WO2019013104A1 - 見守り支援システム及びその制御方法 - Google Patents
見守り支援システム及びその制御方法 Download PDFInfo
- Publication number
- WO2019013104A1 WO2019013104A1 PCT/JP2018/025594 JP2018025594W WO2019013104A1 WO 2019013104 A1 WO2019013104 A1 WO 2019013104A1 JP 2018025594 W JP2018025594 W JP 2018025594W WO 2019013104 A1 WO2019013104 A1 WO 2019013104A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- bed
- unit
- environment
- target person
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B25/00—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B25/00—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
- G08B25/01—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
- G08B25/04—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
Definitions
- the present invention relates to a technique for supporting watching of a subject on a bed.
- Patent Document 1 proposes a system for detecting a patient from an image (photographed image) photographed by a camera and determining the operation of the patient based on the detection result.
- the lighting environment of the room to be photographed depends on the lighting state (lighting or extinguishing, etc.) of the room light, the weather (fine, fogging, etc.), the time zone (early morning, daytime, evening, nighttime, etc.).
- the luminance, color, luminance distribution, color distribution, contrast (brightness-dark difference), etc. of the photographed image depend on the illumination environment. Therefore, in the conventional method, the detection accuracy of the subject may be significantly reduced depending on the illumination environment.
- the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a technique capable of accurately detecting a subject regardless of the illumination environment.
- a detection unit for judging the illumination environment based on a portion other than the bed of the image (captured image) captured by the imaging device, and detecting a target person from the captured image The method of switching according to the judged lighting environment is adopted.
- a first aspect of the present invention is a watching support system that supports watching of a target person on a bed, and an image acquiring unit that acquires an image photographed by an imaging device; and the bed of the image And a plurality of detection units respectively corresponding to a plurality of illumination environments for detecting the target person from the image, the environment judgment unit determining an illumination environment based on a portion other than the plurality of illumination environments.
- a monitoring support system is provided, wherein a detection unit corresponding to a lighting environment determined by the environment determination unit among detection units detects the target person from the image.
- a plurality of detection units respectively suitable for a plurality of illumination environments are prepared as detection units for detecting a target person from a captured image. Then, a detection unit suitable for the determined lighting environment is used. Thereby, the target person can be detected with high accuracy regardless of the illumination environment.
- the color of the bed is often white and the like, and a change due to a change in the illumination environment often does not easily appear in the bed portion of the captured image.
- changes due to changes in the lighting environment are likely to appear in portions other than the bed of the captured image.
- the illumination environment since the illumination environment is determined based on the portion other than the bed of the captured image, the illumination environment can be determined with high accuracy. As a result, the target person can be detected more accurately regardless of the illumination environment.
- the image processing apparatus may further include a feature acquisition unit that acquires the feature of the part other than the bed from the image, and the environment determination unit may perform lighting based on the feature acquired by the feature acquisition unit. You may judge the environment.
- the image processing apparatus further includes a selection unit that selects a detection unit corresponding to the illumination environment determined by the environment determination unit among the plurality of detection units, and the selection unit of the plurality of detection units The selected detection unit may detect the target person from the image.
- the present invention can be understood as a watching support system having at least a part of the above configuration or function.
- the present invention also provides a watching support method or a watching support system control method including at least a part of the above-described processing, a program for causing a computer to execute these methods, or non-temporarily such a program. It can also be regarded as a recorded computer readable recording medium.
- FIG. 1 is a block diagram schematically showing a hardware configuration and a functional configuration of a watching support system.
- FIG. 2 is a view showing an installation example of the imaging device.
- FIG. 3A is an example of a photographed image
- FIG. 3B is an example of a determination area.
- FIG. 4 is a flowchart of the subject detection process.
- 5A to 5C are examples of photographed images.
- the present invention relates to a technique for supporting watching of a subject on a bed.
- This technology can be applied to a system that automatically detects the getting-up and getting-up behavior of patients and care recipients in hospitals and nursing facilities, etc., and performs necessary notification when a dangerous state occurs.
- This system can be preferably used, for example, for watching and supporting elderly people, patients with dementia, children and the like.
- FIG. 1 is a block diagram schematically showing a hardware configuration and a functional configuration of the watching support system 1
- FIG. 2 is a diagram showing an installation example of an imaging device.
- the watching support system 1 includes an imaging device 10 and an information processing device 11 as main hardware configurations.
- the imaging device 10 and the information processing device 11 are connected by wire or wirelessly. Although only one imaging device 10 is shown in FIG. 1, a plurality of imaging devices 10 may be connected to the information processing device 11.
- the imaging device 10 is a device for capturing a subject on a bed and capturing image data.
- a monochrome or color visible light camera, an infrared camera, a three-dimensional camera or the like can be used.
- the imaging device 10 configured by the infrared LED illumination 100 and the near infrared camera 101 is adopted in order to enable watching of the target person even at night (even when the room is dark).
- the imaging device 10 is installed to look over the entire bed 20 from the top of the bed 20 to the foot.
- the imaging device 10 captures an image at a predetermined time interval (for example, 30 fps), and the image data is sequentially captured by the information processing device 11.
- a predetermined time interval for example, 30 fps
- the information processing apparatus 11 has a function of analyzing image data taken in from the imaging apparatus 10 in real time, automatically detecting a rising state or leaving state of the target person 21 on the bed 20, and notifying when necessary. It is.
- the information processing apparatus 11 includes an image acquisition unit 110, a feature amount acquisition unit 111, an illumination environment determination unit 112, a selection unit 113, a plurality of detection units 114, a determination unit 115, an output unit 116, and a region setting unit.
- a storage unit 118 is provided.
- the information processing apparatus 11 includes a CPU (processor), memory, storage (HDD, SSD, etc.), input device (keyboard, mouse, touch panel, etc.), output device (display, speaker, etc.), communication interface, etc.
