WO2019012976A1 - High-pressure fuel pump - Google Patents

High-pressure fuel pump Download PDF

Info

Publication number
WO2019012976A1
WO2019012976A1 PCT/JP2018/024091 JP2018024091W WO2019012976A1 WO 2019012976 A1 WO2019012976 A1 WO 2019012976A1 JP 2018024091 W JP2018024091 W JP 2018024091W WO 2019012976 A1 WO2019012976 A1 WO 2019012976A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction valve
fuel pump
pressure fuel
high pressure
valve
Prior art date
Application number
PCT/JP2018/024091
Other languages
French (fr)
Japanese (ja)
Inventor
幸平 松下
谷江 尚史
康雄 溝渕
徳尾 健一郎
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019012976A1 publication Critical patent/WO2019012976A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/34Varying fuel delivery in quantity or timing by throttling of passages to pumping elements or of overflow passages, e.g. throttling by means of a pressure-controlled sliding valve having liquid stop or abutment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston

Definitions

  • the present invention relates to a high pressure fuel pump for supplying fuel to an internal combustion engine at high pressure.
  • FIG. 1 provides a high pressure pump capable of reducing the weight of a suction valve for opening and closing a supply passage for supplying fuel to a pressurizing chamber.
  • the suction valve 40 closes the supply passage 100 by being seated on the valve seat 34 and opens the supply passage 100 by leaving the valve seat 34.
  • a stopper 50 is provided on the pressure chamber side of the suction valve 40 to limit movement of the suction valve 40 to the pressure chamber side.
  • the needle 60 configured separately from the suction valve 40 can abut on the end face of the suction valve 40 on the valve seat 34 side.
  • the first spring 21 is accommodated in the accommodation chamber 52 provided in the stopper 50, and urges the suction valve 40 toward the valve seat 34.
  • the guide portion 41 extending from the end face on the stopper 50 side of the suction valve 40 is formed such that the axial length B is longer than the movement distance A between the fully closed and fully opened suction valve 40. Restrict movement. It is disclosed that this makes it possible to reduce the outer diameter of the suction valve 40 and reduce the axial thickness thereof (see the summary).
  • Patent Document 1 describes that the weight of the suction valve can be reduced by reducing the outer diameter of the suction valve and reducing the thickness in the axial direction.
  • the thickness is made too thin for the purpose of weight reduction, the strength reliability of the valve body is reduced, and there is a concern that fatigue failure may occur.
  • the axial thickness may be increased, and the noise reduction effect may not be sufficiently obtained.
  • An object of the present invention is to provide a high-pressure fuel pump equipped with a suction valve that reduces noise while maintaining strength reliability.
  • the high-pressure fuel pump includes a suction valve for opening and closing a flow path, a seat portion on which the suction valve is seated, and a movement of the suction valve toward the opposite side of the seat portion when opened.
  • a high pressure fuel pump comprising a stopper portion for restricting the pressure, and a rod which is formed separately from the suction valve and which biases the suction valve toward the stopper portion, the suction valve includes a central portion, and The radial outer side of the central portion is formed from the downstream surface of the central portion toward the upstream, and is formed with an outer peripheral portion whose axial thickness is thinner than the central portion.
  • FIG. 1 is a diagram showing an overall configuration of a high pressure fuel pump system to which an embodiment of the present invention is applied. It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 with which the Example of this invention is applied. It is a figure showing the section of electromagnetic induction valve mechanism 50 concerning Example 1 of the present invention. It is a figure explaining the case where concentration load F acts on the end of cantilever with length R 1 -R 0 and width x ⁇ . It is a figure explaining about the case where the fuel pressure p acts on the end of the cantilever of length R-R 0 and width x ⁇ . It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 which concerns on Example 2 of this invention.
  • Example 1 will be described with reference to FIGS. 1 and 2.
  • FIG. 1 shows the overall configuration of a high pressure fuel pump system to which the embodiments of the present invention (Embodiments 1 to 6) are applied. For this reason, first, the entire configuration will be described using FIG. 2, and then each embodiment of the suction valve structure will be described.
  • the high-pressure fuel pump system shown in FIG. 1 can be roughly divided into a fuel tank 101 on the left side, a high-pressure fuel pump 300 on the center side, a fuel injection system 200 (common rail 53, injector 54, etc.) on the right side. 40, an internal combustion engine 400 (not shown) below the center of the drawing (below the high pressure fuel pump 1).
  • the high pressure fuel pump 300 integrally incorporates a plurality of parts and mechanisms in the body 1 and is attached to the cylinder head 20 of the internal combustion engine 400.
  • a suction passage 9, a pressure chamber 11, a discharge passage 12, and a relief passage 15 are formed in the body 1.
  • An electromagnetic suction valve mechanism 5 is provided in the suction passage 9, a discharge valve 8 in the discharge passage 12, and a relief valve mechanism 30 in the relief passage 15. Further, the volume of the pressure chamber 11 in the body 1 is changed by the plunger 2 moved up and down by the rotation of the cam 7 of the internal combustion engine, and the pump operation becomes possible.
  • the electromagnetic suction valve mechanism 50 is a control valve that determines the amount of fuel to be pressurized.
  • the discharge valve 8 is a check valve that restricts the flow direction of the fuel.
  • the relief valve mechanism 30 functions as a safety valve that opens the inside of the common rail 53 when the pressure in the common rail 53 exceeds a predetermined pressure.
  • the fuel from the fuel tank 101 is introduced to the high pressure fuel pump 300 and passes through the electromagnetic suction valve mechanism 50 of the suction passage 9, the pressure chamber 11 and the discharge valve 8 of the discharge passage 12. Is supplied to the fuel injection system 200.
  • the high pressure fuel pump is connected to the common rail 53 of the fuel injection system 200, and the pressurized fuel is pumped, and the high pressure fuel is injected from the injector 54 into the combustion chamber of the internal combustion engine.
  • the pressure in the common rail 53 is measured by a pressure sensor 56, and the signal is sent to an engine control unit (ECU) 40.
  • the injectors 54 are mounted in accordance with the number of cylinders of the engine, and inject fuel in response to a signal from the engine control unit (ECU) 40.
  • the engine control unit (ECU) 40 also controls an electromagnetic suction valve mechanism 50 in the high pressure fuel pump.
  • the plunger 2 at the lower part of the pressure chamber 11 is slidably inserted into the cylinder 120, and a retainer 3 is attached to the lower end.
  • the biasing force of the plunger return spring 4 acts on the retainer 3 downward in FIG.
  • the tappet 6 reciprocates in the vertical direction of FIG. 1 by the rotation of the cam 7 of the internal combustion engine.
  • the plunger 2 is displaced following the tappet 6, whereby the volume of the pressure chamber 11 changes and the pump operation becomes possible.
  • the electromagnetic suction valve mechanism 50 is held in a hole formed in the body 1 by press-fitting and welding.
  • the electromagnetic suction valve mechanism 50 is provided with an electromagnetic coil 500, a mover 503, an anchor spring 502, and a valve body spring 504.
  • the movable portion 503 is formed of one member, but the movable portion 503 is driven in the valve closing direction (left direction in FIG. 1) by the anchor forming the magnetic attraction surface attracted to the magnetic core and the anchor. It may be formed from two parts of the rod.
  • FIG. 1 shows an engine system using a normally open type electromagnetic suction valve mechanism 50, but the present invention is not limited thereto. That is, the present invention is also applicable to the case where a normally closed electromagnetic suction valve mechanism is provided.
  • the electromagnetic intake valve mechanism which is in the valve open state when the electromagnetic coil 500 is off and the valve closed state when the electromagnetic coil 500 is on is referred to as a normally open type electromagnetic intake valve mechanism.
  • the biasing force of the anchor spring 502 acts on the suction valve 501 in the valve opening direction via the movable portion 503, while the biasing force of the valve body spring 504 acts on the valve closing direction.
  • the biasing force of the anchor spring 502 is larger than the biasing force of the valve body spring 504. Therefore, when the electromagnetic coil 500 is OFF, ie, when no current is supplied, the suction valve 501 overcomes the biasing force of the valve spring 504 by the mover 503 biased by the anchor spring 502, so the suction valve 501 is opened. It has become.
  • a normally closed system in which the suction valve 501 is closed when the operation is reversed, that is, when the electromagnetic coil 500 is OFF (no current). It is possible to practice the present invention.
  • the plunger 2 starts moving upward again after reaching the BDC (Bottom Dead Center).
  • the electromagnetic coil 500 is in the OFF state.
  • the movable portion 503 maintains the open state of the suction valve 501 even if the plunger 2 moves upward.
  • the pressure in the pressure chamber 11 is in a low pressure state substantially equal to that of the suction passage 9, the discharge valve 8 can not be opened, and the fuel corresponding to the volume reduction of the pressure chamber 11 is the suction valve 501.
