液中に1~10mM程度加えられることが好ましい。本発明の検査方法において、一酵素系RT-PCRを実施する場合、安定的に高い感度が得られ易いという観点からは、マンガン又はその塩を含むことが好ましい。特定の実施態様では、RT-PCR反応液において1mM以上のマンガン又はその塩を含むことが好ましく、1.5mM以上のマンガン又はその塩を含むことが好ましく、2.0mM以上のマンガン又はその塩を含むことがより好ましい。また、二酵素系RT-PCRを実施する場合、安定的に高い感度が得られ易いという観点からは、マグネシウム又はその塩を含むことが好ましい。特定の実施態様では、PCR反応液において1mM以上のマグネシウム又はその塩を含むことが好ましく、1.5mM以上のマグネシウム又はその塩を含むことが好ましく、2.0mM以上のマグネシウム又はその塩を含むことがより好ましい。 Furthermore, in the present invention, the PCR reaction solution preferably contains divalent cations. Containing divalent cations in this way makes it possible to obtain more stable and high contamination resistance and to perform highly sensitive detection. Examples of divalent cations include, but are not limited to, magnesium ions, manganese ions, calcium ions, copper ions, iron ions, nickel ions, zinc ions, and the like. Preferably, magnesium ions and manganese ions are included as divalent cations. In the present invention, when magnesium ions, manganese ions, or the like are added to the PCR reaction solution, magnesium or manganese may be added, or salts thereof may be added. Examples of magnesium or salts thereof include magnesium, magnesium chloride, magnesium sulfate, magnesium acetate, etc. Examples of manganese or salts thereof include manganese, manganese chloride, manganese sulfate, manganese acetate, and the like. Magnesium, manganese, or a salt thereof is preferably added to the PCR reaction solution in an amount of about 1 to 10 mM. In the test method of the present invention, manganese or a salt thereof is preferably contained from the viewpoint of easily obtaining high sensitivity in a stable manner when performing single-enzyme RT-PCR. In a specific embodiment, the RT-PCR reaction solution preferably contains 1 mM or more manganese or a salt thereof, preferably 1.5 mM or more manganese or a salt thereof, and 2.0 mM or more manganese or a salt thereof. It is more preferable to include Moreover, when performing a two-enzyme system RT-PCR, it is preferable to contain magnesium or a salt thereof from the viewpoint of easily obtaining high sensitivity stably. In a specific embodiment, the PCR reaction solution preferably contains 1 mM or more magnesium or a salt thereof, preferably 1.5 mM or more magnesium or a salt thereof, and 2.0 mM or more magnesium or a salt thereof. is more preferred.
 さらにPCR反応液に含まれる添加剤として、アミノ酸におけるアミノ基に3個のメチル基を付加した構造を有する第4級アンモニウム塩(以下、「ベタイン様4級アンモニウム」という)、ポリペプチド(ウシ血清アルブミン、セリシン、Blocking peptide fragment(以下BPFともいう)、ゼラチン)、グリセロール、グリコール及び界面活性剤よりなる群から選択された少なくとも1つを含んでいてもよい。 Furthermore, as additives contained in the PCR reaction solution, a quaternary ammonium salt having a structure in which three methyl groups are added to the amino group of an amino acid (hereinafter referred to as "betaine-like quaternary ammonium"), a polypeptide (bovine serum It may contain at least one selected from the group consisting of albumin, sericin, blocking peptide fragment (hereinafter also referred to as BPF), gelatin), glycerol, glycol and surfactants.
 本発明に用いられる前記ポリペプチドは、分子量が5~500kDaである限り、特に限定されないが、好ましくは、6~400kDaである。本明細書において、分子量を示すときは、他の意味であることが明らかでない限り、SDS-PAGEを用いて決定した値をいう。SDS-PAGEでの分子量の測定は、当該分野で一般的な手法及び装置を用い、市販される分子量マーカー等を用いて行うことができる。例えば、「分子量50kDa」とは、SDS-PAGEで分子量を測定した際に、当業者が、通常50kDaの位置にバンドがあると判断する範囲にあることをいう。また、本発明に用いられるポリペプチドは、上記分子量の範囲内のポリペプチドの混合物であってもよい。 The polypeptide used in the present invention is not particularly limited as long as it has a molecular weight of 5-500 kDa, but preferably 6-400 kDa. In this specification, when molecular weights are indicated, they refer to values determined using SDS-PAGE, unless clearly indicated otherwise. The measurement of molecular weight by SDS-PAGE can be carried out using commercially available molecular weight markers and the like using techniques and devices commonly used in the field. For example, a "molecular weight of 50 kDa" refers to a range in which a person skilled in the art normally determines that there is a band at the position of 50 kDa when the molecular weight is measured by SDS-PAGE. Also, the polypeptide used in the present invention may be a mixture of polypeptides within the above molecular weight range.
 本発明に用いられる前記ポリペプチドは、本発明の効果を奏する限り特に限定されず、複数のアミノ酸がペプチド結合で連なって形成されたタンパク質をいう。また、本発明に用いられるポリペプチドは、アミノ酸が連結されたポリペプチド構造を有する限り、例えば、熱変性等により三次元構造が解かれたような熱変性ポリペプチド(例えば、ゼラチン)等であってもよい。具体的には、本発明に使用され得るポリペプチドとして、例えば、アルブミン(例えば、ウシ血清アルブミン、ラクトアルブミン、ヒト血清アルブミン、卵由来アルブミン)、ゼラチン(例えば、魚ゼラチン、豚ゼラチン)、セリシン、カゼイン、フィブロイン等の天然由来タンパク質(天然由来ポリペプチド);Blocking peptide fragment(以下BPFともいう)、コラーゲン加水分解物、ポリペプトン、酵母エキス、ビーフエキストラクト等の合成・分解等により人為的に製造されたポリペプチド等を用いることができる。より一層優れた本発明の効果が奏されるという観点から、好ましくは、本発明に用いられるポリペプチドは、ウシ血清アルブミン、ゼラチン、Blocking peptide fragment(以下BPF)、及び/又はセリシンである。少量でも高い効果が発揮され得るという観点から、より好ましくは、ウシ血清アルブミン、ゼラチン(なかでも魚ゼラチン)を用いるのが好適である。これらのポリペプチドは、1種類だけ使用してもよいし、2種類以上を組合わせて使用してもよい。また、これらのポリペプチドは、天然からの抽出や合成等の手段により調製してもよく、また市販品も好適に使用することができる。 The polypeptide used in the present invention is not particularly limited as long as the effect of the present invention is exhibited, and refers to a protein formed by connecting a plurality of amino acids via peptide bonds. In addition, the polypeptide used in the present invention may be, for example, a heat-denatured polypeptide (eg, gelatin) whose three-dimensional structure is unfolded by heat denaturation or the like, as long as it has a polypeptide structure in which amino acids are linked. may Specifically, polypeptides that can be used in the present invention include, for example, albumin (eg, bovine serum albumin, lactalbumin, human serum albumin, egg-derived albumin), gelatin (eg, fish gelatin, porcine gelatin), sericin, Naturally derived proteins (naturally derived polypeptides) such as casein and fibroin; blocking peptide fragments (hereinafter also referred to as BPF), collagen hydrolysates, polypeptones, yeast extracts, beef extracts, etc. artificially produced by synthesis/decomposition Polypeptides and the like can be used. From the viewpoint of exhibiting even better effects of the present invention, the polypeptide used in the present invention is preferably bovine serum albumin, gelatin, blocking peptide fragment (hereinafter BPF), and/or sericin. Bovine serum albumin and gelatin (especially fish gelatin) are more preferably used from the viewpoint that a high effect can be exhibited even in a small amount. These polypeptides may be used alone or in combination of two or more. Moreover, these polypeptides may be prepared by means of extraction from nature, synthesis, or the like, and commercially available products can also be suitably used.