- Each function of the information processing apparatus 11 described above is realized by the CPU executing a program stored in the storage or the memory.
- the configuration of the information processing apparatus 11 is not limited to this example.
- distributed computing may be performed by a plurality of computers, a part of the above functions may be performed by a cloud server, or a part of the above functions may be performed by a circuit such as an ASIC or an FPGA. It is also good.
- the image acquisition unit 110 is a function of acquiring an image (captured image) captured by the imaging device 10.
- the image data input from the image acquisition unit 110 is temporarily recorded in a memory or storage, and is subjected to processing of the feature amount acquisition unit 111, the detection unit 114, the determination unit 115, and the like.
- the feature amount acquisition unit 111 is a function of analyzing a captured image acquired by the image acquisition unit 110 and acquiring a feature amount of a portion other than the bed 20 from the captured image.
- the area (feature acquisition area) for which the feature amount is to be acquired may be determined in advance, or may be set by the area setting unit 117.
- the feature acquisition region may be all or part of the portion other than the bed 20.
- the feature amount is not particularly limited as long as the illumination environment of the room to be photographed by the imaging device 10 can be determined based on the feature amount acquired by the feature amount acquisition unit 111.
- the feature amount acquisition unit 111 acquires a GIST feature amount, a color histogram, a luminance histogram, a median value of luminance, and the like as a feature amount.
- the illumination environment determination unit 112 is a function of determining the illumination environment of the room to be photographed by the imaging device 10 based on the portion other than the bed 20 of the photographed image acquired by the image acquisition unit 110. In the present embodiment, the illumination environment determination unit 112 determines the illumination environment based on the feature amount acquired by the feature amount acquisition unit 111.
- the method of determining the lighting environment is not particularly limited.
- the illumination environment may be determined by the same process as scene recognition using GIST feature quantities or color histograms. A plurality of luminance histograms respectively corresponding to a plurality of illumination environments may be prepared in advance.
- the illumination environment may be determined based on the degree of similarity obtained by the histogram intersection using a plurality of luminance histograms prepared in advance and the luminance histogram acquired by the feature amount acquisition unit 111.
- the lighting environment corresponding to the luminance histogram having the highest similarity with the luminance histogram acquired by the feature amount acquiring unit 111 is the current illumination environment. It may be determined as A median value of brightness may be predetermined for each of a plurality of lighting environments. Then, the illumination environment may be determined by comparing a plurality of predetermined median values with the median values acquired by the feature quantity acquisition unit 111.
- the illumination environment corresponding to the median with the smallest difference between the median and the median acquired by the feature acquisition unit 111 is the current illumination environment. It may be judged.
- the feature quantity acquisition unit 111 may be omitted, and the illumination environment determination unit 112 may determine the illumination environment by analyzing the captured image acquired by the image acquisition unit 110.
- Each of the plurality of detection units 114 is a function of detecting the watching target person 21 from the captured image acquired by the image acquisition unit 110.
- the plurality of detection units 114 correspond to a plurality of illumination environments, respectively.
- each of the plurality of detection units 114 is generated based on the result of learning using a plurality of photographed images obtained in the corresponding illumination environment.
- the plurality of detection units 114 may or may not be a plurality of detection engines.
- a plurality of dictionaries respectively corresponding to a plurality of illumination environments may be prepared in advance as a dictionary used by the detection engine.
- the dictionary describes parameters (data structure of detection engine, weighting factor, threshold, etc.) used in detection engine algorithm.
- Each of the plurality of detection units 114 is a combination of a detection engine and a dictionary, and the detection engines may be common among the plurality of detection units 114 and the dictionaries may be different from each other. Moreover, the number of illumination environments assumed is not particularly limited, and the number of detection units 114 is also not particularly limited.
- the selection unit 113 is a function of selecting the detection unit 114 corresponding to the illumination environment determined by the illumination environment determination unit 112 from among the plurality of detection units 114.
- the selection unit 113 selects a detection engine corresponding to the illumination environment determined by the illumination environment determination unit 112.
- the selection unit 113 selects a dictionary corresponding to the illumination environment determined by the illumination environment determination unit 112.
- the detection unit 114 selected by the selection unit 113 among the plurality of detection units 114 analyzes the photographed image acquired by the image acquiring unit 110, and the human body of the watching target person 21 or a part thereof is analyzed from the photographed image. Detects (head, face, upper body, etc.). Any method may be used as a method of detecting a human body or a part thereof from a photographed image. For example, it is possible to preferably use an object detection algorithm using a method based on a classifier using classical SIFT feature amounts or HoG feature amounts or a recent method based on Faster R-CNN.
- the detection unit 114 of the present embodiment detects the head (portion above the neck) 22 of the target person 21 by the classifier using the SIFT feature value, and as a detection result, the position (x, y) of the head 22 And the size (the number of vertical and horizontal pixels).
- the position (x, y) of the head 22 is represented by, for example, image coordinates of a central point of a rectangular frame surrounding the head 22.
- the detection part 114 of this embodiment outputs a detection result by the position and size of an image coordinate system
- the detection part 114 converts an image coordinate system into a space coordinate system
- the three-dimensional in the space coordinate system of the object person 21 The position or three-dimensional size may be output.
- the determination unit 115 is a function that uses the detection result of the detection unit 114 to determine whether the target person 21 wakes up or leaves the bed. Specifically, based on the detection position of the head 22, the determination unit 115 determines whether or not the target person 21 has got up and whether it has left the bed.
- the output unit 116 is a function that performs a necessary notification when the wakeup operation or the leaving operation of the target person 21 is detected by the determination unit 115.
- the output unit 116 determines whether or not the notification is necessary (for example, notifies only in the dangerous state), the content of the notification (for example, the content of the message), the notification means (for example, voice) according to the degree of danger of the operation of the target person 21 , E-mail, buzzer, warning light), notification destination (eg, nurse, doctor), frequency of notification, etc. can be switched.
