WO2019013239A1 - Vehicle wheel - Google Patents

Vehicle wheel Download PDF

Info

Publication number
WO2019013239A1
WO2019013239A1 PCT/JP2018/026129 JP2018026129W WO2019013239A1 WO 2019013239 A1 WO2019013239 A1 WO 2019013239A1 JP 2018026129 W JP2018026129 W JP 2018026129W WO 2019013239 A1 WO2019013239 A1 WO 2019013239A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
reinforced resin
vehicle wheel
layers
resin material
Prior art date
Application number
PCT/JP2018/026129
Other languages
French (fr)
Japanese (ja)
Inventor
佐竹 弘之
房郎 北條
正浩 三宅
亮 吉沢
祐典 望月
孝一 小宅
義正 藤井
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Publication of WO2019013239A1 publication Critical patent/WO2019013239A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B21/00Rims
    • B60B21/02Rims characterised by transverse section

Definitions

  • the present invention relates to a vehicle wheel.
  • the present invention relates to a vehicle wheel having a rim portion made of fiber reinforced resin.
  • the fiber reinforced resin material is, for example, a material obtained by solidifying a carbon fiber with an epoxy resin or the like, has high strength and high rigidity as compared with a metal material, and only weighs about 1 ⁇ 4 of the metal material. Attempts to reduce the weight using resin materials have been made in various fields. For example, in the case of aluminum wheels for vehicles, lightweight wheels partially replaced with fiber reinforced resin materials have been developed and are commercially available.
  • FIG. 1A is a view for explaining the concept of a lightweight vehicle wheel.
  • the vehicle wheel 100 which has been reduced in weight is constituted by a rim portion 101 in which a portion which used an aluminum material so far is replaced by a fiber reinforced resin material, and spokes 102 made of aluminum.
  • a weight reduction of approximately 20% to 60% is possible.
  • FIG. 1B is a cross-sectional view taken along the line X-X 'of FIG. 1A. As shown in FIG. 1B, the rim portion 101 of the fiber reinforced resin material and the spokes 102 made of aluminum are joined by an adhesive or a bolt at the connection portion 103 to form a lightweight vehicle wheel 100.
  • FIG. 2 is a view for explaining the difference in the strength of the fiber-reinforced resin material depending on the fiber direction and the load direction, using a commercially available Toray T800S / # 3900-2B fiber-reinforced resin material as the fiber-reinforced resin material.
  • the graph shows the relationship between the load direction applied to 200 and the strength of the fiber-reinforced resin material 200.
  • the tensile strength of the fiber reinforced resin material 200 is as high as 3000 MPa while the fiber direction H
  • a tensile load is applied to the fiber-reinforced resin material 200 along the direction deviated from the direction 45 ° (load in the direction 45 °)
  • the tensile strength of the fiber-reinforced resin material 200 decreases significantly, and the direction deviated 90 ° from the fiber direction H
  • a tensile load is applied to it (a load in the direction of 90 °)
  • the effect of fiber reinforcement is not obtained, and the tensile strength becomes a small value of 70 MPa.
  • a sheet winding method is known as a prior art of manufacturing a rim portion of a vehicle wheel by applying a fiber reinforced resin material.
  • the sheet winding method is a method of laminating and molding a thin sheet-like material for a fiber-reinforced resin many times around a mold and manufacturing it.
  • a thin sheet-like fiber-reinforced resin material is wound on a mold, and the sheet is covered with a cut so as to form a pseudo-continuous cylindrical shape while covering the cut of the sheet with the next sheet.
  • the strength is lowered, and the uneven thickness due to the step is a cause of vibration and breakage.
  • a continuous fiber reinforced resin material (corresponding to a material for fiber reinforced resin in the present application) is applied to the outer peripheral surface of a rim forming mold. By laying in parallel in the axial direction and further winding a constraining material around the axis, it is precisely laminated on the rim type of the concave wheel.
  • the continuous fiber reinforced resin material is covered on the outer peripheral surface of the rim forming mold, there are no fiber cuts, the problems caused by the cuts are resolved, and a seamless cylindrical shape can be formed.
  • Patent Document 1 According to the method of manufacturing a rim of a vehicle wheel disclosed in Patent Document 1, only homogeneous fiber layers having the same fiber orientation are used because they are laid in parallel in the axial direction on the outer peripheral surface of the rim forming mold. I can not build. Loads act on the rim from multiple directions, so the stress generated differs from part to part. However, the manufacturing method of Patent Document 1 is based on the thickness of the fiber layer against the load acting from such multiple directions. Number) and the orientation direction of the fibers, it is not a method to obtain a rim portion made of a fiber reinforced resin material in which a fiber layer is appropriately disposed, so a rim portion having sufficient strength to cope with different stress for each portion It can not be built.
  • the present invention provides a wheel for a vehicle having a rim portion made of a fiber reinforced resin material, and the strength appropriately set so as to withstand different stresses for each portion against a load acting on the rim portion from multiple directions. It is an object of the present invention to provide a vehicle wheel having a rim portion having the following.
  • a vehicle wheel according to the present invention is a vehicle wheel having a rim portion made of a fiber-reinforced resin, and the rim portion is formed by laminating a plurality of substantially cylindrical fiber layers. It is characterized in that it has a structure and at least one of the fiber layers is configured with an orientation pattern different from at least one other fiber layer.
  • the present specification includes the disclosure content of Japanese Patent Application No. 2017-135698 on which the priority of the present application is based.
  • At least one of the plurality of fiber layers constituting the rim has an orientation pattern different from that of at least one other fiber layer.
  • the thickness of the fiber layer the number of laminations
  • the orientation direction of the fibers are adjusted according to the strength required for each part of the rim part. It is possible to provide a vehicle wheel having various strengths.
  • the subject except having mentioned above, a structure, and an effect are clarified by description of the following embodiment.
  • FIG. 5B is a cross-sectional view taken along line Y-Y 'of FIG. 5B.
  • FIG. 9 is a view for explaining a process of manufacturing a rim portion of a vehicle wheel by turning back the cylindrical fiber-reinforced resin material shown in FIG. 8.
  • FIG. 9 is a view for explaining a process of manufacturing a rim portion of a vehicle wheel by turning back the cylindrical fiber-reinforced resin material shown in FIG. 8.
  • FIG. 2 is a side view of an apparatus for laying a continuous fiber bundle on the outer peripheral surface of a mold of a vehicle wheel.
  • FIG. 1 is a front view of an apparatus for laying a continuous fiber bundle on an outer peripheral surface of a mold of a vehicle wheel. It is a figure explaining the lamination structure data used by a control part. It is a figure explaining shape data used by a control part. It is a figure which shows the operation
  • FIG. 3 is a cross-sectional view of the rim portion 300 of the vehicle wheel according to the present embodiment.
  • the rim portion 300 is manufactured using a fiber reinforced resin material for the purpose of weight reduction.
  • FIG. 4 shows an example of a load acting on an aluminum vehicle wheel.
  • the load distribution shown in FIG. 4 is measured with a strain gauge or the like, for example, by measuring the load applied to the rim based on a rotating bending fatigue test, a radial load endurance test, and an impact test defined by a vehicle light alloy wheel test conference.
  • the load can be synthesized and created.
  • the load distribution shown in FIG. 4 can also be created by simulation using commercially available structural analysis software such as structural analysis software Abaqus manufactured by Dassault Systès.
  • the magnitude of the load generated on the vehicle wheel differs depending on the place, and the acting direction is also different.
  • the rim portion 300 made of the fiber reinforced resin material in the vehicle wheel according to the present embodiment has fiber layers a to g as shown in FIG. Has a laminated structure, and at least one of the plurality of fiber layers a to g (for example, fiber layers a and b, g: fiber layers having an orientation pattern in the fiber direction of + 45 ° and ⁇ 45 °) are It is configured with an orientation pattern different from at least one other fiber layer (for example, a fiber layer c, a fiber layer having an orientation pattern of fiber orientation of f: 0 ° and 90 °).
  • each of the plurality of fiber reinforced resin materials including the fiber layers a to g in order to appropriately cover and manufacture each of the plurality of fiber reinforced resin materials including the fiber layers a to g, at the boundary where the load acting on the rim portion changes The area in which the material for fiber reinforced resin is laid is divided, and by setting the fiber orientation direction and the number of layers (thickness) for each divided area, good strength is obtained for each part of the divided area. Is realized.
  • the region is divided into seven parts at the boundary where the load changes, based on the load acting on the aluminum vehicle wheel in FIG.
  • the shape that can be divided into a simple cylindrical shape that is, in FIG. 3, the rim portion 300 is used with a plane perpendicular to the central axis I, with the boundary at which the load changes as a standard, the regions 301A, 301B, 301C, 301C, 301D, 301E, 301F , And divided into seven areas of area 301G.
  • the laminated structure of the fiber reinforced resin material including the fiber layers different in the number of laminations and the fiber direction for each region was calculated from the maximum load for each region and the strength of the fiber reinforced resin material according to the failure judgment criterion formula.
  • a commercially available strength calculation software HyperSizer manufactured by Coreia Research Inc. was used. It was assumed that T800S / # 3900-2B having a thickness of 0.2 mm, which is a commercially available prepreg manufactured by Toray Industries, Inc., is used as the fiber reinforced resin material.
  • the laminated structure L indicates the number of laminated fiber layers and the fiber orientation in the lower cross-sectional portion 302 of the rim portion 300.
  • the laminated structure L is composed of seven layers of fiber reinforced resin materials from the fiber layer a to the fiber layer g. That is, when the direction of the central axis I is 0 °, the fiber layer a which is the innermost layer has an orientation pattern of + 45 ° fiber direction and ⁇ 45 ° fiber direction, and a fiber reinforced resin having the fiber layer a The material is cylindrically laid on the area 301C.
  • the fiber layer b laminated on the outside of the fiber layer a has an orientation pattern of + 45 ° fiber direction and ⁇ 45 ° fiber direction with respect to the direction of the central axis I, and a fiber reinforced resin material having the fiber layer b Are laid over the area 301B and the area 301C.
  • the fiber layer c laminated on the outer side of the fiber layer b has an orientation pattern of the fiber direction of 0 ° and the fiber direction of 90 °, and the fiber reinforced resin material having the fiber layer c is a region 301 B, a region 301 C, a region It is covered for 301D.
  • the fiber layer d laminated on the outside of the fiber layer c has a fiber direction of + 45 ° and -45 ° with respect to the regions 301A and 301B, and a fiber direction of 0 ° and 90 ° with respect to the region 301C, with respect to the region 301D.
  • the fiber layer e laminated on the outside of the fiber layer d has an orientation pattern of + 45 ° and ⁇ 45 ° in the fiber direction from the region 301A to the region 301D and an orientation pattern of 0 ° and 90 ° in the fiber direction from the region 301E to the region 301G
  • the fiber reinforced resin material having the fiber layer e is covered in the regions 301A to G.
  • the fiber layer f laminated on the outside of the fiber layer e has an orientation pattern in the fiber direction of 0 ° and 90 °, and the fiber reinforced resin material having the fiber layer f covers the entire area of the area 301A to the area 301G. It is packed.
  • the fiber layer g laminated on the outer side of the fiber layer f has an orientation pattern of + 45 ° and -45 ° in the fiber direction from the region 301A to the entire region 301G, and a fiber reinforced resin material having the fiber layer g Are spread over the entire area of the area 301A to the area 301G.
  • the fiber layers a to d are disposed only in a partial region in the direction along the central axis I of the vehicle wheel, and the fiber layers are laminated in the partial region
  • the number is greater than the number of fiber layers in the other regions.
  • the number of stacked layers (five layers) in the region 301D is larger than the number of stacked layers (three layers) in the region 301E.
  • each of the regions 301A to 301G set in the rim portion 300 is configured by the number of laminated fiber layers corresponding to the load and the orientation pattern in the fiber direction, a vehicle wheel having appropriate strength is obtained be able to.
  • a vehicle wheel having appropriate strength is obtained be able to.
  • two or more partial fiber layers (partial fiber layers d1, d2 and d3 and partial fiber layers e1 and e2 respectively) having different orientation patterns in the fiber direction, as in the fiber layers d and e.
  • a vehicle wheel having more appropriate strength can be obtained.
  • the specific fiber layer “Consisting of a fiber layer and an orientation pattern different from each other” means that each of two or more partial fiber layers contained in a specific fiber layer is different from at least one other fiber layer (other at least one fiber layer is When two or more partial fiber layers whose orientation patterns in the fiber direction are different from each other are included, it means that they are configured in an orientation pattern different from any one of the partial fiber layers).
  • a partial fiber layer e1 having an orientation pattern of fiber directions of + 45 ° and -45 ° in the fiber layer e is a fiber having an orientation pattern of 0 ° and 90 ° fiber directions, which is at least one other fiber layer. It is comprised by the orientation pattern different from the layer f.
  • the partial fiber layer e2 having an orientation pattern of 0 ° and 90 ° in the fiber direction is different from the fiber layer g having an orientation pattern of fiber directions of + 45 ° and ⁇ 45 °, which is at least one other fiber layer. It is composed of different alignment patterns.
  • FIG. 5A is a conceptual diagram for illustrating a method of manufacturing a rim portion 300 of a vehicle wheel having the laminated structure L of FIG. 3 using a fiber-reinforced resin material.
  • a cylindrical fiber reinforced resin material prepreg
  • fibers fiber bundles
  • the cylindrical fiber reinforced resin material 303 a in FIG. 5A is a material for forming a fiber reinforced resin material including the fiber layer a of the laminated structure L shown in FIG. 3, and in the fiber direction of + 45 ° and ⁇ 45 °.
  • cylindrical fiber reinforced resin materials 303b to 303g having alignment patterns in the fiber direction including the fiber layers b to g are similarly prepared.
  • the diameter of the cylindrical fiber reinforced resin material is formed so as to gradually increase in consideration of the thickness which has been laminated on the inner side.
  • the rim portion having the laminated structure L of FIG. 3 is formed by overlapping the cylindrical fiber reinforced resin materials 303 a to 303 g in order from the inside to the outside in the order of the fiber layers a to g.
  • FIG. 5B is a view showing an outline of a rim 304 having a laminated structure L.
  • FIG. 5C is a cross-sectional view taken along the line Y-Y 'of FIG. 5B, and cylindrical fiber reinforced resin materials 303a to 303g are sequentially laminated to constitute the laminated structure L of FIG.
  • the original mold 304 of the rim portion of FIG. 5B is placed in a mold shown in FIG. 11 described later, the sheet is covered, and the interior is vacuumed to carry out a curing process.
  • the rim portion 300 of the wheel can be obtained.
  • FIG. 5C is a cross-sectional view of the rim 304, but the rim 300 formed by curing the arch 304 has the same configuration.
  • FIG. 5D is a conceptual diagram for describing an embodiment of a fiber-reinforced resin material used to construct a laminated structure L.
  • the fiber-reinforced resin material is a fiber-reinforced resin material, and in the fibers, fiber bundles composed of a large number of single fibers are usually arranged with directionality and configured in various orientation patterns. As shown in FIG.
  • the fiber-reinforced resin material of (a) or (b) having a woven fabric configuration in which a horizontally oriented fiber bundle and a longitudinally oriented fiber bundle are knitted is called a plain weave material, and a reference direction Assuming that the direction of the central axis I of the rim portion is 0 °, the plain weave material of (a) corresponds to a material for fiber reinforced resin knitted with fiber bundles of 0 ° and 90 °, and the plain weave material of (b) Is equivalent to a fiber reinforced resin material knitted with + 45 ° and -45 ° fiber bundles.
  • a tape material (one-way material) 305A consisting of a plurality of fiber bundles in the 90 ° direction and a tape material 305B (one-way material) consisting of a plurality of fiber bundles in the 0 ° direction
  • the plain weave material (a) may be substituted by the composite material (c).
  • a tape material (one direction material) 305C made of a plurality of fiber bundles in the 45 ° direction
  • a tape material (one direction material) 305D made of a plurality of fiber bundles in the ⁇ 45 ° direction are overlapped with respect to the reference direction of 0 °.
  • the synthetic material of (d) configured as described above has the same fiber directional characteristics as the plain weave material of (b), so the plain weave material of (b) may be substituted with the synthetic material of (d).
  • the plain weave materials of (a) and (b) are easy to handle as a sheet material without fear of unraveling of the fibers because the fibers are knitted.
  • the composites of (c) and (d) in which unidirectional materials are combined are not restrained between fibers because the fibers are not knitted, but are easily released.
  • a rim using an apparatus described later in FIGS. 12A and 12B In the production of the part, fibers are laid on a mold to sequentially build a laminated structure, so the fiber configuration of the synthetic material of (c) and (d) is easier to construct a laminated structure.
  • the fibers to be used are not particularly limited, and various fibers such as synthetic fibers and glass fibers can be used.
  • carbon fibers are used. Although it is desirable to use various carbon fibers such as PAN-based and pitch-based carbon fibers as carbon fibers, it is preferable to use long fibers, preferably continuous fibers. A vehicle wheel to which continuous fibers are applied will be described in detail in a third embodiment described below.
  • the rim portion 300 of the present embodiment has a structure in which each of the fiber reinforced resin materials 303 a to 303 g having the fiber layers a to g is laminated as shown in FIG. At least one of a to g is configured with an orientation pattern different from that of at least one other fiber layer, as shown in FIG. Then, in the present embodiment, the load applied to the rim portion 300 is checked by structural analysis or the like, and the rim portion 300 is divided into a plurality of regions at the boundary where the load changes, and each divided region, that is, for each portion of the rim portion 300
  • the layered structure L is designed by setting the number of laminated fiber layers and the fiber orientation in accordance with the respective loads.
  • this laminated structure L by laminating a plurality of substantially cylindrical fiber layers of different orientation patterns in the direction intersecting with the central axis of the vehicle wheel, it corresponds to the load acting from multiple directions, and for each part It is possible to produce a vehicle wheel with good strength set appropriately.
  • FIG. 6 is a cross-sectional view of the rim portion 400 of the vehicle wheel according to the present embodiment, which corresponds to FIG. 3 of the first embodiment.
  • the rim portion 400 in the present embodiment has a structure in which the fiber layers a to g are laminated as in the first embodiment described above, and at least one of the plurality of fiber layers a to g (for example, the fiber layer a , B, g: fiber layers having an orientation pattern of fiber directions of + 45 ° and -45 °, and at least one other fiber layer (eg, fiber layer c, f: orientation of fiber directions of f: 0 ° and 90 °)
  • the fiber layer having a pattern is composed of different orientation patterns. Then, at the boundary where the load acting on the rim changes, the area in which the fiber reinforced resin material is placed is divided into seven areas, and the direction of the fibers is set for each of the divided areas, so that the area is appropriately set. It has achieved good strength.
  • the laminated structure L in the present embodiment is formed of seven layers of fiber reinforced resin materials from the fiber layer a to the fiber layer g, and the fiber layer a which is the innermost layer has a direction of the central axis I of 0 °.
  • the fiber reinforced resin material having the fiber direction of + 45 ° and the fiber direction of -45 ° and having the fiber layer a is spread from the area 301A to the entire area of the area 301G.
  • the fiber layer b laminated on the outer side of the fiber layer a also has an orientation pattern of + 45 ° fiber direction and ⁇ 45 ° fiber direction with respect to the direction of the central axis I, and a fiber having the fiber layer b
  • the reinforced resin material is covered from the area 301A to the entire area of the area 301G.
  • the fiber layer c laminated on the outer side of the fiber layer b has an orientation pattern of the fiber direction of 0 ° and the fiber direction of 90 °, and the fiber reinforced resin material having the fiber layer c has all the regions 301A to 301G The area is covered.
  • the fiber layer d laminated on the outer side of the fiber layer c is a partial fiber layer d1 having a fiber direction of + 45 ° and -45 ° with respect to the regions 301A and 301B, and a fiber direction of 0 ° and 90 ° with respect to the region 301C.
  • Partial fiber layer d2 having a fiber direction of + 45 ° and -45 ° again for the region 301D, and a portion having a fiber direction of 0 ° and 90 ° again for the region 301E-G
  • the fiber reinforced resin material having the fiber layer d4 and four partial fiber layers d1 to d4 each having a different orientation pattern, and having the fiber layer d, is covered from the area 301A to the entire area of the area 301G. .
  • the fiber layers e to g sequentially laminated on the outer side of the fiber layer d have the same configuration as the fiber layers e to g in the first embodiment.
  • the fiber layer (fiber layers a to d in the first embodiment) disposed only in a partial region in the direction along the central axis I of the vehicle wheel is not provided.
  • All of the fiber layers ag are disposed throughout the regions 301A-G.
  • a laminated structure is constructed in which the orientation of the fibers is adjusted in accordance with the load applied to the vehicle wheel, and all layers of the fiber layer are at the central axis I of the vehicle wheel.
  • the overall weight is increased by the area of the fiber layers a to d as compared with the vehicle wheel of the first embodiment, since it is disposed over the entire region in the direction along the vehicle wheel, it is for the vehicle of the first embodiment It is possible to obtain a vehicle wheel having excellent strength as well as the wheel. Also, in a region divided in the direction along the central axis I of the rim 400, as in the fiber layer d composed of the partial fiber layers d1 to d4 and the fiber layer e composed of the partial fiber layers e1 and e2.
  • FIG. 7 is a cross-sectional view of the rim portion of the vehicle wheel according to the present embodiment.
  • the rim portion 600 in the vehicle wheel according to the present embodiment is a fiber reinforced resin material formed by laminating fiber reinforced resin materials 603 a to 603 g each having a plurality of fiber layers a to g.
  • at least one of the plurality of fiber layers a to g is configured in an orientation pattern different from at least one other fiber layer.
  • This laminated structure corresponds to the laminated structure L of FIG.
  • a gap is provided between adjacent fiber reinforced resin materials in order to facilitate understanding of the laminated state of the fiber reinforced resin material. There is almost no gap between adjacent fiber reinforced resin materials, and each fiber reinforced resin material is in close contact.
  • the rim portion 600 of FIG. 7 includes two adjacent fiber layers (for example, the fiber layer a contained in the fiber-reinforced resin material 603a and the fiber layer b contained in the fiber-reinforced resin material 603b).
  • the laminated fiber layers a to g are formed by continuous fiber bundles (continuous fibers).
  • the rim portion having the laminated structure L of FIG. 3 can be constructed by continuously twisting the fiber reinforced resin material (fiber layer).
  • the fiber reinforced resin material used for the vehicle wheel is a resin material reinforced with fibers, and there are two methods depending on the time of resin impregnation (injection) to the fibers. Specifically, a method of laminating a fiber reinforced resin material (prepreg) impregnated with uncured resin in advance on a fiber layer formed using fiber bundles, and a plurality of fiber layers formed using only fiber bundles There is a method in which uncured resin is injected (impregnated) into a fiber layer which is laminated and later laminated using a mold or the like. In either case, a rim portion made of a fiber reinforced resin material can be obtained by curing treatment of the resin. First, the case where the rim portion is manufactured using the former prepreg will be described.
  • FIG. 8 is a view showing a material for fiber reinforced resin (prepreg) impregnated with uncured resin, which is used for manufacturing a rim portion of a vehicle wheel according to the present embodiment.
  • the fiber-reinforced resin material 603 used for manufacturing the rim portion is cylindrical and has a plurality of orientation patterns.
  • the cylindrical fiber reinforced resin material 603 can be produced by producing an orientation pattern using continuous fibers by a blading method. By twisting and folding this cylindrical fiber-reinforced resin material 603, a laminated structure L shown in FIG. 3 can be realized.
  • a cylindrical fiber reinforced resin material 603 is composed of fiber reinforced resin materials 603 a to 603 g having a predetermined orientation pattern and folded parts 610 a to 610 f.
  • the orientation patterns of the fiber reinforced resin materials 603a to 603g are determined for each of the fiber layers a to g based on the laminated structure L of FIG. That is, the fiber layer a having the fiber orientation orientation pattern of + 45 ° and -45 ° in FIG. 3 is included in the fiber-reinforced resin material 603a of FIG.
  • the fiber layer b forms three fiber layers d1 to d3 which are different from each other in the fiber orientation direction pattern in the fiber direction.
  • the fiber layer e is made of two parts 611d and 611e which form partial fiber layers e1 and e2 having different orientation patterns in the fiber direction to the fiber reinforced resin material 603d consisting of the parts 611a, 611b and 611c
  • the fiber layer f is contained in the material for fiber reinforced resin 603f
  • the fiber layer g is contained in the material for fiber reinforced resin 603g.
  • folded portions are interposed so as to be easily folded back, respectively: folded portions 610a, folded portions 610b, folded portions 610c, folded portions 610d, folded portions 610e,
  • the folded back portion 610f connects between the fiber reinforced resin materials 603a to 603g.
  • the material is reinforced by folding back (bellows weave) sequentially by folding back at the folded portions 610a to 610f.
  • folding back bellows weave
  • a prototype 604 of the rim portion of FIG. 7 having the laminated structure L of FIG. 3 is constructed.
  • FIGS. 9A and 9B are conceptual diagrams illustrating a process of manufacturing a rim portion of a vehicle wheel having the laminated structure L of FIG. 3 by turning back the cylindrical fiber reinforced resin material 603 shown in FIG.
  • the cylindrical fiber-reinforced resin material 603 is valley-folded at the folded portion 610a and mountain-folded at the folded portion 610b, so that the fiber-reinforced resin material 603a and the fiber-reinforced resin material 603b are fibers.
  • the inside of the reinforced resin material 603c is serpentine (bellows fold), and a laminated structure of the fiber layer a, the fiber layer b, and the fiber layer c is obtained from the inside.
  • step 2 valley fold at the fold back portion 610c and mountain fold at the fold back portion 610d to obtain a laminated structure in which the inside is serpentine (bellows fold) is obtained, and further at step 3, the fold back portion 610e By performing valley folding and mountain folding at the folded back portion 610f, a mold 604 of the rim portion in which the respective fiber layers are folded in a serpentine manner (belly fold) can be obtained.
  • FIG. 9B shows a process in which the material for fiber reinforced resin is folded at the position of the turn-back portion in step 1 of FIG. 9A.
  • the fiber-reinforced resin material 603a and the fiber-reinforced resin material 603b are sequentially folded inside the fiber-reinforced resin material 603 by being valley-folded by the fold-back portion 610a and mountain-folded by the fold-back portion 610b.
  • a laminated structure of a, b and c is constructed.
  • the original mold 604 is placed in a mold shown in FIG. 11 described later, the sheet is covered, and the inside is vacuumed to carry out a curing process, whereby the rim portion 600 of the target vehicle wheel can be obtained.
  • a cylindrical fiber reinforced resin material having a plurality of orientation patterns is prepared as opposed to the method of laying in parallel in the axial direction and further winding the constraining material around the axis.
  • FIG. 10 is an enlarged view of the folded back portion 610a in FIG. 7 and is a view for explaining an outline of the folded back portion.
  • the folded back portion 610a preferably includes, at the folded back position, a constrained fiber bundle 612 wound in the circumferential direction of the rim portion.
  • the restraining fiber bundle 612 is wound in the circumferential direction of the rim portion 600 to restrain the fiber bundle 613. After being restrained by the restraining fiber bundle 612, the fiber bundle 613 reverses the traveling direction and advances the fiber bundle 613 in the reverse direction.
  • the folding position is fixed by the restraining fiber bundle 612, even if tension is applied to the fiber bundle 613 in the reverse direction by folding, the folding position does not shift, and a highly accurate laminated structure can be constructed.
  • FIG. 11 illustrates an outline of a mold used when manufacturing a vehicle wheel.
  • a mold is used in the case of impregnating a fiber bundle with a resin, or in a curing process, and is indispensable for forming a rim portion.
  • a mold 1000 used in the manufacture of a vehicle wheel is composed of a mold left 1001 and a mold right 1002, and the mold left 1001 and the mold right 1002 are fitted at the connection position 1003. It is combined. Since the cylindrical rim prototypes 304 and 604 having the laminated structure described in FIGS. 5B and 9A are curved outward toward both ends, first, they are installed on the mold left 1001, and then the mold right By fitting 1002, the rim molds 304 and 604 can be installed in the mold.
  • a sealing sheet is covered and the inside is vacuumed and then cured by an autoclave to obtain gold.
  • the mold 1000 is divided into a mold left 1001 and a mold right 1002 and demolded to obtain rim parts 300 and 600 of a desired lightweight vehicle wheel.
  • FIGS. 12A and 12B show a schematic configuration of an apparatus for laying a continuous fiber bundle on the outer peripheral surface of a mold of a vehicle wheel
  • FIG. 12A is a side view of the apparatus
  • FIG. 12B is a front view.
  • the control unit 1101 is connected to the drive unit 1102 and the fiber laying unit 1103 by a connection line 1104 indicating an interface, and controls the drive unit 1102 and the fiber laying unit 1103 based on layered structure data and shape data described later, Spread the fiber bundle.
  • the drive unit 1102 includes a drive shaft 1105, and a mold 1000 is connected to the drive shaft 1105.
  • the drive unit 1102 adjusts the position of the mold 1000 by moving the drive shaft 1105 back and forth along the center line J of the shaft according to a command from the control unit 1101, and determines the position at which the fiber bundle is to be spread.
  • the fiber laying unit 1103 has four types of laying devices 1106a, 1106b, 1106c, and 1106d.
  • a plurality of nozzles 1107 are disposed in each device, and a fiber bundle is supplied to the nozzles 1107 and laid in a mold. Do.
  • the fiber bundle is wound around the reel 1108, and the fiber bundle is supplied to the nozzles 1107 of the respective laying devices of the fiber laying portion 1103.
  • FIG. 13 is a conceptual diagram for explaining layered structure data used in the control unit 1101.
  • the laminated structure data in FIG. 13 is created based on the laminated structure L in which the number of laminated layers of fibers and the orientation direction are set according to the load described in FIG.
  • the layered structure data includes area identifiers A to G for identifying the areas 301A to 301G (see FIG. 3) divided at the boundary where the load changes, and fiber bundles corresponding to the fiber layers a to g.
  • the start symbol is S
  • the end symbol is E
  • the turn back indication symbols are A
  • the fold is B. If these symbols are described on the left side, they mean the left side in FIG. 12A, and if they are described on the right side, they mean the right side in FIG. 12A.
  • the start symbol S is described on the left side, it means to start from the left side of the area 301C
  • the end symbol E is described on the right side, so it means to end on the right side of the area 301G.
  • FIG. 14 is a conceptual diagram for explaining shape data used by the control unit 1101.
  • the shape data is composed of data indicating the shape of the laminated structure and data indicating the shape of the mold.
  • the shape data of the laminated structure has information on the divided area and the thickness of the laminate
  • the shape data of the mold has information on the connection element position, and indicates the appropriate position to the drive unit 1102 and the fiber laying unit 1103.
  • the shape data is three-dimensional shape data created by commercially available CAD software, for example, Solidworks manufactured by Dassault Systèmes.
  • each of the laying devices 1106 a to 1106 d is driven by an instruction of the control unit 1101 and coats the fiber bundle on the mold 1000 in conjunction with the operation of the drive unit 1102.
  • the laying devices 1106a to 1106d have different roles depending on the direction in which the drive shaft 1105 is moving.
  • FIG. 15 shows the operation contents of the laying devices 1106 a to 1106 d for each traveling direction and orientation pattern of the drive shaft 1105.
  • the laying device 1106 b is interlocked with the drive unit 1102 and the center line J
  • the laying device 1106 c rotates the fiber bundle in the + 45 ° direction counterclockwise with respect to the center line J and lays the fiber bundle in the ⁇ 45 ° direction on the mold 1000.
  • the laying device 1106 d lays the constrained fiber bundle in the circumferential direction of the mold 1000 at the turn-back portion.
  • the laying device 1106 b rotates clockwise with respect to the center line J in conjunction with the drive unit 1102
  • the laying device 1106 c rotates the fiber bundle in the + 45 ° direction counterclockwise with respect to the center line J and lays the fiber bundle in the ⁇ 45 ° direction in the mold 1000.
  • the laying device 1106 a lays the restraining fiber bundle in the circumferential direction of the mold 1000 at the turning portion.
  • the laying device 1106b lays fiber bundles in the circumferential direction of the mold 1000 in conjunction with the drive unit 1102
  • the preceding laying device 1106c lays the fiber bundle in the 90 ° direction in the mold 1000 by supplying the fiber bundle without rotating it.
  • the laying device 1106 d lays the constrained fiber bundle in the circumferential direction of the mold 1000 at the turn-back portion.
  • the laying device 1106 c lays the fiber bundle in the circumferential direction of the mold in conjunction with the drive unit 1102
  • the preceding laying device 1106b lays the fiber bundle in the 90 ° direction in the mold in the 0 ° direction, which supplies the fiber bundle without rotating.
  • the laying device 1106 a lays the restraining fiber bundle in the circumferential direction of the mold 1000 at the turning portion.
  • FIG. 16 is a conceptual diagram for explaining an operation example of the apparatus for laying the fiber bundle on the outer peripheral surface of the mold of the vehicle wheel described with reference to FIGS. 12A and 12B.
  • step 1 the apparatus first performs an operation for start on the left side of the area 301C shown in FIG. 3 in accordance with the S symbol of the information in the fiber layer identification symbol a and the area identifier C in FIG. This is because the drive shaft 1105 is sent to the right from the position of the corresponding mold 1000, and the fiber bundles L1 and L2 are covered by the laying devices 1106b and 1106c, and the restrained fiber bundles are circumferentially placed thereon by the laying device 1106d. The fiber bundle is restrained to the mold 1000. Then, by performing turning back, the start processing is finished, and the preparation for constructing a laminated structure is completed.
  • step 2 the apparatus carries out the processing of +/- 45 ° in the fiber layer identification symbol a and the area identifier C in FIG. 13 and sends the drive shaft 1105 to the left side, and the fiber direction is obtained by the laying devices 1106b and 1106c.
  • the fiber bundle of +/ ⁇ 45 ° is supplied to form a fiber layer a, and the constraining fiber bundle is circumferentially placed by the laying device 1106 a according to the folding symbol A in the fiber layer identification symbol a and the region identifier C in FIG.
  • the fiber bundle is tightened to form a folded back portion 614a.
  • a resin material is injected into the formed fiber layer a and the folded portion 614a and cured to form the fiber reinforced resin material 603a and the folded portion 610a shown in FIG. The same applies to the department).
  • step 3 in the fiber layer identification symbol b of FIG. 13, the process is performed in the order of the area identifier C and the area identifier B to form the fiber layer b (fiber-reinforced resin material 603b after curing), A folded portion 614 b (folded portion 610 b after curing) is formed at the left end of the region 301 B.
  • step 4 in the fiber layer identification symbol c of FIG. 13, the process is performed in the order of the area identifier B, the area identifier C, and the area identifier D to form a fiber layer c (fiber-reinforced resin material 603c after curing).
  • a folded back portion 614 c folded back portion 610 c after curing is formed at the right end of 301 D.
  • step 5 in the fiber layer identification symbol d of FIG. 13, the process is performed in the order of the area identifier D, the area identifier C, the area identifier B, and the area identifier A, and the fiber layer d (fiber reinforced resin material 603d after curing)
  • the folded portion 614 d (the folded portion 610 d after curing) is formed at the left end of the region 301 A.
  • the laying devices 1106b and 1106d follow the operation of the respective orientation patterns in the case of advancing in the left direction described in FIG. Stack on the mold 1000.
  • step 6 in the fiber layer identification code e of FIG. 13, processing is performed in the order of the area identifiers A to G to form the fiber layer e (the fiber reinforced resin material 603e after curing), and the folded portion at the right end of the area 301G. 614 e (turned portion 610 e after curing) is formed. Also here, since the orientation patterns are different between the region 301D and the region 301E, the laying devices 1106b and 1106c follow the operation of each orientation pattern when advancing in the right direction described in FIG. Let's stack.
  • step 7 in the fiber layer identification symbol f of FIG. 13, the process is performed in the order of the area identifiers G to A to form the fiber layer f (the fiber reinforced resin material 603f after curing) and turn back at the left end of the area 301A. 614 f (folded portion 610 f after curing) is formed.
  • step 8 in the fiber layer identification code g of FIG. 13, the process is performed in the order of the area identifiers A to G to form the fiber layer g (the fiber reinforced resin material 603 g after curing), and the end process is performed on the right of the area 301G. Is completed, and fabrication of the rim part prototype using fiber bundles not impregnated with resin is completed.
  • the outer side of the prototype having the fiber layers a to g formed by the continuous fiber bundle and the folded portions 614a to 614f is covered with a sealing sheet or the prototype is placed in a mold for resin injection,
  • a vehicle wheel having the rim portions 300 and 600 made of the fiber reinforced resin material having the intended laminated structure shown in FIGS. 3 and 7 can be obtained. .
  • a wheel 1701 shown in FIG. 17 is fixed to a rigid mount M so that the central axis I of the wheel 1701 forms an angle ⁇ of 13 ° with the vertical direction V, and an impact force is applied
  • the rigid surface P was brought into contact with the rim flange upper end 1703 of the wheel 1701, and a model was applied in which a static load K corresponding to a case where a weight of 500 kg was dropped from a height of 200 mm was applied to the rigid surface P.
  • FIG. 18 divides the analysis region into finite elements, and when the material strength in the element i is Ti and the stress generated by the static load is ⁇ i, the failure judgment value Di of the element i is obtained by the following equation.

