WO2019015002A1 - 地层煤就地化浆供热系统及地层煤就地化浆发电供热的方法 - Google Patents

地层煤就地化浆供热系统及地层煤就地化浆发电供热的方法 Download PDF

Info

Publication number
WO2019015002A1
WO2019015002A1 PCT/CN2017/097850 CN2017097850W WO2019015002A1 WO 2019015002 A1 WO2019015002 A1 WO 2019015002A1 CN 2017097850 W CN2017097850 W CN 2017097850W WO 2019015002 A1 WO2019015002 A1 WO 2019015002A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
coal
water
slurry
heat
Prior art date
Application number
PCT/CN2017/097850
Other languages
English (en)
French (fr)
Inventor
代伯清
乔瑾瑾
王亚萍
Original Assignee
浙江陆特能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江陆特能源科技股份有限公司 filed Critical 浙江陆特能源科技股份有限公司
Priority to US16/632,130 priority Critical patent/US11286174B2/en
Publication of WO2019015002A1 publication Critical patent/WO2019015002A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/29Obtaining a slurry of minerals, e.g. by using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/30Mixing gases with solids
    • B01F23/39Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/59Mixing systems, i.e. flow charts or diagrams
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • F01K17/025Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic in combination with at least one gas turbine, e.g. a combustion gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/49Mixing drilled material or ingredients for well-drilling, earth-drilling or deep-drilling compositions with liquids to obtain slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/59Mixing reaction ingredients for fuel cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities

Definitions

  • the invention belongs to the technical field of heat exchange of ground source wells, and relates to a method for heating coal heating system of formation coal and localized coal slurry for power generation.
  • the traditional path of using coal to burn heat for power generation is as follows:
  • the first step is to collect formation coal by mining coal mining method, in which there are many problems of water permeable/gas explosion/ground subsidence/water pollution.
  • the second step is to burn the coal by the boiler equipment to heat the water to generate steam for power generation and heating.
  • the problem is dust/sulphide/NOx emission and its high purification treatment cost, while CO2 and fly ash are discharged. It is still not easy to absorb. Therefore, the problem of carbon emissions has become a prominent environmental problem due to air pollution caused by coal combustion.
  • supercritical hydrothermal combustion technology can solve the problem of air pollution in the thermal chemical process of coal combustion, but it does not change the cost/contamination/explosion risk of traditional formation coal mining.
  • the object of the present invention is to provide a formation coal in situ slurry heating system for the above problems.
  • Another object of the present invention is to provide a method for heating coal in situ coal slurry power generation.
  • a formation coal in situ slurry heating system comprising a formation coal slurry device, a middle and deep well pipe device and a heat exchange device,
  • the formation coal slurry device comprises a feed water pump and a coal slurry water pump, and the feed water pump and the coal slurry water pump are respectively connected by a pipeline to orient the slurry drill bit.
  • the medium-deep well pipe device comprises a vertical buried pipe, and a heat-insulating inner pipe coaxially arranged with the vertical buried pipe and inserted into the vertical buried pipe, wherein the bottom of the heat-insulating inner pipe is provided with a micro-hole pipe assembly, the micro-tube assembly An electric heater is arranged in the hole tube assembly, and an annular cavity is formed between the vertical buried pipe and the heat insulating inner pipe, and a power line connected with the electric heater is arranged in the annular cavity, and the coal slurry pump is connected to the annular cavity.
  • the heat exchange device includes an outlet pipe inserted into the insulated inner tube and connected to the microporous tube assembly, and the outlet pipe is connected to the heat exchanger.
  • the microporous tube assembly comprises a first microporous tube and a second microporous tube disposed coaxially, in the first microporous tube and the second microporous tube There are electric heaters respectively.
  • the first microporous tube and the second microporous tube are microporous ceramic tubes, and the annular cavity between the vertical buried tube and the insulated inner tube is provided
  • the utility model has a water inlet pipe connected to the first microporous pipe, and further comprises a composite single wall pipe. The two ends of the composite single wall pipe are respectively sealedly connected with the top of the second microporous pipe and the bottom of the heat preservation inner pipe, and the top of the heat preservation inner pipe is sealed with the outlet pipe. .
  • the heat exchanger is connected with a power generating device
  • the power generating device includes a steam turbine connected to the heat exchanger
  • the steam turbine is connected to the generator
  • the generator is connected to the power distribution cabinet.
  • the power distribution cabinet is respectively connected to the municipal power grid and the power line
  • the steam turbine is further connected with a cooler, wherein the cooler is provided with a circulating cooling pipeline, and the cooler is connected to the heat exchanger by a working water circulation pump.
  • the heat exchanger is further connected with a slag water purification filter separation device, and the slag water purification filter separation device comprises a water purification filter connected to the heat exchanger.
  • the bottom of the water purification filter is provided with a slag discharge device and a slag discharge tank, and the water outlet of the water purification filter is connected to the water pump.
  • the water purification filter The top is connected to the stabilized gas distributor through a pipe, the stabilized gas distributor is connected to the coal slurry pump and the gas compressor, the gas compressor is connected to the carbon dioxide storage tank, the carbon dioxide storage tank is connected to the gas-solid mixer by the infusion pump, and the slag pool is used for the slag transfer.
  • the pump is connected to the gas-solid mixer, the gas-solid mixer is connected to the slag liquid backfilling device, and the slag liquid backfilling device comprises a vertical slag liquid pipe connected to the gas-solid mixer, and a directional outlet connected to the vertical slag liquid pipe Slag head.
  • a plastic capsule making machine is arranged between the infusion pump and the gas-solid mixer, and the vertical slag liquid pipe jacket is provided with a vertical buried casing.
  • a gas heat exchanger is disposed between the gas compressor and the carbon dioxide storage tank, and the feed water pump is further connected to the water inlet of the gas heat exchanger, and the gas heat exchanger is The water outlet is connected to the water pump outlet.
  • the inlet pump outlet is also connected with a natural gas mixer, and the natural gas mixer is connected to the inlet pipe.
  • a method for heating coal in situ coal slurry power generation according to the above-mentioned formation coal in situ slurry heating system comprising the step of in-situ slurrying with a formation coal slurry device, and burning coal slurry water with a medium-deep well pipe device a step of heat exchange and heat generation using a heat exchange device, wherein
  • the feed water pump is used to feed the directional pulp bit, and the underground coal storage area is cut and ground into a 100-200 um particle size coal slurry by using a directional pulp bit.
  • the slurry pump is returned to the ground,
  • the 100-200 um particle size coal water slurry is first injected into the annular cavity between the vertical buried pipe and the heat insulating inner pipe, and the electric heater heats the microporous pipe assembly.
  • the water temperature near the microporous tube assembly rises above 400 °C, causing thermal oxidation reaction of the coal water slurry, the coal slurry pump continues to feed, and the reaction hot water is transferred to the heat exchanger through the outlet pipe.
  • the heat exchanger In the step of heat exchange and power generation by the heat exchange device, the heat exchanger is used to exchange heat and generate electricity for the working water.
  • the local layer coal is ground to the surface by grinding with a directional grouting bit, and then transferred to the bottom of the vertical buried pipe with a vertical depth of 2200 meters or less at a temperature above 400 °C, becoming supercritical water-heat combustion. State, organic hydrocarbons are oxidized and burned to release heat, and other harmful components are converted into N2, CO2 and other harmless gases and inorganic salt particles. When this supercritical hydrothermal reaction water flow is completed and recycled to the wellhead, it is released by heat transfer. Heat energy is generated to complete the heat energy conversion.
  • Water purification separates the purified water and returns to the directional drilling machine to take the coal slurry cycle.
  • the separated inorganic salt particles and CO2 in the gas are re-pressed back to the goaf for permanent storage, thereby completing the use of fully harmless formation coal. the way.
  • Figure 1 is a schematic plan view of the structure provided by the invention.