- the area setting unit 117 is a function of setting a determination area on a captured image captured by the imaging device 10. In order to monitor the state of the target person 21 on the bed 20, the watching support system 1 sets a determination area based on the area of the bed 20 in the captured image. The setting of the judgment area may be performed manually or automatically. In the case of manual setting, the area setting unit 117 may provide a user interface for allowing the user to input the bed area or the determination area itself in the captured image. In the case of automatic setting, the area setting unit 117 may detect the bed area from the captured image by object recognition processing. The region setting unit 117 may manually or automatically set a feature acquisition region where the feature amount acquisition unit 111 acquires a feature amount.
- FIG. 3A is an example of a captured image
- FIG. 3B is an example of a determination area set for the captured image of FIG. 3A
- the area setting unit 117 sets the determination areas A1 to A3 with the bed area 30 as a reference.
- the determination area A1 is an area set on the head side of the bed 20, and corresponds to a range in which the head 22 of the subject 21 may exist when going to bed (when the subject 21 is sleeping on the bed 20) (Hereafter, it will be referred to as sleeping area A1).
- the determination area A2 is an area set on the foot side of the bed 20, and corresponds to a range in which the head 22 of the subject 21 may exist when getting up (when the subject 21 is in the upper body position) Hereinafter, it will be called wakeup area A2).
- wakeup area A2 a range in which the head 22 of the subject 21 may exist when getting up (when the subject 21 is in the upper body position)
- relative positions and sizes of the areas A1 and A2 relative to the bed area 30 are determined in advance, and if the bed area 30 is specified, the ranges of the areas A1 and A2 are determined by calculation.
- the area A3 is an area other than the areas A1 and A2. When leaving the bed (when the subject 21 is away from the bed 20), the head 22 of the subject 21 exists in the area A3 (hereinafter referred to as the leaving area A3).
- the determination unit 115 determines which of the areas A1 to A3 the detection position of the head 22 belongs to, and classifies the state of the target person 21.
- the case where the head 22 is detected in the bed area A1 is referred to as “bed state”
- the case where the head 22 is detected in the wake area A2 as “wake state”
- the determination unit 115 detects a state change from the “sleeping state” to the “wake-up state” as the wake-up operation, and detects a state change from the “wake-up state” to the “disengagement state” as the bed-off operation.
- the storage unit 118 is a function of storing various data used by the watching support system 1 for processing.
- the storage unit 118 includes at least various parameters (such as threshold values) used for wakeup determination, bed departure determination, illumination environment determination, etc., setting information of a determination area or a feature acquisition area, image data of plural past frames or detection results (moving speed or A storage area is provided for storing the movement direction calculation).
- FIG. 3 is a flowchart of detection processing of the target person 21 executed by the information processing apparatus 11.
- FIGS. 5A to 5C are examples of photographed images acquired by the image acquisition unit 110. The processing flow of FIG. 4 is executed each time an image of one frame is captured from the imaging device 10.
- the photographed image 51 of FIG. 5A is a photographed image obtained during the day
- the photographed image 52 of FIG. 5B is a photographed image obtained when the room light is on at night
- the photographing of FIG. 5C is
- the image 53 is a photographed image obtained in a state where the room light is turned off at night.
- the illumination environment depends on the lighting state (lighting or extinguishing, etc.) of the room light and the time zone (early morning, daytime, evening, nighttime, etc.), and the brightness, color, The luminance distribution, the color distribution, the contrast (brightness / darkness) and the like depend on the illumination environment.
- step S ⁇ b> 40 the image acquisition unit 110 takes in a captured image of one frame from the imaging device 10.
- the acquired photographed image is temporarily recorded in the storage unit 118.
- the feature amount acquisition unit 111 acquires feature amounts of portions other than the bed 20 from the captured image acquired in step S40. For example, the feature amount acquisition unit 111 acquires the feature amount of the area obtained by removing the bed area 30 of FIG. 3 from the captured image.
- step S42 the illumination environment determination unit 112 determines the illumination environment corresponding to the captured image acquired in step S40 based on the feature amount acquired in step S41.
- step S43 the selection unit 113 selects a detection unit 114 corresponding to the illumination environment determined in step S42 from among the plurality of detection units 114.
- step S44 the detection unit 114 selected in step S43 detects the head 22 of the target person 21 from the captured image acquired in step S40.
- the information of the position (xy coordinates) of the detected head 22 is recorded in the storage unit 118 in association with the information of the photographing time of the photographed image acquired in step S40 or the frame number of the photographed image.
- the information on the position of the detected head 22 is used by the determination unit 115 for the wakeup determination, the departure determination of the target person 21, and the like.
- step S40 the captured image 51 of FIG. 5A is acquired in step S40.
- step S42 "the illumination environment during the day” is detected, and in step S43, the detection unit 114 capable of accurately detecting the target person 21 from the photographed image obtained during the day is selected. Therefore, in step S44, the detection unit 114 selected in step S43 detects the head 22 of the target person 21 with high accuracy.
- step S40 the captured image 52 of FIG. 5B is acquired in step S40.
- step S42 "the illumination environment in which the room light is on at night” is detected, and in step S43, the target is obtained from the captured image obtained in the state where the room light is on at night.
- the detection unit 114 capable of detecting the person 21 with high accuracy is selected. Therefore, in step S44, the detection unit 114 selected in step S43 detects the head 22 of the target person 21 with high accuracy.
- step S40 the captured image 53 of FIG. 5C is acquired in step S40.
- step S42 "the illumination environment in which the room light is off at night” is detected
- step S43 the target is obtained from the captured image obtained in the state where the room lamp is off at night
- the detection unit 114 capable of detecting the person 21 with high accuracy is selected. Therefore, in step S44, the detection unit 114 selected in step S43 detects the head 22 of the target person 21 with high accuracy.