Abstract

The objective of the present invention is to provide a vehicle wheel which has a laminated structure with a fiber layer thickness and fiber orientation that are appropriate with respect to a load acting on the vehicle wheel, and which has good strength. This vehicle wheel includes a rim portion 300 comprising a resin reinforced using fibers, characterized in that the rim portion 300 has a structure in which a plurality of layers of substantially cylindrically shaped fiber layers a to g are laminated together, and at least one of the fiber layers a to g is configured with an orientation pattern that is different from at least one other fiber layer.

Description

車両用ホイールVehicle wheel
 本発明は、車両用ホイールに関する。特に、繊維で強化された樹脂からなるリム部を有する車両用ホイールに関する。 The present invention relates to a vehicle wheel. In particular, the present invention relates to a vehicle wheel having a rim portion made of fiber reinforced resin.
 繊維強化樹脂材は、例えばカーボン繊維をエポキシ樹脂等で固めた材料であり、金属材に比べ高強度かつ高剛性である上に、金属材の4分の1程度の重さしかなく、繊維強化樹脂材を用いた軽量化の試みが様々な分野で行われている。例えば、車両用アルミホイールでは、部分的に繊維強化樹脂材で置き換えられた軽量化ホイールが開発され、市販されている。 The fiber reinforced resin material is, for example, a material obtained by solidifying a carbon fiber with an epoxy resin or the like, has high strength and high rigidity as compared with a metal material, and only weighs about 1⁄4 of the metal material. Attempts to reduce the weight using resin materials have been made in various fields. For example, in the case of aluminum wheels for vehicles, lightweight wheels partially replaced with fiber reinforced resin materials have been developed and are commercially available.
 図1Aは、軽量化した車両用ホイールの概念を説明する図である。図1Aにおいて、軽量化した車両用ホイール100は、これまでアルミニウム材を用いていた部分を繊維強化樹脂材に置き換えたリム部101と、アルミニウム製のスポーク102で構成されており、従来のホイールに比べ20%から60%程度の軽量化が可能である。図1Bは、図1AのX-X’断面図である。図1Bに示すように、繊維強化樹脂材のリム部101とアルミニウム製のスポーク102とは、接続部103において接着剤もしくはボルトにより接合され、軽量化した車両用ホイール100となる。 FIG. 1A is a view for explaining the concept of a lightweight vehicle wheel. In FIG. 1A, the vehicle wheel 100 which has been reduced in weight is constituted by a rim portion 101 in which a portion which used an aluminum material so far is replaced by a fiber reinforced resin material, and spokes 102 made of aluminum. A weight reduction of approximately 20% to 60% is possible. FIG. 1B is a cross-sectional view taken along the line X-X 'of FIG. 1A. As shown in FIG. 1B, the rim portion 101 of the fiber reinforced resin material and the spokes 102 made of aluminum are joined by an adhesive or a bolt at the connection portion 103 to form a lightweight vehicle wheel 100.
 ところで、繊維強化樹脂材は、荷重方向と繊維方向が一致する場合に高い強度や剛性を示すが、荷重方向と繊維方向が異なると、著しく強度が損なわれる性質がある。それゆえ、工業用製品の一部を繊維強化樹脂材によって置き換える場合は、荷重のかかる方向に合わせて繊維強化樹脂材の厚みや繊維の配向を設定する必要がある。 By the way, although a fiber reinforced resin material shows high intensity and rigidity, when a load direction and a fiber direction correspond, when a load direction and a fiber direction differ, there is a property to which strength is remarkably lost. Therefore, when a part of the industrial product is replaced with the fiber reinforced resin material, it is necessary to set the thickness of the fiber reinforced resin material and the orientation of the fibers in accordance with the direction of load.
 図2は、繊維方向と荷重方向による繊維強化樹脂材の強度の違いを説明するための図であり、繊維強化樹脂材として市販の東レ社製T800S/#3900-2Bを用い、繊維強化樹脂材200にかかる荷重方向と、繊維強化樹脂材200の強度との関係をグラフに示したものである。 FIG. 2 is a view for explaining the difference in the strength of the fiber-reinforced resin material depending on the fiber direction and the load direction, using a commercially available Toray T800S / # 3900-2B fiber-reinforced resin material as the fiber-reinforced resin material. The graph shows the relationship between the load direction applied to 200 and the strength of the fiber-reinforced resin material 200.
 図2のグラフに示すように、繊維方向Hと同じ方向の引張り荷重がかかる場合には(0°方向荷重)、繊維強化樹脂材200の引張り強さは3000MPaと高いのに対し、繊維方向Hから45°ずれた方向に沿って繊維強化樹脂材200に引張り荷重をかけると(45°方向荷重)、繊維強化樹脂材200の引張り強さは著しく低下し、繊維方向Hから90°ずれた方向に引張り荷重をかけると(90°方向荷重)、繊維による強化の効果は得られず、引張り強度は70MPaと小さな値となる。このように、繊維強化樹脂材を適用するには、繊維強化樹脂材に働く荷重の方向を考慮し、荷重方向に繊維方向を合わせる必要がある。 As shown in the graph of FIG. 2, when a tensile load in the same direction as the fiber direction H is applied (load in the 0 ° direction), the tensile strength of the fiber reinforced resin material 200 is as high as 3000 MPa while the fiber direction H When a tensile load is applied to the fiber-reinforced resin material 200 along the direction deviated from the direction 45 ° (load in the direction 45 °), the tensile strength of the fiber-reinforced resin material 200 decreases significantly, and the direction deviated 90 ° from the fiber direction H When a tensile load is applied to it (a load in the direction of 90 °), the effect of fiber reinforcement is not obtained, and the tensile strength becomes a small value of 70 MPa. As described above, in order to apply the fiber reinforced resin material, it is necessary to match the fiber direction with the load direction in consideration of the direction of the load acting on the fiber reinforced resin material.
 繊維強化樹脂材を適用して、車両用ホイールのリム部を製造する従来技術として、シートワインディング法が知られている。シートワインディング法は、薄いシート状の繊維強化樹脂用素材を、金型の回りに何枚も重ねて積層成形し、製造する方法である。本方法は、薄いシート状の繊維強化樹脂用素材を金型に巻きつけ、シートの切れ目を次のシートで覆いつつ擬似的に連続した円筒形状を成形するため、シートの切れ目を覆っている部分で強度が低下し、また段差による厚さの不均一性が、振動や破壊の原因となる。この問題を解決するために、特許文献1に記載のホイールのリム製造方法では、連続繊維強化樹脂材(本願における繊維強化樹脂用素材に該当する。)をリム成形用型の外周面に対して軸方向に並列に敷詰め、さらに軸を中心に拘束材を巻回することで、凹形状のホイールのリム型に対し精度良く積層させている。この方法では連続繊維強化樹脂材をリム成形用型の外周面に対して敷詰めるため、繊維の切れ目が無く、切れ目による不具合が解決され、シームレスな円筒形状を成形することができる。 A sheet winding method is known as a prior art of manufacturing a rim portion of a vehicle wheel by applying a fiber reinforced resin material. The sheet winding method is a method of laminating and molding a thin sheet-like material for a fiber-reinforced resin many times around a mold and manufacturing it. In this method, a thin sheet-like fiber-reinforced resin material is wound on a mold, and the sheet is covered with a cut so as to form a pseudo-continuous cylindrical shape while covering the cut of the sheet with the next sheet. In this case, the strength is lowered, and the uneven thickness due to the step is a cause of vibration and breakage. In order to solve this problem, in the method for manufacturing a rim of a wheel described in Patent Document 1, a continuous fiber reinforced resin material (corresponding to a material for fiber reinforced resin in the present application) is applied to the outer peripheral surface of a rim forming mold. By laying in parallel in the axial direction and further winding a constraining material around the axis, it is precisely laminated on the rim type of the concave wheel. In this method, since the continuous fiber reinforced resin material is covered on the outer peripheral surface of the rim forming mold, there are no fiber cuts, the problems caused by the cuts are resolved, and a seamless cylindrical shape can be formed.
特開2016-150614号公報JP, 2016-150614, A
 しかしながら、特許文献1に開示されている車両用ホイールのリム製造方法は、リム成形用型の外周面に対して軸方向に並列に敷詰めるため、繊維方向が同じ配向パターンの均質な繊維層しか構築できない。リム部には多方向から荷重が作用するため部位ごとに発生する応力が異なるが、特許文献1の製造方法は、このような多方向から作用する荷重に対して、繊維層の厚さ(積層数)や繊維の配向方向を考慮し、適切に繊維層を配置した繊維強化樹脂材からなるリム部を得る方法ではないため、部位ごとに異なる応力に対応可能な十分な強度を有するリム部を構築することができない。 However, according to the method of manufacturing a rim of a vehicle wheel disclosed in Patent Document 1, only homogeneous fiber layers having the same fiber orientation are used because they are laid in parallel in the axial direction on the outer peripheral surface of the rim forming mold. I can not build. Loads act on the rim from multiple directions, so the stress generated differs from part to part. However, the manufacturing method of Patent Document 1 is based on the thickness of the fiber layer against the load acting from such multiple directions. Number) and the orientation direction of the fibers, it is not a method to obtain a rim portion made of a fiber reinforced resin material in which a fiber layer is appropriately disposed, so a rim portion having sufficient strength to cope with different stress for each portion It can not be built.
 そこで本発明は、繊維強化樹脂材で構成されたリム部を有する車両用ホイールにおいて、多方向からリム部へ作用する荷重に対し、部位ごとに異なる応力に耐えうるように適切に設定された強度を有するリム部を備えた車両用ホイールを提供することを目的とする。 Therefore, the present invention provides a wheel for a vehicle having a rim portion made of a fiber reinforced resin material, and the strength appropriately set so as to withstand different stresses for each portion against a load acting on the rim portion from multiple directions. It is an object of the present invention to provide a vehicle wheel having a rim portion having the following.
 上記課題を解決するため、本発明の車両用ホイールは、繊維で強化された樹脂からなるリム部を有する車両用ホイールであって、前記リム部は、略円筒形状の繊維層が複数層積層した構造を有し、前記繊維層のうち少なくとも1つは、他の少なくとも1つの繊維層と異なった配向パターンで構成されることを特徴とする。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2017-135698号の開示内容を包含する。
In order to solve the above problems, a vehicle wheel according to the present invention is a vehicle wheel having a rim portion made of a fiber-reinforced resin, and the rim portion is formed by laminating a plurality of substantially cylindrical fiber layers. It is characterized in that it has a structure and at least one of the fiber layers is configured with an orientation pattern different from at least one other fiber layer.
The present specification includes the disclosure content of Japanese Patent Application No. 2017-135698 on which the priority of the present application is based.
 本発明によれば、多方向からリム部に作用する荷重に合わせて、リム部を構成する複数の繊維層のうち少なくとも1つの繊維層を、他の少なくとも1つの繊維層とは異なった配向パターンで構成することで、リム部の各部位に必要な強度に応じて繊維層の厚さ(積層数)や繊維の配向方向を調整した積層構造が構築可能になり、部位ごとに適切に設定された強度を持つ車両用ホイールを提供できる。なお、上記した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。 According to the present invention, according to the load acting on the rim from multiple directions, at least one of the plurality of fiber layers constituting the rim has an orientation pattern different from that of at least one other fiber layer. In this way, it is possible to construct a laminated structure in which the thickness of the fiber layer (the number of laminations) and the orientation direction of the fibers are adjusted according to the strength required for each part of the rim part. It is possible to provide a vehicle wheel having various strengths. In addition, the subject except having mentioned above, a structure, and an effect are clarified by description of the following embodiment.
車両用ホイールを示す斜視図である。It is a perspective view showing a wheel for vehicles. 図1AのX-X’断面図である。It is a X-X 'sectional view of Drawing 1A. 繊維方向と荷重方向による繊維強化樹脂材の強度の違いを説明するための図である。It is a figure for demonstrating the difference in the intensity | strength of the fiber reinforced resin material by a fiber direction and a load direction. 第1実施形態に係る車両用ホイールのリム部の断面図である。It is a sectional view of a rim portion of a wheel for vehicles concerning a 1st embodiment. 車両用ホイールに働く荷重の一例を示すコンター図である。It is a contour figure which shows an example of the load which acts on the wheel for vehicles. 車両用ホイールのリム部を製造する方法を説明するための概念図である。It is a conceptual diagram for demonstrating the method to manufacture the rim part of the wheel for vehicles. リム部を形成するための原型を示す図である。It is a figure which shows the prototype for forming a rim part. 図5BのY-Y’断面図である。FIG. 5B is a cross-sectional view taken along line Y-Y 'of FIG. 5B. 積層構造Lを構築するのに用いられる繊維強化樹脂用素材の実施態様を示す図である。It is a figure which shows the embodiment of the raw material for fiber reinforced resin used for constructing | assembling laminated structure L. FIG. 第2実施形態に係る車両用ホイールのリム部の断面図である。It is sectional drawing of the rim part of the wheel for vehicles which concerns on 2nd Embodiment. 第3実施形態に係る車両用ホイールのリム部の拡大した断面図である。It is an expanded sectional view of a rim part of a wheel for vehicles concerning a 3rd embodiment. 図7のリム部の製造に用いる繊維強化樹脂用素材を示す図である。It is a figure which shows the raw material for fiber reinforced resin used for manufacture of the rim part of FIG. 図8に示す円筒状の繊維強化樹脂用素材を折返して、車両用ホイールのリム部を製造する工程を説明するための図である。FIG. 9 is a view for explaining a process of manufacturing a rim portion of a vehicle wheel by turning back the cylindrical fiber-reinforced resin material shown in FIG. 8. 図8に示す円筒状の繊維強化樹脂用素材を折返して、車両用ホイールのリム部を製造する工程を説明するための図である。FIG. 9 is a view for explaining a process of manufacturing a rim portion of a vehicle wheel by turning back the cylindrical fiber-reinforced resin material shown in FIG. 8. 図7における折返し部の拡大図である。It is an enlarged view of the return part in FIG. 車両用ホイールを製造する際に用いる金型を示す図である。It is a figure which shows the metal mold | die used when manufacturing a vehicle wheel. 車両用ホイールの金型の外周面に対し連続した繊維束を敷詰めるための装置の側面図である。FIG. 2 is a side view of an apparatus for laying a continuous fiber bundle on the outer peripheral surface of a mold of a vehicle wheel. 車両用ホイールの金型の外周面に対し連続した繊維束を敷詰めるための装置の正面図である。FIG. 1 is a front view of an apparatus for laying a continuous fiber bundle on an outer peripheral surface of a mold of a vehicle wheel. 制御部で用いる積層構造データを説明する図である。It is a figure explaining the lamination structure data used by a control part. 制御部で用いる形状データを説明する図である。It is a figure explaining shape data used by a control part. 駆動軸の進行方向及び配向パターンごとの、敷設装置の動作内容を示す図である。It is a figure which shows the operation | movement content of the laying apparatus for every advancing direction of drive shaft, and an orientation pattern. 車両用ホイールの金型の外周面に繊維束を敷詰める装置の動作例を説明する図である。It is a figure explaining the operation example of the apparatus which covers a fiber bundle on the outer peripheral surface of the metal mold | die of a vehicle wheel. 13°衝撃試験のシミュレーションを行う際の解析モデルを説明する図である。It is a figure explaining an analysis model at the time of performing simulation of a 13 ° impact test. 実施例及び比較例に係る車両用ホイールについての解析結果を示す図である。It is a figure which shows the analysis result about the wheel for vehicles which concerns on an Example and a comparative example.
 以下、実施の形態に基づき、本発明に係る車両用ホイールについて詳細に説明する。なお、以下の各実施形態において、同じ機能を有する構成要素には同じ符号を用い、再度の説明を省略する場合がある。 Hereinafter, based on the embodiment, a vehicle wheel according to the present invention will be described in detail. In each embodiment below, the same numerals may be used for the component which has the same function, and explanation for the second time may be omitted.
(第1実施形態)
 まず、本発明の第1の実施形態を、図3及び図5A~図5Dに基づき説明する。図3は、本実施形態に係る車両用ホイールのリム部300の断面図である。このリム部300は、軽量化を目的として繊維強化樹脂材を用いて製造されている。
First Embodiment
First, a first embodiment of the present invention will be described based on FIG. 3 and FIGS. 5A to 5D. FIG. 3 is a cross-sectional view of the rim portion 300 of the vehicle wheel according to the present embodiment. The rim portion 300 is manufactured using a fiber reinforced resin material for the purpose of weight reduction.
 ここで、繊維強化樹脂材は、繊維方向と荷重方向が一致していることが重要である。図4は、アルミニウム製の車両用ホイールに働く荷重の一例を示したものである。図4に示す荷重分布は、例えば車両軽合金製ホイール試験協議会で定められた回転曲げ疲労試験や半径方向負荷耐久試験、衝撃試験に基づいてリム部にかかる荷重をひずみゲージ等で計測し、荷重を合成して作成することができる。また、図4に示す荷重分布は、市販の構造解析ソフト、例えばダッソーシステムズ社製構造解析ソフトAbaqus等を用いたシミュレーションにより作成することもできる。車両用ホイールに生じる荷重の大きさは場所により異なり、作用する向きも異なる。 Here, in the fiber reinforced resin material, it is important that the fiber direction matches the load direction. FIG. 4 shows an example of a load acting on an aluminum vehicle wheel. The load distribution shown in FIG. 4 is measured with a strain gauge or the like, for example, by measuring the load applied to the rim based on a rotating bending fatigue test, a radial load endurance test, and an impact test defined by a vehicle light alloy wheel test conference. The load can be synthesized and created. The load distribution shown in FIG. 4 can also be created by simulation using commercially available structural analysis software such as structural analysis software Abaqus manufactured by Dassault Systès. The magnitude of the load generated on the vehicle wheel differs depending on the place, and the acting direction is also different.