 本発明において、前記ポリペプチドの使用量は、本発明の効果を奏する限り特に限定されないが、例えば、前記不溶性物質を含む試料と一酵素系1ステップRT-PCR反応液とを混合した混合液中において、終濃度0.0001~200mg/mLとなるような量、好ましくは0.01~150mg/mL、より好ましくは0.1~130mg/mL、更に好ましくは0.5~100mg/mLで使用することができる。より優れた効果を発揮させるために好ましい量は、使用するポリペプチドの種類や所望される効果の程度等によって変動し得るが、例えば、以下のような使用量を例示することができる。
 ・ウシ血清アルブミンを用いる場合:PCR反応液中終濃度として、例えば0.5mg/mL以上、好ましくは1mg/mL以上、より好ましくは2mg/mL以上、更に好ましくは3mg/mL以上。上限値は特に限定されないが、例えば、10mg/mL以下とすることができる。
 ・ゼラチンを用いる場合:PCR反応液中終濃度として、例えば0.1mg/mL以上、好ましくは1mg/mL以上、より好ましくは5mg/mL以上、更に好ましくは7.5mg/mL以上、さらにより好ましくは15mg/mL以上。上限値は特に限定されないが、例えば、50mg/mL以下とすることができる。
 ・セリシンを用いる場合:PCR反応液中終濃度として、例えば1mg/mL以上、好ましくは5mg/mL以上、より好ましくは10mg/mL以上、更に好ましくは20mg/mL以上、更により好ましくは50mg/mL以上。上限値は特に限定されないが、例えば、100mg/mL以下とすることができる。
 ・BPFを用いる場合:PCR反応液中終濃度として、例えば1mg/mL以上、好ましくは5mg/mL以上、より好ましくは10mg/mL以上、更に好ましくは20mg/mL以上、更により好ましくは30mg/mL以上。上限値は特に限定されないが、例えば、50mg/mL以下とすることができる。
In the present invention, the amount of the polypeptide used is not particularly limited as long as the effect of the present invention is achieved. , the final concentration is 0.0001 to 200 mg / mL, preferably 0.01 to 150 mg / mL, more preferably 0.1 to 130 mg / mL, more preferably 0.5 to 100 mg / mL can do. A preferred amount for exhibiting a better effect may vary depending on the type of polypeptide used, the degree of desired effect, and the like. For example, the following amounts can be used.
- When bovine serum albumin is used: The final concentration in the PCR reaction solution is, for example, 0.5 mg/mL or higher, preferably 1 mg/mL or higher, more preferably 2 mg/mL or higher, and still more preferably 3 mg/mL or higher. Although the upper limit is not particularly limited, it can be, for example, 10 mg/mL or less.
- When using gelatin: final concentration in the PCR reaction solution is, for example, 0.1 mg/mL or higher, preferably 1 mg/mL or higher, more preferably 5 mg/mL or higher, even more preferably 7.5 mg/mL or higher, and even more preferably is greater than or equal to 15 mg/mL. Although the upper limit is not particularly limited, it can be, for example, 50 mg/mL or less.
- When sericin is used: The final concentration in the PCR reaction solution is, for example, 1 mg/mL or higher, preferably 5 mg/mL or higher, more preferably 10 mg/mL or higher, even more preferably 20 mg/mL or higher, and even more preferably 50 mg/mL. that's all. Although the upper limit is not particularly limited, it can be, for example, 100 mg/mL or less.
- When using BPF: final concentration in the PCR reaction solution is, for example, 1 mg/mL or more, preferably 5 mg/mL or more, more preferably 10 mg/mL or more, still more preferably 20 mg/mL or more, and even more preferably 30 mg/mL that's all. Although the upper limit is not particularly limited, it can be, for example, 50 mg/mL or less.
 前記PCR反応液に含まれる界面活性剤としては、トリトンX-100(TritonX-100)、トリトンX-114(TritonX-114)、ツイーン20(Tween20),ノニデットP40、Briji35、Briji58、SDS、CHAPS、CHAPSO、Emulgen420などが挙げられるが、特に限定されない。PCR反応液中の前記界面活性剤の濃度も特に限定はされないが、好ましくは0.0001%以上、より好ましくは0.002%以上、さらに好ましくは0.005%以上で、良好な検出が可能となる。上限は特に限定されないが、一例として、0.1%以下とすることができる。 Surfactants contained in the PCR reaction solution include Triton X-100, Triton X-114, Tween20, Nonidet P40, Briji35, Briji58, SDS, CHAPS, CHAPSO, Emulgen 420, etc., but not particularly limited. Although the concentration of the surfactant in the PCR reaction solution is not particularly limited, it is preferably 0.0001% or more, more preferably 0.002% or more, and still more preferably 0.005% or more, and good detection is possible. becomes. Although the upper limit is not particularly limited, it can be 0.1% or less as an example.
 前記PCR反応液に含まれるベタイン様4級アンモニウムとしては、ベタイン(トリメチルグリシン)、カルニチンなどが挙げられるが、特に限定されるものではない。ベタイン構造は分子内に安定な正、負の両電荷を持つ化合物で、界面活性剤のような性質を示し、ウイルス構造の不安定化を引き起こすと考えられる。さらに、DNAポリメラーゼの核酸増幅を促進することが知られる。好ましい前記ベタイン様4級アンモニウム濃度は、0.1M~2M、より好ましくは0.2M~1.2Mである。 Examples of the betaine-like quaternary ammonium contained in the PCR reaction solution include betaine (trimethylglycine) and carnitine, but are not particularly limited. The betaine structure is a stable compound with both positive and negative charges in the molecule, and it is thought to exhibit surfactant-like properties and cause destabilization of the virus structure. In addition, it is known to facilitate nucleic acid amplification of DNA polymerases. A preferred concentration of said betaine-like quaternary ammonium is 0.1M to 2M, more preferably 0.2M to 1.2M.
 さらには、当該技術分野でPCRまたはRT-PCRを促進することが知られる物質と組み合わせて使用することもできる。本発明において有用な促進物質とは、例えば、グリセロール、ポリオール、プロテアーゼインヒビター、シングルストランド結合タンパク質(SSB)、T4遺伝子32タンパク質、tRNA、硫黄または酢酸含有化合物類、ジメチルスルホキシド(DMSO)、グリセロール、エチレングリコール、プロピレングリコール、トリメチレングリコール、ホルムアミド、アセトアミド、エクトイン、トレハロース、デキストラン、ポリビニルピロリドン(PVP)、塩化テトラメチルアンモニウム(TMAC)、水酸化テトラメチルアンモニウム(TMAH)、酢酸テトラメチルアンモニウム(TMAA)、ポリエチレングリコールなどが挙げられるが、これらに限定されない。さらに反応阻害を低減するように、エチレングリコール-ビス(2-アミノエチルエーテル)-N,N,N’,N’-四酢酸(EGTA)、1,2-ビス(o-アミノフェノキシ)エタン-N,N,N’,N’-四酢酸(BAPTA)のようなキレート剤を含んでいてもよい。 Furthermore, it can be used in combination with substances known in the art to promote PCR or RT-PCR. Facilitators useful in the present invention include, for example, glycerol, polyols, protease inhibitors, single-strand binding protein (SSB), T4 gene 32 protein, tRNA, sulfur or acetic acid containing compounds, dimethylsulfoxide (DMSO), glycerol, ethylene Glycol, propylene glycol, trimethylene glycol, formamide, acetamide, ectoine, trehalose, dextran, polyvinylpyrrolidone (PVP), tetramethylammonium chloride (TMAC), tetramethylammonium hydroxide (TMAH), tetramethylammonium acetate (TMAA), Examples include, but are not limited to, polyethylene glycol. In order to further reduce reaction inhibition, ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), 1,2-bis(o-aminophenoxy)ethane- A chelating agent such as N,N,N',N'-tetraacetic acid (BAPTA) may be included.