  • FIG. 2 is a schematic structural view of a formation coal slurry apparatus
  • Figure 3 is a schematic structural view of a medium and deep well pipe device
  • FIG. 4 is a schematic structural view of a power generating device
  • Figure 5 is a schematic view showing the structure of a gas separation compression liquefaction device
  • Figure 6 is a schematic view showing the structure of a slag liquid backfilling device.
  • Figure 7 is a schematic structural view of a slag water purification filter separation device
  • Figure 8 is a schematic cross-sectional view of a medium and deep well tubular device
  • Figure 9 is an enlarged view of A of Figure 1.
  • the embodiment provides a formation coal in situ slurry heating system, which comprises a formation coal slurry device, a middle and deep well pipe device and a heat exchange device, a power generation device, and a slag water purification filter separation device.
  • the formation coal slurry apparatus includes a feed water pump 1 and a coal slurry water pump 2, and the feed water pump 1 and the coal slurry water pump 2 are respectively connected to the directional slurry drill bit 3 through a pipeline.
  • the middle and deep well pipe device comprises a vertical buried pipe 4, and a heat insulating inner pipe 5 which is coaxially arranged with the vertical buried pipe 4 and inserted into the vertical buried pipe 4, and is insulated.
  • the bottom of the inner tube 5 is provided with a microporous tube assembly 6, and the microporous tube assembly 6 is provided with an electric heater 7, and an annular cavity is formed between the vertical buried tube 4 and the heat insulating inner tube 5, and the annular cavity is provided therein.
  • Power line 17 connected to the electric heater 7, coal slurry pump 2 Connect the annular cavity.
  • the heat exchange device includes an outlet pipe 8 that is inserted into the insulated inner tube 5 and connected to the microporous tube assembly 6, the outlet pipe 8 is connected to the heat exchanger 9, and the heat exchanger 9 is connected.
  • a power generation device There is a power generation device,
  • the power generating device includes a steam turbine 14 connected to the heat exchanger 9, the steam turbine 14 is connected to the generator 15, the generator 15 is connected to the power distribution cabinet 16, and the power distribution cabinet 16 is connected to the municipal power grid and the power line 17, respectively.
  • the steam turbine 14 is also connected to a cooler 18, in which a circulating cooling line 19 is provided, and the cooler 18 is connected to the heat exchanger 9 by a working water circulation pump 20.
  • the slag water purification filter separation device includes a water purification filter 21, and includes a water purification filter 21 connected to the heat exchanger 9, and a slag discharge device 22 and a slag discharge tank 23 are disposed at the bottom of the water purification filter 21.
  • the water outlet of the water purification filter 21 is connected to the water pump 1.
  • the top of the water purification filter 21 is connected to the gas separation compression liquefaction device through a pipe.
  • the gas separation compression liquefaction apparatus includes a pressure regulator air separator 24 connected to the water purification filter, the pressure regulator air separator 24 is connected to the coal slurry water pump 2 and the gas compressor 25, and the gas compressor 25 is connected to the carbon dioxide storage.
  • the tank 26, the carbon dioxide storage tank 26 is connected to the gas-solid mixer 28 by an infusion pump 27, and the slag pool 23 is connected to the gas-solid mixer 28 by a slag pump 29, which is connected to the slag liquid backfilling device.
  • the slag liquid backfilling apparatus includes a vertical slag liquid pipe 30 connected to the gas-solid mixer 28, and a directional slag head 31 connected to the vertical slag liquid pipe 30.
  • the microporous tube assembly 6 includes a first microporous tube 10 and a second microporous tube 11 disposed coaxially, and is respectively disposed in the first microporous tube 10 and the second microporous tube 11. There is an electric heater 7.
  • the first microporous tube 10 and the second microporous tube 11 are microporous ceramic tubes, and an inlet tube 12 connecting the first microporous tubes is disposed in the annular cavity between the vertical buried tube 4 and the insulated inner tube 5, and
  • the composite single-walled tube 13 is provided, and the two ends of the composite single-walled tube 13 are respectively sealedly connected with the top of the second micro-hole tube 11 and the bottom of the heat-insulating inner tube 5, and the top of the inner tube 5 is insulated and discharged.
  • the tube 8 is hermetically connected.
  • the insulated inner tube 5 is a three-layer tube having two hollow compartments.
  • a plastic capsule making machine 32 is disposed between the infusion pump 27 and the gas-solid mixer 28, and the vertical slag liquid pipe 30 is provided with a vertically buried casing 33.
  • a gas heat exchanger 34 is provided between the gas compressor 25 and the carbon dioxide storage tank 26.
  • the feed water pump 1 is also connected to the water inlet of the gas heat exchanger 34, and the water outlet of the gas heat exchanger 34 is connected to the outlet of the water pump 1.
  • the inlet of the feed water pump 1 is also connected to a natural gas mixer 35, which is connected to the inlet pipe 12, and the outlet of the coal slurry pump 2 is connected to the aerated mixer 2a, and the natural gas is mixed with the coal slurry water in the gas mixture mixer 2a.
  • the working principle of the invention is:
  • the feed water pump 1 is connected to the water supply pipeline, and the directional grouting drill bit 3 is connected through the clean water inlet nozzle, and the coal seam is continuously drilled along the designated path in the underground coal storage area to coalify into a particle size of 100-200 um.
  • the coal water slurry is returned to the ground along the return pipe by the driving force of the coal slurry pump 2,
  • the depth of the vertical buried pipe 4 is greater than 2200 meters, and the inlet pipe 12 connecting the coal slurry water pump 2 is disposed in the annular cavity formed by the inner heat insulating inner pipe 5 in the vertical buried pipe 4, and the 5% to 20% coal-containing water slurry is
  • the bottommost coal water slurry is under a pressure of >22 MPa and heated by electric heater heating.
  • the coal water slurry will enter the supercritical oxidation combustion exothermic condition, with a pressure of 28 MPa and a temperature of 450 °C as an example.
  • the dielectric constant is 1.8, the density is 0.128, the viscosity coefficient is 0.0298, and the particle Reynolds number is 553.
  • the diffusion coefficient is 7.67x10-4, the oxygen solubility is infinite, and the organic matter is smokelessly burned and becomes N2, CO2 and inorganic salt solid harmless particles.
  • thermochemical process The main thermochemical process:
  • the first stage, gasification stage, anaerobic mode / aerobic low temperature and low pressure stage conditions 2 ⁇ 20MPa, 150 ⁇ 350 ° C, 15 ⁇ 120min, oxidation rate > 70%.
  • the aerobic oxidation exothermic stage condition is 23 to 30 MPa, 400 ⁇ 600 ° C, ⁇ 1min, oxidation rate > 99%.
  • the main physicochemical processes include:
  • the inlet contains organic oxidation reaction mechanism: adding o2 in water, active oxygen and weakest c-H bond to generate free radical HO2-, while HO2- and organic H can form H2O2, and H2O2 further decomposes to form hydroxyl (HO-), HO- has a high activity and can react with almost all hydrogen-containing compounds.
  • the radical R-energy and O2 generated in the aforementioned reaction form an oxidative radical ROO-, which further acquires a hydrogen atom to form a peroxide:
  • the inlet contains organic hydrocarbons