 このように場所により荷重の大きさや方向が異なる車両用ホイールに対し、図3に示すように、本実施形態に係る車両用ホイールにおける繊維強化樹脂材からなるリム部300は、繊維層a~gが積層した構造を有し、複数の繊維層a~gのうち少なくとも1つ(例えば、繊維層a、b、g:+45°と-45°の繊維方向の配向パターンを持つ繊維層)は、他の少なくとも1つの繊維層(例えば、繊維層c、f:0°と90°の繊維方向の配向パターンを持つ繊維層)と異なった配向パターンで構成されている。そして、上記繊維層a~gを含む複数の繊維強化樹脂用素材の各々を適切に敷詰め、製造するために、本実施形態に係る車両用ホイールでは、リム部に働く荷重の変化する境界で、繊維強化樹脂用素材を敷詰める領域を分割し、分割された領域ごとに、繊維の配向方向と積層数(厚さ)を設定することで、分割された領域の各部位ごとに良好な強度を実現している。 Thus, as shown in FIG. 3, the rim portion 300 made of the fiber reinforced resin material in the vehicle wheel according to the present embodiment has fiber layers a to g as shown in FIG. Has a laminated structure, and at least one of the plurality of fiber layers a to g (for example, fiber layers a and b, g: fiber layers having an orientation pattern in the fiber direction of + 45 ° and −45 °) are It is configured with an orientation pattern different from at least one other fiber layer (for example, a fiber layer c, a fiber layer having an orientation pattern of fiber orientation of f: 0 ° and 90 °). And, in the vehicle wheel according to the present embodiment, in order to appropriately cover and manufacture each of the plurality of fiber reinforced resin materials including the fiber layers a to g, at the boundary where the load acting on the rim portion changes The area in which the material for fiber reinforced resin is laid is divided, and by setting the fiber orientation direction and the number of layers (thickness) for each divided area, good strength is obtained for each part of the divided area. Is realized.
 図3におけるリム部300では、図4のアルミニウム製車両用ホイールに働く荷重に基づいて、荷重が変化する境界で領域を7つの部位に分割した。ここでは、造りやすさも考慮し、分割してできる形状が簡単な円筒状になるように工夫している。すなわち、図3において、リム部300を、その中心軸Iに対し垂直な面を用いて、荷重が変化する境界を目安に、領域301A、領域301B、領域301C、領域301D、領域301E、領域301F、領域301Gの7領域に分割した。 In the rim portion 300 in FIG. 3, the region is divided into seven parts at the boundary where the load changes, based on the load acting on the aluminum vehicle wheel in FIG. Here, in consideration of easiness of fabrication, it is devised so that the shape that can be divided into a simple cylindrical shape. That is, in FIG. 3, the rim portion 300 is used with a plane perpendicular to the central axis I, with the boundary at which the load changes as a standard, the regions 301A, 301B, 301C, 301C, 301D, 301E, 301F , And divided into seven areas of area 301G.
 次に、領域ごとに積層数及び繊維方向の異なる繊維層を含む繊維強化樹脂材の積層構造を、領域ごとの最大荷重と繊維強化樹脂材の強度から破壊判定基準式により算出した。本計算には、市販の強度計算ソフトコーリアリサーチ社製HyperSizerを用いた。繊維強化樹脂材には市販の東レ社製プリプレグである厚み0.2mmのT800S/#3900-2Bを用いることを想定した。 Next, the laminated structure of the fiber reinforced resin material including the fiber layers different in the number of laminations and the fiber direction for each region was calculated from the maximum load for each region and the strength of the fiber reinforced resin material according to the failure judgment criterion formula. For this calculation, a commercially available strength calculation software HyperSizer manufactured by Coreia Research Inc. was used. It was assumed that T800S / # 3900-2B having a thickness of 0.2 mm, which is a commercially available prepreg manufactured by Toray Industries, Inc., is used as the fiber reinforced resin material.
 図3において、積層構造Lは、リム部300の下方の断面部分302における繊維層の積層数や繊維配向を示したものである。積層構造Lは、繊維層aから繊維層gの7層の繊維強化樹脂材で構成されている。すなわち、最内層である繊維層aは、中心軸Iの方向を0°としたとき、+45°の繊維方向と-45°の繊維方向の配向パターンを持ち、当該繊維層aを有する繊維強化樹脂材は、領域301Cに対して円筒状に敷詰められている。 In FIG. 3, the laminated structure L indicates the number of laminated fiber layers and the fiber orientation in the lower cross-sectional portion 302 of the rim portion 300. The laminated structure L is composed of seven layers of fiber reinforced resin materials from the fiber layer a to the fiber layer g. That is, when the direction of the central axis I is 0 °, the fiber layer a which is the innermost layer has an orientation pattern of + 45 ° fiber direction and −45 ° fiber direction, and a fiber reinforced resin having the fiber layer a The material is cylindrically laid on the area 301C.
 繊維層aの外側に積層される繊維層bは、中心軸Iの方向に対し、+45°の繊維方向と-45°の繊維方向の配向パターンを持ち、当該繊維層bを有する繊維強化樹脂材は、領域301Bと領域301Cに対して敷詰められている。 The fiber layer b laminated on the outside of the fiber layer a has an orientation pattern of + 45 ° fiber direction and −45 ° fiber direction with respect to the direction of the central axis I, and a fiber reinforced resin material having the fiber layer b Are laid over the area 301B and the area 301C.
 繊維層bの外側に積層される繊維層cは、0°の繊維方向と90°の繊維方向の配向パターンを持ち、当該繊維層cを有する繊維強化樹脂材は、領域301B、領域301C、領域301Dに対し敷詰められている。 The fiber layer c laminated on the outer side of the fiber layer b has an orientation pattern of the fiber direction of 0 ° and the fiber direction of 90 °, and the fiber reinforced resin material having the fiber layer c is a region 301 B, a region 301 C, a region It is covered for 301D.
 繊維層cの外側に積層される繊維層dは、領域301Aと領域301Bに対し+45°と-45°の繊維方向、領域301Cに対して0°と90°の繊維方向、領域301Dに対しては再び+45°と-45°の繊維方向の配向パターンを各々有する3つの部分繊維層d1、d2、d3で構成されており、当該繊維層dを有する繊維強化樹脂材は、領域301A~Dに敷詰められている。 The fiber layer d laminated on the outside of the fiber layer c has a fiber direction of + 45 ° and -45 ° with respect to the regions 301A and 301B, and a fiber direction of 0 ° and 90 ° with respect to the region 301C, with respect to the region 301D. Is composed of three partial fiber layers d1, d2 and d3 each having an orientation pattern of fiber directions of + 45 ° and -45 ° again, and the fiber reinforced resin material having the fiber layer d corresponds to the regions 301A-D. It has been laid down.
 繊維層dの外側に積層される繊維層eは、領域301Aから領域301Dにかけて+45°と-45°の繊維方向の配向パターン、領域301Eから領域301Gにかけて0°と90°の繊維方向の配向パターンを各々有する2つの部分繊維層e1、e2で構成されており、当該繊維層eを有する繊維強化樹脂材は、領域301A~Gに敷詰められている。 The fiber layer e laminated on the outside of the fiber layer d has an orientation pattern of + 45 ° and −45 ° in the fiber direction from the region 301A to the region 301D and an orientation pattern of 0 ° and 90 ° in the fiber direction from the region 301E to the region 301G The fiber reinforced resin material having the fiber layer e is covered in the regions 301A to G.
 繊維層eの外側に積層される繊維層fは、0°と90°の繊維方向の配向パターンを持ち、当該繊維層fを有する繊維強化樹脂材は、領域301Aから領域301Gの全領域にかけて敷詰められている。繊維層fの外側に積層される繊維層gは、同じく、領域301Aから領域301Gの全領域にかけて+45°と-45°の繊維方向の配向パターンを持ち、当該繊維層gを有する繊維強化樹脂材は、領域301Aから領域301Gの全領域にかけて敷詰められている。そして、上記繊維層a~gのうち、繊維層a~dは、車両用ホイールの中心軸Iに沿う方向における一部の領域のみに配置されており、その一部の領域における繊維層の積層数は、他の領域における繊維層の積層数よりも多くなっている。例えば、領域301Dにおける積層数(5層)は、領域301Eにおける積層数(3層)よりも多い。 The fiber layer f laminated on the outside of the fiber layer e has an orientation pattern in the fiber direction of 0 ° and 90 °, and the fiber reinforced resin material having the fiber layer f covers the entire area of the area 301A to the area 301G. It is packed. Similarly, the fiber layer g laminated on the outer side of the fiber layer f has an orientation pattern of + 45 ° and -45 ° in the fiber direction from the region 301A to the entire region 301G, and a fiber reinforced resin material having the fiber layer g Are spread over the entire area of the area 301A to the area 301G. And among the fiber layers a to g, the fiber layers a to d are disposed only in a partial region in the direction along the central axis I of the vehicle wheel, and the fiber layers are laminated in the partial region The number is greater than the number of fiber layers in the other regions. For example, the number of stacked layers (five layers) in the region 301D is larger than the number of stacked layers (three layers) in the region 301E.
 このように、リム部300に設定した領域301A~301Gの各部位ごとに、荷重に対応した繊維層の積層数と繊維方向の配向パターンで構成したので、適切な強度を持つ車両用ホイールを得ることができる。特に、繊維層d及びeのように、繊維方向の配向パターンが互いに異なる2つ以上の部分繊維層(それぞれ、部分繊維層d1、d2、d3、及び部分繊維層e1、e2)を含むことにより、より適切な強度を持つ車両用ホイールを得ることができる。なお、繊維層d及びeのように、ある特定の繊維層が、繊維方向の配向パターンが互いに異なる2つ以上の部分繊維層を含む場合において、その特定の繊維層が「他の少なくとも1つの繊維層と異なった配向パターンで構成されている」とは、特定の繊維層に含まれる2つ以上の部分繊維層の各々が、他の少なくとも1つの繊維層(他の少なくとも1つの繊維層が、繊維方向の配向パターンが互いに異なる2つ以上の部分繊維層を含む場合は、それらの部分繊維層のいずれか)と異なった配向パターンで構成されていることをいう。例えば、繊維層eのうち+45°と-45°の繊維方向の配向パターンを持つ部分繊維層e1は、他の少なくとも1つの繊維層である0°と90°の繊維方向の配向パターンを持つ繊維層fとは異なった配向パターンで構成されている。また、0°と90°の繊維方向の配向パターンを持つ部分繊維層e2は、他の少なくとも1つの繊維層である+45°と-45°の繊維方向の配向パターンを持つ繊維層gとは異なった配向パターンで構成されている。 As described above, since each of the regions 301A to 301G set in the rim portion 300 is configured by the number of laminated fiber layers corresponding to the load and the orientation pattern in the fiber direction, a vehicle wheel having appropriate strength is obtained be able to. In particular, by including two or more partial fiber layers (partial fiber layers d1, d2 and d3 and partial fiber layers e1 and e2 respectively) having different orientation patterns in the fiber direction, as in the fiber layers d and e. And a vehicle wheel having more appropriate strength can be obtained. As in the fiber layers d and e, in the case where a certain fiber layer includes two or more partial fiber layers having mutually different orientation patterns in the fiber direction, the specific fiber layer “Consisting of a fiber layer and an orientation pattern different from each other” means that each of two or more partial fiber layers contained in a specific fiber layer is different from at least one other fiber layer (other at least one fiber layer is When two or more partial fiber layers whose orientation patterns in the fiber direction are different from each other are included, it means that they are configured in an orientation pattern different from any one of the partial fiber layers). For example, a partial fiber layer e1 having an orientation pattern of fiber directions of + 45 ° and -45 ° in the fiber layer e is a fiber having an orientation pattern of 0 ° and 90 ° fiber directions, which is at least one other fiber layer. It is comprised by the orientation pattern different from the layer f. In addition, the partial fiber layer e2 having an orientation pattern of 0 ° and 90 ° in the fiber direction is different from the fiber layer g having an orientation pattern of fiber directions of + 45 ° and −45 °, which is at least one other fiber layer. It is composed of different alignment patterns.
 図5Aは、繊維強化樹脂用素材を用いて、図3の積層構造Lを有する車両用ホイールのリム部300を製造する方法を説明するための概念図である。リム部300を製造するには、図5Aに示すように、まず、積層構造Lに基づいて、樹脂が含浸された繊維束(繊維)の織物からなる円筒状の繊維強化樹脂用素材(プリプレグ)303a~303gを繊維層ごとに用意する。すなわち、図5Aの円筒状の繊維強化樹脂用素材303aは、図3に示す積層構造Lの繊維層aを含む繊維強化樹脂材を形成する素材であり、+45°と-45°の繊維方向の配向パターンを持ち、領域301Cをカバーする形状になっている。以下、同様に、繊維層b~繊維層gを含む繊維方向の配向パターンを持つ円筒状の繊維強化樹脂用素材303b~303gを用意する。このとき繊維層a~繊維層gを順に外側に積層するので、それまで内側に積層した厚みの分を考慮し、円筒状の繊維強化樹脂用素材の直径は徐々に大きくなるように形成されている。このようにして、円筒状の繊維強化樹脂用素材303a~303gを内側から外側に向かって繊維層a~繊維層gの順に重ね合わせることで、図3の積層構造Lを持つリム部を形成するための原型(樹脂を硬化する前の繊維強化樹脂用素材303a~303gの積層体)を得る。図5Bは、積層構造Lを持つリム部の原型304の概要を示す図である。図5Cは、図5BのY-Y’断面図であり、円筒状の繊維強化樹脂用素材303a~303gが順に積層して図3の積層構造Lを構成している。その後、後で説明する図11に示す金型に図5Bのリム部の原型304を設置し、シートを被せ、内部を真空にして、硬化処理を実施することで、図3に示す目的の車両用ホイールのリム部300を得ることができる。なお、図5Cの原型304の断面図では、繊維強化樹脂用素材の積層状態を理解しやすくするため、隣接する繊維強化樹脂用素材の間に隙間が設けてあるが、実際の原型304では、隣接する繊維強化樹脂用素材の間には隙間はほぼ無く、各繊維強化樹脂用素材は密着している。また、図5Cはリム部の原型304の断面図であるが、原型304を硬化処理してなるリム部300も同様な構成となっている。 FIG. 5A is a conceptual diagram for illustrating a method of manufacturing a rim portion 300 of a vehicle wheel having the laminated structure L of FIG. 3 using a fiber-reinforced resin material. In order to manufacture the rim portion 300, as shown in FIG. 5A, first, based on the laminated structure L, a cylindrical fiber reinforced resin material (prepreg) made of a woven fabric of fiber bundles (fibers) impregnated with resin. Prepare 303a to 303g for each fiber layer. That is, the cylindrical fiber reinforced resin material 303 a in FIG. 5A is a material for forming a fiber reinforced resin material including the fiber layer a of the laminated structure L shown in FIG. 3, and in the fiber direction of + 45 ° and −45 °. It has an orientation pattern and is shaped to cover the region 301C. Thereafter, cylindrical fiber reinforced resin materials 303b to 303g having alignment patterns in the fiber direction including the fiber layers b to g are similarly prepared. At this time, since the fiber layer a to the fiber layer g are sequentially laminated on the outer side, the diameter of the cylindrical fiber reinforced resin material is formed so as to gradually increase in consideration of the thickness which has been laminated on the inner side. There is. Thus, the rim portion having the laminated structure L of FIG. 3 is formed by overlapping the cylindrical fiber reinforced resin materials 303 a to 303 g in order from the inside to the outside in the order of the fiber layers a to g. An original mold (laminate of fiber-reinforced resin materials 303 a to 303 g before curing the resin) is obtained. FIG. 5B is a view showing an outline of a rim 304 having a laminated structure L. As shown in FIG. 5C is a cross-sectional view taken along the line Y-Y 'of FIG. 5B, and cylindrical fiber reinforced resin materials 303a to 303g are sequentially laminated to constitute the laminated structure L of FIG. Thereafter, the original mold 304 of the rim portion of FIG. 5B is placed in a mold shown in FIG. 11 described later, the sheet is covered, and the interior is vacuumed to carry out a curing process. The rim portion 300 of the wheel can be obtained. In the cross-sectional view of the prototype 304 in FIG. 5C, a gap is provided between adjacent fiber-reinforced resin materials in order to make it easy to understand the laminated state of the fiber-reinforced resin materials, but in the actual prototype 304, There is almost no gap between adjacent fiber reinforced resin materials, and each fiber reinforced resin material is in close contact. 5C is a cross-sectional view of the rim 304, but the rim 300 formed by curing the arch 304 has the same configuration.
 図5Dは、積層構造Lを構築するのに用いられる繊維強化樹脂用素材の実施態様を説明するための概念図である。繊維強化樹脂用素材は繊維で強化された樹脂材であり、繊維は、通常、多数の単繊維からなる繊維束が方向性を持って配置され、様々な配向パターンで構成されている。図5Dに示すように、横向きの繊維束と縦向きの繊維束とが編まれた組織構成を有する(a)又は(b)の繊維強化樹脂用素材は平織り材と呼ばれ、基準となる方向(リム部の中心軸Iの方向)を0°とすると、(a)の平織り材は0°と90°の繊維束で編まれた繊維強化樹脂用素材に相当し、(b)の平織り材は+45°と-45°の繊維束で編まれた繊維強化樹脂用素材に相当する。一方、0°の基準方向に対し、90°方向の複数の繊維束からなるテープ材(一方向材)305Aと0°方向の複数の繊維束からなるテープ材305B(一方向材)を重ねて構成される(c)の合成材は、(a)の平織り材と同じ繊維の方向特性を持つため、(a)の平織り材を(c)の合成材で代用しても良い。同じく、0°の基準方向に対し、45°方向の複数の繊維束からなるテープ材(一方向材)305Cと-45°方向の複数の繊維束からなるテープ材(一方向材)305Dを重ねて構成された(d)の合成材は、(b)の平織り材と同じ繊維の方向特性を持つので、(b)の平織り材を(d)の合成材で代用しても良い。 FIG. 5D is a conceptual diagram for describing an embodiment of a fiber-reinforced resin material used to construct a laminated structure L. The fiber-reinforced resin material is a fiber-reinforced resin material, and in the fibers, fiber bundles composed of a large number of single fibers are usually arranged with directionality and configured in various orientation patterns. As shown in FIG. 5D, the fiber-reinforced resin material of (a) or (b) having a woven fabric configuration in which a horizontally oriented fiber bundle and a longitudinally oriented fiber bundle are knitted is called a plain weave material, and a reference direction Assuming that the direction of the central axis I of the rim portion is 0 °, the plain weave material of (a) corresponds to a material for fiber reinforced resin knitted with fiber bundles of 0 ° and 90 °, and the plain weave material of (b) Is equivalent to a fiber reinforced resin material knitted with + 45 ° and -45 ° fiber bundles. On the other hand, a tape material (one-way material) 305A consisting of a plurality of fiber bundles in the 90 ° direction and a tape material 305B (one-way material) consisting of a plurality of fiber bundles in the 0 ° direction Since the composite material (c) has the same directional characteristics of fibers as the plain weave material (a), the plain weave material (a) may be substituted by the composite material (c). Similarly, a tape material (one direction material) 305C made of a plurality of fiber bundles in the 45 ° direction and a tape material (one direction material) 305D made of a plurality of fiber bundles in the −45 ° direction are overlapped with respect to the reference direction of 0 °. The synthetic material of (d) configured as described above has the same fiber directional characteristics as the plain weave material of (b), so the plain weave material of (b) may be substituted with the synthetic material of (d).