  • This process is called a return process.
  • a metal damper composed of a two-piece metal diaphragm for reducing pulsation of fuel pressure is disposed.
  • the mover 503 When the electromagnetic coil 500 is energized in the return step, the mover 503 is attracted to the magnetic core 5 by the magnetic attraction force, and the magnetic attraction force overcomes the biasing force of the anchor spring 502 to move the movable portion 503 in the valve closing direction. . Then, the valve body 501 is closed by the biasing force of the valve body spring 504 and the fluid pressure difference of the return fuel. Immediately after the suction valve 501 is closed, the fuel pressure in the pressure chamber 11 rises with the rise of the plunger 2. Thus, the discharge valve 8 is automatically opened, and the fuel is pressure fed to the common rail 53.
  • the relief valve mechanism 30 includes a relief valve 151 seated on the relief valve seat 150 and a relief spring 155 biasing the relief valve 151 in the valve closing direction.
  • FIG. 1 An enlarged view A of the lower drawing of FIG. 1 shows an enlarged sectional view of the suction valve although the shape is different from the suction valve 501 shown in the upper drawing of FIG.
  • the electromagnetic suction valve mechanism 50 includes a suction valve 501, a valve body spring 504 for biasing the suction valve 501 in a valve closing direction, a seat portion 505 on which the suction valve 501 is seated, and the suction valve 501.
  • a stopper portion 506 for restricting the movement in the valve opening direction and a rod portion 507 for urging the suction valve 501 in the valve opening direction are provided.
  • the stopper member forming the stopper portion 506 is press-fitted to the inner peripheral surface of the sheet member forming the sheet portion 505.
  • the high-pressure fuel pump of this embodiment includes a suction valve 501 for opening and closing a flow path, a seat portion 505 on which the suction valve 501 is seated, and a stopper for regulating the movement of the suction valve 501 toward the opposite side to the seat portion 501 when opening. And a rod configured separately from the suction valve 501 and urging the suction valve 501 toward the stopper portion 506.
  • the suction valve 501 has a central portion 509, an outer peripheral portion 511 which is formed radially outward of the central portion 509 from the downstream surface of the central portion 509 toward the upstream and has a thinner axial thickness than the central portion 509. It is formed by
  • the electromagnetic suction valve mechanism 50 has a suction valve 501 that opens and closes the flow path at the valve body upstream portion 508, a seat portion 505 that holds the suction valve 501 when closing the valve, and a stopper portion that holds the suction valve 501 when opening the valve. And a rod 507 configured separately from the suction valve 501 to bias the suction valve 501, and a valve spring 504 biasing the suction valve 501 toward the rod 507. Further, as shown in FIG. 2, it is desirable that the central portion 509 is configured to become thinner as the axial thickness goes radially outward.
  • the suction valve 501 is configured such that the plate thickness (axial direction thickness) becomes thinner toward the outermost peripheral portion 510, and a curved surface portion 511 recessed on the upstream side is formed.
  • One end of the valve body spring 504 contacts the spring contact portion 512 on the inner diameter side of the central portion 509 of the suction valve 501 to bias the suction valve 501 in the valve closing direction.
  • the spring contact portion 512 is configured to be formed on the same plane at the same inclination as the central portion 509.
  • the outer peripheral portion 511 is formed to be connected to the central portion 509, and the downstream surface of the outer peripheral portion 511 is configured to have a curved surface portion recessed on the upstream side.
  • all of the outer peripheral portion 511 be configured to be located upstream with respect to all of the downstream surfaces of the central portion 509.
  • the downstream surface of the central portion 509 be configured to collide with the stopper portion 506 that restricts the movement of the suction valve 501 in the valve opening direction.
  • the curved surface portion of the downstream surface of the outer peripheral portion 511 be formed on the outermost peripheral portion of the suction valve 501.
  • the mass of the suction valve 501 becomes lighter. Noise can be reduced.
  • the axial thickness t of the suction valve 501 extends from the outermost peripheral portion 510 (radius R) to the root portion 514 (radius R 0 ) of the central portion 509 It is formed so as to be equal to or greater than the axial thickness indicated by (Equation 1) and (Equation 2) of In the present embodiment, the suction valve 501 has the largest axial thickness at the radial center and has a guide portion guided by the inner peripheral portion of the valve body spring 504. That is, the central portion 509 is formed radially outward with respect to the guide portion.
  • the axial thickness t (x) of the suction valve 501 is set to satisfy the following (Equation 1).
  • R 1 is a radius to the stopper contact portion 513
  • t 0 is an axial thickness of the root portion 514.
  • the plate thickness t (x) where the relationship between ⁇ (x) and ⁇ s always satisfies ⁇ (x) ⁇ ⁇ s is as shown in (Equation 1). Accordingly, the stress applied from the outermost periphery 510 to the root portion 514 of the suction valve 501, which is applied when the suction valve 501 and the stopper portion 506 contact, can be made equal to or less than the stress applied to the root portion 514.
  • the axial thickness t (x) of the suction valve 501 be set to satisfy the above (Equation 2).
  • Equation 7 The moment M (x) acting on each cross section of the beam can be expressed by (Equation 7), and the bending stress ⁇ (x) can be expressed by (Equation 3). If the equation (7) is rearranged by the equation (3), the bending stress ⁇ (x) can be expressed by the equation (8). As shown in the enlarged view A of FIG.
  • the suction valve 501 has a spring contact portion 512 with the valve body spring 504 on the inner diameter side of the central portion 509.
  • the downstream surface of the central portion 509 is provided with a spring contact portion 512 with the valve body spring 504, and the spring contact portion 512 is a direction orthogonal to the axial direction (left and right direction in FIG. 6) of the valve body spring 504. It is formed flat (in the vertical direction in FIG. 6).
  • valve body spring 504 and the spring contact part 512 contact uniformly, the biasing force which the suction valve 501 receives from the valve body spring 504 can be stabilized. Therefore, it is possible to suppress the asymmetry of the suction valve 501 and provide the electromagnetic suction valve mechanism 50 with high reliability.
  • the suction valve 501 is configured such that the stopper contact portion 513 with the stopper portion 506 is a flat portion. That is, the downstream surface of the central portion 509 includes the stopper contact portion 513 with the stopper portion 506, and the stopper contact portion 513 is formed flat in the direction orthogonal to the valve body spring 504.
  • the valve body 501 when the contact portion 513 with the stopper portion 506 is flat, the valve body 501 does not locally contact the stopper portion 506, and the wear of the suction valve 501 can be prevented.
  • the outermost peripheral portion 510 of the suction valve 501 has a sharp shape, the outermost peripheral portion 510 can not be fixed when manufacturing the suction valve 501 by lathe processing, and the workability is reduced. According to the above configuration, this is suppressed, and the processing of the suction valve 501 is facilitated.
  • the electromagnetic suction valve mechanism 50 includes a suction valve 501, a valve body spring 504, a seat portion 505, a stopper portion 506, a rod portion 507, an outermost peripheral portion 510, a stopper contact portion 513, and a suction valve 501. And a root portion 514 of the central portion 509.
  • a curved surface portion 511 which is configured such that the thickness in the axial direction decreases from the outermost peripheral portion 510 toward the stopper contact portion 513 and is recessed on the upstream side is formed, and the central portion root portion from the stopper contact portion 513 The axial thickness is made constant over 514.
  • the central portion 509 of the suction valve 501 is formed in a flat plate shape having a constant axial thickness.
  • a curved outer peripheral portion 511 is formed from the stopper contact portion 513 with the stopper portion 506 toward the outermost peripheral portion 510, and the radial direction inward from the stopper contact portion 513 is in the axial direction
  • a central portion 509 having a constant thickness is formed.
  • the downstream surface of the outer peripheral portion 511 is formed to have a curved surface portion recessed toward the upstream side.
  • the axial thickness of the suction valve 501 be configured to satisfy the relationship shown in (Equation 1) and (Equation 2) shown in the first embodiment.
  • a sixth embodiment of the present invention will be described with reference to FIG.
  • the basic configuration is the same as that of the first embodiment or the fifth embodiment, so only the difference will be described here.
  • the outermost peripheral portion 510 of the suction valve 501 has a curved surface or a constant thickness.
  • the outermost periphery 510 of the suction valve 501 has a sharp shape, it can not be fixed when manufacturing the suction valve 501 by lathe processing, which makes processing difficult. According to the above configuration, this is suppressed, and the processing of the suction valve 501 is facilitated.
  • the present invention is widely applicable not only to high pressure fuel pumps for internal combustion engines but also to various high pressure pumps.