- a plurality of detection units respectively suitable for a plurality of illumination environments are prepared as detection units for detecting a target person from a photographed image. Then, a detection unit suitable for the determined lighting environment is used. Thereby, the target person can be detected with high accuracy regardless of the illumination environment.
- the color of the bed is often white and the like, and a change due to a change in the illumination environment often does not easily appear in the bed portion of the captured image.
- changes due to changes in the lighting environment are likely to appear in portions other than the bed of the captured image.
- the illumination environment since the illumination environment is determined based on the portion other than the bed of the captured image, the illumination environment can be accurately determined. As a result, the target person can be detected more accurately regardless of the illumination environment.
- the above description of the embodiments merely illustrates the present invention.
- the present invention is not limited to the above specific embodiments, and various modifications are possible within the scope of the technical idea thereof.
- the illumination environment also depends on the weather (sunny, cloudy, etc.). Therefore, the weather may be further considered as a factor that changes the lighting environment.
- factors for changing the lighting environment factors other than the time zone, the weather, and the lighting state of the room light may be considered. It is not necessary to consider any of the time zone, the weather, and the lighting state of the room light as factors that change the lighting environment.
- Imaging device 11 Information processing device 110: Image acquisition unit 111: Feature amount acquisition unit 112: Lighting environment judgment unit 113: Selection unit 114: Detection unit 115: Determination unit 115: Output unit 117: Region Setting unit 118: Storage unit 100: Infrared LED lighting 101: Near infrared camera 20: Bed 21: Target person 22: Head 30: Bed area 51: Photographed image 52: Photographed image 53: Photographed image A1: Bedtime area A2: Wake up area A3: Get up area
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Emergency Management (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Biomedical Technology (AREA)
- Signal Processing (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Alarm Systems (AREA)
- Image Analysis (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Closed-Circuit Television Systems (AREA)
- Emergency Alarm Devices (AREA)
Abstract
ベッド上の対象者の見守りを支援する見守り支援システムが、撮像装置により撮影された画像を取得する画像取得部と、前記画像の前記ベッド以外の部分に基づいて、照明環境を判断する環境判断部と、前記画像から前記対象者を検出するための、複数の照明環境にそれぞれ対応する複数の検出部と、を有し、前記複数の検出部のうちの、前記環境判断部により判断された照明環境に対応する検出部が、前記画像から前記対象者を検出する。
Description
本発明は、ベッド上の対象者の見守りを支援するための技術に関する。
ベッドからの転落事故などを未然に防ぐため、病院や介護施設などにおける患者の見守りを支援するシステムが知られている。特許文献1には、カメラで撮影した画像(撮影画像)から患者を検出し、その検出結果に基づいて患者の動作を判定するシステムが提案されている。
上述のように、撮影画像から対象者を検出し、その検出結果を見守り支援に役立てるという試みは、従来からなされている。しかしながら、撮影対象である部屋の照明環境は、室内灯の点灯状態(点灯や消灯など)、天候(晴れや曇りなど)、時間帯(早朝、日中、夕方、夜間など)などに依存する。そして、撮影画像の輝度、色、輝度分布、色分布、コントラスト(明暗差)などは、上記照明環境に依存する。そのため、従来の方法では、照明環境に依存して対象者の検出精度が著しく低下することがある。