 (a)及び(b)の平織り材は、繊維が編んであるので繊維がほどける心配がなくシート材として扱いやすい。一方、一方向材を組み合わせた(c)及び(d)の合成材は、繊維が編まれていないので繊維間の拘束がなくほどけやすいが、図12A及び図12Bで後述する装置を用いたリム部の製造では、金型上に繊維を敷詰め、積層構造を順次構築していくので、(c)及び(d)の合成材の繊維構成の方が、積層構造を構築しやすい。なお、使用する繊維は特に限定されず、合成繊維やガラス繊維等の各種の繊維を使用することができるが、機械的強度が高くかつ軽量な車両用ホイールを得るためには、炭素繊維を使用することが望ましい、炭素繊維としては、PAN系やピッチ系等の各種の炭素繊維を使用することができるが、好ましくは長繊維、より好ましくは連続繊維を使用することが望ましい。連続繊維を適用した車両用ホイールについては、以下で述べる第3実施形態で詳述する。 The plain weave materials of (a) and (b) are easy to handle as a sheet material without fear of unraveling of the fibers because the fibers are knitted. On the other hand, the composites of (c) and (d) in which unidirectional materials are combined are not restrained between fibers because the fibers are not knitted, but are easily released. However, a rim using an apparatus described later in FIGS. 12A and 12B. In the production of the part, fibers are laid on a mold to sequentially build a laminated structure, so the fiber configuration of the synthetic material of (c) and (d) is easier to construct a laminated structure. The fibers to be used are not particularly limited, and various fibers such as synthetic fibers and glass fibers can be used. However, in order to obtain a vehicle wheel having high mechanical strength and light weight, carbon fibers are used. Although it is desirable to use various carbon fibers such as PAN-based and pitch-based carbon fibers as carbon fibers, it is preferable to use long fibers, preferably continuous fibers. A vehicle wheel to which continuous fibers are applied will be described in detail in a third embodiment described below.
 以上のように、本実施形態のリム部300では、図5Cに示すように、繊維層a~gを有する繊維強化樹脂用素材303a~303gの各々を積層した構造を有し、複数の繊維層a~gのうち少なくとも1つは、図3に示すように、他の少なくとも1つの繊維層と異なった配向パターンで構成されている。そして、本実施形態では、構造解析等によりリム部300にかかる荷重を調べ、荷重の変化する境界でリム部300を複数の領域に分割し、分割した領域ごと、つまりリム部300の部位ごとに、繊維層の積層数や繊維配向方向をそれぞれの荷重に合わせて設定し、積層構造Lを設計する。この積層構造Lに従って、異なった配向パターンの略円筒形状の繊維層を、車両用ホイールの中心軸に交差する方向に複数層積層することで、多方向から作用する荷重に対応し、部位ごとに適切に設定された良好な強度を持つ車両用ホイールを製造することができる。 As described above, the rim portion 300 of the present embodiment has a structure in which each of the fiber reinforced resin materials 303 a to 303 g having the fiber layers a to g is laminated as shown in FIG. At least one of a to g is configured with an orientation pattern different from that of at least one other fiber layer, as shown in FIG. Then, in the present embodiment, the load applied to the rim portion 300 is checked by structural analysis or the like, and the rim portion 300 is divided into a plurality of regions at the boundary where the load changes, and each divided region, that is, for each portion of the rim portion 300 The layered structure L is designed by setting the number of laminated fiber layers and the fiber orientation in accordance with the respective loads. According to this laminated structure L, by laminating a plurality of substantially cylindrical fiber layers of different orientation patterns in the direction intersecting with the central axis of the vehicle wheel, it corresponds to the load acting from multiple directions, and for each part It is possible to produce a vehicle wheel with good strength set appropriately.
(第2実施形態)
 続いて、本発明の第2の実施形態を、図6に基づき説明する。図6は、本実施形態に係る車両用ホイールのリム部400の断面図であり、第1実施形態の図3に対応するものである。本実施形態におけるリム部400は、上述の第1実施形態と同様に、繊維層a~gが積層した構造を有し、複数の繊維層a~gのうち少なくとも1つ(例えば、繊維層a、b、g:+45°と-45°の繊維方向の配向パターンを持つ繊維層)は、他の少なくとも1つの繊維層(例えば、繊維層c、f:0°と90°の繊維方向の配向パターンを持つ繊維層)と異なった配向パターンで構成されている。そして、リム部に働く荷重の変化する境界で、繊維強化樹脂材を敷詰める領域を7つに分割し、分割された領域ごとに、繊維の方向を設定することで、部位ごとに適切に設定された良好な強度を実現している。
Second Embodiment
Subsequently, a second embodiment of the present invention will be described based on FIG. FIG. 6 is a cross-sectional view of the rim portion 400 of the vehicle wheel according to the present embodiment, which corresponds to FIG. 3 of the first embodiment. The rim portion 400 in the present embodiment has a structure in which the fiber layers a to g are laminated as in the first embodiment described above, and at least one of the plurality of fiber layers a to g (for example, the fiber layer a , B, g: fiber layers having an orientation pattern of fiber directions of + 45 ° and -45 °, and at least one other fiber layer (eg, fiber layer c, f: orientation of fiber directions of f: 0 ° and 90 °) The fiber layer having a pattern is composed of different orientation patterns. Then, at the boundary where the load acting on the rim changes, the area in which the fiber reinforced resin material is placed is divided into seven areas, and the direction of the fibers is set for each of the divided areas, so that the area is appropriately set. It has achieved good strength.
 具体的には、本実施形態における積層構造Lは、繊維層aから繊維層gの7層の繊維強化樹脂材で構成され、最内層である繊維層aは、中心軸Iの方向を0°としたとき、+45°の繊維方向と-45°の繊維方向の配向パターンを持ち、当該繊維層aを有する繊維強化樹脂材は、領域301Aから領域301Gの全領域にかけて敷詰められている。同様に、繊維層aの外側に積層される繊維層bも、中心軸Iの方向に対し、+45°の繊維方向と-45°の繊維方向の配向パターンを持ち、当該繊維層bを有する繊維強化樹脂材は、領域301Aから領域301Gの全領域にかけて敷詰められている。 Specifically, the laminated structure L in the present embodiment is formed of seven layers of fiber reinforced resin materials from the fiber layer a to the fiber layer g, and the fiber layer a which is the innermost layer has a direction of the central axis I of 0 °. When it is assumed that the fiber reinforced resin material having the fiber direction of + 45 ° and the fiber direction of -45 ° and having the fiber layer a is spread from the area 301A to the entire area of the area 301G. Similarly, the fiber layer b laminated on the outer side of the fiber layer a also has an orientation pattern of + 45 ° fiber direction and −45 ° fiber direction with respect to the direction of the central axis I, and a fiber having the fiber layer b The reinforced resin material is covered from the area 301A to the entire area of the area 301G.
 繊維層bの外側に積層される繊維層cは、0°の繊維方向と90°の繊維方向の配向パターンを持ち、当該繊維層cを有する繊維強化樹脂材は、領域301Aから領域301Gの全領域にかけて敷詰められている。 The fiber layer c laminated on the outer side of the fiber layer b has an orientation pattern of the fiber direction of 0 ° and the fiber direction of 90 °, and the fiber reinforced resin material having the fiber layer c has all the regions 301A to 301G The area is covered.
 繊維層cの外側に積層される繊維層dは、領域301Aと領域301Bに対し+45°と-45°の繊維方向を有する部分繊維層d1、領域301Cに対して0°と90°の繊維方向を有する部分繊維層d2、領域301Dに対しては再び+45°と-45°の繊維方向を有する部分繊維層d3、領域301E~Gに対しては再び0°と90°の繊維方向を有する部分繊維層d4と、各々配向パターンの異なる4つの部分繊維層d1~d4で構成されており、当該繊維層dを有する繊維強化樹脂材は、領域301Aから領域301Gの全領域にかけて敷詰められている。そして、繊維層dの外側に順次積層される繊維層e~gは、第1実施形態における繊維層e~gと同様の構成を有している。 The fiber layer d laminated on the outer side of the fiber layer c is a partial fiber layer d1 having a fiber direction of + 45 ° and -45 ° with respect to the regions 301A and 301B, and a fiber direction of 0 ° and 90 ° with respect to the region 301C. Partial fiber layer d2 having a fiber direction of + 45 ° and -45 ° again for the region 301D, and a portion having a fiber direction of 0 ° and 90 ° again for the region 301E-G The fiber reinforced resin material having the fiber layer d4 and four partial fiber layers d1 to d4 each having a different orientation pattern, and having the fiber layer d, is covered from the area 301A to the entire area of the area 301G. . The fiber layers e to g sequentially laminated on the outer side of the fiber layer d have the same configuration as the fiber layers e to g in the first embodiment.
 本実施形態では、第1実施形態のように、車両用ホイールの中心軸Iに沿う方向における一部の領域のみに配置する繊維層(第1実施形態における繊維層a~d)を有さず、繊維層a~gの全てが、領域301A~Gの全体にわたって配置されている。このように、第2実施形態では、車両用ホイールにかかる荷重に合わせて繊維の配向を調整した積層構造が構築され、なお且つ、繊維層の全ての層が、車両用ホイールの中心軸Iに沿う方向における全ての領域にわたって配置されるため、第1実施形態の車両用ホイールに比べて繊維層a~dの面積が大きくなる分だけ全体重量は増加するものの、第1の実施形態の車両用ホイールと同様に優れた強度を有する車両用ホイールを得ることができる。また、部分繊維層d1~d4で構成される繊維層d、並びに部分繊維層e1及びe2で構成される繊維層eのように、リム部400の中心軸Iに沿う方向において分割された領域に対応し、1つの繊維層の中に繊維方向の配向パターンが異なる複数の部分繊維層を設けることで、多方向から作用する荷重により生じる領域ごとに異なる負荷に対応することができ、部位ごとに適切に設定された十分な強度を有するリム部400を実現することができる。 In this embodiment, as in the first embodiment, the fiber layer (fiber layers a to d in the first embodiment) disposed only in a partial region in the direction along the central axis I of the vehicle wheel is not provided. , All of the fiber layers ag are disposed throughout the regions 301A-G. Thus, in the second embodiment, a laminated structure is constructed in which the orientation of the fibers is adjusted in accordance with the load applied to the vehicle wheel, and all layers of the fiber layer are at the central axis I of the vehicle wheel. Although the overall weight is increased by the area of the fiber layers a to d as compared with the vehicle wheel of the first embodiment, since it is disposed over the entire region in the direction along the vehicle wheel, it is for the vehicle of the first embodiment It is possible to obtain a vehicle wheel having excellent strength as well as the wheel. Also, in a region divided in the direction along the central axis I of the rim 400, as in the fiber layer d composed of the partial fiber layers d1 to d4 and the fiber layer e composed of the partial fiber layers e1 and e2. Correspondingly, by providing a plurality of partial fiber layers having different orientation patterns in the fiber direction in one fiber layer, it is possible to cope with different loads for each area generated by loads acting from multiple directions, and for each part The rim portion 400 having a sufficient strength set appropriately can be realized.
(第3実施形態)
 続いて、本発明の第3の実施形態を、図7~図10に基づき説明する。図7は、本実施形態に係る車両用ホイールのリム部の断面図である。図7に示すように、本実施形態に係る車両用ホイールにおけるリム部600は、複数の繊維層a~gを各々有する繊維強化樹脂用素材603a~603gを積層してなる繊維強化樹脂材であり、第1及び第2の実施形態と同様に、複数の繊維層a~gのうち少なくとも1つは、他の少なくとも1つの繊維層と異なった配向パターンで構成されている。この積層構造は、図3の積層構造Lに対応している。なお、図7のリム部600の断面図では、繊維強化樹脂用素材の積層状態を理解しやすくするため、隣接する繊維強化樹脂用素材の間に隙間が設けてあるが、リム部600では、隣接する繊維強化樹脂用素材の間には隙間はほぼ無く、各繊維強化樹脂用素材は密着している。
Third Embodiment
Subsequently, a third embodiment of the present invention will be described based on FIGS. 7 to 10. FIG. 7 is a cross-sectional view of the rim portion of the vehicle wheel according to the present embodiment. As shown in FIG. 7, the rim portion 600 in the vehicle wheel according to the present embodiment is a fiber reinforced resin material formed by laminating fiber reinforced resin materials 603 a to 603 g each having a plurality of fiber layers a to g. As in the first and second embodiments, at least one of the plurality of fiber layers a to g is configured in an orientation pattern different from at least one other fiber layer. This laminated structure corresponds to the laminated structure L of FIG. In the cross-sectional view of the rim portion 600 in FIG. 7, a gap is provided between adjacent fiber reinforced resin materials in order to facilitate understanding of the laminated state of the fiber reinforced resin material. There is almost no gap between adjacent fiber reinforced resin materials, and each fiber reinforced resin material is in close contact.
 そして、図7のリム部600は、近接する2つの繊維層(例えば、繊維強化樹脂用素材603aに含まれる繊維層aと繊維強化樹脂用素材603bに含まれる繊維層b、等)を、その同一端側で連結する折返し部610a~610fを有しており、積層された繊維層a~gは、連続した繊維束(連続繊維)で構成されている。このように、繊維強化樹脂用素材(繊維層)を連続的につづら折りすることで、図3の積層構造Lを有するリム部を構築することができる。 The rim portion 600 of FIG. 7 includes two adjacent fiber layers (for example, the fiber layer a contained in the fiber-reinforced resin material 603a and the fiber layer b contained in the fiber-reinforced resin material 603b). The laminated fiber layers a to g are formed by continuous fiber bundles (continuous fibers). Thus, the rim portion having the laminated structure L of FIG. 3 can be constructed by continuously twisting the fiber reinforced resin material (fiber layer).
 次に、図7に示すリム部を製造するための方法について説明する。なお、車両用ホイールに用いる繊維強化樹脂材は繊維で強化された樹脂材であり、繊維に対する樹脂の含浸(注入)の時期により2つの工法がある。具体的には、繊維束を用いて形成された繊維層に予め未硬化の樹脂を含浸した繊維強化樹脂用素材(プリプレグ)を積層する工法と、繊維束のみを用い形成された繊維層を複数積層し、後に金型等を利用して積層された繊維層に対し未硬化の樹脂を注入(含浸)する工法がある。どちらの場合でも、樹脂の硬化処理より繊維強化樹脂材からなるリム部を得ることができる。まず、前者のプリプレグを用いてリム部を製造する場合について説明する。 Next, a method for manufacturing the rim portion shown in FIG. 7 will be described. The fiber reinforced resin material used for the vehicle wheel is a resin material reinforced with fibers, and there are two methods depending on the time of resin impregnation (injection) to the fibers. Specifically, a method of laminating a fiber reinforced resin material (prepreg) impregnated with uncured resin in advance on a fiber layer formed using fiber bundles, and a plurality of fiber layers formed using only fiber bundles There is a method in which uncured resin is injected (impregnated) into a fiber layer which is laminated and later laminated using a mold or the like. In either case, a rim portion made of a fiber reinforced resin material can be obtained by curing treatment of the resin. First, the case where the rim portion is manufactured using the former prepreg will be described.
 図8は、本実施形態に係る車両用ホイールのリム部の製造に用いる、未硬化の樹脂が含浸された繊維強化樹脂用素材(プリプレグ)を示す図である。図8において、リム部の製造に用いる繊維強化樹脂用素材603は、円筒状であり、複数の配向パターンを有している。円筒状の繊維強化樹脂用素材603は、ブレーディング法により、連続繊維を用いて配向パターンを生成し、作製することができる。この円筒状の繊維強化樹脂用素材603をつづら折りすることで、図3に示す積層構造Lを実現することができる。 FIG. 8 is a view showing a material for fiber reinforced resin (prepreg) impregnated with uncured resin, which is used for manufacturing a rim portion of a vehicle wheel according to the present embodiment. In FIG. 8, the fiber-reinforced resin material 603 used for manufacturing the rim portion is cylindrical and has a plurality of orientation patterns. The cylindrical fiber reinforced resin material 603 can be produced by producing an orientation pattern using continuous fibers by a blading method. By twisting and folding this cylindrical fiber-reinforced resin material 603, a laminated structure L shown in FIG. 3 can be realized.
