WO2019014849A1 - 一种人工假眼图像采集和处理的方法 - Google Patents

一种人工假眼图像采集和处理的方法 Download PDF

Info

Publication number
WO2019014849A1
WO2019014849A1 PCT/CN2017/093352 CN2017093352W WO2019014849A1 WO 2019014849 A1 WO2019014849 A1 WO 2019014849A1 CN 2017093352 W CN2017093352 W CN 2017093352W WO 2019014849 A1 WO2019014849 A1 WO 2019014849A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
image
brain wave
threshold
image signal
Prior art date
Application number
PCT/CN2017/093352
Other languages
English (en)
French (fr)
Inventor
李乔
Original Assignee
辛特科技有限公司
李乔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辛特科技有限公司, 李乔 filed Critical 辛特科技有限公司
Priority to PCT/CN2017/093352 priority Critical patent/WO2019014849A1/zh
Priority to CN201780093173.4A priority patent/CN110913810B/zh
Publication of WO2019014849A1 publication Critical patent/WO2019014849A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/08Devices or methods enabling eye-patients to replace direct visual perception by another kind of perception

Definitions

  • the invention relates to the field of artificial false eye technology, in particular to a method for artificial false eye image acquisition and processing.
  • Implantation of the retinal prosthesis partially restores vision by direct electrical stimulation of the retinal ganglia.
  • the principle of such an implant device consists of an external miniature camera, a communication system, and a microcomputer.
  • the patient captures the scene through an external camera, and then performs image processing by a computer and then sends it to the artificial retina on the surface of the patient's eye via a communication system, and converts it into an electrical pulse signal.
  • the electrodes on the artificial retina stimulate the optic nerve of the retina and continue to transmit signals along the optic nerve to the brain.
  • These pulse signals can "spoof" the brain, allowing the brain to think that the patient's eyes are still working properly.
  • patients can “see” the outside world like ordinary people and distinguish between light and darkness to restore vision.
  • Brain wave activity has certain regular characteristics, and there is a certain degree of correspondence with brain consciousness. Under different states of excitement, nervousness, coma, etc., the frequency of brain waves will be significantly different, about 1 to 40 Hz. According to different frequencies, brain waves are further divided into ⁇ , ⁇ , ⁇ . ⁇ wave. When people are highly concentrated under certain pressure, the frequency of brain waves is between 12 and 38 Hz. This band is called ⁇ wave, which is the brain wave of “consciousness” level; when people's attention drops, they are relaxed.
  • the frequency of the brain wave will drop to 8-12 Hz, which is called ⁇ wave; after entering the sleep state, the brain wave frequency further decreases, and is divided into ⁇ wave (4-8 Hz) and ⁇ wave (0.5 ⁇ 4 Hz), they reflect the state of people in the "subconscious” and “unconscious” stages. It is precisely because brain waves have such a characteristic that changes with mood fluctuations, and human development and utilization of brain waves becomes possible.
  • artificial artificial eyes (such as the patent CN105028982A) in the prior art mostly convert optical signals into pulse rates, and apply electrical pulses to the human retina to achieve visual recovery.
  • the existing retinal prosthesis only solves the problem that the patient can see, but does not solve the problem of visual follow-up that makes the patient look good.
  • the image signal is subjected to control processing by an image control processing system.
  • the movement control of the image signal in different directions includes image up and down movement, left and right movement, enlargement, reduction, image output off, and image brightness control.
  • the tremor processing of the image signal is an up-and-down, left-right tremor of 30 to 150 Hz for the image.
  • the human brain wave and the human brain wave command signal are collected by a brain wave control system.
  • the image signal is acquired by a digital image signal input system.
  • the brainwave control training includes concentration, relaxation, and blink control training.
  • control parameters of the brainwave control training result include alpha, beta wave parameter values and eSense concentration, eSense relaxation parameter values.
  • the threshold includes an eSense relaxation threshold, an eSense concentration threshold, a beta wave threshold, and a closed eye threshold of the alpha wave.
  • the retinal prosthesis is one or two.
  • the invention provides a method for collecting and processing artificial false eye images, and controls and sets a threshold value of control parameters for human brain wave control, and controls and processes image signals by threshold values of human brain wave command signals and control parameters, thereby reducing
  • the difference between the scene that the patient wants to see and the scene actually seen solves the problem of visual follow-up, and achieves the effect that the scene that the human eye wants to see is consistent with the scene actually seen.
  • FIG. 1 is a schematic block diagram showing a system structure of a method for image acquisition and processing of artificial false eye according to the present invention