 本発明の別の一態様は、特定のプライマーセットの組合せを含むことを特徴とする、試料中のA型インフルエンザウイルス及びB型インフルエンザウイルスに由来するターゲット核酸の有無を検出するためのプライマーセットを含むキットである。
 本発明の前記キットは、以下の群(I)及び群(II)の組合せ;群(III)及び群(IV)の組合せ;又は群(V)及び群(VI)の組合せから選択されるいずれかのプライマーセットの組合せを含み、ここで前記プライマーセットの組合せは、前記の各群からそれぞれ少なくとも一対ずつ選択される少なくとも二対のプライマーセットを含むことを特徴としている:
(I)プライマーセットa及びプライマーセットb
(II)プライマーセットf及びプライマーセットg
(III)プライマーセットc
(IV)プライマーセットe及びプライマーセットg
(V)プライマーセットd
(VI)プライマーセットe及びプライマーセットf
 ここで、前記プライマーセットa~fは、試料中のA型インフルエンザウイルス及びB型インフルエンザウイルスに由来するターゲット核酸の有無を1つのPCR反応液で検査する方法について説明したものと同様のものであり得る。本発明のキットにおいて、上記少なくとも二対のプライマーセットは、1つの試薬としてキットに含まれてもよいし、別々の試薬としてキットに含まれ、使用前に混合して用事調製される態様で提供されてもよい。なお、別の実施態様において、本発明は、前記プライマーセットの組合せを含む組成物の態様でも提供されてもよい。
 また、本発明の前記キット又は前記組成物が他に含み得る成分(例えば、他のプライマーセット又は核酸プローブの種類や量、夾雑物耐性を有するDNAポリメラーゼの種類や量、前記キット又は前記組成物を使用する検査に用いる試料の種類、検査対象となるウイルス等は、前記の検査方法において詳述したものと同様であり得る。キットの態様で提供される場合、これらの他の成分もまた、上記の二対のプライマーセットのいずれか又は両方と共に1つの試薬としてキットに含まれても良いし、別々の試薬としてキットに含まれていてもよい。
Another aspect of the present invention provides a primer set for detecting the presence or absence of target nucleic acids derived from influenza A virus and influenza B virus in a sample, comprising a combination of specific primer sets. It is a kit containing
The kit of the present invention comprises any combination selected from the following group (I) and group (II) combinations; group (III) and group (IV) combinations; or group (V) and group (VI) combinations. A primer set combination comprising:
(I) Primer set a and primer set b
(II) Primer Set f and Primer Set g
(III) primer set c
(IV) Primer set e and primer set g
(V) Primer set d
(VI) Primer set e and primer set f
Here, the primer sets a to f are the same as those described for the method of testing for the presence or absence of target nucleic acids derived from influenza A virus and influenza B virus in a sample using one PCR reaction solution. obtain. In the kit of the present invention, the at least two pairs of primer sets may be included in the kit as one reagent, or may be included in the kit as separate reagents and provided in a manner that they are mixed and prepared before use. may be In another embodiment, the present invention may also be provided in the form of a composition comprising a combination of the primer sets.
In addition, the kit or composition of the present invention may contain other components (for example, the type and amount of other primer sets or nucleic acid probes, the type and amount of contaminant-resistant DNA polymerase, the kit or composition The type of sample used for the test using , the virus to be tested, etc. can be the same as those detailed in the test method.When provided in the form of a kit, these other components are also Either or both of the above two pairs of primer sets may be included in the kit as one reagent, or may be included in the kit as separate reagents.
 以下、実施例をもって、本発明を具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the following examples.
試験例1.SARS-CoV-2コロナウイルスおよびインフルエンザウイルス検出用プライマーセットの評価(ネガティブコントロール)
(1-1)反応液
 以下に示される組成の反応液及び酵素液を使用し、1ステップRT-PCRにおいて、反応液中のSARS-CoV-2コロナウイルスおよびインフルエンザウイルスA型またはB型を検出する反応を行った。
・反応液及び酵素液
(SARS-CoV-2 Detection Kit -Multi-(東洋紡)添付品)
Test example 1. Evaluation of Primer Sets for Detection of SARS-CoV-2 Coronavirus and Influenza Virus (Negative Control)
(1-1) Reaction solution Detection of SARS-CoV-2 coronavirus and influenza virus type A or B in the reaction solution in one-step RT-PCR using the reaction solution and enzyme solution having the compositions shown below. reaction was performed.
・Reaction solution and enzyme solution (SARS-CoV-2 Detection Kit -Multi- (Toyobo) accessories)
 前記反応液及び酵素液に、後述の(2-2)に記載のプライマー・プローブ液を混合し、最終液量が40μLとなるようにRT-PCR反応液を調製した。滅菌水8μLと前処理液 3μL(SARS-CoV-2 Detection Kit -Multi-(東洋紡)添付品)を混合し、95℃5分間の熱処理を行った後に、前処理済検体液(ネガティブコントロール)とした。RT-PCR反応液40μLに前処理済検体液(ネガティブコントロール)11μLと、滅菌水1μLを添加し、52μLの反応系としてRT-PCR反応を行った。 The reaction solution and enzyme solution were mixed with the primer/probe solution described in (2-2) below to prepare an RT-PCR reaction solution with a final volume of 40 μL. 8 μL of sterilized water and 3 μL of pretreatment solution (SARS-CoV-2 Detection Kit -Multi- (Toyobo) accessory) were mixed, and after heat treatment at 95°C for 5 minutes, the pretreated specimen solution (negative control) and did. 11 μL of the pretreated specimen solution (negative control) and 1 μL of sterilized water were added to 40 μL of the RT-PCR reaction solution, and RT-PCR reaction was performed in a reaction system of 52 μL.
 (2-2)プライマー・プローブ液
 (2-2-1)プライマーセット1
 SARS-CoV-2コロナウイルス検出用のプライマーセットおよびプローブは、配列番号16の塩基配列からなるフォワードプライマー、配列番号17の塩基配列からなるリバースプライマー、及び配列番号18の塩基配列からなる蛍光標識核酸プローブを利用した。A型インフルエンザウイルス検出用のプライマーセット及びプローブは、配列番号31の塩基配列からなるフォワードプライマー、配列番号33の塩基配列からなるリバースプライマー、配列番号35の塩基配列からなる蛍光標識核酸プローブを使用した。B型インフルエンザウイルス検出用のプライマーセット及びプローブは、配列番号36の塩基配列からなるフォワードプライマー、配列番号37の塩基配列からなるリバースプライマー、配列番号38の塩基配列からなる蛍光標識プローブを利用した。各増幅物産物の検出には、SARS-CoV-2コロナウイルス(ROXチャネル)、インフルエンザ A型(CY5チャネル)およびB型(FAMチャネル)、インターナルコントロール(NEDチャネル)に対応するTaqMan(登録商標)プローブを利用した。RT-PCR反応液中のプローブおよびプライマーの濃度は同文献に記載の濃度を添加した。
(2-2) Primer/probe solution (2-2-1) Primer set 1
The primer set and probe for detecting SARS-CoV-2 coronavirus are a forward primer consisting of the nucleotide sequence of SEQ ID NO: 16, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 17, and a fluorescence-labeled nucleic acid consisting of the nucleotide sequence of SEQ ID NO: 18. used the probe. The primer set and probe for detecting influenza A virus used a forward primer consisting of the nucleotide sequence of SEQ ID NO: 31, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 33, and a fluorescence-labeled nucleic acid probe consisting of the nucleotide sequence of SEQ ID NO: 35. . A forward primer consisting of the nucleotide sequence of SEQ ID NO: 36, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 37, and a fluorescence-labeled probe consisting of the nucleotide sequence of SEQ ID NO: 38 were used as the primer set and probe for detecting influenza B virus. For detection of each amplicon product, TaqMan® corresponding to SARS-CoV-2 coronavirus (ROX channel), influenza A (CY5 channel) and B (FAM channel), internal control (NED channel). ) probe was utilized. Concentrations of probes and primers in the RT-PCR reaction solution were added as described in the same document.