本発明は、上記実情に鑑みなされたものであって、照明環境に依らず対象者を精度良く検出することができる技術を提供することを目的とする。
上記目的を達成するために、本発明では、撮像装置により撮影された画像(撮影画像)のベッド以外の部分に基づいて照明環境を判断し、撮影画像から対象者を検出するための検出部を、判断した照明環境に応じて切り替える、という方法を採用する。
具体的には、本発明の第一態様は、ベッド上の対象者の見守りを支援する見守り支援システムであって、撮像装置により撮影された画像を取得する画像取得部と、前記画像の前記ベッド以外の部分に基づいて、照明環境を判断する環境判断部と、前記画像から前記対象者を検出するための、複数の照明環境にそれぞれ対応する複数の検出部と、を有し、前記複数の検出部のうちの、前記環境判断部により判断された照明環境に対応する検出部が、前記画像から前記対象者を検出することを特徴とする見守り支援システムを提供する。
この構成によれば、撮影画像から対象者を検出するための検出部として、複数の照明環境に対してそれぞれ好適な複数の検出部が用意される。そして、判断された照明環境に対して好適な検出部が使用される。それにより、照明環境に依らず対象者を精度良く検出することができる。ここで、ベッドの色は白色などであることが多く、撮影画像のベッドの部分には照明環境の変化による変化が現れにくいことが多い。一方で、撮影画像のベッド以外の部分には、照明環境の変化による変化が現れやすい。上記構成によれば、撮影画像のベッド以外の部分に基づいて照明環境が判断されるため、照明環境を精度良く判断することができる。その結果、照明環境に依らず対象者をより精度良く検出することができる。
ここで、前記ベッド以外の前記部分の特徴量を前記画像から取得する特徴量取得部、をさらに有し、前記環境判断部は、前記特徴量取得部により取得された特徴量に基づいて、照明環境を判断してもよい。また、前記複数の検出部の中から、前記環境判断部により判断された照明環境に対応する検出部を選択する選択部、をさらに有し、前記複数の検出部のうちの、前記選択部により選択された検出部が、前記画像から前記対象者を検出してもよい。
なお、本発明は、上記構成ないし機能の少なくとも一部を有する見守り支援システムとして捉えることができる。また、本発明は、上記処理の少なくとも一部を含む、見守り支援方法又は見守り支援システムの制御方法や、これらの方法をコンピュータに実行させるためのプログラム、又は、そのようなプログラムを非一時的に記録したコンピュータ読取可能な記録媒体として捉えることもできる。上記構成及び処理の各々は技術的な矛盾が生じない限り互いに組み合わせて本発明を構成することができる。
本発明によれば、照明環境に依らず対象者を精度良く検出することができる。
本発明は、ベッド上の対象者の見守りを支援するための技術に関する。この技術は、病院や介護施設などにおいて、患者や要介護者などの離床・起床行動を自動で検知し、危険な状態が発生した場合などに必要な通知を行うシステムに適用することができる。このシステムは、例えば、高齢者、認知症患者、子供などの見守り支援に好ましく利用することができる。
以下、図面を参照して本発明を実施するための好ましい形態の一例を説明する。ただし、以下の実施形態に記載されている装置の構成や動作は一例であり、本発明の範囲をそれらのみに限定する趣旨のものではない。
(システム構成)
図1と図2を参照して、本発明の実施形態に係る見守り支援システムの構成を説明する。図1は、見守り支援システム1のハードウェア構成および機能構成を模式的に示すブロック図であり、図2は、撮像装置の設置例を示す図である。
図1と図2を参照して、本発明の実施形態に係る見守り支援システムの構成を説明する。図1は、見守り支援システム1のハードウェア構成および機能構成を模式的に示すブロック図であり、図2は、撮像装置の設置例を示す図である。
見守り支援システム1は、主なハードウェア構成として、撮像装置10と情報処理装置11を有している。撮像装置10と情報処理装置11の間は有線又は無線により接続されている。図1では、1つの撮像装置10のみ示しているが、複数台の撮像装置10を情報処理装置11に接続してもよい。
撮像装置10は、ベッド上の対象者を撮影して画像データを取り込むためのデバイスである。撮像装置10としては、モノクロ又はカラーの可視光カメラ、赤外線カメラ、三次元カメラなどを用いることができる。本実施形態では、夜間でも(部屋内が暗い場合でも)対象者の見守りを可能とするため、赤外線LED照明100と近赤外線カメラ101で構成される撮像装置10を採用する。撮像装置10は、図2に示すように、ベッド20の頭側上方から足側に向かって、ベッド20の全体を俯瞰するように設置される。撮像装置10は所定の時間間隔(例えば、30fps)で撮影を行い、その画像データは情報処理装置11に順次取り込まれる。
情報処理装置11は、撮像装置10から取り込まれる画像データをリアルタイムに分析し、ベッド20上の対象者21の起床状態や離床状態を自動で検知し、必要な場合に通知を行う機能を備える装置である。情報処理装置11は、具体的な機能として、画像取得部110、特徴量取得部111、照明環境判断部112、選択部113、複数の検出部114、判定部115、出力部116、領域設定部117、記憶部118を有している。本実施形態の情報処理装置11は、CPU(プロセッサ)、メモリ、ストレージ(HDD、SSDなど)、入力デバイス(キーボード、マウス、タッチパネルなど)、出力デバイス(ディスプレイ、スピーカなど)、通信インタフェースなどを具備する汎用のコンピュータにより構成され、上述した情報処理装置11の各機能は、ストレージ又はメモリに格納されたプログラムをCPUが実行することにより実現される。ただし、情報処理装置11の構成はこの例に限られない。例えば、複数台のコンピュータによる分散コンピューティングを行ってもよいし、上記機能の一部をクラウドサーバにより実行してもよいし、上記機能の一部をASICやFPGAのような回路で実行してもよい。
画像取得部110は、撮像装置10により撮影された画像(撮影画像)を取得する機能である。画像取得部110より入力された画像データは一時的にメモリ又はストレージに記録され、特徴量取得部111、検出部114、判定部115などの処理に供される。
特徴量取得部111は、画像取得部110により取得された撮影画像を分析し、当該撮影画像から、ベッド20以外の部分の特徴量を取得する機能である。なお、特徴量の取得対象である領域(特徴取得領域)は予め定められてもよいし、領域設定部117により設定されてもよい。特徴取得領域は、ベッド20以外の部分の全てであっても一部であってもよい。また、特徴量取得部111により取得された特徴量に基づいて、撮像装置10の撮影対象である部屋の照明環境を判断することができれば、当該特徴量は特に限定されない。例えば、特徴量取得部111は、GIST特徴量、カラーヒストグラム、輝度ヒストグラム、輝度の中央値などを、特徴量として取得する。