  • FIG. 2 is a flow chart showing the process of collecting and processing artificial false eye images of the present invention
  • FIGS 3a to 3c show schematic diagrams of the control of an image signal in accordance with the present invention.
  • the brain wave control training is used to strengthen the alpha wave parameter, the beta wave parameter, and the eSense concentration parameter of the brain wave control parameter.
  • the eSense relaxation parameter allows the patient to accurately control and process the image signal when the frequency of the relevant brain waves is generated.
  • the eSense concentration parameter indicates the intensity of the user's "concentration” level or "attention” level, and the parameter value ranges from 0 to 100, which is reflected in the patient's "direction”. Look at "and look down”.
  • the eSense relaxation indicates the user's mental "calmness” level or “relaxation” level, the parameter value ranges from 0 to 100, which is reflected in the patient's "left” "And look to the right.”
  • FIG. 1 is a system structural diagram of a method for acquiring and processing artificial false eye images according to the present invention, and a system for artificial false eye image acquisition and processing includes a retinal prosthesis 101, a digital image signal input system 104, and brain wave control. System 103 and image control processing system 102, wherein
  • the digital image signal input system 104 is on the same parallel line as the human eye, and is used to acquire an image signal in the scene instead of the human eye;
  • the brain wave control system 103 is arranged on the head of the human body, controls the brain wave control, collects the human brain wave and/or collects the human brain wave command signal, and sets the threshold of the control parameter according to the brain wave control training result.
  • the image control processing system 102 is configured to receive a human brain wave command signal, a threshold of the control parameter, and an image signal collected by the digital image signal input system 104, and control and process the image signal according to the threshold value of the human brain wave command signal and the control parameter. Motion control in different directions of the image signal and tremor processing of the image signal are included.
  • the retinal prosthesis is configured to receive the processed image signal and return the processed image signal to the human brain.
  • the digital image signal input system 104 transmits the image signal in the acquired eye scene and the brain wave command signal collected by the brain wave control system 103 to the image control processing system 102 for image control and processing.
  • the image control processing system 102 transmits the processed image to the retinal prosthesis, and the retinal prosthesis feeds back the signal to the human brain to achieve vision recovery of the patient.
  • the image signal is controlled and processed by the artificial false eye image acquisition and processing system, so that the image signal collected by the digital image signal input system 104 follows the human brain wave command signal.
  • FIG. 2 a flow chart of the process of collecting and processing artificial false eye images of the present invention is performed by the artificial false eye image acquisition and processing system provided by the present invention.
  • the process of collecting and processing artificial false eye images is as follows: step:
  • S101 human brain wave control training
  • brain wave control training includes but focus, relaxation and blink control training, but is not limited to this. Focus, relaxation and blink control training in the examples The content of the present invention is only clearly explained, and is not intended to limit the content of the present invention.
  • the mind is controlled by concentration, relaxation, blinking, and related action combinations (although the patient's eye is damaged, but the mind can still carry out the ideas of concentration, relaxation, blinking, etc.), through patient control training, strengthen focus, relax
  • the brain wave signal of the blinking action and the related action combination the brain wave control system 103 collects and controls the control parameters in the human brain wave signal after training (ie, the brain wave signal of the patient performing the combination of concentration, relaxation, blinking action and related action) Value), set the threshold of the control parameter.
  • the control parameters by controlling the training result include alpha, beta wave parameter values, and eSense concentration, eSense relaxation parameter values.
  • the thresholds of the control parameters include the eSense relaxation threshold, the eSense concentration threshold, the beta wave threshold, and the closed eye threshold of the alpha wave.
  • the threshold of the eSense relaxation degree is set to 80
  • the eSense concentration threshold is set to 80
  • the beta wave threshold is set to 24
  • the closed eye threshold of the alpha wave is set to 9.
  • the digital image signal input system 102 includes a 3D digital camera, and the image signal in the scene is acquired by the 3D digital camera.
  • the 3D digital camera may be an optimal imaging device that can be conceived by those skilled in the art, and is not limited to the 3D digital camera in this embodiment.