Abstract

Provided is a high-pressure fuel pump having mounted therein a suction valve having reduced noise achieved while the reliability of strength is maintained. This high-pressure fuel pump is provided with: a suction valve for opening and closing a flow passage; a seat on which the suction valve sits; a stopper which, at the time of valve opening, prevents the suction valve from moving away from the seat; and a rod formed as a separate body from the suction valve and biasing the suction valve toward the stopper. The suction valve comprises a center section and an outer peripheral section which is formed radially outside the center section so as to extend upstream from the downstream surface of the center section, and which has an axial thickness smaller than that of the center section.

Description

高圧燃料ポンプHigh pressure fuel pump
 本発明は、内燃機関に燃料を高圧にして供給する高圧燃料ポンプに関する。 The present invention relates to a high pressure fuel pump for supplying fuel to an internal combustion engine at high pressure.
 本発明の従来技術として、特許文献1に記載の技術がある。この特許文献1では、加圧室に燃料を供給する供給通路を開閉する吸入弁を軽量にすることの可能な高圧ポンプを提供する。 このために吸入弁40は、弁座34に着座することで供給通路100を閉塞し、弁座34から離座することで供給通路100を開放する。吸入弁40の加圧室側にストッパ50が設けられ、吸入弁40の加圧室側への移動を制限する。吸入弁40と別体で構成されたニードル60は、吸入弁40の弁座34側の端面に当接可能である。ストッパ50に設けられた収容室52に第1スプリング21が収容され、吸入弁40を弁座34側に付勢する。吸入弁40のストッパ50側の端面から延びるガイド部41は、軸方向の長さBが吸入弁40の全閉時と全開時との移動距離Aより長く形成され、吸入弁40の径方向の移動を制限する。これにより、吸入弁40の外径を小さくし、かつ、その軸方向の肉厚を薄くすることが可能になる、と開示されている(要約参照)。 As a prior art of this invention, there exists a technique of patent document 1. FIG. This patent document provides a high pressure pump capable of reducing the weight of a suction valve for opening and closing a supply passage for supplying fuel to a pressurizing chamber. For this purpose, the suction valve 40 closes the supply passage 100 by being seated on the valve seat 34 and opens the supply passage 100 by leaving the valve seat 34. A stopper 50 is provided on the pressure chamber side of the suction valve 40 to limit movement of the suction valve 40 to the pressure chamber side. The needle 60 configured separately from the suction valve 40 can abut on the end face of the suction valve 40 on the valve seat 34 side. The first spring 21 is accommodated in the accommodation chamber 52 provided in the stopper 50, and urges the suction valve 40 toward the valve seat 34. The guide portion 41 extending from the end face on the stopper 50 side of the suction valve 40 is formed such that the axial length B is longer than the movement distance A between the fully closed and fully opened suction valve 40. Restrict movement. It is disclosed that this makes it possible to reduce the outer diameter of the suction valve 40 and reduce the axial thickness thereof (see the summary).
特開2012-154295号公報JP 2012-154295 A
 上記特許文献1では、吸入弁の外径を小さくし、かつ、その軸方向の肉厚を薄くすることによって、吸入弁を軽量化することが記載されている。しかしながら、この構造では軽量化を目的に肉厚を薄くしすぎると弁体の強度信頼性が低下し、疲労破壊することが懸念される。反対に、強度信頼性を確保しようとすると、軸方向厚みが厚くなり、騒音低減効果が十分に得られない可能性がある。 Patent Document 1 describes that the weight of the suction valve can be reduced by reducing the outer diameter of the suction valve and reducing the thickness in the axial direction. However, in this structure, if the thickness is made too thin for the purpose of weight reduction, the strength reliability of the valve body is reduced, and there is a concern that fatigue failure may occur. On the other hand, in order to secure strength reliability, the axial thickness may be increased, and the noise reduction effect may not be sufficiently obtained.
 本発明では、強度信頼性を保ちつつ騒音を低減する吸入弁を搭載した高圧燃料ポンプを提供することを目的とする。 An object of the present invention is to provide a high-pressure fuel pump equipped with a suction valve that reduces noise while maintaining strength reliability.
 上記課題を解決するために本発明の高圧燃料ポンプは、流路を開閉する吸入弁と、前記吸入弁が着座するシート部と、開弁時に前記吸入弁の前記シート部と反対側に向かう動きを規制するストッパ部と、前記吸入弁と別体に構成され前記吸入弁を前記ストッパ部に向かって付勢するロッドと、を備えた高圧燃料ポンプにおいて、前記吸入弁は、中央部と、前記中央部の径方向外側において前記中央部の下流面から上流に向かって形成されるとともに前記中央部に対して軸方向厚みが薄くなる外周部とで形成された。 In order to solve the above problems, the high-pressure fuel pump according to the present invention includes a suction valve for opening and closing a flow path, a seat portion on which the suction valve is seated, and a movement of the suction valve toward the opposite side of the seat portion when opened. A high pressure fuel pump comprising a stopper portion for restricting the pressure, and a rod which is formed separately from the suction valve and which biases the suction valve toward the stopper portion, the suction valve includes a central portion, and The radial outer side of the central portion is formed from the downstream surface of the central portion toward the upstream, and is formed with an outer peripheral portion whose axial thickness is thinner than the central portion.
 本発明の構成によれば、強度信頼性を保ちつつ低騒音な吸入弁を搭載した高圧燃料ポンプを実現することができる。本発明のその他の構成、作用、効果については以下の実施例において詳細に説明する。 According to the configuration of the present invention, it is possible to realize a high pressure fuel pump equipped with a low noise suction valve while maintaining strength reliability. Other configurations, operations and effects of the present invention will be described in detail in the following embodiments.
本発明の実施例が適用される高圧燃料ポンプシステムの全体構成を示す図である。FIG. 1 is a diagram showing an overall configuration of a high pressure fuel pump system to which an embodiment of the present invention is applied. 本発明の実施例が適用される電磁吸入弁機構50の断面を示す図である。It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 with which the Example of this invention is applied. 本発明の実施例1に係る電磁吸入弁機構50の断面を示す図である。It is a figure showing the section of electromagnetic induction valve mechanism 50 concerning Example 1 of the present invention. 長さR-R、幅xθの片持ちはりの端部に集中荷重Fが作用した場合について説明する図である。It is a figure explaining the case where concentration load F acts on the end of cantilever with length R 1 -R 0 and width xθ. 長さR-R、幅xθの片持ちはりの端部に燃料圧力pが作用した場合を考えるについて説明する図である。It is a figure explaining about the case where the fuel pressure p acts on the end of the cantilever of length R-R 0 and width xθ. 本発明の実施例2に係る電磁吸入弁機構50の断面を示す図である。It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 which concerns on Example 2 of this invention. 本発明の実施例3に係る電磁吸入弁機構50の断面を示す図である。It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 which concerns on Example 3 of this invention. 本発明の実施例4に係る電磁吸入弁機構50の断面を示す図である。It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 which concerns on Example 4 of this invention. 本発明の実施例5に係る電磁吸入弁機構50の断面を示す図である。It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 which concerns on Example 5 of this invention. 本発明の実施例6に係る電磁吸入弁機構50の断面を示す図である。It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 which concerns on Example 6 of this invention.
 以下、図を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 実施例1について、図1、図2を用いて説明する。このうち図1は、本発明の実施例(実施例1から実施例6)が適用される高圧燃料ポンプシステムの全体構成を示している。このため、最初に図2を用いて全体構成の説明を行い、その後に吸入弁構造の各実施例について説明する。 Example 1 will be described with reference to FIGS. 1 and 2. Among them, FIG. 1 shows the overall configuration of a high pressure fuel pump system to which the embodiments of the present invention (Embodiments 1 to 6) are applied. For this reason, first, the entire configuration will be described using FIG. 2, and then each embodiment of the suction valve structure will be described.
 図1の高圧燃料ポンプシステムは、これを大別すると図示左側の燃料タンク101、図示中央の高圧燃料ポンプ300、図示右側の燃料噴射系200(コモンレール53、インジェクタ54など)、エンジンコントロールユニット(ECU)40、図示中央下側(高圧燃料ポンプ1の下側)の図示していない内燃機関400で構成されている。 The high-pressure fuel pump system shown in FIG. 1 can be roughly divided into a fuel tank 101 on the left side, a high-pressure fuel pump 300 on the center side, a fuel injection system 200 (common rail 53, injector 54, etc.) on the right side. 40, an internal combustion engine 400 (not shown) below the center of the drawing (below the high pressure fuel pump 1).
 高圧燃料ポンプ300は、ボディ1内に複数の部品や機構を一体に組み込んでおり、内燃機関400のシリンダヘッド20に取り付けられている。ボディ1には、吸入通路9、加圧室11、吐出通路12、リリーフ通路15が形成されている。吸入通路9には電磁吸入弁機構5、吐出通路12には吐出弁8、リリーフ通路15にはリリーフ弁機構30が設けられている。またボディ1内の加圧室11は、内燃機関のカム7の回転により上下動するプランジャ2により容積が変化してポンプ動作が可能となる。電磁吸入弁機構50は加圧する燃料量を決定する調整弁である。吐出弁8は燃料の流通方向を制限する逆止弁である。リリーフ弁機構30はコモンレール53内が所定の圧以上となった際に、それを開放する安全弁の機能を果たすものとなっている。 The high pressure fuel pump 300 integrally incorporates a plurality of parts and mechanisms in the body 1 and is attached to the cylinder head 20 of the internal combustion engine 400. In the body 1, a suction passage 9, a pressure chamber 11, a discharge passage 12, and a relief passage 15 are formed. An electromagnetic suction valve mechanism 5 is provided in the suction passage 9, a discharge valve 8 in the discharge passage 12, and a relief valve mechanism 30 in the relief passage 15. Further, the volume of the pressure chamber 11 in the body 1 is changed by the plunger 2 moved up and down by the rotation of the cam 7 of the internal combustion engine, and the pump operation becomes possible. The electromagnetic suction valve mechanism 50 is a control valve that determines the amount of fuel to be pressurized. The discharge valve 8 is a check valve that restricts the flow direction of the fuel. The relief valve mechanism 30 functions as a safety valve that opens the inside of the common rail 53 when the pressure in the common rail 53 exceeds a predetermined pressure.
 図1の高圧燃料ポンプシステムでは、燃料タンク101からの燃料は高圧燃料ポンプ300に導かれ、吸入通路9の電磁吸入弁機構50、加圧室11、吐出通路12の吐出弁8を経由することで高圧化され、燃料噴射系200に与えられる。高圧燃料ポンプは、燃料噴射系200のコモンレール53に接続されており、昇圧された燃料が圧送され、高圧の燃料はインジェクタ54から内燃機関の燃焼室へと噴射される。コモンレール53内の圧力は、圧力センサ56により計測され、その信号はエンジンコントロールユニット(ECU)40へ送られる。インジェクタ54は、エンジンの気筒数にあわせて装着されており、エンジンコントロールユニット(ECU)40の信号にて燃料を噴射する。またエンジンコントロールユニット(ECU)40は、高圧燃料ポンプ内の電磁吸入弁機構50を制御している。 In the high pressure fuel pump system of FIG. 1, the fuel from the fuel tank 101 is introduced to the high pressure fuel pump 300 and passes through the electromagnetic suction valve mechanism 50 of the suction passage 9, the pressure chamber 11 and the discharge valve 8 of the discharge passage 12. Is supplied to the fuel injection system 200. The high pressure fuel pump is connected to the common rail 53 of the fuel injection system 200, and the pressurized fuel is pumped, and the high pressure fuel is injected from the injector 54 into the combustion chamber of the internal combustion engine. The pressure in the common rail 53 is measured by a pressure sensor 56, and the signal is sent to an engine control unit (ECU) 40. The injectors 54 are mounted in accordance with the number of cylinders of the engine, and inject fuel in response to a signal from the engine control unit (ECU) 40. The engine control unit (ECU) 40 also controls an electromagnetic suction valve mechanism 50 in the high pressure fuel pump.
 本発明は図1の電磁吸入弁機構50の改良に関するものであるが、高圧燃料ポンプの各部機能についてそれぞれさらに詳しく説明する。 Although the present invention relates to the improvement of the electromagnetic suction valve mechanism 50 of FIG. 1, each function of the high pressure fuel pump will be described in more detail.
 まず、加圧室11によりポンプを動作するための内燃機関との接続関係について説明する。加圧室11下部のプランジャ2は、シリンダ120に摺動可能に挿入されており、下端にはリテーナ3が取り付けられている。リテーナ3にはプランジャ戻しばね4の付勢力が図1の下方向に作用している。タペット6は、内燃機関のカム7の回転により、図1の上下方向に往復する。プランジャ2はタペット6に追従して変位するため、これにより加圧室11の容積が変化してポンプ動作が可能となる。 First, the connection relationship with the internal combustion engine for operating the pump by the pressurizing chamber 11 will be described. The plunger 2 at the lower part of the pressure chamber 11 is slidably inserted into the cylinder 120, and a retainer 3 is attached to the lower end. The biasing force of the plunger return spring 4 acts on the retainer 3 downward in FIG. The tappet 6 reciprocates in the vertical direction of FIG. 1 by the rotation of the cam 7 of the internal combustion engine. The plunger 2 is displaced following the tappet 6, whereby the volume of the pressure chamber 11 changes and the pump operation becomes possible.
 次に電磁吸入弁機構50の構成について説明する。電磁吸入弁機構50はボディ1に形成された孔部に圧入及び溶接にて保持されている。電磁吸入弁機構50は電磁コイル500、可動子503、アンカーばね502、弁体ばね504が配されている。図1では可動部503が1部材で形成されているが、可動部503は磁気コアに吸引される磁気吸引面を形成するアンカーと、アンカーにより閉弁方向(図1の左方向)に駆動されるロッドの2部材から形成してもよい。 Next, the configuration of the electromagnetic suction valve mechanism 50 will be described. The electromagnetic suction valve mechanism 50 is held in a hole formed in the body 1 by press-fitting and welding. The electromagnetic suction valve mechanism 50 is provided with an electromagnetic coil 500, a mover 503, an anchor spring 502, and a valve body spring 504. In FIG. 1, the movable portion 503 is formed of one member, but the movable portion 503 is driven in the valve closing direction (left direction in FIG. 1) by the anchor forming the magnetic attraction surface attracted to the magnetic core and the anchor. It may be formed from two parts of the rod.
 図1はノーマルオープン方式の電磁吸入弁機構50を用いたエンジンシステムを示しているが、本発明はこれに限定されない。つまりノーマルクローズ方式の電磁吸入弁機構を備えた場合であっても適用可能である。 FIG. 1 shows an engine system using a normally open type electromagnetic suction valve mechanism 50, but the present invention is not limited thereto. That is, the present invention is also applicable to the case where a normally closed electromagnetic suction valve mechanism is provided.
 電磁コイル500がOFFの状態で開弁状態、ONの状態で閉弁状態となる電磁吸入弁機構をノーマルオープン方式の電磁吸入弁機構と称する。吸入弁501には、アンカーばね502の付勢力が可動部503を介して開弁方向に作用し、一方で弁体ばね504による付勢力が閉弁方向に作用している。ここで、アンカーばね502の付勢力は弁体ばね504の付勢力より大きい。そのため、電磁コイル500がOFF時、つまり無通電時においては、アンカーばね502によって付勢された可動子503により吸入弁501が弁体ばね504の付勢力に打ち勝つため、吸入弁501は開弁状態となっている。なお、これとは動作が逆転する、すなわち電磁コイル500がOFF(無通電)時、吸入弁501が閉弁状態となるノーマルクローズ方式と称する電磁弁方式を用いたシステムを前提にしても、同様に本発明を実施することが可能である。 The electromagnetic intake valve mechanism which is in the valve open state when the electromagnetic coil 500 is off and the valve closed state when the electromagnetic coil 500 is on is referred to as a normally open type electromagnetic intake valve mechanism. The biasing force of the anchor spring 502 acts on the suction valve 501 in the valve opening direction via the movable portion 503, while the biasing force of the valve body spring 504 acts on the valve closing direction. Here, the biasing force of the anchor spring 502 is larger than the biasing force of the valve body spring 504. Therefore, when the electromagnetic coil 500 is OFF, ie, when no current is supplied, the suction valve 501 overcomes the biasing force of the valve spring 504 by the mover 503 biased by the anchor spring 502, so the suction valve 501 is opened. It has become. The same applies to a system using an electromagnetic valve system called a normally closed system in which the suction valve 501 is closed when the operation is reversed, that is, when the electromagnetic coil 500 is OFF (no current). It is possible to practice the present invention.
 次に、高圧燃料ポンプの動作および流量制御方法について説明する。まず内燃機関のカム7の回転により、プランジャ2が図1の下方向に変位すると加圧室11の容積は増加し、その中の燃料圧力は低下する。そして加圧室11内の燃料圧力が吸入通路9の燃料圧力よりも低くなり、差圧による付勢力が弁体ばね504の付勢力を上回ると、吸入弁501が開弁方向に移動し、燃料が加圧室11内に吸入される。なお、プランジャ2がTDC(Top Dead Center)に至る前に電磁コイル500をOFFとした場合には、差圧による付勢力に加え、アンカーばね502の付勢力が吸入弁501に対して、開弁方向にかかることになる。この工程を吸入行程と呼ぶ。 Next, the operation of the high pressure fuel pump and the flow control method will be described. First, when the plunger 2 is displaced downward in FIG. 1 due to the rotation of the cam 7 of the internal combustion engine, the volume of the pressure chamber 11 increases and the fuel pressure therein decreases. Then, when the fuel pressure in the pressure chamber 11 becomes lower than the fuel pressure in the suction passage 9 and the biasing force by the differential pressure exceeds the biasing force of the valve spring 504, the suction valve 501 moves in the valve opening direction. Is sucked into the pressure chamber 11. If the electromagnetic coil 500 is turned off before the plunger 2 reaches TDC (Top Dead Center), the biasing force of the anchor spring 502 opens the suction valve 501 in addition to the biasing force due to the differential pressure. It will take you in the direction. This process is called a suction stroke.
 その後、プランジャ2がBDC(Bottom Dead Center)に至った後に再び上方向に移動を開始するが、この際、電磁コイル500がOFFの状態となっている。するとアンカーばね502の付勢力が可動部503を介して吸入弁501に作用しているため、プランジャ2が上方向に移動しても可動部503により吸入弁501の開弁状態が維持される。この場合、加圧室11の圧力は吸入通路9とほぼ同等の低圧状態となるため、吐出弁8を開弁することができず、加圧室11の容積減少分の燃料は、吸入弁501を通り、ダンパー室51側に戻される。この工程を戻し工程と呼ぶ。ダンパー室51には燃料圧力の脈動を低減する2枚張りの金属ダイアフラムで構成される金属ダンパーが配置される。 Thereafter, the plunger 2 starts moving upward again after reaching the BDC (Bottom Dead Center). At this time, the electromagnetic coil 500 is in the OFF state. Then, since the biasing force of the anchor spring 502 acts on the suction valve 501 via the movable portion 503, the movable portion 503 maintains the open state of the suction valve 501 even if the plunger 2 moves upward. In this case, since the pressure in the pressure chamber 11 is in a low pressure state substantially equal to that of the suction passage 9, the discharge valve 8 can not be opened, and the fuel corresponding to the volume reduction of the pressure chamber 11 is the suction valve 501. , And returned to the damper chamber 51 side. This process is called a return process. In the damper chamber 51, a metal damper composed of a two-piece metal diaphragm for reducing pulsation of fuel pressure is disposed.
 戻し工程において電磁コイル500へ通電すると、磁気吸引力により磁気コア5に可動子503が吸引され、この磁気吸引力がアンカーばね502の付勢力に打ち勝って、可動部503が閉弁方向に移動する。そして、弁体ばね504の付勢力および戻り燃料の流体差圧力により、弁体501は閉弁する。吸入弁501が閉弁した直後から加圧室11内の燃料圧力は、プランジャ2の上昇と共に上昇する。これにより吐出弁8が自動的に開弁し、燃料がコモンレール53に圧送される。 When the electromagnetic coil 500 is energized in the return step, the mover 503 is attracted to the magnetic core 5 by the magnetic attraction force, and the magnetic attraction force overcomes the biasing force of the anchor spring 502 to move the movable portion 503 in the valve closing direction. . Then, the valve body 501 is closed by the biasing force of the valve body spring 504 and the fluid pressure difference of the return fuel. Immediately after the suction valve 501 is closed, the fuel pressure in the pressure chamber 11 rises with the rise of the plunger 2. Thus, the discharge valve 8 is automatically opened, and the fuel is pressure fed to the common rail 53.
 以上のように電磁吸入弁機構50の電磁コイル500をON状態にするタイミングを調節することで、ポンプが吐出する流量を制御することができる。すなわち、電磁コイル500をON状態とするタイミングを早くすると吐出流量を増やすことができ、逆に遅くすることで吐出流量を減らすことが可能である。なお、リリーフ弁機構30は、リリーフ弁シート150に着座するリリーフ弁151とリリーフ弁151を閉弁方向に付勢するリリーフばね155を備える。燃料噴射弁54の故障などにより、コモンレール53が異常に高圧となり、設定圧力を超えた場合に、リリーフ弁機構30が開弁し、異常高圧燃料がリリーフr通路15を通って、加圧室11に戻るように機能する。 As described above, by adjusting the timing at which the electromagnetic coil 500 of the electromagnetic suction valve mechanism 50 is turned on, the flow rate discharged by the pump can be controlled. That is, the discharge flow rate can be increased by shortening the timing at which the electromagnetic coil 500 is turned on, and the discharge flow rate can be reduced by delaying the timing. The relief valve mechanism 30 includes a relief valve 151 seated on the relief valve seat 150 and a relief spring 155 biasing the relief valve 151 in the valve closing direction. When the common rail 53 abnormally rises to a high pressure due to a failure of the fuel injection valve 54 or the like and the set pressure is exceeded, the relief valve mechanism 30 opens and the abnormally high pressure fuel passes through the relief r passage 15 to the pressurizing chamber 11. Function to return to.
 図1下図の拡大図Aは図1上図に示す吸入弁501と形状は異なるが、吸入弁の拡大断面図を示す。図1下図の拡大図Aにおいて、電磁吸入弁機構50は、吸入弁501、吸入弁501を閉弁方向に付勢する弁体ばね504、吸入弁501が着座するシート部505、吸入弁501の開弁方向への動きを規制するストッパ部506、吸入弁501を開弁方向に付勢するロッド部507を備える。ストッパ部506を形成するストッパ部材はシート部505を形成するシート部材の内周面に圧入されている。 An enlarged view A of the lower drawing of FIG. 1 shows an enlarged sectional view of the suction valve although the shape is different from the suction valve 501 shown in the upper drawing of FIG. In the enlarged view A of the lower side of FIG. 1, the electromagnetic suction valve mechanism 50 includes a suction valve 501, a valve body spring 504 for biasing the suction valve 501 in a valve closing direction, a seat portion 505 on which the suction valve 501 is seated, and the suction valve 501. A stopper portion 506 for restricting the movement in the valve opening direction and a rod portion 507 for urging the suction valve 501 in the valve opening direction are provided. The stopper member forming the stopper portion 506 is press-fitted to the inner peripheral surface of the sheet member forming the sheet portion 505.
 ここで図2を用いて本発明の実施例1について説明する。本実施例の高圧燃料ポンプは、流路を開閉する吸入弁501と、吸入弁501が着座するシート部505と、開弁時に吸入弁501のシート部501と反対側に向かう動きを規制するストッパ部506と、吸入弁501と別体に構成され吸入弁501をストッパ部506に向かって付勢するロッドと、を備えている。そして吸入弁501は、中央部509と、中央部509の径方向外側において中央部509の下流面から上流に向かって形成されるとともに中央部509に対して軸方向厚みが薄くなる外周部511とで形成される。 A first embodiment of the present invention will now be described with reference to FIG. The high-pressure fuel pump of this embodiment includes a suction valve 501 for opening and closing a flow path, a seat portion 505 on which the suction valve 501 is seated, and a stopper for regulating the movement of the suction valve 501 toward the opposite side to the seat portion 501 when opening. And a rod configured separately from the suction valve 501 and urging the suction valve 501 toward the stopper portion 506. The suction valve 501 has a central portion 509, an outer peripheral portion 511 which is formed radially outward of the central portion 509 from the downstream surface of the central portion 509 toward the upstream and has a thinner axial thickness than the central portion 509. It is formed by
 つまり、電磁吸入弁機構50は、弁体上流部508で流路を開閉する吸入弁501と、閉弁時に吸入弁501を保持するシート部505と、開弁時に吸入弁501を保持するストッパ部506と、吸入弁501と別体に構成され吸入弁501を付勢するロッド部507と、吸入弁501をロッド部507に向かって付勢する弁体ばね504とを備える。そして図2に示すように中央部509は軸方向厚みが径方向外側に向かうにつれて薄くなるように構成されることが望ましい。吸入弁501は板厚(軸方向厚み)が最外周部510に向かうにつれて薄くなるように構成され、かつ、上流側に凹む曲面部511が形成されている。弁体ばね504の一端は吸入弁501の中央部509の内径側のばね接触部512と接触することで吸入弁501を閉弁方向に付勢する。本実施例では、ばね接触部512は中央部509と同じ傾きで同一面上に形成されるように構成される。 That is, the electromagnetic suction valve mechanism 50 has a suction valve 501 that opens and closes the flow path at the valve body upstream portion 508, a seat portion 505 that holds the suction valve 501 when closing the valve, and a stopper portion that holds the suction valve 501 when opening the valve. And a rod 507 configured separately from the suction valve 501 to bias the suction valve 501, and a valve spring 504 biasing the suction valve 501 toward the rod 507. Further, as shown in FIG. 2, it is desirable that the central portion 509 is configured to become thinner as the axial thickness goes radially outward. The suction valve 501 is configured such that the plate thickness (axial direction thickness) becomes thinner toward the outermost peripheral portion 510, and a curved surface portion 511 recessed on the upstream side is formed. One end of the valve body spring 504 contacts the spring contact portion 512 on the inner diameter side of the central portion 509 of the suction valve 501 to bias the suction valve 501 in the valve closing direction. In the present embodiment, the spring contact portion 512 is configured to be formed on the same plane at the same inclination as the central portion 509.
 また図2に示すように、外周部511は中央部509と繋がって形成され、外周部511の下流面は上流側に凹む曲面部を有するように構成されることが望ましい。また外周部511の全てが中央部509の下流面の全てに対して上流側に位置するように構成されることが望ましい。さらに中央部509の下流面が吸入弁501の開弁方向への動きを規制するストッパ部506に衝突するように構成されることが望ましい。さらに外周部511の下流面の曲面部は、吸入弁501の最外周部に形成されることが望ましい。 Further, as shown in FIG. 2, it is desirable that the outer peripheral portion 511 is formed to be connected to the central portion 509, and the downstream surface of the outer peripheral portion 511 is configured to have a curved surface portion recessed on the upstream side. In addition, it is desirable that all of the outer peripheral portion 511 be configured to be located upstream with respect to all of the downstream surfaces of the central portion 509. Furthermore, it is desirable that the downstream surface of the central portion 509 be configured to collide with the stopper portion 506 that restricts the movement of the suction valve 501 in the valve opening direction. Furthermore, it is desirable that the curved surface portion of the downstream surface of the outer peripheral portion 511 be formed on the outermost peripheral portion of the suction valve 501.
 以上の通り、吸入弁501の軸方向厚みが最外周部510に向かうにつれて薄くなり、上流側に凹む曲面部511が形成されていれば、吸入弁501の質量が軽くなるため、高圧燃料ポンプの騒音を低減できる。 As described above, if the axial thickness of the suction valve 501 becomes thinner toward the outermost peripheral portion 510 and the curved surface portion 511 recessed on the upstream side is formed, the mass of the suction valve 501 becomes lighter. Noise can be reduced.
 また、図3の電磁吸入弁機構50の断面図に示すように、吸入弁501の軸方向厚みtは最外周部510(半径R)から中央部509の根元部514(半径R)にかけて以下の(数1)と(数2)で示す軸方向厚み以上となるように形成する。なお、本実施例において吸入弁501は径方向中心に最も軸方向厚みが大きくなり、弁体ばね504の内周部にガイドされるガイド部を有する。つまり、中央部509はガイド部に対して径方向外側に形成される。 Further, as shown in the cross-sectional view of the electromagnetic suction valve mechanism 50 in FIG. 3, the axial thickness t of the suction valve 501 extends from the outermost peripheral portion 510 (radius R) to the root portion 514 (radius R 0 ) of the central portion 509 It is formed so as to be equal to or greater than the axial thickness indicated by (Equation 1) and (Equation 2) of In the present embodiment, the suction valve 501 has the largest axial thickness at the radial center and has a guide portion guided by the inner peripheral portion of the valve body spring 504. That is, the central portion 509 is formed radially outward with respect to the guide portion.
 このとき本実施例では吸入弁501の軸方向厚みt(x)を以下の(数1)に満たす関係とする。なお、Rはストッパ接触部513までの半径、tは根元部514の軸方向厚みである。 At this time, in the present embodiment, the axial thickness t (x) of the suction valve 501 is set to satisfy the following (Equation 1). R 1 is a radius to the stopper contact portion 513, and t 0 is an axial thickness of the root portion 514.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図4に示す様に、長さR-R、幅xθの片持ちはりの端部に集中荷重Fが作用した場合を考える。はりの各断面に作用するモーメントM(x)は(数3)のように表せ、曲げ応力σ(x)は(数4)で表せる。(数4)を(数3)で整理すると、曲げ応力σ(x)は(数5)で表せる。図1の拡大図Aで示す通り、板厚tが一定の場合、応力σ(x)が最大となるのは根本部(x=R-R)となる。この根本部の応力σは(数6)で表せる。σ(x)とσの関係が常にσ(x)≦σを満たす板厚t(x)は(数1)に示す通りである。これにより、吸入弁501とストッパ部506の接触時に加わる吸入弁501の最外周部510から根元部514にかけての応力を根元部514に加わる応力以下とすることができる。 As shown in FIG. 4, consider the case where a concentrated load F acts on the end of a cantilever having a length R 1 -R 0 and a width xθ. The moment M (x) acting on each cross section of the beam can be expressed as (Equation 3), and the bending stress σ (x) can be expressed by (Equation 4). If (equation 4) is arranged by (equation 3), bending stress σ (x) can be expressed by (equation 5). As shown in the enlarged view A of FIG. 1, when the plate thickness t is constant, the stress σ (x) is maximized at the root portion (x = R 1 −R 0 ). The stress σ s of this root portion can be expressed by (Equation 6). The plate thickness t (x) where the relationship between σ (x) and σ s always satisfies σ (x) ≦ σ s is as shown in (Equation 1). Accordingly, the stress applied from the outermost periphery 510 to the root portion 514 of the suction valve 501, which is applied when the suction valve 501 and the stopper portion 506 contact, can be made equal to or less than the stress applied to the root portion 514.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 吸入弁501の軸方向厚みt(x)を上記した(数2)に満たす関係とすることが望ましい。図5に示す様に、長さR-R、幅xθの片持ちはりの端部に燃料圧力pが作用した場合を考える。はりの各断面に作用するモーメントM(x)は(数7)で表せ、曲げ応力σ(x)は(数3)で表せる。(数7)を(数3)で整理すると、曲げ応力σ(x)は(数8)で表せる。図1の拡大図Aで示す通り、板厚tが一定の場合、応力σ(x)が最大となるのは根本部(x=R-R)となる。この根本部の応力σssは(数9)で表せる。σ(x)とσssの関係が常にσ(x)≦σを満たす板厚t(x)は(数1)に示した通りである。これにより吸入弁下流側全面に燃圧が加わる時、吸入弁501の最外周部510から根元部514にかけての応力を根元部514に加わる応力以下とすることができる。したがって、吸入弁501の破損を防止することができる。 It is desirable that the axial thickness t (x) of the suction valve 501 be set to satisfy the above (Equation 2). As shown in FIG. 5, it is assumed that the fuel pressure p acts on the end of a cantilever having a length R-R 0 and a width xθ. The moment M (x) acting on each cross section of the beam can be expressed by (Equation 7), and the bending stress σ (x) can be expressed by (Equation 3). If the equation (7) is rearranged by the equation (3), the bending stress σ (x) can be expressed by the equation (8). As shown in the enlarged view A of FIG. 1, when the plate thickness t is constant, the stress σ (x) is maximized at the root portion (x = R 1 −R 0 ). The stress σ ss of this root portion can be expressed by (Equation 9). The thickness t (x) where the relationship between σ (x) and σ ss always satisfies σ (x) ≦ σ s is as shown in (Equation 1). Thus, when fuel pressure is applied to the entire surface on the downstream side of the suction valve, the stress from the outermost periphery 510 to the root 514 of the suction valve 501 can be made equal to or less than the stress applied to the root 514. Therefore, damage to the suction valve 501 can be prevented.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 図6を用いて本発明の実施例2を説明する。実施例1と基本的な構成は同様であるため、ここでは異なる点のみについて説明する。図6の電磁吸入弁機構50の断面図に示すように、吸入弁501は中央部509の内径側に弁体ばね504とのばね接触部512を有する。ここで本実施例では、中央部509の下流面は弁体ばね504とのばね接触部512を備え、ばね接触部512は弁体ばね504の軸方向(図6の左右方向)と直交する方向(図6の上下方向)に平坦に形成されている。 Second Embodiment A second embodiment of the present invention will be described with reference to FIG. Since the basic configuration is the same as that of the first embodiment, only different points will be described here. As shown in the cross-sectional view of the electromagnetic suction valve mechanism 50 of FIG. 6, the suction valve 501 has a spring contact portion 512 with the valve body spring 504 on the inner diameter side of the central portion 509. Here, in the present embodiment, the downstream surface of the central portion 509 is provided with a spring contact portion 512 with the valve body spring 504, and the spring contact portion 512 is a direction orthogonal to the axial direction (left and right direction in FIG. 6) of the valve body spring 504. It is formed flat (in the vertical direction in FIG. 6).
 これにより、弁体ばね504とばね接触部512が均一に接触するため、弁体ばね504から吸入弁501が受ける付勢力を安定にすることができる。したがって、吸入弁501が暴れることを抑制でき、信頼性の高い電磁吸入弁機構50を提供することが可能である。 Thereby, since the valve body spring 504 and the spring contact part 512 contact uniformly, the biasing force which the suction valve 501 receives from the valve body spring 504 can be stabilized. Therefore, it is possible to suppress the asymmetry of the suction valve 501 and provide the electromagnetic suction valve mechanism 50 with high reliability.
 図7を用いて本発明の実施例3を説明する。実施例1と基本的な構成は同様であるため、ここでは異なる点のみについて説明する。図7の電磁吸入弁機構50の断面図に示すように、吸入弁501は、ストッパ部506とのストッパ接触部513が平坦部となるように構成される。つまり、中央部509の下流面は、ストッパ部506とのストッパ接触部513を備え、ストッパ接触部513は弁体ばね504と直交する方向に平坦に形成される。 A third embodiment of the present invention will be described with reference to FIG. Since the basic configuration is the same as that of the first embodiment, only different points will be described here. As shown in the cross-sectional view of the electromagnetic suction valve mechanism 50 in FIG. 7, the suction valve 501 is configured such that the stopper contact portion 513 with the stopper portion 506 is a flat portion. That is, the downstream surface of the central portion 509 includes the stopper contact portion 513 with the stopper portion 506, and the stopper contact portion 513 is formed flat in the direction orthogonal to the valve body spring 504.
 吸入弁501は、ストッパ部506との接触部513が平坦であると、弁体501がストッパ部506に対し局所的に接触することがなく、吸入弁501の摩耗を防止することができる。 In the suction valve 501, when the contact portion 513 with the stopper portion 506 is flat, the valve body 501 does not locally contact the stopper portion 506, and the wear of the suction valve 501 can be prevented.
 図8を用いて本発明の実施例4を説明する。実施例1、又は実施例4と基本的な構成は同様であるため、ここでは異なる点のみについて説明する。図8の電磁吸入弁機構50の断面図に示すように、吸入弁501の最外周部510は曲面、あるいは一定の厚みを有することが望ましい。 Fourth Embodiment A fourth embodiment of the present invention will be described with reference to FIG. Since the basic configuration is the same as that of the first embodiment or the fourth embodiment, only different points will be described here. As shown in the cross-sectional view of the electromagnetic suction valve mechanism 50 in FIG. 8, it is desirable that the outermost peripheral portion 510 of the suction valve 501 has a curved surface or a certain thickness.
 吸入弁501の最外周部510が尖った形をしていると、吸入弁501を旋盤加工により製作する際に最外周部510を固定できず、加工性が低下する。上記構成により、これを抑制し、吸入弁501の加工を容易化する。 When the outermost peripheral portion 510 of the suction valve 501 has a sharp shape, the outermost peripheral portion 510 can not be fixed when manufacturing the suction valve 501 by lathe processing, and the workability is reduced. According to the above configuration, this is suppressed, and the processing of the suction valve 501 is facilitated.
 図9を用いて本発明の実施例5を説明する。実施例1と基本的な構成は同様であるため、ここでは異なる点のみについて説明する。図9の断面図に示すように、電磁吸入弁機構50は吸入弁501、弁体ばね504、シート部505、ストッパ部506、ロッド部507、最外周部510、ストッパ接触部513、吸入弁501の中央部509、中央部509の根元部514を備える。 A fifth embodiment of the present invention will be described with reference to FIG. Since the basic configuration is the same as that of the first embodiment, only different points will be described here. As shown in the sectional view of FIG. 9, the electromagnetic suction valve mechanism 50 includes a suction valve 501, a valve body spring 504, a seat portion 505, a stopper portion 506, a rod portion 507, an outermost peripheral portion 510, a stopper contact portion 513, and a suction valve 501. And a root portion 514 of the central portion 509.
 本実施例では、最外周部510からストッパ接触部513に向けて軸方向厚みが薄くなるように構成され、かつ上流側に凹む曲面部511が形成され、かつストッパ接触部513から中央部根元部514にかけて軸方向厚みが一定とする。 In this embodiment, a curved surface portion 511 which is configured such that the thickness in the axial direction decreases from the outermost peripheral portion 510 toward the stopper contact portion 513 and is recessed on the upstream side is formed, and the central portion root portion from the stopper contact portion 513 The axial thickness is made constant over 514.
 つまり本実施例では、吸入弁501の中央部509は軸方向厚みが一定の平板形状で構成される。具体的には吸入弁501は、ストッパ部506とのストッパ接触部513から最外周部510に向かうにつれて曲面形状の外周部511が形成され、かつストッパ接触部513から径方向内側に向かって軸方向厚みが一定の中央部509が形成される。そして、上記したように外周部511の下流面が上流側に凹む曲面部を有するように形成されるものである。 That is, in the present embodiment, the central portion 509 of the suction valve 501 is formed in a flat plate shape having a constant axial thickness. Specifically, in the suction valve 501, a curved outer peripheral portion 511 is formed from the stopper contact portion 513 with the stopper portion 506 toward the outermost peripheral portion 510, and the radial direction inward from the stopper contact portion 513 is in the axial direction A central portion 509 having a constant thickness is formed. Then, as described above, the downstream surface of the outer peripheral portion 511 is formed to have a curved surface portion recessed toward the upstream side.
 これにより、ストッパ部506と吸入弁501の接触による摩耗を防ぐことができる。ただし、吸入弁501の破損を防止するため、吸入弁501の軸方向厚みは実施例1に示す(数1)と(数2)に示す関係を満たすように構成されることが望ましい。 Thereby, wear due to contact between the stopper portion 506 and the suction valve 501 can be prevented. However, in order to prevent damage to the suction valve 501, it is desirable that the axial thickness of the suction valve 501 be configured to satisfy the relationship shown in (Equation 1) and (Equation 2) shown in the first embodiment.
 図10を用いて本発明の実施例6を説明する。実施例1、又は実施例5と基本的な構成は同様であるため、ここでは異なる点のみについて説明する。図10の電磁吸入弁機構50の断面図に示すように、吸入弁501の最外周部510は曲面、あるいは一定の厚みを有することが望ましい。 A sixth embodiment of the present invention will be described with reference to FIG. The basic configuration is the same as that of the first embodiment or the fifth embodiment, so only the difference will be described here. As shown in the cross-sectional view of the electromagnetic suction valve mechanism 50 of FIG. 10, it is desirable that the outermost peripheral portion 510 of the suction valve 501 has a curved surface or a constant thickness.
 吸入弁501の最外周部510が尖った形をしていると、吸入弁501を旋盤加工により製作する際に固定できず、加工が困難となる。上記構成により、これを抑制し、吸入弁501の加工を容易化する。 If the outermost periphery 510 of the suction valve 501 has a sharp shape, it can not be fixed when manufacturing the suction valve 501 by lathe processing, which makes processing difficult. According to the above configuration, this is suppressed, and the processing of the suction valve 501 is facilitated.
 本発明は、内燃機関の高圧燃料ポンプに限らず、各種の高圧ポンプに広く利用可能である。 The present invention is widely applicable not only to high pressure fuel pumps for internal combustion engines but also to various high pressure pumps.
1:ボディ2:プランジャ3:リテーナ4:戻しばね5:磁気コア50:電磁吸入弁機構501:吸入弁502:アンカーばね503:可動部504:弁体ばね505:シート部506:ストッパ部507:ロッド部508:弁体上流部509:中央部510:最外周部511:外周部(曲面部)512:弁体ばね接触部513:ストッパ接触部514:根元部6:タペット7:カム8:吐出弁9:吸入通路11:加圧室12:吐出通路15:リリーフ通路53:コモンレール54:インジェクタ56:圧力センサ 1: body 2: plunger 3: retainer 4: return spring 5: magnetic core 50: electromagnetic suction valve mechanism 501: suction valve 502: anchor spring 503: movable portion 504: valve body spring 505: seat portion 506: stopper portion 507: Rod portion 508: valve body upstream portion 509: central portion 510: outermost peripheral portion 511: outer peripheral portion (curved surface portion) 512: valve body spring contact portion 513: stopper contact portion 514: root portion 6: tappet 7: cam 8: discharge Valve 9: suction passage 11: pressure chamber 12: discharge passage 15: relief passage 53: common rail 54: injector 56: pressure sensor

Claims (11)

  1.  流路を開閉する吸入弁と、前記吸入弁が着座するシート部と、開弁時に前記吸入弁の前記シート部と反対側に向かう動きを規制するストッパ部と、前記吸入弁と別体に構成され前記吸入弁を前記ストッパ部に向かって付勢するロッドと、を備えた高圧燃料ポンプにおいて、
     前記吸入弁は、中央部と、前記中央部の径方向外側において前記中央部の下流面から上流に向かって形成されるとともに前記中央部に対して軸方向厚みが薄くなる外周部とで形成された高圧燃料ポンプ。
    A suction valve that opens and closes a flow path, a seat portion on which the suction valve is seated, a stopper portion that regulates movement of the suction valve toward the side opposite to the seat portion at the time of valve opening, and a separate body from the suction valve A high pressure fuel pump including a rod for urging the suction valve toward the stopper portion;
    The suction valve is formed of a central portion, and an outer peripheral portion which is formed radially outward of the central portion from the downstream surface of the central portion toward the upstream and thinner in axial direction with respect to the central portion High pressure fuel pump.
  2.  請求項1に記載の高圧燃料ポンプにおいて、
     前記中央部は軸方向厚みが一定の平板形状で構成された高圧燃料ポンプ。
    In the high pressure fuel pump according to claim 1,
    The high-pressure fuel pump may have a flat plate shape with a constant axial thickness at the central portion.
  3.  請求項1に記載の高圧燃料ポンプにおいて、
     前記中央部は軸方向厚みが径方向外側に向かうにつれて薄くなるように構成された高圧燃料ポンプ。
    In the high pressure fuel pump according to claim 1,
    The high-pressure fuel pump is configured such that the central portion becomes thinner toward the radial outside in the axial direction.
  4.  請求項1に記載の高圧燃料ポンプにおいて、
     前記外周部は前記中央部と繋がって形成され、前記外周部の下流面は上流側に凹む曲面部を有するように構成された高圧燃料ポンプ。
    In the high pressure fuel pump according to claim 1,
    The high-pressure fuel pump is configured such that the outer peripheral portion is connected to the central portion, and the downstream surface of the outer peripheral portion has a curved surface portion recessed toward the upstream side.
  5.  請求項1に記載の高圧燃料ポンプにおいて、
     前記外周部の全てが前記中央部の下流面の全てに対して上流側に位置するように構成された高圧燃料ポンプ。
    In the high pressure fuel pump according to claim 1,
    The high-pressure fuel pump, wherein all of the outer peripheral portions are positioned upstream with respect to all of the downstream surfaces of the central portion.
  6.  請求項1に記載の高圧燃料ポンプにおいて、
     前記中央部の下流面が前記吸入弁の開弁方向への動きを規制するストッパ部に衝突するように構成された高圧燃料ポンプ。
    In the high pressure fuel pump according to claim 1,
    The high-pressure fuel pump is configured such that a downstream surface of the central portion collides with a stopper portion that restricts the movement of the suction valve in the valve opening direction.
  7.  請求項1に記載の高圧燃料ポンプにおいて、
     前記中央部の下流面は前記弁体ばねとのばね接触部を備え、前記ばね接触部は前記弁体ばねと直交する方向に平坦に形成された高圧燃料ポンプ。
    In the high pressure fuel pump according to claim 1,
    The downstream surface of the central portion includes a spring contact portion with the valve body spring, and the spring contact portion is formed flat in a direction orthogonal to the valve body spring.
  8.  請求項1に記載の高圧燃料ポンプにおいて、
     前記中央部の下流面は、前記ストッパ部とのストッパ接触部を備え、前記ストッパ接触部は前記弁体ばねと直交する方向に平坦に形成された高圧燃料ポンプ。
    In the high pressure fuel pump according to claim 1,
    The downstream surface of the central portion includes a stopper contact portion with the stopper portion, and the stopper contact portion is formed flat in a direction orthogonal to the valve body spring.
  9.  請求項4において記載の高圧燃料ポンプにおいて、
     前記曲面部は、前記吸入弁の最外周部に形成された高圧燃料ポンプ。
    In the high pressure fuel pump according to claim 4,
    The high-pressure fuel pump wherein the curved surface portion is formed at the outermost periphery of the suction valve.
  10.  請求項2に記載の高圧燃料ポンプにおいて、
     前記吸入弁は、前記ストッパ部とのストッパ接触部から最外周部に向かうにつれて前記外周部が形成され、かつ前記ストッパ接触部から径方向内側に向かって軸方向厚みが一定の前記中央部が形成された高圧燃料ポンプ。
    In the high pressure fuel pump according to claim 2,
    The suction valve has the outer peripheral portion formed from the stopper contact portion with the stopper portion toward the outermost peripheral portion, and the central portion having a constant axial thickness in the radial direction from the stopper contact portion. High pressure fuel pump.
  11.  請求項10に記載の高圧燃料ポンプにおいて、
     前記外周部の下流面が上流側に凹む曲面部を有するように形成された高圧燃料ポンプ。
    The high pressure fuel pump according to claim 10,
    The high pressure fuel pump, wherein the downstream surface of the outer peripheral portion is formed to have a curved surface portion recessed toward the upstream side.
PCT/JP2018/024091 2017-07-14 2018-06-26 High-pressure fuel pump WO2019012976A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017137639A JP6855343B2 (en) 2017-07-14 2017-07-14 High pressure fuel pump
JP2017-137639 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019012976A1 true WO2019012976A1 (en) 2019-01-17

Family

ID=65002002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024091 WO2019012976A1 (en) 2017-07-14 2018-06-26 High-pressure fuel pump

Country Status (2)

Country Link
JP (1) JP6855343B2 (en)
WO (1) WO2019012976A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218633A (en) * 2002-12-27 2004-08-05 Bosch Automotive Systems Corp High pressure fuel pump
US20100206252A1 (en) * 2007-07-20 2010-08-19 Bernd Schroeder High-pressure pump for a fuel system of an internal combustion engine
JP2015127545A (en) * 2015-03-26 2015-07-09 株式会社デンソー High pressure pump
JP2016133010A (en) * 2015-01-16 2016-07-25 株式会社デンソー High pressure pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126605B2 (en) * 2008-12-26 2013-01-23 株式会社デンソー High pressure pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218633A (en) * 2002-12-27 2004-08-05 Bosch Automotive Systems Corp High pressure fuel pump
US20100206252A1 (en) * 2007-07-20 2010-08-19 Bernd Schroeder High-pressure pump for a fuel system of an internal combustion engine
JP2016133010A (en) * 2015-01-16 2016-07-25 株式会社デンソー High pressure pump
JP2015127545A (en) * 2015-03-26 2015-07-09 株式会社デンソー High pressure pump

Also Published As

Publication number Publication date
JP6855343B2 (en) 2021-04-07
JP2019019728A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
EP2055931A1 (en) Plunger type high-pressure fuel pump
JP2006207451A (en) Fuel pump and delivery valve equipped in fuel pump
US20120180764A1 (en) High Pressure Fuel Supply Pump
JP6308921B2 (en) High pressure fuel supply pump
JP5641031B2 (en) Electromagnetic actuator
EP3296558B1 (en) High-pressure fuel pump
JPWO2018123323A1 (en) High pressure fuel supply pump with electromagnetic suction valve
US9890753B2 (en) High-pressure fuel supply pump
JP2013133753A (en) Pressure regulating valve
JP6862574B2 (en) High pressure fuel supply pump
JP6855343B2 (en) High pressure fuel pump
JP3925376B2 (en) High pressure fuel pump
JP5529681B2 (en) Constant residual pressure valve
JP7349505B2 (en) Solenoid valve mechanism and high pressure fuel supply pump
JP2015137578A (en) High pressure pump
JP2019167897A (en) Fuel supply pump
JP4078320B2 (en) Poppet valve device and electronically controlled fuel injection device including the same
JP7139265B2 (en) High-pressure fuel supply pump and relief valve mechanism
WO2018016272A1 (en) Fuel supply pump
JP2009257451A (en) Structure of roller lifter
JP2017014920A (en) Solenoid valve and high pressure fuel supply pump
JP4748045B2 (en) Fuel injection nozzle
JP2019167962A (en) Electromagnetic valve and high-pressure fuel supply pump
JP6342020B2 (en) Valve mechanism and high-pressure fuel supply pump provided with the same
CN112243474B (en) Electromagnetic valve and high-pressure fuel supply pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832473

Country of ref document: EP

Kind code of ref document: A1