 図8において、円筒状の繊維強化樹脂用素材603は、所定の配向パターンを有する繊維強化樹脂用素材603a~603gと折返し部610a~610fで構成されている。繊維強化樹脂用素材603a~603gの配向パターンは、図3の積層構造Lに基づいて、繊維層a~gごとに定められている。すなわち、図3における+45°と-45°の繊維方向の配向パターンを持つ繊維層aは、図8の繊維強化樹脂用素材603aに含まれている。順次、繊維層bは繊維強化樹脂用素材603bに、繊維層cは繊維強化樹脂用素材603cに、繊維層dは、繊維方向の配向パターンが互いに異なる部分繊維層d1~d3を形成する3つの部分611a、611b及び611cからなる繊維強化樹脂用素材603dに、繊維層eは、繊維方向の配向パターンが互いに異なる部分繊維層e1及びe2を形成する2つの部分611d及び611eからなる繊維強化樹脂用素材603eに、繊維層fは繊維強化樹脂用素材603fに、繊維層gは繊維強化樹脂用素材603gに、それぞれ含まれている。近接する繊維強化樹脂用素材同士の間には、折り返しが容易になるように折返し部が介在しており、それぞれ、折返し部610a、折返し部610b、折返し部610c、折返し部610d、折返し部610e、折返し部610fが、各繊維強化樹脂用素材603a~603gの間を繋いでいる。本実施形態においては、図8に示す円筒状の繊維強化樹脂用素材603を用い、折返し部610a~610fで順次、折返すことでつづら折り(蛇腹織り)を実施して、各繊維強化樹脂用素材603a~603gを積層することで、図3の積層構造Lを有する図7のリム部の原型604を構築するものである。 In FIG. 8, a cylindrical fiber reinforced resin material 603 is composed of fiber reinforced resin materials 603 a to 603 g having a predetermined orientation pattern and folded parts 610 a to 610 f. The orientation patterns of the fiber reinforced resin materials 603a to 603g are determined for each of the fiber layers a to g based on the laminated structure L of FIG. That is, the fiber layer a having the fiber orientation orientation pattern of + 45 ° and -45 ° in FIG. 3 is included in the fiber-reinforced resin material 603a of FIG. Sequentially, the fiber layer b forms three fiber layers d1 to d3 which are different from each other in the fiber orientation direction pattern in the fiber direction. The fiber layer e is made of two parts 611d and 611e which form partial fiber layers e1 and e2 having different orientation patterns in the fiber direction to the fiber reinforced resin material 603d consisting of the parts 611a, 611b and 611c In the material 603e, the fiber layer f is contained in the material for fiber reinforced resin 603f, and the fiber layer g is contained in the material for fiber reinforced resin 603g. Between the adjacent materials for the fiber reinforced resin, folded portions are interposed so as to be easily folded back, respectively: folded portions 610a, folded portions 610b, folded portions 610c, folded portions 610d, folded portions 610e, The folded back portion 610f connects between the fiber reinforced resin materials 603a to 603g. In this embodiment, using the cylindrical fiber reinforced resin material 603 shown in FIG. 8, the material is reinforced by folding back (bellows weave) sequentially by folding back at the folded portions 610a to 610f. By laminating 603a to 603g, a prototype 604 of the rim portion of FIG. 7 having the laminated structure L of FIG. 3 is constructed.
 図9A及び図9Bは、図8に示す円筒状の繊維強化樹脂用素材603を折返して、図3の積層構造Lを持つ車両用ホイールのリム部を製造する工程を説明する概念図である。 FIGS. 9A and 9B are conceptual diagrams illustrating a process of manufacturing a rim portion of a vehicle wheel having the laminated structure L of FIG. 3 by turning back the cylindrical fiber reinforced resin material 603 shown in FIG.
 図9Aのステップ1において、円筒状の繊維強化樹脂用素材603を、折返し部610aで谷折り、折返し部610bで山折りすることで、繊維強化樹脂用素材603aと繊維強化樹脂用素材603bが繊維強化樹脂材603cの内側につづら折り(蛇腹折り)になり、内側から繊維層a、繊維層b、繊維層cの積層構造が得られる。以下同様にして、ステップ2において、折返し部610cで谷折り、折返し部610dで山折りすることで、内側につづら折り(蛇腹折り)にされた積層構造が得られ、さらにステップ3で、折返し部610eで谷折り、折返し部610fで山折りすることで、内側に各繊維層がつづら折り(蛇腹折り)にされたリム部の原型604が得られる。図9Bは、図9Aのステップ1において繊維強化樹脂用素材が折返し部の位置でつづら折りされる過程を示している。すなわち、折返し部610aで谷折りされ、折返し部610bで山折りされることにより、繊維強化樹脂用素材603a及び繊維強化樹脂用素材603bが繊維強化樹脂用素材603の内側に順次折り畳まれ、繊維層a、b及びcの積層構造が構築される。その後、後述する図11に示す金型に原型604を設置し、シートを被せ、内部を真空にして、硬化処理を実施することで、目的の車両用ホイールのリム部600を得ることができる。 In step 1 of FIG. 9A, the cylindrical fiber-reinforced resin material 603 is valley-folded at the folded portion 610a and mountain-folded at the folded portion 610b, so that the fiber-reinforced resin material 603a and the fiber-reinforced resin material 603b are fibers. The inside of the reinforced resin material 603c is serpentine (bellows fold), and a laminated structure of the fiber layer a, the fiber layer b, and the fiber layer c is obtained from the inside. In the same manner, in step 2, valley fold at the fold back portion 610c and mountain fold at the fold back portion 610d to obtain a laminated structure in which the inside is serpentine (bellows fold) is obtained, and further at step 3, the fold back portion 610e By performing valley folding and mountain folding at the folded back portion 610f, a mold 604 of the rim portion in which the respective fiber layers are folded in a serpentine manner (belly fold) can be obtained. FIG. 9B shows a process in which the material for fiber reinforced resin is folded at the position of the turn-back portion in step 1 of FIG. 9A. That is, the fiber-reinforced resin material 603a and the fiber-reinforced resin material 603b are sequentially folded inside the fiber-reinforced resin material 603 by being valley-folded by the fold-back portion 610a and mountain-folded by the fold-back portion 610b. A laminated structure of a, b and c is constructed. Thereafter, the original mold 604 is placed in a mold shown in FIG. 11 described later, the sheet is covered, and the inside is vacuumed to carry out a curing process, whereby the rim portion 600 of the target vehicle wheel can be obtained.
 従来のような、薄いシート状の繊維強化樹脂用素材を、金型の回りに何枚も重ねて積層成形するシートワインディング法や、連続繊維強化樹脂材をリム成形用型の外周面に対して軸方向に並列に敷詰め、さらに軸を中心に拘束材を巻回する方法に対して、本実施形態の車両用ホイールでは、複数の配向パターンを持つ円筒状の繊維強化樹脂用素材を用意し、これをつづら折りすることで、目的の積層構造を得るため、効率良く、強度が考慮された車両用ホイールを製造することができる。 A sheet winding method in which a thin sheet of fiber reinforced resin material as in the prior art is laminated and formed around a mold in layers, or a continuous fiber reinforced resin material is applied to the outer peripheral surface of a rim forming mold In the vehicle wheel of this embodiment, a cylindrical fiber reinforced resin material having a plurality of orientation patterns is prepared as opposed to the method of laying in parallel in the axial direction and further winding the constraining material around the axis. By twisting and folding this, it is possible to efficiently manufacture a vehicle wheel in which strength is taken into consideration in order to obtain a desired laminated structure.
 図10は、図7における折返し部610aの拡大図であり、折返し部の概要を説明するための図である。図10に示すように、折返し部610aは、折返し位置に、リム部の円周方向に巻回された拘束繊維束612を備えることが好ましい。他の折返し部610b~610fについても同様である。拘束繊維束612は、リム部600の円周方向に巻回され、繊維束613を拘束している。繊維束613は、拘束繊維束612によって拘束された後、進行方向を反転させ、逆方向に繊維束613を進める。このとき、折返し位置において、繊維束613自身に曲げ応力が加わらないように緩やかな曲率を持たせつつ反転させることが好ましい。拘束繊維束612により折返し位置を固定するので、繊維束613に対し折り返しによって逆方向にテンションが加わっても、折返し位置がずれることはなく、精度の高い積層構造を構築することができる。 FIG. 10 is an enlarged view of the folded back portion 610a in FIG. 7 and is a view for explaining an outline of the folded back portion. As shown in FIG. 10, the folded back portion 610a preferably includes, at the folded back position, a constrained fiber bundle 612 wound in the circumferential direction of the rim portion. The same applies to the other folded portions 610b to 610f. The restraining fiber bundle 612 is wound in the circumferential direction of the rim portion 600 to restrain the fiber bundle 613. After being restrained by the restraining fiber bundle 612, the fiber bundle 613 reverses the traveling direction and advances the fiber bundle 613 in the reverse direction. At this time, it is preferable to invert the fiber bundle 613 itself while giving a moderate curvature so as not to be applied with a bending stress at the folding position. Since the folding position is fixed by the restraining fiber bundle 612, even if tension is applied to the fiber bundle 613 in the reverse direction by folding, the folding position does not shift, and a highly accurate laminated structure can be constructed.
 図11は、車両用ホイールを製造する際に用いる金型の概要を説明するものである。金型は、繊維束に樹脂を含浸させる場合や、硬化処理において用いられ、リム部の成形に不可欠なものである。図11に示すように、車両用ホイールの製造で用いる金型1000は、金型左1001と金型右1002とで構成され、接続位置1003で金型左1001と金型右1002が嵌め合いにより結合されている。図5B及び図9Aで説明した積層構造を持つ円筒状のリム部の原型304及び604は両端部に向かって外側に湾曲しているため、まず金型左1001に設置し、その後、金型右1002を嵌め合わせることで、リム部の原型304及び604を金型に設置することができる。 FIG. 11 illustrates an outline of a mold used when manufacturing a vehicle wheel. A mold is used in the case of impregnating a fiber bundle with a resin, or in a curing process, and is indispensable for forming a rim portion. As shown in FIG. 11, a mold 1000 used in the manufacture of a vehicle wheel is composed of a mold left 1001 and a mold right 1002, and the mold left 1001 and the mold right 1002 are fitted at the connection position 1003. It is combined. Since the cylindrical rim prototypes 304 and 604 having the laminated structure described in FIGS. 5B and 9A are curved outward toward both ends, first, they are installed on the mold left 1001, and then the mold right By fitting 1002, the rim molds 304 and 604 can be installed in the mold.
 プリプレグ等、繊維束に樹脂が含浸されたものを用いてリム部の原型304及び604を作製した場合には、シール用シートを被せ、内部を真空にした後に、オートクレーブによる硬化処理を行い、金型1000を金型左1001と金型右1002に分割して脱型し、目的の軽量化車両用ホイールのリム部300及び600を得る。 In the case where the rim parts of the master 304 and 604 are manufactured using a fiber bundle impregnated with resin, such as a prepreg, a sealing sheet is covered and the inside is vacuumed and then cured by an autoclave to obtain gold. The mold 1000 is divided into a mold left 1001 and a mold right 1002 and demolded to obtain rim parts 300 and 600 of a desired lightweight vehicle wheel.
 次に、図12A及び図12Bを参照し、繊維束のみを用いて形成された繊維層を複数積層し、この積層された繊維層に対し未硬化の樹脂を注入(含浸)する工法を適用し、第3実施形態に係る車両用ホイールのリム部を製造する方法を説明する。図12A及び図12Bは、車両用ホイールの金型の外周面に対し連続した繊維束を敷詰めるための装置の概略構成を示しており、図12Aは装置の側面図であり、図12Bは正面図である。図12Aに示すように、本装置は、制御部1101、駆動部1102、繊維敷設部1103とから概略構成される。制御部1101は、インターフェースを示す接続線1104により、駆動部1102及び繊維敷設部1103に接続し、後で説明する積層構造データと形状データに基づき、駆動部1102と繊維敷設部1103を制御し、繊維束を敷詰める。駆動部1102は、駆動軸1105を備え、駆動軸1105には金型1000が接続されている。駆動部1102は、制御部1101の指令により、駆動軸1105を軸の中心線Jに沿って前後させ、金型1000の位置を調整し、繊維束を敷詰する位置を決める。繊維敷設部1103は、4種類の敷設装置1106a、1106b、1106c、1106dを有し、各装置には複数のノズル1107が配置され、ノズル1107には繊維束が供給され、これを金型に敷設する。 Next, referring to FIGS. 12A and 12B, a method of laminating a plurality of fiber layers formed using only fiber bundles, and injecting (impregnating) uncured resin to the laminated fiber layers is applied. A method of manufacturing a rim portion of a vehicle wheel according to a third embodiment will be described. 12A and 12B show a schematic configuration of an apparatus for laying a continuous fiber bundle on the outer peripheral surface of a mold of a vehicle wheel, FIG. 12A is a side view of the apparatus, and FIG. 12B is a front view. FIG. As shown to FIG. 12A, this apparatus is roughly comprised from the control part 1101, the drive part 1102, and the fiber laying part 1103. The control unit 1101 is connected to the drive unit 1102 and the fiber laying unit 1103 by a connection line 1104 indicating an interface, and controls the drive unit 1102 and the fiber laying unit 1103 based on layered structure data and shape data described later, Spread the fiber bundle. The drive unit 1102 includes a drive shaft 1105, and a mold 1000 is connected to the drive shaft 1105. The drive unit 1102 adjusts the position of the mold 1000 by moving the drive shaft 1105 back and forth along the center line J of the shaft according to a command from the control unit 1101, and determines the position at which the fiber bundle is to be spread. The fiber laying unit 1103 has four types of laying devices 1106a, 1106b, 1106c, and 1106d. A plurality of nozzles 1107 are disposed in each device, and a fiber bundle is supplied to the nozzles 1107 and laid in a mold. Do.
 図12Bに示すように、リール1108には繊維束が巻きつけられ、繊維敷設部1103の各敷設装置のノズル1107に繊維束を供給する。 As shown in FIG. 12B, the fiber bundle is wound around the reel 1108, and the fiber bundle is supplied to the nozzles 1107 of the respective laying devices of the fiber laying portion 1103.
 図13は、制御部1101で用いる積層構造データを説明する概念図である。図13における積層構造データは、図3で説明した、荷重に対応して繊維の積層数や配向方向を設定した積層構造Lに基づいて作成されている。図13において、積層構造データは、荷重の変化する境界で分割した領域301A~301G(図3参照)を識別するための領域識別子A~Gと、繊維層a~gに対応し繊維束を敷詰める時の積層順を示す繊維層a~gの繊維層識別記号a~gからなるマトリックスで表現し、マトリックス中での領域と積層順に対応する欄に、繊維方向、繊維束を敷詰める開始記号、及び終了記号、折返し指示記号を記録する。図13のマトリックスでは、開始記号をS、終了記号をE、また、折返し指示記号は、谷折りはA、山折りはBとしている。これらの記号が、左側に記述されていれば、図12Aにおける左側を意味し、右側に記述されていれば、図12Aにおける右側を意味する。例えば、開始記号Sは左側に記述されているので、領域301Cの左側から始まることを意味し、終了記号Eは右側に記述されているので、領域301Gの右側で終了することを意味する。 FIG. 13 is a conceptual diagram for explaining layered structure data used in the control unit 1101. The laminated structure data in FIG. 13 is created based on the laminated structure L in which the number of laminated layers of fibers and the orientation direction are set according to the load described in FIG. In FIG. 13, the layered structure data includes area identifiers A to G for identifying the areas 301A to 301G (see FIG. 3) divided at the boundary where the load changes, and fiber bundles corresponding to the fiber layers a to g. Expressed by a matrix consisting of the fiber layer identification symbols a to g of the fiber layers a to g indicating the stacking order at the time of packing, in the column corresponding to the area and the stacking order in the matrix, , And the end symbol, the turn back indication symbol. In the matrix of FIG. 13, the start symbol is S, the end symbol is E, the turn back indication symbols are A, and the fold is B. If these symbols are described on the left side, they mean the left side in FIG. 12A, and if they are described on the right side, they mean the right side in FIG. 12A. For example, since the start symbol S is described on the left side, it means to start from the left side of the area 301C, and the end symbol E is described on the right side, so it means to end on the right side of the area 301G.
 図14は、制御部1101で用いる形状データを説明する概念図である。図14において、形状データは、積層構造の形状を示すデータと、金型の形状を示すデータで構成されている。積層構造の形状データは、分割領域及び積層の厚さに関する情報を持ち、金型の形状データは接続要素位置に関する情報を持っており、駆動部1102と繊維敷設部1103に適切な位置を示す。形状データは、市販CADソフト、例えばダッソーシステムズ社製Solidworksで作成した3次元形状データである。 FIG. 14 is a conceptual diagram for explaining shape data used by the control unit 1101. In FIG. 14, the shape data is composed of data indicating the shape of the laminated structure and data indicating the shape of the mold. The shape data of the laminated structure has information on the divided area and the thickness of the laminate, the shape data of the mold has information on the connection element position, and indicates the appropriate position to the drive unit 1102 and the fiber laying unit 1103. The shape data is three-dimensional shape data created by commercially available CAD software, for example, Solidworks manufactured by Dassault Systèmes.
 次に、繊維敷設部1103の各敷設装置1106a~1106dについて説明する。各敷設装置1106a~1106dは、制御部1101の指令により駆動し、駆動部1102の動作と連動して、金型1000に繊維束を敷詰めるものである。図12Aの側面図において、駆動軸1105が右に動いて、反転する場合は、折返し部は左側にでき、駆動軸1105が左に動いて、反転する場合は、折返し部は右側にできる。したがって、敷設装置1106a~1106dは、駆動軸1105が動いている方向によって役割が異なる。 Next, the laying devices 1106 a to 1106 d of the fiber laying unit 1103 will be described. Each of the laying devices 1106 a to 1106 d is driven by an instruction of the control unit 1101 and coats the fiber bundle on the mold 1000 in conjunction with the operation of the drive unit 1102. In the side view of FIG. 12A, when the drive shaft 1105 moves to the right and reverses, the folded portion can be on the left side, and when the drive shaft 1105 moves to the left and reverses, the folded portion can be on the right. Therefore, the laying devices 1106a to 1106d have different roles depending on the direction in which the drive shaft 1105 is moving.
 図15は、駆動軸1105の進行方向及び配向パターンごとに、敷設装置1106a~1106dの動作内容を示したものである。 FIG. 15 shows the operation contents of the laying devices 1106 a to 1106 d for each traveling direction and orientation pattern of the drive shaft 1105.