  • the self-heating maintains the temperature of the system and outputs heat energy.
  • a non-polar solvent with high diffusivity and low viscosity, and many organic substances (pentane, hexane, benzene, toluene, etc.) and gases (such as oxygen) can be mutually dissolved in any ratio to form a single homogeneous oxidation system.
  • Inorganic substances, especially salts have low solubility and are easy to collect after precipitation. Its characteristics are: high reaction rate, short reaction time ( ⁇ 1min), The oxidation efficiency of organic matter is over 99%.
  • the carbon oxides can be oxidized to CO2 and H2O.
  • the organic compounds containing nitrogen are oxidized to N2 and N2O.
  • the elements such as chlorine, sulfur and phosphorus are converted into inorganic salts from supercritical Deposition in water. Due to the relatively low reaction temperature (compared to incineration), no NOx or SO2 is formed.
  • the thermal energy status of the wellhead effluent includes,
  • the energy conversion state of the wellhead thermal power generation device includes,
  • the wellhead thermal supply utilization conversion status includes,
  • the water quality status of the well outlet water drainage including
  • the outlet pipe 8 feeds the hot water after combustion to the heat exchanger 9, and the outlet water temperature is between 200 ° C and 400 ° C.
  • the heat exchanger heat exchanger causes the steam generating generator to generate steam to generate electricity and generate electricity.
  • the power generation efficiency is 40-50%, and the spent steam is condensed into water in the condenser, and is pumped back to the heat exchanger for reciprocating circulation.
  • the power generation current is regulated by the power distribution cabinet device and sent to the city power grid.
  • the slag-containing gas water after the heat release from the heat exchanger 9 enters the water purification filter 21 from the slag water inlet to remove the inorganic salt solid particles, and the purified water outlet is pressurized by the pump and sent to the next step, the water purification filter
  • the upper portion of the steam-water mixture in the upper portion of the purified water enters the stabilizing distributor 24 to separate the gas contained in the water and discharge it to the gas compressor 25.
  • the water separated by the stabilized gas distributor 24 is discharged to the clean water pump inlet and merged into the clean water total water stream, and the inorganic salt solid particles separated by the water purification filter 21 are discharged from the slag discharger 22 to the slag discharge tank 23.
  • the mixed gas separated by the stabilized gas distributor 24 is compressed from the pipe into the gas compressor 25 to be 7.5 MPa or more, cooled by the cooling water in the cooler to become liquid CO2, and stored in the carbon dioxide storage tank 26, which can be The infusion pump 27 outputs.
  • the non-condensable gas during cooling, including N2 is vented by the exhaust pipe or used separately.
  • the working condition of the directional slag head 31 is a coal mining cavity area having a depth of more than 800 meters below the ground, and the inorganic salt microparticle aqueous fluid from the slag discharging tank 23 is pressurized to 8.0 MPa or more by the slag pump 29, and is stored by carbon dioxide.
  • the CO2 liquid from the tank 26 is pressurized to 8.0 MPa or more by the infusion pump 27 and wrapped in a plastic capsule manufacturer by a 5 to 10 mm PP plastic capsule, after which the capsule and the slag are mixed in the gas-solid mixer 28 and oriented.
  • the slag filling pipe of the slag head 31 is sent to the directional slag discharge port.
  • the CO2 capsule In a goaf with a depth of more than 800 m, when the static pressure of the local aquifer is greater than 8.0 MPa, the CO2 capsule will coexist in the liquid form with the inorganic salt particulate slag in the formation, and the inorganic salt particulate slag can be filled in all corners of the gob area. .
  • the embodiment is a method for heating the formation coal in the formation coal according to the first embodiment, and provides a method for heating the formation coal to generate electricity by using the formation coal slurry, comprising the step of using the formation coal slurry device to take the slurry in situ. a step of burning a coal slurry water in a deep well pipe device, a heat exchange device and a power generation step, wherein
  • the feed water pump 1 is used to feed the directional pulp bit 3, and the underground coal storage area 100 is cut and ground into a 100-200 um water coal by the directional slurry bit 3. Slurry, using coal slurry pump 2 to return to the ground,
  • the 100-200 um particle size coal water slurry is first injected into the annular cavity between the vertical buried pipe 4 and the heat preservation inner pipe 5, and the electric heater 7 heats the micropores.
  • the tube assembly 6 raises the temperature of the water in the vicinity of the microporous tube assembly 6 to above 400 ° C to cause thermal oxidation reaction of the coal water slurry, and the coal slurry water pump 2 continues to feed, and the reaction hot water is transferred to the heat exchanger 9 through the outlet pipe 8 .
  • the working water is performed by the heat exchanger 9
  • the heat exchange and power generation, the working water after heat exchange drive the steam turbine 14, generate electricity by the generator 15, and transmit it to the municipal power grid and the power line 17 through the power distribution cabinet 16, and the power line 17 heats the electric heater 7. Realize thermoelectric conversion and recycling of electrical energy.
  • the water exchanged by the heat exchanger 9 enters the water purification filter 21 for purification and solid-liquid separation, and the purified water is input into the directional slurry drill bit 3 through the feed water pump 1 to realize water recycling.
  • the natural gas and the coal slurry water are mixed in the gas mixing mixer 2a and then enter between the vertical buried pipe 4 and the heat insulating inner pipe 5.
  • the electric heater 7 heats the microporous pipe assembly 6 to raise the water temperature near the microporous pipe assembly 6 to 400. Above °C, ignite natural gas and assist combustion.
  • the gas is compressed by the gas compressor 25, stored in the carbon dioxide storage tank 26, and liquid carbon dioxide gas is recovered.
  • a slag pool 23 is disposed at the bottom of the water purification filter 21, and the slag pump 29 is connected to the gas-solid mixer 28, and the liquid carbon dioxide gas is connected to the gas-solid mixer 28 through the infusion pump 27, and the gas-solid mixer 28 is connected by the vertical slag liquid pipe 30.
  • the slag head 31 is oriented, and the slag head 31 is drilled into the gob 101 to achieve slag backfilling.
  • feed pump 1 coal slurry pump 2, gas mixer 2a, directional slurry drill 3, vertical buried pipe 4, insulated inner tube 5, microporous tube assembly 6, electric heater 7, out Water pipe 8, heat exchanger 9, first microporous pipe 10, second microporous pipe 11, water inlet pipe 12, composite single wall pipe 13, steam turbine 14, generator 15, power distribution cabinet 16, power supply line 17, cooling 18, circulating cooling line 19, working water circulation pump 20, water purification filter 21, slag discharge unit 22, slag discharge tank 23, pressure regulator air separator 24, gas compressor 25, carbon dioxide storage tank 26, infusion pump 27, gas-solid mixer 28, slag pump 29.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Dispersion Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种地层煤就地化浆供热系统及地层煤就地化浆发电供热的方法,属于地源井换热技术领域。该供热系统包括地层煤化浆装置、中深层井管装置和换热装置。地层煤化浆装置包括进水泵(1)和煤浆水泵(2),进水泵(1)和煤浆水泵(2)分别通过管道连接定向取浆钻头(3)。中深层井管装置包括垂直地埋管(4),以及与垂直地埋管(4)同轴设置且插入到垂直地埋管(4)内的保温内管(5),保温内管(5)底部设有微孔管组件(6),微孔管组件(6)内设有电热器(7),垂直地埋管(4)和保温内管(5)之间形成环形空腔,环形空腔内设有与电热器(7)连接的电源线(17),煤浆水泵(2)连接环形空腔。换热装置包括插入到保温内管(5)中且与微孔管组件(6)连接的出水管(8)。该供热系统直接能把地下煤燃烧生成热能,完成热能转换,过程清洁无害。

Description

地层煤就地化浆供热系统及地层煤就地化浆发电供热的方法 技术领域
本发明属于地源井换热技术领域,涉及一种地层煤就地化浆供热系统及地层煤就地化浆发电供热的方法。
背景技术
利用煤燃烧供热发电的传统路径是:第一步以开矿采煤方式将地层煤采集出来,其间是会有透水/煤气爆炸/地面蹋陷/水污染诸多问题。第二步是由鍋炉设备将煤燃烧使水加热产生蒸汽用来发电供热,其间的问题是粉尘/硫化物/NO化物的排放及其高昂的净化处理成本,而CO2,粉煤灰的排放还无法简单消纳。因此因煤燃烧而产生的空气污染,碳排放的问题成为了突出的环境问题。
另外用超临界水热燃烧技术可以解决煤燃烧热化学过程中的大气污染问题,但未改变传统的地层煤开采的成本/污染/爆炸的风险。
发明内容
本发明的目的是针对上述问题,提供一种地层煤就地化浆供热系统。
本发明的另一目的是提供一种地层煤就地化浆发电供热的方法。
为达到上述目的,本发明采用了下列技术方案:
一种地层煤就地化浆供热系统,包括地层煤化浆装置、中深层井管装置和换热装置,
所述的地层煤化浆装置包括进水泵和煤浆水泵,进水泵和煤浆水泵分别通过管道连接定向取浆钻头,
所述的中深层井管装置包括垂直地埋管,以及与垂直地埋管同轴设置且插入到垂直地埋管内的保温内管,保温内管底部设有微孔管组件,所述的微孔管组件内设有电热器,垂直地埋管和保温内管之间形成环形空腔,环形空腔内设有与电热器连接的电源线,煤浆水泵连接环形空腔,
所述的换热装置包括插入到保温内管中且与微孔管组件连接的出水管,所述的出水管连接换热器。
在上述的地层煤就地化浆供热系统中,所述的微孔管组件包括同轴设置的第一微孔管和第二微孔管,在第一微孔管和第二微孔管内分别设有电热器。
在上述的地层煤就地化浆供热系统中,所述的第一微孔管和第二微孔管为微孔陶瓷管,垂直地埋管和保温内管之间的环形空腔内设有连接第一微孔管的进水管,还包括复合单壁管,复合单壁管的两端分别与第二微孔管顶部和保温内管底部密封连接,保温内管顶部与出水管密封连接。
在上述的地层煤就地化浆供热系统中,所述的换热器连接有发电装置,所述的发电装置包括连接换热器的汽轮机,汽轮机连接发电机,发电机连接变配电柜,变配电柜分别连接市政电网和电源线,所述的汽轮机还连接有冷却器,所述的冷却器内设有循环冷却管路,冷却器用工质水循环泵连接换热器。
在上述的地层煤就地化浆供热系统中,所述的换热器还连接有渣水净化过滤分离装置,所述的渣水净化过滤分离装置包括连接换热器的水净化过滤器,水净化过滤器底部设有出渣器和出渣池,水净化过滤器的出水口连接进水泵。
在上述的地层煤就地化浆供热系统中,所述的水净化过滤器 顶部通过管道连接稳压分气器,稳压分气器连接煤浆水泵和气体压缩机,气体压缩机连接二氧化碳储罐,二氧化碳储罐用输液泵连接气固混合器,出渣池用输渣泵连接气固混合器,所述的气固混合器连接渣液回填装置,所述的渣液回填装置包括连接气固混合器的垂直输渣液管,以及连接垂直输渣液管的定向出渣头。
在上述的地层煤就地化浆供热系统中,在输液泵和气固混合器之间设有塑料胶囊制作机,垂直输渣液管外套设有垂直地埋套管。
在上述的地层煤就地化浆供热系统中,所述的气体压缩机和二氧化碳储罐之间设有气体热交换器,进水泵还连接气体热交换器的进水口,气体热交换器的出水口连接进水泵出口。
在上述的地层煤就地化浆供热系统中,进水泵出口还连接有天然气混合器,天然气混合器连接进水管。
一种根据上述的地层煤就地化浆供热系统进行地层煤就地化浆发电供热的方法,包括用地层煤化浆装置就地取浆的步骤,用中深层井管装置燃烧煤浆水的步骤,用换热装置换热和发电的步骤,其中,
在用地层煤化浆装置就地取浆的步骤中,用进水泵给定向取浆钻头输水,将地下储煤区用定向取浆钻头切削研磨煤化为100-200um粒径水煤浆,用煤浆水泵输回地面,
用中深层井管装置燃烧煤浆水的步骤中,先将100-200um粒径水煤浆注入到垂直地埋管和保温内管之间的环形空腔中,电热器加热微孔管组件使微孔管组件附近的水温上升到400℃以上,使水煤浆发生热氧化反应,煤浆水泵持续进料,反应热水经出水管传输到换热器,
用换热装置换热和发电的步骤中,用换热器对工质水进行换热及发电。
与现有的技术相比,本发明的优点在于:
1、当地层煤在地由定向取浆钻头磨削成水煤浆输往地面后,输往垂直深度2200米以下的垂直地埋管底部于400℃以上温度时,成为超临界水水热燃烧状态,有机碳氢物质被氧化燃烧放出热量,其它有害成分转化为N2,CO2等无害化气体和无机盐颗粒物,当完成这一超临界水热反应水流循环至井口时,经过换热发电释放出热能,完成热能转换。
2、利用了中深层地源井成为超临界水状态后所具有的超氧化能力,用于氧化燃烧有机碳氢化合物,一面产生热一面使水中所含有机污染物分解无害化。水中所含有机污染物被氧化分解成为碳和氢分子而无害化,当污水中富含碳氢化合物时,由地面井口沿内管壁的燃气管输往端头经电热点火进行无焰/有焰燃烧。其污水温度升高并沿另一个通道返回至井口的发电换热装置中,完成热能的转换释放,水质的净化过滤并导入中水回用系统。全部过程封闭无二次污染无有害物排出,完成了一次能量的发生产出输出的过程,并且能以主动可调被动可调积极优化的方式服务于区域建筑物群。
3、水净化分离出净水重回定向钻机取煤浆循环,分离出的无机盐颗粒物和气体中的CO2被重新压回采空区永久贮存,以此完成全无害化的地层煤在地利用方式。
附图说明
图1是发明提供的平面结构示意图;
图2是地层煤化浆装置的结构示意图;
图3是中深层井管装置的结构示意图;
图4是发电装置的结构示意图;
图5是气体分离压缩液化装置的结构示意图;
图6是渣液回填装置的结构示意图。
图7是渣水净化过滤分离装置的结构示意图;
图8是中深层井管装置的横截面示意图;
图9是图1的A处放大图。
图中,进水泵1、煤浆水泵2、加气混合器2a、定向取浆钻头3、垂直地埋管4、保温内管5、微孔管组件6、电热器7、出水管8、换热器9、第一微孔管10、第二微孔管11、进水管12、复合单壁管13、汽轮机14、发电机15、变配电柜16、电源线17、冷却器18、循环冷却管路19、工质水循环泵20、水净化过滤器21、出渣器22、出渣池23、稳压分气器24、气体压缩机25、二氧化碳储罐26、输液泵27、气固混合器28、输渣泵29、垂直输渣液管30、定向出渣头31、塑料胶囊制作机32、垂直地埋套管33、气体热交换器34、天然气混合器35、地下储煤区100、采空区101。
具体实施方式
实施例1
如图1所示,本实施例提供了一种地层煤就地化浆供热系统,其包括地层煤化浆装置、中深层井管装置和换热装置,发电装置,渣水净化过滤分离装置,气体分离压缩液化装置,渣液回填装置。
结合图2所示,地层煤化浆装置包括进水泵1和煤浆水泵2,进水泵1和煤浆水泵2分别通过管道连接定向取浆钻头3,
结合图3、图8和图9所示,中深层井管装置包括垂直地埋管4,以及与垂直地埋管4同轴设置且插入到垂直地埋管4内的保温内管5,保温内管5底部设有微孔管组件6,所述的微孔管组件6内设有电热器7,垂直地埋管4和保温内管5之间形成环形空腔,环形空腔内设有与电热器7连接的电源线17,煤浆水泵2 连接环形空腔。
结合图3和图4所示,换热装置包括插入到保温内管5中且与微孔管组件6连接的出水管8,所述的出水管8连接换热器9,换热器9连接有发电装置,
结合图4所示,发电装置包括连接换热器9的汽轮机14,汽轮机14连接发电机15,发电机15连接变配电柜16,变配电柜16分别连接市政电网和电源线17,所述的汽轮机14还连接有冷却器18,所述的冷却器18内设有循环冷却管路19,冷却器18用工质水循环泵20连接换热器9。
结合图7所示,渣水净化过滤分离装置包括水净化过滤器21,包括连接换热器9的水净化过滤器21,水净化过滤器21底部设有出渣器22和出渣池23,水净化过滤器21的出水口连接进水泵1。水净化过滤器21顶部通过管道连接气体分离压缩液化装置。
结合图5所示,气体分离压缩液化装置包括与水净化过滤器连接的稳压分气器24,稳压分气器24连接煤浆水泵2和气体压缩机25,气体压缩机25连接二氧化碳储罐26,二氧化碳储罐26用输液泵27连接气固混合器28,出渣池23用输渣泵29连接气固混合器28,所述的气固混合器28连接渣液回填装置。
结合图6所示,渣液回填装置包括连接气固混合器28的垂直输渣液管30,以及连接垂直输渣液管30的定向出渣头31。
结合图8和图9所示,微孔管组件6包括同轴设置的第一微孔管10和第二微孔管11,在第一微孔管10和第二微孔管11内分别设有电热器7。
第一微孔管10和第二微孔管11为微孔陶瓷管,垂直地埋管4和保温内管5之间的环形空腔内设有连接第一微孔管的进水管12,还包括复合单壁管13,复合单壁管13的两端分别与第二微孔管11顶部和保温内管5底部密封连接,保温内管5顶部与出水 管8密封连接。保温内管5为具有两个中空隔层的三层管。
在输液泵27和气固混合器28之间设有塑料胶囊制作机32,垂直输渣液管30外套设有垂直地埋套管33。
气体压缩机25和二氧化碳储罐26之间设有气体热交换器34,进水泵1还连接气体热交换器34的进水口,气体热交换器34的出水口连接进水泵1出口。
进水泵1出口还连接有天然气混合器35,天然气混合器35连接进水管12,煤浆水泵2的出口连接加气混合器2a,天然气与煤浆水在加气混合器2a中混合。
本发明的工作原理是:
进水泵1连接供水管路,通过清净水入口接管口连接定向取浆钻头3,在地下贮煤区沿指定路径持续将煤层利用液力机械钻头的切削研磨功能使煤化为100~200um粒径水煤浆,用煤浆水泵2的驱动力沿着回浆管返回地面,
垂直地埋管4的深度大于2200米,垂直地埋管4内的保温内管5围合成的环形空腔中设置连接煤浆水泵2的进水管12,5%~20%含煤水浆及溶解氧/天然气的水流被泵送至地埋管内侧与内管的外侧的环形通道时,在初始起动阶段时,最底端的水煤浆已处于>22MPa压力下,并经由电加热器加热升温至400℃以上,此刻水煤浆将进入到超临界氧化燃烧放热工况,以压力28MPa,温度450℃为例,其时介电常数1.8,密度0.128,黏度系数0.0298,颗粒雷诺数553,扩散系数7.67x10-4,氧溶解性无限,有机质被无烟燃烧并变为N2,CO2和无机盐固体无害颗粒物。
主要的热化学过程:
第一阶段,气化阶段,无氧方式/有氧低温低压阶段条件2~20MPa,150~350℃,15~120min,氧化率>70%。
第二阶段,氧化阶段,有氧氧化放热阶段条件23~30MPa, 400~600℃,≤1min,氧化率>99%。
第三阶段,有焰燃烧阶段,有氧有焰高强度氧化燃烧放热阶段条件30MPa,650℃,氧化率100%。
主要的物理化学过程包括:
a,入口含有机物的氧化反应机理:在水中加入o2,活性氧与最弱的c—H键作用产生自由基HO2-,而HO2-与有机物中的H可以生成H2O2,而H2O2进一步分解形成羟基(HO-),HO-具有很高的活性,几乎可以和所有的含氢化合物进行反应。
RH十O2>R-十HO2-
RH十HO2->R-十H2O2
H2O2>2HO-
RH十HO->R-十H2O
前述反应中产生的自由基R-能和O2作用生成氧化自由基ROO-,后者并进一步获取氢原子生成过氧化物:
R-十O2>ROO-
ROO-十RH>ROOH十R-
过氧化物因为很不稳定通常会分解为分子较小的化合物,直至生成甲酸或乙酸等。甲酸或乙酸再经过自由基ROO-氧化过程最终也转化为CO2和H2O。NH3,NO3,>N2O>催化剂十升温>N2。
b,入口含有机碳氢化合物的水有,
水煤浆,流量10M3~35M3/h,质量浓度5~20%时,自热维持体系温度外还向外输出热能。
c,井下端部超临界水的反应是,
具有高扩散性,低粘度的非极性溶剂,与许多有机物(有戊烷,己烷,苯,甲苯等)和气体(如氧气等)都可以任意比例互溶,形成单一的均相氧化体系。而无机物质,特别是盐类,溶解度很低,析出后便于收集。其特点是:反应速率高,反应时间短(<1min), 有机物氧化效率达99%以上,碳氧化合物最终可被氧化成为CO2和H2O,含氮元素的有机物被氧化成N2及N2O等物质,氯,硫,磷等元素转化为无机盐的形式从超临界水中沉积下来。由于相对较低的反应温度(与焚烧相比),不会有NOx或SO2形成。
d,井口出水的热能水质状态包括,
水温200~300℃,含无机盐固形颗粒物1~10%,含CO2,N2气体。e,井口热力发电装置的能量转换状态包括,
水流量10~35M3/h,发电温差150~250℃,热电转换效率0.4,发电功率1500~5000kw
f,井口热力供应利用转换状态包括,
130℃/90℃/45℃三等级外部供热2000~7000KW。
g,井口出水排水水质状态包括,
排水经不同精度过滤器过滤后的出水,无菌无毒无污染物,符合地表水排放标准,水温20~30℃,含少量CO2/N2气体。
出水管8将燃烧后的热水输到换热器9中,出口水温在200℃~400℃,经换热器换热使发电侧回路产生水蒸汽推动汽轮发电机工作而发电,其净发电效率为40~50%,乏汽在冷凝器中冷凝成水,再次经泵送回换热器往复循环。其发电电流经过变配电柜装置调控外送市电网。作为一种热电高效利用的方案,其冷凝水,汽轮机中间级抽汽都可另行向外提供热能输出。
从换热器9放热降温后的含渣含气水由渣水入口进入到水净化过滤器21除去无机盐固体颗粒,净水出口经泵进行加压送入下一环节,水净化过滤器21上部在已净化的水侧上部汽水混合物进入稳压分气器24使水中所含的气体分离并排往气体压缩机25。
稳压分气器24分离下来的水被排向净水水泵入口汇入净水总水流中,水净化过滤器21分离出来的无机盐固体颗粒由出渣器22排出至出渣池23。
由稳压分气器24分离后的混合气体从管道进入气体压缩机25压缩至7.5MPa以上,在冷却器中被冷却水冷却后成为液态CO2,并存贮于二氧化碳储罐26中,可被输液泵27输出。在冷却中的不凝性气体,包括N2由排气管放空或被另行利用。
定向出渣头31工作条件是在地面以下有深度超过800米的采煤空洞区,由出渣池23来的无机盐微粒子含水流体经输渣泵29加压至8.0MPa以上,与由二氧化碳储罐26来的CO2液流经输液泵27加压至8.0MPa以上并在塑料胶囊制作器被5~10毫米PP塑料胶囊所包裹,之后胶囊与渣流在气固混合器28中混合并通过定向出渣头31的注渣管传至定向出渣口吐出。在深度大于800米的采空区,其当地含水层静压大于8.0Mpa时,CO2胶囊将以液态形式与无机盐微粒渣共存于地层中,可将无机盐微粒渣充滿采空区的各个角落。
实施例2
本实施例是根据实施例1的地层煤就地化浆供热系统,提供了一种地层煤就地化浆发电供热的方法,包括用地层煤化浆装置就地取浆的步骤,用中深层井管装置燃烧煤浆水的步骤,用换热装置换热和发电的步骤,其中,
在用地层煤化浆装置就地取浆的步骤中,用进水泵1给定向取浆钻头3输水,将地下储煤区100用定向取浆钻头3切削研磨煤化为100-200um粒径水煤浆,用煤浆水泵2输回地面,
用中深层井管装置燃烧煤浆水的步骤中,先将100-200um粒径水煤浆注入到垂直地埋管4和保温内管5之间的环形空腔中,电热器7加热微孔管组件6使微孔管组件6附近的水温上升到400℃以上,使水煤浆发生热氧化反应,煤浆水泵2持续进料,反应热水经出水管8传输到换热器9,
用换热装置换热和发电的步骤中,用换热器9对工质水进行 换热及发电,换热后的工质水驱动汽轮机14,用发电机15发电,通过变配电柜16传输给市政电网及电源线17,电源线17给电热器7加热。实现热电转换及电能的循环利用。
经换热器9换热后的水进入到水净化过滤器21进行净化及固液分离,净化后的水通过进水泵1输入到定向取浆钻头3中,实现水的循环利用。
天然气与煤浆水在加气混合器2a中混合后进入到垂直地埋管4和保温内管5之间,电热器7加热微孔管组件6使微孔管组件6附近的水温上升到400℃以上时,点燃天然气,辅助燃烧。
水净化过滤器21顶部连接稳压分气器24后,用气体压缩机25对气体进行压缩,在二氧化碳储罐26中储存,回收得到液态二氧化碳气体。
水净化过滤器21底部设置出渣池23,输渣泵29连接气固混合器28,液态二氧化碳气体通过输液泵27连接气固混合器28,气固混合器28用垂直输渣液管30连接定向出渣头31,定向出渣头31钻入到采空区101中,实现固渣回填。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管本文较多地使用了进水泵1、煤浆水泵2、加气混合器2a、定向取浆钻头3、垂直地埋管4、保温内管5、微孔管组件6、电热器7、出水管8、换热器9、第一微孔管10、第二微孔管11、进水管12、复合单壁管13、汽轮机14、发电机15、变配电柜16、电源线17、冷却器18、循环冷却管路19、工质水循环泵20、水净化过滤器21、出渣器22、出渣池23、稳压分气器24、气体压缩机25、二氧化碳储罐26、输液泵27、气固混合器28、输渣泵 29、垂直输渣液管30、定向出渣头31、塑料胶囊制作机32、垂直地埋套管33、气体热交换器34、天然气混合器35、地下储煤区100、采空区101等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (10)

  1. 一种地层煤就地化浆供热系统,其特征在于,包括地层煤化浆装置、中深层井管装置和换热装置,
    所述的地层煤化浆装置包括进水泵(1)和煤浆水泵(2),进水泵(1)和煤浆水泵(2)分别通过管道连接定向取浆钻头(3),
    所述的中深层井管装置包括垂直地埋管(4),以及与垂直地埋管(4)同轴设置且插入到垂直地埋管(4)内的保温内管(5),保温内管(5)底部设有微孔管组件(6),所述的微孔管组件(6)内设有电热器(7),垂直地埋管(4)和保温内管(5)之间形成环形空腔,环形空腔内设有与电热器(7)连接的电源线(17),煤浆水泵(2)连接环形空腔,
    所述的换热装置包括插入到保温内管(5)中且与微孔管组件(6)连接的出水管(8),所述的出水管(8)连接换热器(9)。
  2. 根据权利要求1所述的地层煤就地化浆供热系统,其特征在于,所述的微孔管组件(6)包括同轴设置的第一微孔管(10)和第二微孔管(11),在第一微孔管(10)和第二微孔管(11)内分别设有电热器(7)。
  3. 根据权利要求2所述的地层煤就地化浆供热系统,其特征在于,所述的第一微孔管(10)和第二微孔管(11)为微孔陶瓷管,垂直地埋管(4)和保温内管(5)之间的环形空腔内设有连接第一微孔管的进水管(12),还包括复合单壁管(13),复合单壁管(13)的两端分别与第二微孔管(11)顶部和保温内管(5)底部密封连接,保温内管(5)顶部与出水管(8)密封连接。
  4. 根据权利要求1所述的地层煤就地化浆供热系统,其特征在于,所述的换热器(9)连接有发电装置,所述的发电装置包括连接换热器(9)的汽轮机(14),汽轮机(14)连接发电机(15),发电机(15)连接变配电柜(16),变配电柜(16)分别连接市政电网和电源线(17),所述的汽轮机(14)还连接有冷却器(18),所述的冷却器(18)内设有循环冷却管路(19),冷却器(18)用 工质水循环泵(20)连接换热器(9)。
  5. 根据权利要求4所述的地层煤就地化浆供热系统,其特征在于,所述的换热器(9)还连接有渣水净化过滤分离装置,所述的渣水净化过滤分离装置包括连接换热器(9)的水净化过滤器(21),水净化过滤器(21)底部设有出渣器(22)和出渣池(23),水净化过滤器(21)的出水口连接进水泵(1)。
  6. 根据权利要求5所述的地层煤就地化浆供热系统,其特征在于,所述的水净化过滤器(21)顶部通过管道连接稳压分气器(24),稳压分气器(24)连接煤浆水泵(2)和气体压缩机(25),气体压缩机(25)连接二氧化碳储罐(26),二氧化碳储罐(26)用输液泵(27)连接气固混合器(28),出渣池(23)用输渣泵(29)连接气固混合器(28),所述的气固混合器(28)连接渣液回填装置,所述的渣液回填装置包括连接气固混合器(28)的垂直输渣液管(30),以及连接垂直输渣液管(30)的定向出渣头(31)。
  7. 根据权利要求6所述的地层煤就地化浆供热系统,其特征在于,在输液泵(27)和气固混合器(28)之间设有塑料胶囊制作机(32),垂直输渣液管(30)外套设有垂直地埋套管(33)。
  8. 根据权利要求6所述的地层煤就地化浆供热系统,其特征在于,所述的气体压缩机(25)和二氧化碳储罐(26)之间设有气体热交换器(34),进水泵(1)还连接气体热交换器(34)的进水口,气体热交换器(34)的出水口连接进水泵(1)出口。
  9. 根据权利要求3所述的地层煤就地化浆供热系统,其特征在于,进水泵(1)出口还连接有天然气混合器(35),天然气混合器(35)连接进水管(12)。
  10. 一种根据权利要求1-9任意一项所述的地层煤就地化浆供热系统进行地层煤就地化浆发电供热的方法,包括用地层煤化浆装置就地取浆的步骤,用中深层井管装置燃烧煤浆水的步骤,用换热装置换热和发电的步骤,其中,
    在用地层煤化浆装置就地取浆的步骤中,用进水泵(1)给定向取浆钻头(3)输水,将地下储煤区(100)用定向取浆钻头(3)切削研磨煤化为100-200um粒径水煤浆,用煤浆水泵(2)输回地面,
    用中深层井管装置燃烧煤浆水的步骤中,先将100-200um粒径水煤浆注入到垂直地埋管(4)和保温内管(5)之间的环形空腔中,电热器(7)加热微孔管组件(6)使微孔管组件(6)附近的水温上升到400℃以上,使水煤浆发生热氧化反应,煤浆水泵(2)持续进料,反应热水经出水管(8)传输到换热器(9),
    用换热装置换热和发电的步骤中,用换热器(9)对工质水进行换热及发电。
PCT/CN2017/097850 2017-07-17 2017-08-17 地层煤就地化浆供热系统及地层煤就地化浆发电供热的方法 WO2019015002A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/632,130 US11286174B2 (en) 2017-07-17 2017-08-17 System for supplying heat by means of stratum coal in-place slurrying and method for supplying power generation heat by means of stratum coal in-place slurrying

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710580940.6 2017-07-17
CN201710580940.6A CN107387180B (zh) 2017-07-17 2017-07-17 地层煤就地化浆供热系统及地层煤就地化浆发电供热的方法

Publications (1)

Publication Number Publication Date
WO2019015002A1 true WO2019015002A1 (zh) 2019-01-24

Family

ID=60339361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097850 WO2019015002A1 (zh) 2017-07-17 2017-08-17 地层煤就地化浆供热系统及地层煤就地化浆发电供热的方法

Country Status (3)

Country Link
US (1) US11286174B2 (zh)
CN (1) CN107387180B (zh)
WO (1) WO2019015002A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110344812A (zh) * 2019-06-21 2019-10-18 浙江陆特能源科技股份有限公司 超临界水热多功能中深层油田回注井
US20230258062A1 (en) * 2020-06-28 2023-08-17 China Petroleum & Chemical Corporation Thermal recovery construction method
CN112502681A (zh) * 2020-12-08 2021-03-16 吉林大学 一种地下煤层气化用多通道连续管点燃系统
CN115012892B (zh) * 2022-07-01 2023-09-29 中国海洋石油集团有限公司 一种通过投捞电泵进行注采一体化开采的工艺方法
CN115263260B (zh) * 2022-08-19 2023-09-29 深圳清华大学研究院 富含有机物岩层超临界水氧化的原位转化系统及转化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048528A (zh) * 1985-03-08 1991-01-16 西南公共服务公司 煤浆系统
JP5473732B2 (ja) * 2010-04-02 2014-04-16 三菱重工業株式会社 低品位炭乾燥システム
US20150218971A1 (en) * 2012-09-14 2015-08-06 Kyushu Electric Power Co., Inc. Power generation system
CN105157010A (zh) * 2015-09-02 2015-12-16 上海理工大学 基于锅炉尾部旁路烟道的火力发电系统
CN105604618A (zh) * 2015-12-25 2016-05-25 华北电力大学 超临界水煤粉直接氧化复合工质循环发电系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS473732Y1 (zh) 1967-11-04 1972-02-08
US7011154B2 (en) * 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US9129728B2 (en) * 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
CN207064026U (zh) * 2017-07-17 2018-03-02 浙江陆特能源科技股份有限公司 地层煤就地化浆供热系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048528A (zh) * 1985-03-08 1991-01-16 西南公共服务公司 煤浆系统
JP5473732B2 (ja) * 2010-04-02 2014-04-16 三菱重工業株式会社 低品位炭乾燥システム
US20150218971A1 (en) * 2012-09-14 2015-08-06 Kyushu Electric Power Co., Inc. Power generation system
CN105157010A (zh) * 2015-09-02 2015-12-16 上海理工大学 基于锅炉尾部旁路烟道的火力发电系统
CN105604618A (zh) * 2015-12-25 2016-05-25 华北电力大学 超临界水煤粉直接氧化复合工质循环发电系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Also Published As

Publication number Publication date
US20200223714A1 (en) 2020-07-16
US11286174B2 (en) 2022-03-29
CN107387180A (zh) 2017-11-24
CN107387180B (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2019015002A1 (zh) 地层煤就地化浆供热系统及地层煤就地化浆发电供热的方法
CN109138952B (zh) 一种超临界煤炭地下气化产出发电的系统和方法
JP6734298B2 (ja) 地熱プラントにおける帯水層流体の内部エネルギーの利用方法
US4546829A (en) Enhanced oil recovery process
US4499946A (en) Enhanced oil recovery process and apparatus
US20150247394A1 (en) Method for fracture communication, passage processing, and underground gasification of underground carbon-containing organic mineral reservoir
MX2008014313A (es) Metodo y aparato para capturar y secuestrar dioxido de carbono y extraccion de energia de masas de tierra grandes durante y despues de la extraccion de combustibles de hidrocarburo o contaminantes usando energia y fluidos criticos.
CN109810728B (zh) 一种超临界气化装置及方法
CN105971573A (zh) 地下自生co2泡沫吞吐开采煤层气的系统及方法
CN109779600B (zh) 地下热-气联产气化设备、煤田火区前沿治理系统和方法
CN103233709A (zh) 一种基于co2辅助sagd开采超稠油油藏的ccus系统及方法
CN114718534B (zh) 一种富油煤自生热与电加热耦合的原位热解系统
CN106522914A (zh) 用于煤炭地下气化工艺的地下气化炉停车及燃空区复原处理方法
CN203335050U (zh) 海底天然气水合物开采蒸汽发生装置
CN209339926U (zh) 一种超临界煤炭地下气化产出发电的系统
CN207064026U (zh) 地层煤就地化浆供热系统
CN109779574B (zh) 一种基于风电补偿的天然气水合物开采系统及方法
CN210001829U (zh) 一种超临界气化装置
CN106281518A (zh) 一种超临界水部分氧化联合催化气化处理有机危险废弃物的系统及方法
CN115306364B (zh) 一种天然气水合物原位加热排采装置及其排采方法
RU2539055C1 (ru) Комплекс для газификации угля
CN207065911U (zh) 中深层多功能地源井
CN115559698A (zh) 一种利用微波能辅助加热煤层进行热解及气化的方法
CN115490206A (zh) 一种利用井下电加热实现近井地带原位制氢方法
CN107367081B (zh) 中深层多功能地源井及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918409

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17918409

Country of ref document: EP

Kind code of ref document: A1