(2-2-1)プライマーセット2
 SARS-CoV-2コロナウイルス検出用のプライマーセットおよびプローブは、配列番号16の塩基配列からなるフォワードプライマー、配列番号17の塩基配列からなるリバースプライマー、配列番号18の塩基配列からなる蛍光標識核酸プローブを利用した。A型インフルエンザウイルス検出用のプライマーセット及びプローブは、配列番号45の塩基配列からなるフォワードプライマー、配列番号46の塩基配列からなるリバースプライマー、配列番号47の塩基配列からなる蛍光標識核酸プローブを使用した。B型インフルエンザウイルス検出用のプライマーセット及びプローブは、配列番号36の塩基配列からなるフォワードプライマー、配列番号37の塩基配列からなるリバースプライマー、配列番号38の塩基配列からなる蛍光標識核酸プローブを利用した。各増幅物産物の検出には、SARS-CoV-2コロナウイルス(ROXチャネル)、インフルエンザ A型(Cy5チャネル)およびB型(FAMチャネル)、インターナルコントロール(NEDチャネル)に対応するTaqMan(登録商標)プローブを利用した。RT-PCR反応液中のプローブおよびプライマーの濃度は同文献に記載の濃度を添加した。
(2-2-1) Primer set 2
The primer set and probe for detecting SARS-CoV-2 coronavirus are a forward primer consisting of the nucleotide sequence of SEQ ID NO: 16, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 17, and a fluorescence-labeled nucleic acid probe consisting of the nucleotide sequence of SEQ ID NO: 18. was used. The primer set and probe for detecting influenza A virus used a forward primer consisting of the nucleotide sequence of SEQ ID NO: 45, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 46, and a fluorescence-labeled nucleic acid probe consisting of the nucleotide sequence of SEQ ID NO: 47. . The primer set and probe for detecting type B influenza virus used a forward primer consisting of the base sequence of SEQ ID NO: 36, a reverse primer consisting of the base sequence of SEQ ID NO: 37, and a fluorescence-labeled nucleic acid probe consisting of the base sequence of SEQ ID NO: 38. . For detection of each amplicon product, TaqMan® corresponding to SARS-CoV-2 coronavirus (ROX channel), influenza A (Cy5 channel) and B (FAM channel), internal control (NED channel). ) probe was utilized. Concentrations of probes and primers in the RT-PCR reaction solution were added as described in the same document.
(4)PCR反応
 PCR反応条件は、SARS-CoV-2 Detection Kit -Multi-(東洋紡)に記載の至適条件にて行った。測定機台はThermoFisher Scientific製のQuantStudio5を使用した。
(4) PCR reaction PCR reaction conditions were performed under the optimum conditions described in SARS-CoV-2 Detection Kit -Multi- (Toyobo). QuantStudio 5 manufactured by ThermoFisher Scientific was used as a measurement table.
(5)結果
 各プライマーセットを使用してネガティブコントロールで反応を行った際の測定結果を下記の表1に示す。本試験条件においてプライマーセット1を使用すると、ネガティブコントロールにもかかわらずA型インフルエンザウイルスのシグナルが検出されるものがあった。その一方でプライマーセット2を使用した際にはインターナルコントロールのみが検出され、非特異反応の発生を高度に抑制できることを確認した。
Figure JPOXMLDOC01-appb-T000001
(5) Results Table 1 below shows the measurement results when negative control reactions were performed using each primer set. When Primer Set 1 was used under the present test conditions, some influenza A virus signals were detected in spite of the negative control. On the other hand, when primer set 2 was used, only the internal control was detected, confirming that the occurrence of non-specific reactions could be highly suppressed.
Figure JPOXMLDOC01-appb-T000001
試験例2.検体存在下におけるSARS-CoV-2コロナウイルスおよびインフルエンザウイルスのマルチプレックス検出検討
(1-1)各ウイルスRNAの調製
 SARS-CoV-2コロナウイルス(SeraCare)およびインフルエンザウイルスA型(Vircell)、B型(Vircell)の鋳型RNAを各々500、50、25コピー/μLとなるように滅菌水にて調製した。
Test example 2. Multiplex detection study of SARS-CoV-2 coronavirus and influenza virus in the presence of specimen (1-1) Preparation of each virus RNA SARS-CoV-2 coronavirus (SeraCare) and influenza virus type A (Vircell), type B (Vircell) template RNA was prepared in sterilized water to 500, 50 and 25 copies/μL, respectively.
(1-2)唾液懸濁液の採取
 SARS-CoV-2コロナウイルスおよびインフルエンザウイルスの陰性が確認されている500μL唾液検体を採取した。
(1-3)唾液の前処理
 唾液8μLもしくはPBS8μLと、前処理液 3μL(SARS-CoV-2 Detection Kit -Multi-(東洋紡)添付品)とを混合し、95℃5分間の熱処理を行った後に、前処理済検体液とした。なお、ここで行った前処理法は核酸の単離処理を伴わない。
(1-2) Collection of Saliva Suspension A 500 μL saliva sample confirmed to be negative for SARS-CoV-2 coronavirus and influenza virus was collected.
(1-3) Pretreatment of saliva 8 μL of saliva or 8 μL of PBS and 3 μL of pretreatment liquid (SARS-CoV-2 Detection Kit -Multi- (Toyobo) accessory) were mixed and heat-treated at 95° C. for 5 minutes. Later, it was used as a pretreated sample liquid. It should be noted that the pretreatment method used here does not involve isolation of nucleic acids.
(2-1)反応液
 以下に示される組成の反応液及び酵素液を使用し、1ステップRT-PCRにおいて、反応液中のSARS-CoV-2コロナウイルスおよびインフルエンザウイルスA型またはB型を検出した。
・反応液及び酵素液
(SARS-CoV-2 Detection Kit -Multi-(東洋紡)添付品)
(2-1) Reaction solution Detection of SARS-CoV-2 coronavirus and influenza virus type A or B in the reaction solution in one-step RT-PCR using the reaction solution and enzyme solution with the compositions shown below. did.
・Reaction solution and enzyme solution (SARS-CoV-2 Detection Kit -Multi- (Toyobo) accessories)
 前記反応液及び酵素液に、後述の(2-2)に記載のプライマー・プローブ液を混合し、最終液量が40μLとなるようにRT-PCR反応液を調製した。各前処理済検体液11μLと、SARS-CoV-2コロナウイルスおよびインフルエンザウイルスA型またはB型を各25、50、500コピー/μL含むRNA溶液もしくは滅菌水を1μL添加し、52μLの反応系としてRT-PCR反応を行った。 The reaction solution and enzyme solution were mixed with the primer/probe solution described in (2-2) below to prepare an RT-PCR reaction solution with a final volume of 40 μL. 11 μL of each pretreated sample solution and 1 μL of RNA solution or sterile water containing 25, 50, 500 copies/μL of SARS-CoV-2 coronavirus and influenza virus type A or B, respectively, are added to form a 52 μL reaction system. RT-PCR reactions were performed.
 (2-2)プライマー・プローブ液
 SARS-CoV-2コロナウイルス検出用のプライマーセットおよびプローブは、配列番号16の塩基配列からなるフォワードプライマー、配列番号17の塩基配列からなるリバースプライマー、配列番号18の塩基配列からなる蛍光標識核酸プローブを利用した。A型インフルエンザウイルス検出用のプライマーセットおよびプローブは、配列番号45の塩基配列からなるフォワードプライマー、配列番号46の塩基配列からなるリバースプライマー、配列番号47の塩基配列からなる蛍光標識核酸プローブを使用した。B型インフルエンザウイルス検出用のプライマーセットおよびプローブは、配列番号36の塩基配列からなるフォワードプライマー、配列番号37の塩基配列からなるリバースプライマー、配列番号38の塩基配列からなる蛍光標識核酸プローブを利用した。各増幅物産物の検出には、SARS-CoV-2コロナウイルス(ROXチャネル)、インフルエンザ A型(Cy5チャネル)およびB型(FAMチャネル)に対応するTaqMan(登録商標)プローブを利用した。RT-PCR反応液中のプローブおよびプライマーの濃度は同文献に記載の濃度を添加した。
(2-2) Primer/probe solution The primer set and probe for detecting SARS-CoV-2 coronavirus are a forward primer consisting of the nucleotide sequence of SEQ ID NO: 16, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 17, and SEQ ID NO: 18 A fluorescence-labeled nucleic acid probe consisting of a nucleotide sequence of The primer set and probe for detecting influenza A virus used a forward primer consisting of the nucleotide sequence of SEQ ID NO: 45, a reverse primer consisting of the nucleotide sequence of SEQ ID NO: 46, and a fluorescence-labeled nucleic acid probe consisting of the nucleotide sequence of SEQ ID NO: 47. . The primer set and probe for detecting type B influenza virus used a forward primer consisting of the base sequence of SEQ ID NO: 36, a reverse primer consisting of the base sequence of SEQ ID NO: 37, and a fluorescence-labeled nucleic acid probe consisting of the base sequence of SEQ ID NO: 38. . TaqMan® probes corresponding to SARS-CoV-2 coronavirus (ROX channel), influenza A (Cy5 channel) and B (FAM channel) were utilized for detection of each amplicon. Concentrations of probes and primers in the RT-PCR reaction solution were added as described in the same document.