 図15において、駆動軸1105の進行方向が、図12Aの右方向であり、かつ配向パターンが+/-45°である場合は、駆動部1102と連動して、敷設装置1106bは、中心線Jに対し時計回りに回転し、+45°方向の繊維束を、敷設装置1106cは、中心線Jに対し反時計回りに回転し、-45°方向の繊維束を金型1000に敷設する。また、敷設装置1106dは、折返し部で、金型1000の円周方向に拘束繊維束を敷設する。同様に、駆動軸1105の進行方向が左方向で、配向パターンが+/-45°である場合は、駆動部1102と連動して、敷設装置1106bは、中心線Jに対し時計回りで回転し、+45°方向の繊維束を、敷設装置1106cは、中心線Jに対し反時計回りで回転し、-45°方向の繊維束を金型1000に敷設する。また、敷設装置1106aは、折返し部で、金型1000の円周方向に拘束繊維束を敷設する。駆動軸1105の進行方向が右方向で、配向パターンが0°/90°である場合は、駆動部1102と連動して、敷設装置1106bは、金型1000の円周方向に繊維束を敷設することで90°方向の繊維束を、先行する敷設装置1106cは、回転せず繊維束を供給することで0°方向の繊維束を金型1000に敷設する。また、敷設装置1106dは、折返し部で、金型1000の円周方向に拘束繊維束を敷設する。駆動軸1105の進行方向が左方向で、配向パターンが0°/90°である場合は、駆動部1102と連動して、敷設装置1106cは、金型の円周方向に繊維束を敷設することで90°方向の繊維束を、先行する敷設装置1106bは、回転せずに繊維束を供給する0°方向の繊維束を金型に敷設する。また、敷設装置1106aは、折返し部で、金型1000の円周方向に拘束繊維束を敷設する。 In FIG. 15, when the traveling direction of the drive shaft 1105 is the right direction in FIG. 12A and the orientation pattern is ± 45 °, the laying device 1106 b is interlocked with the drive unit 1102 and the center line J The laying device 1106 c rotates the fiber bundle in the + 45 ° direction counterclockwise with respect to the center line J and lays the fiber bundle in the −45 ° direction on the mold 1000. In addition, the laying device 1106 d lays the constrained fiber bundle in the circumferential direction of the mold 1000 at the turn-back portion. Similarly, in the case where the advancing direction of the drive shaft 1105 is the left direction and the orientation pattern is ± 45 °, the laying device 1106 b rotates clockwise with respect to the center line J in conjunction with the drive unit 1102 The laying device 1106 c rotates the fiber bundle in the + 45 ° direction counterclockwise with respect to the center line J and lays the fiber bundle in the −45 ° direction in the mold 1000. Also, the laying device 1106 a lays the restraining fiber bundle in the circumferential direction of the mold 1000 at the turning portion. When the advancing direction of the drive shaft 1105 is rightward and the orientation pattern is 0 ° / 90 °, the laying device 1106b lays fiber bundles in the circumferential direction of the mold 1000 in conjunction with the drive unit 1102 Thus, the preceding laying device 1106c lays the fiber bundle in the 90 ° direction in the mold 1000 by supplying the fiber bundle without rotating it. In addition, the laying device 1106 d lays the constrained fiber bundle in the circumferential direction of the mold 1000 at the turn-back portion. When the advancing direction of the drive shaft 1105 is the left direction and the orientation pattern is 0 ° / 90 °, the laying device 1106 c lays the fiber bundle in the circumferential direction of the mold in conjunction with the drive unit 1102 The preceding laying device 1106b lays the fiber bundle in the 90 ° direction in the mold in the 0 ° direction, which supplies the fiber bundle without rotating. Also, the laying device 1106 a lays the restraining fiber bundle in the circumferential direction of the mold 1000 at the turning portion.
 図16は、図12A及び図12Bで説明した、車両用ホイールの金型の外周面に繊維束を敷詰める装置の動作例を説明する概念図である。 FIG. 16 is a conceptual diagram for explaining an operation example of the apparatus for laying the fiber bundle on the outer peripheral surface of the mold of the vehicle wheel described with reference to FIGS. 12A and 12B.
 ステップ1において、本装置は、初めに、図13の繊維層識別記号a、領域識別子Cにある情報のS記号に従って、図3に示す領域301Cの左側に、スタートのための動作を行う。これは、対応する金型1000の位置から、駆動軸1105を右側に送り、敷設装置1106b及び1106cで繊維束L1及びL2を敷詰め、その上に敷設装置1106dで拘束繊維束を円周上に張り、繊維束を金型1000に拘束する。そして折返しを行うことで、スタート処理を終え、積層構造を構築する準備が完了する。 In step 1, the apparatus first performs an operation for start on the left side of the area 301C shown in FIG. 3 in accordance with the S symbol of the information in the fiber layer identification symbol a and the area identifier C in FIG. This is because the drive shaft 1105 is sent to the right from the position of the corresponding mold 1000, and the fiber bundles L1 and L2 are covered by the laying devices 1106b and 1106c, and the restrained fiber bundles are circumferentially placed thereon by the laying device 1106d. The fiber bundle is restrained to the mold 1000. Then, by performing turning back, the start processing is finished, and the preparation for constructing a laminated structure is completed.
 ステップ2において、本装置は、図13の繊維層識別記号a、領域識別子Cにある+/-45°の処理を実施し、駆動軸1105を左側に送り、敷設装置1106b及び1106cにより、繊維方向+/-45°の繊維束を供給して繊維層aを形成し、図13の繊維層識別記号a、領域識別子Cにある折り返し記号Aに従って、敷設装置1106aにより拘束繊維束を円周上に張り、繊維束を拘束し、折返し部614aを形成する。なお、形成された繊維層a及び折返し部614aには樹脂材が注入され、硬化処理されることにより、図7に示す繊維強化樹脂材603a及び折返し部610aとなる(以下の各繊維層及び折返し部について同様である)。 In step 2, the apparatus carries out the processing of +/- 45 ° in the fiber layer identification symbol a and the area identifier C in FIG. 13 and sends the drive shaft 1105 to the left side, and the fiber direction is obtained by the laying devices 1106b and 1106c. The fiber bundle of +/− 45 ° is supplied to form a fiber layer a, and the constraining fiber bundle is circumferentially placed by the laying device 1106 a according to the folding symbol A in the fiber layer identification symbol a and the region identifier C in FIG. The fiber bundle is tightened to form a folded back portion 614a. A resin material is injected into the formed fiber layer a and the folded portion 614a and cured to form the fiber reinforced resin material 603a and the folded portion 610a shown in FIG. The same applies to the department).
 以下同様にして、ステップ3では、図13の繊維層識別記号bにおいて、領域識別子C、領域識別子Bの順番で処理が行われ繊維層b(硬化後の繊維強化樹脂材603b)が形成され、領域301Bの左端で折返し部614b(硬化後の折返し部610b)が形成される。 Likewise, in step 3, in the fiber layer identification symbol b of FIG. 13, the process is performed in the order of the area identifier C and the area identifier B to form the fiber layer b (fiber-reinforced resin material 603b after curing), A folded portion 614 b (folded portion 610 b after curing) is formed at the left end of the region 301 B.
 ステップ4では、図13の繊維層識別記号cにおいて、領域識別子B、領域識別子C、領域識別子Dの順番で処理が行われ繊維層c(硬化後の繊維強化樹脂材603c)が形成され、領域301Dの右端で折返し部614c(硬化後の折返し部610c)が形成される。 In step 4, in the fiber layer identification symbol c of FIG. 13, the process is performed in the order of the area identifier B, the area identifier C, and the area identifier D to form a fiber layer c (fiber-reinforced resin material 603c after curing). A folded back portion 614 c (folded back portion 610 c after curing) is formed at the right end of 301 D.
 ステップ5では、図13の繊維層識別記号dにおいて、領域識別子D、領域識別子C、領域識別子B、領域識別子Aの順番で処理が行われ繊維層d(硬化後の繊維強化樹脂材603d)が形成され、領域301Aの左端で折返し部614d(硬化後の折返し部610d)が形成される。 In step 5, in the fiber layer identification symbol d of FIG. 13, the process is performed in the order of the area identifier D, the area identifier C, the area identifier B, and the area identifier A, and the fiber layer d (fiber reinforced resin material 603d after curing) The folded portion 614 d (the folded portion 610 d after curing) is formed at the left end of the region 301 A.
 ここでは、領域301Dと領域301C、領域301Cと領域301Bで配向パターンが異なるため、敷設装置1106b及び1106dは、図15で説明した左方向に進行する場合の、各配向パターンの動作に従い、繊維束を金型1000上に積層して行く。 Here, since the orientation patterns are different between the regions 301D and 301C, and the regions 301C and 301B, the laying devices 1106b and 1106d follow the operation of the respective orientation patterns in the case of advancing in the left direction described in FIG. Stack on the mold 1000.
 ステップ6では、図13の繊維層識別記号eにおいて、領域識別子A~Gの順番で処理が行われ繊維層e(硬化後の繊維強化樹脂材603e)が形成され、領域301Gの右端で折返し部614e(硬化後の折返し部610e)が形成される。ここでも、領域301Dと領域301Eで配向バターンが異なるため、敷設装置1106b及び1106cは、図15で説明した右方向に進行する場合の、各配向パターンの動作に従い、繊維束を金型1000上に積層して行く。 In step 6, in the fiber layer identification code e of FIG. 13, processing is performed in the order of the area identifiers A to G to form the fiber layer e (the fiber reinforced resin material 603e after curing), and the folded portion at the right end of the area 301G. 614 e (turned portion 610 e after curing) is formed. Also here, since the orientation patterns are different between the region 301D and the region 301E, the laying devices 1106b and 1106c follow the operation of each orientation pattern when advancing in the right direction described in FIG. Let's stack.
 ステップ7では、図13の繊維層識別記号fにおいて、領域識別子G~Aの順番で処理が行われ繊維層f(硬化後の繊維強化樹脂材603f)が形成され、領域301Aの左端で折返し部614f(硬化後の折返し部610f)が形成される。 In step 7, in the fiber layer identification symbol f of FIG. 13, the process is performed in the order of the area identifiers G to A to form the fiber layer f (the fiber reinforced resin material 603f after curing) and turn back at the left end of the area 301A. 614 f (folded portion 610 f after curing) is formed.
 ステップ8では、図13の繊維層識別記号gにおいて、領域識別子A~Gの順番で処理が行われ繊維層g(硬化後の繊維強化樹脂材603g)が形成され、領域301Gの右で終了処理が実施され、樹脂が含浸されていない繊維束を用いたリム部の原型の作製が完了する。 In step 8, in the fiber layer identification code g of FIG. 13, the process is performed in the order of the area identifiers A to G to form the fiber layer g (the fiber reinforced resin material 603 g after curing), and the end process is performed on the right of the area 301G. Is completed, and fabrication of the rim part prototype using fiber bundles not impregnated with resin is completed.
 このようにして、連続した繊維束により形成された繊維層a~g及び折返し部614a~614fを有する原型の外側を密閉シートで覆いまたは原型を樹脂注入用の金型中に配置し、原型に樹脂を注入し、その後真空加熱して樹脂の硬化処理を行うことにより、図3及び7に示す目的の積層構造を持つ繊維強化樹脂材からなるリム部300及び600を有する車両用ホイールが得られる。 In this way, the outer side of the prototype having the fiber layers a to g formed by the continuous fiber bundle and the folded portions 614a to 614f is covered with a sealing sheet or the prototype is placed in a mold for resin injection, By injecting the resin and thereafter performing vacuum heating to cure the resin, a vehicle wheel having the rim portions 300 and 600 made of the fiber reinforced resin material having the intended laminated structure shown in FIGS. 3 and 7 can be obtained. .
 以上、本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 As mentioned above, although the embodiment of the present invention has been described in detail, the specific configuration is not limited to this embodiment, and even if there is a design change or the like without departing from the scope of the present invention, they are It is included in the present invention.
 次に、本発明の実施例及び比較例に係る車両用ホイールについて、図17に示すような、JIS D 4103で規定された13°衝撃試験のシミュレーションを行った。その解析方法及び結果について以下説明する。 Next, as to the vehicle wheel according to the example of the present invention and the comparative example, a simulation of a 13 ° impact test specified in JIS D 4103 as shown in FIG. 17 was performed. The analysis method and the results will be described below.
 解析モデルは、図17に示すホイール1701を、剛性を有する取付け台Mに、ホイール1701の中心軸Iが鉛直方向Vに対して13°の角度αをなすように固定し、衝撃力を作用させるホイール1701のリムフランジ上端1703に剛体面Pを接触させ、200mmの高さから500kgのおもりを落下させた場合に相当する静荷重Kを剛体面Pに与えるモデルを採用した。 In the analysis model, a wheel 1701 shown in FIG. 17 is fixed to a rigid mount M so that the central axis I of the wheel 1701 forms an angle α of 13 ° with the vertical direction V, and an impact force is applied The rigid surface P was brought into contact with the rim flange upper end 1703 of the wheel 1701, and a model was applied in which a static load K corresponding to a case where a weight of 500 kg was dropped from a height of 200 mm was applied to the rigid surface P.
 そして、(a)上記特許文献1(特開2016-150614号公報)に開示されているような、連続繊維強化樹脂材をリム成形用型の外周面に対して軸方向に並列に敷詰め、同じ配向の均質な繊維層が形成されている従来の車両用ホイール、(b)図6に示す繊維層a~gの積層構造を有する第2実施形態の車両用ホイール、及び(c)図3に示す繊維層a~gの積層構造を有する第1実施形態の車両用ホイールについて、上記解析モデルをAbaqusで構造解析し、それぞれの車両用ホイールにおける強度分布を確認した。その結果を図18に示す。なお、解析に供した、従来の車両用ホイール、並びに第1及び第2実施形態の車両用ホイールは全て同一形状とした。また、第1及び第2実施形態の車両用ホイールでは、東レ社製プリプレグである、炭素繊維体積率(Vf)で67%含む厚み0.2mmのT800S/#3900-2Bで形成された車両用ホイールを前提に解析を行った。従来の車両用ホイールは、東レ社製の炭素繊維T800Sを、特許文献1に記載された方法に準じて7層積層し賦形されたものに、マトリックス樹脂として上記第1実施形態及び第2実施形態のプリプレグと同じエポキシ樹脂を使用し、Vfが67%となるよう成形された車両用ホイールを前提に解析を行った。 And (a) laying a continuous fiber reinforced resin material as disclosed in the above-mentioned Patent Document 1 (Japanese Patent Laid-Open No. 2016-150614) in parallel in the axial direction with respect to the outer peripheral surface of the rim forming mold, (B) The vehicle wheel of the second embodiment having the laminated structure of the fiber layers a to g shown in FIG. 6 and (c) FIG. 3 With respect to the vehicle wheel of the first embodiment having the laminated structure of the fiber layers a to g, the above analysis model was structurally analyzed with Abaqus, and the strength distribution in each of the vehicle wheels was confirmed. The results are shown in FIG. The conventional vehicle wheel used for analysis and the vehicle wheel of the first and second embodiments all have the same shape. Further, in the vehicle wheel according to the first and second embodiments, for a vehicle formed by T800S / # 3900-2B having a thickness of 0.2 mm including 67% of carbon fiber volume ratio (Vf), which is a prepreg manufactured by Toray Industries, Inc. The analysis was performed on the assumption of the wheel. In the conventional vehicle wheel, the carbon fiber T800S manufactured by Toray Industries, Inc. is formed by laminating seven layers according to the method described in Patent Document 1, and the first embodiment and the second embodiment as a matrix resin The analysis was carried out on the assumption that the vehicle wheel was molded so that the Vf was 67%, using the same epoxy resin as the form prepreg.
 図18は、解析領域を有限な要素に分割し、要素iにおける材料強度をTi、静荷重により生じる応力をσiとしたとき、要素iの破壊判定値Diを次式により求め、車両用ホイールの各部において計算される破壊判定値Diの大きさを4色に色分けしたコンター図である。Diが1に近いほど破壊リスクが高まり、Di≧1である要素で破壊すると判定した。
 Di=σi/Ti
FIG. 18 divides the analysis region into finite elements, and when the material strength in the element i is Ti and the stress generated by the static load is σi, the failure judgment value Di of the element i is obtained by the following equation. FIG. 6 is a contour chart in which the magnitude of the destruction determination value Di calculated in each part is color-coded into four colors. The risk of destruction increased as Di was closer to 1, and it was determined that the element was destroyed at an element where Di ≧ 1.
Di = σi / Ti
 図18の解析結果から明らかなように、従来の車両用ホイール(図18の(a))では、そのリム部において強度が不足している部位があるため破壊判定値が1.0を超える破壊領域が現れた。これに対し、本発明に係る車両用ホイール(図18の(b)及び(c))では、部位ごとに適切な強度となるようリム部を構成する繊維層が配置されているので、破壊領域は現れず、リム部全体にわたり良好な強度を有することが示唆された。図18の(b)と(c)を比較すると、(c)の車両用ホイールでは、リム部へ作用する荷重を考慮し、領域301A~301G(図3参照)ごとに繊維層a~gを最適配置することにより、各部位の破壊判定値は(b)の車両用ホイールとほぼ同程度でありながら、相対質量を0.89と低減し、更なる軽量化を図ることができた。 As apparent from the analysis result of FIG. 18, in the conventional vehicle wheel ((a) of FIG. 18), there is a portion where the strength is insufficient in the rim portion, and the destruction determination value exceeds 1.0. An area appeared. On the other hand, in the vehicle wheel according to the present invention ((b) and (c) in FIG. 18), the fiber layer constituting the rim portion is arranged to have an appropriate strength for each portion. Did not appear, suggesting that it has good strength over the entire rim. Comparing (b) and (c) in FIG. 18, in the wheel for a vehicle in (c), the fiber layers a to g are set for each of the regions 301A to 301G (see FIG. 3) in consideration of the load acting on the rim portion. By optimizing the arrangement, the relative mass was reduced to 0.89 while the destruction judgment value of each part was almost the same as that of the vehicle wheel of (b), and further weight reduction could be achieved.
100 車両用ホイール
101 リム部
102 スポーク
103 接続部
200 繊維強化樹脂材
300、400、600 リム部
301A~301G 領域
302 断面部分
303a~303g 繊維強化樹脂用素材
304、604 リム部の原型
305A~305D テープ材
603 繊維強化樹脂用素材
603a~603g 繊維強化樹脂用素材
610a~610f 折返し部
611a~611e 部分繊維層を形成する部分
612 拘束繊維束
613 繊維束
614a~614f 折返し部
1000 金型
1001 金型左
1002 金型右
1003 接続位置
1101 制御部
1102 駆動部
1103 繊維敷設部
1104 接続線
1105 駆動軸
1106a~1106d 敷設装置
1107 ノズル
1108 リール
1701 ホイール
1703 リムフランジ上端
a~g 繊維層
d1~d4、e1~e2 部分繊維層
H 繊維方向
I 中心軸
J 敷設装置の中心線
K 静荷重
L 積層構造
L1 繊維束
L2 繊維束
M 取付け台
P 剛体面
V 鉛直方向
α 角度
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
DESCRIPTION OF SYMBOLS 100 Wheel 100 rim part 102 spoke part 103 connection part 200 fiber reinforced resin material 300, 400, 600 rim part 301A-301G area 302 cross section part 303a-303g material for fiber reinforced resin 304, 604 original part 305A-305D of a rim part Material 603 Material for fiber reinforced resin 603a to 603g Material for fiber reinforced resin 610a to 610f Folded portion 611a to 611e Partial fiber layer forming portion 612 Restrained fiber bundle 613 Fiber bundle 614a to 614f Folded portion 1000 Mold 1001 Mold left 1002 Mold right 1003 connection position 1101 control unit 1102 drive unit 1103 fiber laying unit 1104 connection line 1105 drive shaft 1106a to 1106d laying device 1107 nozzle 1108 reel 1701 wheel 1703 rim flange upper end a ~ Fiber layer d1 to d4, e1 to e2 Partial fiber layer H Fiber direction I Central axis J Center line K of laying device Static load L Laminated structure L1 Fiber bundle L2 Fiber bundle M Mounting base P Rigid surface V Vertical direction α angle This specification All publications, patents and patent applications cited in U.S.C. are hereby incorporated by reference in their entirety.