照明環境判断部112は、画像取得部110により取得された撮影画像のベッド20以外の部分に基づいて、撮像装置10の撮影対象である部屋の照明環境を判断する機能である。本実施形態では、照明環境判断部112は、特徴量取得部111により取得された特徴量に基づいて照明環境を判断する。なお、照明環境の判断方法は特に限定されない。例えば、GIST特徴量やカラーヒストグラムを用いたシーン認識と同様の処理により、照明環境が判断されてもよい。複数の照明環境にそれぞれ対応する複数の輝度ヒストグラムが予め用意されてもよい。そして、予め用意された複数の輝度ヒストグラムと、特徴量取得部111により取得された輝度ヒストグラムとを用いてHistogram Intersectionにより求めた類似度によって、照明環境が判断されてもよい。具体的には、予め用意された複数の輝度ヒストグラムのうちの、特徴量取得部111により取得された輝度ヒストグラムとの間の類似度が最も高い輝度ヒストグラムに対応する照明環境が、現在の照明環境として判断されてもよい。輝度の中央値が複数の照明環境のそれぞれについて予め定められてもよい。そして、予め定められた複数の中央値と、特徴量取得部111により取得された中央値とを比較することにより、照明環境が判断されてもよい。具体的には、予め定められた複数の中央値のうちの、特徴量取得部111により取得された中央値との間の差が最も小さい中央値に対応する照明環境が、現在の照明環境として判断されてもよい。また、特徴量取得部111が省略され、照明環境判断部112が、画像取得部110により取得された撮影画像を分析することにより照明環境を判断してもよい。
複数の検出部114のそれぞれは、画像取得部110により取得された撮影画像から見守り対象者21を検出する機能である。複数の検出部114は、複数の照明環境にそれぞれ対応する。例えば、複数の検出部114のそれぞれは、対応する照明環境で得られた複数の撮影画像を用いた学習の結果に基づいて生成される。なお、複数の検出部114は、複数の検出エンジンであってもよいし、そうでなくてもよい。例えば、検出エンジンで使用される辞書として、複数の照明環境にそれぞれ対応する複数の辞書が予め用意されてもよい。辞書には、検出エンジンのアルゴリズムで用いるパラメータ(検出エンジンのデータ構造、重み係数および閾値など)が記述される。そして、複数の検出部114のそれぞれは検出エンジンと辞書の組み合わせであり、複数の検出部114の間で、検出エンジンが共通し、辞書が互いに異なってもよい。また、想定される照明環境の数は特に限定されないし、検出部114の数も特に限定されない。
選択部113は、複数の検出部114の中から、照明環境判断部112により判断された照明環境に対応する検出部114を選択する機能である。複数の検出部114が複数の検出エンジンである場合には、選択部113は、照明環境判断部112により判断された照明環境に対応する検出エンジンを選択する。複数の検出部114の間で、検出エンジンが共通し、辞書が互いに異なる場合には、選択部113は、照明環境判断部112により判断された照明環境に対応する辞書を選択する。
複数の検出部114のうちの、選択部113により選択された検出部114は、画像取得部110により取得された撮影画像を分析し、当該撮影画像から、見守り対象者21の人体又はその一部(頭部、顔、上半身など)を検出する。撮影画像から人体やその一部を検出する方法としてはいかなる方法を用いてもよい。例えば、古典的なSIFT特徴量やHoG特徴量を用いた識別器による手法や近年のFaster R-CNNによる手法を用いた物体検出アルゴリズムを好ましく用いることができる。本実施形態の検出部114は、SIFT特徴量を用いた識別器により対象者21の頭部(首より上の部分)22を検出し、検出結果として、頭部22の位置(x,y)及びサイズ(縦横のピクセル数)を出力する。頭部22の位置(x,y)は、例えば、頭部22を囲む矩形枠の中心点の画像座標で表される。なお、本実施形態の検出部114は検出結果を画像座標系の位置・サイズで出力するが、検出部114が画像座標系を空間座標系に換算し、対象者21の空間座標系における3次元位置や3次元的なサイズを出力してもよい。
判定部115は、検出部114の検出結果を用いて対象者21の起床判定、離床判定などを行う機能である。具体的には、判定部115は、頭部22の検出位置に基づいて対象者21が起床したか否か、離床したか否かなどを判定する。
出力部116は、判定部115により対象者21の起床動作ないし離床動作が検知された場合に、必要な通知を行う機能である。出力部116は、対象者21の動作の危険度合いに応じて、通知の要否(例えば、危険な状態の場合のみ通知を行う)、通知の内容(例えばメッセージの内容)、通知手段(例えば音声、メール、ブザー、警告灯)、通知先(例えば看護師、医師)、通知の頻度などを切り替えることができる。
領域設定部117は、撮像装置10により撮影される撮影画像に対し判定領域を設定する機能である。見守り支援システム1はベッド20上の対象者21の状態監視を目的とするため、撮影画像内のベッド20の領域に基づき判定領域が設定される。判定領域の設定は、手動で行ってもよいし自動で行ってもよい。手動設定の場合、領域設定部117は、撮影画像内のベッド領域ないし判定領域そのものをユーザに入力させるためのユーザインタフェースを提供するとよい。自動設定の場合、領域設定部117は、物体認識処理により撮影画像からベッド領域を検出するとよい。なお、領域設定部117は、特徴量取得部111が特徴量を取得する特徴取得領域を、手動または自動で設定してもよい。
図3Aは、撮影画像の例であり、図3Bは、図3Aの撮影画像に対し設定された判定領域の例である。本実施形態では、領域設定部117は、ベッド領域30を基準として判定領域A1~A3を設定する。判定領域A1は、ベッド20の頭側に設定される領域であり、就床時(対象者21がベッド20に寝ている時)に対象者21の頭部22が存在し得る範囲に対応する(以後、就床領域A1と呼ぶ)。判定領域A2は、ベッド20の足側に設定される領域であり、起床時(対象者21が上半身を起こした姿勢の時)に対象者21の頭部22が存在し得る範囲に対応する(以後、起床領域A2と呼ぶ)。本実施形態において、ベッド領域30に対する各領域A1、A2の相対的な位置・サイズが予め決められており、ベッド領域30が特定されれば各領域A1、A2の範囲は計算で定まるものとする。領域A3は、領域A1、A2以外の領域である。離床時(対象者21がベッド20から離れた状態の時)は、対象者21の頭部22は領域A3内に存在する(以後、離床領域A3と呼ぶ)。
本実施形態では、判定部115は、頭部22の検出位置が領域A1~A3のいずれに属するかを判定し、対象者21の状態を分類する。ここでは、頭部22が就床領域A1内で検出された場合を「就床状態」、起床領域A2内で検出された場合を「起床状態」、離床領域A3内で検出された場合を「離床状態」と呼ぶ。そして、判定部115は、「就寝状態」から「起床状態」への状態変化を起床動作として検知し、「起床状態」から「離床状態」への状態変化を離床動作として検知する。
記憶部118は、見守り支援システム1が処理に用いる各種のデータを記憶する機能である。記憶部118には、少なくとも、起床判定、離床判定、照明環境判定などで用いる各種パラメータ(閾値など)、判定領域や特徴取得領域の設定情報、過去複数フレームの画像データ又は検出結果(移動速度や移動方向の計算のため)を記憶するための記憶エリアが設けられる。
(検出処理)