(4)PCR反応
 PCR反応条件は、SARS-CoV-2 Detection Kit -Multi-(東洋紡)に記載の至適条件にて行った。測定機台はThermoFisher Scientific製のQuantStudio5を使用した。
(4) PCR reaction PCR reaction conditions were performed under the optimum conditions described in SARS-CoV-2 Detection Kit -Multi- (Toyobo). QuantStudio 5 manufactured by ThermoFisher Scientific was used as a measurement table.
(5)結果
 測定結果を図1に示す。唾液の存在下においても、PBSを用いた場合と遜色ないレベルでSARS-CoV-2コロナウイルス、A型インフルエンザウイルスおよびB型インフルエンザウイルスの検出が可能であることを確認した。
(5) Results The measurement results are shown in FIG. It was confirmed that even in the presence of saliva, SARS-CoV-2 coronavirus, influenza A virus, and influenza B virus can be detected at levels comparable to those using PBS.
 本発明は、臨床検査、感染症拡大防止などを目的とした検査の他、分子生物学研究等においても好適に利用できる。 The present invention can be suitably used in clinical examinations, examinations aimed at preventing the spread of infectious diseases, as well as molecular biological research.

Claims (35)

  1.  以下の工程を含む、試料中のA型インフルエンザウイルス及びB型インフルエンザウイルスに由来するターゲット核酸の有無を検出する方法:
    (1)以下の群(I)及び群(II)の組合せ、群(III)及び群(IV)の組合せ、又は群(V)及び群(VI)の組合せから選択されるいずれかのプライマーセットの組合せを用意する工程であって、ここで前記プライマーセットの組合せは、前記各群からそれぞれ少なくとも一対ずつ選択される少なくとも二対のプライマーセットを含む、工程:
     (I)プライマーセットa及びプライマーセットb
     (II)プライマーセットf及びプライマーセットg
     (III)プライマーセットc
     (IV)プライマーセットe及びプライマーセットg
     (V)プライマーセットd
     (VI)プライマーセットe及びプライマーセットf
    [前記プライマーセットa~gは、以下の通り:
     (プライマーセットa):配列番号31及び配列番号33で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
     (プライマーセットb):配列番号32及び配列番号34で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
     (プライマーセットc):配列番号39及び配列番号40で示される塩基配列からなる核酸プライマーのーセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
     (プライマーセットd):配列番号45及び配列番号46で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
     (プライマーセットe):配列番号36及び配列番号37で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
     (プライマーセットf):配列番号42及び配列番号43で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
     (プライマーセットg):配列番号48及び配列番号49で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット]
    (2)前記工程(1)で用意したプライマーセットの組合せと、試料と、PCR反応液とを混合する工程、並びに
    (3)反応容器を密閉後、PCR反応を実施する工程。
    A method for detecting the presence or absence of target nucleic acids derived from influenza A virus and influenza B virus in a sample, comprising the steps of:
    (1) Any primer set selected from the following combinations of groups (I) and (II), combinations of groups (III) and (IV), or combinations of groups (V) and groups (VI) wherein the combination of primer sets comprises at least two pairs of primer sets, at least one pair each selected from each of the groups, step:
    (I) Primer set a and primer set b
    (II) Primer Set f and Primer Set g
    (III) primer set c
    (IV) Primer set e and primer set g
    (V) Primer set d
    (VI) Primer set e and primer set f
    [The primer sets a to g are as follows:
    (Primer set a): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 31 and SEQ ID NO: 33, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
    (primer set b): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 32 and SEQ ID NO: 34, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences;
    (primer set c): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 39 and SEQ ID NO: 40, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences;
    (Primer set d): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 45 and SEQ ID NO: 46, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
    (Primer set e): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 36 and SEQ ID NO: 37, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences,
    (Primer set f): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 42 and SEQ ID NO: 43, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
    (Primer set g): A set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 48 and SEQ ID NO: 49, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences]
    (2) a step of mixing the combination of the primer sets prepared in the step (1), the sample, and the PCR reaction solution; and (3) a step of performing the PCR reaction after sealing the reaction vessel.
  2.  前記PCR反応液が、さらに以下の群(VII)から選択されるSARS-CoV-2コロナウイルスに由来するターゲット核酸の有無を検出するための少なくとも一対のプライマーセットを含む、請求項1に記載の方法:
     (VII)配列番号1及び配列番号2で示される塩基配列からなる核酸プライマーのセット、配列番号4及び配列番号5で示される塩基配列からなる核酸プライマーのセット、配列番号7及び配列番号8で示される塩基配列からなる核酸プライマーのセット、配列番号10及び配列番号11で示される塩基配列からなる核酸プライマーのセット、配列番号13及び配列番号14で示される塩基配列からなる核酸プライマーのセット、配列番号16及び配列番号17で示される塩基配列からなる核酸プライマーのセット、配列番号19及び配列番号20で示される塩基配列からなる核酸プライマーのセット、配列番号22及び配列番号23で示される塩基配列からなる核酸プライマーのセット、配列番号25及び配列番号26で示される塩基配列からなる核酸プライマーのセット、配列番号28及び配列番号29で示される塩基配列からなる核酸プライマーのセット、又はこれらのセットにおける各核酸プライマーの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット。
    The PCR reaction solution according to claim 1, further comprising at least one pair of primer sets for detecting the presence or absence of a target nucleic acid derived from SARS-CoV-2 coronavirus selected from the following group (VII): Method:
    (VII) a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 1 and SEQ ID NO: 2, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 4 and SEQ ID NO: 5, and a set of nucleic acid primers shown in SEQ ID NO: 7 and SEQ ID NO: 8 a set of nucleic acid primers consisting of the nucleotide sequences of SEQ ID NO: 10 and SEQ ID NO: 11; a set of nucleic acid primers consisting of the nucleotide sequences of SEQ ID NO: 13 and SEQ ID NO: 14; 16 and SEQ ID NO: 17, a set of nucleic acid primers consisting of the nucleotide sequences of SEQ ID NO: 19 and SEQ ID NO: 20, and a nucleic acid primer set of SEQ ID NO: 22 and SEQ ID NO: 23. A set of nucleic acid primers, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 25 and SEQ ID NO: 26, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 28 and SEQ ID NO: 29, or each nucleic acid in these sets A set of nucleic acid primers comprising nucleotide sequences complementary to the nucleotide sequences of the primers.
  3.  前記PCR反応液が、群(V)及び群(VI)のプライマーセットの組合せ、並びに、群(VII)のプライマーセットを含む、請求項2に記載の方法。 The method according to claim 2, wherein the PCR reaction solution contains a combination of group (V) and group (VI) primer sets and a group (VII) primer set.
  4.  前記PCR反応液が、更に配列番号35、配列番号41、若しくは配列番号47のいずれかで示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブを少なくとも一つ含有する、請求項1~3のいずれかに記載の方法。 Claims 1 to 3, wherein the PCR reaction solution further contains at least one nucleic acid probe consisting of a nucleotide sequence represented by any one of SEQ ID NO: 35, SEQ ID NO: 41, or SEQ ID NO: 47 or a complementary nucleotide sequence thereof. 4. The method according to any one of 3.
  5.  前記PCR反応液が、更に配列番号38、配列番号44、若しくは配列番号50のいずれかで示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブを少なくとも一つ含有する、請求項1~4のいずれかに記載の方法。 Claims 1 to 1, wherein the PCR reaction solution further contains at least one nucleic acid probe consisting of a nucleotide sequence represented by any of SEQ ID NO: 38, SEQ ID NO: 44, or SEQ ID NO: 50 or a nucleotide sequence complementary thereto. 5. The method according to any one of 4.
  6.  前記PCR反応液が、更に配列番号3、配列番号6、配列番号9、配列番号12、配列番号15、配列番号18、配列番号21、配列番号24、配列番号27、若しくは配列番号30で示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブを少なくとも一つ含有する、請求項1~5のいずれかに記載の方法。 The PCR reaction solution is further represented by SEQ ID NO: 3, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 18, SEQ ID NO: 21, SEQ ID NO: 24, SEQ ID NO: 27, or SEQ ID NO: 30 6. The method according to any one of claims 1 to 5, comprising at least one nucleic acid probe consisting of a base sequence or a base sequence complementary thereto.
  7.  前記プローブがTaqManプローブである、請求項4~6のいずれかに記載の方法。 The method according to any one of claims 4 to 6, wherein said probe is a TaqMan probe.
  8.  前記試料が核酸の単離処理を行っていない試料である請求項1~7のいずれかに記載の方法。 The method according to any one of claims 1 to 7, wherein the sample is a sample that has not undergone nucleic acid isolation treatment.
  9.  前記工程(2)及び(3)が同一容器で行われることを特徴とする、請求項1~8のいずれかに記載の方法。 The method according to any one of claims 1 to 8, characterized in that the steps (2) and (3) are performed in the same vessel.
  10.  前記試料が唾液試料、喀痰試料、うがい液、涙液、咽頭ぬぐい液試料、鼻咽頭ぬぐい液、鼻腔ぬぐい液試料、糞便試料及び拭き取り検査試料からなる群より選択される少なくとも1種である、請求項1~9のいずれかに記載の方法。 The sample is at least one selected from the group consisting of a saliva sample, a sputum sample, a gargle, tears, a pharyngeal swab, a nasopharyngeal swab, a nasal swab, a fecal sample, and a swab sample. Item 10. The method according to any one of Items 1 to 9.
  11.  試料が水、生理食塩水、緩衝液、及びスプタザイム酵素液からなる群より選択される少なくとも1種に懸濁された懸濁液、又はそれらの遠心上清若しくは濃縮物である、請求項1~10のいずれかに記載の方法。 Claims 1 to 3, wherein the sample is a suspension suspended in at least one selected from the group consisting of water, physiological saline, buffer, and sputazyme enzyme solution, or a centrifugal supernatant or concentrate thereof. 11. The method according to any one of 10.
  12.  前記工程(2)におけるPCR反応液が、DNAポリメラーゼを含む、請求項1~11のいずれかに記載の方法。 The method according to any one of claims 1 to 11, wherein the PCR reaction solution in step (2) contains a DNA polymerase.
  13.  前記工程(2)におけるPCR反応液が、夾雑物耐性と逆転写活性を併せ持つDNAポリメラーゼを含むか、又は夾雑物耐性を有するDNAポリメラーゼ及び逆転写酵素を含むRT-PCR反応液である、請求項1~12のいずれかに記載の方法。 The PCR reaction solution in the step (2) contains a DNA polymerase having both contaminant resistance and reverse transcription activity, or is an RT-PCR reaction solution containing a contaminant-resistant DNA polymerase and a reverse transcriptase. 13. The method according to any one of 1 to 12.
  14.  夾雑物耐性を有するDNAポリメラーゼがFamily Aに属するDNAポリメラーゼである、請求項13に記載の方法。 The method according to claim 13, wherein the contaminant-resistant DNA polymerase is a DNA polymerase belonging to Family A.
  15.  夾雑物耐性を有するDNAポリメラーゼが、Tth、Hawk Z05およびそれらの変異体からなる群から選択される少なくとも1種の夾雑物耐性を有するDNAポリメラーゼであることを特徴とする、請求項13又は14に記載の方法。 15. The method according to claim 13 or 14, wherein the contaminant-resistant DNA polymerase is at least one contaminant-resistant DNA polymerase selected from the group consisting of Tth, Hawk Z05, and variants thereof. described method.
  16.  前記変異体が、Tthポリメラーゼ(配列番号51)又はHawk Z05ポリメラーゼ(配列番号52)のアミノ酸配列と90%以上の同一性を示すアミノ酸配列からなり、且つ、夾雑物耐性を有するDNAポリメラーゼ活性を示すものである、請求項15に記載の方法。 The mutant consists of an amino acid sequence showing 90% or more identity with the amino acid sequence of Tth polymerase (SEQ ID NO: 51) or Hawk Z05 polymerase (SEQ ID NO: 52), and exhibits contaminant-resistant DNA polymerase activity. 16. The method of claim 15, which is a
  17.  前記変異体が、Tthポリメラーゼ(配列番号51)又はHawk Z05ポリメラーゼ(配列番号52)のアミノ酸配列において1又は数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列からなり、且つ、夾雑物耐性を有するDNAポリメラーゼ活性を示すものである、請求項15又は16に記載の方法。 The mutant consists of an amino acid sequence having one or several amino acid deletions, substitutions and/or additions in the amino acid sequence of Tth polymerase (SEQ ID NO: 51) or Hawk Z05 polymerase (SEQ ID NO: 52), and is contaminating 17. The method according to claim 15 or 16, which exhibits a DNA polymerase activity with antimicrobial resistance.
  18.  逆転写酵素が、モロニーマウス白血病ウイルス(MMLV)由来の逆転写酵素、トリ骨髄芽球症ウイルス(AMV)由来の逆転写酵素、およびこれらの変異体からなる群より選択される少なくとも1種に由来する逆転写酵素である、請求項13~17のいずれかに記載の方法。 Reverse transcriptase is derived from at least one selected from the group consisting of reverse transcriptase derived from Moloney murine leukemia virus (MMLV), reverse transcriptase derived from avian myeloblastosis virus (AMV), and variants thereof The method according to any one of claims 13 to 17, which is a reverse transcriptase that
  19.  試料中のA型インフルエンザウイルス及びB型インフルエンザウイルスに由来するターゲット核酸の有無を検出するためのプライマーセットを含むキットであって、以下の群(I)及び群(II)の組合せ、群(III)及び群(IV)の組合せ、又は群(V)及び群(VI)の組合せから選択されるいずれかのプライマーセットの組合せを含み、ここで前記プライマーセットの組合せは、前記各群からそれぞれ少なくとも一対ずつ選択される少なくとも二対のプライマーセットを含む、キット:
    (I)プライマーセットa及びプライマーセットb
    (II)プライマーセットf及びプライマーセットg
    (III)プライマーセットc
    (IV)プライマーセットe及びプライマーセットg
    (V)プライマーセットd
    (VI)プライマーセットe及びプライマーセットf
    [前記プライマーセットa~gは、以下の通り:
     (プライマーセットa):配列番号31及び配列番号33で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
     (プライマーセットb):配列番号32及び配列番号34で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
     (プライマーセットc):配列番号39及び配列番号40で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
     (プライマーセットd):配列番号45及び配列番号46で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
     (プライマーセットe):配列番号36及び配列番号37で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
     (プライマーセットf):配列番号42及び配列番号43で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット、
     (プライマーセットg):配列番号48及び配列番号49で示される塩基配列からなる核酸プライマーのセット、又はこれらの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット]
    A kit comprising a primer set for detecting the presence or absence of target nucleic acids derived from influenza A virus and influenza B virus in a sample, wherein the following group (I) and group (II) combinations, group (III ) and group (IV), or a combination of group (V) and group (VI), wherein said primer set combination comprises at least A kit comprising at least two pairs of primer sets selected one by one:
    (I) Primer set a and primer set b
    (II) Primer Set f and Primer Set g
    (III) primer set c
    (IV) Primer set e and primer set g
    (V) Primer set d
    (VI) Primer set e and primer set f
    [The primer sets a to g are as follows:
    (Primer set a): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 31 and SEQ ID NO: 33, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
    (primer set b): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 32 and SEQ ID NO: 34, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences;
    (Primer set c): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 39 and SEQ ID NO: 40, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences,
    (Primer set d): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 45 and SEQ ID NO: 46, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
    (Primer set e): a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 36 and SEQ ID NO: 37, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences,
    (Primer set f): a set of nucleic acid primers consisting of the base sequences shown in SEQ ID NO: 42 and SEQ ID NO: 43, or a set of nucleic acid primers consisting of base sequences complementary to these base sequences,
    (Primer set g): A set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 48 and SEQ ID NO: 49, or a set of nucleic acid primers consisting of nucleotide sequences complementary to these nucleotide sequences]
  20.  以下の群(VII)から選択されるSARS-CoV-2コロナウイルスに由来するターゲット核酸の有無を検出するための少なくとも一対のプライマーセットを更に含む、請求項19に記載のキット:
     (VII)配列番号1及び配列番号2で示される塩基配列からなる核酸プライマーのセット、配列番号4及び配列番号5で示される塩基配列からなる核酸プライマーのセット、配列番号7及び配列番号8で示される塩基配列からなる核酸プライマーのセット、配列番号10及び配列番号11で示される塩基配列からなる核酸プライマーのセット、配列番号13及び配列番号14で示される塩基配列からなる核酸プライマーのセット、配列番号16及び配列番号17で示される塩基配列からなる核酸プライマーのセット、配列番号19及び配列番号20で示される塩基配列からなる核酸プライマーのセット、配列番号22及び配列番号23で示される塩基配列からなる核酸プライマーのセット、配列番号25及び配列番号26で示される塩基配列からなる核酸プライマーのセット、配列番号28及び配列番号29で示される塩基配列からなる核酸プライマーのセット、又はこれらのセットにおける各核酸プライマーの塩基配列に対してそれぞれ相補的な塩基配列からなる核酸プライマーのセット。
    The kit according to claim 19, further comprising at least one pair of primer sets for detecting the presence or absence of a target nucleic acid derived from SARS-CoV-2 coronavirus selected from the following group (VII):
    (VII) a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 1 and SEQ ID NO: 2, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 4 and SEQ ID NO: 5, and a set of nucleic acid primers shown in SEQ ID NO: 7 and SEQ ID NO: 8 a set of nucleic acid primers consisting of the nucleotide sequences of SEQ ID NO: 10 and SEQ ID NO: 11; a set of nucleic acid primers consisting of the nucleotide sequences of SEQ ID NO: 13 and SEQ ID NO: 14; 16 and SEQ ID NO: 17, a set of nucleic acid primers consisting of the nucleotide sequences of SEQ ID NO: 19 and SEQ ID NO: 20, and a nucleic acid primer set of SEQ ID NO: 22 and SEQ ID NO: 23. A set of nucleic acid primers, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 25 and SEQ ID NO: 26, a set of nucleic acid primers consisting of the nucleotide sequences shown in SEQ ID NO: 28 and SEQ ID NO: 29, or each nucleic acid in these sets A set of nucleic acid primers comprising nucleotide sequences complementary to the nucleotide sequences of the primers.
  21.  群(V)及び群(VI)のプライマーセットの組合せ、並びに、群(VII)のプライマーセットを含む、請求項20に記載のキット。 The kit according to claim 20, comprising a combination of group (V) and group (VI) primer sets and a group (VII) primer set.
  22.  更に配列番号35、配列番号41、若しくは配列番号47のいずれかで示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブを少なくとも一つ含有する、請求項19~21のいずれかに記載のキット。 22. The method according to any one of claims 19 to 21, further comprising at least one nucleic acid probe consisting of the base sequence shown by any one of SEQ ID NO: 35, SEQ ID NO: 41, or SEQ ID NO: 47 or a base sequence complementary thereto. kit.
  23.  更に配列番号38、配列番号44、若しくは配列番号50のいずれかで示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブを少なくとも一つ含有する、請求項19~22のいずれかに記載のキット。 23. The method according to any one of claims 19 to 22, further comprising at least one nucleic acid probe consisting of the base sequence shown by any one of SEQ ID NO: 38, SEQ ID NO: 44, or SEQ ID NO: 50 or a base sequence complementary thereto. kit.
  24.  更に配列番号3、配列番号6、配列番号9、配列番号12、配列番号15、配列番号18、配列番号21、配列番号24、配列番号27、若しくは配列番号30で示される塩基配列又はそれらに相補的な塩基配列からなる核酸プローブを少なくとも一つ含有する、請求項19~23のいずれかに記載のキット。 Furthermore, the nucleotide sequences represented by SEQ ID NO: 3, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 12, SEQ ID NO: 15, SEQ ID NO: 18, SEQ ID NO: 21, SEQ ID NO: 24, SEQ ID NO: 27, or SEQ ID NO: 30, or complementary thereto 24. The kit according to any one of claims 19 to 23, which contains at least one nucleic acid probe consisting of a specific base sequence.
  25.  前記プローブがTaqManプローブである、請求項22~24のいずれかに記載のキット。 The kit according to any one of claims 22-24, wherein the probe is a TaqMan probe.
  26.  前記試料が核酸の単離処理を行っていない試料である、請求項19~25のいずれかに記載のキット。 The kit according to any one of claims 19 to 25, wherein the sample is a sample that has not undergone nucleic acid isolation treatment.
  27.  前記試料が唾液試料、喀痰試料、うがい液、涙液、咽頭ぬぐい液試料、鼻咽頭ぬぐい液、鼻腔ぬぐい液試料、糞便試料及び拭き取り検査試料からなる群より選択される少なくとも1種である、請求項19~26のいずれかに記載のキット。 The sample is at least one selected from the group consisting of a saliva sample, a sputum sample, a gargle, tears, a pharyngeal swab, a nasopharyngeal swab, a nasal swab, a fecal sample, and a swab sample. Item 27. The kit according to any one of Items 19-26.
  28.  試料が水、生理食塩水、緩衝液、及びスプタザイム酵素液からなる群より選択される少なくとも1種に懸濁された懸濁液、又はそれらの遠心上清若しくは濃縮物である、請求項19~27のいずれかに記載のキット。 Claims 19 to 19, wherein the sample is a suspension suspended in at least one selected from the group consisting of water, physiological saline, buffer, and sputazyme enzyme solution, or a centrifugal supernatant or concentrate thereof. 28. The kit according to any of 27.
  29.  DNAポリメラーゼを更に含む、請求項19~28のいずれかに記載のキット。 The kit according to any one of claims 19 to 28, further comprising a DNA polymerase.
  30.  夾雑物耐性と逆転写活性を併せ持つDNAポリメラーゼを含むか、又は夾雑物耐性を有するDNAポリメラーゼ及び逆転写酵素を含む、請求項19~29のいずれかに記載のキット。 The kit according to any one of claims 19 to 29, which contains a DNA polymerase having both contaminant resistance and reverse transcription activity, or contains a contaminant-resistant DNA polymerase and a reverse transcriptase.
  31.  夾雑物耐性を有するDNAポリメラーゼがFamily Aに属するDNAポリメラーゼである、請求項19~30のいずれかに記載のキット。 The kit according to any one of claims 19 to 30, wherein the contaminant-resistant DNA polymerase is a DNA polymerase belonging to Family A.
  32.  夾雑物耐性を有するDNAポリメラーゼが、Tth、Hawk Z05およびそれらの変異体からなる群から選択される少なくとも1種の夾雑物耐性を有するDNAポリメラーゼであることを特徴とする、請求項30又は31に記載のキット。 According to claim 30 or 31, wherein the contaminant-resistant DNA polymerase is at least one contaminant-resistant DNA polymerase selected from the group consisting of Tth, Hawk Z05, and variants thereof. Kit as described.
  33.  前記変異体が、Tthポリメラーゼ(配列番号51)又はHawk Z05ポリメラーゼ(配列番号52)のアミノ酸配列と90%以上の同一性を示すアミノ酸配列からなり、且つ、夾雑物耐性を有するDNAポリメラーゼ活性を示すものである、請求項32に記載のキット。 The mutant consists of an amino acid sequence showing 90% or more identity with the amino acid sequence of Tth polymerase (SEQ ID NO: 51) or Hawk Z05 polymerase (SEQ ID NO: 52), and exhibits contaminant-resistant DNA polymerase activity. 33. The kit of claim 32, which is a
  34.  前記変異体が、Tthポリメラーゼ(配列番号51)又はHawk Z05ポリメラーゼ(配列番号52)のアミノ酸配列において1又は数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列からなり、且つ、夾雑物耐性を有するDNAポリメラーゼ活性を示すものである、請求項32又は33に記載のキット。 The mutant consists of an amino acid sequence having one or several amino acid deletions, substitutions and/or additions in the amino acid sequence of Tth polymerase (SEQ ID NO: 51) or Hawk Z05 polymerase (SEQ ID NO: 52), and is contaminating 34. The kit according to claim 32 or 33, which exhibits DNA polymerase activity with antimicrobial resistance.
  35.  逆転写酵素が、モロニーマウス白血病ウイルス(MMLV)由来の逆転写酵素、トリ骨髄芽球症ウイルス(AMV)由来の逆転写酵素、およびこれらの変異体からなる群より選択される少なくとも1種に由来する逆転写酵素である、請求項30~34のいずれかに記載のキット。 Reverse transcriptase is derived from at least one selected from the group consisting of reverse transcriptase derived from Moloney murine leukemia virus (MMLV), reverse transcriptase derived from avian myeloblastosis virus (AMV), and variants thereof The kit according to any one of claims 30 to 34, which is a reverse transcriptase that
PCT/JP2022/013261 2021-03-29 2022-03-22 Set of oligonucleotides for detecting plurality of types of viruses through multiplex pcr WO2022210122A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511034A JPWO2022210122A1 (en) 2021-03-29 2022-03-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021055485 2021-03-29
JP2021-055485 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022210122A1 true WO2022210122A1 (en) 2022-10-06

Family

ID=83455273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013261 WO2022210122A1 (en) 2021-03-29 2022-03-22 Set of oligonucleotides for detecting plurality of types of viruses through multiplex pcr

Country Status (2)

Country Link
JP (1) JPWO2022210122A1 (en)
WO (1) WO2022210122A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131164A (en) * 2016-01-28 2017-08-03 東洋紡株式会社 Improved virus detection method
JP2017209036A (en) * 2016-05-24 2017-11-30 東洋紡株式会社 Improved virus detection method
JP2018000138A (en) * 2016-07-06 2018-01-11 東洋紡株式会社 Improved virus detection method
JP2020018295A (en) * 2018-07-24 2020-02-06 東洋紡株式会社 Improved virus detection method
JP2021019558A (en) * 2019-07-30 2021-02-18 東洋紡株式会社 Improved virus detection method
JP2021019559A (en) * 2019-07-30 2021-02-18 東洋紡株式会社 Improved virus detection method
CN112410469A (en) * 2020-11-23 2021-02-26 深圳市赛格诺生物科技有限公司 Fluorescent RT-PCR reagent and method for detecting influenza A virus, influenza B virus and coronavirus SARS-CoV-2
WO2022050141A1 (en) * 2020-09-04 2022-03-10 東洋紡株式会社 Respiratory infection testing method using multiplex pcr

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131164A (en) * 2016-01-28 2017-08-03 東洋紡株式会社 Improved virus detection method
JP2017209036A (en) * 2016-05-24 2017-11-30 東洋紡株式会社 Improved virus detection method
JP2018000138A (en) * 2016-07-06 2018-01-11 東洋紡株式会社 Improved virus detection method
JP2020018295A (en) * 2018-07-24 2020-02-06 東洋紡株式会社 Improved virus detection method
JP2021019558A (en) * 2019-07-30 2021-02-18 東洋紡株式会社 Improved virus detection method
JP2021019559A (en) * 2019-07-30 2021-02-18 東洋紡株式会社 Improved virus detection method
WO2022050141A1 (en) * 2020-09-04 2022-03-10 東洋紡株式会社 Respiratory infection testing method using multiplex pcr
CN112410469A (en) * 2020-11-23 2021-02-26 深圳市赛格诺生物科技有限公司 Fluorescent RT-PCR reagent and method for detecting influenza A virus, influenza B virus and coronavirus SARS-CoV-2

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "2019-Novel Coronavirus (2019-nCoV) Real-time rRT-PCR Panel Primers and Probes", CENTERS FOR DISEASE CONTROL AND PREVENTION (CDC), DEPARTMENT OF HEALTH & HUMAN SERVICES PUBLIC HEALTH SERVICE CENTERS FOR DISEASE CONTROL AND PREVENTION (CDC) ATLANTA, GA 30333, XP055768081, Retrieved from the Internet <URL:https://web.archive.org/web/20200519162730if_/https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-primer-probes.pdf> [retrieved on 20210122] *
ANONYMOUS: "Influenza Diagnosis Manual (4th Edition)", INFLUENZA DIAGNOSIS MANUAL (4TH EDITION), NATIONAL INSTITUTE OF INFECTIOUS DISEASES, JP, 1 January 2018 (2018-01-01), JP, pages 1 - 87, XP055972430, Retrieved from the Internet <URL:https://www.niid.go.jp/niid/images/lab-manual/influenza20190116.pdf> [retrieved on 20221018] *
ANONYMOUS: "Pathogen detection manual, 2019-nCoV Ver.2.9.1", NATIONAL INST. OF INFECTIOUS DISEASES, 1 January 2020 (2020-01-01), XP055950901, Retrieved from the Internet <URL:https://www.niid.go.jp/niid/images/lab-manual/2019-nCoV20200319.pdf> [retrieved on 20220811] *
ANONYMOUS: "Protocol: Real-time RT-PCR assays for the detection of SARS-CoV-2 Institut Pasteur", WORLD HEALTH ORGANIZATION, 24 January 2020 (2020-01-24), XP055888027, Retrieved from the Internet <URL:https://www.who.int/docs/default-source/coronaviruse/whoinhouseassays.pdf> [retrieved on 20220207] *
ANONYMOUS: "Research use only CDC influenza SARS-CoV-2 (Flu SC2) multiplex assay real-Time RT-PCR primers and probes", STACKS HOME ID# 90575, CENTERS FOR DISEASE CONTROL AND PREVENTION (U.S.), 14 July 2020 (2020-07-14), pages 1 - 2, XP055972439, Retrieved from the Internet <URL:https://stacks.cdc.gov/view/cdc/90575> [retrieved on 20221018] *
ANONYMOUS: "WHO information for the molecular detection of influenza viruses", WHO INFORMATION FOR THE MOLECULAR DETECTION OF INFLUENZA VIRUSES, WHO, 1 February 2021 (2021-02-01), pages 1 - 68, XP055972444, Retrieved from the Internet <URL:https://cdn.who.int/media/docs/default-source/influenza/molecular-detention-of-influenza-viruses/protocols_influenza_virus_detection_feb_2021.pdf?sfvrsn=df7d268a_5> [retrieved on 20221018] *

Also Published As

Publication number Publication date
JPWO2022210122A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
Freymuth et al. Detection of respiratory syncytial virus by reverse transcription-PCR and hybridization with a DNA enzyme immunoassay
JP7167913B2 (en) Virus test method and virus test kit
WO2022050141A1 (en) Respiratory infection testing method using multiplex pcr
WO2017212904A1 (en) Method for rapid detection of african swine fever virus using lamp method in which multiple primer sets are combined
CN111321251A (en) Composition, kit, method and application for detecting and typing pathogens causing respiratory tract infection
JP6642045B2 (en) Improved virus detection method
JP7392309B2 (en) Improved virus detection method
US20170275711A1 (en) Broad detection of dengue virus serotypes
van Coppenraet et al. Comparison of two commercial molecular assays for simultaneous detection of respiratory viruses in clinical samples using two automatic electrophoresis detection systems
CN108676913A (en) A kind of human parainfluenza viruses&#39; nucleic acid is hands-free to take gene parting detecting reagent
JP2020156470A (en) Nucleic acid amplification method suppressed in non-specific amplification
CN116171333A (en) Compositions and methods for detecting severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), influenza A and influenza B
JP2018000138A (en) Improved virus detection method
JP2024026545A (en) Improved nucleic acid detection method
JP2023536962A (en) Compositions and methods for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-2), influenza A and influenza B
TW202219272A (en) Sars-cov-2 detection
TW201245452A (en) Nucleic acid detection
JP2016019495A (en) Nucleic acid amplification technique
JP7188645B2 (en) Method for suppressing non-specific nucleic acid amplification
WO2022210122A1 (en) Set of oligonucleotides for detecting plurality of types of viruses through multiplex pcr
CN101415844B (en) Assay for SARS coronavirus by amplification and detection of nucleocapsid RNA sequence
WO2021225430A1 (en) Method for detection of sars-cov-2 infection
WO2022039228A1 (en) Improved multiplex pcr testing method
WO2022059555A1 (en) Improved multiplex pcr testing method
JPH07184695A (en) Method for simply detecting hepatitis c virus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511034

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780337

Country of ref document: EP

Kind code of ref document: A1