WO2019017379A1 - Sensor device and sensing method - Google Patents

Sensor device and sensing method Download PDF

Info

Publication number
WO2019017379A1
WO2019017379A1 PCT/JP2018/026887 JP2018026887W WO2019017379A1 WO 2019017379 A1 WO2019017379 A1 WO 2019017379A1 JP 2018026887 W JP2018026887 W JP 2018026887W WO 2019017379 A1 WO2019017379 A1 WO 2019017379A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
reflected
reflector
receiver
transmitter
Prior art date
Application number
PCT/JP2018/026887
Other languages
French (fr)
Japanese (ja)
Inventor
真生 大関
祥太 椙村
松田 武浩
健一 花田
吉田 裕司
陽 河野
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2019017379A1 publication Critical patent/WO2019017379A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present invention relates to a sensor device and a sensing method.
  • the sensor arrangement may measure the distance to the object, in particular light may be used to measure the distance to the object.
  • Patent Document 1 describes that light is emitted from a transmitter (laser light source) toward an object, and light reflected from the object is received by a receiver (for example, an avalanche photodiode (APD)). ing. In this case, the distance from the sensor device to the object can be measured based on the time required for the light to be emitted from the transmitter and to be received by the receiver.
  • a movable reflector for example, a MEMS (Micro Electro Mechanical Systems) mirror
  • light reflected from the target is reflected. It is reflected towards the receiver by the same movable reflector.
  • the inventor of the present invention is to reflect the electromagnetic wave (for example, light) emitted from the transmitter and the electromagnetic wave (for example, light) reflected from the object by a common movable reflector as in the above-mentioned example of Patent Document 1. In particular, it was considered to measure the distance from the sensor device to an object that was somewhat large distance away.
  • the inventor of the present invention can move the electromagnetic wave emitted from the transmitter to the movable reflector when the object is at a certain distance (that is, the time required for the electromagnetic wave to be emitted from the sensor device to return to the sensor device is somewhat long).
  • the direction of the movable reflector changes between the time when the movable reflector reflects and the time when the movable reflector reflects the electromagnetic wave reflected from the object.
  • the inventor examined a structure capable of widening the range in which the receiver can receive an electromagnetic wave even if the orientation of the movable reflector changes in this manner.
  • One of the problems to be solved by the present invention is to widen the range in which the receiver can receive an electromagnetic wave even if the object is far from the sensor device by a certain distance.
  • the invention according to claim 1 is A transmitter, A receiver,
  • the movable electromagnetic wave emitted from the transmitter can be reflected in one direction toward an object, and the electromagnetic wave reflected from the object can be reflected in a direction different from the one direction.
  • a reflector, Equipped with The receiver is disposed at a position opposite to each other across an imaginary axis through which an electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass. It is a sensor apparatus containing a part and a 2nd receiving part.
  • the invention according to claim 4 is A transmitter that emits an electromagnetic wave, An electromagnetic wave emitted from the transmitter can be reflected in one direction toward an object, and a movable reflection capable of reflecting the electromagnetic wave reflected from the object in a direction different from the one direction can be reflected.
  • the A reflector for reflecting the electromagnetic wave reflected by the object;
  • a receiver for receiving the electromagnetic wave reflected by the object and the electromagnetic wave reflected by the reflector; Equipped with The receiver and the reflector are disposed at mutually opposing positions with an imaginary axis through which an electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass.
  • Sensor device is disposed at mutually opposing positions with an imaginary axis through which an electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass.
  • the invention according to claim 5 is A transmitter, A receiver, A first reflector, A second reflector,
  • the movable electromagnetic wave emitted from the transmitter can be reflected in one direction toward an object, and the electromagnetic wave reflected from the object can be reflected in a direction different from the one direction.
  • a reflector, Equipped with The first reflector and the second reflector are opposed to each other across an imaginary axis through which the electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass.
  • the receiver is a sensor device capable of receiving the electromagnetic wave reflected by the first reflector and the second reflector from the movable reflector.
  • the invention according to claim 6 is A transmitter capable of emitting an electromagnetic wave in one direction, A receiver capable of receiving electromagnetic waves from two directions shifted from the one direction to the other side; Equipped with At the first timing, the receiver directs one of the two directions to an object, and receives an electromagnetic wave emitted from the transmitter and reflected from the object, At the second timing, the receiver is a sensor device that directs the other of the two directions to the object, and receives an electromagnetic wave emitted from the transmitter and reflected from the object.
  • the invention according to claim 7 is A transmitter, a receiver, and a movable reflector are prepared, and an electromagnetic wave emitted from the transmitter is reflected toward the object by the movable reflector, and is reflected from the object to be reflected by the movable reflector.
  • Receiving by the receiver the electromagnetic wave reflected by The movable reflector can reflect the electromagnetic wave emitted from the transmitter in one direction toward the object, and can reflect the electromagnetic wave reflected from the object in a direction different from the one direction. Facing and reflecting, The receiver is disposed at a position opposite to each other across an imaginary axis through which an electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass.
  • a sensing method including a unit and a second receiving unit.
  • the invention according to claim 8 is A transmitter, a receiver, a reflector, and a movable reflector are provided, and an electromagnetic wave emitted from the transmitter is reflected by the movable reflector toward the object, and is reflected from the object.
  • the movable reflector can reflect the electromagnetic wave emitted from the transmitter in one direction toward the object, and can reflect the electromagnetic wave reflected from the object in a direction different from the one direction. Facing and reflecting,
  • the receiver and the reflector are disposed at mutually opposing positions with an imaginary axis through which an electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass.
  • the receiver is a sensing method capable of receiving the electromagnetic wave reflected by the movable reflector from the movable reflector and the electromagnetic wave reflected by the reflector from the movable reflector.
  • the invention according to claim 9 is A transmitter, a receiver, a first reflector, a second reflector, and a movable reflector are provided, and an electromagnetic wave emitted from the transmitter is reflected toward the object by the movable reflector.
  • Receiving by the receiver the electromagnetic waves reflected from the object and reflected by the movable reflector The movable reflector can reflect the electromagnetic wave emitted from the transmitter toward the one direction toward the object, and the electromagnetic wave reflected from the object may face the direction different from the one direction.
  • the first reflector and the second reflector are opposed to each other across an imaginary axis through which the electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass.
  • the receiver may be a sensing method capable of receiving the electromagnetic wave reflected by the first reflector and the second reflector from the movable reflector.
  • the invention according to claim 10 is Preparing a transmitter and a receiver, emitting an electromagnetic wave from the transmitter to an object, and receiving the electromagnetic wave reflected from the object by the receiver;
  • the transmitter can emit the electromagnetic wave in one direction
  • the receiver can receive electromagnetic waves from two directions shifted from the one direction to the opposite side,
  • the receiver directs one of the two directions to an object, and receives an electromagnetic wave emitted from the transmitter and reflected from the object,
  • the receiver is a sensing method in which the other of the two directions is directed to the object, and the receiver receives an electromagnetic wave emitted from the transmitter and reflected from the object.
  • FIG. 2 is a view for explaining a sensor device according to Embodiment 1.
  • FIG. 2 is a view for explaining a sensor device according to Embodiment 1.
  • FIG. 2 is a view for explaining a sensor device according to Embodiment 1. It is a figure for demonstrating an example of the function of the sensor apparatus shown to FIGS. 1-3. It is a diagram for explaining the relationship between the functions of the movable reflectors of the resonant frequency f 0 and the sensor device. It is a diagram for explaining the relationship between the functions of the movable reflectors of the resonant frequency f 0 and the sensor device.
  • FIG. 6 is a view for explaining a sensor device according to a second embodiment.
  • FIG. 6 is a view for explaining a sensor device according to a second embodiment.
  • FIG. 6 is a view for explaining a sensor device according to a second embodiment.
  • FIG. 6 is a view for explaining a sensor device according to a second embodiment.
  • FIG. 6 is a view for explaining a sensor device according to a second embodiment.
  • FIG. 14 is a view for explaining a sensor device according to a fourth embodiment.
  • FIG. 14 is a view for explaining a sensor device according to a fourth embodiment.
  • FIG. 14 is a view for explaining a sensor device according to a fourth embodiment.
  • FIG. 14 is a view for explaining a sensor device according to a fourth embodiment.
  • It is a figure for demonstrating the sensor apparatus which concerns on an Example.
  • It is a figure for demonstrating the sensor apparatus which concerns on an Example.
  • FIGS. 1, 2 and 3 are diagrams for explaining the sensor device 10 according to the first embodiment.
  • the sensing method used by the sensor device 10 comprises a transmitter 100, a receiver 200, a movable reflector 300, a beam splitter (BS) 400 and a lens 500.
  • the transmitter 100 can transmit an electromagnetic wave.
  • the electromagnetic waves transmitted from the transmitter 100 are reflected by the BS 400 and reach the movable reflector 300.
  • the movable reflector 300 is rockable, and can deflect the electromagnetic wave reflected by the movable reflector 300.
  • the electromagnetic wave reflected by the movable reflector 300 passes through the lens 500 and reaches the object O.
  • the electromagnetic wave reflected from the object O passes through the lens 500, is reflected by the movable reflector 300, passes through the BS 400, and reaches the receiver 200.
  • this sensing method has a receiving step, in which the electromagnetic wave emitted from the transmitter 100 is reflected toward the object O by the movable reflector 300 and reflected from the object O An electromagnetic wave is received by the receiver 200.
  • the receiver 200 includes a first receiving element 210 and a second receiving element 220, and the first receiving element 210 and the second receiving element 220 can receive an electromagnetic wave.
  • the transmitter 100 can emit electromagnetic waves, in particular light or radio waves.
  • the sensor device 10 can function as a LiDAR (Light Detection And Ranging), and when the sensor device 10 emits a radio wave, the sensor device 10 may be an RADAR (RAdio Detection And Ranging).
  • Can function as The transmitter 100 can be, for example, a laser light source, in particular a laser diode (LD).
  • LD laser diode
  • Each of the first receiving element 210 and the second receiving element 220 can receive the electromagnetic wave emitted from the transmitter 100 and reflected from the object O.
  • Each of the first receiving element 210 and the second receiving element 220 can be, for example, a light receiving element, in particular, an avalanche photodiode (APD).
  • APD avalanche photodiode
  • the movable reflector 300 can be periodically rocked, and in particular, the swing angle of the movable reflector 300 may change sinusoidally.
  • the angular velocity of the deflection angle of the movable reflector 300 is somewhat high. Specifically, after the movable reflector 300 reflects the electromagnetic wave toward the object O, the electromagnetic wave reflected from the object O is movablely reflected. The deflection angle ⁇ of the movable reflector 300 is changed until the reflector 300 is reflected.
  • the movable reflector 300 can be, for example, a MEMS (Micro Electro Mechanical Systems) mirror.
  • the sensor device 10 can measure the distance from the sensor device 10 to the object O based on the time required for the electromagnetic wave to be emitted from the transmitter 100 and to be received by the receiver 200.
  • the time required for the electromagnetic wave to be reflected by the movable reflector 300 after the electromagnetic wave is emitted from the transmitter 100 (FIG. 1) and from the electromagnetic wave being reflected by the movable reflector 300 to reach the receiver 200
  • the time required (FIGS. 2 and 3) is both very short and considered zero.
  • FIG. 1 shows an example in which the electromagnetic wave emitted from the transmitter 100 is reflected by the movable reflector 300 at a timing of zero per swing angle ⁇ of the movable reflector 300.
  • FIG. 2 shows an example where the movable reflector 300 is rotated clockwise in the figure after the timing of FIG.
  • the object O is at a relatively large distance from the sensor device 10 (that is, the time required for the electromagnetic wave to be returned to the sensor device 10 after the electromagnetic wave is emitted from the sensor device 10 is somewhat long).
  • the deflection angle ⁇ of the movable reflector 300 of the sensor device 10 from the time when it is reflected towards the object O by (FIG. 1) and when it is reflected by the movable reflector 300 towards the receiver 200 (FIG. 2) Has changed from zero to + ⁇ .
  • the movable reflector 300 can reflect the electromagnetic wave emitted from the transmitter 100 toward the object O in one direction (FIG. 1), and reflects the electromagnetic wave reflected from the object O , It is possible to reflect in a direction different from the one direction (FIG. 2).
  • FIG. 3 shows an example where the movable reflector 300 is rotated counterclockwise in the figure after the timing of FIG.
  • the object O is at a relatively large distance from the sensor device 10 (that is, the time required for the electromagnetic wave to be returned to the sensor device 10 after the electromagnetic wave is emitted from the sensor device 10 is somewhat long).
  • the deflection angle ⁇ of the movable reflector 300 of the sensor device 10 from the time when it is reflected towards the object O by (FIG. 1) and when it is reflected by the movable reflector 300 towards the receiver 200 (FIG. 3) Has changed from zero to - ⁇ .
  • the movable reflector 300 can reflect the electromagnetic wave emitted from the transmitter 100 toward the object O in one direction (FIG. 1), and reflects the electromagnetic wave reflected from the object O , It is possible to reflect in a direction different from the one direction (FIG. 3).
  • the receiver 200 includes a first receiving element 210 (first receiving unit) and a second receiving element 220 (second receiving unit), and the first receiving element 210 and the second receiving element 220 are virtual in the figure. They are offset from axis A in opposite directions.
  • the first receiving element 210 and the second receiving element 220 are disposed at mutually opposing positions with the virtual axis A in between.
  • the virtual axis A is an axis through which the electromagnetic wave reflected by the movable object 300 reflected from the object O and directed to the one direction (the direction in which the movable reflector 300 is directed at the timing in FIG. 1) can pass. .
  • the receiver 200 can receive the electromagnetic wave.
  • the electromagnetic wave reflected by the movable reflector 300 is subjected to the first reception. It can be received by the element 210, ie a receiver offset from the virtual axis A to one side.
  • the electromagnetic wave reflected by the movable reflector 300 is received by the first receiving element 210. I can not However, as shown in FIG.
  • the electromagnetic wave reflected by the movable reflector 300 can be received by the second receiving element 220, that is, a receiving unit shifted from the virtual axis A to the other side. In this way, it is possible to widen the range in which the receiver 200 can receive an electromagnetic wave.
  • the virtual axis A in the example shown in FIGS. 1 to 3 is an axis through which the electromagnetic wave reflected by the movable reflector 300 at a shake angle ⁇ of zero can pass
  • the virtual axis A is a shake angle ⁇ May be an axis through which the electromagnetic wave reflected by the movable reflector 300 at an angle other than zero can pass.
  • FIG. 4 is a diagram for explaining an example of the function of the sensor device 10 shown in FIGS. 1 to 3.
  • the shake angle ⁇ in FIG. 4 indicates the shake angle ⁇ of the movable reflector 300 in FIGS. 1 to 3, and the plot on the curve showing the shake angle ⁇ in FIG. 4 is an electromagnetic wave emitted from the transmitter 100.
  • the timing reflected by the movable reflector 300 is shown.
  • the curve representing the swing angle ⁇ can be divided into two phases P1 and P2.
  • the swing angle ⁇ monotonously increases (that is, the derivative ⁇ ′ (t) of the swing angle ⁇ is positive).