  • the human brain wave command signal referred to herein refers to a brain wave signal generated by an action mind when a patient needs to observe a different eye scene. For example, when a patient wants to look at the scene above, a human brain wave signal that is generated in the brain to control the human eye.
  • the image signal in the ocular scene acquired in step S102 is transmitted to the image control processing system 102 together with the human brain wave command signal acquired in step S103 for image signal control and processing.
  • the signal transmission process uses wired transmission or wireless transmission.
  • the image control processing system 102 receives the human brain wave command signal, the threshold of the control parameter, and the image signal collected by the digital image signal input system 104, and the image is based on the threshold value of the human brain wave command signal and the control parameter.
  • the signal is controlled and processed, including movement control of the image signal in different directions and tremor processing of the image signal.
  • the movement control of the image signal in different directions includes image up and down movement, left and right movement, enlargement, reduction, image output off, and image brightness control.
  • the present invention controls the image signal.
  • the intermediate area A of the image 201 acquired by the digital image signal input system 104 will be positive.
  • the retinal prosthesis 101 preferably, the retinal prosthesis of the present embodiment includes a centrally depressed retinal matrix that receives the processed image signal through the central recessed region.
  • the eSense relaxation parameter is higher than the set eSense relaxation threshold (threshold 80), and the human brain wave command signal is accompanied by The blink signal shifts the video image down, at which point the central recessed area of the retinal prosthesis faces the image C area.
  • the light signal received by the retinal prosthesis moves up, which is equivalent to looking up the eye.
  • the eSense relaxation parameter is lower than the set eSense relaxation threshold (threshold 80), and the human brain wave command signal is accompanied by
  • the blink signal moves the video image up, at which point the central recessed area of the retinal prosthesis faces the image B area.
  • the light signal received by the retinal prosthesis moves down, which is equivalent to looking down at the eye.
  • the video image is Move left, the light signal received by the retinal prosthesis is shifted to the right, which is equivalent to the eye looking to the right.
  • the video image is Right shift, the light signal received by the retinal prosthesis is shifted to the left, which is equivalent to the eye looking to the left.
  • the image control processing system 102 When the image control processing system 102 receives the human brain wave command signal, the eSense concentration parameter is higher than the set eSense concentration threshold (threshold 80), and the human brain wave command signal is accompanied by the blink signal, the video is The image is magnified and the resolution of the light signal received by the retinal prosthesis is increased, which is equivalent to looking at the eye from a distance.
  • the eSense concentration parameter is lower than the set eSense concentration threshold (threshold 80), and the human brain wave command signal is accompanied by the blink signal, the video is As the image shrinks, the resolution of the light signal received by the retinal prosthesis is reduced, which is equivalent to looking at the eyes.
  • the alpha wave parameter is higher than the set alpha wave closed eye threshold, and with the blink signal, the video image output signal is turned off or the black screen signal is output, and the retina is false.
  • the body does not receive external light stimulation, which is equivalent to closing the eyes.
  • the video image output signal is gradually dimmed until the pre- Set the minimum brightness. If there is a continuous blink signal at the lowest brightness, the video image output signal will be gradually brightened until the preset maximum brightness is reached.
  • the tremor processing of the image signal performs up-and-down, left-right tremor of 30 to 150 Hz for the image, and more closely simulates the tremor, drift, and saccade of the human eye, eliminates the incompatibility of visual restoration, and increases the authenticity of visual restoration.
  • the retinal prosthesis feedback image signal, the retinal prosthesis receives the processed image signal, and returns the processed image signal to the human brain.
  • the present embodiment has two retinal prostheses to enhance the 3D visual effect.
  • the invention provides an artificial false eye image acquisition and processing system, which controls the human brain wave control and sets a threshold value of the control parameter, and controls and processes the image signal through the threshold value of the human brain wave command signal and the control parameter, thereby reducing the patient.
  • the difference between the scene you want to see and the scene you actually see solves the problem of visual follow-up, and achieves the effect that the scene that the human eye wants to see is consistent with the scene actually seen.

Abstract

一种人工假眼图像采集和处理的方法,方法包括:a)采集人体脑电波,对人体脑电波进行脑电波控制训练(S101),根据脑电波控制训练结果设置控制参数的阈值;b)采集人体脑电波指令信号(S103),采集人眼视觉场景中的图像信号(S102),根据人体脑电波指令信号和控制参数的阈值对图像信号进行控制和处理(S104),包括图像信号不同方向的移动控制以及图像信号的震颤处理;c)将处理后的图像信传输给视网膜假体(101),并返回给大脑(S105)。能够有效解决视觉追随问题,使假眼获取的视觉信息更加真实。

Description

无标题
Figure PCTCN2017093352-appb-000001
一种人工假眼图像采集和处理的方法
技术领域
本发明涉及人工假眼技术领域,特别涉及一种人工假眼图像采集和处理的方法。
背景技术
对于视网膜疾病造成的永久性眼部病变,药物治疗方案已无能为力,植入视网膜假体通过直接电刺激视网膜神经节使视力部分恢复。这种植入装置的原理是由外部微型摄像机、通讯系统和微型计算机组成。首先患者通过外部摄像机捕捉景象,然后通过计算机进行图像处理后经通讯系统送到患者眼球表面的人造视网膜上,并转换为电脉冲信号。接着,人造视网膜上的电极会刺激视网膜的视觉神经,继续将信号沿视神经传送到大脑。这些脉冲信号可以“欺骗”大脑,让大脑以为患者的眼睛仍然在正常工作。最终,患者可以和常人一样“看到”外部世界,并区分光明和黑暗,从而恢复视力。
人类在进行各项生理活动时都在放电。如果用科学仪器测量大脑的电位活动,那么在荧幕上就会显示出波浪一样的图形,这就是“脑波”。脑波活动具有一定的规律性特征,和大脑的意识存在某种程度的对应关系。人在兴奋、紧张、昏迷等不同状态之下,脑电波的频率会有明显的不同,约在1~40赫兹之间,依照不同的频率,脑波又被进一步分为α、β、δ、θ波。当人在一定的压力之下精神高度集中时,脑波的频率在12~38赫兹之间,这个波段被称为β波,是“意识”层面的脑波;当人注意力下降,处于放松状态时,脑波的频率会下降到8~12赫兹,这被称为α波;进入睡眠状态后,脑波频率进一步下降,被分为θ波(4~8赫兹)和δ波(0.5~4赫兹),它们分别反映的是人在“潜意识”和“无意识”阶段的状态。正是因为脑波具有这种随着情绪波动而变化的特性,人类对于脑波的开发利用成为了可能。
目前现有技术中的人工假眼(如专利CN105028982A),大都将光信号转换成脉冲率,向人眼视网膜施加电脉冲实现视觉恢复。但是现有的视网膜假体只解决了患者看得见的问题,但是没有解决视觉追随使患者看得好的问题。
因此,为了解决视觉追随的问题,需要一种人工假眼图像采集和处理的方法。
发明内容
本发明的目的在于提供一种人工假眼图像采集和处理的方法,所述方法包括:
a)采集人体脑电波,对人体脑电波进行脑电波控制训练,根据脑电波控制训练结果设置控制参数的阈值;
b)采集人体人体脑电波指令信号,采集人眼视觉场景中的图像信号,根据所述人体脑电波指令信号和所述控制参数的阈值对所述图像信号进行控制和处理,包括所述图像信号不同方向的移动控制以及所述图像信号的震颤处理;
c)将处理后的图像信传输给视网膜假体,并返回给大脑。
优选地,通过图像控制处理系统对所述图像信号进行控制处理。
优选地,所述图像信号不同方向的移动控制包括图像上下移动、左右移动、放大、缩小、图像输出关闭以及图像亮度控制。
优选地,所述图像信号的震颤处理为对图像进行30~150Hz的上下、左右震颤。
优选地,所述人体脑电波及人体脑电波指令信号通过脑电波控制系统采集。
优选地,所述图像信号通过数字图像信号输入系统采集。
优选地,所述脑电波控制训练包括专注、放松及眨眼控制训练。
优选地,脑电波控制训练结果的控制参数包括α、β波参数值以及eSense专注度、eSense放松度参数值。
优选地,所述阈值包括eSense放松度阈值、eSense专注度阈值、β波阈值以及α波的闭眼阈值。
优选地,所述视网膜假体为一个或者两个。
本发明提供的一种人工假眼图像采集与处理的方法,对人体脑电波控制训练并设置控制参数的阈值,通过人体脑电波指令信号和控制参数的阈值对图像信号进行控制和处理,减少了患者想看的场景与实际看到的场景之间的差异,很好的解决了视觉追随的问题,达到了人眼想看到的场景与实际看到的场景一致的效果。
应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本发明所要求保护内容的限制。
附图说明
参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:
图1示意性示出了本发明用于人工假眼图像采集与处理的方法的系统结构图;
图2示出了本发明人工假眼图像采集与处理过程的流程框图;
图3a至3c示出了本发明对图像信号进行控制的示意图。
具体实施方式
通过参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。
在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤,除非另有说明。
为了使本发明的内容更加清楚的描述,需要对脑电波信号的控制参数进行说明,根据脑电波的频率,通过脑电波控制训练强化脑电波控制参数α波参数、β波参数、eSense专注度参数和eSense放松度参数,使患者产生相关的脑电波的频率时,准确地对图像信号进行控制和处理。其中,eSense专注度参数表明了使用者精神“集中度”水平或“注意度”水平的强烈程度,参数值的范围是0到100,本发明中体现在患者的“向 上看”和“向下看”。eSense放松度表明了使用者精神“平静度”水平或者“放松度”水平,参数值的范围是0到100,本发明中体现在患者的“向左看”和“向右看”。
如图1所示本发明用于人工假眼图像采集与处理的方法的系统结构图,用于人工假眼图像采集与处理的系统包括视网膜假体101、数字图像信号输入系统104、脑电波控制系统103以及图像控制处理系统102,其中
数字图像信号输入系统104与人眼处于同一平行的直线上,用于代替人眼获取场景中的图像信号;
脑电波控制系统103布置于人体头部,对脑电波控制训练,采集人体脑电波和/或采集人体脑电波指令信号,根据脑电波控制训练结果设置控制参数的阈值。
图像控制处理系统102,用于接收人体脑电波指令信号、控制参数的阈值和数字图像信号输入系统104采集的图像信号,根据人体脑电波指令信号和控制参数的阈值对图像信号进行控制和处理,包括所述图像信号不同方向的移动控制以及所述图像信号的震颤处理。
视网膜假体,用于接收处理后的图像信号,并将处理后的图像信号返回给人脑。
数字图像信号输入系统104将采集视眼场景中的图像信号与脑电波控制系统103采集的脑电波指令信号传输给图像控制处理系统102,进行图像控制和处理。图像控制处理系统102对处理后的图像传输给视网膜假体,视网膜假体将信号反馈给人脑,实现患者视力恢复。
根据本发明,实施例中通过人工假眼图像采集与处理系统对图像信号进行控制和处理,使数字图像信号输入系统104采集的图像信号追随人体脑电波指令信号。如图2所示本发明人工假眼图像采集与处理过程的流程框图,通过本发明提供的人工假眼图像采集与处理系统对患者视力进行恢复,具体地人工假眼图像采集与处理的过程如下步骤:
S101、人体脑电波控制训练,脑电波控制训练包括但专注、放松及眨眼控制训练,但并不限于此。实施例中对专注、放松及眨眼控制训练 只是为了本发明的内容得以清晰的阐释,而不是对本发明内容的限制。患者大脑中进行专注、放松、眨眼动作以及相关动作组合等意念控制(虽然患者眼部受损,但是大脑中依然可以进行相关专注、放松、眨眼等意念),通过患者控制训练,强化专注、放松、眨眼动作以及相关动作组合的脑电波信号,脑电波控制系统103采集控制训练后的人体脑电波信号中的控制参数(即患者进行专注、放松、眨眼动作以及相关动作组合的的脑电波信号的数值),设置控制参数的阈值。本实施例中,通过控制训练结果的控制参数包括α、β波参数值以及eSense专注度、eSense放松度参数值。控制参数的阈值包括eSense放松度阈值、eSense专注度阈值、β波阈值以及α波的闭眼阈值。本实施例中,eSense放松度的阈值设置为80,eSense专注度阈值设置为80,β波阈值设置为24,α波的闭眼阈值设置为9。
S102、采集视眼场景中的图像信号,根据本发明实施例中,数字图像信号输入系统102包括3D数字摄像机,通过3D数字摄像机获取场景中图像信号。在一些实施例中,可以是本领域技术人员能够想到的最佳摄像设备,而并不限于本实施例中的3D数字摄像机。
S103、采集人体脑电波指令信号,根据本发明对于人体脑电波指令信号的采集依然通过脑电波控制系统103进行采集。这里说的人体脑电波指令信号是指,当患者需要进行观察不同视眼场景时进行动作意念产生的脑电波信号。例如,当患者想要看上方场景时,大脑中产生的控制人眼向上的人体脑电波信号。
在步骤S102中采集的视眼场景中的图像信号,与在步骤S103中采集的人体脑电波指令信号一并传输至图像控制处理系统102进行图像信号控制和处理。针对具体的实施情况,信号传输过程采用有线传输或者无线传输。
S104、图像信号控制和处理,图像控制处理系统102,接收人体脑电波指令信号、控制参数的阈值和数字图像信号输入系统104采集的图像信号,根据人体脑电波指令信号和控制参数的阈值对图像信号进行控制和处理,包括图像信号不同方向的移动控制以及图像信号的震颤处理。 具体来说,图像信号不同方向的移动控制包括图像上下移动、左右移动、放大、缩小、图像输出关闭以及图像亮度控制。
如图3a至3c所示本发明对图像信号进行控制的示意图,如图3a所示人体脑电波指令信号不进行任何意识动作时,数字图像信号输入系统104采集的图像201的中间区域A将正对视网膜假体101,优选地,本实施例视网膜假体包括中心凹陷的视网膜基体,通过中心凹陷区接收处理后的图像信号。
如图3b所示,当图像控制处理系统102接收到的人体脑电波指令信号中,eSense放松度参数高于设定的eSense放松度阈值(阈值80)时,并且人体脑电波指令信号中伴随着眨眼信号,则将视频图像下移,此时视网膜假体的中心凹陷区正对图像C区域。视网膜假体接受到的光信号上移,相当于眼睛向上看。
如图3c所示,当图像控制处理系统102接收到的人体脑电波指令信号中,eSense放松度参数低于设定的eSense放松度阈值(阈值80)时,并且人体脑电波指令信号中伴随着眨眼信号,则将视频图像上移,此时视网膜假体的中心凹陷区正对图像B区域。视网膜假体接受到的光信号下移,相当于眼睛向下看。
当图像控制处理系统102接收到的人体脑电波指令信号中,β波指数高于设定的β波阈值阈值(阈值24)时,并且人体脑电波指令信号中伴随着眨眼信号,则将视频图像左移,视网膜假体接受到的光信号右移,相当于眼睛向右看。
当图像控制处理系统102接收到的人体脑电波指令信号中,β波指数低于设定的β波阈值阈值(阈值24)时,并且人体脑电波指令信号中伴随着眨眼信号,则将视频图像右移,视网膜假体接受到的光信号左移,相当于眼睛向左看。
当图像控制处理系统102接收到的人体脑电波指令信号中,eSense专注度参数高于设定的eSense专注度阈值(阈值80)时,并且人体脑电波指令信号中伴随着眨眼信号,则将视频图像放大,视网膜假体接受到的光信号分辨率提升,相当于眼睛向远处看。
当图像控制处理系统102接收到的人体脑电波指令信号中,eSense专注度参数低于设定的eSense专注度阈值(阈值80)时,并且人体脑电波指令信号中伴随着眨眼信号,则将视频图像缩小,视网膜假体接受到的光信号分辨率降低,相当于眼睛向近处看。
当图像控制处理系统102接收到的人体脑电波指令信号中,α波参数高于设定的α波闭眼阈值,并且伴随着眨眼信号,则将视频图像输出信号关闭或者输出黑屏信号,视网膜假体接收不到外界的光刺激,相当于眼睛关闭。
本实施例中,当图像控制处理系统102接收到的人体脑电波指令信号中,具有连续的眨眼信号(每秒2次或2次以上的眨眼信号)将逐渐调暗视频图像输出信号,直至预设的最低亮度。在最低亮度的时候如果还有连续的眨眼信号,将逐渐调亮视频图像输出信号直至达到预设的最高亮度。
为了使本发明人体脑电波指令信号对图像信号的控制和处理更加清晰的说明,通过表1所示不同脑电波指令信号对应的图像控制方式来进行阐释。
表1不同脑电波指令信号对应的图像控制方式
用户意愿 人体脑电波指令信号 图像控制方式
向上看 眨眼+eSense放松度参数 图像向下移
向下看 眨眼+eSense放松度参数 图像向上移
向左看 眨眼+β波 图像向右移
向右看 眨眼+β波 图像向左移
远眺 眨眼+eSense专注度参数 图像放大处理
近看 眨眼+eSense专注度参数 图像放大还原
闭眼 眨眼+α波 图像输出关闭或输出黑屏
太亮处调暗视野 连续眨眼 图像亮度调低
太暗处调节视野 连续眨眼 图像亮度调高
根据本发明,本实施例中图像信号不同方向的移动控制的同时,对 图像信号的震颤处理,为图像进行30~150Hz的上下、左右震颤,更加接近的模拟人眼的震颤、漂移、眼跳的情况,消除视觉恢复的不适应性,增加视觉恢复的真实性。
S105、视网膜假体反馈图像信号,视网膜假体接收处理后的图像信号,并将处理后的图像信号返回给人脑。优选地,本实施例视网膜假体为两个,以增强3D视觉效果。
本发明提供的一种人工假眼图像采集与处理系统,对人体脑电波控制训练并设置控制参数的阈值,通过人体脑电波指令信号和控制参数的阈值对图像信号进行控制和处理,减少了患者想看的场景与实际看到的场景之间的差异,很好的解决了视觉追随的问题,达到了人眼想看到的场景与实际看到的场景一致的效果。
结合这里披露的本发明的说明和实践,本发明的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本发明的真正范围和主旨均由权利要求所限定。

Claims (10)

  1. 一种人工假眼图像采集和处理的方法,其特征在于,所述方法包括:
    a)采集人体脑电波,对人体脑电波进行脑电波控制训练,根据脑电波控制训练结果设置控制参数的阈值;
    b)采集人体脑电波指令信号,采集人眼视觉场景中的图像信号,根据所述人体脑电波指令信号和所述控制参数的阈值对所述图像信号进行控制和处理,包括所述图像信号不同方向的移动控制以及所述图像信号的震颤处理;
    c)将处理后的图像信传输给视网膜假体,并返回给大脑。
  2. 根据权利要求1所述的方法,其特征在于,通过图像控制处理系统对所述图像信号进行控制处理。
  3. 根据权利要求1或2所述的方法,其特征在于,所述图像信号不同方向的移动控制包括图像上下移动、左右移动、放大、缩小、图像输出关闭以及图像亮度控制。
  4. 根据权利要求1或2所述的方法,其特征在于,所述图像信号的震颤处理为对图像进行30~150Hz的上下、左右震颤。
  5. 根据权利要求1所述的方法,其特征在于,所述人体脑电波及人体脑电波指令信号通过脑电波控制系统采集。
  6. 根据权利要求1所述的方法,其特征在于,所述图像信号通过数字图像信号输入系统采集。
  7. 根据权利要求1所述的方法,其特征在于,所述脑电波控制训练包括专注、放松及眨眼控制训练。
  8. 根据权利要求1所述的方法,其特征在于,脑电波控制训练结果的控制参数包括α、β波参数值以及eSense专注度、eSense放松度参数值。
  9. 根据权利要求1所述的方法,其特征在于,所述阈值包括eSense放松度阈值、eSense专注度阈值、β波阈值以及α波的闭眼阈值。
  10. 根据权利要求1所述的方法,其特征在于,所述视网膜假体为一个或者两个。
PCT/CN2017/093352 2017-07-18 2017-07-18 一种人工假眼图像采集和处理的方法 WO2019014849A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/093352 WO2019014849A1 (zh) 2017-07-18 2017-07-18 一种人工假眼图像采集和处理的方法
CN201780093173.4A CN110913810B (zh) 2017-07-18 2017-07-18 一种人工假眼图像采集和处理的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/093352 WO2019014849A1 (zh) 2017-07-18 2017-07-18 一种人工假眼图像采集和处理的方法

Publications (1)

Publication Number Publication Date
WO2019014849A1 true WO2019014849A1 (zh) 2019-01-24

Family

ID=65014931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093352 WO2019014849A1 (zh) 2017-07-18 2017-07-18 一种人工假眼图像采集和处理的方法

Country Status (2)

Country Link
CN (1) CN110913810B (zh)
WO (1) WO2019014849A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY194782A (en) * 2021-01-22 2022-12-15 Togl Tech Sdn Bhd Device and method for processing, storing and transmitting a signal in a media file

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102858402A (zh) * 2010-02-26 2013-01-02 康奈尔大学 视网膜假体
US20140100629A1 (en) * 2007-05-08 2014-04-10 Second Sight Medical Products, Inc. Method and System for Providing Stimulation Inputs to a Visual Prosthesis Implant
CN104510568A (zh) * 2013-09-28 2015-04-15 南京专创知识产权服务有限公司 利用虚拟现实技术实现盲人可视化的方法
CN105167882A (zh) * 2015-10-26 2015-12-23 杭州暖芯迦电子科技有限公司 一种超高分辨率视网膜假体及其通讯方法
CN105997342A (zh) * 2016-07-08 2016-10-12 清华大学 一种视网膜内膜的视觉假体
CN106333769A (zh) * 2015-07-08 2017-01-18 财团法人交大思源基金会 人工视网膜系统、眼外光学装置及眼内植入芯片
CN106454082A (zh) * 2016-09-29 2017-02-22 深圳市宏智力科技有限公司 脑波检测仪及其录像控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159927A (en) * 1989-07-26 1992-11-03 Ferdinand Schmid Visual prosthesis apparatus and method
AU2013202058B2 (en) * 2011-10-06 2015-01-22 The Bionics Institute Of Australia Visual prosthesis apparatus
CN102547123B (zh) * 2012-01-05 2014-02-26 天津师范大学 基于人脸识别技术的自适应视线跟踪系统及其跟踪方法
CN102813574B (zh) * 2012-08-03 2014-09-10 上海交通大学 基于眼动跟踪的视觉假体图像采集装置
CN205339298U (zh) * 2016-01-18 2016-06-29 戴国群 后天性失明患者视觉复明智能穿戴装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140100629A1 (en) * 2007-05-08 2014-04-10 Second Sight Medical Products, Inc. Method and System for Providing Stimulation Inputs to a Visual Prosthesis Implant
CN102858402A (zh) * 2010-02-26 2013-01-02 康奈尔大学 视网膜假体
CN104510568A (zh) * 2013-09-28 2015-04-15 南京专创知识产权服务有限公司 利用虚拟现实技术实现盲人可视化的方法
CN106333769A (zh) * 2015-07-08 2017-01-18 财团法人交大思源基金会 人工视网膜系统、眼外光学装置及眼内植入芯片
CN105167882A (zh) * 2015-10-26 2015-12-23 杭州暖芯迦电子科技有限公司 一种超高分辨率视网膜假体及其通讯方法
CN105997342A (zh) * 2016-07-08 2016-10-12 清华大学 一种视网膜内膜的视觉假体
CN106454082A (zh) * 2016-09-29 2017-02-22 深圳市宏智力科技有限公司 脑波检测仪及其录像控制方法

Also Published As

Publication number Publication date
CN110913810B (zh) 2022-06-17
CN110913810A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
US11733542B2 (en) Light field processor system
Driver et al. Perceptual awareness and its loss in unilateral neglect and extinction
US20190387995A1 (en) Brain-Computer Interface Based Robotic Arm Self-Assisting System and Method
CN104020582B (zh) 具有眼睛注视传感器的电子式眼科透镜
Lock et al. Prosthesis-guided training for practical use of pattern recognition control of prostheses
Kim et al. A vision-free brain-computer interface (BCI) paradigm based on auditory selective attention
Ponzio et al. A human-computer interface based on the “voluntary” pupil accommodative response
WO2019014849A1 (zh) 一种人工假眼图像采集和处理的方法
US11844729B2 (en) Comprehensive intraocular vision advancement
Kvansakul et al. Sensory augmentation to aid training with retinal prostheses
WO2019014848A1 (zh) 一种用于人工假眼图像采集与处理的系统
Titchener et al. Head and gaze behavior in retinitis pigmentosa
Aslanyan et al. EEG spectral characteristics during voluntary motor activity
Nougaret et al. Distinct sources and behavioral correlates of macaque motor cortical low and high beta
Franklin et al. Using action-congruent language facilitates the motor response during action observation: A combined transcranial magnetic stimulation and eye-tracking study
JP2018202054A (ja) 人工視覚装置
Loughnane et al. Towards a gaze-independent hybrid-BCI based on SSVEPs, alpha-band modulations and the P300
Titchener et al. Estimating phosphene locations using eye movements of suprachoroidal retinal prosthesis users
CN219397885U (zh) 一种眼内植入的微型显示装置
Humayun Restoring Sight
Li et al. Control of a humanoid robot via N200 potentials
Yamhure et al. On the controllability assessment of biofeedback eyeglasses used in Presbyopia treatment
Cun et al. Electronic Approaches to Vision Rehabilitation
Canny Combining BCI with functional electrical stimulation for facial nerve paralysis in locked-in indviduals
Rakhimbaeva et al. THE BRAIN-COMPUTER INTERFACE NEUROPHYSIOLOGICAL ASPECTS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918566

Country of ref document: EP

Kind code of ref document: A1