WO2019017192A1 - センサ校正装置、及びセンサ校正プログラム - Google Patents
センサ校正装置、及びセンサ校正プログラム Download PDFInfo
- Publication number
- WO2019017192A1 WO2019017192A1 PCT/JP2018/025025 JP2018025025W WO2019017192A1 WO 2019017192 A1 WO2019017192 A1 WO 2019017192A1 JP 2018025025 W JP2018025025 W JP 2018025025W WO 2019017192 A1 WO2019017192 A1 WO 2019017192A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- value
- calibration
- sensor
- measurement value
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P21/00—Testing or calibrating of apparatus or devices covered by the preceding groups
Definitions
- the disclosure according to this specification relates to a sensor calibration device that calibrates an output of a posture sensor that detects a posture of a vehicle, and a sensor calibration program.
- an acceleration sensor As a type of attitude sensor that measures the attitude of a vehicle, for example, as described in Patent Document 1, an acceleration sensor, an angular velocity sensor, and the like are known. In such a posture sensor, for example, a change in output due to a change in ambient temperature or an individual difference occurs. Therefore, the correction device disclosed in Patent Document 1 calibrates the output of the posture sensor based on the measured ambient temperature of the posture sensor and the temperature identification data stored in advance.
- the present disclosure aims to provide a sensor calibration device capable of calibrating an attitude sensor using information different from conventional information, and a sensor calibration program.
- a sensor calibration device that calibrates an output of a posture sensor that detects a posture of a vehicle, and a measurement value acquisition unit that acquires a measurement value of a posture of the vehicle based on an output of the posture sensor;
- the vehicle speed acquisition unit acquires vehicle speed information indicating the traveling speed of the map information acquisition unit acquiring map information of the road on which the vehicle travels, and the calculated position of the vehicle calculated from the vehicle speed information and the measured value is indicated in the map information
- a calibration value setting unit configured to set a calibration value to be applied to the measurement value so as to approach the reference position.
- a sensor calibration program for calibrating an output of an attitude sensor that detects an attitude of a vehicle, and at least one processing unit acquires a measurement value of the attitude of the vehicle based on the output of the attitude sensor Measurement value acquisition unit, vehicle speed acquisition unit for acquiring vehicle speed information indicating the traveling speed of the vehicle, map information acquisition unit for acquiring map information of a road on which the vehicle travels, calculated position of the vehicle calculated from the vehicle speed information and measurement value
- a sensor calibration program for functioning as a calibration value setting unit that sets a calibration value to be applied to the measurement value so as to approach a reference position indicated in the map information.
- a sensor calibration device that calibrates an output of a posture sensor that detects a posture of a vehicle, and a measurement value acquisition unit that acquires a measurement value of the posture of the vehicle based on the output of the posture sensor;
- a vehicle speed acquisition unit for acquiring vehicle speed information indicating a traveling speed of the vehicle, a position specifying unit for specifying a measured position of the vehicle based on the positioning signal received from the positioning satellite, and a calculated position of the vehicle calculated from the vehicle speed information and the measurement value
- a calibration value setting unit configured to set a calibration value to be applied to the measurement value so as to approach the positioning position specified by the position specification unit.
- a sensor calibration program for calibrating an output of an attitude sensor that detects an attitude of a vehicle, and at least one processing unit acquires a measurement value of the attitude of the vehicle based on the output of the attitude sensor Measurement value acquiring unit, vehicle speed acquiring unit acquiring vehicle speed information indicating the traveling speed of the vehicle, position specifying unit specifying a positioning position of the vehicle based on the positioning signal received from the satellite, vehicle calculated from the vehicle speed information and the measured value
- the sensor calibration program is configured to function as a calibration value setting unit that sets a calibration value to be applied to the measurement value so that the calculated position of ⁇ ⁇ ⁇ approaches the positioning position identified by the position identification unit.
- the calibration value of the posture sensor is set such that the calculated position based on the vehicle speed information and the measurement value approaches the determined position determined based on the positioning signal.
- the attitude sensor using information different from the conventional one such as a positioning signal received from a satellite.
- a sensor calibration device that calibrates an output of a posture sensor that detects a displacement of the vehicle, and a measurement value acquisition unit that acquires a measurement value of the displacement of the vehicle based on the output of the posture sensor;
- a vehicle speed acquisition unit that acquires vehicle speed information indicating the traveling speed of the vehicle, an altitude information acquisition unit that acquires altitude information of a road on which the vehicle travels, and a calculated position of the vehicle calculated from the vehicle speed information and the measurement value
- a calibration value setting unit configured to set a calibration value to be applied to the measurement value so as to approach the indicated reference position.
- a sensor calibration program for calibrating an output of an attitude sensor that detects a displacement of the vehicle, wherein at least one processing unit acquires a measurement value of the displacement of the vehicle based on the output of the attitude sensor Measurement value acquiring unit, vehicle speed acquiring unit acquiring vehicle speed information indicating the traveling speed of the vehicle, altitude information acquiring unit acquiring altitude information of the road on which the vehicle travels, calculated position of the vehicle calculated from the vehicle speed information and the measured value
- the sensor calibration program is configured to function as a calibration value setting unit that sets a calibration value to be applied to the measurement value so that the value approaches the reference position indicated in the altitude information.
- the measurement value of the attitude sensor by combining the measurement value of the attitude sensor and the vehicle speed information, it is possible to obtain the calculated position of the altitude based on the measurement value of the displacement of the vehicle. If the calibration value is set so that the calculated position approaches the reference position indicated by the altitude information, the calibration of the attitude sensor using the altitude information becomes possible. Therefore, it becomes possible to calibrate the attitude sensor using information different from the conventional one.
- FIG. 1 is a block diagram showing an overview of a system mounted on a vehicle including a display control device according to a first embodiment of the present disclosure
- FIG. 2A is a diagram (before calibration) visualizing a process of matching the calculated traveling locus with the traveling locus based on map data for setting a calibration coefficient.
- FIG. 2B is a diagram (after calibration) visualizing a process of matching the calculated traveling locus with the traveling locus based on map data for setting of a calibration coefficient;
- FIG. 3 is a flowchart showing the details of the calibration coefficient update process,
- FIG. 4 is a flowchart showing the details of the data selection process.
- FIG. 1 is a block diagram showing an overview of a system mounted on a vehicle including a display control device according to a first embodiment of the present disclosure
- FIG. 2A is a diagram (before calibration) visualizing a process of matching the calculated traveling locus with the traveling locus based on map data for setting a calibration coefficient.
- FIG. 2B is a
- FIG. 5 is a flowchart showing details of the update process of the second embodiment
- FIG. 6 is a block diagram showing an overview of a system mounted on a vehicle including a display control device according to a third embodiment
- FIG. 7 is a diagram visualizing a process of matching the calculated vehicle height with the vehicle height based on map data for setting of a calibration coefficient.
- FIG. 8 is a flowchart showing details of the update process of the third embodiment
- FIG. 9 is a flowchart showing details of data selection processing
- FIG. 10 is a flowchart showing data selection processing according to the first modification
- FIG. 11 is a flowchart showing data selection processing according to the second modification
- FIG. 12 is a flowchart showing data selection processing according to the third modification.
- the function of the sensor calibration device is realized by the display control device 100.
- the display control device 100 is one of a plurality of electronic control units mounted on a vehicle.
- the display control device 100 is electrically connected to a plurality of display devices such as the HUD device 10 and a combination meter, and controls the display thereof.
- the display control device 100 directly or indirectly communicates with the in-vehicle LAN 50, a map database (hereinafter, "map DB") 30, the GNSS receiver 20, the sensor unit 40, etc. in addition to the display devices such as the HUD device 10. It is connected.
- map DB map database
- a HUD (Head-Up Display) device 10 is a display device that displays a virtual image VI in front of a vehicle occupant, for example, a driver.
- the virtual image VI is imaged in a space in front of the vehicle, for example, at a position of about 10 to 20 meters from the eye point of the driver.
- the virtual image VI functions as an augmented reality (hereinafter referred to as “AR (Augmented Reality”)) display by being superimposed on the road surface and other vehicles etc. in appearance of the driver. For example, warning information and route information are presented to the driver through the virtual image VI.
- AR Augmented Reality
- the HUD device 10 has a projector 11, a reflective optical system 12, and an actuator 13 as a configuration for displaying the virtual image VI.
- the projector 11 emits light of a display image formed as a virtual image VI toward the reflective optical system 12.
- the reflective optical system 12 projects the light of the display image incident from the projector 11 onto the projection area PA of the windshield WS.
- the light projected onto the windshield WS is reflected by the projection area PA toward the eye point and perceived by the driver.
- the actuator 13 changes the position of the reflective optical system 12 to change the projection position of the light of the display image on the projection area PA.
- the HUD device 10 described above displays the virtual image VI on the driver's appearance by using at least one of drawing control of a display image drawn by the projector 11 and attitude control of the reflection optical system 12 by the actuator 13. Change the position up and down.
- An in-vehicle LAN (Local Area Network) 50 is connected to a large number of electronic control units and a large number of on-vehicle sensors.
- Various information is output to the in-vehicle LAN 50 from the electronic control unit and the in-vehicle sensor.
- vehicle speed information indicating the traveling speed of the vehicle
- driving force information indicating the driving force of the vehicle
- the like are output to the in-vehicle LAN 50.
- the map DB 30 is mainly configured of a large-capacity storage medium storing a large number of map data.
- the map data includes information such as curvature value of each road, slope value, and section length, and information of non-temporary traffic restrictions such as speed limit of each road and one-way traffic.
- the map data includes, as information indicating the position of the road in three dimensions, coordinate information indicating longitude, latitude, and altitude at a plurality of points on the road.
- the longitude, latitude, and altitude values included in the coordinate information are values measured by highly accurate positioning to enable automatic driving of the vehicle.
- a GNSS (Global Navigation Satellite System) receiver 20 receives positioning signals from a plurality of positioning satellites.
- the GNSS receiver 20 sequentially outputs the received positioning signal to the display control apparatus 100.
- the GNSS receiver 20 can receive a positioning signal from each positioning satellite of at least one satellite positioning system among satellite positioning systems such as GPS, GLONASS, Galileo, IRNSS, QZSS, and Beidou.
- the sensor unit 40 is a motion sensor that detects the attitude of the vehicle.
- the sensor unit 40 is fixed at an arbitrary position of the vehicle, and measures pitch, roll, yaw and the like generated in the vehicle.
- the sensor unit 40 has a plurality of gyro sensors 41 to 43 in order to measure changes in the position of the center of gravity around the yaw axis, the pitch axis and the roll axis of the vehicle, ie, the attitude change.
- the gyro sensors 41 to 43 are, for example, sensors that detect angular velocity as a voltage value.
- the respective gyro sensors 41 to 43 are provided in different postures so as to measure the magnitude of the angular velocity generated around each axis with respect to the x axis, the y axis and the z axis which are orthogonal to each other.
- Each of the gyro sensors 41 to 43 measures a measurement value around each axis, and sequentially outputs the measurement value to the display control device 100.
- the directions of the three axes defined in the sensor unit 40 may be inclined with respect to the yaw axis, the pitch axis and the roll axis in the vehicle.
- the display control device 100 is configured of a control circuit 60, a storage unit 60a, an input / output interface, and the like.
- the control circuit 60 mainly includes a central processing unit (CPU), a graphics processing unit (GPU), a random access memory (RAM), and the like.
- the storage unit 60 a stores various programs to be executed by the control circuit 60. Specifically, a display control program for controlling display of the virtual image VI, a sensor calibration program for calibrating the outputs of the gyro sensors 41 to 43, and the like are stored in the storage unit 60a.
- the control circuit 60 constructs a plurality of functional blocks by executing various programs stored in the storage unit 60a.
- the control circuit 60 includes a display control unit 71, an attitude calculation unit 72, and an actuator control unit 73 as functional blocks based on the display control program.
- the control circuit 60 further includes a measured value acquisition unit 61, a vehicle speed acquisition unit 62, an acceleration acquisition unit 63, a map information acquisition unit 64, a position specification unit 65, and a calibration value setting unit 66 as functional blocks based on the sensor calibration program.
- the display control unit 71 controls the display of the virtual image VI by the HUD device 10.
- the display control unit 71 selects the virtual image VI used for information presentation based on various information acquired through the in-vehicle LAN 50.
- the display control unit 71 draws image data for displaying the selected virtual image VI, and sequentially outputs the image data to the projector 11.
- the light of the display image based on the image data is projected from the projector 11 to the reflection optical system 12 by the display control processing of the display control unit 71.
- the posture calculation unit 72 calculates a pitch angle ⁇ p , a roll angle ⁇ r and a yaw angle y as posture information of the vehicle based on the outputs of the gyro sensors 41 to 43 acquired by the measurement value acquisition unit 61. . Temperature drift occurs in the values of the respective gyro sensors 41 to 43 as an error caused by a change in the ambient temperature in which the sensor unit 40 is installed. In addition, when calculating the angle from the angular velocity, an error (time drift) associated with time integration also occurs.
- the posture calculation unit 72 measures the measured value ⁇ p_sens , which is the raw output of each of the gyro sensors 41 to 43, using the calibration equation shown in the following equation 1.
- the calibration coefficients a p , b p , a r , b r , a y and b y in the calibration equation are values set by the calibration value setting unit 66.
- the actuator control unit 73 operates the actuator 13 based on the attitude information of the vehicle calculated by the attitude calculation unit 72 to move the projection position of the light of the display image in the projection area PA in the vertical direction.
- the actuator control unit 73 controls the posture of the reflective optical system 12 by the actuator 13 so that the displacement of the superimposed position of the virtual image VI caused by the change in the posture of the vehicle is corrected even when the posture of the vehicle changes. According to the control of the actuator control unit 73, the virtual image VI can be maintained in a state in which the virtual image VI is correctly superimposed on the target on the driver's appearance.
- the display control unit 71 performs control to change the arrival position of the light of the display image projected from the projector 11 to the reflection optical system 12. It is also good. Also by the drawing control of the display control unit 71, the virtual image VI can maintain the state of being properly superimposed on the target on the driver's appearance.
- the measurement value acquisition unit 61 acquires from the sensor unit 40 the angular velocity about the pitch axis, the roll axis and the yaw axis of the vehicle detected by each of the gyro sensors 41 to 43.
- the measurement value acquisition unit 61 performs coordinate conversion to output the output of each of the gyro sensors 41 to 43 at an angular velocity around the three axes of the vehicle. To fix.
- the measurement value acquisition unit 61 acquires the pitch angle ⁇ p — sens , the roll angle ⁇ r — sens, and the yaw angle ⁇ y — sens of the vehicle by processing of time-integrating the angular velocity around each axis.
- the vehicle speed acquisition unit 62 acquires vehicle speed information indicating the traveling speed of the vehicle output to the in-vehicle LAN 50.
- the acceleration acquisition unit 63 acquires driving force information indicating the driving force of the vehicle output to the in-vehicle LAN 50.
- the acceleration acquisition unit 63 acquires acceleration information indicating the acceleration of the vehicle based on the driving force information and specification information such as the weight of the vehicle, the outer diameter of the tire, and the gear ratio of the drive system.
- the map information acquisition unit 64 acquires, from the map DB 30, three-dimensional map data including information on latitude, longitude, and altitude for the road on which the vehicle travels. Specifically, the map information acquisition unit 64 requests the map DB 30 to provide map data around the current position of the vehicle and map data including the road on which the vehicle has traveled. The map information acquisition unit 64 may be able to acquire map data around the vehicle, for example, through a communication network.
- the position specifying unit 65 acquires the positioning signal from the satellite received by the GNSS receiver 20.
- the position specifying unit 65 specifies the current measured position of the vehicle based on the positioning signal.
- the vehicle speed acquisition unit 62 and the acceleration acquisition unit 63 may acquire the vehicle speed information and the acceleration information, respectively, based on the transition of the measured position specified by the position specification unit 65.
- the calibration value setting unit 66 sets a calibration coefficient (see Equation 1) to be applied to the measurement value acquired by the measurement value acquisition unit 61. Specifically, the calibration value setting unit 66 calculates a traveling locus RPc (see FIG. 2A and FIG. 2B) of the vehicle using a coordinate calculation formula shown in Equation 2 below.
- the traveling locus RPc is a three-dimensional figure formed by connecting the coordinates of the calculated position calculated from the vehicle speed information and the measurement value in a time series.
- v in the following coordinate calculation formula is the traveling speed of the vehicle indicated by the vehicle speed information.
- (x i , y i , z i ) are coordinates of the calculated position of the vehicle at time i
- (x i +1 , y i +1 , z i +1 ) are coordinates of the calculated position of the vehicle at time i + 1 is there.
- the pitch angle ⁇ p , the roll angle ⁇ r and the yaw angle ⁇ y are taken as the attitude values based on the calibration equation in which the measured values ⁇ p_sens , ⁇ r_sens , ⁇ y_sens or the temporary calibration coefficients are set before calibration .
- the calibration value setting unit 66 sets a traveling locus RPm (see FIGS. 2A and 2B) which is estimated to have traveled based on the road shape information indicated by the map data.
- the calibration value setting unit 66 assumes that the traveling locus RPm based on the map data is a true value.
- the calibration value setting unit 66 calculates a calibration coefficient such that the calculated traveling locus RPc approaches (overlaps) the traveling locus RPm based on the map data, that is, the error of the traveling locus RPc with respect to the traveling locus RPm is minimized. Do.
- the calibration value setting unit 66 selects coordinates on the traveling locus RPc corresponding to a large number of coordinates on the traveling locus RPm.
- the calibration value setting unit 66 sets a pair of coordinate information that is estimated to indicate the position of the vehicle at the same time from each of the travel loci RPm and RPc.
- the calibration value setting unit 66 searches for the minimum value of the objective function as expressed by Equation 3 below.
- the calibration value setting unit 66 sets a calibration coefficient that minimizes the sum of error norms.
- the calibration value setting unit 66 searches for calibration coefficients by iterative calculation by the gradient method, as an example.
- the calibration value setting unit 66 determines the traveling state of the vehicle, excludes the measured value measured in the specific traveling state, and sets the calibration coefficient. Specifically, the measurement values measured by the gyro sensors 41 to 43 while the vehicle is accelerating and decelerating are excluded from the target data used for setting the calibration coefficient. In addition, measurement values measured by the respective gyro sensors 41 to 43 during a period in which the vehicle passes through the unevenness of the road surface are also excluded from the target data used for setting the calibration coefficient.
- the update process shown in FIG. 3 is started by the control circuit 60 based on the fact that the vehicle can travel.
- the update process is repeatedly performed by the control circuit 60 until the power supply or ignition of the vehicle is turned off.
- S101 measurement values based on the outputs of the respective gyro sensors 41 to 43 and vehicle speed information are acquired, and the process proceeds to S102.
- S102 data to be used for setting the calibration coefficient is selected from among the measurement values acquired in S101. That is, in S102, measured values that may cause a large error in the calibration coefficient are excluded from the objects of use by the data selection process shown in FIG.
- S121 of the data selection process acceleration information in a period or timing when the measurement value is measured is acquired. Then, it is determined whether or not the absolute value of the acceleration occurring in the vehicle exceeds the threshold A. When it is determined in S121 that the absolute value of the acceleration is equal to or less than the threshold A, the process proceeds to S123. On the other hand, when it is determined that the absolute value of the acceleration exceeds the threshold A, the process proceeds to S122. In S122, the measurement value in the period in which the absolute value of the acceleration exceeds the threshold A is excluded from the targets used for setting the calibration coefficient, and the process proceeds to S123. As described above, data during acceleration and deceleration are excluded from use.
- the difference value of the coordinates of the calculated position in the time series is calculated.
- the difference value may be, for example, a value (
- x t is the value of the calculated position at time t
- x t-1 is the value of the calculated position at time t-1.
- the process proceeds to S125.
- the process proceeds to S124.
- the measurement value of the period in which the absolute value of the difference value exceeds the threshold B is excluded from the targets used for setting the calibration coefficient, and the process proceeds to S125.
- the variance value of the coordinates of the calculated position in a specific period is calculated, and it is determined whether the variance value exceeds the threshold C or not.
- the process returns to S103 of the update (main) process.
- the process proceeds to S126.
- the measurement value in the period in which the variance value exceeds the threshold C is excluded from the target used for setting the calibration coefficient, and the process returns to S103 of the main process shown in FIG. As described above, data of a period in which the vehicle changes in attitude due to some factor not appearing in the map data is excluded from the use target.
- the travel locus RPc before calibration is calculated by the above-described coordinate calculation formula (see Equation 2), and the process proceeds to S104.
- the map data is read from the map DB 30, and the travel locus RPm of the vehicle is set. Then, a point corresponding to an individual coordinate on the traveling locus RPm, that is, a coordinate closest to the individual coordinate is selected from the coordinate group of the calculated position calculated in S103, and the process proceeds to S105.
- each calibration coefficient of the calibration equation (see Equation 1) is calculated so as to minimize the error between the calculated position and the reference position correlated in S104, and the updating process is temporarily ended.
- the calculated position is acquired by combining the measurement value based on the output of each of the gyro sensors 41 to 43 and the vehicle speed information. If the calibration coefficient is set so that the calculated position approaches the reference position indicated by the map data, the sensor unit 40 can be calibrated using the map data. As a result, unlike the conventional case, calibration of each of the gyro sensors 41 to 43 using map data becomes possible.
- the accuracy of the attitude measurement of the vehicle by the gyro sensors 41 to 43 is improved. Therefore, the display control unit 71 and the actuator control unit 73 can move the virtual image VI following the change in the posture of the vehicle with high accuracy. Therefore, the display control device 100 can accurately superimpose the virtual image VI on the object on the driver's appearance.
- the sensor unit 40 is configured to measure the angular velocity around three axes, and hence the attitude angle. Even in a configuration using such a three-axis sensor unit 40, calibration of measured values around each axis becomes possible if three-dimensional coordinates are shown in the map data.
- one point corresponding to the coordinates of the reference position indicated by the map data is selected from among a large number of calculated position coordinate groups.
- the number of coordinates included in the map data is smaller than the number of coordinates calculated as the calculation position. Therefore, according to the processing of tying the coordinates of the calculated position to the coordinates of the reference position, the display control apparatus 100 can calculate the calibration coefficient with high accuracy by effectively using the obtainable data.
- the calibration value setting unit 66 calculates the calibration coefficient such that the sum of the error norms of the respective coordinates of each of the travel loci RPm and RPc is minimized. With such operation processing, it is possible to suppress the operation load for searching for the calibration coefficient while securing the accuracy of the calibration coefficient.
- the measurement values of the respective gyro sensors 41 to 43 in the period in which the center of gravity of the vehicle is changing are values including the movement of the vehicle not included in the map data. Therefore, in the first embodiment, measurement values during acceleration and deceleration accompanied by changes in the position of the center of gravity are excluded from targets used for setting the calibration coefficient. Specifically, the value of the acceleration of the vehicle is acquired as acceleration information, and measurement values of periods estimated to be during acceleration and deceleration are excluded from the calculation of the calibration coefficient. According to the above, it is possible to maintain high the accuracy of the calibration coefficient calculated using the map data.
- the measurement value at the timing of passing through the unevenness of the road surface is a value including the movement not included in the map data. Therefore, in the first embodiment, the measurement value of the period during which the road surface unevenness is passed is excluded from the targets used for setting the calibration coefficient. Specifically, the difference value over time is monitored with respect to the coordinates of the calculated position, and the measurement value of the period in which the change width of the coordinates exceeds the threshold B is excluded from the calculation of the calibration coefficient. According to the above, it is possible to maintain high the accuracy of the calibration coefficient calculated using the map data.
- the variance value of the calculated position in the specific period is calculated, and the measurement value of the period in which the variance value exceeds the threshold C is not used for calculation of the calibration coefficient.
- the measurement value of the period in which the large posture change is caused by the factor not included in the map data can be excluded from the calculation of the calibration coefficient. Therefore, the accuracy of the calibration factor can be maintained high.
- the map data corresponds to "map information”
- the calibration coefficient corresponds to a "calibration value”
- the gyro sensors 41 to 43 correspond to a "posture sensor”
- the control circuit 60 The display control device 100 corresponds to a "sensor calibration device”.
- the calibration value setting unit 66 shown in FIG. 1 calculates the travel locus RPc (see FIGS. 2A and 2B) of the vehicle using the same coordinate calculation formula (see Equation 2) as in the first embodiment.
- the calibration value setting unit 66 according to the second embodiment estimates that the vehicle has traveled by running the positioning positions identified by the position identifying unit 65 in a time-series process (see FIG. 2A and FIG. Set 2B).
- the calibration value setting unit 66 assumes that the travel locus RPm based on the positioning signal is a true value, and in other words, the calculated travel locus RPc three-dimensionally overlaps the travel locus RPm based on the positioning signal.
- the calibration coefficient is calculated so as to minimize the error of the calculated position for.
- the contents of S201 to S203 and S205 are substantially the same as S101 to S103 and S105 (see FIG. 3) of the first embodiment.
- the coordinates hereinafter referred to as "positioning coordinates" based on the positioning position are read from the position specifying unit 65, and the traveling locus RPm of the vehicle is set. Then, a point corresponding to each positioning coordinate on the traveling locus RPm is selected from among the coordinate group of the calculated position calculated in S203.
- positioning coordinates hereinafter referred to as "positioning coordinates” based on the positioning position are read from the position specifying unit 65, and the traveling locus RPm of the vehicle is set. Then, a point corresponding to each positioning coordinate on the traveling locus RPm is selected from among the coordinate group of the calculated position calculated in S203.
- linking between the coordinates of the calculated position detected substantially at the same time and the positioning coordinates is performed.
- the calibration coefficients of the respective gyro sensors 41 to 43 are set such that the calculated position based on the vehicle speed information and the measured value approaches the positioning position specified based on the positioning signal.
- calibration of each of the gyro sensors 41 to 43 can be performed using a positioning signal received from a positioning satellite.
- the calibration accuracy can also be improved.
- the function of the sensor calibration device is realized by the display control device 300.
- the display control device 300 is directly or indirectly electrically connected to the HUD device 310, the height sensor 340, etc. in addition to the GNSS receiver 20, the map DB 30, the in-vehicle LAN 50, etc. substantially the same as the first embodiment.
- An acceleration sensor 51, a vehicle speed sensor 52, a steering angle sensor 53, and the like are connected to the in-vehicle LAN 50.
- the acceleration sensor 51 detects the longitudinal acceleration acting on the vehicle, and outputs the detection result to the in-vehicle LAN 50.
- the vehicle speed sensor 52 is, for example, a sensor that measures the wheel speed, and outputs a measurement signal corresponding to the vehicle speed to the in-vehicle LAN 50 as vehicle speed information.
- the steering angle sensor 53 detects the steering angle of the steering system, and outputs the detection result to the in-vehicle LAN 50.
- the steering angle may be a steering angle or may be an actual steering angle of a steered wheel.
- the HUD device 310 presents information to the driver by using the AR display and the non-AR display using the virtual image VI in combination.
- the HUD device 310 has a projector 11 and a reflection optical system 12 as a configuration for displaying the virtual image VI.
- the projector 11 adjusts the position of the original image to be projected onto the reflective optical system 12 based on the information of the attitude angle (refer to pitch angle ⁇ , reference 4) acquired from the display control device 300, and the AR displayed virtual image VI is the target. Keep the object superimposed properly.
- the height sensor 340 is a sensor that detects the height of the vehicle.
- the height sensor 340 can at least detect vertical displacement (heave) in the change in posture of the vehicle.
- the height sensor 340 is, for example, outside the vehicle, and is installed on either the left or right rear suspension.
- the height sensor 340 measures the amount of sinking in the body with respect to a specific wheel that is vertically displaced by the operation of the suspension arm suspended by the body.
- the height sensor 340 measures the relative distance between the body and the suspension arm, and sequentially outputs a signal (for example, a potential) of the measured data to the display control device 300.
- the height sensors 340 may be provided at a plurality of the front, rear, left, and right suspensions of the vehicle. Also, the measurement data of the height sensor 340 may be acquired by the display control device 300 via the in-vehicle LAN 50.
- the display control device 300 is configured by a control circuit 60, a storage unit 60a, an input / output interface and the like substantially the same as the first embodiment.
- a sensor calibration program that calibrates the output of the height sensor 340 is also stored in the storage unit 60 a of the third embodiment.
- the control circuit 60 has functional blocks such as a display control unit 71 and an attitude calculation unit 372 by execution of the display control program. Further, in addition to the vehicle speed acquisition unit 62, the acceleration acquisition unit 63, and the position specifying unit 65, the control circuit 60 executes the sensor calibration program, and also the measured value acquisition unit 361, the steering angle information acquisition unit 363, and the map information acquisition unit 364 And a functional block such as a calibration value setting unit 366.
- the posture calculation unit 372 calculates the pitch angle ⁇ of the vehicle based on the output (for example, voltage value) of the height sensor 340 acquired by the measurement value acquisition unit 361.
- the posture calculation unit 372 calibrates the raw output (potential V) of the height sensor 340 using a calibration formula shown in the following Equation 4.
- V 0 in the calibration equation is an initial value of the output of the height sensor 340.
- a and b in the calibration equation are both calibration coefficients, and are set by the calibration value setting unit 366.
- the measured value acquisition unit 361 acquires a measured value of displacement (heave) of the vehicle based on the output of the height sensor 340.
- the steering angle information acquisition unit 363 acquires steering angle information indicating the steering angle of the vehicle output to the in-vehicle LAN 50.
- the map information acquisition unit 364 acquires, from the map DB 30, information indicating the latitude, longitude, and altitude, and information indicating the cross slope (cant) of the road surface, for the road on which the vehicle travels.
- the calibration value setting unit 366 sets a calibration coefficient (see equation 4) applied to the measurement value of the heave acquired by the measurement value acquisition unit 361. Specifically, by using the pitch angle ⁇ and the vehicle speed, it is possible to calculate a provisional value of the height information of the vehicle. Such a calculated value has an error with respect to the true value of the altitude information (see the broken line in FIG. 7) due to changes in weight balance at the upper part of the suspension due to changes in the number of passengers and load and aged deterioration of the vehicle.
- the calibration value setting unit 366 updates a calibration coefficient that corrects such an error, and sets a calibration coefficient that is suitable for the current vehicle. As a result, the attitude calculation unit 372 can calibrate the error factor and calculate the highly accurate vehicle attitude angle (pitch angle ⁇ ).
- the calibration value setting unit 366 calculates the vehicle height RHc (see the broken line in FIG. 7) using the coordinate calculation formula shown in the following equation 5.
- the host vehicle height RHc is obtained by connecting the coordinates of the calculated position calculated from the vehicle speed information and the measured value in time series.
- v in the following coordinate calculation formula is the traveling speed of the vehicle indicated by the vehicle speed information.
- (z i ) is coordinates indicating the i-th calculated position in the calibration section
- (z i +1 ) is coordinates indicating the ( i + 1 ) -th calculated position.
- the pitch angle ⁇ is an attitude angle based on a calibration equation (see Equation 4) in which a calibration coefficient before or after calibration is set.
- the calibration value setting unit 366 sets the vehicle height RHm (see the solid line in FIG. 7) based on the positioning position and the map data.
- the calibration value setting unit 366 assumes that the vehicle height RHm based on the map data is a true value. Then, the calibration value setting unit 366 determines that the vehicle height RHc calculated from the measured value approaches (overlaps) the vehicle height RHm based on the map data, that is, the error of the vehicle height RHc with respect to the vehicle height RHm is minimal. Calculate the calibration factor to be
- the calibration value setting unit 366 sets a pair of coordinate information pairs which are estimated to indicate the altitude of the vehicle at the same time from the respective vehicle heights RHm and RHc.
- the calibration value setting unit 366 searches for the minimum value of the objective function shown in Equation 6 below.
- the objective function, the coordinates of each pair combined, error norm between the reference position located on the vehicle altitude RHm coordinates (z ⁇ i), and the calculated position in the vehicle altitude RHc coordinates (z i) Is calculated.
- the calibration value setting unit 366 searches for calibration coefficients that minimize the sum of error norms by iterative calculation using the gradient method. Note that “n” in the equation 6 is the number of data used for calibration.
- the update process shown in FIG. 8 is started by the control circuit 60 based on switching of the ignition to the on state, as in the first embodiment and the like, and is repeated until the ignition is turned off.
- S301 the measurement value based on the output of the height sensor 340 and the vehicle speed information are acquired, and the process proceeds to S302.
- S302 among the measured values obtained in S301, measured values that may cause a large error in the calibration coefficient are excluded from the targets of use by the data selection process shown as a sub process in FIG. Select the data used to set the coefficients.
- S321 of the data selection process acceleration information in a period or timing at which the measurement value is measured is acquired. Then, it is determined whether the absolute value of the acceleration occurring in the vehicle exceeds the threshold value D. If it is determined in S321 that the absolute value of the acceleration is equal to or less than the threshold value D, the process proceeds to S323. On the other hand, when it is determined that the absolute value of the acceleration exceeds the threshold value D, the process proceeds to S322. In S322, the measurement value of the period in which the absolute value of the acceleration exceeds the threshold D is excluded from the targets used for setting the calibration coefficient, and the process proceeds to S323. As described above, data during acceleration and deceleration are excluded from use.
- S323 the information on the road surface on which the vehicle is traveling is acquired. Then, it is determined whether the absolute value of the cant exceeds the threshold value E. If it is determined in S323 that the absolute value of the cant is equal to or less than the threshold value E, the process proceeds to S325. On the other hand, if it is determined that the absolute value of the cant exceeds the threshold value E, the process proceeds to S324. In S324, the measurement value of the period when the absolute value of the cant exceeds the threshold E is excluded from the targets used for setting the calibration coefficient, and the process proceeds to S325.
- the vehicle speed information and the steering angle information are acquired, and the magnitude of the centrifugal force acting on the vehicle is estimated. Then, it is determined whether the estimated absolute value of the centrifugal force exceeds the threshold value F. If it is determined in S325 that the absolute value of the centrifugal force is equal to or less than the threshold value F, the process proceeds to S327. On the other hand, when it is determined that the absolute value of the centrifugal force exceeds the threshold F, the process proceeds to S326. In S326, the measurement value of the period in which the absolute value of the centrifugal force exceeds the threshold value F is excluded from the target used for setting of the calibration coefficient, and the process proceeds to S327.
- S327 the variance value of the coordinates of the calculated position in the specific period is calculated, and it is determined whether the variance value exceeds the threshold value G or not. If it is determined in S327 that the variance value is equal to or less than the threshold value G, the process proceeds to S329. On the other hand, if it is determined that the variance value exceeds the threshold value G, the process proceeds to S328. In S328, the measurement value of the period when the variance value exceeds the threshold value G is excluded from the targets used for setting the calibration coefficient, and the process proceeds to S329.
- the longitudinal slope of the road surface on which the vehicle is traveling is calculated using the latitude, longitude, and altitude information indicated by the map data, and it is determined whether the absolute value of the longitudinal slope exceeds the threshold H. If it is determined in S329 that the absolute value of the longitudinal gradient is equal to or less than the threshold H, the process returns to S303 of the update (main) process. On the other hand, when it is determined in S329 that the absolute value of the longitudinal gradient exceeds the threshold H, the process proceeds to S330.
- the measurement value in the period in which the absolute value of the longitudinal gradient exceeds the threshold value H is excluded from the target used for setting of the calibration coefficient, and the process returns to S303 of the main process shown in FIG. As described above, data in a period in which a change in posture due to climbing and descending is significant is excluded from use.
- the host vehicle height RHc before calibration based on the measured value is calculated, and the process proceeds to S304.
- the host vehicle height RHm is calculated based on the map data. Then, the coordinate closest to the point (coordinate) corresponding to each coordinate on the vehicle height RHm is selected from the coordinate group of the calculated position calculated in S303, and the process proceeds to S305.
- the calibration coefficients a and b of the calibration equation are calculated so as to minimize the error between the calculated position and the reference position correlated in S304, and the updating process is temporarily ended.
- the calculated position of the altitude is acquired by combining the measured value based on the output of the height sensor 340 and the vehicle speed information. If the calibration coefficient is set such that the calculated position approaches the reference position, the height sensor 340 can be calibrated using altitude information.
- the display control unit 71 Since the accuracy of attitude measurement based on the measurement value of the height sensor 340 is improved according to the setting of the calibration coefficient as described above, the display control unit 71 accurately moves the virtual image VI following the change in attitude of the vehicle. It can be done. Therefore, the display control device 300 can accurately superimpose the virtual image VI on the object on the driver's appearance.
- the measurement value of the height sensor 340 acquired while the vehicle is traveling on a curve may include not only a component due to a change in altitude but also a component due to a change in roll accompanying a curve traveling. Therefore, in the third embodiment, the measured values measured while traveling on a curve are excluded from targets used for setting the calibration coefficient. Specifically, based on the information such as the steering angle and the corresponding speed of the vehicle and the cant, it is determined whether or not to use the measurement value. According to the above process, since the influence of the roll change which inevitably occurs when the displacement sensor in one direction is used can be reduced, the accuracy of the calibration coefficient can be maintained high.
- the measurement value of the period in which the longitudinal slope of the road surface exceeds the threshold H is not used for setting the calibration coefficient. According to the above process, the influence of the pitch change of the vehicle can be reduced, so the accuracy of the calibration coefficient can be maintained higher.
- the height sensor 340 corresponds to the “posture sensor”
- the map information acquisition unit 364 corresponds to the “altitude information acquisition unit”
- the display control device 300 corresponds to the “sensor calibration device”.
- the coordinates of the altitude indicated by the positioning signal are used as the reference position, instead of the coordinates of the altitude indicated by the three-dimensional map data.
- the calibration value setting unit 366 shown in FIG. 6 calculates the vehicle height RHc (see FIG. 7) of the vehicle using the same coordinate calculation formula (see Equation 5) as in the third embodiment.
- the calibration value setting unit 366 sets the host vehicle height RHm (see FIG. 7) in the traveling track of the vehicle by processing of arranging the positioning positions specified by the position specifying unit 65 in chronological order.
- the calibration value setting unit 366 assumes that the vehicle height RHm based on the positioning signal is a true value, and performs calibration so that an error between the calculated vehicle height RHc and the vehicle height RHm based on the positioning signal is minimized.
- the coefficients a and b are calculated.
- the calibration coefficient of the height sensor 340 is set so that the calculated position based on the vehicle speed information and the measured value approaches the reference position based on the positioning signal, as in the third embodiment. .
- the accuracy of the pitch angle using the measurement value of the height sensor 340 and the superposition accuracy of the virtual image VI can be maintained high.
- the threshold used for sorting such data may be appropriately set to a value that can ensure the accuracy of the calibration coefficient according to the weight of the vehicle, specification information such as the wheel base, and the assumed road environment.
- data selection by data selection processing may not be performed.
- the contents of the data selection process can be changed as appropriate.
- the calibration value setting unit determines whether or not the variation range of the traveling speed is within the threshold (S521). Then, as in the start scene and the stop scene, data of a period in which the change width of the traveling speed exceeds the threshold, such as during acceleration and deceleration, is excluded from targets used for calculation of the calibration coefficient (S522). As a result, the calibration value setting unit can set the calibration coefficient by selectively using only the measurement value for which the traveling speed is within a threshold for defining a constant change width for a predetermined time.
- the calibration value setting unit determines whether the time differential value of the calculated position is equal to or more than the threshold (S523).
- the time differential value is, for example, the amount of change per sampling cycle. Data of a period in which the time differential value exceeds the threshold, such as the timing at which the unevenness passes, is excluded from the targets used for calculation of the calibration coefficient (S524).
- the calibration value setting unit can set the calibration coefficient by selectively using only the measurement value in the period in which the time derivative value is small.
- the calibration value setting unit determines whether the variance value of the specific period is within the threshold (S525). Then, data of a period in which the variance value exceeds the threshold value, such as a period in which the attitude of the vehicle has largely changed, is excluded from objects to be used for calculation of the calibration coefficient (S526). As described above, the calibration value setting unit can set the calibration coefficient by selectively using only the measurement value in the period during which the dispersion value is small.
- the attitude angles about the pitch axis, the roll axis, and the yaw axis can be calibrated using three-dimensional map data.
- the sensor unit to be calibrated may be changed as appropriate.
- the measurement value acquisition unit of the fourth modification acquires a measurement value of the yaw angle of the vehicle based on the output from the sensor unit, and does not acquire a measurement value of the pitch angle and the roll angle.
- the map information acquisition unit acquires two-dimensional map data including latitude and longitude information.
- the calibration value setting unit can calculate the coordinates of the calculated position of only the latitude and the longitude from the vehicle speed information and the measurement value of the yaw angle.
- the calibration value setting unit can define a two-dimensional traveling locus RPc based on the calculated position and a two-dimensional traveling locus RPm based on the map data. Therefore, as in the first embodiment, the calibration value setting unit calibrates the yaw angle using two-dimensional map data by searching for a correction coefficient such that the traveling locus RPc overlaps the traveling locus RPm. be able to. Note that yaw angle calibration may be performed using only latitude and longitude information among three-dimensional map data.
- the posture sensor to be calibrated is not limited to the gyro sensor.
- the acceleration sensor may be a posture sensor to be calibrated.
- the sensor unit may be a so-called six-axis sensor provided with an acceleration sensor measuring acceleration in a direction along the three axes in addition to the three gyro sensors measuring the three-axis angular velocity.
- conventional information such as the ambient temperature around the sensor unit may be used to calculate the calibration coefficient.
- the calibration coefficient is set with the map data as the true value.
- the calibration coefficient is set with the positioning position as the true value.
- Such processes may be combined. For example, a reception state determination unit that determines the quality of the reception state of the satellite signal is provided, and when it is determined that the accuracy of the positioning position is ensured, setting of a calibration coefficient with the positioning signal as a true value is performed. Ru. On the other hand, when it is determined that the accuracy of the positioning position is not ensured, the setting of the calibration coefficient with the map data as the true value is performed.
- an accuracy determination unit that determines the accuracy of the map data is provided, and when it is determined that the accuracy of the map data is ensured, setting of a calibration coefficient with the map data as a true value is performed. On the other hand, when it is determined that the accuracy of the map data is not ensured, the setting of the calibration coefficient with the positioning signal as the true value is performed.
- the actuator control unit and the actuator are provided in order to maintain the virtual image correctly superimposed on the object.
- hardware adjustment of the display position of the virtual image may not be performed as in the third embodiment and the like. That is, the actuator control unit and the actuator may be omitted.
- the adjustment of the display position of the virtual image is performed by the adjustment of the image data drawn by the display control unit, specifically, the position adjustment of the original image formed as a virtual image. Ru.
- the state in which the virtual image is correctly superimposed on the object may be maintained only by software processing. Alternatively, only the actuator control unit and the actuator may maintain the virtual image correctly superimposed on the object.
- the height information is acquired based on the gradient value. More specifically, the control circuit of the fifth modification is provided with a gradient value calculator.
- the gradient value calculation unit estimates the value (gradient value) of the road surface gradient (vertical gradient) while referring to the estimated weight of the vehicle from the response of the vehicle speed or acceleration to the tire driving force such as the accelerator opening and the brake hydraulic pressure.
- the altitude information acquisition unit can acquire altitude information to be a reference position based on the gradient value and the vehicle speed information.
- the calibration value setting unit Can update the calibration factor.
- a height sensor that measures displacement in the vertical direction has been exemplified as the displacement sensor in one direction.
- the update process of the calibration value according to the present disclosure is applicable not only to the displacement sensor in the vertical direction, but also to a displacement sensor that measures displacement in any direction. Specifically, if the measurement value of the displacement sensor is converted into the amount of displacement in the vertical direction using the design value of the mounting angle of the displacement sensor with respect to the vehicle, the same treatment as the height sensor can be performed.
- an acceleration sensor capable of detecting an acceleration component in the vertical direction may be used as a pseudo displacement sensor. If the calculation processing of integrating the measurement value of the acceleration sensor twice is used as the displacement amount in the vertical direction, the acceleration sensor can be handled in the same manner as the height sensor.
- the road surface information not included in the map data specifically, the information such as the dispersion value of the measurement value or the time difference is used to avoid the road surface roughness and the difference increase due to the influence of the road surface roughness and steps.
- the measurement value including the influence of the step was excluded from the use object of the calibration factor.
- Such rough road surface and the occurrence of level difference may be estimated based on, for example, the frequency of the measurement value other than the dispersion value and the time difference.
- the use and non-use of the measurement values are sorted based on the magnitude of the centrifugal force in order to avoid an increase in error due to the influence of the roll angle component during curve travel.
- the calibration value setting unit may sort out the use and non-use of the measurement value based on the magnitude of the steering angle and remove the roll angle component.
- the combination of the plurality of exclusion conditions described in the above embodiment and modification may be changed as appropriate. Furthermore, the exclusion condition may not be set. In addition, the specific value of the threshold may be changed as appropriate.
- thresholds serving as exclusion conditions are set for both centrifugal force and cant, and measurement values estimated to contain substantially no roll angle component in both determinations are selectively used.
- the calibration value setting unit adds the magnitude of the roll angle based on the centrifugal force and the magnitude of the cant, for example, and adds the sum value based on comparison of the sum value and the threshold value. You may perform the filter process which excludes the measured value of the period when T exceeds the threshold value.
- exclusion conditions for excluding measurement values may be relaxed. For example, by performing processing of averaging measurement values of a plurality of height sensors, rough road surface conditions and measurement values while traveling on a curve may be used for calculation of a calibration coefficient. In addition, the amount of data of measurement values used for calculation of the calibration coefficient may be increased while avoiding the influence of road surface unevenness by a process or the like of excluding only the measurement value showing a unique change. According to the above processing, extension of the calibration section can be avoided.
- the calibration value setting unit of the above embodiment calculates the value that minimizes the error of the traveling locus and the vehicle height by the gradient method.
- the solution to the minimization problem for searching for the calibration coefficients is not limited to the gradient method.
- the calibration value setting unit may obtain the minimum value by 100% inspection.
- the calibration value setting unit normalizes the series of calculated values so that the maximum value of the calculated value of the displacement sensor before calibration and the maximum value of the true value match. As described above, if the normalized calculated value is used, the calibration value setting unit can search for the minimum value.
- the function of the sensor calibration device may be realized by a configuration different from that of the display control device 100 described above.
- a display device such as a combination meter and a HUD device may function as a sensor calibration device by executing a sensor calibration program in the control circuit.
- the control circuit of the autonomous driving ECU mounted on the vehicle may function as a processing unit that executes the sensor calibration method of the present disclosure based on the sensor calibration program.
- a plurality of control circuits such as a display control device, a display device, and an automatic driving ECU may perform distributed processing of calculations for sensor calibration.
- various non-transitory tangible storage media such as a flash memory and a hard disk can be employed as a storage unit for storing a sensor calibration program and the like executed by the processing unit.
- the calibration value of the posture sensor is set by using the highly accurate map information as a reference.
- high-accuracy map information is not generated for all roads, and there may be only map information with insufficient accuracy. In this way, it is possible to correct map information that is not accurate enough based on the output of the attitude sensor.
- the traveling locus RPm (see FIGS. 2A and 2B) specified from the map information is superimposed on the traveling locus RPc (see FIGS. 2A and 2B) calculated based on the output of the attitude sensor and the traveling speed. As such, map information may be updated.
- a map correction device that corrects map information by traveling of a vehicle, A measurement value acquisition unit that acquires a measurement value of the attitude of the vehicle based on the output of an attitude sensor fixed to the vehicle; A vehicle speed acquisition unit that acquires vehicle speed information indicating a traveling speed of the vehicle; A map information acquisition unit that acquires map information of a road on which the vehicle travels; A map correction device comprising: a map updating unit updating position information such that position information defining a position on a road in map information matches the calculated position of a vehicle calculated from vehicle speed information and measurement values.
- the calibration value setting unit sets the calibration value of the posture sensor by aligning the calculated position with the reference position based on the map information.
- the map updating unit improves the accuracy of the map by the process of aligning the road position indicated in the map information with the calculated position.
- each unit is expressed as S101, for example.
- each part can be divided into a plurality of sub-parts, while a plurality of parts can be combined into one part.
- each part configured in this way can be referred to as a circuit, a device, a module, or a means.
- each or a combination of the above-mentioned plurality of parts is not only a part of software combined with a hardware unit (for example, a computer) but also (ii) hardware (for example, integrated circuit, wiring) As part of a logic circuit), with or without the function of the associated device.
- a hardware unit for example, a computer
- hardware for example, integrated circuit, wiring
- the hardware part can also be configured inside the microcomputer.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
Abstract
車両の姿勢を検出する姿勢センサ(41~43)の出力を校正するセンサ校正装置は、姿勢センサの出力に基づく車両の姿勢の計測値を取得する計測値取得部(61)と、車両の走行速度を示す車速情報を取得する車速取得部(62)と、車両が走行する道路の地図情報を取得する地図情報取得部(64)と、車速情報及び計測値から算出される車両の算出位置が地図情報に示された基準位置に近づくように、計測値に適用される校正値を設定する校正値設定部(66)と、を備える。
Description
本出願は、2017年7月18日に出願された日本特許出願番号2017-139339号及び2018年6月19日に出願された日本特許出願番号2018-116304号に基づくもので、ここにその記載内容を援用する。
この明細書による開示は、車両の姿勢を検出する姿勢センサの出力を校正するセンサ校正装置、及びセンサ校正プログラムに関する。
車両の姿勢を計測する姿勢センサの一種として、例えば特許文献1に記載されているように、加速度センサ及び角速度センサ等が知られている。こうした姿勢センサには、例えば周囲温度の変化や個体差等に起因した出力の変化が生じる。故に、特許文献1に開示の補正装置は、計測した姿勢センサの周囲温度と予め記憶された温度特定データとに基づいて、姿勢センサの出力を校正している。
近年、運転者の運転を高度に支援するための種々の情報が、車両によって取得可能となりつつある。本開示の発明者は、車両が取得可能なこうした情報を利用して、姿勢センサの出力を校正することができないか検討を重ねた。
本開示は、従来とは異なる情報を用いて姿勢センサを校正可能なセンサ校正装置、及びセンサ校正プログラムの提供を目的とする。
開示された一つの態様は、車両の姿勢を検出する姿勢センサの出力を校正するセンサ校正装置であって、姿勢センサの出力に基づく車両の姿勢の計測値を取得する計測値取得部と、車両の走行速度を示す車速情報を取得する車速取得部車両が走行する道路の地図情報を取得する地図情報取得部と、車速情報及び計測値から算出される車両の算出位置が地図情報に示された基準位置に近づくように、計測値に適用される校正値を設定する校正値設定部と、を備えるセンサ校正装置とされる。
また開示された一つの態様は、車両の姿勢を検出する姿勢センサの出力を校正するセンサ校正プログラムであって、少なくとも一つの処理部を、姿勢センサの出力に基づく車両の姿勢の計測値を取得する計測値取得部、車両の走行速度を示す車速情報を取得する車速取得部、車両が走行する道路の地図情報を取得する地図情報取得部、車速情報及び計測値から算出される車両の算出位置が地図情報に示された基準位置に近づくように、計測値に適用される校正値を設定する校正値設定部、として機能させるためのセンサ校正プログラムとされる。
これらの態様のように、姿勢センサの計測値と車速情報とを組み合わせることで、姿勢センサの計測値に基づく算出位置が取得できる。この算出位置が地図情報に示された基準位置に近づくように校正値を設定すれば、地図情報を用いた姿勢センサの校正が可能となる。以上によれば、従来とは異なる情報を用いた姿勢センサの校正が可能となる。
また開示された一つの態様は、車両の姿勢を検出する姿勢センサの出力を校正するセンサ校正装置であって、姿勢センサの出力に基づく車両の姿勢の計測値を取得する計測値取得部と、車両の走行速度を示す車速情報を取得する車速取得部と、測位衛星から受信した測位信号に基づき車両の測位位置を特定する位置特定部と、車速情報及び計測値から算出される車両の算出位置が位置特定部にて特定された測位位置に近づくように、計測値に適用される校正値を設定する校正値設定部と、を備えるセンサ校正装置とされる。
また開示された一つの態様は、車両の姿勢を検出する姿勢センサの出力を校正するセンサ校正プログラムであって、少なくとも一つの処理部を、姿勢センサの出力に基づく車両の姿勢の計測値を取得する計測値取得部、車両の走行速度を示す車速情報を取得する車速取得部、衛星から受信した測位信号に基づき車両の測位位置を特定する位置特定部、車速情報及び計測値から算出される車両の算出位置が位置特定部にて特定された測位位置に近づくように、計測値に適用される校正値を設定する校正値設定部、として機能させるためのセンサ校正プログラムとされる。
これらの態様では、車速情報及び計測値に基づく算出位置が、測位信号に基づき特定された測位位置に近づくように、姿勢センサの校正値が設定される。以上のように、衛星から受信した測位信号という、従来とは異なる情報を用いた姿勢センサの校正が可能となる。
また開示された一つの態様は、車両の変位を検出する姿勢センサの出力を校正するセンサ校正装置であって、姿勢センサの出力に基づく車両の変位の計測値を取得する計測値取得部と、車両の走行速度を示す車速情報を取得する車速取得部と、車両が走行する道路の高度情報を取得する高度情報取得部と、車速情報及び計測値から算出される車両の算出位置が高度情報に示された基準位置に近づくように、計測値に適用される校正値を設定する校正値設定部と、を備えるセンサ校正装置とされる。
また開示された一つの態様は、車両の変位を検出する姿勢センサの出力を校正するセンサ校正プログラムであって、少なくとも一つの処理部を、姿勢センサの出力に基づく車両の変位の計測値を取得する計測値取得部、車両の走行速度を示す車速情報を取得する車速取得部、車両が走行する道路の高度情報を取得する高度情報取得部、車速情報及び計測値から算出される車両の算出位置が高度情報に示された基準位置に近づくように、計測値に適用される校正値を設定する校正値設定部、として機能させるためのセンサ校正プログラムとされる。
これらの態様では、姿勢センサの計測値と車速情報とを組み合わせることで、車両の変位の計測値に基づく高度についての算出位置が取得できる。この算出位置が高度情報に示された基準位置に近づくように校正値を設定すれば、高度情報を用いた姿勢センサの校正が可能となる。したがって、従来とは異なる情報を用いた姿勢センサの校正が可能となる。
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の第一実施形態による表示制御装置を含む車両に搭載されたシステムの全体像を示すブロック図であり、
図2Aは、校正係数の設定のために、地図データに基づく走行軌跡に算出された走行軌跡を整合させる処理を視覚化して示す図(校正前)であり、
図2Bは、校正係数の設定のために、地図データに基づく走行軌跡に算出された走行軌跡を整合させる処理を視覚化して示す図(校正後)であり、
図3は、校正係数の更新処理の詳細を示すフローチャートであり、
図4は、データ選択処理の詳細を示すフローチャートであり、
図5は、第二実施形態の更新処理の詳細を示すフローチャートであり、
図6は、第三実施形態による表示制御装置を含む車両に搭載されたシステムの全体像を示すブロック図であり、
図7は、校正係数の設定のために、地図データに基づく自車高度に、算出された自車高度を整合させる処理を視覚化して示す図であり、
図8は、第三実施形態の更新処理の詳細を示すフローチャートであり、
図9は、データ選択処理の詳細を示すフローチャートであり、
図10は、変形例1によるデータ選択処理を示すフローチャートであり、
図11は、変形例2によるデータ選択処理を示すフローチャートであり、
図12は、変形例3によるデータ選択処理を示すフローチャートである。
以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
(第一実施形態)
図1に示す本開示の第一実施形態において、センサ校正装置の機能は、表示制御装置100によって実現されている。表示制御装置100は、車両に搭載された複数の電子制御ユニットのうちの一つである。表示制御装置100は、HUD装置10及びコンビネーションメータ等の複数の表示デバイスと電気的に接続されており、これらの表示を制御する。表示制御装置100は、HUD装置10等の表示デバイスに加えて、車内LAN50、地図データベース(以下、「地図DB」)30、GNSS受信器20、及びセンサユニット40等と直接的又は間接的に電気接続されている。
図1に示す本開示の第一実施形態において、センサ校正装置の機能は、表示制御装置100によって実現されている。表示制御装置100は、車両に搭載された複数の電子制御ユニットのうちの一つである。表示制御装置100は、HUD装置10及びコンビネーションメータ等の複数の表示デバイスと電気的に接続されており、これらの表示を制御する。表示制御装置100は、HUD装置10等の表示デバイスに加えて、車内LAN50、地図データベース(以下、「地図DB」)30、GNSS受信器20、及びセンサユニット40等と直接的又は間接的に電気接続されている。
HUD(Head-Up Display)装置10は、車両の乗員、例えば運転者の前方に虚像VIを表示する表示装置である。虚像VIは、車両の前方の空間中であって、運転者のアイポイントから例えば10~20メートル程度の位置に結像される。虚像VIは、運転者の見かけ上で路面及び他の車両等に重畳されることで、拡張現実(以下、「AR(Augmented Reality)」)表示として機能する。例えば警告情報及び経路情報等が、虚像VIを通じて運転者に情報提示される。
HUD装置10は、虚像VIを表示するための構成として、プロジェクタ11、反射光学系12、及びアクチュエータ13を有している。プロジェクタ11は、虚像VIとして結像される表示像の光を、反射光学系12へ向けて射出する。反射光学系12は、プロジェクタ11から入射した表示像の光を、ウィンドシールドWSの投影領域PAに投影する。ウィンドシールドWSに投影された光は、投影領域PAによってアイポイント側へ向けて反射され、運転者によって知覚される。アクチュエータ13は、反射光学系12の姿勢を変化させることにより、投影領域PAにおける表示像の光の投影位置を変化させる。以上のHUD装置10は、プロジェクタ11にて描画される表示像の描画制御、及びアクチュエータ13による反射光学系12の姿勢制御の少なくとも一方を用いて、運転者の見た目上にて、虚像VIの表示位置を上下に変化させる。
車内LAN(Local Area Network)50は、多数の電子制御ユニット及び多数の車載センサと接続されている。車内LAN50には、電子制御ユニット及び車載センサから、種々の情報が出力されている。車内LAN50には、例えば車両の走行速度を示す車速情報、及び車両の駆動力を示す駆動力情報等が出力されている。
地図DB30は、多数の地図データを格納した大容量の記憶媒体を主体とした構成である。地図データには、各道路の曲率値、勾配値、及び区間の長さといった情報、並びに各道路の制限速度及び一方通行といった非一時的な交通規制の情報等が含まれている。加えて地図データには、三次元での道路の位置を示す情報として、道路上の複数のポイントにおける経度、緯度及び高度を示す座標情報が含まれている。座標情報に含まれた経度、緯度及び高度の各値は、車両の自動運転を可能にするために、高精度な測位によって計測された値である。
GNSS(Global Navigation Satellite System)受信器20は、複数の測位衛星からの測位信号を受信する。GNSS受信器20は、受信した測位信号を、表示制御装置100へ向けて逐次出力する。尚、GNSS受信器20は、GPS、GLONASS、Galileo、IRNSS、QZSS、Beidou等の衛星測位システムのうちで、少なくとも一つの衛星測位システムの各測位衛星から、測位信号を受信可能である。
センサユニット40は、車両の姿勢を検出するモーションセンサである。センサユニット40は、車両の任意の位置に固定されており、車両に生じるピッチ、ロール及びヨー等を計測する。センサユニット40は、車両のヨー軸、ピッチ軸及びロール軸周りの重心位置の変化、即ち姿勢変化を計測するために、複数のジャイロセンサ41~43を有している。
ジャイロセンサ41~43は、一例として、角速度を電圧値として検出するセンサである。各ジャイロセンサ41~43は、互に直交関係にあるx軸、y軸及びz軸について、各軸周りに生じる角速度の大きさを計測可能なように、互に異なる姿勢で設けられている。各ジャイロセンサ41~43は、各軸周りの計測値を計測し、計測値を表示制御装置100へ向けて逐次出力する。尚、センサユニット40に規定された三軸の向きは、車両におけるヨー軸、ピッチ軸及びロール軸に対して傾斜していてもよい。
表示制御装置100は、制御回路60、記憶部60a及び入出力インターフェース等によって構成されている。制御回路60は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)及びRAM(Random Access Memory)等を主体に構成されている。記憶部60aには、制御回路60にて実行される種々のプログラムが格納されている。具体的には、虚像VIの表示を制御する表示制御プログラム、ジャイロセンサ41~43の出力を校正するセンサ校正プログラム等が記憶部60aに記憶されている。
制御回路60は、記憶部60aに記憶された種々のプログラムを実行することにより、複数の機能ブロックを構築する。具体的に、制御回路60は、表示制御プログラムに基づく機能ブロックとして、表示制御部71、姿勢演算部72、アクチュエータ制御部73を有する。また制御回路60は、センサ校正プログラムに基づく機能ブロックとして、計測値取得部61、車速取得部62、加速度取得部63、地図情報取得部64、位置特定部65及び校正値設定部66を有する。
表示制御部71は、HUD装置10による虚像VIの表示を制御する。表示制御部71は、車内LAN50を通じて取得する種々の情報に基づき、情報提示に用いる虚像VIを選択する。表示制御部71は、選択した虚像VIを表示させるための画像データを描画し、プロジェクタ11へ向けて逐次出力する。こうした表示制御部71の表示制御処理により、画像データに基づく表示像の光が、プロジェクタ11から反射光学系12に投射される。
姿勢演算部72は、計測値取得部61にて取得される各ジャイロセンサ41~43の出力に基づき、車両の姿勢情報として、ピッチ角θp、ロール角θr及びヨー角θyを演算する。各ジャイロセンサ41~43の値には、センサユニット40の設置されている雰囲気温度の変化を要因とした誤差として、温度ドリフトが生じる。加えて、角速度から角度を算出する場合、時間積分に伴う誤差(時間ドリフト)も生じる。これら温度ドリフト及び時間ドリフトの誤差要因を補正するために、姿勢演算部72は、下記の数1に示す校正式を用いて、各ジャイロセンサ41~43の生の出力である計測値θp_sens,θr_sens,θy_sensを校正する。校正式における校正係数ap,bp,ar,br,ay,byは、校正値設定部66にて設定される値である。
尚、アクチュエータ制御部73による姿勢制御と共に、又は当該姿勢制御に替えて、表示制御部71が、プロジェクタ11から反射光学系12に投射される表示像の光の到達位置を変更する制御を行ってもよい。こうした表示制御部71の描画制御によっても、虚像VIは、運転者の見た目上にて、対象物に正しく重畳された状態を維持できる。
計測値取得部61は、各ジャイロセンサ41~43にて検出された車両のピッチ軸、ロール軸及びヨー軸周りについての角速度を、センサユニット40から取得する。センサユニット40に規定された三軸が車両の三軸に対して傾斜している場合、計測値取得部61は、座標変換によって、各ジャイロセンサ41~43の出力を車両の三軸周りの角速度に修正する。計測値取得部61は、各軸周りの角速度を時間積分する処理により、車両のピッチ角θp_sens、ロール角θr_sens及びヨー角θy_sensを取得する。
車速取得部62は、車内LAN50に出力された車両の走行速度を示す車速情報を取得する。加速度取得部63は、車内LAN50に出力された車両の駆動力を示す駆動力情報を取得する。加速度取得部63は、駆動力情報と、車両の重量、タイヤ外径及び駆動系のギヤ比等の諸元情報とに基づき、車両の加速度を示す加速度情報を取得する。
地図情報取得部64は、車両が走行する道路について、緯度、経度及び高度の情報を含む三次元の地図データを、地図DB30から取得する。具体的に、地図情報取得部64は、車両の現在位置周辺の地図データ、及び車両が走行した道路を含む地図データの提供を、地図DB30に要求する。地図情報取得部64は、例えば通信ネットワークを通じて、車両の周囲の地図データを取得可能であってもよい。
位置特定部65は、GNSS受信器20にて受信された衛星からの測位信号を取得する。位置特定部65は、測位信号に基づき、車両の現在の測位位置を特定する。尚、位置特定部65にて特定された測位位置の推移に基づき、車速取得部62及び加速度取得部63は、それぞれ車速情報及び加速度情報を取得してもよい。
校正値設定部66は、計測値取得部61にて取得される計測値に適用される校正係数(数1参照)を設定する。具体的に、校正値設定部66は、下記の数2に示す座標算出式を用いて、車両の走行軌跡RPc(図2Aと図2B参照)を算出する。走行軌跡RPcは、車速情報及び計測値から算出される算出位置の座標を、時系列に繋げてなる三次元の図形である。
尚、下記の座標算出式におけるvは、車速情報の示す車両の走行速度である。また、(xi,yi,zi)は、時刻iにおける自車両の算出位置の座標であり、(xi+1,yi+1,zi+1)は、時刻i+1における自車両の算出位置の座標である。さらに、ピッチ角θp、ロール角θr及びヨー角θyは、校正前の計測値θp_sens,θr_sens,θy_sens、又は仮の校正係数を設定した校正式に基づく各姿勢角とされる。
具体的に、校正値設定部66は、走行軌跡RPm上にある多数の座標について、それぞれに対応する走行軌跡RPc上の座標を選択する。校正値設定部66は、各走行軌跡RPm,RPcから、同時刻での車両の位置を示すと推定される一対の座標情報のペアを設定する。校正値設定部66は、下記の数3に示すように目的関数の最小値を探索する。目的関数では、組み合わされた各対の座標について、走行軌跡RPm上にある基準位置の座標(x^t,y^t,z^t)と、走行軌跡RPc上にある算出位置の座標(xt,yt,zt)との誤差ノルムが算出される。校正値設定部66は、誤差ノルムの総和が最小となるような校正係数を設定する。校正値設定部66は、一例として勾配法による反復計算により、校正係数を探索する。
ここまで説明した表示制御装置100は、上記の校正係数を更新する更新処理を継続的に実施する。以下、校正係数を更新する処理の詳細を、図3及び図4に基づき、図1を参照しつつ説明する。図3に示す更新処理は、車両が走行可能な状態となったことに基づき、制御回路60によって開始される。更新処理は、車両の電源又はイグニッションがオフ状態とされるまで、制御回路60によって繰り返し実施される。
S101では、各ジャイロセンサ41~43の出力に基づく計測値と、車速情報とを取得し、S102に進む。S102では、S101にて取得される計測値のうちで、校正係数の設定に使用するデータを選択する。即ち、S102では、校正係数に大きな誤差を生じさせる可能性のある計測値が、図4に示すデータ選択処理により、使用の対象から除外される。
データ選択処理のS121では、計測値が計測された期間又はタイミングでの加速度情報を取得する。そして、車両に生じている加速度の絶対値が閾値Aを超えているか否かを判定する。S121にて、加速度の絶対値が閾値A以下であると判定した場合、S123に進む。一方、加速度の絶対値が閾値Aを超えていると判定した場合、S122に進む。S122では、加速度の絶対値が閾値Aを超えた期間の計測値を、校正係数の設定に用いる対象から除外し、S123に進む。以上により、加速中及び減速中のデータは、使用対象から除外される。
S123では、時系列における算出位置の座標の差分値を算出する。差分値は、例えば座標を示すx,y,zのうちの一つについての値(|xt-xt-1|)であってもよく、二つの座標の空間距離の値であってもよい。尚、xtは時刻tにおける算出位置の値であり、xt-1は時刻t-1における算出位置の値である。
そして、座標の差分値の絶対値が閾値Bを超えているか否かを判定する。S123にて、差分値の絶対値が閾値B以下であると判定した場合、S125に進む。一方、S123にて、差分値の絶対値が閾値Bを超えていると判定した場合、S124に進む。S124では、差分値の絶対値が閾値Bを超えた期間の計測値を、校正係数の設定に用いる対象から除外し、S125に進む。以上により、例えば路面の凹凸の通過等によって車両の姿勢が急激に変化したときのデータは、使用対象から除外される。
S125では、特定の期間(例えば数秒間)における算出位置の座標の分散値を算出し、分散値が閾値Cを超えているか否かを判定する。S125にて、分散値が閾値C以下であると判定した場合、更新(メイン)処理のS103に戻る。一方、S125にて、分散値が閾値Cを超えていると判定した場合、S126に進む。S126では、分散値が閾値Cを超えた期間の計測値を、校正係数の設定に用いる対象から除外し、図3に示すメイン処理のS103に戻る。以上により、地図データに表れない何らかの要因によって車両が姿勢変化した期間のデータは、使用対象から除外される。
S103では、校正前の走行軌跡RPcを、上記の座標算出式(数2参照)によって算出し、S104に進む。S104では、地図DB30から地図データを読み出し、車両の走行軌跡RPmを設定する。そして、走行軌跡RPm上にある個々の座標に対応するポイント、即ち、個々の座標に最も近接する座標を、S103にて算出した算出位置の座標群の中から選択し、S105に進む。
S105では、S104にて対応付けた算出位置と基準位置との誤差が最小となるように、校正式(数1参照)の各校正係数を算出し、更新処理を一旦終了する。
ここまで説明した第一実施形態では、各ジャイロセンサ41~43の出力に基づく計測値と車速情報とを組み合わせることにより、算出位置が取得される。この算出位置が地図データに示された基準位置に近づくように校正係数を設定すれば、地図データを用いたセンサユニット40の校正が可能となる。その結果、従来とは異なり、地図データを用いた各ジャイロセンサ41~43の校正が可能となる。
以上によれば、ジャイロセンサ41~43による車両の姿勢計測の正確性が向上する。故に、表示制御部71及びアクチュエータ制御部73は、車両の姿勢変化に追従した虚像VIの移動を、高精度に行なうことができる。したがって、表示制御装置100は、運転者の見た目上にて、虚像VIを対象物に正確に重畳させることが可能になる。
そして、地図データの精度の向上により、校正の正確性も向上可能となる。さらに、例えば温度センサ等の校正のための追加部品が必要とされなくなるため、システムのコストを抑えることが可能となる。
加えて第一実施形態のセンサユニット40は、三軸周りの角速度、ひいては姿勢角を計測する構成である。このような三軸のセンサユニット40を用いた形態でも、地図データに三次元の座標が示されていれば、各軸周りの計測値の校正が可能となる。
また第一実施形態では、地図データの示す基準位置の座標に対応する一つのポイントが、多数算出された算出位置の座標群の中から選択される。以上のように、地図データに含まれる座標の数は、算出位置として算出される座標の数よりも少なくなる。故に、基準位置の座標に対して、算出位置の座標を紐付ける処理によれば、表示制御装置100は、取得可能なデータを有効に利用して、校正係数を精度良く算出ができる。
さらに第一実施形態の校正値設定部66は、各走行軌跡RPm,RPcそれぞれの各座標の誤差ノルムの総和が最小となるように、校正係数を演算する。こうした演算処理であれば、校正係数の精度を確保しつつ、校正係数を探索するための演算負荷を抑えることが可能になる。
また、車両の重心位置が変化している期間の各ジャイロセンサ41~43の計測値は、地図データには無い車両の動きを含んだ値となる。故に、第一実施形態では、重心位置の変化を伴う加速中及び減速中の計測値は、校正係数の設定に用いる対象から除外される。具体的には、車両の加速度の値を加速度情報として取得し、加速中及び減速中と推定される期間の計測値が、校正係数の算出から除外される。以上によれば、地図データを用いて算出した校正係数の精度を、高く維持することが可能になる。
さらに、例えば路面の経年劣化や継ぎ目等に起因する凹凸は、地図データには示されていない。故に、路面の凹凸を通過したタイミングでの計測値は、地図データには無い動きを含んだ値となる。そのため第一実施形態では、路面の凹凸を通過している期間の計測値が、校正係数の設定に用いる対象から除外される。具体的には、算出位置の座標について経時的な差分値を監視し、座標の変化幅が閾値Bを超えた期間の計測値は、校正係数の算出から除外される。以上によれば、地図データを用いて算出した校正係数の精度を、高く維持することが可能になる。
さらに第一実施形態では、特定期間での算出位置の分散値を算出し、分散値が閾値Cを超えた期間の計測値は、校正係数の算出に用いられない。このように、分散値に基づく選別を姿勢変化フィルタとして採用することによれば、地図データにない要因で大きな姿勢変化を生じた期間の計測値は、校正係数の算出から除外され得る。故に、校正係数の精度は、高く維持可能となる。
尚、第一実施形態では、地図データが「地図情報」に相当し、校正係数が「校正値」に相当し、ジャイロセンサ41~43が「姿勢センサ」に相当し、制御回路60が「処理部」に相当し、表示制御装置100が「センサ校正装置」に相当する。
(第二実施形態)
第二実施形態における校正係数の設定には、地図データの示す座標に替えて、測位信号の示す三次元の座標が、基準位置として用いられる。図1に示す校正値設定部66は、第一実施形態と同様の座標算出式(数2参照)を用いて、車両の走行軌跡RPc(図2Aと図2B参照)を算出する。一方で、第二実施形態による校正値設定部66は、位置特定部65にて特定された測位位置を時系列に連ねる処理により、車両が走行したと推定される走行軌跡RPm(図2Aと図2B参照)を設定する。校正値設定部66は、測位信号に基づく走行軌跡RPmを真の値と仮定し、算出した走行軌跡RPcが測位信号に基づく走行軌跡RPmと三次元的に重なるように、換言すれば、測位位置に対する算出位置の誤差が最小になるように、校正係数を算出する。
第二実施形態における校正係数の設定には、地図データの示す座標に替えて、測位信号の示す三次元の座標が、基準位置として用いられる。図1に示す校正値設定部66は、第一実施形態と同様の座標算出式(数2参照)を用いて、車両の走行軌跡RPc(図2Aと図2B参照)を算出する。一方で、第二実施形態による校正値設定部66は、位置特定部65にて特定された測位位置を時系列に連ねる処理により、車両が走行したと推定される走行軌跡RPm(図2Aと図2B参照)を設定する。校正値設定部66は、測位信号に基づく走行軌跡RPmを真の値と仮定し、算出した走行軌跡RPcが測位信号に基づく走行軌跡RPmと三次元的に重なるように、換言すれば、測位位置に対する算出位置の誤差が最小になるように、校正係数を算出する。
図5に示す第二実施形態の更新処理では、S201~S203,S205の内容は、第一実施形態のS101~S103,S105(図3参照)と実質同一となる。一方で、S204では、位置特定部65から測位位置に基づく座標(以下、「測位座標」)を読み出し、車両の走行軌跡RPmを設定する。そして、走行軌跡RPm上にある個々の測位座標に対応するポイントが、S203にて算出した算出位置の座標群の中から選択される。S204では、例えば座標情報を取得した時刻に基づき、実質的に同時刻に検出された算出位置の座標と測位座標との紐付けが実施される。
ここまで説明した第二実施形態では、車速情報及び計測値に基づく算出位置が、測位信号に基づき特定された測位位置に近づくように、各ジャイロセンサ41~43の校正係数が設定される。その結果、従来とは異なり、測位衛星から受信する測位信号を用いた各ジャイロセンサ41~43の校正が可能となる。そして、測位精度の向上により、校正の正確性も向上可能となる。
(第三実施形態)
図6に示す本開示の第三実施形態においても、センサ校正装置の機能は、表示制御装置300によって実現されている。表示制御装置300は、第一実施形態と実質同一のGNSS受信器20、地図DB30及び車内LAN50等に加えて、HUD装置310及びハイトセンサ340等と直接的又は間接的に電気接続されている。
図6に示す本開示の第三実施形態においても、センサ校正装置の機能は、表示制御装置300によって実現されている。表示制御装置300は、第一実施形態と実質同一のGNSS受信器20、地図DB30及び車内LAN50等に加えて、HUD装置310及びハイトセンサ340等と直接的又は間接的に電気接続されている。
車内LAN50には、加速度センサ51、車速センサ52及び操舵角センサ53等が接続されている。加速度センサ51は、車両に作用する前後方向の加速度を検出し、検出結果を車内LAN50に出力する。車速センサ52は、例えば車輪速を計測するセンサであって、車速に応じた計測信号を車速情報として車内LAN50に出力する。操舵角センサ53は、ステアリング系の操舵角を検出し、検出結果を車内LAN50に出力する。操舵角は、ステアリング角であってもよく、又は操舵輪の実舵角であってもよい。
HUD装置310は、第一実施形態のHUD装置10(図1参照)と同様に、虚像VIを用いたAR表示及び非AR表示を併用し、運転者に情報を提示する。HUD装置310は、虚像VIを表示するための構成として、プロジェクタ11及び反射光学系12を有している。プロジェクタ11は、反射光学系12に投影する元画像の位置を、表示制御装置300から取得する姿勢角(ピッチ角θ,数4参照)の情報に基づき調整し、AR表示された虚像VIが対象物に正しく重畳された状態を維持させる。
ハイトセンサ340は、車両の車高を検出するセンサである。ハイトセンサ340は、車両の姿勢変化のうちで、上下方向の変位(ヒーブ)を少なくとも検出可能である。ハイトセンサ340は、例えば車室外であって、左右いずれか一方のリヤサスペンションに設置されている。ハイトセンサ340は、ボディに懸架されたサスペンションアームの動作によって上下方向に変位する特定の車輪について、ボディに対する沈み込み量を計測する。ハイトセンサ340は、ボディとサスペンションアームとの間の相対距離を計測し、計測した計測データの信号(例えば電位)を、表示制御装置300へ向けて逐次出力する。
尚、ハイトセンサ340は、車両の前後左右の各サスペンションのうちの複数に設けられていてもよい。また、ハイトセンサ340の計測データは、車内LAN50を経由して、表示制御装置300に取得されてもよい。
表示制御装置300は、第一実施形態と実質同一の制御回路60、記憶部60a及び入出力インターフェース等によって構成されている。第三実施形態の記憶部60aにも、虚像VIの表示を制御する表示制御プログラムに加えて、ハイトセンサ340の出力を校正するセンサ校正プログラムが記憶されている。
制御回路60は、表示制御プログラムの実行により、表示制御部71及び姿勢演算部372等の機能ブロックを有する。また制御回路60は、センサ校正プログラムの実行により、の車速取得部62、加速度取得部63及び位置特定部65に加えて、計測値取得部361、操舵角情報取得部363、地図情報取得部364及び校正値設定部366等の機能ブロックを有する。
姿勢演算部372は、計測値取得部361にて取得されるハイトセンサ340の出力(例えば電圧値)に基づき、車両のピッチ角θを演算する。姿勢演算部372は、下記の数4に示す校正式を用いて、ハイトセンサ340の生の出力(電位V)を校正する。校正式におけるV0は、ハイトセンサ340の出力の初期値である。また校正式におけるa,bは、共に校正係数であって、校正値設定部366にて設定される。
校正値設定部366は、計測値取得部361にて取得されたヒーブの計測値に適用される校正係数(数4参照)を設定する。詳記すると、ピッチ角θ及び車速を用いることで、自車の高度情報の暫定値が算出できる。こうした算出値は、搭乗者数及び積載物の変動に伴うサスペンション上部の重量バランスの変化や車両の経年劣化等の理由から、高度情報の真値(図7 破線参照)に対して誤差を持つ。校正値設定部366は、こうした誤差を補正する校正係数を更新し、現状の車両に適合した校正係数を設定する。その結果、姿勢演算部372は、誤差要因を校正し、高精度な車両姿勢角(ピッチ角θ)を算出できるようになる。
具体的に、校正値設定部366は、下記の数5に示す座標算出式を用いて、自車高度RHc(図7 破線参照)を算出する。自車高度RHcは、車速情報及び計測値から算出される算出位置の座標を、時系列に繋げてなる。
尚、下記の座標算出式におけるvは、車速情報の示す車両の走行速度である。また、(zi)は、キャリブレーション区間におけるi番目の算出位置を示す座標であり、(zi+1)は、i+1番目の算出位置を示す座標である。そして、ピッチ角θは、校正前又は仮の校正係数を設定した校正式(数4参照)に基づく姿勢角とされる。
具体的に、校正値設定部366は、各自車高度RHm,RHcから、同時刻での車両の高度を示すと推定される一対の座標情報のペアを設定する。校正値設定部366は、下記の数6に示す目的関数の最小値を探索する。目的関数では、組み合わされた各対の座標について、自車高度RHm上にある基準位置の座標(z^i)と、自車高度RHc上にある算出位置の座標(zi)との誤差ノルムが算出される。校正値設定部366は、誤差ノルムの総和が最小となるような校正係数を、勾配法による反復計算によって探索する。尚、数6における「n」は、キャリブレーションに使用するデータ数である。
S301では、ハイトセンサ340の出力に基づく計測値と、車速情報とを取得し、S302に進む。S302では、S301にて取得される計測値のうちで、校正係数に大きな誤差を生じさせる可能性のある計測値を、図9にサブ処理として示すデータ選択処理によって使用の対象から除外し、校正係数の設定に使用するデータを選択する。
データ選択処理のS321では、計測値が計測された期間又はタイミングでの加速度情報を取得する。そして、車両に生じている加速度の絶対値が閾値Dを超えているか否かを判定する。S321にて、加速度の絶対値が閾値D以下であると判定した場合、S323に進む。一方、加速度の絶対値が閾値Dを超えていると判定した場合、S322に進む。S322では、加速度の絶対値が閾値Dを超えた期間の計測値を、校正係数の設定に用いる対象から除外し、S323に進む。以上により、加速中及び減速中のデータは、使用対象から除外される。
S323では、走行中の道路路面のカントの情報を取得する。そして、カントの絶対値が閾値Eを超えているか否かを判定する。S323にて、カントの絶対値が閾値E以下であると判定した場合、S325に進む。一方、カントの絶対値が閾値Eを超えていると判定した場合、S324に進む。S324では、カントの絶対値が閾値Eを超えた期間の計測値を、校正係数の設定に用いる対象から除外し、S325に進む。
S325では、車速情報及び操舵角情報を取得し、車両に作用している遠心力の大きさを推定する。そして、推定した遠心力の絶対値が閾値Fを超えているか否かを判定する。S325にて、遠心力の絶対値が閾値F以下であると判定した場合、S327に進む。一方、遠心力の絶対値が閾値Fを超えていると判定した場合、S326に進む。S326では、遠心力の絶対値が閾値Fを超えた期間の計測値を、校正係数の設定に用いる対象から除外し、S327に進む。
以上のS323~S326の処理により、カーブ走行中のデータは、使用対象から除外される。
S327では、特定期間における算出位置の座標の分散値を算出し、分散値が閾値Gを超えているか否かを判定する。S327にて、分散値が閾値G以下であると判定した場合、S329に進む。一方、分散値が閾値Gを超えていると判定した場合、S328に進む。S328では、分散値が閾値Gを超えた期間の計測値を、校正係数の設定に用いる対象から除外し、S329に進む。
S329では、地図データの示す緯度、経度、高度の情報を用いて、走行中の道路路面の縦断勾配を算出し、縦断勾配の絶対値が閾値Hを超えているか否かを判定する。S329にて、縦断勾配の絶対値が閾値H以下であると判定した場合、更新(メイン)処理のS303に戻る。一方、S329にて、縦断勾配の絶対値が閾値Hを超えていると判定した場合、S330に進む。S330では、縦断勾配の絶対値が閾値Hを超えた期間の計測値を、校正係数の設定に用いる対象から除外し、図8に示すメイン処理のS303に戻る。以上により、登坂及び降坂に伴う姿勢変化が顕著な期間のデータは、使用対象から除外される。
S303では、計測値に基づく校正前の自車高度RHcを算出し、S304に進む。S304では、地図データに基づく自車高度RHmを算出する。そして、自車高度RHm上にある個々の座標に対応するポイント(座標)に最も近接する座標を、S303にて算出した算出位置の座標群の中から選択し、S305に進む。S305では、S304にて対応付けた算出位置と基準位置との誤差が最小となるように、校正式(数4参照)の各校正係数a,bを算出し、更新処理を一旦終了する。
ここまで説明した第三実施形態では、ハイトセンサ340の出力に基づく計測値と車速情報とを組み合わせて、高度についての算出位置が取得される。この算出位置が基準位置に近づくように校正係数を設定すれば、高度情報を用いたハイトセンサ340の校正が可能となる。
以上のような校正係数の設定によれば、ハイトセンサ340の計測値に基づく姿勢計測の正確性が向上するため、表示制御部71は、車両の姿勢変化に追従した虚像VIの移動を高精度に行い得る。したがって、表示制御装置300は、運転者の見た目上にて、虚像VIを対象物に正確に重畳させることができる。
加えて第三実施形態のように、地図データに含まれた高度情報を用いて設定される基準位置には、高い精度が確保され得る。故に、算出される校正係数の精度、ひいては、校正係数を適用されたピッチ角の精度も、高く維持可能となる。
ここで、車両がカーブを走行中に取得されるハイトセンサ340の計測値には、高度変化に起因する成分だけでなく、カーブ走行に伴うロール変化に起因する成分も含まれ得る。故に第三実施形態では、カーブ走行中に計測された計測値は、校正係数の設定に使用する対象から除外される。具体的には、車両の操舵角及び相応速度、並びにカント等の情報に基づき、計測値の使用の可否が判定される。以上の処理によれば、1方向の変位センサを用いた場合に不可避的に生じるロール変化の影響が低減され得るため、校正係数の精度は、高く維持可能となる。
さらに、走行中の道路の勾配が大きいシーンでは、ピッチ変化に起因する成分が、ハイトセンサ340の計測値に含まれ得る。故に第三実施形態では、道路路面の縦断勾配が閾値Hを超えた期間の計測値も、校正係数の設定には使用されない。以上の処理によれば、車両のピッチ変化による影響が低減され得るため、校正係数の精度は、さらに高く維持可能となる。
尚、第三実施形態では、ハイトセンサ340が「姿勢センサ」に相当し、地図情報取得部364が「高度情報取得部」に相当し、表示制御装置300が「センサ校正装置」に相当する。
(第四実施形態)
第四実施形態における校正係数の設定には、三次元の地図データの示す高度の座標に替えて、測位信号の示す高度の座標が、基準位置として用いられる。図6に示す校正値設定部366は、第三実施形態と同様の座標算出式(数5参照)を用いて、車両の自車高度RHc(図7参照)を算出する。一方で、校正値設定部366は、位置特定部65にて特定された測位位置を時系列に連ねる処理により、車両の走行軌跡における自車高度RHm(図7参照)を設定する。校正値設定部366は、測位信号に基づく自車高度RHmを真の値と仮定し、算出した自車高度RHcと、測位信号に基づく自車高度RHmとの誤差が最小になるように、校正係数a,b(数4参照)を算出する。
第四実施形態における校正係数の設定には、三次元の地図データの示す高度の座標に替えて、測位信号の示す高度の座標が、基準位置として用いられる。図6に示す校正値設定部366は、第三実施形態と同様の座標算出式(数5参照)を用いて、車両の自車高度RHc(図7参照)を算出する。一方で、校正値設定部366は、位置特定部65にて特定された測位位置を時系列に連ねる処理により、車両の走行軌跡における自車高度RHm(図7参照)を設定する。校正値設定部366は、測位信号に基づく自車高度RHmを真の値と仮定し、算出した自車高度RHcと、測位信号に基づく自車高度RHmとの誤差が最小になるように、校正係数a,b(数4参照)を算出する。
ここまで説明した第四実施形態でも、第三実施形態と同様に、車速情報及び計測値に基づく算出位置が、測位信号に基づく基準位置に近づくように、ハイトセンサ340の校正係数が設定される。その結果、ハイトセンサ340の計測値を用いたピッチ角の精度、及び虚像VIの重畳精度は、高く維持可能となる。
(他の実施形態)
以上、本開示の複数の実施形態について説明したが、本開示は、上記実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
以上、本開示の複数の実施形態について説明したが、本開示は、上記実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
上記実施形態のデータ選択処理(図4参照)では、複数の判定を連続して実施することにより、校正係数の精度を低下させ得る計測値が、使用対象から除外されていた。こうしたデータの選別に用いる閾値は、車両の重量やホイールベース等の諸元情報、及び想定される道路環境等に応じて、校正係数の精度確保が可能な値に適宜設定されてよい。また、データ選択処理によるデータの選別は、実施されなくてもよい。さらに、データ選択処理の内容は、適宜変更可能である。
(変形例1)
例えば、図10に示す変形例1によるデータ選択処理では、校正値設定部は、走行速度の変化幅が閾値以内であるか否かを判定する(S521)。そして、発進シーン及び停車シーンのように、加速中及び減速中等、走行速度の変化幅が閾値を超える期間のデータは、校正係数の算出に使用する対象から除外される(S522)。その結果、校正値設定部は、走行速度が一定の時間、一定の変化幅を規定する閾値以内となる計測値のみを選択的に用いて、校正係数を設定できる。
例えば、図10に示す変形例1によるデータ選択処理では、校正値設定部は、走行速度の変化幅が閾値以内であるか否かを判定する(S521)。そして、発進シーン及び停車シーンのように、加速中及び減速中等、走行速度の変化幅が閾値を超える期間のデータは、校正係数の算出に使用する対象から除外される(S522)。その結果、校正値設定部は、走行速度が一定の時間、一定の変化幅を規定する閾値以内となる計測値のみを選択的に用いて、校正係数を設定できる。
(変形例2)
また、図11に示す変形例2によるデータ選択処理では、校正値設定部は、算出位置の時間微分値が閾値以上であるか否かを判定する(S523)。時間微分値は、例えばサンプリング周期あたりの変化量である。凹凸を通過したタイミング等、時間微分値が閾値を超える期間のデータは、校正係数の算出に使用する対象から除外される(S524)。以上により、校正値設定部は、時間微分値の小さい期間の計測値のみを選択的に用いて、校正係数を設定できる。
また、図11に示す変形例2によるデータ選択処理では、校正値設定部は、算出位置の時間微分値が閾値以上であるか否かを判定する(S523)。時間微分値は、例えばサンプリング周期あたりの変化量である。凹凸を通過したタイミング等、時間微分値が閾値を超える期間のデータは、校正係数の算出に使用する対象から除外される(S524)。以上により、校正値設定部は、時間微分値の小さい期間の計測値のみを選択的に用いて、校正係数を設定できる。
(変形例3)
また、図12に示す変形例3によるデータ選択処理では、校正値設定部は、特定期間の分散値が閾値以内であるか否かを判定する(S525)。そして、車両の姿勢が大きく変化した期間等、分散値が閾値を超える期間のデータは、校正係数の算出に使用する対象から除外される(S526)。以上により、校正値設定部は、分散値の小さい期間の計測値のみを選択的に用いて、校正係数を設定できる。
また、図12に示す変形例3によるデータ選択処理では、校正値設定部は、特定期間の分散値が閾値以内であるか否かを判定する(S525)。そして、車両の姿勢が大きく変化した期間等、分散値が閾値を超える期間のデータは、校正係数の算出に使用する対象から除外される(S526)。以上により、校正値設定部は、分散値の小さい期間の計測値のみを選択的に用いて、校正係数を設定できる。
(変形例4)
上記実施形態では、三次元の地図データを用いて、ピッチ軸、ロール軸及びヨー軸についての姿勢角が校正可能とされていた。しかし、校正対象とされるセンサユニットは、適宜変更されてよい。例えば、変形例4の計測値取得部は、センサユニットからの出力に基づき、車両のヨー角について計測値を取得し、ピッチ角及びロール角についての計測値を取得しない。一方、地図情報取得部は、緯度及び経度の情報を含む二次元の地図データを取得する。校正値設定部は、車速情報及びヨー角についての計測値から、緯度及び経度のみの算出位置の座標を算出できる。換言すれば、校正値設定部は、算出位置に基づく二次元の走行軌跡RPcと、地図データに基づく二次元の走行軌跡RPmとを規定できる。故に、第一実施形態と同様に、走行軌跡RPcが走行軌跡RPmに重なるような補正係数の探索を行なうことで、校正値設定部は、二次元の地図データを用いたヨー角の校正を行なうことができる。尚、三次元の地図データのうちで緯度及び経度の情報だけを利用して、ヨー角の校正が行われてもよい。
上記実施形態では、三次元の地図データを用いて、ピッチ軸、ロール軸及びヨー軸についての姿勢角が校正可能とされていた。しかし、校正対象とされるセンサユニットは、適宜変更されてよい。例えば、変形例4の計測値取得部は、センサユニットからの出力に基づき、車両のヨー角について計測値を取得し、ピッチ角及びロール角についての計測値を取得しない。一方、地図情報取得部は、緯度及び経度の情報を含む二次元の地図データを取得する。校正値設定部は、車速情報及びヨー角についての計測値から、緯度及び経度のみの算出位置の座標を算出できる。換言すれば、校正値設定部は、算出位置に基づく二次元の走行軌跡RPcと、地図データに基づく二次元の走行軌跡RPmとを規定できる。故に、第一実施形態と同様に、走行軌跡RPcが走行軌跡RPmに重なるような補正係数の探索を行なうことで、校正値設定部は、二次元の地図データを用いたヨー角の校正を行なうことができる。尚、三次元の地図データのうちで緯度及び経度の情報だけを利用して、ヨー角の校正が行われてもよい。
上記実施形態では、車両のピッチ、ロール及びヨーを示す値を計測するためのジャイロセンサを校正する処理を説明した。しかし、校正対象とされる姿勢センサは、ジャイロセンサに限定されない。例えば、加速度センサが、校正対象となる姿勢センサであってもよい。また、センサユニットは、三軸の角速度を計測する三つのジャイロセンサに加えて、当該三軸に沿う方向の加速度を計測する加速度センサを備えるいわゆる六軸センサであってもよい。さらに、校正係数の算出に、地図データ及び測位情報等に加えて、センサユニットの周囲の雰囲気温度等の従来の情報がさらに用いられてもよい。
上記第一実施形態では、地図データを真値として、校正係数を設定していた。また上記第二実施形態では、測位位置を真値として、校正係数を設定していた。こうした処理は、組み合わされてもよい。例えば、衛星信号の受信状態の良否を判定する受信状態判定部を設け、測位位置の精度が確保されていると判定される場合には、測位信号を真値とした校正係数の設定が実施される。一方で、測位位置の精度が確保されていないと判定される場合には、地図データを真値とした校正係数の設定が実施される。或いは、地図データの精度を判定する精度判定部を設け、地図データの精度が確保されていると判定される場合には、地図データを真値とした校正係数の設定が実施される。一方で、地図データの精度が確保されていないと判定される場合には、測位信号を真値とした校正係数の設定が実施される。
上記第一実施形態等では、虚像が対象物に正しく重畳された状態を維持するために、アクチュエータ制御部及びアクチュエータが設けられていた。しかし、第三実施形態等のように、虚像の表示位置のハードウェアによる調整は、実施されなくてもよい。即ち、アクチュエータ制御部及びアクチュエータは、省略されてもよい。こうした形態では、上述したように、虚像の表示位置の調整は、表示制御部にて描画される画像データの調整、具体的には、虚像として結像される元画像の位置調整により、実施される。以上のように、虚像が対象物に正しく重畳された状態は、ソフトウェア処理のみによって維持されてもよい。或いは、アクチュエータ制御部及びアクチュエータのみによって、虚像を対象物に正しく重畳させた状態が維持されてもよい。
(変形例5)
上記第三実施形態の変形例である変形例5において、高度情報は、勾配値に基づいて取得される。詳記すると、変形例5の制御回路には、勾配値演算部が設けられている。勾配値演算部は、アクセル開度及びブレーキ油圧等のタイヤ駆動力に対する車速又は加速度の応答から、車両の推定重量を参照しつつ、路面勾配(縦断勾配)の値(勾配値)を推定する。高度情報取得部は、勾配値と車速情報とに基づき、基準位置となる高度情報を取得できる。以上の変形例5では、制御回路が地図情報取得部及び位置特定部を有していなくても、換言すれば、車両に地図DB及びGNSS受信器が搭載されていなくても、校正値設定部は、校正係数を更新できる。
上記第三実施形態の変形例である変形例5において、高度情報は、勾配値に基づいて取得される。詳記すると、変形例5の制御回路には、勾配値演算部が設けられている。勾配値演算部は、アクセル開度及びブレーキ油圧等のタイヤ駆動力に対する車速又は加速度の応答から、車両の推定重量を参照しつつ、路面勾配(縦断勾配)の値(勾配値)を推定する。高度情報取得部は、勾配値と車速情報とに基づき、基準位置となる高度情報を取得できる。以上の変形例5では、制御回路が地図情報取得部及び位置特定部を有していなくても、換言すれば、車両に地図DB及びGNSS受信器が搭載されていなくても、校正値設定部は、校正係数を更新できる。
上記第三実施形態では、一方向の変位センサとして、上下方向の変位を計測するハイトセンサが例示されていた。しかし、本開示による校正値の更新処理は、上下方向の変位センサに限らず、任意の方向の変位を計測する変位センサに対し適用可能である。具体的には、変位センサの車両に対する取り付け角度の設計値を用いて、変位センサの計測値を上下方向の変位量に変換すれば、ハイトセンサと同様の扱いが可能となる。
さらに、擬似的な変位センサとして、上下方向の加速度成分を検出可能な加速度センサが用いられていてもよい。加速度センサの計測値を二回積分する演算処理を、上下方向の変位量として使用すれば、加速度センサもハイトセンサと同様の扱いが可能となる。
上記実施形態では、地図データに無い路面情報、具体的には、路面の荒れ及び段差の影響による誤差増大を回避するため、計測値の分散値又は時間差分等の情報を用いて、路面の荒れ及び段差の影響を含む計測値は、校正係数の使用対象から外されていた。こうした路面の荒れ及び段差の発生は、分散値及び時間差分以外でも、例えば計測値の周波数に基づいて推定されてもよい。
また、上記第三実施形態では、カーブ走行中のロール角成分の影響による誤差増大を避けるため、遠心力の大きさに基づき、計測値の使用及び不使用が仕分けされていた。例えば校正値設定部は、遠心力に替えて、例えば操舵角の大きさに基づき計測値の使用及び不使用を選別し、ロール角成分を除去するようにしてもよい。
上記実施形態及び変形例にて説明した複数の除外条件の組み合わせは、適宜変更されてよい。さらに、除外条件は、設定されなくてもよい。加えて、閾値の具体的な値も、適宜変更されてよい。
例えば上記三実施形態では、遠心力及びカントの両方に除外条件となる閾値を設定し、両方の判定にてロール角成分を実質含まないと推定された計測値を、選択的に使用していた。しかし、使用可能とする計測値を確保するため、校正値設定部は、例えば遠心力に基づくロール角の大きさとカントの大きさとを合算し、当該合算値と閾値との比較に基づき、合算値が閾値を超える期間の計測値を除外するフィルタ処理を行ってもよい。
さらに、変位センサが複数のサスペンションに設けられている場合、計測値を除外する除外条件は、緩和されてよい。例えば、複数のハイトセンサの計測値を平均化する処理を行うことで、荒れた路面状況及びカーブ走行中の計測値が、校正係数の演算に使用されてもよい。また、特異な変化を示した計測値のみを除外する処理等により、路面凹凸の影響を避けつつ、校正係数の演算に使用する計測値のデータ量が増やされてもよい。以上の処理によれば、キャリブレーション区間の延長回避が可能になる。
上記実施形態の校正値設定部は、校正係数を演算するにあたり、走行軌跡及び自車高度の誤差が最小となる値を、勾配法によって演算していた。しかし、校正係数を探索する最小化問題の解法は、勾配法に限定されない。例えば、校正係数(校正パラメータ)の範囲がある程度まで絞れている場合、校正値設定部は、全数検査によって最小値を求めてもよい。
さらに、校正前の変位センサの算出値(算出位置)が真値(基準位置)に対して大きくずれている場合、勾配法等での最小値の探索が不可能になり得る。この場合、校正値設定部は、校正前の変位センサの算出値の最大値と、真値の最大値とが一致するように、一連の算出値を正規化する。このように、正規化した算出値を用いれば、校正値設定部は、最小値を探索可能となる。
センサ校正装置の機能は、上記の表示制御装置100とは異なる構成によって実現されてもよい。例えば、コンビネーションメータ及びHUD装置等の表示デバイスが、制御回路にてセンサ校正プログラムを実行することにより、センサ校正装置として機能してもよい。さらに、車両に搭載された自動運転ECUの制御回路が、センサ校正プログラムに基づく本開示のセンサ校正方法を実行する処理部として機能してもよい。或いは、表示制御装置、表示デバイス及び自動運転ECU等の複数の制御回路が、センサ校正のための演算を分散処理してもよい。さらに、フラッシュメモリ及びハードディスク等の種々の非遷移的実体的記憶媒体(non-transitory tangible storage medium)が処理部にて実行されるセンサ校正プログラム等を格納する記憶部として、採用可能である。
上記実施形態では、高精度な地図情報を基準とすることにより、姿勢センサの校正値が設定されていた。しかし、すべての道路について高精度な地図情報が生成されているわけではなく、正確性が十分ではない地図情報しか存在しない場合がある。このように、正確性が十分ではない地図情報を、姿勢センサの出力に基づいて修正することが可能である。換言すれば、姿勢センサの出力と走行速度とに基づいて算出された走行軌跡RPc(図2Aと図2B参照)に、地図情報から特定される走行軌跡RPm(図2Aと図2B参照)を重ねるように、地図情報が更新されてもよい。このような技術的思想を、以下に追記する。
車両の走行によって地図情報を修正する地図修正装置であって、
車両に固定された姿勢センサの出力に基づく車両の姿勢の計測値を取得する計測値取得部と、
車両の走行速度を示す車速情報を取得する車速取得部と、
車両が走行する道路の地図情報を取得する地図情報取得部と、
地図情報にて道路上の位置を規定した位置情報が、車速情報及び計測値から算出される車両の算出位置と整合するように、位置情報を更新する地図更新部と、を備える地図修正装置。
車両に固定された姿勢センサの出力に基づく車両の姿勢の計測値を取得する計測値取得部と、
車両の走行速度を示す車速情報を取得する車速取得部と、
車両が走行する道路の地図情報を取得する地図情報取得部と、
地図情報にて道路上の位置を規定した位置情報が、車速情報及び計測値から算出される車両の算出位置と整合するように、位置情報を更新する地図更新部と、を備える地図修正装置。
以上の構成によれば、正確性が十分でない地図情報しかない場合でも、車両の走行により、地図情報の位置情報の正確性を高めることが可能になる。また、例えば地図情報の正確性を示す情報があれば、位置情報と算出情報とのうちで、真値とする情報を切り替えることが可能になる。詳記すると、高精度な地図情報を取得している場合には、地図情報の示す位置情報が真値とされ、基準位置とされる。そして、校正値設定部が、算出位置を地図情報に基づく基準位置に整合させることで、姿勢センサの校正値を設定する。一方で、低精度な地図情報を取得している場合には、姿勢センサの計測値に基づく算出位置が真値とされる。そして、地図更新部が、地図情報に示された道路位置を算出位置に整合させる処理により、地図の正確性を向上させる。
本開示に記載されるフローチャート、あるいは、フローチャートの処理は、複数の部(あるいはステップと言及される)から構成され、各部は、たとえば、S101と表現される。さらに、各部は、複数のサブ部に分割されることができる、一方、複数の部が合わさって一つの部にすることも可能である。さらに、このように構成される各部は、サーキット、デバイス、モジュール、ミーンズとして言及されることができる。
また、上記の複数の部の各々あるいは組合わさったものは、(i) ハードウエアユニット(例えば、コンピュータ)と組み合わさったソフトウェアの部のみならず、(ii) ハードウエア(例えば、集積回路、配線論理回路)の部として、関連する装置の機能を含みあるいは含まずに実現できる。さらに、ハードウェアの部は、マイクロコンピュータの内部に構成されることもできる。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。
Claims (23)
- 車両の姿勢を検出する姿勢センサ(41~43)の出力を校正するセンサ校正装置であって、
前記姿勢センサの出力に基づく前記車両の姿勢の計測値を取得する計測値取得部(61)と、
前記車両の走行速度を示す車速情報を取得する車速取得部(62)と、
前記車両が走行する道路の地図情報を取得する地図情報取得部(64)と、
前記車速情報及び前記計測値から算出される前記車両の算出位置が前記地図情報に示された基準位置に近づくように、前記計測値に適用される校正値を設定する校正値設定部(66)と、を備えるセンサ校正装置。 - 前記計測値取得部は、前記姿勢センサの出力に基づき前記車両のピッチ、ロール及びヨーを示す前記計測値を取得し、
前記地図情報取得部は、緯度、経度及び高度の情報を含む三次元の前記地図情報を取得する請求項1に記載のセンサ校正装置。 - 前記計測値取得部は、前記姿勢センサの出力に基づき前記車両のヨーを示す前記計測値を取得し、
前記地図情報取得部は、緯度及び経度の情報を含む二次元の前記地図情報を取得する請求項1に記載のセンサ校正装置。 - 前記校正値設定部は、前記基準位置に対応する前記算出位置を選択し、選択した前記算出位置と前記基準位置との誤差が最小となるような前記校正値を探索する請求項1~3のいずれか一項に記載のセンサ校正装置。
- 車両の姿勢を検出する姿勢センサ(41~43)の出力を校正するセンサ校正装置であって、
前記姿勢センサの出力に基づく前記車両の姿勢の計測値を取得する計測値取得部(61)と、
前記車両の走行速度を示す車速情報を取得する車速取得部(62)と、
測位衛星から受信した測位信号に基づき前記車両の測位位置を特定する位置特定部(65)と、
前記車速情報及び前記計測値から算出される前記車両の算出位置が前記位置特定部にて特定された前記測位位置に近づくように、前記計測値に適用される校正値を設定する校正値設定部(66)と、を備えるセンサ校正装置。 - 車両の変位を検出する姿勢センサ(340)の出力を校正するセンサ校正装置であって、
前記姿勢センサの出力に基づく前記車両の変位の計測値を取得する計測値取得部(361)と、
前記車両の走行速度を示す車速情報を取得する車速取得部(62)と、
前記車両が走行する道路の高度情報を取得する高度情報取得部(364)と、
前記車速情報及び前記計測値から算出される前記車両の算出位置が前記高度情報に示された基準位置に近づくように、前記計測値に適用される校正値を設定する校正値設定部(366)と、を備えるセンサ校正装置。 - 前記高度情報取得部は、高度の情報を含む地図情報を取得し、
前記校正値設定部は、前記地図情報に基づく前記高度情報を用いた前記基準位置に前記算出位置が近づくように、前記校正値を設定する請求項6に記載のセンサ校正装置。 - 前記高度情報取得部は、測位衛星から受信した測位信号に基づく前記高度情報を取得し、
前記校正値設定部は、前記測位信号に基づく前記高度情報を用いた前記基準位置に前記算出位置が近づくように、前記校正値を設定する請求項6に記載のセンサ校正装置。 - 前記高度情報取得部は、前記車両が走行する道路の路面の勾配値に基づく前記高度情報を取得し、
前記校正値設定部は、前記勾配値に基づく前記高度情報を用いた前記基準位置に前記算出位置が近づくように、前記校正値を設定する請求項6に記載のセンサ校正装置。 - 前記校正値設定部は、前記車両がカーブを走行中に前記姿勢センサにて計測された前記計測値を除外して、前記校正値を設定する請求項6~9のいずれか一項に記載のセンサ校正装置。
- 前記校正値設定部は、前記車両の操舵角又は前記車両に作用する遠心力が閾値を超えた期間の前記計測値を、前記校正値の設定に用いる対象から除外する請求項10に記載のセンサ校正装置。
- 前記校正値設定部は、前記車両が走行する道路の路面の横断勾配が閾値を超えた期間の前記計測値を、前記校正値の設定に用いる対象から除外する請求項10又は11に記載のセンサ校正装置。
- 前記校正値設定部は、前記車両が走行する道路の路面の縦断勾配が閾値を超えた期間の前記計測値を、前記校正値の設定に用いる対象から除外する請求項10~12のいずれか一項に記載のセンサ校正装置。
- 前記校正値設定部は、前記車両が加速中及び減速中に前記姿勢センサにて計測された前記計測値を除外して、前記校正値を設定する請求項1~13のいずれか一項に記載のセンサ校正装置。
- 前記校正値設定部は、前記車速情報の示す走行速度の変化幅が閾値以内となる期間の前記計測値を用いて、前記校正値を設定する請求項14に記載のセンサ校正装置。
- 前記車両の加速度を示す加速度情報を取得する加速度取得部(63)、をさらに備え、
前記校正値設定部は、前記加速度情報の示す加速度の絶対値が閾値を超えた期間の前記計測値を、前記校正値の設定に用いる対象から除外する請求項14又は15に記載のセンサ校正装置。 - 前記校正値設定部は、前記車両が路面の凹凸を通過した期間に前記姿勢センサにて計測された前記計測値を除外して、前記校正値を設定する請求項1~16のいずれか一項に記載のセンサ校正装置。
- 前記校正値設定部は、前記算出位置の時間微分値が閾値を超える期間の前記計測値を除外して、前記校正値を設定する請求項17に記載のセンサ校正装置。
- 前記校正値設定部は、前記算出位置の経時的な差分値が閾値を超える期間の前記計測値を除外して、前記校正値を設定する請求項17又は18に記載のセンサ校正装置。
- 前記校正値設定部は、前記算出位置の分散値が閾値を超える期間の前記計測値を除外して、前記校正値を設定する請求項1~19のいずれか一項に記載のセンサ校正装置。
- 車両の姿勢を検出する姿勢センサ(41~43)の出力を校正するセンサ校正プログラムであって、
少なくとも一つの処理部(60)を、
前記姿勢センサの出力に基づく前記車両の姿勢の計測値を取得する計測値取得部(61)、
前記車両の走行速度を示す車速情報を取得する車速取得部(62)、
前記車両が走行する道路の地図情報を取得する地図情報取得部(64)、
前記車速情報及び前記計測値から算出される前記車両の算出位置が前記地図情報に示された基準位置に近づくように、前記計測値に適用される校正値を設定する校正値設定部(66)、として機能させるためのセンサ校正プログラム。 - 車両の姿勢を検出する姿勢センサ(41~43)の出力を校正するセンサ校正プログラムであって、
少なくとも一つの処理部(60)を、
前記姿勢センサの出力に基づく前記車両の姿勢の計測値を取得する計測値取得部(61)、
前記車両の走行速度を示す車速情報を取得する車速取得部(62)、
衛星から受信した測位信号に基づき前記車両の測位位置を特定する位置特定部(65)、
前記車速情報及び前記計測値から算出される前記車両の算出位置が前記位置特定部にて特定された前記測位位置に近づくように、前記計測値に適用される校正値を設定する校正値設定部(66)、として機能させるためのセンサ校正プログラム。 - 車両の変位を検出する姿勢センサ(340)の出力を校正するセンサ校正プログラムであって、
少なくとも一つの処理部(60)を、
前記姿勢センサの出力に基づく前記車両の変位の計測値を取得する計測値取得部(361)、
前記車両の走行速度を示す車速情報を取得する車速取得部(62)、
前記車両が走行する道路の高度情報を取得する高度情報取得部(364)、
前記車速情報及び前記計測値から算出される前記車両の算出位置が前記高度情報に示された基準位置に近づくように、前記計測値に適用される校正値を設定する校正値設定部(366)、として機能させるためのセンサ校正プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112018003699.5T DE112018003699T5 (de) | 2017-07-18 | 2018-07-02 | Sensorkalibrierungsvorrichtung und Sensorkalibrierungsprogramm |
US16/726,419 US20200132462A1 (en) | 2017-07-18 | 2019-12-24 | Sensor calibration device and sensor calibration program product |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017139339 | 2017-07-18 | ||
JP2017-139339 | 2017-07-18 | ||
JP2018116304A JP6669199B2 (ja) | 2017-07-18 | 2018-06-19 | センサ校正装置、及びセンサ校正プログラム |
JP2018-116304 | 2018-06-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/726,419 Continuation US20200132462A1 (en) | 2017-07-18 | 2019-12-24 | Sensor calibration device and sensor calibration program product |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019017192A1 true WO2019017192A1 (ja) | 2019-01-24 |
Family
ID=65015566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/025025 WO2019017192A1 (ja) | 2017-07-18 | 2018-07-02 | センサ校正装置、及びセンサ校正プログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019017192A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004286724A (ja) * | 2003-01-27 | 2004-10-14 | Denso Corp | 車両挙動検出装置、車載処理システム、検出情報較正装置及び車載処理装置 |
JP2006250681A (ja) * | 2005-03-10 | 2006-09-21 | Clarion Co Ltd | Gpsレシーバにおけるサーチ周波数の設定方法、gpsレシーバ、及び、車載器 |
WO2013080318A1 (ja) * | 2011-11-30 | 2013-06-06 | パイオニア株式会社 | バンク判定装置、制御方法、プログラム、及び記憶媒体 |
WO2013080319A1 (ja) * | 2011-11-30 | 2013-06-06 | パイオニア株式会社 | 位置認識装置、制御方法、プログラム、及び記憶媒体 |
US20160061627A1 (en) * | 2014-08-28 | 2016-03-03 | GM Global Technology Operations LLC | Sensor offset calibration using map information |
-
2018
- 2018-07-02 WO PCT/JP2018/025025 patent/WO2019017192A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004286724A (ja) * | 2003-01-27 | 2004-10-14 | Denso Corp | 車両挙動検出装置、車載処理システム、検出情報較正装置及び車載処理装置 |
JP2006250681A (ja) * | 2005-03-10 | 2006-09-21 | Clarion Co Ltd | Gpsレシーバにおけるサーチ周波数の設定方法、gpsレシーバ、及び、車載器 |
WO2013080318A1 (ja) * | 2011-11-30 | 2013-06-06 | パイオニア株式会社 | バンク判定装置、制御方法、プログラム、及び記憶媒体 |
WO2013080319A1 (ja) * | 2011-11-30 | 2013-06-06 | パイオニア株式会社 | 位置認識装置、制御方法、プログラム、及び記憶媒体 |
US20160061627A1 (en) * | 2014-08-28 | 2016-03-03 | GM Global Technology Operations LLC | Sensor offset calibration using map information |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6669199B2 (ja) | センサ校正装置、及びセンサ校正プログラム | |
US11454525B2 (en) | Vehicle sensor field calibration utilizing other vehicles | |
CN105988128B (zh) | 车辆定位准确度 | |
CN107084743B (zh) | 利用gnss/ins数据的六自由度惯性测量单元的偏移和失准补偿 | |
US7096116B2 (en) | Vehicle behavior detector, in-vehicle processing system, detection information calibrator, and in-vehicle processor | |
CN107560612B (zh) | 用于确定交通工具的角位置的方法和装置 | |
US20160377437A1 (en) | Unit and method for improving positioning accuracy | |
EP2045577B1 (en) | Positioning device, and navigation system | |
CN110779521A (zh) | 一种多源融合的高精度定位方法与装置 | |
CN111854740B (zh) | 能够在交通工具中进行航位推算的惯性导航系统 | |
CN106573571A (zh) | 利用惯性传感器的驾驶员辅助系统 | |
JP6787297B2 (ja) | 表示制御装置、及び表示制御プログラム | |
JP7344895B2 (ja) | 車両に装備されたジャイロメータの較正方法 | |
CN111486860B (zh) | 用于确定道路倾斜角的系统和方法 | |
WO2020209144A1 (ja) | 位置推定装置、推定装置、制御方法、プログラム及び記憶媒体 | |
EP3396323B1 (en) | Distance estimation device, distance estimation method, and program | |
JP2008007026A (ja) | 空気圧低下検出装置、空気圧低下検出プログラムおよび空気圧低下検出方法 | |
WO2019188886A1 (ja) | 端末装置、情報処理方法、プログラム、及び、記憶媒体 | |
WO2019017192A1 (ja) | センサ校正装置、及びセンサ校正プログラム | |
WO2019012951A1 (ja) | 方位推定装置 | |
EP3396322B1 (en) | Distance estimation device, distance estimation method and program | |
TWI394944B (zh) | 車輛姿態估測系統與方法 | |
Baer et al. | EgoMaster: A central ego motion estimation for driver assist systems | |
Teoh et al. | Vehicle Localization Based On IMU, OBD2, and GNSS Sensor Fusion Using Extended Kalman Filter | |
GB2569284A (en) | Method and computer program for drift assist in a motor vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18834795 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18834795 Country of ref document: EP Kind code of ref document: A1 |