  • the shake angle ⁇ monotonously decreases (that is, the derivative ⁇ ′ (t) of the shake angle ⁇ is negative).
  • the electromagnetic wave reflected towards the object O by the movable reflector 300 in the phase P1 can be received by the first receiving element 210, as shown in FIG.
  • the electromagnetic wave reflected towards the object O by the movable reflector 300 at the phase P2 can be received by the second receiving element 220, as shown in FIG.
  • the receiver 200 can receive electromagnetic waves in a wide range, ie, both of the phases P1 and P2. Specifically, if the receiver 200 includes only the first receiving element 210 of the first receiving element 210 and the second receiving element 220, it is reflected toward the object O by the movable reflector 300 in phase P1. Even if the electromagnetic wave can be received by the first receiving element 210, the electromagnetic wave reflected toward the object O by the movable reflector 300 in the phase P2 can not be received by the first receiving element 210. Similarly, if the receiver 200 includes only the second receiving element 220 among the first receiving element 210 and the second receiving element 220, the light is reflected toward the object O by the movable reflector 300 at phase P2.
  • the electromagnetic wave can be received by the second receiving element 220, the electromagnetic wave reflected toward the object O by the movable reflector 300 in the phase P1 can not be received by the second receiving element 220.
  • the receiver 200 when the receiver 200 includes both the first receiving element 210 and the second receiving element 220, the receiver 200 can receive electromagnetic waves in both phases P1 and P2.
  • FIGS. 5 to 7 are diagrams for explaining the relationship between the resonance frequency f 0 of the movable reflector 300 and the function of the sensor device 10.
  • the resonance frequency f 0 of the movable reflector 300 can be reduced, as will be described in detail with reference to FIGS. 5 to 7.
  • the amplitude A of the movable reflector 300 that is, the FOV (Field Of View) of the sensor device 10
  • the measurable distance range L of the sensor device 10 is widened.
  • the measurable distance of the sensor device 10 can be increased.
  • FIG. 5 shows the arrangement of pixels in one frame.
  • the sensor device 10 performs raster scanning, and in particular, the electromagnetic waves reflected by the movable reflector 300 are applied to the plots in FIG. 5 along the curves in FIG. There is.
  • the resonant frequency f 0 of the movable reflector 300 is as shown in the following equation (1).
  • p indicates the pitch of the scan
  • R f indicates the frame rate.
  • the number n in equation (1) indicates the number of lines scanned while the movable reflector 300 oscillates once.
  • the number n is 1 when scanning is performed in only one of the oscillations of the movable reflector 300, as shown in FIG.
  • the number n is 2 if scanning is performed in both directions of the vibration of the movable reflector 300 as shown in FIG.
  • the resonance frequency f 0 can be reduced.
  • the swing angle ⁇ of the movable reflector 300 is as shown in the following equation (2). However, A shows the amplitude of the movable reflector 300.
  • the maximum value F max of the force acting on the movable reflector 300 is as shown in the following equation (3), and must be equal to or less than the allowable value F acc .
  • m represents the mass of the movable reflector 300.
  • the relationship between the swing angle ⁇ of the movable reflector 300 and the diameter D APD of the first receiving element 210 is as shown in the following equation (4).
  • S indicates the sensitivity of the movable reflector 300.
  • the time ⁇ t required for the movable reflector 300 to rotate the swing angle ⁇ is as shown in the following equation (5).
  • the measurable distance range L of the sensor device 10 is c ⁇ t / 2 (c: speed of light), and is expressed by the following equation (6).
  • the measurable distance range L of the sensor device 10 becomes wider as the resonance frequency f 0 becomes smaller.
  • the power of the electromagnetic wave reflected toward the object O by the movable reflector 300 is determined by the transmission interval ⁇ t min of the electromagnetic wave from the viewpoint of eye safety.
  • the transmission interval ⁇ t min of the electromagnetic wave is expressed by the following equation (7), and the power of the electromagnetic wave can be increased as the transmission interval ⁇ t min is longer.
  • the power of the electromagnetic wave reflected by the movable reflector 300 toward the object O is the resonant frequency of the movable reflector As f 0 is smaller, it can be larger.
  • the power that can be received by the first receiving element 210 for the electromagnetic wave reflected from the object O is as shown in the following equation (8).
  • indicates the surface density of the material of the movable reflector 300
  • E indicates the area of the movable reflector 300
  • m ⁇ E.
  • the power (corresponding to the longest measurable distance of the sensor device 10) that can be received by the first receiving element 210 for the electromagnetic wave reflected from the object O The smaller the resonance frequency f 0, the larger the frequency.
  • FIG. 8 is a diagram for explaining an example of the function of the sensor device 10 shown in FIGS. 1 to 3.
  • the electromagnetic wave is reflected toward the object O by the movable reflector 300 in both directions of the vibration of the movable reflector 300.
  • the lower graph in Figure 8 the vibrations of the movable reflector 300 is achieved by halving the transmission interval of the electromagnetic waves while keeping the resonance frequency f 0 constant. Only in direction can electromagnetic waves be reflected by the movable reflector 300 towards the object O (upper graph in FIG. 8).
  • FIG. 9 is a diagram for explaining a first example of the details of the receiver 200. As shown in FIG.
  • the receiver 200 includes a first receiving element 210, a second receiving element 220, and a differential amplifier 230.
  • the signal Vin + from the first receiving element 210 is input to the non-inverting input terminal (+) of the differential amplifier 230, and the signal from the second receiving element 220 is input to the inverting input terminal (-) of the differential amplifier 230.
  • Vin- is input.
  • the differential amplifier 230 outputs a difference Vout between the signal Vin + and the signal Vin ⁇ .
  • a noise signal for example, clock noise
  • the noise signal is canceled in the signal Vout output from the differential amplifier 230, and the noise signal is removed.
  • FIG. 10 is a diagram for explaining a second example of the details of the receiver 200. As shown in FIG.
  • the receiver 200 includes a first receiving element 210, a second receiving element 220, and an integrating circuit 240.
  • the difference between the output signal of the second receiving element 220 and the target value r is input to the integrating circuit 240, and the output signal of the integrating circuit 240 is input to the first receiving element 210.
  • An output signal of the element 210 is output to the outside of the receiver 200. Therefore, it is possible to optimize the first receiving element 210 based on the output signal of the integrating circuit 240 (especially, adjust the gain of the first receiving element 210 when the first receiving element 210 is an APD).
  • the receiver 200 can function as shown in FIG. . That is, the receiving unit (first receiving element 210) for receiving the electromagnetic wave reflected from the object O using the output signal of the receiving unit (second receiving element 220) not receiving the electromagnetic wave reflected from the object O It can be optimized.
  • the difference between the output signal of the first receiving element 210 and the target value r is input to the integrating circuit 240, and the output signal of the integrating circuit 240 is input to the second receiving element 220.
  • An output signal of the element 220 is output to the outside of the receiver 200. Therefore, it is possible to optimize the second receiving element 220 based on the output signal of the integration circuit 240 (especially, adjust the gain of the second receiving element 220 when the second receiving element 220 is an APD).
  • the receiver 200 can function as shown in FIG. . That is, using the output signal of the receiving unit (first receiving element 210) that does not receive the electromagnetic wave reflected from the object O, the receiving unit (second receiving element 220) that receives the electromagnetic wave reflected from the object O It can be optimized.
  • the first receiving element 210 and the second receiving element 220 can be optimized based on the surrounding environment of the receiver 200.
  • the first receiving element 210 and the second receiving element 220 can receive background noise (for example, sunlight)
  • the first receiving element 210 and the second receiving element 220 are optimized based on the background noise.
  • FIG. 11 is a diagram for explaining a third example of the details of the receiver 200. As shown in FIG.
  • the receiver 200 comprises a first receiving element 210, a second receiving element 220 and a controller 250.
  • the controller 250 operates only one or both of the first receiving element 210 and the second receiving element 220 based on the state of the first receiving element 210 and the state of the second receiving element 220.
  • the controller 250 when an abnormality (for example, an error or a failure) is detected in one of the first reception element 210 and the second reception element 220, the controller 250 operates the operation of the reception element having the abnormality. May be stopped to operate only the normal receiving element. Even in this case, the sensor device 10 can function only with the receiving element without any abnormality.
  • an abnormality for example, an error or a failure
  • the controller 250 operates only one or both of the first reception element 210 and the second reception element 220 according to the specification (for example, resolution) required of the sensor device 10. You may do so. In particular, when the resolution required for the sensor device 10 is high, the controller 250 can cause both the first receiving element 210 and the second receiving element 220 to operate, and the resolution required for the sensor device 10 When low, the controller 250 may cause only one of the first receiving element 210 and the second receiving element 220 to operate. By operating only one of the first reception element 210 and the second reception element 220, power consumption of the sensor device 10 can be suppressed.
  • the specification for example, resolution
  • the controller 250 may operate only one or both of the first reception element 210 and the second reception element 220. Good. In particular, when the internal temperature or ambient temperature of the sensor device 10 is low, the controller 250 can cause both the first receiving element 210 and the second receiving element 220 to operate, and the internal temperature of the sensor device 10 or When the ambient temperature is high, the controller 250 may cause only one of the first receiving element 210 and the second receiving element 220 to operate. By operating only one of the first receiving element 210 and the second receiving element 220, heat generation from the sensor device 10 can be suppressed, and the sensor device 10 operates even if the internal temperature or ambient temperature of the sensor device 10 is high. It can be done.
  • the receiver 200 it is possible to widen the range in which the receiver 200 can receive an electromagnetic wave even if the object O is separated from the sensor device 10 by a certain distance.
  • Second Embodiment 12, 13 and 14 are views for explaining the sensor device 10 according to the second embodiment, and correspond to FIGS. 1, 2 and 3 of the first embodiment, respectively.
  • the sensor device 10 according to the present embodiment is the same as the sensor device 10 according to the first embodiment except for the following points.
  • the sensor device 10 includes a shielding member 600.
  • the shielding member 600 separates the movable reflector 300 from the receiver 200.
  • the shielding member 600 has a first stop 610 and a second stop 620, and the first stop 610 and the second stop 620 are located on opposite sides of the imaginary axis A.
  • a part (first receiver) of the receiver 200 can receive the electromagnetic wave that has passed through the first diaphragm 610, and another part (second receiver) of the receiver 200 can receive the second electromagnetic wave.
  • the electromagnetic waves having passed through the aperture 620 can be received.
  • the electromagnetic wave reflected by the movable reflector 300 is the first stop 610, that is, the virtual, as shown in FIG. It passes through an aperture which is offset from axis A to one side and is received by a part (first receiver) of the receiver 200.
  • the electromagnetic wave reflected by the movable reflector 300 is second diaphragm 620, ie, as shown in FIG. It passes through the diaphragm, which is offset from the virtual axis A to the other side, and is received by the other part of the receiver 200 (second receiver).
  • (Embodiment 3) 15, 16 and 17 are diagrams for explaining the sensor device 10 according to the third embodiment, and correspond to FIGS. 1, 2 and 3 of the first embodiment, respectively.
  • the sensor device 10 according to the present embodiment is the same as the sensor device 10 according to the first embodiment except for the following points.
  • the sensor device 10 comprises a receiver 200 and a reflector 700.
  • the receiver 200 is offset from virtual axis A to one side, and the reflector 700 is offset from virtual axis A to the other side.
  • the receiver 200 and the reflector 700 are disposed at mutually opposing positions with the imaginary axis A in between.
  • the electromagnetic wave reflected by the movable reflector 300 is reflected by the reflector 700, ie, the imaginary axis, as shown in FIG. It is incident on an optical element shifted from A to one side, reflected by the reflector 700 towards the receiver 200 and received by the receiver 200. That is, the receiver 200 can receive the electromagnetic wave reflected by the reflector 700 from the movable reflector 300.
  • the electromagnetic wave reflected by the movable reflector 300 is a receiver 200, ie, a virtual, as shown in FIG. It is incident on an optical element offset from the axis A to the other side and received by the receiver 200. That is, the receiver 200 can receive the electromagnetic wave reflected by the movable reflector 300 from the movable reflector 300.
  • FIG. 4 (Embodiment 4) 18, 19 and 20 are views for explaining the sensor device 10 according to the fourth embodiment, and correspond to FIG. 1, FIG. 2 and FIG. 3 of the first embodiment, respectively.
  • the sensor device 10 according to the present embodiment is the same as the sensor device 10 according to the first embodiment except for the following points.
  • the sensor device 10 comprises a first reflector 710 and a second reflector 720.
  • the first reflector 710 is offset to one side from the imaginary axis A
  • the second reflector 720 is offset to the other side from the imaginary axis A.
  • the first reflector 710 and the second reflector 720 are disposed at mutually opposing positions with the imaginary axis A in between.
  • the electromagnetic wave reflected by the movable reflector 300 is the first reflector 710, ie, as shown in FIG. It is reflected by a reflector that is offset from virtual axis A to one side and received by receiver 200.
  • the electromagnetic wave reflected by the movable reflector 300 is a second reflector 720, ie, as shown in FIG. , Reflected by the reflector offset from the virtual axis A to the other side and received by the receiver 200.
  • 21 to 25 are views for explaining the sensor device 10 according to the embodiment.
  • the sensor device 10 comprises a transmitter 100 and a receiver 200. In the figure, the sensor device 10 is placed at the origin of XY coordinates.
  • the transmitter 100 can emit an electromagnetic wave in the direction TD.
  • the direction TD is rockable with respect to the origin of XY coordinates.
  • the direction TD may depend, in particular, on embodiment 1 (FIGS. 1 to 3), embodiment 2 (FIGS. 12 to 14), embodiment 3 (FIGS. 15 to 17) and embodiment 4 (FIG. 18) according to various methods.
  • the movable reflector 300 enables rocking.
  • the receiver 200 can receive electromagnetic waves from two directions, direction RD1 and direction RD2.
  • the direction RD1 and the direction RD2 are mutually offset from the direction TD, and interlocking with the direction TD, the direction RD1 and the direction RD2 can swing with respect to the origin of the XY coordinates.
  • Direction RD1 and direction RD2 depend in particular on the various embodiments, embodiment 1 (FIGS. 1 to 3), embodiment 2 (FIGS. 12 to 14), embodiment 3 (FIGS. 15 to 17) and embodiment 4
  • the movable reflector 300 is capable of rocking, and electromagnetic waves from two directions can be transmitted by various methods, particularly in the first embodiment (FIGS. 1 to 3).
  • the second embodiment FIGS.
  • Receiver 200 and reflector 700 enable embodiment 4 (FIGS. 18-20) to be received by first reflector 710 and second reflector 720.
  • the direction TD is along the Y direction.
  • FIGS. 24 and 25 show an example in which the direction TD, the direction RD1, and the direction RD2 rotate counterclockwise in the drawing after the timing of FIG.
  • the receiver 200 directs the direction RD1 to the object O, and receives the electromagnetic wave reflected from the object O.
  • the receiver 200 directs the direction RD2 to the object O, and receives the electromagnetic wave reflected from the object O.
  • the electromagnetic wave reflected from the object O has a direction RD1 can be received by receiver 200 from a direction that is offset to one side of direction TD.
  • the electromagnetic wave reflected from the object O is received by the receiver 200 from the direction RD1. I can not receive.
  • the electromagnetic wave reflected from the object O can be received by the receiver 200 from the direction RD2, that is, the direction shifted from the direction TD to the other side. In this way, it is possible to widen the range in which the receiver 200 can receive an electromagnetic wave.