図4と図5A~図5Cを参照して、対象者21の検出処理の一例について説明する。図3は、情報処理装置11により実行される対象者21の検出処理のフローチャートであり、図5A~図5Cは、画像取得部110により取得された撮影画像の例である。図4の処理フローは、撮像装置10から1フレームの画像が取り込まれる度に実行される。
図4と図5A~図5Cを参照して、対象者21の検出処理の一例について説明する。図3は、情報処理装置11により実行される対象者21の検出処理のフローチャートであり、図5A~図5Cは、画像取得部110により取得された撮影画像の例である。図4の処理フローは、撮像装置10から1フレームの画像が取り込まれる度に実行される。
図5Aの撮影画像51は、日中に得られた撮影画像であり、図5Bの撮影画像52は、夜間に室内灯が点灯している状態で得られた撮影画像であり、図5Cの撮影画像53は、夜間に室内灯が消灯している状態で得られた撮影画像である。図5A~5Cに示すように、照明環境は、室内灯の点灯状態(点灯や消灯など)や時間帯(早朝、日中、夕方、夜間など)などに依存し、撮影画像の輝度、色、輝度分布、色分布、コントラスト(明暗差)などは、照明環境に依存する。ここでは、複数の検出部114が、「日中の照明環境」と「夜間に室内灯が点灯している状態の照明環境」と「夜間に室内灯が消灯している状態の照明環境」の3つの照明環境にそれぞれ対応する3つの検出部114であるとする。
まず、ステップS40において、画像取得部110が、撮像装置10から1フレームの撮影画像を取り込む。取得された撮影画像は記憶部118に一時的に記録される。
次に、ステップS41において、特徴量取得部111が、ステップS40で取得された撮影画像から、ベッド20以外の部分の特徴量を取得する。例えば、特徴量取得部111は、撮影画像から図3のベッド領域30を除いた領域の特徴量を取得する。
そして、ステップS42において、照明環境判断部112が、ステップS41で取得された特徴量に基づいて、ステップS40で取得された撮影画像に対応する照明環境を判断する。
次に、ステップS43において、選択部113が、ステップS42で判断された照明環境に対応する検出部114を、複数の検出部114の中から選択する。
そして、ステップS44において、ステップS43で選択された検出部114が、ステップS40で取得された撮影画像から対象者21の頭部22を検出する。検出された頭部22の位置(xy座標)の情報は、ステップS40で取得された撮影画像の撮影時刻の情報または当該撮影画像のフレーム番号に対応付けられて記憶部118に記録される。上述したように、検出された頭部22の位置の情報は、対象者21の起床判定、離床判定などのために、判定部115により使用される。
ここで、図5Aの撮影画像51がステップS40で取得された場合を考える。この場合には、ステップS42において、「日中の照明環境」が検知され、ステップS43において、日中に得られた撮影画像から対象者21を精度良く検出できる検出部114が選択される。そのため、ステップS44において、ステップS43で選択された検出部114が、対象者21の頭部22を精度良く検出する。
次に、図5Bの撮影画像52がステップS40で取得された場合を考える。この場合には、ステップS42において、「夜間に室内灯が点灯している状態の照明環境」が検知され、ステップS43において、夜間に室内灯が点灯している状態で得られた撮影画像から対象者21を精度良く検出できる検出部114が選択される。そのため、ステップS44において、ステップS43で選択された検出部114が、対象者21の頭部22を精度良く検出する。
最後に、図5Cの撮影画像53がステップS40で取得された場合を考える。この場合には、ステップS42において、「夜間に室内灯が消灯している状態の照明環境」が検知され、ステップS43において、夜間に室内灯が消灯している状態で得られた撮影画像から対象者21を精度良く検出できる検出部114が選択される。そのため、ステップS44において、ステップS43で選択された検出部114が、対象者21の頭部22を精度良く検出する。
以上述べたように、本実施形態のシステムによれば、撮影画像から対象者を検出するための検出部として、複数の照明環境に対してそれぞれ好適な複数の検出部が用意される。そして、判断された照明環境に対して好適な検出部が使用される。それにより、照明環境に依らず対象者を精度良く検出することができる。ここで、ベッドの色は白色などであることが多く、撮影画像のベッドの部分には照明環境の変化による変化が現れにくいことが多い。一方で、撮影画像のベッド以外の部分には、照明環境の変化による変化が現れやすい。本実施形態のシステムによれば、撮影画像のベッド以外の部分に基づいて照明環境が判断されるため、照明環境を精度良く判断することができる。その結果、照明環境に依らず対象者をより精度良く検出することができる。
<その他>
上記の実施形態の説明は、本発明を例示的に説明するものに過ぎない。本発明は上記の具体的な形態には限定されることはなく、その技術的思想の範囲内で種々の変形が可能である。例えば、上記実施形態では、時間帯の変化と室内灯の点灯状態の変化とに応じた照明環境の変化を想定したが、照明環境は、天候(晴れや曇りなど)などにも依存する。そのため、照明環境が変化する要因として天候がさらに考慮されてもよい。照明環境が変化する要因として、時間帯、天候、及び、室内灯の点灯状態以外の要因が考慮されてもよい。照明環境が変化する要因として、時間帯、天候、及び、室内灯の点灯状態のいずれかが考慮されなくてもよい。
上記の実施形態の説明は、本発明を例示的に説明するものに過ぎない。本発明は上記の具体的な形態には限定されることはなく、その技術的思想の範囲内で種々の変形が可能である。例えば、上記実施形態では、時間帯の変化と室内灯の点灯状態の変化とに応じた照明環境の変化を想定したが、照明環境は、天候(晴れや曇りなど)などにも依存する。そのため、照明環境が変化する要因として天候がさらに考慮されてもよい。照明環境が変化する要因として、時間帯、天候、及び、室内灯の点灯状態以外の要因が考慮されてもよい。照明環境が変化する要因として、時間帯、天候、及び、室内灯の点灯状態のいずれかが考慮されなくてもよい。
1:見守り支援システム 10:撮像装置 11:情報処理装置 110:画像取得部
111:特徴量取得部 112:照明環境判断部 113:選択部 114:検出部
115:判定部 116:出力部 117:領域設定部 118:記憶部
100:赤外線LED照明 101:近赤外線カメラ 20:ベッド 21:対象者
22:頭部 30:ベッド領域 51:撮影画像 52:撮影画像 53:撮影画像
A1:就床領域 A2:起床領域 A3:離床領域
111:特徴量取得部 112:照明環境判断部 113:選択部 114:検出部
115:判定部 116:出力部 117:領域設定部 118:記憶部
100:赤外線LED照明 101:近赤外線カメラ 20:ベッド 21:対象者
22:頭部 30:ベッド領域 51:撮影画像 52:撮影画像 53:撮影画像
A1:就床領域 A2:起床領域 A3:離床領域
Claims (5)
- ベッド上の対象者の見守りを支援する見守り支援システムであって、
撮像装置により撮影された画像を取得する画像取得部と、
前記画像の前記ベッド以外の部分に基づいて、照明環境を判断する環境判断部と、
前記画像から前記対象者を検出するための、複数の照明環境にそれぞれ対応する複数の検出部と、