Claims (7)

  1.  繊維で強化された樹脂からなるリム部を有する車両用ホイールであって、
     前記リム部は、略円筒形状の繊維層が複数層積層した構造を有し、前記繊維層のうち少なくとも1つは、他の少なくとも1つの繊維層と異なった配向パターンで構成される車両用ホイール。
    A vehicle wheel having a rim portion made of fiber reinforced resin, comprising:
    The rim portion has a structure in which a plurality of substantially cylindrical fiber layers are laminated, and at least one of the fiber layers is configured in an orientation pattern different from at least one other fiber layer. .
  2.  積層された前記繊維層のうち近接する2つの繊維層を、その同一端側で連結する折返し部を有する請求項1に記載の車両用ホイール。 The vehicle wheel according to claim 1, further comprising a folded portion connecting two adjacent fiber layers of the laminated fiber layers on the same end side.
  3.  前記折返し部は、前記リム部の円周方向に巻回された繊維束を有する請求項2に記載の車両用ホイール。 The vehicle wheel according to claim 2, wherein the folded back portion includes a fiber bundle wound in a circumferential direction of the rim portion.
  4.  異なった配向パターンで構成される少なくとも1つの前記繊維層は、前記車両用ホイールの中心軸に沿う方向における一部の領域のみに配置されている請求項1~3のいずれか1項に記載の車両用ホイール。 The at least one said fiber layer comprised by a different orientation pattern is arrange | positioned only in the one part area | region in the direction in alignment with the central axis of the said wheel for vehicles. Vehicle wheel.
  5.  前記一部の領域における繊維層の積層数が、他の領域における繊維層の積層数よりも多い請求項4に記載の車両用ホイール。 The wheel for a vehicle according to claim 4, wherein the number of laminated fiber layers in the partial region is larger than the number of laminated fiber layers in the other region.
  6.  積層された前記繊維層が、連続した繊維束で構成される請求項1~5のいずれか1項に記載の車両用ホイール。 The vehicle wheel according to any one of claims 1 to 5, wherein the laminated fiber layer is composed of a continuous fiber bundle.
  7.  異なった配向パターンで構成される少なくとも1つの前記繊維層は、繊維方向の配向パターンが互いに異なる2つ以上の部分繊維層を含む請求項1~6のいずれか1項に記載の車両用ホイール。 The vehicle wheel according to any one of claims 1 to 6, wherein the at least one fiber layer configured in different orientation patterns includes two or more partial fiber layers having different orientation patterns in the fiber direction.
PCT/JP2018/026129 2017-07-11 2018-07-11 Vehicle wheel WO2019013239A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-135698 2017-07-11
JP2017135698 2017-07-11