Abstract

In the present invention, a movable reflector (300) can reflect, in one direction toward an object (O), electromagnetic waves emitted from a transmitter (100), and can reflect, toward a direction different from the one direction, electromagnetic waves reflected from the object (O). A receiver (200) includes a first receiving element (210) and a second receiving element (220), and the first receiving element (210) and the second receiving element (220) are mutually offset to opposite sides with respect to a virtual axis (A). The virtual axis (A) is an axis along which can pass the electromagnetic waves that were reflected from the object (O) and then reflected by the movable reflector (300) oriented in the one direction.

Description

センサ装置及びセンシング方法Sensor device and sensing method
 本発明は、センサ装置及びセンシング方法に関する。 The present invention relates to a sensor device and a sensing method.
 センサ装置によって対象物までの距離を測定することがあり、特に光を用いて対象物までの距離を測定することがある。特許文献1には、送信器(レーザ光源)から対象物に向けて光を出射し、対象物から反射された光を受信器(例えば、アバランシェフォトダイオード(APD))によって受信することが記載されている。この場合、光が送信器から出射されてから受信器に受信されるまでに要する時間に基づいて、センサ装置から対象物までの距離を測定することができる。特許文献1の一例においては、送信器から出射された光を可動反射器(例えば、MEMS(Micro Electro Mechanical Systems)ミラー)によって対象物に向けて反射しており、対象物から反射された光を同じ可動反射器によって受信器に向けて反射している。 The sensor arrangement may measure the distance to the object, in particular light may be used to measure the distance to the object. Patent Document 1 describes that light is emitted from a transmitter (laser light source) toward an object, and light reflected from the object is received by a receiver (for example, an avalanche photodiode (APD)). ing. In this case, the distance from the sensor device to the object can be measured based on the time required for the light to be emitted from the transmitter and to be received by the receiver. In an example of Patent Document 1, light emitted from a transmitter is reflected toward a target by a movable reflector (for example, a MEMS (Micro Electro Mechanical Systems) mirror), and light reflected from the target is reflected. It is reflected towards the receiver by the same movable reflector.
特開2011-95208号公報JP 2011-95208 A
 本発明者は、特許文献1の上記一例のように、送信器から出射された電磁波(例えば、光)及び対象物から反射された電磁波(例えば、光)を共通の可動反射器によって反射することを検討し、特に、センサ装置からある程度大きな距離離れた対象物までの距離を測定することを検討した。本発明者は、対象物がある程度遠い位置にある(つまり、電磁波がセンサ装置から出射されてからセンサ装置に戻るまでに要する時間がある程度長い)場合、送信器から出射された電磁波を可動反射器が反射してから、対象物から反射された電磁波を可動反射器が反射するまでの間に可動反射器の向きが変わることを見出した。本発明者は、可動反射器の向きがこのように変わったとしても受信器が電磁波を受信可能な範囲を広くすることが可能な構造を検討した。 The inventor of the present invention is to reflect the electromagnetic wave (for example, light) emitted from the transmitter and the electromagnetic wave (for example, light) reflected from the object by a common movable reflector as in the above-mentioned example of Patent Document 1. In particular, it was considered to measure the distance from the sensor device to an object that was somewhat large distance away. The inventor of the present invention can move the electromagnetic wave emitted from the transmitter to the movable reflector when the object is at a certain distance (that is, the time required for the electromagnetic wave to be emitted from the sensor device to return to the sensor device is somewhat long). It has been found that the direction of the movable reflector changes between the time when the movable reflector reflects and the time when the movable reflector reflects the electromagnetic wave reflected from the object. The inventor examined a structure capable of widening the range in which the receiver can receive an electromagnetic wave even if the orientation of the movable reflector changes in this manner.
 本発明が解決しようとする課題としては、対象物がセンサ装置からある程度大きな距離離れていても受信器が電磁波を受信可能な範囲を広くすることが一例として挙げられる。 One of the problems to be solved by the present invention is to widen the range in which the receiver can receive an electromagnetic wave even if the object is far from the sensor device by a certain distance.
 請求項1に記載の発明は、
 送信器と、
 受信器と、
 前記送信器から出射された電磁波を、一方向を向いて対象物に向けて反射可能であり、前記対象物から反射された前記電磁波を、前記一方向と異なる方向を向いて反射可能である可動反射器と、
を備え、
 前記受信器は、前記対象物から反射されて前記一方向を向いた前記可動反射器によって反射された電磁波が通過可能な仮想軸を間にして、互いに対向した位置に配置されている第1受信部及び第2受信部を含むセンサ装置である。
The invention according to claim 1 is
A transmitter,
A receiver,
The movable electromagnetic wave emitted from the transmitter can be reflected in one direction toward an object, and the electromagnetic wave reflected from the object can be reflected in a direction different from the one direction. A reflector,
Equipped with
The receiver is disposed at a position opposite to each other across an imaginary axis through which an electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass. It is a sensor apparatus containing a part and a 2nd receiving part.
 請求項4に記載の発明は、
 電磁波を出射する送信器と、
 前記送信器から出射された電磁波を、一方向を向いて対象物に向けて反射可能であり、前記対象物から反射された前記電磁波を、前記一方向と異なる方向を向いて反射可能な可動反射器と、
 前記対象物によって反射された前記電磁波を反射する反射器と、
 前記対象物によって反射された前記電磁波と、前記反射器によって反射された前記電磁波と、を受信する受信器と、
を備え、
 前記受信器及び前記反射器は、前記対象物から反射されて前記一方向を向いた前記可動反射器によって反射された電磁波が通過可能な仮想軸を間にして、互いに対向した位置に配置されているセンサ装置である。
The invention according to claim 4 is
A transmitter that emits an electromagnetic wave,
An electromagnetic wave emitted from the transmitter can be reflected in one direction toward an object, and a movable reflection capable of reflecting the electromagnetic wave reflected from the object in a direction different from the one direction can be reflected. And the
A reflector for reflecting the electromagnetic wave reflected by the object;
A receiver for receiving the electromagnetic wave reflected by the object and the electromagnetic wave reflected by the reflector;
Equipped with
The receiver and the reflector are disposed at mutually opposing positions with an imaginary axis through which an electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass. Sensor device.
 請求項5に記載の発明は、
 送信器と、
 受信器と、
 第1反射器と、
 第2反射器と、
 前記送信器から出射された電磁波を、一方向を向いて対象物に向けて反射可能であり、前記対象物から反射された前記電磁波を、前記一方向と異なる方向を向いて反射可能である可動反射器と、
を備え、
 前記第1反射器及び前記第2反射器は、前記対象物から反射されて前記一方向を向いた前記可動反射器によって反射された電磁波が通過可能な仮想軸を間にして、互いに対向した位置に配置されており、
 前記受信器は、前記可動反射器から前記第1反射器及び前記第2反射器のそれぞれによって反射された前記電磁波を受信可能であるセンサ装置である。
The invention according to claim 5 is
A transmitter,
A receiver,
A first reflector,
A second reflector,
The movable electromagnetic wave emitted from the transmitter can be reflected in one direction toward an object, and the electromagnetic wave reflected from the object can be reflected in a direction different from the one direction. A reflector,
Equipped with
The first reflector and the second reflector are opposed to each other across an imaginary axis through which the electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass. Are located in
The receiver is a sensor device capable of receiving the electromagnetic wave reflected by the first reflector and the second reflector from the movable reflector.
 請求項6に記載の発明は、
 一方向に電磁波を出射可能な送信器と、
 前記一方向から互いに反対側にずれた2方向からの電磁波を受信可能な受信器と、
を備え、
 第1タイミングにおいて、前記受信器は、前記2方向のうちの一方を対象物に向けて、前記送信器から出射されて前記対象物から反射された電磁波を受信し、
 第2タイミングにおいて、前記受信器は、前記2方向のうちのもう一方を前記対象物に向けて、前記送信器から出射されて前記対象物から反射された電磁波を受信するセンサ装置である。
The invention according to claim 6 is
A transmitter capable of emitting an electromagnetic wave in one direction,
A receiver capable of receiving electromagnetic waves from two directions shifted from the one direction to the other side;
Equipped with
At the first timing, the receiver directs one of the two directions to an object, and receives an electromagnetic wave emitted from the transmitter and reflected from the object,
At the second timing, the receiver is a sensor device that directs the other of the two directions to the object, and receives an electromagnetic wave emitted from the transmitter and reflected from the object.
 請求項7に記載の発明は、
 送信器と、受信器と、可動反射器と、を準備し、前記送信器から出射された電磁波を前記可動反射器によって対象物に向けて反射し、前記対象物から反射されて前記可動反射器によって反射された前記電磁波を前記受信器によって受信し、
 前記可動反射器は、前記送信器から出射された前記電磁波を、一方向を向いて前記対象物に向けて反射可能であり、前記対象物から反射された前記電磁波を、前記一方向と異なる方向を向いて反射可能であり、
 前記受信器は、前記対象物から反射されて前記一方向を向いた前記可動反射器によって反射された電磁波が通過可能な仮想軸を間にして、互いに対向した位置に配置されている第1受信部及び第2受信部を含む、センシング方法である。
The invention according to claim 7 is
A transmitter, a receiver, and a movable reflector are prepared, and an electromagnetic wave emitted from the transmitter is reflected toward the object by the movable reflector, and is reflected from the object to be reflected by the movable reflector. Receiving by the receiver the electromagnetic wave reflected by
The movable reflector can reflect the electromagnetic wave emitted from the transmitter in one direction toward the object, and can reflect the electromagnetic wave reflected from the object in a direction different from the one direction. Facing and reflecting,
The receiver is disposed at a position opposite to each other across an imaginary axis through which an electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass. A sensing method including a unit and a second receiving unit.
 請求項8に記載の発明は、
 送信器と、受信器と、反射器と、可動反射器と、を準備し、前記送信器から出射された電磁波を前記可動反射器によって対象物に向けて反射し、前記対象物から反射されて前記可動反射器によって反射された前記電磁波を前記受信器によって受信し、
 前記可動反射器は、前記送信器から出射された前記電磁波を、一方向を向いて前記対象物に向けて反射可能であり、前記対象物から反射された前記電磁波を、前記一方向と異なる方向を向いて反射可能であり、
 前記受信器及び前記反射器は、前記対象物から反射されて前記一方向を向いた前記可動反射器によって反射された電磁波が通過可能な仮想軸を間にして、互いに対向した位置に配置されており、
 前記受信器は、前記可動反射器から前記可動反射器によって反射された前記電磁波及び、前記可動反射器から前記反射器によって反射された前記電磁波を受信可能である、センシング方法である。
The invention according to claim 8 is
A transmitter, a receiver, a reflector, and a movable reflector are provided, and an electromagnetic wave emitted from the transmitter is reflected by the movable reflector toward the object, and is reflected from the object. Receiving the electromagnetic wave reflected by the movable reflector by the receiver;
The movable reflector can reflect the electromagnetic wave emitted from the transmitter in one direction toward the object, and can reflect the electromagnetic wave reflected from the object in a direction different from the one direction. Facing and reflecting,
The receiver and the reflector are disposed at mutually opposing positions with an imaginary axis through which an electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass. Yes,
The receiver is a sensing method capable of receiving the electromagnetic wave reflected by the movable reflector from the movable reflector and the electromagnetic wave reflected by the reflector from the movable reflector.
 請求項9に記載の発明は、
 送信器と、受信器と、第1反射器と、第2反射器と、可動反射器と、を準備し、前記送信器から出射された電磁波を前記可動反射器によって対象物に向けて反射し、前記対象物から反射されて前記可動反射器によって反射された前記電磁波を前記受信器によって受信し、
 前記可動反射器は、前記送信器から出射された電磁波を、一方向を向いて対象物に向けて反射可能であり、前記対象物から反射された前記電磁波を、前記一方向と異なる方向を向いて反射可能であり、
 前記第1反射器及び前記第2反射器は、前記対象物から反射されて前記一方向を向いた前記可動反射器によって反射された電磁波が通過可能な仮想軸を間にして、互いに対向した位置に配置されており、
 前記受信器は、前記可動反射器から前記第1反射器及び前記第2反射器のそれぞれによって反射された前記電磁波を受信可能である、センシング方法である。
The invention according to claim 9 is
A transmitter, a receiver, a first reflector, a second reflector, and a movable reflector are provided, and an electromagnetic wave emitted from the transmitter is reflected toward the object by the movable reflector. Receiving by the receiver the electromagnetic waves reflected from the object and reflected by the movable reflector,
The movable reflector can reflect the electromagnetic wave emitted from the transmitter toward the one direction toward the object, and the electromagnetic wave reflected from the object may face the direction different from the one direction. Can be reflected,
The first reflector and the second reflector are opposed to each other across an imaginary axis through which the electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass. Are located in
The receiver may be a sensing method capable of receiving the electromagnetic wave reflected by the first reflector and the second reflector from the movable reflector.
 請求項10に記載の発明は、
 送信器と、受信器と、を準備し、前記送信器から対象物に向けて電磁波を出射し、前記対象物から反射された前記電磁波を受信器によって受信し、
 前記送信器は、一方向に前記電磁波を出射可能であり、
 前記受信器は、前記一方向から互いに反対側にずれた2方向からの電磁波を受信可能であり、
 第1タイミングにおいて、前記受信器は、前記2方向のうちの一方を対象物に向けて、前記送信器から出射されて前記対象物から反射された電磁波を受信し、
 第2タイミングにおいて、前記受信器は、前記2方向のうちのもう一方を前記対象物に向けて、前記送信器から出射されて前記対象物から反射された電磁波を受信する、センシング方法である。
The invention according to claim 10 is
Preparing a transmitter and a receiver, emitting an electromagnetic wave from the transmitter to an object, and receiving the electromagnetic wave reflected from the object by the receiver;
The transmitter can emit the electromagnetic wave in one direction,
The receiver can receive electromagnetic waves from two directions shifted from the one direction to the opposite side,
At the first timing, the receiver directs one of the two directions to an object, and receives an electromagnetic wave emitted from the transmitter and reflected from the object,
At a second timing, the receiver is a sensing method in which the other of the two directions is directed to the object, and the receiver receives an electromagnetic wave emitted from the transmitter and reflected from the object.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The objects described above, and other objects, features and advantages will become more apparent from the preferred embodiments described below and the following drawings associated therewith.
実施形態1に係るセンサ装置を説明するための図である。FIG. 2 is a view for explaining a sensor device according to Embodiment 1. 実施形態1に係るセンサ装置を説明するための図である。FIG. 2 is a view for explaining a sensor device according to Embodiment 1. 実施形態1に係るセンサ装置を説明するための図である。FIG. 2 is a view for explaining a sensor device according to Embodiment 1. 図1から図3に示したセンサ装置の機能の一例を説明するための図である。It is a figure for demonstrating an example of the function of the sensor apparatus shown to FIGS. 1-3. 可動反射器の共振周波数fとセンサ装置の機能の関係を説明するための図である。It is a diagram for explaining the relationship between the functions of the movable reflectors of the resonant frequency f 0 and the sensor device. 可動反射器の共振周波数fとセンサ装置の機能の関係を説明するための図である。It is a diagram for explaining the relationship between the functions of the movable reflectors of the resonant frequency f 0 and the sensor device. 可動反射器の共振周波数fとセンサ装置の機能の関係を説明するための図である。It is a diagram for explaining the relationship between the functions of the movable reflectors of the resonant frequency f 0 and the sensor device. 図1から図3に示したセンサ装置の機能の一例を説明するための図である。It is a figure for demonstrating an example of the function of the sensor apparatus shown to FIGS. 1-3. 受信器の詳細の第1例を説明するための図である。It is a figure for demonstrating the 1st example of the detail of a receiver. 受信器の詳細の第2例を説明するための図である。It is a figure for demonstrating the 2nd example of the detail of a receiver. 受信器の詳細の第3例を説明するための図である。It is a figure for demonstrating the 3rd example of the detail of a receiver. 実施形態2に係るセンサ装置を説明するための図である。FIG. 6 is a view for explaining a sensor device according to a second embodiment. 実施形態2に係るセンサ装置を説明するための図である。FIG. 6 is a view for explaining a sensor device according to a second embodiment. 実施形態2に係るセンサ装置を説明するための図である。FIG. 6 is a view for explaining a sensor device according to a second embodiment. 実施形態3に係るセンサ装置を説明するための図である。It is a figure for demonstrating the sensor apparatus which concerns on Embodiment 3. FIG. 実施形態3に係るセンサ装置を説明するための図である。It is a figure for demonstrating the sensor apparatus which concerns on Embodiment 3. FIG. 実施形態3に係るセンサ装置を説明するための図である。It is a figure for demonstrating the sensor apparatus which concerns on Embodiment 3. FIG. 実施形態4に係るセンサ装置を説明するための図である。FIG. 14 is a view for explaining a sensor device according to a fourth embodiment. 実施形態4に係るセンサ装置を説明するための図である。FIG. 14 is a view for explaining a sensor device according to a fourth embodiment. 実施形態4に係るセンサ装置を説明するための図である。FIG. 14 is a view for explaining a sensor device according to a fourth embodiment. 実施例に係るセンサ装置を説明するための図である。It is a figure for demonstrating the sensor apparatus which concerns on an Example. 実施例に係るセンサ装置を説明するための図である。It is a figure for demonstrating the sensor apparatus which concerns on an Example. 実施例に係るセンサ装置を説明するための図である。It is a figure for demonstrating the sensor apparatus which concerns on an Example. 実施例に係るセンサ装置を説明するための図である。It is a figure for demonstrating the sensor apparatus which concerns on an Example. 実施例に係るセンサ装置を説明するための図である。It is a figure for demonstrating the sensor apparatus which concerns on an Example.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and the description thereof will be appropriately omitted.