を有し、
前記複数の検出部のうちの、前記環境判断部により判断された照明環境に対応する検出部が、前記画像から前記対象者を検出する
ことを特徴とする見守り支援システム。 - 前記ベッド以外の前記部分の特徴量を前記画像から取得する特徴量取得部、をさらに有し、
前記環境判断部は、前記特徴量取得部により取得された特徴量に基づいて、照明環境を判断する
ことを特徴とする請求項1に記載の見守り支援システム。 - 前記複数の検出部の中から、前記環境判断部により判断された照明環境に対応する検出部を選択する選択部、をさらに有し、
前記複数の検出部のうちの、前記選択部により選択された検出部が、前記画像から前記対象者を検出する
ことを特徴とする請求項1または2に記載の見守り支援システム。 - ベッド上の対象者の見守りを支援する見守り支援システムの制御方法であって、
撮像装置により撮影された画像を取得するステップと、
前記画像の前記ベッド以外の部分に基づいて、照明環境を判断するステップと、
前記画像から前記対象者を検出するための、複数の照明環境にそれぞれ対応する複数の検出部のうちの、判断された照明環境に対応する検出部を用いて、前記画像から前記対象者を検出するステップと、
を有することを特徴とする見守り支援システムの制御方法。 - 請求項4に記載の見守り支援システムの制御方法の各ステップをコンピュータに実行させるためのプログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017138533A JP6729512B2 (ja) | 2017-07-14 | 2017-07-14 | 見守り支援システム及びその制御方法 |
JP2017-138533 | 2017-07-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019013104A1 true WO2019013104A1 (ja) | 2019-01-17 |
Family
ID=65001689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/025594 WO2019013104A1 (ja) | 2017-07-14 | 2018-07-05 | 見守り支援システム及びその制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6729512B2 (ja) |
WO (1) | WO2019013104A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002373388A (ja) * | 2001-06-14 | 2002-12-26 | Matsushita Electric Works Ltd | 人体検知装置 |
WO2017022435A1 (ja) * | 2015-08-04 | 2017-02-09 | コニカミノルタ株式会社 | 画像認識システム |
-
2017
- 2017-07-14 JP JP2017138533A patent/JP6729512B2/ja active Active
-
2018
- 2018-07-05 WO PCT/JP2018/025594 patent/WO2019013104A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002373388A (ja) * | 2001-06-14 | 2002-12-26 | Matsushita Electric Works Ltd | 人体検知装置 |
WO2017022435A1 (ja) * | 2015-08-04 | 2017-02-09 | コニカミノルタ株式会社 | 画像認識システム |
Also Published As
Publication number | Publication date |
---|---|
JP2019021000A (ja) | 2019-02-07 |
JP6729512B2 (ja) | 2020-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6137425B2 (ja) | 画像処理システム、画像処理装置、画像処理方法、および画像処理プログラム | |
US10786183B2 (en) | Monitoring assistance system, control method thereof, and program | |
US11308777B2 (en) | Image capturing apparatus with variable event detecting condition | |
US20160142680A1 (en) | Image processing apparatus, image processing method, and storage medium | |
JP2020533701A (ja) | 対象者の識別のためのカメラ及び画像校正 | |
WO2019003859A1 (ja) | 見守り支援システム及びその制御方法、及びプログラム | |
JP6629139B2 (ja) | 制御装置、制御方法およびプログラム | |
JP6245027B2 (ja) | 監視方法、監視装置および監視プログラム | |
JP6729510B2 (ja) | 見守り支援システム及びその制御方法 | |
JP6822326B2 (ja) | 見守り支援システム及びその制御方法 | |
US10762761B2 (en) | Monitoring assistance system, control method thereof, and program | |
JP6870514B2 (ja) | 見守り支援システム及びその制御方法 | |
JP7214437B2 (ja) | 情報処理装置、情報処理方法及びプログラム | |
JP6729512B2 (ja) | 見守り支援システム及びその制御方法 | |
JP2023548886A (ja) | カメラを制御するための装置及び方法 | |
JP4619082B2 (ja) | 画像判定装置 | |
JP6847708B2 (ja) | ベッド位置特定装置 | |
JP2015001836A (ja) | 画像センサ | |
JP6635074B2 (ja) | 見守り支援システム及びその制御方法 | |
US20220054046A1 (en) | Assessing patient out-of-bed and out-of-chair activities using embedded infrared thermal cameras | |
JP2003187232A (ja) | 瞬きを用いたコミュニケーションシステム | |
JP2015001835A (ja) | 画像センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18832865 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18832865 Country of ref document: EP Kind code of ref document: A1 |