WO2019015113A1 - 一种射频电路、通信终端及射频收发方法 - Google Patents

一种射频电路、通信终端及射频收发方法 Download PDF

Info

Publication number
WO2019015113A1
WO2019015113A1 PCT/CN2017/103984 CN2017103984W WO2019015113A1 WO 2019015113 A1 WO2019015113 A1 WO 2019015113A1 CN 2017103984 W CN2017103984 W CN 2017103984W WO 2019015113 A1 WO2019015113 A1 WO 2019015113A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
branch
signal
transceiver module
frequency band
Prior art date
Application number
PCT/CN2017/103984
Other languages
English (en)
French (fr)
Inventor
谢卫博
Original Assignee
西安中兴新软件有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安中兴新软件有限责任公司 filed Critical 西安中兴新软件有限责任公司
Publication of WO2019015113A1 publication Critical patent/WO2019015113A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0064Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with separate antennas for the more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a radio frequency circuit, a communication terminal, and a radio frequency transceiver method.
  • the terminal is more and more susceptible to the problem of coexistence and mutual interference between signals transmitted and received by different communication systems.
  • WiFi Wireless Fidelity
  • LTE Long Term Evolution
  • a typical scenario in which the signals of the communication system coexist is that the wireless LAN WiFi signal and the LTE system signal coexist.
  • the time division is separated, and the communication time of WiFi and LTE is reasonably divided by means of time division multiplexing to ensure that one of the other is in the off state during communication, and the influence between each other is avoided.
  • WiFi or LTE only one communication system (WiFi or LTE) is working at the same time, and its work efficiency is greatly reduced, thereby affecting the overall data throughput rate of the terminal product;
  • WiFi and LTE work in one frequency band to reduce the mutual influence.
  • this method can effectively reduce the mutual interference between the two communication modes of WiFi and LTE, since the spectrum of LTE needs to be purchased for a fee, if some frequency bands cannot be used, it will be a great waste of spectrum and property.
  • the present disclosure provides a radio frequency circuit, a communication terminal, and a radio frequency transceiver method, which can effectively reduce signal interference between two signal transceiving modules, and enable both signal transceiving modules to achieve full frequency band operation.
  • the embodiment of the present disclosure provides a radio frequency circuit, including a first signal transceiver module, a second signal transceiver module, a first switch, a controller, a first communication branch, and a second communication branch, wherein:
  • the first signal transceiver module and the second signal transceiver module are respectively connected to two communication ports of one end of the first switch, and the first communication branch and the second communication branch respectively and the other end of the first switch
  • the communication ports are connected, and the control port of the first switch is connected to the controller;
  • the working frequency band of the first communication branch and the working frequency band of the second communication branch do not overlap.
  • a sum of a working frequency band of the first communication branch and an operating frequency band of the second communication branch covers a communication signal bandwidth of the first signal transceiver module and the second signal transceiver module.
  • the first signal transceiver module includes a first radio frequency chip, a first signal transmission branch, a first signal receiving branch, and a first combiner, and the first signal transmitting branch and the first signal receiving After the branches are connected in parallel, respectively connected to the first RF chip and the first combiner;
  • the second signal transceiving module includes a second radio frequency chip, a second signal transmitting branch, a second signal receiving branch, and a second combiner, wherein the second signal transmitting branch and the second signal receiving branch are connected in parallel Connected to the second RF chip and the second combiner, respectively.
  • the radio frequency circuit further includes a first antenna and a second antenna, the first communication branch is connected to the first antenna, and the second communication branch is connected to the second antenna.
  • the radio frequency circuit further includes a first antenna, a second antenna, and a second switch, where:
  • the first communication branch and the second communication branch respectively and the second switch Two communication ports at one end are connected, the first antenna and the second antenna are respectively connected to two communication ports of the other end of the second switch, the control port of the second switch and the control Connected.
  • the working mode of the first signal transceiver module is any one of a long-term evolution LTE working system, a ZigBee working system, or a wireless LAN WiFi working system;
  • the working mode of the second signal transceiver module is any one of a long-term evolution LTE working system, a ZigBee working system or a wireless local area network WiFi working system.
  • the embodiment of the present disclosure further provides a communication terminal, including the radio frequency circuit according to any of the above.
  • the embodiment of the present disclosure further provides a radio frequency transceiver method, including:
  • the communication terminal determines a working frequency band of the first signal transceiver module and the second signal transceiver module;
  • the communication terminal switches the first switch according to the working frequency band of the first signal transceiver module and the second signal transceiver module, so that one of the first communication branch or the second communication branch and the first signal transceiver module Passing, and causing the other branch of the first communication branch or the second communication branch and the second signal transceiver module to be turned on, the working frequency band of the first communication branch and the working frequency band of the second communication branch are not overlapping.
  • a sum of a working frequency band of the first communication branch and an operating frequency band of the second communication branch covers a communication signal bandwidth of the first signal transceiver module and the second signal transceiver module.
  • the first signal transceiver module and the second signal transceiver module respectively transmit and receive data by using respective antennas, or an antenna is transmitted and received by the first signal transceiver module and the second signal transceiver module. data.
  • the embodiment of the present disclosure further provides a storage medium, where the storage medium includes a stored program, wherein the program executes the radio frequency transceiving method when the program is running.
  • the radio frequency circuit, the communication terminal and the radio frequency transceiver method provided by the disclosure are provided by the switch
  • the switching enables two signal transceiver modules to share two communication branches, and the working frequency bands of the two communication branches do not overlap each other, thereby effectively reducing signal interference between the two signal transceiver modules, and making two signals
  • the transceiver module implements full-band operation, which enables full utilization of the wireless spectrum.
  • FIG. 1 is a schematic structural diagram of a radio frequency circuit according to a first embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a radio frequency circuit according to a second embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for transmitting and receiving radio frequency according to a first embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a radio frequency circuit according to a first preferred embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a radio frequency circuit according to a second preferred embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a radio frequency circuit according to a third preferred embodiment of the present disclosure.
  • a radio frequency circuit includes a first signal transceiving module, a second signal transceiving module, a first switching switch, a controller, a first communication branch, and a second communication branch, wherein:
  • the first signal transceiver module and the second signal transceiver module are respectively connected to two communication ports of one end of the first switch, and the first communication branch and the second communication branch respectively and the other end of the first switch
  • the communication ports are connected, and the control port of the first switch is connected to the controller;
  • the working frequency band of the first communication branch and the working frequency band of the second communication branch do not overlap.
  • the controller described in the present disclosure may be a central processing unit (CPU) of the communication terminal to which the radio frequency circuit belongs, and the first switch can be implemented by using a double-pole double-throw switch. Controlling, by the controller, a position of the control port of the first switch, the first signal transceiver module is electrically connected to the first communication branch, the second signal transceiver module is electrically connected to the second communication branch, or the first signal is The transceiver module is electrically connected to the second communication branch, and the second signal transceiver module is electrically connected to the first communication branch.
  • CPU central processing unit
  • the working mode of the first signal transceiver module is any one of an LTE working system, a ZigBee working system or a WiFi working system; and the working mode of the second signal transceiver module is an LTE working standard. , ZigBee working standard or WiFi working system.
  • the first signal transceiver module may be an LTE working system or a ZigBee working system; and the second signal transceiver module may be a WiFi working system.
  • ZigBee and WiFi systems operate in the 2.4 GHz Industrial Scientific Medical Free Band (ISM Band, Industrial Scientific Medical Band), they inevitably cause mutual interference; on the other hand, due to WiFi The 5 GHz band will have spectral collisions with its LTE band sharing the spectrum, and they will inevitably interfere with each other.
  • the controller may determine another working frequency band by using a working frequency band of one of the first signal transceiving module and the second signal transceiving module. For example, the controller determines the working frequency band of the signal transceiver module of the LTE working system according to the working frequency band of the currently connected LTE cell, and determines another signal transmission and reception according to the determined working frequency band of the signal transceiver module of the LTE working system.
  • the working frequency band of the module such as the signal transceiver module of the WiFi working system.
  • the signal transceiver module of the WiFi working system is the working frequency band determined and used first, it is necessary to switch to the communication branch of the other working frequency band according to the working frequency band determined by the signal transceiver module of the LTE working system.
  • the controller determines another working frequency band to be used by using a working frequency band used by one of the first signal transceiving module and the second signal transceiving module. For example, the controller first determines the signal of the ZigBee working system according to the working frequency band of the currently connected ZigBee network.
  • the working frequency band of the transceiver module is determined according to the determined working frequency band of the signal transceiver module of the ZigBee working system, for example, the working frequency band of the signal transceiver module of the WiFi working system.
  • the first communication branch comprises a first filter and the second communication branch comprises a second filter.
  • a sum of working frequency bands of the first communication branch and the second communication branch covers a communication signal bandwidth of the first signal transceiver module and the second signal transceiver module, that is, a first filter
  • the sum of the provided first frequency passband and the second frequency passband provided by the second filter covers the communication signal bandwidth of the first signal transceiving module and the second signal transceiving module.
  • the first signal transceiver module includes a first radio frequency chip, a first signal transmission branch, a first signal receiving branch, and a first combiner, and the first signal transmitting branch and the first signal receiving After the branches are connected in parallel, respectively connected to the first RF chip and the first combiner;
  • the second signal transceiving module includes a second radio frequency chip, a second signal transmitting branch, a second signal receiving branch, and a second combiner, wherein the second signal transmitting branch and the second signal receiving branch are connected in parallel Connected to the second RF chip and the second combiner, respectively.
  • the first signal transmission branch includes a first power amplifier
  • the second signal transmission branch includes a second power amplifier
  • the first signal receiving branch includes a first low noise amplifier
  • the second signal receiving branch includes a second low noise amplifier
  • the radio frequency circuit further includes a first antenna and a second antenna, the first communication branch is connected to the first antenna, and the second communication branch is connected to the second antenna.
  • the radio frequency circuit further includes a first antenna, a second antenna, and a second switch, where:
  • the first communication branch and the second communication branch are respectively connected to two communication ports of one end of the second switch, and the first antenna and the second antenna respectively and the second switch Two communication ports of the other end of the switch are connected, and a control port of the second switch is connected to the controller.
  • the radio frequency circuit further includes a third antenna, and the third antenna is shared between the first communication branch and the second communication branch to transmit and receive data.
  • the present disclosure also discloses a communication terminal comprising the radio frequency circuit of any of the above.
  • the present disclosure also discloses a radio frequency transceiver method, including the following steps:
  • Step 301 The communication terminal determines a working frequency band of the first signal transceiver module and the second signal transceiver module.
  • the working mode of the first signal transceiver module is any one of a long-term evolution LTE working system, a ZigBee working system, or a wireless local area network (WiFi) working system; and the working mode of the second signal transceiver module is long-term evolution LTE. Any of the working system, ZigBee working system or wireless LAN WiFi working system.
  • the first signal transceiver module may be an LTE working system or a ZigBee working system; and the second signal transceiver module may be a WiFi working system.
  • the communication terminal may determine another working frequency band by using a working frequency band of one of the first signal transceiving module and the second signal transceiving module. For example, the communication terminal determines the working frequency band of the signal transceiver module of the LTE working system according to the working frequency band of the currently connected LTE cell, and determines another according to the determined working frequency band of the signal transceiver module of the LTE working system.
  • the signal transceiving module for example, the working frequency band of the signal transceiver module of the WiFi working system. At this time, even if the signal transceiver module of the WiFi working system is the working frequency band determined and used first, it is also required to switch to another working frequency band according to the working frequency band of the signal transceiver module of the LTE working system.
  • the communication terminal determines another working frequency band to be used by using a working frequency band used by one of the first signal transceiving module and the second signal transceiving module. For example, the communication terminal first determines the working frequency band of the signal transceiver module of the ZigBee working system according to the working frequency band of the currently connected ZigBee network, and determines another working frequency band according to the determined working frequency band of the signal transceiver module of the ZigBee working system.
  • a signal transceiver module such as a working frequency band of a signal transceiver module of a WiFi working system.
  • Step 302 According to the working frequency band of the first signal transceiver module and the second signal transceiver module, The communication terminal switches the first switch, so that one of the first communication branch or the second communication branch is electrically connected to the first signal transceiver module, and is made in the first communication branch or the second communication branch The other branch and the second signal transceiver module are turned on, and the working frequency band of the first communication branch and the working frequency band of the second communication branch do not overlap.
  • the first communication branch comprises a first filter and the second communication branch comprises a second filter.
  • a sum of a working frequency band of the first communication branch and an operating frequency band of the second communication branch covers a communication signal bandwidth of the first signal transceiver module and the second signal transceiver module, that is, a The sum of the first frequency passband provided by a filter and the second frequency passband provided by the second filter covers a communication signal bandwidth of the first signal transceiving module and the second signal transceiving module.
  • the first signal transceiver module includes a first radio frequency chip, a first signal transmission branch, a first signal receiving branch, and a first combiner, and the first signal transmitting branch and the first signal receiving After the branches are connected in parallel, respectively connected to the first RF chip and the first combiner;
  • the second signal transceiving module includes a second radio frequency chip, a second signal transmitting branch, a second signal receiving branch, and a second combiner, wherein the second signal transmitting branch and the second signal receiving branch are connected in parallel Connected to the second RF chip and the second combiner, respectively.
  • the first signal transmission branch includes a first power amplifier
  • the second signal transmission branch includes a second power amplifier
  • the first signal receiving branch includes a first low noise amplifier
  • the second signal receiving branch includes a second low noise amplifier
  • the first signal transceiver module and the second signal transceiver module respectively transmit and receive data using respective antennas, or an antenna is transmitted and received by the first signal transceiver module and the second signal transceiver module. data.
  • the method further includes: the communication terminal is configured according to the first communication branch or the second communication branch Passing signal transceiver module, selecting the first communication branch or the second communication branch One of the branches is electrically connected to the first antenna, and the other of the first communication branch or the second communication branch is selected to be turned on.
  • the radio frequency circuit has two radio frequency transceivers having receiving and transmitting capabilities, a first radio frequency chip and a second radio frequency chip.
  • the first RF chip and the second RF chip have respective RF power amplifiers and low noise amplifiers for transmitting and receiving respective communication signals, wherein the transmission and reception paths are combined into a common path through the combiner.
  • a first filter and a second filter
  • the sum of the working bandwidths of the two filters covers the communication signal bandwidth of the first RF chip and the second RF chip.
  • the two filters in the RF circuit are connected in series with a double-pole double-throw switch.
  • the switch is used to switch the connection relationship between two communication circuits and two filters, and each communication circuit can be combined with one of the filters. Connect, always keep the communication circuit unobstructed.
  • the radio frequency circuit shown in FIG. 4 there is a set of antennas: the first antenna and the second antenna, because the operating frequencies are the same, the performance of the two antennas is also the same; the first match is provided between the first antenna and the first filter. a network; a second matching network is disposed between the second antenna and the second filter;
  • a common antenna is shared for data transmission and reception; and a common antenna and the third combiner are disposed between The third matching network.
  • the second RF chip adjusts its working frequency band to the frequency band corresponding to the second filter, and the double-pole double-throw switch adjusts the state to ensure the state.
  • the two communication circuits are properly connected and functioning normally, and there is no mutual interference;
  • the first RF chip needs to adjust the working frequency band to the second filter, then the second RF core The chip will adjust its working frequency band to the first filter, and the double-pole double-throw switch adjusts the state to ensure that the two communication circuits are properly connected and working normally, and there is no mutual interference.
  • FIG. 6 the correspondence between the first antenna and the first RF chip, the first power amplifier, and the first low noise amplifier is fixed; the second antenna corresponds to the second RF chip, the second power amplifier, and the second low noise amplifier The relationship is fixed.
  • the solution is based on the scheme shown in FIG. 4, and then adds a double-pole double-throw switch, relying only on the switching of two double-pole double-throw switches, according to the first antenna and the first RF chip or the second antenna. And a working frequency band of the RF path of the second RF chip, stroking the first filter or the second filter.
  • the first switching switch and the second switching switch switch When the first antenna and the first radio frequency chip operate in a frequency band of the first filter, the first switching switch and the second switching switch switch to make the first combiner, the first filter, the first antenna conductive, and the second The antenna and the second RF chip strobe the second filter;
  • the first switch and the second switch switch When the first antenna and the first RF chip operate in a frequency band of the second filter, the first switch and the second switch switch to make the first combiner, the second filter, and the first antenna conductive, and the second The antenna and the second RF chip strobe the first filter. This ensures that the two communication circuits are properly connected and functioning properly without mutual interference.
  • the radio frequency circuit, the communication terminal and the radio frequency transceiver method provided by the disclosure enable two signal transceiver modules to share two communication branches by switching of the switch, and the working frequency bands of the two communication branches do not overlap each other, thereby effectively
  • the signal interference between the two signal transceiver modules is reduced, and the two signal transceiver modules are all implemented in the full frequency band, thereby realizing the full utilization of the wireless spectrum.
  • Embodiments of the present disclosure also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the communication terminal determines a working frequency band of the first signal transceiver module and the second signal transceiver module.
  • the communication terminal switches the first switch according to an operating frequency band of the first signal transceiver module and the second signal transceiver module, such that one of the first communication branch or the second communication branch
  • the circuit is electrically connected to the first signal transceiver module, and the other branch of the first communication branch or the second communication branch is connected to the second signal transceiver module, and the working frequency band and the first communication branch
  • the working frequency bands of the two communication branches do not overlap.
  • a sum of a working frequency band of the first communication branch and an operating frequency band of the second communication branch covers a communication signal bandwidth of the first signal transceiver module and the second signal transceiver module.
  • the first signal transceiver module and the second signal transceiver module respectively transmit and receive data by using respective antennas, or an antenna is transmitted and received by the first signal transceiver module and the second signal transceiver module. data.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • a radio frequency circuit, a communication terminal, and a radio frequency transceiver method including a first signal transceiving module, a second signal transceiving module, a first switching switch, a controller, a first communication branch, and a second a communication branch, wherein the first signal transceiver module and the second signal transceiver module are respectively connected to two communication ports of one end of the first switch, and the first communication branch and the second communication branch respectively and the first switch The two communication ports at the other end are connected, and the control port of the first switch is connected to the controller; the working frequency band of the first communication branch and the working frequency band of the second communication branch do not overlap.
  • the switching of the switch enables the two signal transceiver modules to share two communication branches, and the working frequency bands of the two communication branches do not overlap each other, thereby effectively reducing signal interference between the two signal transceiver modules, and The two signal transceiver modules are all implemented in the full frequency band, thereby realizing the full utilization of the wireless spectrum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本公开公开了一种射频电路、通信终端及射频收发方法,包括第一信号收发模块、第二信号收发模块、第一切换开关、控制器、第一通信支路、第二通信支路,其中,第一信号收发模块与第二信号收发模块分别和第一切换开关的一端的两个通讯端口相连,第一通信支路与第二通信支路分别和第一切换开关的另一端的两个通讯端口相连,第一切换开关的控制端口和控制器相连;第一通信支路的工作频段和第二通信支路的工作频段不重叠。本公开通过切换开关的切换使得两个信号收发模块可以共用两个通信支路,有效降低了两个信号收发模块之间的信号干扰,并且使得两个信号收发模块都实现了全频段工作,进而实现了无线频谱的充分利用。

Description

一种射频电路、通信终端及射频收发方法 技术领域
本公开涉及通信技术领域,尤其涉及一种射频电路、通信终端及射频收发方法。
背景技术
随着终端目前支持的通信制式和信号频段越来越多,终端也越来越容易面对自身收发的不同通信制式的信号之间出现共存并相互干扰的问题。以无线局域网(Wireless Fidelity,WiFi)和长期演进(Long Term Evolution,LTE)系统为例,由于LTE系统的应用频段繁多,其中与WiFi的频段比较接近的频段也比较多,因此,目前常见的不同通信制式的信号共存的一种典型场景就是无线局域网WiFi信号和LTE系统信号共存。
在WiFi的5GHz频段,会和其相共享频谱的LTE频段产生频谱冲突,影响到相互之间的数据传输速率,严重的甚至不能进行正常的数据通讯。相关技术中解决WiFi和LTE在5GHz频谱的共存问题的技术方案主要有以下两种:
方法一,在时间轴上分开,通过时分复用的方式,合理划分WiFi和LTE的通讯时间,确保一个在通讯时,另外一个处于关断状态,规避相互之间的影响。但是,此时同一时间只有一种通讯体制(WiFi或LTE)在工作,其工作效率大打折扣,进而影响到终端产品整体的数据吞吐速率;
方法二,在WiFi和LTE电路中添加不同的滤波器,把整个频谱分为高低两部分频段,WiFi和LTE各工作在一种频段中,减少相互之间的影响。这种方法虽然能够有效降低WiFi和LTE两种通讯制式之间的相互干扰,但是由于LTE的频谱是需要付费购买的,如果有些频段不能使用,会是频谱以及财物的极大浪费。
发明内容
为了解决上述技术问题,本公开提供了一种射频电路、通信终端及射频收发方法,能够有效降低两个信号收发模块之间的信号干扰,并使得两个信号收发模块都能够实现全频段工作。
为了达到本公开目的,本公开实施例的技术方案是这样实现的:
本公开实施例提供了一种射频电路,包括第一信号收发模块、第二信号收发模块、第一切换开关、控制器、第一通信支路、第二通信支路,其中:
所述第一信号收发模块与第二信号收发模块分别和第一切换开关的一端的两个通讯端口相连,第一通信支路与第二通信支路分别和第一切换开关的另一端的两个通讯端口相连,第一切换开关的控制端口和控制器相连;
所述第一通信支路的工作频段和第二通信支路的工作频段不重叠。
可选地,所述第一通信支路的工作频段和所述第二通信支路的工作频段之和覆盖所述第一信号收发模块和所述第二信号收发模块的通讯信号带宽。
可选地,所述第一信号收发模块包括第一射频芯片、第一信号发射支路、第一信号接收支路及第一合路器,所述第一信号发射支路、第一信号接收支路并联后分别与所述第一射频芯片和第一合路器相连;
所述第二信号收发模块包括第二射频芯片、第二信号发射支路、第二信号接收支路及第二合路器,所述第二信号发射支路、第二信号接收支路并联后分别与所述第二射频芯片和第二合路器相连。
可选地,所述射频电路还包括第一天线和第二天线,所述第一通信支路与第一天线相连,所述第二通信支路与第二天线相连。
可选地,所述射频电路还包括第一天线、第二天线、第二切换开关,其中:
所述第一通信支路与所述第二通信支路分别和所述第二切换开关的 一端的两个通讯端口相连,所述第一天线和所述第二天线分别和所述第二切换开关的另一端的两个通讯端口相连,所述第二切换开关的控制端口和所述控制器相连。
可选地,所述第一信号收发模块的工作制式为长期演进LTE工作制式、紫蜂ZigBee工作制式或无线局域网WiFi工作制式中的任一种;
所述第二信号收发模块的工作制式为长期演进LTE工作制式、ZigBee工作制式或无线局域网WiFi工作制式中的任一种。
本公开实施例还提供了一种通信终端,包括以上任一项所述的射频电路。
本公开实施例还提供了一种射频收发方法,包括:
通信终端确定第一信号收发模块和第二信号收发模块的工作频段;
根据第一信号收发模块和第二信号收发模块的工作频段,所述通信终端切换第一切换开关,使得第一通信支路或第二通信支路中的一条支路与第一信号收发模块导通,并使得第一通信支路或第二通信支路中的另一条支路和第二信号收发模块导通,所述第一通信支路的工作频段和第二通信支路的工作频段不重叠。
可选地,所述第一通信支路的工作频段和所述第二通信支路的工作频段之和覆盖所述第一信号收发模块和所述第二信号收发模块的通讯信号带宽。
可选地,所述第一信号收发模块和所述第二信号收发模块分别使用各自的天线收发数据,或者所述第一信号收发模块和所述第二信号收发模块之间共用一根天线收发数据。
本公开实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,该程序运行时执行上述射频收发方法。
本公开的技术方案,具有如下有益效果:
本公开提供的射频电路、通信终端及射频收发方法,通过切换开关的 切换使得两个信号收发模块可以共用两个通信支路,且两个通信支路的工作频段之间互相没有重叠,从而有效降低了两个信号收发模块之间的信号干扰,并且使得两个信号收发模块都实现了全频段工作,进而实现了无线频谱的充分利用。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开第一实施例的一种射频电路的结构示意图;
图2为本公开第二实施例的一种射频电路的结构示意图;
图3为本公开第一实施例的一种射频收发方法的流程示意图;
图4为本公开第一优选实施例的一种射频电路的结构示意图;
图5为本公开第二优选实施例的一种射频电路的结构示意图;
图6为本公开第三优选实施例的一种射频电路的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
如图1所示,根据本公开的一种射频电路,包括第一信号收发模块、第二信号收发模块、第一切换开关、控制器、第一通信支路、第二通信支路,其中:
所述第一信号收发模块与第二信号收发模块分别和第一切换开关的一端的两个通讯端口相连,第一通信支路与第二通信支路分别和第一切换开关的另一端的两个通讯端口相连,第一切换开关的控制端口和控制器相连;
所述第一通信支路的工作频段和第二通信支路的工作频段不重叠。
需要说明的是,本公开中所述的控制器可以为所述射频电路所属通信终端的中央处理器(CPU,Central Processing Unit),所述第一切换开关可以用一个双刀双掷开关实现。通过控制器来控制第一切换开关的控制端口的位置,可以将第一信号收发模块与第一通信支路导通,第二信号收发模块与第二通信支路导通,或者将第一信号收发模块与第二通信支路导通,第二信号收发模块与第一通信支路导通。
可选地,所述第一信号收发模块的工作制式为LTE工作制式、紫蜂(ZigBee)工作制式或WiFi工作制式中的任一种;所述第二信号收发模块的工作制式为LTE工作制式、ZigBee工作制式或WiFi工作制式中的任一种。
例如,所述第一信号收发模块可以为LTE工作制式或ZigBee工作制式;所述第二信号收发模块可以为WiFi工作制式。需要说明的是,由于ZigBee和WiFi系统两者都工作在2.4GHz的工业科学医学的免费频段(ISM Band,Industrial Scientific Medical Band),它们不可避免地会产生相互干扰;另一方面,由于在WiFi的5GHz频段,会和其相共享频谱的LTE频段产生频谱冲突,它们也会不可避免地会产生相互干扰。
需要说明的是,所述控制器可以通过第一信号收发模块和第二信号收发模块中的其中一个的工作频段,确定另一个的工作频段。例如,控制器根据当前所连接的LTE小区的工作频段,确定LTE工作制式的信号收发模块的工作频段,并根据已确定的所述LTE工作制式的信号收发模块的工作频段,确定另一信号收发模块,例如WiFi工作制式的信号收发模块的工作频段。此时,即使WiFi工作制式的信号收发模块是先确定并先使用的工作频段,也需要根据LTE工作制式的信号收发模块确定的工作频段,切换至另一工作频段的通信支路。
可选地,控制器通过第一信号收发模块和第二信号收发模块中的其中一个已使用的工作频段,确定另一个待使用的工作频段。例如,控制器先根据当前已连接的ZigBee网络的工作频段,确定ZigBee工作制式的信号 收发模块的工作频段,并根据已确定的所述ZigBee工作制式的信号收发模块的工作频段,确定另一信号收发模块,例如WiFi工作制式的信号收发模块的工作频段。
可选地,所述第一通信支路包括第一滤波器,所述第二通信支路包括第二滤波器。
可选地,所述第一通信支路和所述第二通信支路的工作频段之和覆盖所述第一信号收发模块和所述第二信号收发模块的通讯信号带宽,即第一滤波器提供的第一频率通带和第二滤波器提供的第二频率通带之和覆盖所述第一信号收发模块和所述第二信号收发模块的通讯信号带宽。
可选地,所述第一信号收发模块包括第一射频芯片、第一信号发射支路、第一信号接收支路及第一合路器,所述第一信号发射支路、第一信号接收支路并联后分别与所述第一射频芯片和第一合路器相连;
所述第二信号收发模块包括第二射频芯片、第二信号发射支路、第二信号接收支路及第二合路器,所述第二信号发射支路、第二信号接收支路并联后分别与所述第二射频芯片和第二合路器相连。
在本公开一实施例中,所述第一信号发射支路包括第一功率放大器,所述第二信号发射支路包括第二功率放大器。
在本公开一实施例中,所述第一信号接收支路包括第一低噪声放大器,所述第二信号接收支路包括第二低噪声放大器。
在本公开一实施例中,所述射频电路还包括第一天线和第二天线,所述第一通信支路与第一天线相连,所述第二通信支路与第二天线相连。
可选地,如图2所示,所述射频电路还包括第一天线、第二天线、第二切换开关,其中:
所述第一通信支路与所述第二通信支路分别和所述第二切换开关的一端的两个通讯端口相连,所述第一天线和所述第二天线分别和所述第二切换开关的另一端的两个通讯端口相连,所述第二切换开关的控制端口和所述控制器相连。
在本公开另一实施例中,所述射频电路还包括第三天线,所述第一通信支路和所述第二通信支路之间共用第三天线进行收发数据。
本公开还公开了一种通信终端,包括以上任一项所述的射频电路。
如图3所示,本公开还公开了一种射频收发方法,包括如下步骤:
步骤301:通信终端确定第一信号收发模块和第二信号收发模块的工作频段;
可选地,所述第一信号收发模块的工作制式为长期演进LTE工作制式、ZigBee工作制式或无线局域网WiFi工作制式中的任一种;所述第二信号收发模块的工作制式为长期演进LTE工作制式、ZigBee工作制式或无线局域网WiFi工作制式中的任一种。
例如,所述第一信号收发模块可以为LTE工作制式或ZigBee工作制式;所述第二信号收发模块可以为WiFi工作制式。
需要说明的是,所述通信终端可以通过第一信号收发模块和第二信号收发模块中的其中一个的工作频段,确定另一个的工作频段。例如,所述通信终端根据当前所连接的LTE小区的工作频段,确定LTE工作制式的信号收发模块的工作频段,并根据已确定的所述LTE工作制式的信号收发模块的工作频段,确定另一信号收发模块,例如WiFi工作制式的信号收发模块的工作频段。此时,即使WiFi工作制式的信号收发模块是先确定并先使用的工作频段,也需要根据LTE工作制式的信号收发模块的工作频段,切换至另一工作频段。
可选地,所述通信终端通过第一信号收发模块和第二信号收发模块中的其中一个已使用的工作频段,确定另一个待使用的工作频段。例如,所述通信终端先根据当前已连接的ZigBee网络的工作频段,确定ZigBee工作制式的信号收发模块的工作频段,并根据已确定的所述ZigBee工作制式的信号收发模块的工作频段,确定另一信号收发模块,例如WiFi工作制式的信号收发模块的工作频段。
步骤302:根据第一信号收发模块和第二信号收发模块的工作频段, 所述通信终端切换第一切换开关,使得第一通信支路或第二通信支路中的一条支路与第一信号收发模块导通,并使得第一通信支路或第二通信支路中的另一条支路和第二信号收发模块导通,所述第一通信支路的工作频段和第二通信支路的工作频段不重叠。
可选地,所述第一通信支路包括第一滤波器,所述第二通信支路包括第二滤波器。
可选地,所述第一通信支路的工作频段和所述第二通信支路的工作频段之和覆盖所述第一信号收发模块和所述第二信号收发模块的通讯信号带宽,即第一滤波器提供的第一频率通带和第二滤波器提供的第二频率通带之和覆盖所述第一信号收发模块和所述第二信号收发模块的通讯信号带宽。
可选地,所述第一信号收发模块包括第一射频芯片、第一信号发射支路、第一信号接收支路及第一合路器,所述第一信号发射支路、第一信号接收支路并联后分别与所述第一射频芯片和第一合路器相连;
所述第二信号收发模块包括第二射频芯片、第二信号发射支路、第二信号接收支路及第二合路器,所述第二信号发射支路、第二信号接收支路并联后分别与所述第二射频芯片和第二合路器相连。
在本公开一实施例中,所述第一信号发射支路包括第一功率放大器,所述第二信号发射支路包括第二功率放大器。
在本公开一实施例中,所述第一信号接收支路包括第一低噪声放大器,所述第二信号接收支路包括第二低噪声放大器。
在本公开一实施例中,所述第一信号收发模块和第二信号收发模块分别使用各自的天线收发数据,或者所述第一信号收发模块和第二信号收发模块之间共用一根天线收发数据。
可选地,当所述第一信号收发模块和第二信号收发模块分别使用各自的天线收发数据时,所述方法还包括,所述通信终端根据第一通信支路或第二通信支路导通的信号收发模块,选择第一通信支路或第二通信支路中 的一条支路与第一天线导通,选择第一通信支路或第二通信支路中的另一条支路和第二天线导通。
以下通过几个优选实施例,说明如何应用本公开的射频电路、通信终端及射频收发方法。值得注意的是,以下的优选实施例只是为了更好的描述本公开,并不构成对本公开不当的限定。下面的各个实施例可以独立存在,且不同实施例中的技术特点可以组合在一个实施例中联合使用。
如图4所示,该射频电路有两个具有接收和发射能力的射频收发信机,第一射频芯片和第二射频芯片。
第一射频芯片和第二射频芯片具有各自的射频功率放大器和低噪声放大器,用于发射和接收各自的通讯信号,其中,发射和接收的通路经过合路器后,合成为一个公共通路。
该射频电路中有两个滤波器:第一滤波器和第二滤波器,两个滤波器的工作带宽之和可覆盖第一射频芯片和第二射频芯片的通讯信号带宽。
该射频电路中的两个滤波器前段串接有一个双刀双掷开关,该开关用于切换两个通讯电路和两个滤波器的连接关系,并且每个通讯电路都能和其中一个滤波器连接,始终保持通讯电路通畅。
在图4所示的射频电路中有一组天线:第一天线和第二天线,因为工作频率相同,因此两个天线的性能也相同;第一天线和第一滤波器之间设有第一匹配网络;第二天线和第二滤波器之间设有第二匹配网络;
在图5所示的射频电路中,第一滤波器和第二滤波器经第三合路器合路后,共用一个共用天线,进行数据收发;共用天线和第三合路器之间设有第三匹配网络。
如果初始状态下,第一射频芯片工作在第一滤波器对应的工作频段,那么第二射频芯片会调整自己的工作频段到第二滤波器对应的频段,同时双刀双掷开关调整状态,保证两个通讯电路正确连通并正常工作,而且不会有相互干扰;
如果第一射频芯片需要调整工作频段到第二滤波器,那么第二射频芯 片会调整自己的工作频段到第一滤波器,同时双刀双掷开关调整状态,保证两个通讯电路正确连通并正常工作,而且不会有相互干扰。
当图4所示的射频电路的第一天线和第二天线因为某种原因不能完全相互替换时,需要有如图6所示的补充方案。在图6中,第一天线和第一射频芯片、第一功率放大器以及第一低噪声放大器对应关系是固定的;第二天线和第二射频芯片、第二功率放大器以及第二低噪声放大器对应关系是固定的。本方案通过在图4所示的方案的基础上,再增加一个双刀双掷的切换开关,仅依靠两个双刀双掷开关的切换,根据第一天线和第一射频芯片或者第二天线和第二射频芯片的射频通路的工作频段,选通第一滤波器或者第二滤波器。
当第一天线和第一射频芯片工作在第一滤波器的频段时,第一切换开关和第二切换开关切换使第一合路器、第一滤波器、第一天线导通,同时第二天线和第二射频芯片会选通第二滤波器;
当第一天线和第一射频芯片工作在第二滤波器的频段时,第一切换开关和第二切换开关切换使第一合路器、第二滤波器、第一天线导通,同时第二天线和第二射频芯片会选通第一滤波器。这样可保证两个通讯电路正确连通并正常工作,而且不会有相互干扰。
本公开提供的射频电路、通信终端及射频收发方法,通过切换开关的切换使得两个信号收发模块可以共用两个通信支路,且两个通信支路的工作频段之间互相没有重叠,从而有效降低了两个信号收发模块之间的信号干扰,并且使得两个信号收发模块都实现了全频段工作,进而实现了无线频谱的充分利用。
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,通信终端确定第一信号收发模块和第二信号收发模块的工作频段;
S2,根据第一信号收发模块和第二信号收发模块的工作频段,所述通信终端切换第一切换开关,使得第一通信支路或第二通信支路中的一条支 路与第一信号收发模块导通,并使得第一通信支路或第二通信支路中的另一条支路和第二信号收发模块导通,所述第一通信支路的工作频段和第二通信支路的工作频段不重叠。
可选地,所述第一通信支路的工作频段和所述第二通信支路的工作频段之和覆盖所述第一信号收发模块和所述第二信号收发模块的通讯信号带宽。
可选地,所述第一信号收发模块和所述第二信号收发模块分别使用各自的天线收发数据,或者所述第一信号收发模块和所述第二信号收发模块之间共用一根天线收发数据。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现,相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本公开不限制于任何特定形式的硬件和软件的结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
基于本公开的技术方案,提出了一种射频电路、通信终端及射频收发方法,包括第一信号收发模块、第二信号收发模块、第一切换开关、控制器、第一通信支路、第二通信支路,其中,第一信号收发模块与第二信号收发模块分别和第一切换开关的一端的两个通讯端口相连,第一通信支路与第二通信支路分别和第一切换开关的另一端的两个通讯端口相连,第一切换开关的控制端口和控制器相连;第一通信支路的工作频段和第二通信支路的工作频段不重叠。通过切换开关的切换使得两个信号收发模块可以共用两个通信支路,且两个通信支路的工作频段之间互相没有重叠,从而有效降低了两个信号收发模块之间的信号干扰,并且使得两个信号收发模块都实现了全频段工作,进而实现了无线频谱的充分利用。

Claims (11)

  1. 一种射频电路,包括第一信号收发模块、第二信号收发模块、第一切换开关、控制器、第一通信支路、第二通信支路,其中:
    所述第一信号收发模块与第二信号收发模块分别和第一切换开关的一端的两个通讯端口相连,第一通信支路与第二通信支路分别和第一切换开关的另一端的两个通讯端口相连,第一切换开关的控制端口和控制器相连;
    所述第一通信支路的工作频段和第二通信支路的工作频段不重叠。
  2. 根据权利要求1所述的射频电路,其中,所述第一通信支路的工作频段和所述第二通信支路的工作频段之和覆盖所述第一信号收发模块和所述第二信号收发模块的通讯信号带宽。
  3. 根据权利要求1所述的射频电路,其中,所述第一信号收发模块包括第一射频芯片、第一信号发射支路、第一信号接收支路及第一合路器,所述第一信号发射支路、第一信号接收支路并联后分别与所述第一射频芯片和第一合路器相连;
    所述第二信号收发模块包括第二射频芯片、第二信号发射支路、第二信号接收支路及第二合路器,所述第二信号发射支路、第二信号接收支路并联后分别与所述第二射频芯片和第二合路器相连。
  4. 根据权利要求1所述的射频电路,其中,还包括第一天线和第二天线,所述第一通信支路与第一天线相连,所述第二通信支路与第二天线相连。
  5. 根据权利要求1所述的射频电路,其中,还包括第一天线、第二天线、第二切换开关,其中:
    所述第一通信支路与所述第二通信支路分别和所述第二切换开关的一端的两个通讯端口相连,所述第一天线和所述第二天线分别和所述第二切换开关的另一端的两个通讯端口相连,所述第二切换开关的控制端口和所述控制器相连。
  6. 根据权利要求1所述的射频电路,其中,所述第一信号收发模块的工作制式为长期演进LTE工作制式、紫蜂ZigBee工作制式或无线局域网WiFi工作制式中的任一种;
    所述第二信号收发模块的工作制式为长期演进LTE工作制式、ZigBee工作制式或无线局域网WiFi工作制式中的任一种。
  7. 一种通信终端,包括权利要求1~权利要求6任一项所述的射频电路。
  8. 一种射频收发方法,包括:
    通信终端确定第一信号收发模块和第二信号收发模块的工作频段;
    根据第一信号收发模块和第二信号收发模块的工作频段,所述通信终端切换第一切换开关,使得第一通信支路或第二通信支路中的一条支路与第一信号收发模块导通,并使得第一通信支路或第二通信支路中的另一条支路和第二信号收发模块导通,所述第一通信支路的工作频段和第二通信支路的工作频段不重叠。
  9. 根据权利要求8所述的方法,其中,所述第一通信支路的工作频段和所述第二通信支路的工作频段之和覆盖所述第一信号收发模块和所述第二信号收发模块的通讯信号带宽。
  10. 根据权利要求8所述的方法,其中,所述第一信号收发模块和所述第二信号收发模块分别使用各自的天线收发数据,或者所述第 一信号收发模块和所述第二信号收发模块之间共用一根天线收发数据。
  11. 一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,所述程序运行时执行上述权利要求8至10任一项中所述的方法。
PCT/CN2017/103984 2017-07-17 2017-09-28 一种射频电路、通信终端及射频收发方法 WO2019015113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710582276.9 2017-07-17
CN201710582276.9A CN109274378A (zh) 2017-07-17 2017-07-17 一种射频电路、通信终端及射频收发方法

Publications (1)

Publication Number Publication Date
WO2019015113A1 true WO2019015113A1 (zh) 2019-01-24

Family

ID=65015345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103984 WO2019015113A1 (zh) 2017-07-17 2017-09-28 一种射频电路、通信终端及射频收发方法

Country Status (2)

Country Link
CN (1) CN109274378A (zh)
WO (1) WO2019015113A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110266327B (zh) * 2019-06-24 2021-07-30 Oppo广东移动通信有限公司 通信电路以及具有其的电子设备
CN110620593B (zh) * 2019-09-27 2021-04-06 北京北广科技股份有限公司 一种基于双通道资源配置的发信设备
CN110839280B (zh) * 2019-11-18 2022-11-22 北京紫光展锐通信技术有限公司 移动终端的频率干扰的抑制方法、系统、介质及电子设备
CN111835378B (zh) * 2020-06-08 2024-03-08 珠海格力电器股份有限公司 一种通讯类型切换电路、方法及空调设备
CN111800159B (zh) * 2020-06-30 2021-12-24 联想(北京)有限公司 一种控制方法及电子设备
CN112929045B (zh) * 2021-01-21 2022-06-24 维沃移动通信有限公司 天线组件和电子设备
CN217010858U (zh) * 2022-02-08 2022-07-19 Oppo广东移动通信有限公司 一种射频电路和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917456A (zh) * 2011-08-02 2013-02-06 华为技术有限公司 一种通信方法、多模终端和基站及系统
CN104954040A (zh) * 2015-06-10 2015-09-30 联想(北京)有限公司 一种确定天线使用的方法及电子设备
CN105430677A (zh) * 2015-11-10 2016-03-23 深圳市金立通信设备有限公司 一种授权频谱辅助接入方法,网络设备及终端设备
EP3026971A1 (en) * 2014-11-28 2016-06-01 Sony Corporation Device and method for managing spectrum resources, and wireless communication device and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412125B2 (en) * 2006-10-13 2013-04-02 Cisco Technology, Inc. Wireless communication system with transmit diversity designs
CN105763306A (zh) * 2014-12-17 2016-07-13 北京佰才邦技术有限公司 用于无线传输的通讯设备及方法、通讯端及通讯控制方法
CN106888457B (zh) * 2015-12-15 2020-06-05 展讯通信(上海)有限公司 用户设备及其工作频段配置方法
CN106572510A (zh) * 2016-10-31 2017-04-19 青岛海信电器股份有限公司 一种信道的选择方法以及智能终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917456A (zh) * 2011-08-02 2013-02-06 华为技术有限公司 一种通信方法、多模终端和基站及系统
EP3026971A1 (en) * 2014-11-28 2016-06-01 Sony Corporation Device and method for managing spectrum resources, and wireless communication device and method
CN104954040A (zh) * 2015-06-10 2015-09-30 联想(北京)有限公司 一种确定天线使用的方法及电子设备
CN105430677A (zh) * 2015-11-10 2016-03-23 深圳市金立通信设备有限公司 一种授权频谱辅助接入方法,网络设备及终端设备

Also Published As

Publication number Publication date
CN109274378A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
WO2019015113A1 (zh) 一种射频电路、通信终端及射频收发方法
US8804624B1 (en) Wireless communication device with transmission characteristic control of coexistent transceivers
US9288031B2 (en) Switch arrangement
WO2015154437A1 (zh) 一种支持载波聚合的方法及终端
US20140135061A1 (en) Apparatus and method for sharing antenna
RU2658656C2 (ru) Многорежимный беспроводной терминал
CN103856226B (zh) 一种wlan智能天线系统和数据传输方法
CN109195140B (zh) 一种射频模块、d2d通信方法及移动终端
WO2017220027A1 (zh) 射频前端发射方法及发射模块、芯片和通信终端
RU2659233C2 (ru) Базовая станция
WO2015010484A1 (zh) 多模无线终端
WO2015024282A1 (zh) 信号处理方法、装置及移动终端
US8948707B2 (en) Duplex filter arrangements for use with tunable narrow band antennas having forward and backward compatibility
US20240088925A1 (en) Module arranged to bidirectionally pass coupled power signal
CN111800160A (zh) 一种电子设备
WO2018219219A1 (zh) Tdd/fdd可配置装置、方法、射频模块及通信设备
US11134534B2 (en) System on a chip with multiple cores
CN111478709B (zh) 载波聚合电路及移动终端
US9413444B2 (en) Radio-frequency processing circuit and related wireless communication device
US10374652B2 (en) Antenna switching in a communication circuit
US20130072253A1 (en) Architecture for a radio frequency front-end
WO2023098153A1 (zh) 射频前端模块、终端设备以及射频前端模块的控制方法
CN110677168A (zh) 5g终端信号收发装置、方法以及终端
CN217010858U (zh) 一种射频电路和电子设备
CN210246745U (zh) 一种射频控制电路及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918259

Country of ref document: EP

Kind code of ref document: A1