(実施形態1)
 図1、図2及び図3は、実施形態1に係るセンサ装置10を説明するための図である。
(Embodiment 1)
FIGS. 1, 2 and 3 are diagrams for explaining the sensor device 10 according to the first embodiment.
 センサ装置10によって利用されるセンシング方法について説明する。センサ装置10は、送信器100、受信器200、可動反射器300、ビームスプリッタ(BS)400及びレンズ500を備えている。送信器100は、電磁波を送信可能である。送信器100から送信された電磁波は、BS400によって反射され、可動反射器300に達する。可動反射器300は、揺動可能となっており、可動反射器300によって反射された電磁波を偏向させることが可能になっている。可動反射器300によって反射された電磁波は、レンズ500を通過して対象物Oに達する。対象物Oから反射された電磁波は、レンズ500を通過して可動反射器300によって反射され、BS400を透過して受信器200に達する。つまり、このセンシング方法は、受信工程を有しており、この受信工程では、送信器100から出射された電磁波を可動反射器300によって対象物Oに向けて反射し、対象物Oから反射された電磁波を受信器200によって受信させる。受信器200は、第1受信素子210及び第2受信素子220を含んでおり、第1受信素子210及び第2受信素子220は、電磁波を受信可能になっている。 The sensing method used by the sensor device 10 will be described. The sensor device 10 comprises a transmitter 100, a receiver 200, a movable reflector 300, a beam splitter (BS) 400 and a lens 500. The transmitter 100 can transmit an electromagnetic wave. The electromagnetic waves transmitted from the transmitter 100 are reflected by the BS 400 and reach the movable reflector 300. The movable reflector 300 is rockable, and can deflect the electromagnetic wave reflected by the movable reflector 300. The electromagnetic wave reflected by the movable reflector 300 passes through the lens 500 and reaches the object O. The electromagnetic wave reflected from the object O passes through the lens 500, is reflected by the movable reflector 300, passes through the BS 400, and reaches the receiver 200. That is, this sensing method has a receiving step, in which the electromagnetic wave emitted from the transmitter 100 is reflected toward the object O by the movable reflector 300 and reflected from the object O An electromagnetic wave is received by the receiver 200. The receiver 200 includes a first receiving element 210 and a second receiving element 220, and the first receiving element 210 and the second receiving element 220 can receive an electromagnetic wave.
 送信器100は、電磁波、特に、光又は電波を出射可能である。送信器100が光を出射する場合、センサ装置10は、LiDAR(Light Detection And Ranging)として機能することができ、センサ装置10が電波を出射する場合、センサ装置10は、RADAR(RAdio Detection And Ranging)として機能することができる。送信器100は、例えば、レーザ光源、特に、レーザダイオード(LD)とすることができる。 The transmitter 100 can emit electromagnetic waves, in particular light or radio waves. When the transmitter 100 emits light, the sensor device 10 can function as a LiDAR (Light Detection And Ranging), and when the sensor device 10 emits a radio wave, the sensor device 10 may be an RADAR (RAdio Detection And Ranging). Can function as The transmitter 100 can be, for example, a laser light source, in particular a laser diode (LD).
 第1受信素子210及び第2受信素子220のそれぞれは、送信器100から出射されて対象物Oから反射された電磁波を受信可能である。第1受信素子210及び第2受信素子220のそれぞれは、例えば、受光素子、特に、アバランシェフォトダイオード(APD)とすることができる。 Each of the first receiving element 210 and the second receiving element 220 can receive the electromagnetic wave emitted from the transmitter 100 and reflected from the object O. Each of the first receiving element 210 and the second receiving element 220 can be, for example, a light receiving element, in particular, an avalanche photodiode (APD).
 可動反射器300は、周期的に揺動可能となっており、特に、可動反射器300の振れ角は正弦波状に変化していてもよい。可動反射器300の振れ角の角速度はある程度高いものであり、具体的には、可動反射器300が対象物Oに向けて電磁波を反射してから、対象物Oから反射された電磁波を可動反射器300が反射するまでの間に可動反射器300の振れ角θが変化するようになっている。可動反射器300は、例えば、MEMS(Micro Electro Mechanical Systems)ミラーとすることができる。 The movable reflector 300 can be periodically rocked, and in particular, the swing angle of the movable reflector 300 may change sinusoidally. The angular velocity of the deflection angle of the movable reflector 300 is somewhat high. Specifically, after the movable reflector 300 reflects the electromagnetic wave toward the object O, the electromagnetic wave reflected from the object O is movablely reflected. The deflection angle θ of the movable reflector 300 is changed until the reflector 300 is reflected. The movable reflector 300 can be, for example, a MEMS (Micro Electro Mechanical Systems) mirror.
 センサ装置10は、電磁波が送信器100から出射されてから受信器200に受信されるまでに要する時間に基づいて、センサ装置10から対象物Oまでの距離を測定することができる。なお、以下では、電磁波が送信器100から出射されてから可動反射器300によって反射されるまでに要する時間(図1)及び電磁波が可動反射器300によって反射されてから受信器200に達するまでに要する時間(図2及び図3)は、いずれも、非常に短く、ゼロとみなす。 The sensor device 10 can measure the distance from the sensor device 10 to the object O based on the time required for the electromagnetic wave to be emitted from the transmitter 100 and to be received by the receiver 200. In the following, the time required for the electromagnetic wave to be reflected by the movable reflector 300 after the electromagnetic wave is emitted from the transmitter 100 (FIG. 1) and from the electromagnetic wave being reflected by the movable reflector 300 to reach the receiver 200 The time required (FIGS. 2 and 3) is both very short and considered zero.
 図1は、送信器100から出射された電磁波が可動反射器300の振れ角θにつきゼロのタイミングにおいて可動反射器300によって反射された例を示している。 FIG. 1 shows an example in which the electromagnetic wave emitted from the transmitter 100 is reflected by the movable reflector 300 at a timing of zero per swing angle θ of the movable reflector 300.
 図2は、図1のタイミング後に可動反射器300が図中で時計回りに回転した場合の例を示している。対象物Oは、センサ装置10からある程度大きな距離離れており(つまり、電磁波がセンサ装置10から出射されてからセンサ装置10に戻るまでに要する時間がある程度長い)、したがって、電磁波が可動反射器300によって対象物Oに向けて反射されてから(図1)可動反射器300によって受信器200に向けて反射される(図2)までの間にセンサ装置10の可動反射器300の振れ角θは、ゼロから+αに変化している。このようにして、可動反射器300は、送信器100から出射された電磁波を、一方向を向いて対象物Oに向けて反射可能であり(図1)、対象物Oから反射された電磁波を、上記一方向とは異なる方向を向いて反射可能となっている(図2)。 FIG. 2 shows an example where the movable reflector 300 is rotated clockwise in the figure after the timing of FIG. The object O is at a relatively large distance from the sensor device 10 (that is, the time required for the electromagnetic wave to be returned to the sensor device 10 after the electromagnetic wave is emitted from the sensor device 10 is somewhat long). The deflection angle θ of the movable reflector 300 of the sensor device 10 from the time when it is reflected towards the object O by (FIG. 1) and when it is reflected by the movable reflector 300 towards the receiver 200 (FIG. 2) , Has changed from zero to + α. Thus, the movable reflector 300 can reflect the electromagnetic wave emitted from the transmitter 100 toward the object O in one direction (FIG. 1), and reflects the electromagnetic wave reflected from the object O , It is possible to reflect in a direction different from the one direction (FIG. 2).
 図3は、図1のタイミング後に可動反射器300が図中で反時計回りに回転した場合の例を示している。対象物Oは、センサ装置10からある程度大きな距離離れており(つまり、電磁波がセンサ装置10から出射されてからセンサ装置10に戻るまでに要する時間がある程度長い)、したがって、電磁波が可動反射器300によって対象物Oに向けて反射されてから(図1)可動反射器300によって受信器200に向けて反射される(図3)までの間にセンサ装置10の可動反射器300の振れ角θは、ゼロから-αに変化している。このようにして、可動反射器300は、送信器100から出射された電磁波を、一方向を向いて対象物Oに向けて反射可能であり(図1)、対象物Oから反射された電磁波を、上記一方向とは異なる方向を向いて反射可能となっている(図3)。 FIG. 3 shows an example where the movable reflector 300 is rotated counterclockwise in the figure after the timing of FIG. The object O is at a relatively large distance from the sensor device 10 (that is, the time required for the electromagnetic wave to be returned to the sensor device 10 after the electromagnetic wave is emitted from the sensor device 10 is somewhat long). The deflection angle θ of the movable reflector 300 of the sensor device 10 from the time when it is reflected towards the object O by (FIG. 1) and when it is reflected by the movable reflector 300 towards the receiver 200 (FIG. 3) , Has changed from zero to -α. Thus, the movable reflector 300 can reflect the electromagnetic wave emitted from the transmitter 100 toward the object O in one direction (FIG. 1), and reflects the electromagnetic wave reflected from the object O , It is possible to reflect in a direction different from the one direction (FIG. 3).
 受信器200は、第1受信素子210(第1受信部)及び第2受信素子220(第2受信部)を含んでおり、第1受信素子210及び第2受信素子220は、図中の仮想軸Aから互いに反対側にずれている。特に図1から図3に示す例では、第1受信素子210及び第2受信素子220は、仮想軸Aを間にして、互いに対向した位置に配置されている。仮想軸Aは、対象物Oから反射されて上記一方向(図1のタイミングにおいて可動反射器300が向いている方向)を向いた可動反射器300によって反射された電磁波が通過可能な軸である。 The receiver 200 includes a first receiving element 210 (first receiving unit) and a second receiving element 220 (second receiving unit), and the first receiving element 210 and the second receiving element 220 are virtual in the figure. They are offset from axis A in opposite directions. In particular, in the examples shown in FIGS. 1 to 3, the first receiving element 210 and the second receiving element 220 are disposed at mutually opposing positions with the virtual axis A in between. The virtual axis A is an axis through which the electromagnetic wave reflected by the movable object 300 reflected from the object O and directed to the one direction (the direction in which the movable reflector 300 is directed at the timing in FIG. 1) can pass. .
 上述した構成によれば、対象物Oがセンサ装置10からある程度大きな距離離れていても受信器200が電磁波を受信可能な範囲を広くすることが可能となる。具体的には、図1及び図2に示すように可動反射器300が図中で時計回りに回転する場合、図2に示すように、可動反射器300によって反射された電磁波は、第1受信素子210、すなわち、仮想軸Aから一方の側にずれた受信部によって受信することができる。これに対して、図1及び図3に示すように可動反射器300が図中で反時計回りに回転する場合、可動反射器300によって反射された電磁波は、第1受信素子210によって受信することができない。しかしながら、図3に示すように、可動反射器300によって反射された電磁波は、第2受信素子220、すなわち、仮想軸Aからもう一方の側にずれた受信部によって受信することができる。このようにして、受信器200が電磁波を受信可能な範囲を広くすることが可能となる。 According to the configuration described above, even when the object O is separated from the sensor device 10 by a certain distance, it is possible to widen the range in which the receiver 200 can receive the electromagnetic wave. Specifically, as shown in FIGS. 1 and 2, when the movable reflector 300 is rotated clockwise in the figure, as shown in FIG. 2, the electromagnetic wave reflected by the movable reflector 300 is subjected to the first reception. It can be received by the element 210, ie a receiver offset from the virtual axis A to one side. On the other hand, when the movable reflector 300 rotates counterclockwise in the figure as shown in FIGS. 1 and 3, the electromagnetic wave reflected by the movable reflector 300 is received by the first receiving element 210. I can not However, as shown in FIG. 3, the electromagnetic wave reflected by the movable reflector 300 can be received by the second receiving element 220, that is, a receiving unit shifted from the virtual axis A to the other side. In this way, it is possible to widen the range in which the receiver 200 can receive an electromagnetic wave.
 なお、図1から図3に示す例における仮想軸Aは、振れ角θがゼロにおける可動反射器300によって反射された電磁波が通過可能な軸となっているが、仮想軸Aは、振れ角θがゼロ以外の角度における可動反射器300によって反射された電磁波が通過可能な軸であってもよい。 Although the virtual axis A in the example shown in FIGS. 1 to 3 is an axis through which the electromagnetic wave reflected by the movable reflector 300 at a shake angle θ of zero can pass, the virtual axis A is a shake angle θ May be an axis through which the electromagnetic wave reflected by the movable reflector 300 at an angle other than zero can pass.
 図4は、図1から図3に示したセンサ装置10の機能の一例を説明するための図である。図4における振れ角θは、図1から図3における可動反射器300の振れ角θを示しており、図4における振れ角θを示す曲線上のプロットは、送信器100から出射された電磁波が可動反射器300によって反射されたタイミングを示している。 FIG. 4 is a diagram for explaining an example of the function of the sensor device 10 shown in FIGS. 1 to 3. The shake angle θ in FIG. 4 indicates the shake angle θ of the movable reflector 300 in FIGS. 1 to 3, and the plot on the curve showing the shake angle θ in FIG. 4 is an electromagnetic wave emitted from the transmitter 100. The timing reflected by the movable reflector 300 is shown.
 振れ角θを示す曲線は、2つの位相P1及びP2に区分することができる。位相P1において、振れ角θは、単調に増加している(つまり、振れ角θの導関数θ´(t)が正となっている。)。これに対して、位相P2において、振れ角θは、単調に減少している(つまり、振れ角θの導関数θ´(t)が負となっている。)。 The curve representing the swing angle θ can be divided into two phases P1 and P2. In the phase P1, the swing angle θ monotonously increases (that is, the derivative θ ′ (t) of the swing angle θ is positive). On the other hand, at the phase P2, the shake angle θ monotonously decreases (that is, the derivative θ ′ (t) of the shake angle θ is negative).
 位相P1において可動反射器300によって対象物Oに向けて反射された電磁波は、図2に示すように、第1受信素子210によって受信することができる。 The electromagnetic wave reflected towards the object O by the movable reflector 300 in the phase P1 can be received by the first receiving element 210, as shown in FIG.
 位相P2において可動反射器300によって対象物Oに向けて反射された電磁波は、図3に示すように、第2受信素子220によって受信することができる。 The electromagnetic wave reflected towards the object O by the movable reflector 300 at the phase P2 can be received by the second receiving element 220, as shown in FIG.
 受信器200は、広い範囲、すなわち、位相P1及びP2の双方において、電磁波を受信することができる。具体的には、仮に、受信器200が第1受信素子210及び第2受信素子220のうち第1受信素子210しか含まない場合、位相P1において可動反射器300によって対象物Oに向けて反射された電磁波を第1受信素子210によって受信することができても、位相P2において可動反射器300によって対象物Oに向けて反射された電磁波は第1受信素子210によって受信することができない。同様にして、仮に、受信器200が第1受信素子210及び第2受信素子220のうち第2受信素子220しか含まない場合、位相P2において可動反射器300によって対象物Oに向けて反射された電磁波を第2受信素子220によって受信することができても、位相P1において可動反射器300によって対象物Oに向けて反射された電磁波は第2受信素子220によって受信することができない。これ対して、受信器200が第1受信素子210及び第2受信素子220の双方を含む場合、受信器200は、位相P1及びP2の双方において、電磁波を受信することができる。 The receiver 200 can receive electromagnetic waves in a wide range, ie, both of the phases P1 and P2. Specifically, if the receiver 200 includes only the first receiving element 210 of the first receiving element 210 and the second receiving element 220, it is reflected toward the object O by the movable reflector 300 in phase P1. Even if the electromagnetic wave can be received by the first receiving element 210, the electromagnetic wave reflected toward the object O by the movable reflector 300 in the phase P2 can not be received by the first receiving element 210. Similarly, if the receiver 200 includes only the second receiving element 220 among the first receiving element 210 and the second receiving element 220, the light is reflected toward the object O by the movable reflector 300 at phase P2. Although the electromagnetic wave can be received by the second receiving element 220, the electromagnetic wave reflected toward the object O by the movable reflector 300 in the phase P1 can not be received by the second receiving element 220. On the other hand, when the receiver 200 includes both the first receiving element 210 and the second receiving element 220, the receiver 200 can receive electromagnetic waves in both phases P1 and P2.
 図5から図7は、可動反射器300の共振周波数fとセンサ装置10の機能の関係を説明するための図である。 FIGS. 5 to 7 are diagrams for explaining the relationship between the resonance frequency f 0 of the movable reflector 300 and the function of the sensor device 10.
 図5から図7を用いて詳細を後述するように、図1から図3に示したセンサ装置10においては、可動反射器300の共振周波数fを小さくすることができ、可動反射器300の共振周波数fが小さくなるほど、可動反射器300の振幅A(すなわち、センサ装置10のFOV(Field Of View))を大きくすることができ、センサ装置10の測定可能な距離範囲Lを広くすることができ、センサ装置10の測定可能な最遠距離を大きくすることができる。 In the sensor device 10 shown in FIGS. 1 to 3, the resonance frequency f 0 of the movable reflector 300 can be reduced, as will be described in detail with reference to FIGS. 5 to 7. As the resonance frequency f 0 decreases, the amplitude A of the movable reflector 300 (that is, the FOV (Field Of View) of the sensor device 10) can be increased, and the measurable distance range L of the sensor device 10 is widened. Thus, the measurable distance of the sensor device 10 can be increased.
 図5を用いて、図1から図3に示したセンサ装置10において、可動反射器300の共振周波数fを小さくすることができる理由を説明する。図5は、1フレーム内におけるピクセルの配置を示している。図5において、センサ装置10は、ラスタースキャンを実行しており、特に、可動反射器300によって反射された電磁波が、図5における曲線に沿って図5における各プロットに照射されるようになっている。 The reason why the resonant frequency f 0 of the movable reflector 300 can be reduced in the sensor device 10 shown in FIGS. 1 to 3 will be described using FIG. 5. FIG. 5 shows the arrangement of pixels in one frame. In FIG. 5, the sensor device 10 performs raster scanning, and in particular, the electromagnetic waves reflected by the movable reflector 300 are applied to the plots in FIG. 5 along the curves in FIG. There is.
 可動反射器300の共振周波数fは、以下の式(1)に示すようになる。
Figure JPOXMLDOC01-appb-M000001
ただし、pは、スキャンのピッチを示し、Rは、フレームレートを示す。
The resonant frequency f 0 of the movable reflector 300 is as shown in the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Here, p indicates the pitch of the scan, and R f indicates the frame rate.
 式(1)における数nは、可動反射器300が1回振動する間に走査されるラインの数を示す。数nは、図5に示すように、可動反射器300の振動のうちの一方向においてのみ走査が実施される場合は1となる。これに対して、数nは、図4に示したように、可動反射器300の振動の双方向において走査が実施される場合は2となる。 The number n in equation (1) indicates the number of lines scanned while the movable reflector 300 oscillates once. The number n is 1 when scanning is performed in only one of the oscillations of the movable reflector 300, as shown in FIG. On the other hand, the number n is 2 if scanning is performed in both directions of the vibration of the movable reflector 300 as shown in FIG.
 式(1)から明らかなように、可動反射器300の振動の双方向において走査を実施することで、共振周波数fを小さくすることができる。 As apparent from the equation (1), by performing scanning in both directions of the vibration of the movable reflector 300, the resonance frequency f 0 can be reduced.
 次に、図6を用いて、可動反射器300の共振周波数fと可動反射器300の振幅A(すなわち、センサ装置10のFOV)の関係を説明する。 Next, the relationship between the resonance frequency f 0 of the movable reflector 300 and the amplitude A of the movable reflector 300 (that is, the FOV of the sensor device 10) will be described using FIG.
 可動反射器300の振れ角θは、以下の式(2)に示すようになる。
Figure JPOXMLDOC01-appb-M000002
ただし、Aは、可動反射器300の振幅を示す。
The swing angle θ of the movable reflector 300 is as shown in the following equation (2).
Figure JPOXMLDOC01-appb-M000002
However, A shows the amplitude of the movable reflector 300.
 可動反射器300に働く力の最大値Fmaxは、以下の式(3)に示すようになり、許容値Facc以下でなくてはならない。
Figure JPOXMLDOC01-appb-M000003
ただし、mは、可動反射器300の質量を示す。
The maximum value F max of the force acting on the movable reflector 300 is as shown in the following equation (3), and must be equal to or less than the allowable value F acc .
Figure JPOXMLDOC01-appb-M000003
Here, m represents the mass of the movable reflector 300.
 式(3)から明らかなように、共振周波数fを小さくすることで、可動反射器300の振幅A(すなわち、センサ装置10のFOV)を大きくすることができる。 As is apparent from equation (3), by reducing the resonant frequency f 0, it is possible to increase the amplitude A of the movable reflector 300 (i.e., FOV of the sensor device 10).
 次に、図7を用いて、可動反射器300の共振周波数fとセンサ装置10の測定可能な距離範囲Lの関係を説明する。 Next, the relationship between the resonant frequency f 0 of the movable reflector 300 and the measurable distance range L of the sensor device 10 will be described using FIG. 7.
 可動反射器300の振れ角Δθと第1受信素子210の直径DAPDの関係は、以下の式(4)に示すようになる。
Figure JPOXMLDOC01-appb-M000004
ただし、Sは、可動反射器300の感度を示す。
The relationship between the swing angle Δθ of the movable reflector 300 and the diameter D APD of the first receiving element 210 is as shown in the following equation (4).
Figure JPOXMLDOC01-appb-M000004
However, S indicates the sensitivity of the movable reflector 300.
 可動反射器300が振れ角Δθ回転するのに要する時間Δtは、以下の式(5)に示すようになる。
Figure JPOXMLDOC01-appb-M000005
The time Δt required for the movable reflector 300 to rotate the swing angle Δθ is as shown in the following equation (5).
Figure JPOXMLDOC01-appb-M000005
 センサ装置10の測定可能な距離範囲Lは、cΔt/2(c:光速)であり、以下の式(6)に示すようになる。
Figure JPOXMLDOC01-appb-M000006
The measurable distance range L of the sensor device 10 is cΔt / 2 (c: speed of light), and is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
 式(6)から明らかなように、センサ装置10の測定可能な距離範囲Lは、共振周波数fが小さくなるほど広くなる。 As apparent from the equation (6), the measurable distance range L of the sensor device 10 becomes wider as the resonance frequency f 0 becomes smaller.
 次に、可動反射器300の共振周波数fとセンサ装置10の測定可能な最遠距離の関係を説明する。 Next, the relationship between the resonant frequency f 0 of the movable reflector 300 and the longest measurable distance of the sensor device 10 will be described.
 可動反射器300によって対象物Oに向けて反射される電磁波のパワーは、アイセーフの観点から、電磁波の送信間隔Δtminで決定される。電磁波の送信間隔Δtminは、以下の式(7)に示すようになり、送信間隔Δtminが長いほど、電磁波のパワーを高くすることができる。
Figure JPOXMLDOC01-appb-M000007
The power of the electromagnetic wave reflected toward the object O by the movable reflector 300 is determined by the transmission interval Δt min of the electromagnetic wave from the viewpoint of eye safety. The transmission interval Δt min of the electromagnetic wave is expressed by the following equation (7), and the power of the electromagnetic wave can be increased as the transmission interval Δt min is longer.
Figure JPOXMLDOC01-appb-M000007
 式(7)から明らかなように、可動反射器300によって対象物Oに向けて反射される電磁波のパワー(センサ装置10の測定可能な最遠距離に相当)は、可動反射器300の共振周波数fが小さいほど大きくすることができる。 As apparent from the equation (7), the power of the electromagnetic wave reflected by the movable reflector 300 toward the object O (corresponding to the farthest measurable distance of the sensor device 10) is the resonant frequency of the movable reflector As f 0 is smaller, it can be larger.
 対象物Oから反射された電磁波について第1受信素子210が受信可能なパワーは、以下の式(8)に示すようになる。
Figure JPOXMLDOC01-appb-M000008
ただし、ρは、可動反射器300の材料の面密度を示し、Eは、可動反射器300の面積を示し、m=ρEである。
The power that can be received by the first receiving element 210 for the electromagnetic wave reflected from the object O is as shown in the following equation (8).
Figure JPOXMLDOC01-appb-M000008
However, ρ indicates the surface density of the material of the movable reflector 300, E indicates the area of the movable reflector 300, and m = ρE.
 式(8)から明らかなように、対象物Oから反射された電磁波について第1受信素子210が受信可能なパワー(センサ装置10の測定可能な最遠距離に相当)は、可動反射器300の共振周波数fが小さいほど大きくすることができる。 As apparent from the equation (8), the power (corresponding to the longest measurable distance of the sensor device 10) that can be received by the first receiving element 210 for the electromagnetic wave reflected from the object O The smaller the resonance frequency f 0, the larger the frequency.
 図8は、図1から図3に示したセンサ装置10の機能の一例を説明するための図である。 FIG. 8 is a diagram for explaining an example of the function of the sensor device 10 shown in FIGS. 1 to 3.
 図4を用いて説明したように、図1から図3に示したセンサ装置10においては、可動反射器300の振動の双方向において、電磁波を対象物Oに向けて可動反射器300によって反射することができる(図8の下側のグラフ)。さらに、図1から図3に示したセンサ装置10においては、共振周波数fを一定に保ったままでも、電磁波の送信間隔をほぼ半分にすることにより、可動反射器300の振動のうちの一方向においてのみ、電磁波を対象物Oに向けて可動反射器300によって反射することができる(図8の上側のグラフ)。 As described with reference to FIG. 4, in the sensor device 10 shown in FIGS. 1 to 3, the electromagnetic wave is reflected toward the object O by the movable reflector 300 in both directions of the vibration of the movable reflector 300. (The lower graph in Figure 8). Furthermore, in the sensor device 10 shown in FIG. 1 to FIG. 3, one of the vibrations of the movable reflector 300 is achieved by halving the transmission interval of the electromagnetic waves while keeping the resonance frequency f 0 constant. Only in direction can electromagnetic waves be reflected by the movable reflector 300 towards the object O (upper graph in FIG. 8).
 図9は、受信器200の詳細の第1例を説明するための図である。 FIG. 9 is a diagram for explaining a first example of the details of the receiver 200. As shown in FIG.
 受信器200は、第1受信素子210、第2受信素子220及び差動アンプ230を有している。差動アンプ230の非反転入力端子(+)には、第1受信素子210からの信号Vin+が入力され、差動アンプ230の反転入力端子(-)には、第2受信素子220からの信号Vin-が入力される。差動アンプ230は、信号Vin+と信号Vin-の差Voutを出力する。 The receiver 200 includes a first receiving element 210, a second receiving element 220, and a differential amplifier 230. The signal Vin + from the first receiving element 210 is input to the non-inverting input terminal (+) of the differential amplifier 230, and the signal from the second receiving element 220 is input to the inverting input terminal (-) of the differential amplifier 230. Vin- is input. The differential amplifier 230 outputs a difference Vout between the signal Vin + and the signal Vin−.
 この構成においては、第1受信素子210及び第2受信素子220が電磁波を受信していない場合に第1受信素子210及び第2受信素子220からノイズ信号(例えば、クロックノイズ)が発生したとしても、差動アンプ230から出力される信号Voutではノイズ信号が相殺されて、ノイズ信号が除去されるようになる。 In this configuration, even if a noise signal (for example, clock noise) is generated from the first receiving element 210 and the second receiving element 220 when the first receiving element 210 and the second receiving element 220 do not receive an electromagnetic wave. The noise signal is canceled in the signal Vout output from the differential amplifier 230, and the noise signal is removed.
 図10は、受信器200の詳細の第2例を説明するための図である。 FIG. 10 is a diagram for explaining a second example of the details of the receiver 200. As shown in FIG.
 受信器200は、第1受信素子210、第2受信素子220及び積分回路240を有している。 The receiver 200 includes a first receiving element 210, a second receiving element 220, and an integrating circuit 240.
 図10(a)では、第2受信素子220の出力信号と目標値rの差が積分回路240に入力され、積分回路240の出力信号が第1受信素子210に入力されており、第1受信素子210の出力信号が受信器200の外部に出力されるようになっている。したがって、積分回路240の出力信号に基づいて、第1受信素子210を最適化すること(特に、第1受信素子210がAPDであるときは第1受信素子210のゲインを調整すること)ができる。特に、対象物Oから反射された電磁波を第1受信素子210が受信するタイミング(例えば、図4の位相P1)において、受信器200は、図10(a)に示すように機能させることができる。つまり、対象物Oから反射された電磁波を受信しない受信部(第2受信素子220)の出力信号を用いて、対象物Oから反射された電磁波を受信する受信部(第1受信素子210)を最適化することができる。 In FIG. 10A, the difference between the output signal of the second receiving element 220 and the target value r is input to the integrating circuit 240, and the output signal of the integrating circuit 240 is input to the first receiving element 210. An output signal of the element 210 is output to the outside of the receiver 200. Therefore, it is possible to optimize the first receiving element 210 based on the output signal of the integrating circuit 240 (especially, adjust the gain of the first receiving element 210 when the first receiving element 210 is an APD). . In particular, at timing when the first receiving element 210 receives an electromagnetic wave reflected from the object O (for example, the phase P1 in FIG. 4), the receiver 200 can function as shown in FIG. . That is, the receiving unit (first receiving element 210) for receiving the electromagnetic wave reflected from the object O using the output signal of the receiving unit (second receiving element 220) not receiving the electromagnetic wave reflected from the object O It can be optimized.
 図10(b)では、第1受信素子210の出力信号と目標値rの差が積分回路240に入力され、積分回路240の出力信号が第2受信素子220に入力されており、第2受信素子220の出力信号が受信器200の外部に出力されるようになっている。したがって、積分回路240の出力信号に基づいて、第2受信素子220を最適化すること(特に、第2受信素子220がAPDであるときは第2受信素子220のゲインを調整すること)ができる。特に、対象物Oから反射された電磁波を第2受信素子220が受信するタイミング(例えば、図4の位相P1)において、受信器200は、図10(a)に示すように機能させることができる。つまり、対象物Oから反射された電磁波を受信しない受信部(第1受信素子210)の出力信号を用いて、対象物Oから反射された電磁波を受信する受信部(第2受信素子220)を最適化することができる。 In FIG. 10B, the difference between the output signal of the first receiving element 210 and the target value r is input to the integrating circuit 240, and the output signal of the integrating circuit 240 is input to the second receiving element 220. An output signal of the element 220 is output to the outside of the receiver 200. Therefore, it is possible to optimize the second receiving element 220 based on the output signal of the integration circuit 240 (especially, adjust the gain of the second receiving element 220 when the second receiving element 220 is an APD). . In particular, at timing when the second receiving element 220 receives an electromagnetic wave reflected from the object O (for example, phase P1 in FIG. 4), the receiver 200 can function as shown in FIG. . That is, using the output signal of the receiving unit (first receiving element 210) that does not receive the electromagnetic wave reflected from the object O, the receiving unit (second receiving element 220) that receives the electromagnetic wave reflected from the object O It can be optimized.
 上述した構成においては、受信器200の周囲環境に基づいて、第1受信素子210及び第2受信素子220を最適化することができる。特に、第1受信素子210及び第2受信素子220がバックグラウンドノイズ(例えば、太陽光)を受信し得るときは、バックグラウンドノイズに基づいて、第1受信素子210及び第2受信素子220を最適化することができる。 In the configuration described above, the first receiving element 210 and the second receiving element 220 can be optimized based on the surrounding environment of the receiver 200. In particular, when the first receiving element 210 and the second receiving element 220 can receive background noise (for example, sunlight), the first receiving element 210 and the second receiving element 220 are optimized based on the background noise. Can be
 図11は、受信器200の詳細の第3例を説明するための図である。 FIG. 11 is a diagram for explaining a third example of the details of the receiver 200. As shown in FIG.
 受信器200は、第1受信素子210、第2受信素子220及び制御器250を有している。制御器250は、第1受信素子210の状態及び第2受信素子220の状態に基づいて、第1受信素子210及び第2受信素子220の一方のみ又は双方を動作させるようになっている。 The receiver 200 comprises a first receiving element 210, a second receiving element 220 and a controller 250. The controller 250 operates only one or both of the first receiving element 210 and the second receiving element 220 based on the state of the first receiving element 210 and the state of the second receiving element 220.
 制御器250の第1例において、第1受信素子210及び第2受信素子220の一方において異常(例えば、エラー又は故障)が検出されたときは、制御器250は、異常のある受信素子の動作を停止させて、異常のない受信素子のみを動作させるようにしてもよい。この場合であっても、異常のない受信素子のみでセンサ装置10は機能することができる。 In the first example of the controller 250, when an abnormality (for example, an error or a failure) is detected in one of the first reception element 210 and the second reception element 220, the controller 250 operates the operation of the reception element having the abnormality. May be stopped to operate only the normal receiving element. Even in this case, the sensor device 10 can function only with the receiving element without any abnormality.
 制御器250の第2例において、センサ装置10に要求される仕様(例えば、分解能)に応じて、制御器250は、第1受信素子210及び第2受信素子220の一方のみ又は双方を動作させるようにしてもよい。特に、センサ装置10に要求される分解能が高いとき、制御器250は、第1受信素子210及び第2受信素子220の双方を動作させるようにすることができ、センサ装置10に要求される分解能が低いとき、制御器250は、第1受信素子210及び第2受信素子220の一方のみを動作させるようにすることができる。第1受信素子210及び第2受信素子220の一方のみを動作させることで、センサ装置10の消費電力を抑えることができる。 In the second example of the controller 250, the controller 250 operates only one or both of the first reception element 210 and the second reception element 220 according to the specification (for example, resolution) required of the sensor device 10. You may do so. In particular, when the resolution required for the sensor device 10 is high, the controller 250 can cause both the first receiving element 210 and the second receiving element 220 to operate, and the resolution required for the sensor device 10 When low, the controller 250 may cause only one of the first receiving element 210 and the second receiving element 220 to operate. By operating only one of the first reception element 210 and the second reception element 220, power consumption of the sensor device 10 can be suppressed.
 制御器250の第3例において、センサ装置10の内部温度又は周囲温度に応じて、制御器250は、第1受信素子210及び第2受信素子220の一方のみ又は双方を動作させるようにしてもよい。特に、センサ装置10の内部温度又は周囲温度が低いとき、制御器250は、第1受信素子210及び第2受信素子220の双方を動作させるようにすることができ、センサ装置10の内部温度又は周囲温度が高いとき、制御器250は、第1受信素子210及び第2受信素子220の一方のみを動作させるようにすることができる。第1受信素子210及び第2受信素子220の一方のみを動作させることで、センサ装置10からの発熱を抑えることができ、センサ装置10の内部温度又は周囲温度が高くてもセンサ装置10を動作させることができる。 In the third example of the controller 250, depending on the internal temperature of the sensor device 10 or the ambient temperature, the controller 250 may operate only one or both of the first reception element 210 and the second reception element 220. Good. In particular, when the internal temperature or ambient temperature of the sensor device 10 is low, the controller 250 can cause both the first receiving element 210 and the second receiving element 220 to operate, and the internal temperature of the sensor device 10 or When the ambient temperature is high, the controller 250 may cause only one of the first receiving element 210 and the second receiving element 220 to operate. By operating only one of the first receiving element 210 and the second receiving element 220, heat generation from the sensor device 10 can be suppressed, and the sensor device 10 operates even if the internal temperature or ambient temperature of the sensor device 10 is high. It can be done.
 以上、本実施形態によれば、対象物Oがセンサ装置10からある程度大きな距離離れていても受信器200が電磁波を受信可能な範囲を広くすることが可能となる。 As described above, according to the present embodiment, it is possible to widen the range in which the receiver 200 can receive an electromagnetic wave even if the object O is separated from the sensor device 10 by a certain distance.
(実施形態2)
 図12、図13及び図14は、実施形態2に係るセンサ装置10を説明するための図であり、実施形態1の図1、図2及び図3にそれぞれ対応する。本実施形態に係るセンサ装置10は、以下の点を除いて、実施形態1に係るセンサ装置10と同様である。
Second Embodiment
12, 13 and 14 are views for explaining the sensor device 10 according to the second embodiment, and correspond to FIGS. 1, 2 and 3 of the first embodiment, respectively. The sensor device 10 according to the present embodiment is the same as the sensor device 10 according to the first embodiment except for the following points.
 センサ装置10は、遮蔽部材600を備えている。遮蔽部材600は、受信器200から可動反射器300を隔てている。遮蔽部材600は、第1絞り610及び第2絞り620を有しており、第1絞り610及び第2絞り620は、仮想軸Aを挟んで互いに反対側に位置している。受信器200のうちの一部分(第1受信部)は、第1絞り610を通過した電磁波を受信可能になっており、受信器200のうちの他の一部分(第2受信部)は、第2絞り620を通過した電磁波を受信可能になっている。 The sensor device 10 includes a shielding member 600. The shielding member 600 separates the movable reflector 300 from the receiver 200. The shielding member 600 has a first stop 610 and a second stop 620, and the first stop 610 and the second stop 620 are located on opposite sides of the imaginary axis A. A part (first receiver) of the receiver 200 can receive the electromagnetic wave that has passed through the first diaphragm 610, and another part (second receiver) of the receiver 200 can receive the second electromagnetic wave. The electromagnetic waves having passed through the aperture 620 can be received.
 図12及び図13に示すように可動反射器300が図中で時計回りに回転する場合、図13に示すように、可動反射器300によって反射された電磁波は、第1絞り610、すなわち、仮想軸Aから一方の側にずれた絞りを通過し、受信器200のうちの一部分(第1受信部)によって受信される。 When the movable reflector 300 is rotated clockwise in the drawing as shown in FIGS. 12 and 13, the electromagnetic wave reflected by the movable reflector 300 is the first stop 610, that is, the virtual, as shown in FIG. It passes through an aperture which is offset from axis A to one side and is received by a part (first receiver) of the receiver 200.
 図12及び図14に示すように可動反射器300が図中で反時計回りに回転する場合、図14に示すように、可動反射器300によって反射された電磁波は、第2絞り620、すなわち、仮想軸Aからもう一方の側にずれた絞りを通過し、受信器200のうちの他の一部分(第2受信部)によって受信される。 When the movable reflector 300 is rotated counterclockwise in the drawing as shown in FIGS. 12 and 14, the electromagnetic wave reflected by the movable reflector 300 is second diaphragm 620, ie, as shown in FIG. It passes through the diaphragm, which is offset from the virtual axis A to the other side, and is received by the other part of the receiver 200 (second receiver).
 本実施形態によれば、実施形態1と同様にして、対象物Oがセンサ装置10からある程度大きな距離離れていても受信器200が電磁波を受信可能な範囲を広くすることが可能となる。 According to this embodiment, as in the first embodiment, even when the object O is separated from the sensor device 10 by a large distance to some extent, it is possible to widen the range in which the receiver 200 can receive the electromagnetic wave.
(実施形態3)
 図15、図16及び図17は、実施形態3に係るセンサ装置10を説明するための図であり、実施形態1の図1、図2及び図3にそれぞれ対応する。本実施形態に係るセンサ装置10は、以下の点を除いて、実施形態1に係るセンサ装置10と同様である。
(Embodiment 3)
15, 16 and 17 are diagrams for explaining the sensor device 10 according to the third embodiment, and correspond to FIGS. 1, 2 and 3 of the first embodiment, respectively. The sensor device 10 according to the present embodiment is the same as the sensor device 10 according to the first embodiment except for the following points.
 センサ装置10は、受信器200及び反射器700を備えている。受信器200は、仮想軸Aから一方の側にずれており、反射器700は、仮想軸Aからもう一方の側にずれている。特に図15から図17に示す例において、受信器200及び反射器700は、仮想軸Aを間にして、互いに対向した位置に配置されている。 The sensor device 10 comprises a receiver 200 and a reflector 700. The receiver 200 is offset from virtual axis A to one side, and the reflector 700 is offset from virtual axis A to the other side. In particular, in the examples shown in FIGS. 15 to 17, the receiver 200 and the reflector 700 are disposed at mutually opposing positions with the imaginary axis A in between.
 図15及び図16に示すように可動反射器300が図中で時計回りに回転する場合、図16に示すように、可動反射器300によって反射された電磁波は、反射器700、すなわち、仮想軸Aから一方の側にずれた光学素子に入射し、反射器700によって受信器200に向けて反射されて受信器200によって受信される。つまり、受信器200は、可動反射器300から反射器700によって反射された電磁波を受信可能になっている。 When the movable reflector 300 rotates clockwise in the drawing as shown in FIGS. 15 and 16, the electromagnetic wave reflected by the movable reflector 300 is reflected by the reflector 700, ie, the imaginary axis, as shown in FIG. It is incident on an optical element shifted from A to one side, reflected by the reflector 700 towards the receiver 200 and received by the receiver 200. That is, the receiver 200 can receive the electromagnetic wave reflected by the reflector 700 from the movable reflector 300.
 図15及び図17に示すように可動反射器300が図中で反時計回りに回転する場合、図17に示すように、可動反射器300によって反射された電磁波は、受信器200、すなわち、仮想軸Aからもう一方の側にずれた光学素子に入射し、受信器200によって受信される。つまり、受信器200は、可動反射器300から可動反射器300によって反射された電磁波を受信可能になっている。 When the movable reflector 300 rotates counterclockwise in the figure as shown in FIGS. 15 and 17, the electromagnetic wave reflected by the movable reflector 300 is a receiver 200, ie, a virtual, as shown in FIG. It is incident on an optical element offset from the axis A to the other side and received by the receiver 200. That is, the receiver 200 can receive the electromagnetic wave reflected by the movable reflector 300 from the movable reflector 300.
 本実施形態によれば、実施形態1と同様にして、対象物Oがセンサ装置10からある程度大きな距離離れていても受信器200が電磁波を受信可能な範囲を広くすることが可能となる。 According to this embodiment, as in the first embodiment, even when the object O is separated from the sensor device 10 by a large distance to some extent, it is possible to widen the range in which the receiver 200 can receive the electromagnetic wave.
(実施形態4)
 図18、図19及び図20は、実施形態4に係るセンサ装置10を説明するための図であり、実施形態1の図1、図2及び図3にそれぞれ対応する。本実施形態に係るセンサ装置10は、以下の点を除いて、実施形態1に係るセンサ装置10と同様である。
(Embodiment 4)
18, 19 and 20 are views for explaining the sensor device 10 according to the fourth embodiment, and correspond to FIG. 1, FIG. 2 and FIG. 3 of the first embodiment, respectively. The sensor device 10 according to the present embodiment is the same as the sensor device 10 according to the first embodiment except for the following points.
 センサ装置10は、第1反射器710及び第2反射器720を備えている。第1反射器710は、仮想軸Aから一方の側にずれており、第2反射器720は、仮想軸Aからもう一方の側にずれている。特に図18から図20に示す例において、第1反射器710及び第2反射器720は、仮想軸Aを間にして、互いに対向した位置に配置されている。 The sensor device 10 comprises a first reflector 710 and a second reflector 720. The first reflector 710 is offset to one side from the imaginary axis A, and the second reflector 720 is offset to the other side from the imaginary axis A. In particular, in the example shown in FIGS. 18 to 20, the first reflector 710 and the second reflector 720 are disposed at mutually opposing positions with the imaginary axis A in between.
 図18及び図19に示すように可動反射器300が図中で時計回りに回転する場合、図19に示すように、可動反射器300によって反射された電磁波は、第1反射器710、すなわち、仮想軸Aから一方の側にずれた反射器によって反射され、受信器200によって受信される。 When the movable reflector 300 rotates clockwise in the drawing as shown in FIGS. 18 and 19, the electromagnetic wave reflected by the movable reflector 300 is the first reflector 710, ie, as shown in FIG. It is reflected by a reflector that is offset from virtual axis A to one side and received by receiver 200.
 図18及び図20に示すように可動反射器300が図中で反時計回りに回転する場合、図20に示すように、可動反射器300によって反射された電磁波は、第2反射器720、すなわち、仮想軸Aからもう一方の側にずれた反射器によって反射され、受信器200によって受信される。 When the movable reflector 300 rotates counterclockwise in the drawing as shown in FIGS. 18 and 20, the electromagnetic wave reflected by the movable reflector 300 is a second reflector 720, ie, as shown in FIG. , Reflected by the reflector offset from the virtual axis A to the other side and received by the receiver 200.
 本実施形態によれば、実施形態1と同様にして、対象物Oがセンサ装置10からある程度大きな距離離れていても受信器200が電磁波を受信可能な範囲を広くすることが可能となる。 According to this embodiment, as in the first embodiment, even when the object O is separated from the sensor device 10 by a large distance to some extent, it is possible to widen the range in which the receiver 200 can receive the electromagnetic wave.
 図21から図25は、実施例に係るセンサ装置10を説明するための図である。 21 to 25 are views for explaining the sensor device 10 according to the embodiment.
 センサ装置10は、送信器100及び受信器200を備えている。図中において、センサ装置10は、XY座標の原点に置かれている。 The sensor device 10 comprises a transmitter 100 and a receiver 200. In the figure, the sensor device 10 is placed at the origin of XY coordinates.
 送信器100は、方向TDに電磁波を出射可能になっている。方向TDは、XY座標の原点に関して揺動可能になっている。方向TDは、様々な方法によって、特に、実施形態1(図1から図3)、実施形態2(図12から図14)、実施形態3(図15から図17)及び実施形態4(図18から図20)では、可動反射器300によって揺動可能になっている。 The transmitter 100 can emit an electromagnetic wave in the direction TD. The direction TD is rockable with respect to the origin of XY coordinates. The direction TD may depend, in particular, on embodiment 1 (FIGS. 1 to 3), embodiment 2 (FIGS. 12 to 14), embodiment 3 (FIGS. 15 to 17) and embodiment 4 (FIG. 18) according to various methods. In FIG. 20), the movable reflector 300 enables rocking.
 受信器200は、2つの方向、方向RD1及び方向RD2からの電磁波を受信可能になっている。方向RD1及び方向RD2は、方向TDから互いに反対側にずれており、方向TDに連動して、XY座標の原点に関して揺動可能になっている。方向RD1及び方向RD2は、様々な方法によって、特に、実施形態1(図1から図3)、実施形態2(図12から図14)、実施形態3(図15から図17)及び実施形態4(図18から図20)では、可動反射器300によって揺動可能になっており、2つの方向からの電磁波は、様々な方法によって、特に、実施形態1(図1から図3)では、第1受信素子210及び第2受信素子220によって、実施形態2(図12から図14)では、遮蔽部材600の第1絞り610及び第2絞り620によって、実施形態3(図15から図17)では、受信器200及び反射器700によって、実施形態4(図18から図20)では、第1反射器710及び第2反射器720によって、受信されることが可能になっている。 The receiver 200 can receive electromagnetic waves from two directions, direction RD1 and direction RD2. The direction RD1 and the direction RD2 are mutually offset from the direction TD, and interlocking with the direction TD, the direction RD1 and the direction RD2 can swing with respect to the origin of the XY coordinates. Direction RD1 and direction RD2 depend in particular on the various embodiments, embodiment 1 (FIGS. 1 to 3), embodiment 2 (FIGS. 12 to 14), embodiment 3 (FIGS. 15 to 17) and embodiment 4 In FIGS. 18 to 20, the movable reflector 300 is capable of rocking, and electromagnetic waves from two directions can be transmitted by various methods, particularly in the first embodiment (FIGS. 1 to 3). In the second embodiment (FIGS. 12 to 14) by the first receiving element 210 and the second receiving element 220, the third embodiment (FIGS. 15 to 17) by the first diaphragm 610 and the second diaphragm 620 of the shielding member 600. Receiver 200 and reflector 700 enable embodiment 4 (FIGS. 18-20) to be received by first reflector 710 and second reflector 720.
 図21は、時刻t=0において送信器100から対象物Oに向けて電磁波が出射された例を示している。図21のタイミングにおいて、方向TDは、Y方向に沿っている。 FIG. 21 shows an example in which an electromagnetic wave is emitted from the transmitter 100 toward the object O at time t = 0. At the timing of FIG. 21, the direction TD is along the Y direction.
 図22及び図23は、は、図21のタイミング後に方向TD、方向RD1及び方向RD2が図中時計回りに回転した場合の例を示している。図22では、送信器100から出射された電磁波(図中、電磁波を矢印で示している。)が時刻t=Δtにおいて対象物Oに達し、図23では、対象物Oから反射された電磁波(図中、電磁波を矢印で示している。)が時刻t=2Δtにおいて受信器200に達している。 22 and 23 show an example in which the direction TD, the direction RD1, and the direction RD2 rotate clockwise in the drawing after the timing of FIG. 22, the electromagnetic wave emitted from the transmitter 100 (in the figure, the electromagnetic wave is indicated by an arrow) reaches the object O at time t = Δt, and in FIG. 23, the electromagnetic wave reflected from the object O ( In the figure, an electromagnetic wave is shown by an arrow.) Reaches the receiver 200 at time t = 2Δt.
 図24及び図25は、は、図21のタイミング後に方向TD、方向RD1及び方向RD2が図中反時計回りに回転した場合の例を示している。図24では、送信器100から出射された電磁波(図中、電磁波を矢印で示している。)が時刻t=Δtにおいて対象物Oに達し、図25では、対象物Oから反射された電磁波(図中、電磁波を矢印で示している。)が時刻t=2Δtにおいて受信器200に達している。 FIGS. 24 and 25 show an example in which the direction TD, the direction RD1, and the direction RD2 rotate counterclockwise in the drawing after the timing of FIG. In FIG. 24, the electromagnetic wave emitted from the transmitter 100 (in the figure, the electromagnetic wave is indicated by the arrow) reaches the object O at time t = Δt, and in FIG. 25 the electromagnetic wave reflected from the object O ( In the figure, an electromagnetic wave is shown by an arrow.) Reaches the receiver 200 at time t = 2Δt.
 図23のタイミング(第1タイミング)において、受信器200は、方向RD1を対象物Oに向けて、対象物Oから反射された電磁波を受信する。 At timing (first timing) in FIG. 23, the receiver 200 directs the direction RD1 to the object O, and receives the electromagnetic wave reflected from the object O.
 図25のタイミング(第2タイミング)において、受信器200は、方向RD2を対象物Oに向けて、対象物Oから反射された電磁波を受信する。 At timing (second timing) in FIG. 25, the receiver 200 directs the direction RD2 to the object O, and receives the electromagnetic wave reflected from the object O.
 上述した構成によれば、対象物Oがセンサ装置10からある程度大きな距離離れていても受信器200が電磁波を受信可能な範囲を広くすることが可能となる。具体的には、図21、図22及び図23に示すように可動反射器300が図中で時計回りに回転する場合、図23に示すように、対象物Oから反射された電磁波は、方向RD1、すなわち、方向TDの一方の側にずれた方向から受信器200によって受信することができる。これに対して、図21、図24及び図25に示すように可動反射器300が図中で反時計回りに回転する場合、対象物Oから反射された電磁波は、方向RD1から受信器200によって受信することができない。しかしながら、図25に示すように、対象物Oから反射された電磁波は、方向RD2、すなわち、方向TDからからもう一方の側にずれた方向から受信器200によって受信することができる。このようにして、受信器200が電磁波を受信可能な範囲を広くすることが可能となる。 According to the configuration described above, even when the object O is separated from the sensor device 10 by a certain distance, it is possible to widen the range in which the receiver 200 can receive the electromagnetic wave. Specifically, as shown in FIG. 21, FIG. 22 and FIG. 23, when the movable reflector 300 rotates clockwise in the figure, as shown in FIG. 23, the electromagnetic wave reflected from the object O has a direction RD1 can be received by receiver 200 from a direction that is offset to one side of direction TD. On the other hand, when the movable reflector 300 rotates counterclockwise in the figure as shown in FIGS. 21, 24 and 25, the electromagnetic wave reflected from the object O is received by the receiver 200 from the direction RD1. I can not receive. However, as shown in FIG. 25, the electromagnetic wave reflected from the object O can be received by the receiver 200 from the direction RD2, that is, the direction shifted from the direction TD to the other side. In this way, it is possible to widen the range in which the receiver 200 can receive an electromagnetic wave.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although an embodiment and an example were described with reference to drawings, these are the illustrations of the present invention and can also adopt various composition except the above.
 この出願は、2017年7月19日に出願された日本出願特願2017-139681号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-139681 filed on Jul. 19, 2017, the entire disclosure of which is incorporated herein.

Claims (10)

  1.  送信器と、
     受信器と、
     前記送信器から出射された電磁波を、一方向を向いて対象物に向けて反射可能であり、前記対象物から反射された前記電磁波を、前記一方向と異なる方向を向いて反射可能である可動反射器と、
    を備え、
     前記受信器は、前記対象物から反射されて前記一方向を向いた前記可動反射器によって反射された電磁波が通過可能な仮想軸を間にして、互いに対向した位置に配置されている第1受信部及び第2受信部を含むセンサ装置。
    A transmitter,
    A receiver,
    The movable electromagnetic wave emitted from the transmitter can be reflected in one direction toward an object, and the electromagnetic wave reflected from the object can be reflected in a direction different from the one direction. A reflector,
    Equipped with
    The receiver is disposed at a position opposite to each other across an imaginary axis through which an electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass. A sensor device comprising a unit and a second receiving unit.
  2.  請求項1に記載のセンサ装置において、
     第1絞り及び第2絞りを有する遮断部材を備え、
     前記第1受信部は、前記遮断部材の前記第1絞りを通過した前記電磁波を受信可能であり、
     前記第2受信部は、前記遮断部材の前記第2絞りを通過した前記電磁波を受信可能であるセンサ装置。
    In the sensor device according to claim 1,
    A blocking member having a first aperture and a second aperture;
    The first receiving unit is capable of receiving the electromagnetic wave that has passed through the first aperture of the blocking member,
    The sensor device capable of receiving the electromagnetic wave that has passed through the second diaphragm of the blocking member.
  3.  請求項1又は2に記載のセンサ装置において、
     前記可動反射器の振れ角は、正弦波状に変化するセンサ装置。
    In the sensor device according to claim 1 or 2,
    A sensor device in which the swing angle of the movable reflector changes in a sinusoidal manner.
  4.  電磁波を出射する送信器と、
     前記送信器から出射された電磁波を、一方向を向いて対象物に向けて反射可能であり、前記対象物から反射された前記電磁波を、前記一方向と異なる方向を向いて反射可能な可動反射器と、
     前記対象物によって反射された前記電磁波を反射する反射器と、
     前記対象物によって反射された前記電磁波と、前記反射器によって反射された前記電磁波と、を受信する受信器と、
    を備え、
     前記受信器及び前記反射器は、前記対象物から反射されて前記一方向を向いた前記可動反射器によって反射された電磁波が通過可能な仮想軸を間にして、互いに対向した位置に配置されているセンサ装置。
    A transmitter that emits an electromagnetic wave,
    An electromagnetic wave emitted from the transmitter can be reflected in one direction toward an object, and a movable reflection capable of reflecting the electromagnetic wave reflected from the object in a direction different from the one direction can be reflected. And the
    A reflector for reflecting the electromagnetic wave reflected by the object;
    A receiver for receiving the electromagnetic wave reflected by the object and the electromagnetic wave reflected by the reflector;
    Equipped with
    The receiver and the reflector are disposed at mutually opposing positions with an imaginary axis through which an electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass. Sensor device.
  5.  送信器と、
     受信器と、
     第1反射器と、
     第2反射器と、
     前記送信器から出射された電磁波を、一方向を向いて対象物に向けて反射可能であり、前記対象物から反射された前記電磁波を、前記一方向と異なる方向を向いて反射可能である可動反射器と、
    を備え、
     前記第1反射器及び前記第2反射器は、前記対象物から反射されて前記一方向を向いた前記可動反射器によって反射された電磁波が通過可能な仮想軸を間にして、互いに対向した位置に配置されており、
     前記受信器は、前記可動反射器から前記第1反射器及び前記第2反射器のそれぞれによって反射された前記電磁波を受信可能であるセンサ装置。
    A transmitter,
    A receiver,
    A first reflector,
    A second reflector,
    The movable electromagnetic wave emitted from the transmitter can be reflected in one direction toward an object, and the electromagnetic wave reflected from the object can be reflected in a direction different from the one direction. A reflector,
    Equipped with
    The first reflector and the second reflector are opposed to each other across an imaginary axis through which the electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass. Are located in
    The sensor device, wherein the receiver can receive the electromagnetic wave reflected by the first reflector and the second reflector from the movable reflector.
  6.  一方向に電磁波を出射可能な送信器と、
     前記一方向から互いに反対側にずれた2方向からの電磁波を受信可能な受信器と、
    を備え、
     第1タイミングにおいて、前記受信器は、前記2方向のうちの一方を対象物に向けて、前記送信器から出射されて前記対象物から反射された電磁波を受信し、
     第2タイミングにおいて、前記受信器は、前記2方向のうちのもう一方を前記対象物に向けて、前記送信器から出射されて前記対象物から反射された電磁波を受信するセンサ装置。
    A transmitter capable of emitting an electromagnetic wave in one direction,
    A receiver capable of receiving electromagnetic waves from two directions shifted from the one direction to the other side;
    Equipped with
    At the first timing, the receiver directs one of the two directions to an object, and receives an electromagnetic wave emitted from the transmitter and reflected from the object,
    In the second timing, the receiver directs the other of the two directions to the object and receives an electromagnetic wave emitted from the transmitter and reflected from the object.
  7.  送信器と、受信器と、可動反射器と、を準備し、前記送信器から出射された電磁波を前記可動反射器によって対象物に向けて反射し、前記対象物から反射されて前記可動反射器によって反射された前記電磁波を前記受信器によって受信し、
     前記可動反射器は、前記送信器から出射された前記電磁波を、一方向を向いて前記対象物に向けて反射可能であり、前記対象物から反射された前記電磁波を、前記一方向と異なる方向を向いて反射可能であり、
     前記受信器は、前記対象物から反射されて前記一方向を向いた前記可動反射器によって反射された電磁波が通過可能な仮想軸を間にして、互いに対向した位置に配置されている第1受信部及び第2受信部を含む、センシング方法。
    A transmitter, a receiver, and a movable reflector are prepared, and an electromagnetic wave emitted from the transmitter is reflected toward the object by the movable reflector, and is reflected from the object to be reflected by the movable reflector. Receiving by the receiver the electromagnetic wave reflected by
    The movable reflector can reflect the electromagnetic wave emitted from the transmitter in one direction toward the object, and can reflect the electromagnetic wave reflected from the object in a direction different from the one direction. Facing and reflecting,
    The receiver is disposed at a position opposite to each other across an imaginary axis through which an electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass. A sensing method, comprising: a unit and a second receiver.
  8.  送信器と、受信器と、反射器と、可動反射器と、を準備し、前記送信器から出射された電磁波を前記可動反射器によって対象物に向けて反射し、前記対象物から反射されて前記可動反射器によって反射された前記電磁波を前記受信器によって受信し、
     前記可動反射器は、前記送信器から出射された前記電磁波を、一方向を向いて前記対象物に向けて反射可能であり、前記対象物から反射された前記電磁波を、前記一方向と異なる方向を向いて反射可能であり、
     前記受信器及び前記反射器は、前記対象物から反射されて前記一方向を向いた前記可動反射器によって反射された電磁波が通過可能な仮想軸を間にして、互いに対向した位置に配置されており、
     前記受信器は、前記可動反射器から前記可動反射器によって反射された前記電磁波及び前記可動反射器から前記反射器によって反射された前記電磁波を受信可能である、センシング方法。
    A transmitter, a receiver, a reflector, and a movable reflector are provided, and an electromagnetic wave emitted from the transmitter is reflected by the movable reflector toward the object, and is reflected from the object. Receiving the electromagnetic wave reflected by the movable reflector by the receiver;
    The movable reflector can reflect the electromagnetic wave emitted from the transmitter in one direction toward the object, and can reflect the electromagnetic wave reflected from the object in a direction different from the one direction. Facing and reflecting,
    The receiver and the reflector are disposed at mutually opposing positions with an imaginary axis through which an electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass. Yes,
    The sensing method is capable of receiving the electromagnetic wave reflected by the movable reflector from the movable reflector and the electromagnetic wave reflected by the reflector from the movable reflector.
  9.  送信器と、受信器と、第1反射器と、第2反射器と、可動反射器と、を準備し、前記送信器から出射された電磁波を前記可動反射器によって対象物に向けて反射し、前記対象物から反射されて前記可動反射器によって反射された前記電磁波を前記受信器によって受信し、
     前記可動反射器は、前記送信器から出射された電磁波を、一方向を向いて対象物に向けて反射可能であり、前記対象物から反射された前記電磁波を、前記一方向と異なる方向を向いて反射可能であり、
     前記第1反射器及び前記第2反射器は、前記対象物から反射されて前記一方向を向いた前記可動反射器によって反射された電磁波が通過可能な仮想軸を間にして、互いに対向した位置に配置されており、
     前記受信器は、前記可動反射器から前記第1反射器及び前記第2反射器のそれぞれによって反射された前記電磁波を受信可能である、センシング方法。
    A transmitter, a receiver, a first reflector, a second reflector, and a movable reflector are provided, and an electromagnetic wave emitted from the transmitter is reflected toward the object by the movable reflector. Receiving by the receiver the electromagnetic waves reflected from the object and reflected by the movable reflector,
    The movable reflector can reflect the electromagnetic wave emitted from the transmitter toward the one direction toward the object, and the electromagnetic wave reflected from the object may face the direction different from the one direction. Can be reflected,
    The first reflector and the second reflector are opposed to each other across an imaginary axis through which the electromagnetic wave reflected from the object and reflected by the movable reflector facing the one direction can pass. Are located in
    The sensing method may be such that the receiver can receive the electromagnetic wave reflected by the first reflector and the second reflector from the movable reflector.
  10.  送信器と、受信器と、を準備し、前記送信器から対象物に向けて電磁波を出射し、前記対象物から反射された前記電磁波を受信器によって受信し、
     前記送信器は、一方向に前記電磁波を出射可能であり、
     前記受信器は、前記一方向から互いに反対側にずれた2方向からの電磁波を受信可能であり、
     第1タイミングにおいて、前記受信器は、前記2方向のうちの一方を対象物に向けて、前記送信器から出射されて前記対象物から反射された電磁波を受信し、
     第2タイミングにおいて、前記受信器は、前記2方向のうちのもう一方を前記対象物に向けて、前記送信器から出射されて前記対象物から反射された電磁波を受信する、センシング方法。
    Preparing a transmitter and a receiver, emitting an electromagnetic wave from the transmitter to an object, and receiving the electromagnetic wave reflected from the object by the receiver;
    The transmitter can emit the electromagnetic wave in one direction,
    The receiver can receive electromagnetic waves from two directions shifted from the one direction to the opposite side,
    At the first timing, the receiver directs one of the two directions to an object, and receives an electromagnetic wave emitted from the transmitter and reflected from the object,
    In the second timing, the receiver directs the other of the two directions to the object, and receives an electromagnetic wave emitted from the transmitter and reflected from the object.
PCT/JP2018/026887 2017-07-19 2018-07-18 Sensor device and sensing method WO2019017379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-139681 2017-07-19
JP2017139681 2017-07-19

Publications (1)

Publication Number Publication Date
WO2019017379A1 true WO2019017379A1 (en) 2019-01-24

Family

ID=65016469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026887 WO2019017379A1 (en) 2017-07-19 2018-07-18 Sensor device and sensing method

Country Status (1)

Country Link
WO (1) WO2019017379A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311385A (en) * 1979-07-02 1982-01-19 Raytheon Company Coherent detection lag angle compensated scanning system independent of inhomogeneities of the detector
US5485009A (en) * 1986-09-16 1996-01-16 Thomson - Csf Laser imaging system with a linear detector array
JPH10300851A (en) * 1997-04-24 1998-11-13 Omron Corp Distance measuring device
JP2007316016A (en) * 2006-05-29 2007-12-06 Mitsubishi Electric Corp Radar device
JP2012202857A (en) * 2011-03-25 2012-10-22 Toyota Central R&D Labs Inc Distance measuring device
WO2014024508A1 (en) * 2012-08-08 2014-02-13 三菱電機株式会社 Radar device
US20170371029A1 (en) * 2016-06-28 2017-12-28 Leica Geosystems Ag Long range lidar system and method for compensating the effect of scanner motion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311385A (en) * 1979-07-02 1982-01-19 Raytheon Company Coherent detection lag angle compensated scanning system independent of inhomogeneities of the detector
US5485009A (en) * 1986-09-16 1996-01-16 Thomson - Csf Laser imaging system with a linear detector array
JPH10300851A (en) * 1997-04-24 1998-11-13 Omron Corp Distance measuring device
JP2007316016A (en) * 2006-05-29 2007-12-06 Mitsubishi Electric Corp Radar device
JP2012202857A (en) * 2011-03-25 2012-10-22 Toyota Central R&D Labs Inc Distance measuring device
WO2014024508A1 (en) * 2012-08-08 2014-02-13 三菱電機株式会社 Radar device
US20170371029A1 (en) * 2016-06-28 2017-12-28 Leica Geosystems Ag Long range lidar system and method for compensating the effect of scanner motion

Similar Documents

Publication Publication Date Title
CN108226899B (en) Laser radar and working method thereof
US10788574B2 (en) LIDAR device and LIDAR system including the same
KR102324620B1 (en) Lidar system with non-uniform sensitivity response
EP4001964A1 (en) Lidar system
KR101951242B1 (en) Lidar device and system comprising the same
US20210263303A1 (en) Optical scanning device with beam compression and expansion
WO2018131083A1 (en) Laser radar device
JP2017106833A (en) Measuring apparatus
CN110857978B (en) Single MEMS mirror chip level lidar
JP2017520756A (en) Device for identifying objects
JP2004015135A (en) Optical space communication unit having direction regulating function
JP2005077288A (en) Radar device
JP6318663B2 (en) Laser radar equipment
WO2018214453A1 (en) Laser radar and control method for laser radar
KR102323317B1 (en) Lidar sensors and methods for lidar sensors
WO2019017379A1 (en) Sensor device and sensing method
WO2018079561A1 (en) Sensor device, sensing method, program, and storage medium
CN110346775A (en) Directed scan Mode change in coherent laser radar
US11940564B2 (en) Laser radar device
JP3659239B2 (en) Radar equipment
JP2022043268A (en) Irradiation apparatus and light receiving apparatus
JP2014085646A (en) Optical scanner and measuring system
JP2021012264A (en) Optical scanner, object detection device, and sensing device
JP2011095103A (en) Distance-measuring apparatus
WO2019163754A1 (en) Mirror device, optical scanning device, distance-measuring device, control method for mirror device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP