WO2019014819A1 - 一种电力调峰系统及其方法 - Google Patents

一种电力调峰系统及其方法 Download PDF

Info

Publication number
WO2019014819A1
WO2019014819A1 PCT/CN2017/093228 CN2017093228W WO2019014819A1 WO 2019014819 A1 WO2019014819 A1 WO 2019014819A1 CN 2017093228 W CN2017093228 W CN 2017093228W WO 2019014819 A1 WO2019014819 A1 WO 2019014819A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
load
control
current
heat transfer
Prior art date
Application number
PCT/CN2017/093228
Other languages
English (en)
French (fr)
Inventor
杨豫森
崔华
徐波
谭智
陈辉
展望
陈超
朱明志
Original Assignee
赫普热力发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赫普热力发展有限公司 filed Critical 赫普热力发展有限公司
Priority to PCT/CN2017/093228 priority Critical patent/WO2019014819A1/zh
Publication of WO2019014819A1 publication Critical patent/WO2019014819A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/28Methods of steam generation characterised by form of heating method in boilers heated electrically
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy

Definitions

  • the invention relates to the technical field of thermal power generation, in particular to a power peak shaving system and a method thereof for a thermal power plant.
  • the power market is rich in capacity, and the peak power supply such as gas turbines and pumped storage is scarce.
  • the contradiction between grid peak shaving and thermal power unit flexibility is prominent.
  • the grid consumes new energy such as wind power, photovoltaic, hydropower and nuclear power. Insufficient capacity, abandoning wind, abandoning light, abandoning water and abandoning nuclear.
  • the cogeneration unit operates in a "heat-set" mode, and the peaking capacity of the heating unit is only about 10% due to thermoelectric coupling in winter.
  • the peaking of winter peaks can be relieved to some extent.
  • the summer in addition to the unit's load reduction or shutdown, how to adjust the peak, especially to increase the summer peaking while ensuring the economics of the thermal power plant, is a problem in front of many thermal power plants.
  • the invention obtains the current demand load of the current power grid to the power plant by setting a control device and/or when The former time, and based on the current demand load of the power plant and / or the current time control the electric energy conversion device consumes excess electric energy, converts the electric energy into heat energy, and transfers the heat energy to the heat transfer device, and the heat transfer device transfers the heat energy to the seawater desalination
  • the system produces fresh water. Thereby achieving the power peaking effect at any time.
  • the control device controls the heat transfer device to consume excess heat energy based on the current demand load of the thermal power plant and/or the current time, and delivers the heat energy to the seawater desalination system to produce fresh water.
  • the application can realize the peaking effect of electric power at any time throughout the year, and can utilize excess heat and electric energy to desalinate seawater, thereby alleviating the plight of lack of fresh water in China, especially in the north.
  • An aspect according to an embodiment of the present invention is a power peak shaving system, comprising: control means for acquiring a current demand load and/or a current time of a power grid, and transferring power according to the current demand load and/or current time
  • the thermal energy device sends a first control command to control its power usage, and/or sends a second control command to the heat transfer device to control its thermal energy use
  • the electrical energy conversion heat device is electrically connected to the power plant and the first input of the heat transfer device Connecting, for using the power output of the power plant according to the first control instruction, converting the electrical energy into thermal energy and then delivering the heat to the heat transfer device; and/or the heat transfer device, the second input end of which is connected to the power plant,
  • the output is coupled to the seawater desalination system for outputting thermal energy from the power plant according to the second control command to deliver the thermal energy and thermal energy received by the first input to the desalination system.
  • the first control instruction includes a first start instruction, a first stop instruction, and an output thermal energy adjustment instruction
  • the second control instruction includes a second start instruction, a second stop instruction, and a extraction amount adjustment instruction
  • the electric energy heat energy device comprises one or more of an electrode steam boiler, a high temperature heat transfer oil electric steam boiler, a solid heat storage electric steam boiler, and a resistance steam electric boiler.
  • the heat transfer device further includes: a valve disposed at the second input port for Controlling the second control command to achieve opening, closing, and changing the opening size.
  • the electric energy heat transfer device is coupled to the first input end of the heat transfer device through a first steam transfer conduit.
  • the second input end of the heat transfer device is connected to the power transmission and mass transfer through the second steam delivery pipe, and the output end thereof is connected to the seawater desalination system through the third steam transfer pipe.
  • control device includes: an obtaining module, configured to acquire a current demand load and/or a current time of the power grid; and a determining module, configured to use the current demand load and/or the current time of the power grid with the current power generation load and the preset time schedule.
  • the control module performs the following operations according to the determination result of the judging module: when the determination result is a trough period, the control module sends the electric energy to the electric energy conversion device The first control command starts to control the electric energy conversion heat energy device, and sends a second control command to the heat transfer device to control the heat transfer device to start; and when the determination result is a peak period, the control module sends the first control command to the electric energy heat transfer device.
  • the control of the electrical energy conversion device is stopped, and a second control command is sent to the heat transfer device to control the heat transfer device to start.
  • control module includes: a difference calculation unit that calculates a current load difference between the current power generation load of the power plant and the current demand load of the power grid, and calculates a historical load difference between the power generation load of the power plant before the reservation time and the demand load of the power grid. a value, and calculating a total load difference between the current load difference and the historical load difference; a ratio calculation unit for calculating a ratio of the total load difference to a power generation rated load of the power plant; and an adjustment unit, when the ratio is absolute When the value is greater than the preset percentage, the output thermal energy adjustment command is sent to the electrical energy conversion device, and when the absolute value of the ratio is not greater than the preset percentage, the extraction adjustment instruction is sent to the heat transfer device.
  • a difference calculation unit that calculates a current load difference between the current power generation load of the power plant and the current demand load of the power grid, and calculates a historical load difference between the power generation load of the power plant before the reservation time and the demand load of the power grid. a value, and
  • step S101 acquiring a current demand load of a power grid and/or a current time
  • step S102 loading a current demand load of the power grid and/or current
  • the time is compared with the current power generation load and the preset time schedule
  • step S103 determining, according to the comparison result, that the current time period is the power peak period or the valley period
  • step S104 when the determination result is the valley period, the control module sends the power to the power
  • the heat transfer device sends a first control command to control the power-on-heat energy device to start, and sends a second control command to the heat transfer device to control the heat transfer device to start
  • step S105 when the determination result is a peak period, the control module converts the heat energy to the power
  • the device transmits a first control command to control the power to heat energy device to stop, and sends a second control command to the heat transfer device to control the heat transfer device to start.
  • the sending the first control command to the power conversion heat energy device to control the startup of the power conversion heat energy device and transmitting the second control command to the heat transfer device to control the heat transfer device startup further includes: Step S1041: calculating the current power generation load of the power plant The current load difference from the current demand load of the grid, and the historical load difference between the power generation load of the power plant before the scheduled time and the demand load of the grid; Step S1042: Calculating the total load difference between the current load difference and the historical load difference Step S1043: Calculate a ratio of the total load difference to a power generation rated load of the power plant; Step S1044: If the absolute value of the ratio is greater than a preset percentage, send an output thermal energy adjustment command to the power conversion heat energy device; Step S1045: If the absolute value of the ratio is not greater than a predetermined percentage, a steam extraction amount adjustment command is sent to the heat transfer device.
  • the power peak shaving system and method thereof of the invention achieve the effect of power peak shaving by setting a control device, a power conversion heat energy device and a heat transfer device.
  • the control device obtains the current demand load and/or the current time of the current power grid to the power plant, and controls the power converted from the thermal energy device to consume excess energy according to the current demand load and/or current time of the current power grid to convert the heat energy into heat energy.
  • the heat transfer device is sent to the seawater desalination system to dilute the seawater; the heat transfer device consumes excess heat energy, and the heat energy is transferred to the seawater desalination system to desalinate the seawater. It can accurately and effectively carry out power peaking at any time of the year, and can use excess heat and electric energy to desalinate seawater, alleviating the lack of fresh water in China, especially in the north.
  • FIG. 1 is a schematic structural diagram of a power peak shaving system according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a control device for a power peak shaving system according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a control module of a power peak shaving system according to a first embodiment of the present invention
  • FIG. 4 is a flowchart of a power peak shaving method according to a first embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for transmitting a control command in a power peak shaving method according to a first embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a power peak shaving system according to a second embodiment of the present invention.
  • FIG. 7 is a flowchart of a power peak shaving method according to a second embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a power peak shaving system according to a third embodiment of the present invention.
  • FIG. 9 is a flowchart of a power peak shaving method according to a third embodiment of the present invention.
  • thermo energy device 30 is a heat transfer device
  • 11 is an acquisition module
  • 12 is a determination module
  • 13 is a control module
  • 131 is a difference calculation unit
  • 132 is a ratio calculation unit
  • 133 is an adjustment unit.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a schematic structural diagram of a power peak shaving system according to an embodiment of the present invention
  • FIG. 2 is a control device of a power peak shaving system according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a judging module of a power peak shaving system according to a first embodiment of the present invention.
  • the power peak shaving system includes a control device 10 , an electric energy heat transfer device 20 , and a heat transfer device 30 .
  • the control device 10 is configured to acquire a current demand load and/or a current time of the power grid, and send a first control instruction to the power conversion heat energy device 20 according to the current demand load and/or the current time to control its power usage, and/or A second control command is sent to the heat transfer device 30 to control its thermal energy usage.
  • the first way is to obtain the current demand load of the power grid, and the current demand load of the power grid includes the current demand load of the power grid to the power plant and the power generation load data of the current power plant.
  • the current time is determined as the peak period or the low period of the power consumption, if the difference between the current power generation load and the current demand load is a positive number, and the difference and the power generation of the power plant If the ratio of the rated load is greater than 10%, it is the trough period. If the difference between the current generating load and the current demand load is positive, and the ratio of the difference to the rated load of the power plant is not more than 10% or the current generating load and the current demand load When the difference is negative, it is the peak period.
  • the second way is to get the current time
  • the current time period is determined based on the current time and the preset time period as the peak period or the peak period, for example, the peak period is within the preset time period, and if the current time is within the preset time period, the peak period is if the current time is not present.
  • the default timetable is the trough period.
  • the third way is to combine the current grid with the current demand load of the power plant and the current time comprehensive judgment.
  • the current time period is the peak period or the low period of power consumption.
  • the control device 10 sends a second control command to the heat transfer device 30 to control the heat transfer device 30 to start.
  • the control device 10 sends a first control command to the power-to-heat energy device 20 to control the power-to-heat energy device 20 to stop; the control device 10 sends a second control command to the heat transfer device 30 to control the heat-transfer device 30 to start. .
  • the first control instruction includes a first start instruction, a first stop instruction, and an output thermal energy adjustment instruction
  • the second control instruction includes a second start instruction, a second stop instruction, and a extraction amount adjustment instruction
  • the output thermal energy adjustment instruction includes: increasing The large steam output command or the reduced steam output command
  • the steam extraction amount adjustment command includes: increasing the steam extraction amount command or reducing the steam extraction amount command.
  • the second control command is sent to the heat transfer device 30 to increase the steam extraction amount command; if the ratio is a negative value, the second control command is sent to the heat transfer device 30 to reduce the steam extraction amount command.
  • the preset percentage is preferably set to 10%.
  • the power plant When it is judged as the peak period, due to the current high demand load of the current power grid to the power plant during the peak period, the power plant should generate power with maximum capacity for the user to use. Therefore, it is only necessary to perform fine adjustment at the peak period, that is, only a small amplitude peaking by the heat transfer device 30 is required.
  • First calculate the current load difference between the current power generation load of the power plant and the current demand load of the power grid, and calculate the historical load difference between the power generation load of the power plant and the demand load of the power grid before the reservation time. Then calculate the total load difference between the current load difference and the historical load difference. If the total load difference is positive, the second control command is sent to the heat transfer device 30 to increase the steam extraction amount command; if the total load difference is negative, the second control command is sent to the heat transfer device 30 to reduce the steam extraction amount command.
  • the electric energy heat energy device 20 is respectively connected to the electrical connection of the power plant and the first input end of the heat transfer device 30, and is configured to use the power output of the power plant according to the first control instruction, convert the electric energy into heat energy, and then deliver the heat to the heat.
  • Transfer device 30 the electrical connection with the power plant, the specific power plant is a cogeneration system.
  • the cogeneration system is a cogeneration system that is common in the prior art.
  • the electric energy heat energy device 20 is used to consume excess electric energy produced by the cogeneration system. It is electrically connected to the cogeneration system and is coupled to the first input end of the heat transfer device 30 for heat and mass transfer.
  • the heat and mass transfer connection is a connection method capable of transmitting heat and capable of transferring a certain mass of material, such as steam through a pipe.
  • a heat transfer device 30 having a second input coupled to the power plant and an output coupled to the desalination system for outputting thermal energy from the power plant in accordance with the second control command to receive the thermal energy and the first input
  • the heat is transferred to the desalination system 7 .
  • the heat transfer device 30 delivers excess thermal energy produced by the cogeneration system and thermal energy received by the first input to the desalination system 7.
  • the seawater desalination system 7 is a system for desalinating seawater into fresh water, specifically a multi-stage flash seawater desalination system.
  • the heat transfer device 30 further includes: a valve disposed at the second input port for controlling opening, closing, and changing the opening degree according to the control of the second control command.
  • the control device 10 sends a second control command to the heat transfer device 30, where the second control command includes a second start command, a second stop command, and a steam extraction amount adjustment instruction; the steam extraction amount adjustment command includes: increasing the steam extraction amount Command or reduce the steam extraction command.
  • the second start command is received, the control valve is opened; when the second stop command is received, the control valve is closed; when the command to increase the steam extraction amount or the steam extraction amount is received, the opening degree of the valve is adjusted.
  • the valve opening degree is increased; when the amount of steam extraction needs to be reduced, the valve opening degree is adjusted.
  • the electric energy heat transfer device is specifically a device for transferring electrical energy to steam.
  • the electric energy heat transfer device uses an electric steam boiler.
  • the electric steam boiler is an electric steam boiler having a driving voltage of 10 kV or more.
  • the electric steam boiler comprises one or more of an electrode steam boiler, a high temperature heat transfer oil electric steam boiler, a solid heat storage electric steam boiler, and a resistance steam electric boiler.
  • the electric steam boiler is coupled to the first input end of the heat transfer device 30 via a first steam delivery conduit.
  • the electric steam boiler consumes excess electrical energy to generate steam and delivers the generated steam to the first input end of the heat transfer device 30 through the first steam delivery conduit.
  • the second input end of the heat transfer device 30 is connected to the cogeneration system through a second steam transfer pipe, and the output end thereof is connected to the seawater desalination system through a third steam transfer pipe.
  • the desalination system uses the delivered steam to desalinate seawater to produce fresh water.
  • the control device 10 includes: an obtaining module 11 for acquiring a current demand load and/or a current time of the power grid; and a determining module 12 for using the current demand load and/or the current time of the power grid with the current power generation load, preset The timetable is compared, and the current power consumption is determined to be a trough period or a peak period; the determining module 13 performs the following operations according to the determination result of the judging module 12: when the determination result is a trough period, the control module 13
  • the power-to-heat energy device 20 sends a first control command to control the power-to-heat energy device 20 to start, and sends a second control command to the heat-transfer device 30 to control the heat-transfer device 30 to start; and when the determination result is a peak period, the control module 13
  • a first control command is sent to the power to heat energy device 20 to control the power to heat energy device 20 to stop, and a second control command is sent to the heat transfer device 30 to control the heat transfer device
  • the acquiring module 11 first acquires the current demand load and/or the current time of the power grid, wherein the current demand load of the power grid includes: acquiring the current demand load of the current power grid to the power plant and the power generation load data of the current power plant.
  • the judging module 12 compares the current demand load and/or the current time of the acquired power grid with the current power generation load and the preset time schedule. The current demand load of the current power grid to the power plant can be compared with the current power generation load separately.
  • the power is During the trough, if the difference between the current generation load and the current demand load is positive, and the ratio of the difference to the rated load of the power plant is not more than 10% or when When the difference between the front power generation load and the current demand load is negative, it is a peak period; the current time can also be compared with the preset time table separately, for example, the peak time is within the preset time period, if the current time is within the preset time schedule.
  • the current time is not within the preset timetable, it is a trough period; it is also possible to compare the current demand load of the current grid to the power plant and the current power generation load, and then compare the current time with the preset time schedule, and Combine the results of the two comparisons.
  • the judging module 13 obtains the current time period as the peak period or the trough period according to the comparison result.
  • the judging module 13 comprises: a difference calculating unit 131, which calculates a current load difference between the current generating load of the power plant and the current demand load of the power grid, and calculates a historical load of the power generation load of the power plant before the scheduled time and the demand load of the power grid.
  • the ratio calculating unit 132 is configured to calculate a ratio of the total load difference to a power generation rated load of the power plant; the adjusting unit 133, when When the absolute value of the ratio is greater than the preset percentage, the output thermal energy adjustment command is sent to the electrical energy conversion device 20, and when the absolute value of the ratio is not greater than the predetermined percentage, the extraction adjustment command is sent to the heat transfer device 30.
  • the difference calculation unit 131 When it is determined that the trough period is low, the difference calculation unit 131 first calculates the current load difference between the current generation load of the power plant and the current demand load of the power grid, and calculates the historical load difference between the power generation load of the power plant and the demand load of the power grid before the reservation time. . Then calculate the total load difference between the current load difference and the historical load difference.
  • the ratio calculation unit 132 calculates a ratio of the total load difference to the power generation rated load of the power plant. If the absolute value of the ratio is greater than the preset percentage, the adjustment unit 133 sends an output thermal energy adjustment command to the electrical energy conversion thermal device 20.
  • the first control command is sent to the electric energy conversion device 20 to increase the steam output command; if the ratio is negative, the first control command is sent to the electric energy conversion device 20 to reduce the steam output command. Specifically, the power of the electric energy heat transfer device 20 is adjusted. If the absolute value of the ratio is not greater than a preset percentage, the adjusting unit 133 sends the heat transfer device 30 Send the steam extraction adjustment command. Specifically, if the ratio is a positive number, the second control command is sent to the heat transfer device 30 to increase the steam extraction amount command; if the ratio is a negative value, the second control command is sent to the heat transfer device 30 to reduce the steam extraction amount command.
  • the preset percentage is preferably 10%.
  • the difference calculation unit 131 When it is determined that the peak period, the difference calculation unit 131 first calculates the current load difference between the current power generation load of the power plant and the current demand load of the power grid, and calculates the historical load difference between the power generation load of the power plant and the demand load of the power grid before the reservation time. . Then calculate the total load difference between the current load difference and the historical load difference. If the total load difference is positive, the adjusting unit 133 sends a second control command to increase the steaming amount command to the heat transfer device 30; if the total load difference is negative, the adjusting unit 133 sends the second control command to the heat transfer device 30 to reduce the pumping. Steam instruction.
  • FIG. 4 is a flowchart of a power peak shaving method according to a first embodiment of the present invention.
  • Step S101 obtaining a current demand load and/or a current time of the power grid.
  • the current demand load of the power grid includes obtaining the current demand load of the current power grid to the power plant and the power generation load data of the current power plant.
  • Step S102 comparing the current demand load and/or the current time of the power grid with the current power generation load and the preset time schedule.
  • the current demand load of the current power grid to the power plant can be separately compared with the current power generation load; the current time can be compared with the preset time schedule separately; and the current demand load of the current power grid to the power plant and the current power generation load can also be used. For comparison, compare the current time with the preset timetable and combine the results of the two comparisons.
  • Step S103 Determine, according to the comparison result, that the current time period is a peak period or a low period of power consumption.
  • the current power generation load and the preset time schedule are preset, wherein the preset time schedule is downside. It is also possible to set a peak period within the preset schedule. In this embodiment, the peak period is preset in the preset schedule.
  • Period if the difference between the current power generation load and the current demand load is a positive number, and the ratio of the difference to the power generation rated load of the power plant is not more than 10% or the difference between the current power generation load and the current demand load is a negative number, it is a peak period.
  • the current time is compared with the preset timetable, if the current time is within the preset timetable, it is a peak period, and if the current time is not within the preset timetable, it is a low period. It is also possible to compare the current demand load of the current power grid with the current power generation load, compare the current time with the preset time schedule, and combine the results of the two comparisons to select a more optimized result.
  • Step S104 when the determination result is a trough period, the control module 13 sends a first control command to the electric energy conversion heat energy device 20 to control the electric energy heat energy device 20 to be activated, and sends a second control command to the heat transfer device 30 to control the heat transfer device. 30 starts.
  • Calculating a ratio of the total load difference to a power generation rated load of the power plant if the absolute value of the ratio is greater than a preset percentage, transmitting a first control command to the power conversion heat energy device 20 to perform power adjustment on the power conversion heat energy device 20; Specifically, if the ratio is a positive number, the first control command is sent to the electrical energy conversion device 20 to increase the steam output command; if the ratio is a negative number, the energy is transferred to the thermal energy device 20 Sending a first control command reduces the steam output command. If the absolute value of the ratio is not greater than the predetermined percentage, a second control command is sent to the heat transfer device 30 to control the valve opening degree of the heat transfer device 30.
  • the second control command is sent to the heat transfer device 30 to increase the steam extraction amount command; if the ratio is a negative value, the second control command is sent to the heat transfer device 30 to reduce the steam extraction amount command.
  • the preset percentage is preferably 10%.
  • Step S105 when the determination result is a peak period, the control module 13 sends a first control command to the power conversion heat energy device 20 to control the power conversion heat energy device 20 to stop, and sends a second control command to the heat transfer device 30 to control the heat transfer device. 30 starts.
  • the heat transfer device 30 calculates the current load difference between the current power generation load of the power plant and the current demand load of the power grid, and calculate the historical load difference between the power generation load of the power plant and the demand load of the power grid before the reservation time. Then calculate the total load difference between the current load difference and the historical load difference. If the total load difference is positive, the second control command is sent to the heat transfer device 30 to increase the steam extraction amount command; if the total load difference is negative, the second control command is sent to the heat transfer device 30 to reduce the steam extraction amount command.
  • the first control instruction includes a first start instruction, a first stop instruction, and an output thermal energy adjustment instruction
  • the second control instruction includes a second start instruction, a second stop instruction, and a extraction amount adjustment instruction
  • the output thermal energy adjustment instruction includes: increasing The large steam output command or the reduced steam output command
  • the steam extraction amount adjustment command includes: increasing the steam extraction amount command or reducing the steam extraction amount command.
  • the control device 10 sends a second control command to the heat transfer device 30, where the second control command includes a second start command, a second stop command, and a steam extraction amount adjustment instruction; the steam extraction amount adjustment command includes: increasing the steam extraction amount Command or reduce extraction Quantity instruction.
  • the control valve When the second start command is received, the control valve is opened; when the second stop command is received, the control valve is closed; when the command to increase the steam extraction amount or the steam extraction amount is received, the opening degree of the valve is adjusted.
  • the valve opening degree When it is necessary to increase the amount of steam extraction, the valve opening degree is increased; when the amount of steam extraction needs to be reduced, the valve opening degree is adjusted.
  • the control device 10 sends a first control command to the power-to-heat energy device 20, the first control command includes a first start command, a first stop command, and an output thermal energy adjustment command; and the output thermal energy adjustment command includes: increasing a steam output command or reducing a steam output Command; when receiving the first control command to increase the steam output command, increasing the steam output, that is, increasing the power generated by the cogeneration system, that is, increasing the power of the electric boiler; when receiving the first control When the command to reduce the steam output command, the steam output is reduced, that is, the power generated by the cogeneration system is reduced, that is, the power of the electric boiler is reduced.
  • FIG. 5 is a flowchart of a method for transmitting a control command in a power peak shaving method according to a first embodiment of the present invention.
  • step S1041 calculating a current load difference between the current power generation load of the power plant and the current demand load of the power grid, and calculating a historical load difference between the power generation load of the power plant before the scheduled time and the demand load of the power grid;
  • Step S1042 Calculate a total load difference between the current load difference value and the historical load difference value
  • Step S1043 calculating a ratio of the total load difference to a power generation rated load of the power plant
  • Step S1044 If the absolute value of the ratio is greater than a preset percentage, send an output thermal energy adjustment command to the power conversion heat energy device (20).
  • Step S1045 If the absolute value of the ratio is not greater than a preset percentage, the steam extraction amount adjustment command is sent to the heat transfer device (30).
  • the electric energy heat transfer device 20 and the heat transfer device 30 are simultaneously turned on to perform a large peak shaving.
  • calculate the current load difference between the current power generation load of the power plant and the current demand load of the power grid and calculate the historical load difference between the power generation load of the power plant and the demand load of the power grid before the reservation time. Then calculate the total load difference between the current load difference and the historical load difference.
  • the second control command is sent to the heat transfer device 30 to increase the steam extraction amount command; if the ratio is a negative value, the second control command is sent to the heat transfer device 30 to reduce the steam extraction amount command.
  • the preset percentage is preferably 10%.
  • the power peaking effect is achieved by setting a control device, a power conversion heat energy device, and a heat transfer device.
  • the control device acquires the current demand load and/or current time of the current power grid to the power plant, and controls the power converted from the thermal energy device to consume excess energy according to the current demand load and/or current time of the current power grid to the power plant, and converts the power into
  • the heat is transferred to the heat transfer device;
  • the controlled heat transfer device consumes excess heat from the cogeneration system and delivers the heat to the desalination system to desalinate the seawater. It can accurately and effectively carry out power peak shaving, and can use excess heat and electric energy to desalinate seawater, alleviating the lack of fresh water in China, especially in the north.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 6 is a schematic diagram of a power peaking system according to a second embodiment of the present invention. schematic diagram.
  • the power peaking system includes a control device 10 and a power to heat energy device 20 and a heat transfer device 30.
  • the control device 10 is configured to acquire a current demand load of the power grid, and send a first control instruction to the power conversion heat energy device 20 according to the current demand load of the power grid.
  • the current demand load of the power grid includes obtaining the current demand load of the current power grid to the power plant and the power generation load data of the current power plant.
  • the first control command includes a first start command, a first stop command, and an output thermal energy adjustment command; and the output thermal energy adjustment command includes: increasing a steam output command or reducing a steam output command.
  • the electric energy heat energy device 20 is respectively connected to the electrical connection of the power plant and the first input end of the heat transfer device 30, and is configured to use the power output of the power plant according to the first control instruction, convert the electric energy into heat energy, and then deliver the heat to the heat.
  • Transfer device 30 the electrical connection with the power plant, the specific power plant is a cogeneration system.
  • the cogeneration system is a cogeneration system that is common in the prior art.
  • the electric energy heat energy device 20 is used to consume excess electric energy produced by the cogeneration system. It is electrically connected to the cogeneration system and is coupled to the first input end of the heat transfer device 30 for heat and mass transfer.
  • the heat and mass transfer connection is a connection method capable of transmitting heat and capable of transferring a certain mass of material, such as steam through a pipe.
  • increasing the output of the steam that is, increasing the amount of electricity generated by the cogeneration system, that is, increasing the power of the electric boiler
  • the steam output is reduced, that is, the power generated by the cogeneration system is reduced, that is, the power of the electric boiler is reduced.
  • the generated steam is sent to the heat transfer device 30.
  • the heat transfer device 30 has an output end coupled to the seawater desalination system for heat and mass transfer, and is configured to send the heat energy received by the first input to the seawater desalination system.
  • the seawater desalination system 7 is a system for desalinating seawater into fresh water, specifically a multi-stage flash seawater desalination system.
  • the electric energy heat transfer device is specifically a device for transferring electrical energy to steam.
  • the electric energy heat transfer device uses an electric steam boiler.
  • the electric steam boiler is an electric steam boiler having a driving voltage of 10 kV or more.
  • the electric steam boiler is one or more of an electrode steam boiler, a high temperature heat transfer oil electric steam boiler, a solid heat storage electric steam boiler, and a resistance steam electric boiler.
  • the electric steam boiler is coupled to the heat transfer device 30 by a first steam delivery conduit.
  • the electric steam boiler consumes excess electric energy to generate steam, and delivers the generated steam to the heat transfer device 30 through the first steam delivery pipe.
  • FIG. 7 is a flowchart of a power peak shaving method according to a second embodiment of the present invention.
  • Step S201 Acquire a current demand load of the power grid.
  • the current demand load of the power grid includes obtaining the current demand load of the current power grid to the power plant and the power generation load data of the current power plant.
  • the first control command is to increase the steam output command and to reduce the steam output command.
  • Step S202 Send a first control instruction to the power-to-heat energy device 20 according to the current demand load of the power grid.
  • the device 20 sends a first control command to increase the steam output command; if the total load difference decreases, the first control command to decrease the steam output command is sent to the electrical energy conversion device 20.
  • the first control command includes a first start command, a first stop command, and an output thermal energy adjustment command; and the output thermal energy adjustment command includes: increasing a steam output command or reducing a steam output command.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 8 is a schematic structural diagram of a power peaking system according to a third embodiment of the present invention.
  • the power peaking system includes a control device 10 and a heat transfer device 30.
  • the control device 10 is configured to acquire a current demand load of the power grid and send a second control command to the heat transfer device 30 according to the current demand load of the power plant.
  • the current demand load of the power grid includes obtaining the current demand load of the current power grid to the power plant and the power generation load data of the current power plant.
  • the second control command includes a second start command, a second stop command, and a steam extraction amount adjustment instruction; the steam extraction amount adjustment command includes: increasing the steam extraction amount instruction or reducing the steam extraction amount instruction.
  • the heat transfer device 30 has a second input end coupled to the cogeneration system for heat and mass transfer, and an output end coupled to the seawater desalination system for heat and mass transfer, for receiving the thermocouple according to the second control command Excess heat energy produced by the production system is delivered to the desalination system 7 . Specifically, the heat transfer device 30 delivers excess heat energy from the production of the cogeneration system to the seawater desalination system 7.
  • the second control command to increase the steam extraction amount instruction increasing the amount of steam extraction from the cogeneration system
  • receiving the second control command to reduce the steam extraction amount instruction reducing the number of steam extraction from the cogeneration system The amount of steam extracted.
  • the heat transfer device 30 further includes: a valve disposed at the second input port for controlling opening, closing, and changing the opening degree according to the control of the second control command.
  • the control device 10 sends a second control command to the heat transfer device 30, where the second control command includes a second start command, a second stop command, and a steam extraction amount adjustment instruction; the steam extraction amount adjustment command includes: increasing the steam extraction amount Command or reduce the steam extraction command.
  • the second start command is received, the control valve is opened; when the second stop command is received, the control valve is closed; when the command to increase the steam extraction amount or the steam extraction amount is received, the opening degree of the valve is adjusted.
  • the valve opening degree is increased; when the amount of steam extraction needs to be reduced, the valve opening degree is adjusted.
  • the second input end of the heat transfer device 30 is connected to the cogeneration system through a second steam transfer pipe, and the output end thereof is connected to the seawater desalination system through a third steam transfer pipe.
  • FIG. 9 is a flowchart of a power peak shaving method according to a third embodiment of the present invention.
  • Step S301 Acquire a current demand load of the power grid.
  • the current demand load of the power grid includes obtaining the current demand load of the current power grid to the power plant and the power generation load data of the current power plant.
  • the second control command is an instruction to increase the amount of steam extraction and a command to reduce the amount of steam extraction.
  • Step S302 Send the second control finger to the heat transfer device 30 according to the current demand load of the power grid. make.
  • the second control command includes a second start command, a second stop command, and a steam extraction amount adjustment instruction; the steam extraction amount adjustment command includes: increasing the steam extraction amount instruction or reducing the steam extraction amount instruction.
  • the power peaking system uses the electric energy to heat energy device alone or the heat transfer device alone to perform power peak shaving, thereby performing power peak shaving and utilizing excess heat energy and electric energy. Desalination of seawater and alleviation of the lack of fresh water in China, especially in the north.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种电力调峰系统,属于火力发电技术领域。其中调峰系统包括:控制装置(10)用于根据当前需求负荷和/或当前时间向电能转热能装置(20)发送第一控制指令和/或向热传递装置(30)发送第二控制指令;电能转热能装置(20)用于根据所述第一控制指令使用所述电厂输出电能,将所述电能转换为热能后输送至热传递装置(30);热传递装置(30),其第二输入端与所述电厂连接,输出端与海水淡化系统连接,用于根据所述第二控制指令使用所述电厂输出热能,将所述热能以及第一输入端接收的热能输送至海水淡化系统。既能够精准有效进行电力调峰,又能够利用过剩的热能和电能去淡化海水,缓解中国特别是北方地区缺乏淡水的困境。

Description

一种电力调峰系统及其方法 技术领域
本发明涉及火力发电技术领域,特别涉及一种火力发电厂的电力调峰系统及其方法。
背景技术
众所周知电能是不能被储存的,因此用户需要多少电量,电厂就需要同步发出多少电量,这样才不会造成能源的浪费。但是通常在电力系统中各个电厂的需求电负荷是在不断发生变化的,为了维持有功功率平衡,保持系统频率稳定,就需要发电部门相应改变发电机的发电量以适应用电负荷的变化,这就叫做调峰。
在中国三北地区电力市场容量富裕,燃机、抽水蓄能等可调峰电源稀缺,电网调峰与火电机组灵活性之间矛盾突出,电网消纳风电、光电、水电及核电等新能源的能力不足,弃风、弃光、弃水和弃核现象严重。
现有技术中热电联产机组“以热定电”方式运行,冬季由于热电耦合造成供热机组调峰能力仅为10%左右。随着能源局在2016年开展的22个火电灵活性示范项目的实施,未来冬季调峰可以得到一定程度的缓解。但是在夏季除了机组降负荷或停机之外如何调峰,特别是增加夏季调峰的同时保证火电厂的经济性,是摆在众多火电厂面前的一个难题。
发明内容
本发明通过设置控制装置获取当前电网对电厂的当前需求负荷和/或当 前时间,并基于电厂的当前需求负荷和/或当前时间控制电能转热能装置消耗过剩的电能,将电能转换为热能,并将热能输送至热传递装置,热传递装置再将热能输送至海水淡化系统产生淡水。从而达到任意时间的电力调峰效果。并且控制装置基于火电厂的当前需求负荷和/或当前时间控制热传递装置消耗过剩的热能,并将热能输送至海水淡化系统产生淡水。本申请能够一年四季随时实现电力调峰效果,并且能够利用过剩的热能和电能去淡化海水,缓解中国特别是北方地区缺乏淡水的困境。
根据本发明实施例的一个方面是一种电力调峰系统,包括:控制装置,用于获取电网的当前需求负荷和/或当前时间,并根据所述当前需求负荷和/或当前时间向电能转热能装置发送第一控制指令以控制其电能使用,和/或向热传递装置发送第二控制指令以控制其热能使用;电能转热能装置,分别与电厂电气连接及热传递装置的第一输入端连接,用于根据所述第一控制指令使用所述电厂输出电能,将所述电能转换为热能后输送至热传递装置;和/或热传递装置,其第二输入端与所述电厂连接,输出端与海水淡化系统连接,用于根据所述第二控制指令使用所述电厂输出热能,将所述热能以及第一输入端接收的热能输送至海水淡化系统。
进一步,所述第一控制指令包括第一启动指令、第一停止指令和输出热能调节指令;所述第二控制指令包括第二启动指令、第二停止指令和抽汽量调节指令。
进一步,所述电能转热能装置包括电极蒸汽锅炉、高温导热油电蒸汽锅炉、固体蓄热电蒸汽锅炉和电阻式蒸汽电锅炉中的一种或多种。
进一步,所述热传递装置还包括:阀门,设置于第二输入端端口,用于 根据所述第二控制指令的控制以实现开启、关闭以及改变开度大小。
进一步,所述电能转热能装置通过第一蒸汽输送管道与所述热传递装置的第一输入端传热传质连接。
进一步,所述热传递装置的第二输入端通过第二蒸汽输送管道与所述电厂传热传质连接,其输出端通过第三蒸汽输送管道与海水淡化系统传热传质连接。
进一步,所述控制装置包括:获取模块,用于获取电网的当前需求负荷和/或当前时间;判断模块,用于将电网的当前需求负荷和/或当前时间与当前发电负荷、预设时间表进行比对,并判断出当前用电量为低谷期或高峰期;控制模块,根据所述判断模块的判定结果执行下述操作:当判定结果为低谷期时,控制模块向电能转热能装置发送第一控制指令以控制电能转热能装置启动,并向热传递装置发送第二控制指令以控制热传递装置启动;以及当判定结果为高峰期时,控制模块向电能转热能装置发送第一控制指令以控制电能转热能装置停止,并向热传递装置发送第二控制指令以控制热传递装置启动。
进一步,所述控制模块包括:差值计算单元,其计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值,并计算当前负荷差值与历史负荷差值的总负荷差值;比值计算单元,用于计算所述总负荷差值与电厂的发电额定负荷的比值;调节单元,当所述比值的绝对值大于预设百分比时,向电能转热能装置发送输出热能调节指令,当所述比值的绝对值不大于预设百分比时,向热传递装置发送抽汽量调节指令。
根据本发明实施例的另一个方面是一种电力调峰方法,所述方法包括:步骤S101:获取电网的当前需求负荷和/或当前时间;步骤S102:将电网的当前需求负荷和/或当前时间与当前发电负荷、预设时间表进行比对;步骤S103:根据比对结果判断判断当前时间段为用电高峰期或低谷期;步骤S104:当判定结果为低谷期时,控制模块向电能转热能装置发送第一控制指令以控制电能转热能装置启动,并向热传递装置发送第二控制指令以控制热传递装置启动;步骤S105:当判定结果为高峰期时,控制模块向电能转热能装置发送第一控制指令以控制电能转热能装置停止,并向热传递装置发送第二控制指令以控制热传递装置启动。
进一步,所述向电能转热能装置发送第一控制指令以控制电能转热能装置启动,并向热传递装置发送第二控制指令以控制热传递装置启动还包括:步骤S1041:计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值;步骤S1042:计算当前负荷差值与历史负荷差值的总负荷差值;步骤S1043:计算所述总负荷差值与电厂的发电额定负荷的比值;步骤S1044:若所述比值的绝对值大于预设百分比时,向电能转热能装置发送输出热能调节指令;步骤S1045:若所述比值的绝对值不大于预设百分比时,向热传递装置发送抽汽量调节指令。
本发明电力调峰系统及其方法,通过设置控制装置、电能转热能装置以及热传递装置,达到电力调峰的效果。首先控制装置获取当前电网对电厂的当前需求负荷和/或当前时间,并根据当前电网对该电厂的当前需求负荷和/或当前时间,控制电能转热能装置消耗过剩的电能,将其转化为热能,并输 送至热传递装置,热传递装置再将热能输送至海水淡化系统淡化海水;控制热传递装置消耗过剩热能,并热能输送至海水淡化系统淡化海水。既能够精准有效地一年四季随时进行电力调峰,又能够利用过剩的热能和电能去淡化海水,缓解中国特别是北方地区缺乏淡水的困境。
附图说明
图1是本发明第一实施例提供的一种电力调峰系统的结构示意图;
图2是本发明第一实施例提供的一种电力调峰系统的控制装置的结构示意图;
图3是本发明第一实施例提供的一种电力调峰系统的控制模块的结构示意图;
图4是本发明第一实施例提供的一种电力调峰方法的流程图;
图5是本发明第一实施例提供的一种电力调峰方法中的控制指令发送方法的流程图;
图6是本发明第二实施例提供的一种电力调峰系统的结构示意图;
图7是本发明第二实施例提供的一种电力调峰方法的流程图;
图8是本发明第三实施例提供的一种电力调峰系统的结构示意图;
图9是本发明第三实施例提供的一种电力调峰方法的流程图。
附图标记:1为锅炉、2为汽轮机、3为发电机、4为升压站、5为凝汽器、6为除氧器、7为海水淡化系统、10为控制装置、20为电能转热能装置、30为热传递装置、11为获取模块、12为判断模块、13为控制模块、131为差值计算单元、132为比值计算单元、133为调节单元。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
实施例一:
请参阅图1、图2、图3,图1是本发明实施例提供的一种电力调峰系统的结构示意图,图2是本发明第一实施例提供的一种电力调峰系统的控制装置的结构示意图,图3是本发明第一实施例提供的一种电力调峰系统的判断模块的结构示意图。
如图1、图2、图3所示,电力调峰系统包括:控制装置10、电能转热能装置20以及热传递装置30。
控制装置10,用于获取电网的当前需求负荷和/或当前时间,并根据所述当前需求负荷和/或当前时间向电能转热能装置20发送第一控制指令以控制其电能使用,和/或向热传递装置30发送第二控制指令以控制其热能使用。具体的,第一种方式为获取电网的当前需求负荷,电网的当前需求负荷包括电网对电厂的当前需求负荷以及当前电厂的发电负荷数据。并且根据电网对该电厂的当前需求负荷与当前电厂的发电负荷判断当前时间为用电高峰期或低谷期,若当前发电负荷与当前需求负荷的差值为正数,且差值与电厂的发电额定负荷的比值大于10%则为低谷期,若当前发电负荷与当前需求负荷的差值为正数,且差值与电厂的发电额定负荷的比值不大于10%或当前发电负荷与当前需求负荷的差值为负数时为高峰期。第二种方式为获取当前时间, 基于当前的时间与预设时间表判断当前时间段为用电高峰期或低谷期,例如预设时间表内为高峰期,若当前时间在预设时间表内则为高峰期,若当前时间不在预设时间表内则为低谷期。第三种方式为结合当前电网对该电厂的当前需求负荷和当前时间综合性的判断当前时间段为用电高峰期或低谷期。当判断为低谷期时,控制装置10向电能转热能装置20发送第一控制指令以控制电能转热能装置20启动。控制装置10向热传递装置30发送第二控制指令以控制热传递装置30启动。当判断为高峰期时,控制装置10向电能转热能装置20发送第一控制指令以控制电能转热能装置20停止;控制装置10向热传递装置30发送第二控制指令以控制热传递装置30启动。其中,第一控制指令包括第一启动指令、第一停止指令和输出热能调节指令;第二控制指令包括第二启动指令、第二停止指令和抽汽量调节指令;输出热能调节指令包括:增大蒸汽输出指令或减少蒸汽输出指令;抽汽量调节指令包括:增大抽汽量指令或减少抽汽量指令。
当判断为低谷期时,由于低谷期当前电网对电厂的当前需求负荷较少,因此就需要大幅度进行性调峰,此时,同时开启电能转热能装置20以及热传递装置30以进行大幅度调峰。首先计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值。再计算当前负荷差值与历史负荷差值的总负荷差值。计算所述总负荷差值与电厂的发电额定负荷的比值;当所述比值的绝对值大于预设百分比时,向电能转热能装置20发送输出热能调节指令;具体的,若比值为正数向电能转热能装置20发送第一控制指令增大蒸汽输出指令;若比值为负数则向电能转热能装置20发送第一控制指令减少蒸汽输出指令。当所 述比值的绝对值不大于预设百分比时,向热传递装置30发送抽汽量调节指令。具体的,若比值为正数向热传递装置30发送第二控制指令增大抽汽量指令;若比值为负数向热传递装置30发送第二控制指令减少抽汽量指令。预设百分比优选的设定为10%。
当判断为高峰期时,由于高峰期当前电网对电厂的当前需求负荷很高,此时电厂应当以最大能力进行发电,以供用户使用。因此,高峰期时只需进行微调即可,也就是只需要利用热传递装置30进行小幅度调峰。首先计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值。再计算当前负荷差值与历史负荷差值的总负荷差值。若总负荷差值为正数向热传递装置30发送第二控制指令增大抽汽量指令;若总负荷差值为负数向热传递装置30发送第二控制指令减少抽汽量指令。
电能转热能装置20,分别与电厂电气连接及热传递装置30的第一输入端连接,用于根据所述第一控制指令使用所述电厂输出电能,将所述电能转换为热能后输送至热传递装置30。其中,与电厂电气连接,电厂具体的为热电联产系统。具体的,热电联产系统为现有技术中常见的热电联产系统。电能转热能装置20用于消耗热电联产系统生产的过剩电能。与热电联产系统电气连接,且与热传递装置30的第一输入端传热传质连接。传热传质连接为能够传导热和能够传递一定质量的物质的连接方式,如通过管道输送蒸汽等。当接收到第一控制指令增大蒸汽输出指令时,增大蒸汽的输出量,也就是增大消耗热电联产系统产生的电量,即加大电锅炉的功率;当接收到第一控制指令减少蒸汽输出指令时,减少蒸汽的输出量,也就是减少消耗热电联产系 统产生的电量,即减小电锅炉的功率。并将产生的蒸汽输送至热传递装置30。
热传递装置30,其第二输入端与所述电厂连接,输出端与海水淡化系统连接,用于根据所述第二控制指令使用所述电厂输出热能,将所述热能以及第一输入端接收的热能输送至海水淡化系统7。具体的,热传递装置30将热电联产系统的生产的过剩热能以及第一输入端接收的热能输送至海水淡化系统7。海水淡化系统7为将海水淡化为淡水的系统,具体为多级闪蒸海水淡化系统。当接收到第二控制指令增大抽汽量指令时,增大从热电联产系统中的抽汽量;当接收到第二控制指令减少抽汽量指令时,减少从热电联产系统中的抽汽量。
优选的,热传递装置30还包括:阀门,设置于第二输入端端口,用于根据所述第二控制指令的控制以实现开启、关闭以及改变开度大小。具体的,控制装置10向热传递装置30发送第二控制指令,第二控制指令包括第二启动指令、第二停止指令和抽汽量调节指令;抽汽量调节指令包括:增大抽汽量指令或减少抽汽量指令。当接收到第二启动指令时,控制阀门开启;当接收到第二停止指令时,控制阀门关闭;当接收到增大抽汽量指令或减少抽汽量指令,调节阀门的开度。需要增大抽汽量时,则调大阀门开度;需要减小抽汽量时,则调小阀门开度。
优选的,电能转热能装置具体为电能转蒸汽热能的装置。具体的,电能转热能装置采用电蒸汽锅炉。
优选的,电蒸汽锅炉为驱动电压在10KV以上的电蒸汽锅炉。具体的,电蒸汽锅炉包括电极蒸汽锅炉、高温导热油电蒸汽锅炉、固体蓄热电蒸汽锅炉和电阻式蒸汽电锅炉中的一种或多种。
优选的,电蒸汽锅炉通过第一蒸汽输送管道与热传递装置30第一输入端传热传质连接。具体的,电蒸汽锅炉消耗过剩电能产生蒸汽,并将产生的蒸汽通过第一蒸汽输送管道输送至热传递装置30的第一输入端。
优选的,热传递装置30的第二输入端通过第二蒸汽输送管道与热电联产系统传热传质连接,其输出端通过第三蒸汽输送管道与海水淡化系统传热传质连接。海水淡化系统利用输送来的蒸汽淡化海水,生成淡水。
优选的,控制装置10包括:获取模块11,用于获取电网的当前需求负荷和/或当前时间;判断模块12,用于将电网的当前需求负荷和/或当前时间与当前发电负荷、预设时间表进行比对,并判断出当前用电量为低谷期或高峰期;判断模块13,根据所述判断模块12的判定结果执行下述操作:当判定结果为低谷期时,控制模块13向电能转热能装置20发送第一控制指令以控制电能转热能装置20启动,并向热传递装置30发送第二控制指令以控制热传递装置30启动;以及当判定结果为高峰期时,控制模块13向电能转热能装置20发送第一控制指令以控制电能转热能装置20停止,并向热传递装置30发送第二控制指令以控制热传递装置30启动。具体的,首先获取模块11获取电网的当前需求负荷和/或当前时间,其中电网的当前需求负荷包括:获取当前电网对电厂的当前需求负荷以及当前电厂的发电负荷数据。判断模块12将获取到的电网的当前需求负荷和/或当前时间与当前发电负荷、预设时间表进行比对。其中可以单独对当前电网对电厂的当前需求负荷与当前发电负荷进行对比,若当前发电负荷与当前需求负荷的差值为正数,且差值与电厂的发电额定负荷的比值大于10%为电低谷期,若当前发电负荷与当前需求负荷的差值为正数,且差值与电厂的发电额定负荷的比值不大于10%或当 前发电负荷与当前需求负荷的差值为负数时为高峰期;也可以单独对当前时间与预设时间表进行对比,例如预设时间表内为高峰期,若当前时间在预设时间表内则为高峰期,若当前时间不在预设时间表内则为低谷期;还可以对当前电网对电厂的当前需求负荷与当前发电负荷进行对比,再对当前时间与预设时间表进行对比,并结合两种对比的结果。判断模块13根据对比结果得到当前时间段为用电高峰期或低谷期。
优选的,判断模块13包括:差值计算单元131,其计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值,并计算当前负荷差值与历史负荷差值的总负荷差值;比值计算单元132,用于计算所述总负荷差值与电厂的发电额定负荷的比值;调节单元133,当所述比值的绝对值大于预设百分比时,向电能转热能装置20发送输出热能调节指令,当所述比值的绝对值不大于预设百分比时,向热传递装置30发送抽汽量调节指令。
当判断为低谷期时,首先差值计算单元131计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值。再计算当前负荷差值与历史负荷差值的总负荷差值。比值计算单元132计算所述总负荷差值与电厂的发电额定负荷的比值。若比值的绝对值大于预设百分比时,调节单元133向电能转热能装置20发送输出热能调节指令。具体的,若比值为正数向电能转热能装置20发送第一控制指令增大蒸汽输出指令;若比值为负数则向电能转热能装置20发送第一控制指令减少蒸汽输出指令。具体的为调整电能转热能装置20的功率。若比值的绝对值不大于预设百分比时,调节单元133向热传递装置30 发送抽汽量调节指令。具体的,若比值为正数向热传递装置30发送第二控制指令增大抽汽量指令;若比值为负数向热传递装置30发送第二控制指令减少抽汽量指令。预设百分比优选的为10%。
当判断为高峰期时,首先差值计算单元131计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值。再计算当前负荷差值与历史负荷差值的总负荷差值。若总负荷差值为正数调节单元133向热传递装置30发送第二控制指令增大抽汽量指令;若总负荷差值为负数调节单元133向热传递装置30发送第二控制指令减少抽汽量指令。
请参阅图4,图4是本发明第一实施例提供的一种电力调峰方法的流程图。
步骤S101,获取电网的当前需求负荷和/或当前时间。
具体的,电网的当前需求负荷包括获取当前电网对电厂的当前需求负荷以及当前电厂的发电负荷数据。
步骤S102,将电网的当前需求负荷和/或当前时间与当前发电负荷、预设时间表进行比对。
具体的,可以单独对当前电网对电厂的当前需求负荷与当前发电负荷进行对比;也可以单独对当前时间与预设时间表进行对比;还可以对当前电网对电厂的当前需求负荷与当前发电负荷进行对比,再对当前时间与预设时间表进行对比,并结合两种对比的结果。
步骤S103,根据比对结果判断判断当前时间段为用电高峰期或低谷期。
具体的,预先设定当前发电负荷以及预设时间表,其中预设时间表内为 低谷期。也可以预设时间表内设定为高峰期。本实施例中以在预设时间表内为高峰期进行举例说明。单独对当前电网对电厂的当前需求负荷与当前发电负荷进行对比时,若当前发电负荷与当前需求负荷的差值为正数,且差值与电厂的发电额定负荷的比值大于10%为电低谷期,若当前发电负荷与当前需求负荷的差值为正数,且差值与电厂的发电额定负荷的比值不大于10%或当前发电负荷与当前需求负荷的差值为负数时为高峰期。单独对当前时间与预设时间表进行对比时,若当前时间在预设时间表内则为高峰期,若当前时间不在预设时间表内则为低谷期。还可以对当前电网对该电厂的当前需求负荷与当前发电负荷进行对比,再对当前时间与预设时间表进行对比,并结合两种对比的结果,选出更优化的结果。
步骤S104,当判定结果为低谷期时,控制模块13向电能转热能装置20发送第一控制指令以控制电能转热能装置20启动,并向热传递装置30发送第二控制指令以控制热传递装置30启动。
具体的,当判断为低谷期时,由于低谷期当前电网对电厂的当前需求负荷较少,因此就需要大幅度进行性调峰,此时,同时开启电能转热能装置20以及热传递装置30以进行大幅度调峰。首先计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值。再计算当前负荷差值与历史负荷差值的总负荷差值。计算所述总负荷差值与电厂的发电额定负荷的比值;若比值的绝对值大于预设百分比时,则向电能转热能装置20发送第一控制指令以对电能转热能装置20进行功率调节;具体的,若比值为正数向电能转热能装置20发送第一控制指令增大蒸汽输出指令;若比值为负数则向电能转热能装置20 发送第一控制指令减少蒸汽输出指令。若比值的绝对值不大于预设百分比时,则向热传递装置30发送第二控制指令以控制热传递装置30阀门开度大小。具体的,若比值为正数向热传递装置30发送第二控制指令增大抽汽量指令;若比值为负数向热传递装置30发送第二控制指令减少抽汽量指令。预设百分比优选的为10%。
步骤S105,当判定结果为高峰期时,控制模块13向电能转热能装置20发送第一控制指令以控制电能转热能装置20停止,并向热传递装置30发送第二控制指令以控制热传递装置30启动。
具体的,当判断为高峰期时,由于高峰期当前电网对电厂的当前需求负荷很高,此时电厂应当以最大能力进行发电,以供用户使用。因此,高峰期时只需进行微调即可,也就是只需要利用热传递装置30进行小幅度调峰。首先计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值。再计算当前负荷差值与历史负荷差值的总负荷差值。若总负荷差值为正数向热传递装置30发送第二控制指令增大抽汽量指令;若总负荷差值为负数向热传递装置30发送第二控制指令减少抽汽量指令。
其中,第一控制指令包括第一启动指令、第一停止指令和输出热能调节指令;第二控制指令包括第二启动指令、第二停止指令和抽汽量调节指令;输出热能调节指令包括:增大蒸汽输出指令或减少蒸汽输出指令;抽汽量调节指令包括:增大抽汽量指令或减少抽汽量指令。具体的,控制装置10向热传递装置30发送第二控制指令,第二控制指令包括第二启动指令、第二停止指令和抽汽量调节指令;抽汽量调节指令包括:增大抽汽量指令或减少抽汽 量指令。当接收到第二启动指令时,控制阀门开启;当接收到第二停止指令时,控制阀门关闭;当接收到增大抽汽量指令或减少抽汽量指令,调节阀门的开度。需要增大抽汽量时,则调大阀门开度;需要减小抽汽量时,则调小阀门开度。控制装置10向电能转热能装置20发送第一控制指令,第一控制指令包括第一启动指令、第一停止指令和输出热能调节指令;输出热能调节指令包括:增大蒸汽输出指令或减少蒸汽输出指令;当接收到第一控制指令增大蒸汽输出指令时,增大蒸汽的输出量,也就是增大消耗热电联产系统产生的电量,即加大电锅炉的功率;当接收到第一控制指令减少蒸汽输出指令时,减少蒸汽的输出量,也就是减少消耗热电联产系统产生的电量,即减小电锅炉的功率。
请参阅图5,图5是本发明第一实施例提供的一种电力调峰方法中的控制指令发送方法的流程图。
如图5所示,步骤S1041:计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值;
步骤S1042:计算当前负荷差值与历史负荷差值的总负荷差值;
步骤S1043:计算所述总负荷差值与电厂的发电额定负荷的比值;
步骤S1044:若所述比值的绝对值大于预设百分比时,向电能转热能装置(20)发送输出热能调节指令。
步骤S1045:若所述比值的绝对值不大于预设百分比时,向热传递装置(30)发送抽汽量调节指令。
具体的当判断为低谷期时,由于低谷期当前电网对电厂的当前需求负荷 较少,因此就需要大幅度进行性调峰,此时,同时开启电能转热能装置20以及热传递装置30以进行大幅度调峰。首先计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值。再计算当前负荷差值与历史负荷差值的总负荷差值。计算所述总负荷差值与电厂的发电额定负荷的比值;若比值的绝对值大于预设百分比时,则向电能转热能装置20发送出热能调节指令以对电能转热能装置20进行功率调节;具体的,若比值为正数向电能转热能装置20发送第一控制指令增大蒸汽输出指令;若比值为负数则向电能转热能装置20发送第一控制指令减少蒸汽输出指令。若比值的绝对值不大于预设百分比时,则向热传递装置30发送抽汽量调节指令以控制热传递装置30阀门开度大小。具体的,若比值为正数向热传递装置30发送第二控制指令增大抽汽量指令;若比值为负数向热传递装置30发送第二控制指令减少抽汽量指令。预设百分比优选的为10%。
本发明第一实施例电力调峰系统,通过设置控制装置、电能转热能装置以及热传递装置,达到电力调峰的效果。首先控制装置获取当前电网对该电厂的当前需求负荷和/或当前时间,并根据当前电网对该电厂的当前需求负荷和/或当前时间,控制电能转热能装置消耗过剩的电能,将其转化为热能,并输送至热传递装置;控制热传递装置消耗热电联产系统过剩热能,并将热能输送至海水淡化系统淡化海水。既能够精准有效进行电力调峰,又能够利用过剩的热能和电能去淡化海水,缓解中国特别是北方地区缺乏淡水的困境。
实施例二:
请参阅图6,图6是本发明第二实施例提供的一种电力调峰系统的结构 示意图。
如图6所示,电力调峰系统包括:控制装置10以及电能转热能装置20以及热传递装置30。
控制装置10,用于获取电网的当前需求负荷,并根据电网的当前需求负荷向电能转热能装置20发送第一控制指令。具体的,电网的当前需求负荷包括获取当前电网对电厂的当前需求负荷以及当前电厂的发电负荷数据。第一控制指令包括第一启动指令、第一停止指令和输出热能调节指令;输出热能调节指令包括:增大蒸汽输出指令或减少蒸汽输出指令。计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值;计算当前负荷差值与历史负荷差值的总负荷差值。若总负荷差值增大则向电能转热能装置20发送第一控制指令增大蒸汽输出指令;若总负荷差值减小则向电能转热能装置20发送第一控制指令减少蒸汽输出指令。
电能转热能装置20,分别与电厂电气连接及热传递装置30的第一输入端连接,用于根据所述第一控制指令使用所述电厂输出电能,将所述电能转换为热能后输送至热传递装置30。其中,与电厂电气连接,电厂具体的为热电联产系统。具体的,热电联产系统为现有技术中常见的热电联产系统。电能转热能装置20用于消耗热电联产系统生产的过剩电能。与热电联产系统电气连接,且与热传递装置30的第一输入端传热传质连接。传热传质连接为能够传导热和能够传递一定质量的物质的连接方式,如通过管道输送蒸汽等。当接收到第一控制指令增大蒸汽输出指令时,增大蒸汽的输出量,也就是增大消耗热电联产系统产生的电量,即加大电锅炉的功率;当接收到第一控制 指令减少蒸汽输出指令时,减少蒸汽的输出量,也就是减少消耗热电联产系统产生的电量,即减小电锅炉的功率。并将产生的蒸汽输送至热传递装置30。
热传递装置30,输出端与海水淡化系统传热传质连接,用于将第一输入端接收的热能送至海水淡化系统。海水淡化系统7为将海水淡化为淡水的系统,具体为多级闪蒸海水淡化系统。
优选的,电能转热能装置具体为电能转蒸汽热能的装置。具体的,电能转热能装置采用电蒸汽锅炉。
优选的,电蒸汽锅炉为驱动电压在10KV以上的电蒸汽锅炉。具体的,电蒸汽锅炉为电极蒸汽锅炉、高温导热油电蒸汽锅炉、固体蓄热电蒸汽锅炉和电阻式蒸汽电锅炉中的一种或多种。
优选的,电蒸汽锅炉通过第一蒸汽输送管道与热传递装置30传热传质连接。具体的,电蒸汽锅炉消耗过剩电能产生蒸汽,并将产生的蒸汽通过第一蒸汽输送管道输送至热传递装置30。
请参阅图7,图7是本发明第二实施例提供的一种电力调峰方法的流程图。
步骤S201:获取电网的当前需求负荷。
具体的,电网的当前需求负荷包括获取当前电网对电厂的当前需求负荷以及当前电厂的发电负荷数据。第一控制指令为增大蒸汽输出指令以及减少蒸汽输出指令。
步骤S202:根据电网的当前需求负荷向电能转热能装置20发送第一控制指令。
具体的,计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差 值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值;计算当前负荷差值与历史负荷差值的总负荷差值,若总负荷差值增大则向电能转热能装置20发送第一控制指令增大蒸汽输出指令;若总负荷差值减小则向电能转热能装置20发送第一控制指令减少蒸汽输出指令。
其中,第一控制指令包括第一启动指令、第一停止指令和输出热能调节指令;输出热能调节指令包括:增大蒸汽输出指令或减少蒸汽输出指令。
实施例三:
请参阅图8,图8是本发明第三实施例提供的一种电力调峰系统的结构示意图。
如图8所示,电力调峰系统包括:控制装置10以及热传递装置30。
控制装置10,用于获取电网的当前需求负荷,并根据电厂的当前需求负荷向热传递装置30发送第二控制指令。具体的,电网的当前需求负荷包括获取当前电网对电厂的当前需求负荷以及当前电厂的发电负荷数据。第二控制指令包括第二启动指令、第二停止指令和抽汽量调节指令;抽汽量调节指令包括:增大抽汽量指令或减少抽汽量指令。计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值;计算当前负荷差值与历史负荷差值的总负荷差值。若总负荷差值增大则向热传递装置30发送第二控制指令增大抽汽量指令;若总负荷差值减小则向热传递装置30发送第二控制指令减少抽汽量指令。
热传递装置30,第二输入端与所述热电联产系统传热传质连接,输出端与海水淡化系统传热传质连接,用于根据所述第二控制指令接收所述热电联 产系统生产的过剩热能,并将所述过剩热能输送至海水淡化系统7。具体的,热传递装置30将热电联产系统的生产的过剩热能输送至海水淡化系统7。当接收到第二控制指令增大抽汽量指令时,增大从热电联产系统中的抽汽量;当接收到第二控制指令减少抽汽量指令时,减少从热电联产系统中的抽汽量。
优选的,热传递装置30还包括:阀门,设置于第二输入端端口,用于根据所述第二控制指令的控制以实现开启、关闭以及改变开度大小。具体的,控制装置10向热传递装置30发送第二控制指令,第二控制指令包括第二启动指令、第二停止指令和抽汽量调节指令;抽汽量调节指令包括:增大抽汽量指令或减少抽汽量指令。当接收到第二启动指令时,控制阀门开启;当接收到第二停止指令时,控制阀门关闭;当接收到增大抽汽量指令或减少抽汽量指令,调节阀门的开度。需要增大抽汽量时,则调大阀门开度;需要减小抽汽量时,则调小阀门开度。
优选的,热传递装置30的第二输入端通过第二蒸汽输送管道与热电联产系统传热传质连接,其输出端通过第三蒸汽输送管道与海水淡化系统传热传质连接。
请参阅图9,图9是本发明第三实施例提供的一种电力调峰方法的流程图。
步骤S301:获取电网的当前需求负荷。
具体的,电网的当前需求负荷包括获取当前电网对电厂的当前需求负荷以及当前电厂的发电负荷数据。第二控制指令为增大抽汽量指令以及减少抽汽量指令。
步骤S302:根据电网的当前需求负荷向热传递装置30发送第二控制指 令。
具体的,计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值;计算当前负荷差值与历史负荷差值的总负荷差值。若总负荷差值增大则向热传递装置30发送第二控制指令增大抽汽量指令;若总负荷差值减小则向热传递装置30发送第二控制指令减少抽汽量指令。
其中,第二控制指令包括第二启动指令、第二停止指令和抽汽量调节指令;抽汽量调节指令包括:增大抽汽量指令或减少抽汽量指令。
本发明第二实施例以及第三实施例电力调峰系统,单独利用电能转热能装置,或者单独利用热传递装置进行电力调峰,既能进行了电力调峰,又能够利用过剩的热能和电能去淡化海水,缓解中国特别是北方地区缺乏淡水的困境。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (10)

  1. 一种电力调峰系统,其特征在于,包括:
    控制装置(10),用于获取电网的当前需求负荷和/或当前时间,并根据所述当前需求负荷和/或当前时间向电能转热能装置(20)发送第一控制指令以控制其电能使用,和/或向热传递装置(30)发送第二控制指令以控制其热能使用;
    电能转热能装置(20),分别与电厂电气连接及热传递装置(30)的第一输入端连接,用于根据所述第一控制指令使用所述电厂输出电能,将所述电能转换为热能后输送至热传递装置(30);和/或
    热传递装置(30),其第二输入端与所述电厂连接,输出端与海水淡化系统连接,用于根据所述第二控制指令使用所述电厂输出热能,将所述热能以及第一输入端接收的热能输送至海水淡化系统。
  2. 根据权利要求1所述的电力调峰系统,其中,
    所述第一控制指令包括第一启动指令、第一停止指令和输出热能调节指令;
    所述第二控制指令包括第二启动指令、第二停止指令和抽汽量调节指令。
  3. 根据权利要求2所述的电力调峰系统,其中,所述电能转热能装置(20)包括电极蒸汽锅炉、高温导热油电蒸汽锅炉、固体蓄热电蒸汽锅炉和电阻式蒸汽电锅炉中的一种或多种。
  4. 根据权利要求1所述的电力调峰系统,其中,所述热传递装置(30)还包括:
    阀门,设置于第二输入端端口,用于根据所述第二控制指令的控制以实现开启、关闭以及改变开度大小。
  5. 根据权利要求1-4中任一项所述的电力调峰系统,其中,
    所述电能转热能装置(20)通过第一蒸汽输送管道与所述热传递装置(30)的第一输入端传热传质连接。
  6. 根据权利要求1-4中任一项所述的电力调峰系统,其中,
    所述热传递装置(30)的第二输入端通过第二蒸汽输送管道与所述电厂传热传质连接,其输出端通过第三蒸汽输送管道与海水淡化系统传热传质连接。
  7. 根据权利要求1-4任一项所述的电力调峰系统,其中,所述控制装置(10)包括:
    获取模块(11),用于获取电网的当前需求负荷和/或当前时间;
    判断模块(12),用于将电网的当前需求负荷和/或当前时间与当前发电负荷、预设时间表进行比对,并判断出当前用电量为低谷期或高峰期;
    控制模块(13),根据所述判断模块(12)的判定结果执行下述操作:
    当判定结果为低谷期时,控制模块(13)向电能转热能装置(20)发送第一控制指令以控制电能转热能装置(20)启动,并向热传递装置(30)发送第二控制指令以控制热传递装置(30)启动;以及
    当判定结果为高峰期时,控制模块(13)向电能转热能装置(20)发送第一控制指令以控制电能转热能装置(20)停止,并向热传递装置(30)发送第二控制指令以控制热传递装置(30)启动。
  8. 根据权利要求7所述的电力调峰系统,其中,所述控制模块(13) 包括:
    差值计算单元(131),其计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值,并计算当前负荷差值与历史负荷差值的总负荷差值;
    比值计算单元(132),用于计算所述总负荷差值与电厂的发电额定负荷的比值;
    调节单元(133),当所述比值的绝对值大于预设百分比时,向电能转热能装置(20)发送输出热能调节指令,当所述比值的绝对值不大于预设百分比时,向热传递装置(30)发送抽汽量调节指令。
  9. 一种电力调峰方法,其特征在于,应用于权利要求1-8任一项所述的电力调峰系统,所述方法包括:
    步骤S101:获取电网的当前需求负荷和/或当前时间;
    步骤S102:将电网的当前需求负荷和/或当前时间与当前发电负荷、预设时间表进行比对;
    步骤S103:根据比对结果判断判断当前时间段为用电高峰期或低谷期;
    步骤S104:当判定结果为低谷期时,控制模块(13)向电能转热能装置(20)发送第一控制指令以控制电能转热能装置(20)启动,并向热传递装置(30)发送第二控制指令以控制热传递装置(30)启动;
    步骤S105:当判定结果为高峰期时,控制模块(13)向电能转热能装置(20)发送第一控制指令以控制电能转热能装置(20)停止,并向热传 递装置(30)发送第二控制指令以控制热传递装置(30)启动。
  10. 根据权利要求9所述的电力调峰方法,其中,所述向电能转热能装置(20)发送第一控制指令以控制电能转热能装置(20)启动,并向热传递装置(30)发送第二控制指令以控制热传递装置(30)启动还包括:
    步骤S1041:计算电厂的当前发电负荷与电网的当前需求负荷的当前负荷差值,以及计算预订时间前电厂的发电负荷与电网的需求负荷的历史负荷差值;
    步骤S1042:计算当前负荷差值与历史负荷差值的总负荷差值;
    步骤S1043:计算所述总负荷差值与电厂的发电额定负荷的比值;
    步骤S1044:若所述比值的绝对值大于预设百分比时,向电能转热能装置(20)发送输出热能调节指令;
    步骤S1045:若所述比值的绝对值不大于预设百分比时,向热传递装置(30)发送抽汽量调节指令。
PCT/CN2017/093228 2017-07-17 2017-07-17 一种电力调峰系统及其方法 WO2019014819A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/093228 WO2019014819A1 (zh) 2017-07-17 2017-07-17 一种电力调峰系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/093228 WO2019014819A1 (zh) 2017-07-17 2017-07-17 一种电力调峰系统及其方法

Publications (1)

Publication Number Publication Date
WO2019014819A1 true WO2019014819A1 (zh) 2019-01-24

Family

ID=65015437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093228 WO2019014819A1 (zh) 2017-07-17 2017-07-17 一种电力调峰系统及其方法

Country Status (1)

Country Link
WO (1) WO2019014819A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247410A (zh) * 2019-06-11 2019-09-17 中国神华能源股份有限公司 一种供热机组的调峰处理方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892081A (zh) * 2009-05-21 2010-11-24 江苏煤化工程研究设计院有限公司 煤基能源化工多联产工艺
CN103441494A (zh) * 2013-07-24 2013-12-11 顾为东 基于非并网多能源协同供电的智能电网系统
CN107171350A (zh) * 2017-07-17 2017-09-15 赫普热力发展有限公司 一种电力调峰系统及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892081A (zh) * 2009-05-21 2010-11-24 江苏煤化工程研究设计院有限公司 煤基能源化工多联产工艺
CN103441494A (zh) * 2013-07-24 2013-12-11 顾为东 基于非并网多能源协同供电的智能电网系统
CN107171350A (zh) * 2017-07-17 2017-09-15 赫普热力发展有限公司 一种电力调峰系统及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247410A (zh) * 2019-06-11 2019-09-17 中国神华能源股份有限公司 一种供热机组的调峰处理方法、装置及系统
CN110247410B (zh) * 2019-06-11 2021-05-28 中国神华能源股份有限公司 一种供热机组的调峰处理方法、装置及系统

Similar Documents

Publication Publication Date Title
CN107171350B (zh) 一种电力调峰系统及其方法
CN106089338B (zh) 一种调节供热与发电的背压机联合系统及方法
CN106593771B (zh) 一种热电联产系统中的电热解耦系统及其控制方法
CN110748465B (zh) 一种氢储能太阳能燃煤耦合灵活发电系统及运行方法
CN106549421B (zh) 一种水电与光电多目标优化设计与协调控制方法
GB2457139A (en) Water heating system comprising an immersion heater supplied with electricity generated by an alternative energy source
WO2019014819A1 (zh) 一种电力调峰系统及其方法
CN110061696A (zh) 一种光伏光热一体化装置、热电联合系统及方法
CN110086189A (zh) 一种利用飞轮电池多维同步参与火电厂深度调峰和调频系统
CN209742979U (zh) 多台汽轮发电机组热负荷平衡分配控制装置
CN109113818A (zh) 一种增强电厂灵活性热力系统
CN110112744A (zh) 一种利用飞轮电池和电极锅炉联合参与火电厂深度调峰和调频系统
CN114922701B (zh) 三炉两机母管制生物质电厂汽轮机压力和功率控制系统
US9376958B1 (en) Point-of-use electricity generation system
TW201917976A (zh) 多能源互補發電系統
CN209658915U (zh) 一种利用飞轮电池和电极锅炉联合参与火电厂深度调峰和调频系统
WO2019014820A1 (zh) 一种电力调峰系统及其方法
CN208735727U (zh) 基于固体储热的主动调峰系统及电力系统
CN112344317A (zh) 一种带蓄热系统的凝结水调频装置
CN208804740U (zh) 一种火电厂灵活性改造双缸解耦深度调峰系统
CN214124848U (zh) 一种电蒸汽锅炉耦合工业蒸汽调峰及调频系统
CN217354596U (zh) 一种利用风光火储多能互补辅助的热电联产机组
CN110909988A (zh) 一种生物质能和风能太阳能互补供能系统及方法
CN114483308B (zh) 一种基于可再生能源发电的可调峰发电系统及调峰方法
CN113327043B (zh) 一种用能设备输出功率的规划方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918325

Country of ref document: EP

Kind code of ref document: A1