Publications (1)

Publication Number Publication Date
WO2019013239A1 true WO2019013239A1 (en) 2019-01-17

Family

ID=65002089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026129 WO2019013239A1 (en) 2017-07-11 2018-07-11 Vehicle wheel

Country Status (1)

Country Link
WO (1) WO2019013239A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038164A1 (en) * 2019-08-28 2021-03-04 Safran Aircraft Engines Method for producing an annular casing for an aircraft turbine engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133949A (en) * 1979-02-22 1980-10-18 Motor Wheel Corp Fiber reinforced compound wheel and its preparation and its device
JPS5932504A (en) * 1982-08-17 1984-02-22 Honda Motor Co Ltd Frp wheel rim
JPS5932503A (en) * 1982-08-17 1984-02-22 Honda Motor Co Ltd Frp wheel rim
WO1999036607A1 (en) * 1998-01-13 1999-07-22 Washi Kosan Co., Ltd. Covering material for reinforcement having elasticity and reinforcing method using the same
JP2011079358A (en) * 2009-10-02 2011-04-21 Washi Kosan Co Ltd Wheel made of light alloy with reinforced portion on inner rim surface
JP2016150614A (en) * 2015-02-16 2016-08-22 本田技研工業株式会社 Manufacturing method of wheel rim

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133949A (en) * 1979-02-22 1980-10-18 Motor Wheel Corp Fiber reinforced compound wheel and its preparation and its device
JPS5932504A (en) * 1982-08-17 1984-02-22 Honda Motor Co Ltd Frp wheel rim
JPS5932503A (en) * 1982-08-17 1984-02-22 Honda Motor Co Ltd Frp wheel rim
WO1999036607A1 (en) * 1998-01-13 1999-07-22 Washi Kosan Co., Ltd. Covering material for reinforcement having elasticity and reinforcing method using the same
JP2011079358A (en) * 2009-10-02 2011-04-21 Washi Kosan Co Ltd Wheel made of light alloy with reinforced portion on inner rim surface
JP2016150614A (en) * 2015-02-16 2016-08-22 本田技研工業株式会社 Manufacturing method of wheel rim

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038164A1 (en) * 2019-08-28 2021-03-04 Safran Aircraft Engines Method for producing an annular casing for an aircraft turbine engine
CN114340881A (en) * 2019-08-28 2022-04-12 赛峰飞机发动机公司 Method for manufacturing an annular casing for an aircraft turbine engine
US11826968B2 (en) 2019-08-28 2023-11-28 Safran Aircraft Engines Method for producing an annular casing for an aircraft turbine engine
CN114340881B (en) * 2019-08-28 2024-04-16 赛峰飞机发动机公司 Method for producing an annular housing for an aircraft turbine engine

Similar Documents

Publication Publication Date Title
EP1893478B1 (en) Reinforcement beam as well as method and fiber laminate for manufacturing the reinforcement beam
US11465371B2 (en) Composite grid structure
US8444900B2 (en) Method and system for forming composite geometric support structures
KR102636873B1 (en) Rim fiber architecture of composite wheels
EP2674290B1 (en) A method and a device for the manufacture of a lightweight structure, and also a lightweight structure
JP2011516316A (en) Method for producing a core composite with cover layers on both sides
KR101378845B1 (en) Fabrication Method of Cone Type Composite Lattice Structures
US20170225413A1 (en) Method for manufacturing a reinforced part comprising a composite material
US11718063B2 (en) Splice joint in laminate composite structure
JP6444157B2 (en) Molding method of composite structure
EP3075524B1 (en) Pressure bulkhead and method for producing a pressure bulkhead
JP5731392B2 (en) Plane member for aircraft and method for manufacturing the same
KR102464884B1 (en) Method for manufacturing multilayer fiber reinforced resin composite and molded product using the same
WO2019013239A1 (en) Vehicle wheel
JP6682544B2 (en) Method for producing fiber-reinforced annular body and apparatus for producing fiber-reinforced annular body
JP2009052612A (en) Fiber-reinforced resin gear
US20130213560A1 (en) Method for producing parts made from composite materials with a braided covering
EP2746038B1 (en) Method for the production of a structural component, structural component, shell, and aircraft or spacecraft
KR20190134132A (en) Composite rim of wheel for vehiclepiston pin and manufacturing method of the same
EP2295228B1 (en) Method of manufacturing a fuselage frame of composite material
JP2016150615A (en) Manufacturing method of spoke part
JP4326311B2 (en) Flat curved beam
KR102507820B1 (en) Method for manufacturing multilayer fiber reinforced resin composite and molded product using the same
JP6298901B1 (en) CFRP member and lattice structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP