JP2019019728A - High-pressure fuel pump - Google Patents

High-pressure fuel pump Download PDF

Info

Publication number
JP2019019728A
JP2019019728A JP2017137639A JP2017137639A JP2019019728A JP 2019019728 A JP2019019728 A JP 2019019728A JP 2017137639 A JP2017137639 A JP 2017137639A JP 2017137639 A JP2017137639 A JP 2017137639A JP 2019019728 A JP2019019728 A JP 2019019728A
Authority
JP
Japan
Prior art keywords
fuel pump
pressure fuel
suction valve
valve
central portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017137639A
Other languages
Japanese (ja)
Other versions
JP6855343B2 (en
Inventor
幸平 松下
Kohei Matsushita
幸平 松下
谷江 尚史
Hisafumi Tanie
尚史 谷江
康雄 溝渕
Yasuo Mizobuchi
康雄 溝渕
徳尾 健一郎
Kenichiro Tokuo
健一郎 徳尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2017137639A priority Critical patent/JP6855343B2/en
Priority to PCT/JP2018/024091 priority patent/WO2019012976A1/en
Publication of JP2019019728A publication Critical patent/JP2019019728A/en
Application granted granted Critical
Publication of JP6855343B2 publication Critical patent/JP6855343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/34Varying fuel delivery in quantity or timing by throttling of passages to pumping elements or of overflow passages, e.g. throttling by means of a pressure-controlled sliding valve having liquid stop or abutment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

To provide a high-pressure fuel pump on which a suction valve is mounted for reducing noise while maintaining strength reliability.SOLUTION: The high-pressure fuel pump comprises: a suction valve which opens/closes a channel; a seat part where the suction valve is seated; a stopper part which regulates movements of the suction valve toward an opposite side of the seat part in valve opening; and a rod which is configured separately from the suction valve and energizes the suction valve towards the stopper part. In the high-pressure fuel pump, the suction valve is formed from a central portion; and an outer peripheral portion which is formed radially outside of the central portion from a downstream face of the central portion to an upstream side and of which the axial thickness is reduced with respect to the central portion.SELECTED DRAWING: Figure 2

Description

本発明は、内燃機関に燃料を高圧にして供給する高圧燃料ポンプに関する。   The present invention relates to a high-pressure fuel pump that supplies fuel to an internal combustion engine at a high pressure.

本発明の従来技術として、特許文献1に記載の技術がある。この特許文献1では、加圧室に燃料を供給する供給通路を開閉する吸入弁を軽量にすることの可能な高圧ポンプを提供する。 このために吸入弁40は、弁座34に着座することで供給通路100を閉塞し、弁座34から離座することで供給通路100を開放する。吸入弁40の加圧室側にストッパ50が設けられ、吸入弁40の加圧室側への移動を制限する。吸入弁40と別体で構成されたニードル60は、吸入弁40の弁座34側の端面に当接可能である。ストッパ50に設けられた収容室52に第1スプリング21が収容され、吸入弁40を弁座34側に付勢する。吸入弁40のストッパ50側の端面から延びるガイド部41は、軸方向の長さBが吸入弁40の全閉時と全開時との移動距離Aより長く形成され、吸入弁40の径方向の移動を制限する。これにより、吸入弁40の外径を小さくし、かつ、その軸方向の肉厚を薄くすることが可能になる、と開示されている(要約参照)。   As a conventional technique of the present invention, there is a technique described in Patent Document 1. In Patent Document 1, a high-pressure pump capable of reducing the weight of a suction valve that opens and closes a supply passage for supplying fuel to a pressurizing chamber is provided. For this purpose, the intake valve 40 closes the supply passage 100 by sitting on the valve seat 34, and opens the supply passage 100 by separating from the valve seat 34. A stopper 50 is provided on the pressure chamber side of the suction valve 40 to limit movement of the suction valve 40 to the pressure chamber side. The needle 60 configured separately from the suction valve 40 can contact the end face of the suction valve 40 on the valve seat 34 side. The first spring 21 is accommodated in the accommodation chamber 52 provided in the stopper 50, and the suction valve 40 is urged toward the valve seat 34 side. The guide portion 41 extending from the end face on the stopper 50 side of the suction valve 40 is formed such that the axial length B is longer than the moving distance A when the suction valve 40 is fully closed and fully opened. Restrict movement. Accordingly, it is disclosed that the outer diameter of the suction valve 40 can be reduced and the axial thickness thereof can be reduced (see summary).

特開2012−154295号公報JP 2012-154295 A

上記特許文献1では、吸入弁の外径を小さくし、かつ、その軸方向の肉厚を薄くすることによって、吸入弁を軽量化することが記載されている。しかしながら、この構造では軽量化を目的に肉厚を薄くしすぎると弁体の強度信頼性が低下し、疲労破壊することが懸念される。反対に、強度信頼性を確保しようとすると、軸方向厚みが厚くなり、騒音低減効果が十分に得られない可能性がある。   Patent Document 1 describes that the suction valve can be reduced in weight by reducing the outer diameter of the suction valve and reducing its axial thickness. However, in this structure, if the thickness is made too thin for the purpose of weight reduction, the strength reliability of the valve body is lowered, and there is a concern that fatigue failure may occur. On the other hand, if it is attempted to ensure strength reliability, the axial thickness increases, and the noise reduction effect may not be sufficiently obtained.

本発明では、強度信頼性を保ちつつ騒音を低減する吸入弁を搭載した高圧燃料ポンプを提供することを目的とする。   An object of the present invention is to provide a high-pressure fuel pump equipped with an intake valve that reduces noise while maintaining strength reliability.

上記課題を解決するために本発明の高圧燃料ポンプは、流路を開閉する吸入弁と、前記吸入弁が着座するシート部と、開弁時に前記吸入弁の前記シート部と反対側に向かう動きを規制するストッパ部と、前記吸入弁と別体に構成され前記吸入弁を前記ストッパ部に向かって付勢するロッドと、を備えた高圧燃料ポンプにおいて、前記吸入弁は、中央部と、前記中央部の径方向外側において前記中央部の下流面から上流に向かって形成されるとともに前記中央部に対して軸方向厚みが薄くなる外周部とで形成された。   In order to solve the above problems, a high-pressure fuel pump according to the present invention includes a suction valve that opens and closes a flow path, a seat portion on which the suction valve is seated, and a movement toward the opposite side of the seat portion of the suction valve when the valve is opened. A high-pressure fuel pump comprising: a stopper portion that restricts the intake valve; and a rod that is configured separately from the intake valve and biases the intake valve toward the stopper portion. The outer peripheral portion is formed on the radially outer side of the central portion from the downstream surface of the central portion toward the upstream and has an axial thickness that is thinner than the central portion.

本発明の構成によれば、強度信頼性を保ちつつ低騒音な吸入弁を搭載した高圧燃料ポンプを実現することができる。本発明のその他の構成、作用、効果については以下の実施例において詳細に説明する。   According to the configuration of the present invention, it is possible to realize a high-pressure fuel pump equipped with a low-noise intake valve while maintaining strength reliability. Other configurations, operations, and effects of the present invention will be described in detail in the following examples.

本発明の実施例が適用される高圧燃料ポンプシステムの全体構成を示す図である。It is a figure showing the whole high-pressure fuel pump system composition to which the example of the present invention is applied. 本発明の実施例が適用される電磁吸入弁機構50の断面を示す図である。It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 with which the Example of this invention is applied. 本発明の実施例1に係る電磁吸入弁機構50の断面を示す図である。It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 which concerns on Example 1 of this invention. 長さR−R、幅xθの片持ちはりの端部に集中荷重Fが作用した場合について説明する図である。Length R 1 -R 0, is a diagram for describing a case where concentrated load F acts on the end of Hari cantilevered width X.theta. 長さR−R、幅xθの片持ちはりの端部に燃料圧力pが作用した場合を考えるについて説明する図である。It is a figure explaining considering the case where the fuel pressure p acts on the edge part of the cantilever of length R- R0 and width x (theta). 本発明の実施例2に係る電磁吸入弁機構50の断面を示す図である。It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 which concerns on Example 2 of this invention. 本発明の実施例3に係る電磁吸入弁機構50の断面を示す図である。It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 which concerns on Example 3 of this invention. 本発明の実施例4に係る電磁吸入弁機構50の断面を示す図である。It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 which concerns on Example 4 of this invention. 本発明の実施例5に係る電磁吸入弁機構50の断面を示す図である。It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 which concerns on Example 5 of this invention. 本発明の実施例6に係る電磁吸入弁機構50の断面を示す図である。It is a figure which shows the cross section of the electromagnetic suction valve mechanism 50 which concerns on Example 6 of this invention.

以下、図を参照して、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施例1について、図1、図2を用いて説明する。このうち図1は、本発明の実施例(実施例1から実施例6)が適用される高圧燃料ポンプシステムの全体構成を示している。このため、最初に図2を用いて全体構成の説明を行い、その後に吸入弁構造の各実施例について説明する。   Example 1 will be described with reference to FIGS. Of these, FIG. 1 shows the overall configuration of a high-pressure fuel pump system to which the embodiments of the present invention (Embodiments 1 to 6) are applied. Therefore, the overall configuration will be described first with reference to FIG. 2, and then each embodiment of the intake valve structure will be described.

図1の高圧燃料ポンプシステムは、これを大別すると図示左側の燃料タンク101、図示中央の高圧燃料ポンプ300、図示右側の燃料噴射系200(コモンレール53、インジェクタ54など)、エンジンコントロールユニット(ECU)40、図示中央下側(高圧燃料ポンプ1の下側)の図示していない内燃機関400で構成されている。   The high-pressure fuel pump system shown in FIG. 1 can be broadly divided into a fuel tank 101 on the left side in the figure, a high-pressure fuel pump 300 in the center in the figure, a fuel injection system 200 (common rail 53, injector 54, etc.) on the right side in the figure, an engine control unit (ECU 40), the internal combustion engine 400 (not shown) on the lower side in the center of the figure (the lower side of the high pressure fuel pump 1).

高圧燃料ポンプ300は、ボディ1内に複数の部品や機構を一体に組み込んでおり、内燃機関400のシリンダヘッド20に取り付けられている。ボディ1には、吸入通路9、加圧室11、吐出通路12、リリーフ通路15が形成されている。吸入通路9には電磁吸入弁機構5、吐出通路12には吐出弁8、リリーフ通路15にはリリーフ弁機構30が設けられている。またボディ1内の加圧室11は、内燃機関のカム7の回転により上下動するプランジャ2により容積が変化してポンプ動作が可能となる。電磁吸入弁機構50は加圧する燃料量を決定する調整弁である。吐出弁8は燃料の流通方向を制限する逆止弁である。リリーフ弁機構30はコモンレール53内が所定の圧以上となった際に、それを開放する安全弁の機能を果たすものとなっている。   The high-pressure fuel pump 300 incorporates a plurality of components and mechanisms integrally in the body 1 and is attached to the cylinder head 20 of the internal combustion engine 400. In the body 1, a suction passage 9, a pressurizing chamber 11, a discharge passage 12, and a relief passage 15 are formed. An electromagnetic suction valve mechanism 5 is provided in the suction passage 9, a discharge valve 8 is provided in the discharge passage 12, and a relief valve mechanism 30 is provided in the relief passage 15. The pressurizing chamber 11 in the body 1 is changed in volume by the plunger 2 that moves up and down by the rotation of the cam 7 of the internal combustion engine, so that the pump operation is possible. The electromagnetic intake valve mechanism 50 is an adjustment valve that determines the amount of fuel to be pressurized. The discharge valve 8 is a check valve that restricts the direction of fuel flow. The relief valve mechanism 30 functions as a safety valve that opens the common rail 53 when the pressure in the common rail 53 exceeds a predetermined pressure.

図1の高圧燃料ポンプシステムでは、燃料タンク101からの燃料は高圧燃料ポンプ300に導かれ、吸入通路9の電磁吸入弁機構50、加圧室11、吐出通路12の吐出弁8を経由することで高圧化され、燃料噴射系200に与えられる。高圧燃料ポンプは、燃料噴射系200のコモンレール53に接続されており、昇圧された燃料が圧送され、高圧の燃料はインジェクタ54から内燃機関の燃焼室へと噴射される。コモンレール53内の圧力は、圧力センサ56により計測され、その信号はエンジンコントロールユニット(ECU)40へ送られる。インジェクタ54は、エンジンの気筒数にあわせて装着されており、エンジンコントロールユニット(ECU)40の信号にて燃料を噴射する。またエンジンコントロールユニット(ECU)40は、高圧燃料ポンプ内の電磁吸入弁機構50を制御している。   In the high pressure fuel pump system of FIG. 1, the fuel from the fuel tank 101 is guided to the high pressure fuel pump 300 and passes through the electromagnetic suction valve mechanism 50 in the suction passage 9, the pressurizing chamber 11, and the discharge valve 8 in the discharge passage 12. The pressure is increased and supplied to the fuel injection system 200. The high-pressure fuel pump is connected to the common rail 53 of the fuel injection system 200, the pressurized fuel is pumped, and the high-pressure fuel is injected from the injector 54 into the combustion chamber of the internal combustion engine. The pressure in the common rail 53 is measured by the pressure sensor 56, and the signal is sent to the engine control unit (ECU) 40. The injectors 54 are mounted in accordance with the number of cylinders of the engine, and inject fuel with a signal from an engine control unit (ECU) 40. An engine control unit (ECU) 40 controls an electromagnetic intake valve mechanism 50 in the high-pressure fuel pump.

本発明は図1の電磁吸入弁機構50の改良に関するものであるが、高圧燃料ポンプの各部機能についてそれぞれさらに詳しく説明する。   Although the present invention relates to the improvement of the electromagnetic intake valve mechanism 50 of FIG. 1, the functions of each part of the high-pressure fuel pump will be described in more detail.

まず、加圧室11によりポンプを動作するための内燃機関との接続関係について説明する。加圧室11下部のプランジャ2は、シリンダ120に摺動可能に挿入されており、下端にはリテーナ3が取り付けられている。リテーナ3にはプランジャ戻しばね4の付勢力が図1の下方向に作用している。タペット6は、内燃機関のカム7の回転により、図1の上下方向に往復する。プランジャ2はタペット6に追従して変位するため、これにより加圧室11の容積が変化してポンプ動作が可能となる。   First, the connection relationship with the internal combustion engine for operating the pump by the pressurizing chamber 11 will be described. The plunger 2 below the pressurizing chamber 11 is slidably inserted into the cylinder 120, and the retainer 3 is attached to the lower end. The urging force of the plunger return spring 4 acts on the retainer 3 in the downward direction in FIG. The tappet 6 reciprocates in the vertical direction in FIG. 1 by the rotation of the cam 7 of the internal combustion engine. Since the plunger 2 is displaced following the tappet 6, this changes the volume of the pressurizing chamber 11 and enables the pump operation.

次に電磁吸入弁機構50の構成について説明する。電磁吸入弁機構50はボディ1に形成された孔部に圧入及び溶接にて保持されている。電磁吸入弁機構50は電磁コイル500、可動子503、アンカーばね502、弁体ばね504が配されている。図1では可動部503が1部材で形成されているが、可動部503は磁気コアに吸引される磁気吸引面を形成するアンカーと、アンカーにより閉弁方向(図1の左方向)に駆動されるロッドの2部材から形成してもよい。   Next, the configuration of the electromagnetic intake valve mechanism 50 will be described. The electromagnetic suction valve mechanism 50 is held in a hole formed in the body 1 by press-fitting and welding. The electromagnetic suction valve mechanism 50 is provided with an electromagnetic coil 500, a mover 503, an anchor spring 502, and a valve body spring 504. In FIG. 1, the movable portion 503 is formed of one member. However, the movable portion 503 is driven in the valve closing direction (left direction in FIG. 1) by an anchor that forms a magnetic attraction surface that is attracted to the magnetic core. It may be formed from two members of a rod.

図1はノーマルオープン方式の電磁吸入弁機構50を用いたエンジンシステムを示しているが、本発明はこれに限定されない。つまりノーマルクローズ方式の電磁吸入弁機構を備えた場合であっても適用可能である。   Although FIG. 1 shows an engine system using a normally open type electromagnetic intake valve mechanism 50, the present invention is not limited to this. That is, the present invention can be applied even when a normally closed electromagnetic intake valve mechanism is provided.

電磁コイル500がOFFの状態で開弁状態、ONの状態で閉弁状態となる電磁吸入弁機構をノーマルオープン方式の電磁吸入弁機構と称する。吸入弁501には、アンカーばね502の付勢力が可動部503を介して開弁方向に作用し、一方で弁体ばね504による付勢力が閉弁方向に作用している。ここで、アンカーばね502の付勢力は弁体ばね504の付勢力より大きい。そのため、電磁コイル500がOFF時、つまり無通電時においては、アンカーばね502によって付勢された可動子503により吸入弁501が弁体ばね504の付勢力に打ち勝つため、吸入弁501は開弁状態となっている。なお、これとは動作が逆転する、すなわち電磁コイル500がOFF(無通電)時、吸入弁501が閉弁状態となるノーマルクローズ方式と称する電磁弁方式を用いたシステムを前提にしても、同様に本発明を実施することが可能である。   An electromagnetic intake valve mechanism that is opened when the electromagnetic coil 500 is OFF and closed when the electromagnetic coil 500 is ON is referred to as a normally open electromagnetic intake valve mechanism. The urging force of the anchor spring 502 acts on the suction valve 501 in the valve opening direction via the movable portion 503, while the urging force of the valve body spring 504 acts on the suction valve 501 in the valve closing direction. Here, the biasing force of the anchor spring 502 is larger than the biasing force of the valve body spring 504. Therefore, when the electromagnetic coil 500 is OFF, that is, when no power is supplied, the suction valve 501 overcomes the biasing force of the valve body spring 504 by the mover 503 biased by the anchor spring 502, and the suction valve 501 is in the open state. It has become. Note that this is the same even if a system using an electromagnetic valve system called a normally closed system in which the operation is reversed, that is, when the electromagnetic coil 500 is OFF (non-energized), the suction valve 501 is closed. It is possible to implement the present invention.

次に、高圧燃料ポンプの動作および流量制御方法について説明する。まず内燃機関のカム7の回転により、プランジャ2が図1の下方向に変位すると加圧室11の容積は増加し、その中の燃料圧力は低下する。そして加圧室11内の燃料圧力が吸入通路9の燃料圧力よりも低くなり、差圧による付勢力が弁体ばね504の付勢力を上回ると、吸入弁501が開弁方向に移動し、燃料が加圧室11内に吸入される。なお、プランジャ2がTDC(Top Dead Center)に至る前に電磁コイル500をOFFとした場合には、差圧による付勢力に加え、アンカーばね502の付勢力が吸入弁501に対して、開弁方向にかかることになる。この工程を吸入行程と呼ぶ。   Next, the operation of the high pressure fuel pump and the flow rate control method will be described. First, when the plunger 2 is displaced downward in FIG. 1 due to the rotation of the cam 7 of the internal combustion engine, the volume of the pressurizing chamber 11 increases, and the fuel pressure therein decreases. When the fuel pressure in the pressurizing chamber 11 becomes lower than the fuel pressure in the suction passage 9 and the biasing force due to the differential pressure exceeds the biasing force of the valve body spring 504, the suction valve 501 moves in the valve opening direction. Is sucked into the pressurizing chamber 11. If the electromagnetic coil 500 is turned OFF before the plunger 2 reaches TDC (Top Dead Center), the biasing force of the anchor spring 502 is opened against the suction valve 501 in addition to the biasing force due to the differential pressure. Will take direction. This process is called an inhalation stroke.

その後、プランジャ2がBDC(Bottom Dead Center)に至った後に再び上方向に移動を開始するが、この際、電磁コイル500がOFFの状態となっている。するとアンカーばね502の付勢力が可動部503を介して吸入弁501に作用しているため、プランジャ2が上方向に移動しても可動部503により吸入弁501の開弁状態が維持される。この場合、加圧室11の圧力は吸入通路9とほぼ同等の低圧状態となるため、吐出弁8を開弁することができず、加圧室11の容積減少分の燃料は、吸入弁501を通り、ダンパー室51側に戻される。この工程を戻し工程と呼ぶ。ダンパー室51には燃料圧力の脈動を低減する2枚張りの金属ダイアフラムで構成される金属ダンパーが配置される。   After that, after the plunger 2 reaches BDC (Bottom Dead Center), it starts to move upward again. At this time, the electromagnetic coil 500 is in an OFF state. Then, since the biasing force of the anchor spring 502 acts on the suction valve 501 via the movable portion 503, the open state of the suction valve 501 is maintained by the movable portion 503 even if the plunger 2 moves upward. In this case, since the pressure in the pressurizing chamber 11 is in a low pressure state substantially equal to that of the suction passage 9, the discharge valve 8 cannot be opened. And is returned to the damper chamber 51 side. This process is called a return process. In the damper chamber 51, a metal damper composed of a two-layer metal diaphragm that reduces pulsation of fuel pressure is disposed.

戻し工程において電磁コイル500へ通電すると、磁気吸引力により磁気コア5に可動子503が吸引され、この磁気吸引力がアンカーばね502の付勢力に打ち勝って、可動部503が閉弁方向に移動する。そして、弁体ばね504の付勢力および戻り燃料の流体差圧力により、弁体501は閉弁する。吸入弁501が閉弁した直後から加圧室11内の燃料圧力は、プランジャ2の上昇と共に上昇する。これにより吐出弁8が自動的に開弁し、燃料がコモンレール53に圧送される。   When the electromagnetic coil 500 is energized in the return step, the mover 503 is attracted to the magnetic core 5 by the magnetic attractive force, and this magnetic attractive force overcomes the biasing force of the anchor spring 502, and the movable portion 503 moves in the valve closing direction. . Then, the valve body 501 is closed by the biasing force of the valve body spring 504 and the fluid differential pressure of the return fuel. Immediately after the intake valve 501 is closed, the fuel pressure in the pressurizing chamber 11 rises as the plunger 2 rises. As a result, the discharge valve 8 is automatically opened, and the fuel is pumped to the common rail 53.

以上のように電磁吸入弁機構50の電磁コイル500をON状態にするタイミングを調節することで、ポンプが吐出する流量を制御することができる。すなわち、電磁コイル500をON状態とするタイミングを早くすると吐出流量を増やすことができ、逆に遅くすることで吐出流量を減らすことが可能である。なお、リリーフ弁機構30は、リリーフ弁シート150に着座するリリーフ弁151とリリーフ弁151を閉弁方向に付勢するリリーフばね155を備える。燃料噴射弁54の故障などにより、コモンレール53が異常に高圧となり、設定圧力を超えた場合に、リリーフ弁機構30が開弁し、異常高圧燃料がリリーフr通路15を通って、加圧室11に戻るように機能する。   As described above, by adjusting the timing at which the electromagnetic coil 500 of the electromagnetic suction valve mechanism 50 is turned on, the flow rate discharged from the pump can be controlled. That is, if the timing at which the electromagnetic coil 500 is turned on is advanced, the discharge flow rate can be increased, and conversely, the discharge flow rate can be reduced by decreasing the timing. The relief valve mechanism 30 includes a relief valve 151 seated on the relief valve seat 150 and a relief spring 155 that urges the relief valve 151 in the valve closing direction. When the common rail 53 becomes abnormally high in pressure due to a failure of the fuel injection valve 54 or the like and exceeds the set pressure, the relief valve mechanism 30 opens, and the abnormally high pressure fuel passes through the relief r passage 15 and passes through the pressurizing chamber 11. Function to return to.

図1下図の拡大図Aは図1上図に示す吸入弁501と形状は異なるが、吸入弁の拡大断面図を示す。図1下図の拡大図Aにおいて、電磁吸入弁機構50は、吸入弁501、吸入弁501を閉弁方向に付勢する弁体ばね504、吸入弁501が着座するシート部505、吸入弁501の開弁方向への動きを規制するストッパ部506、吸入弁501を開弁方向に付勢するロッド部507を備える。ストッパ部506を形成するストッパ部材はシート部505を形成するシート部材の内周面に圧入されている。   An enlarged view A in the lower diagram of FIG. 1 is an enlarged sectional view of the suction valve, although the shape is different from that of the suction valve 501 shown in the upper diagram of FIG. 1, the electromagnetic intake valve mechanism 50 includes an intake valve 501, a valve body spring 504 that urges the intake valve 501 in the valve closing direction, a seat portion 505 on which the intake valve 501 is seated, and an intake valve 501. A stopper portion 506 for restricting movement in the valve opening direction and a rod portion 507 for biasing the suction valve 501 in the valve opening direction are provided. A stopper member that forms the stopper portion 506 is press-fitted into the inner peripheral surface of the sheet member that forms the sheet portion 505.

ここで図2を用いて本発明の実施例1について説明する。本実施例の高圧燃料ポンプは、流路を開閉する吸入弁501と、吸入弁501が着座するシート部505と、開弁時に吸入弁501のシート部501と反対側に向かう動きを規制するストッパ部506と、吸入弁501と別体に構成され吸入弁501をストッパ部506に向かって付勢するロッドと、を備えている。そして吸入弁501は、中央部509と、中央部509の径方向外側において中央部509の下流面から上流に向かって形成されるとともに中央部509に対して軸方向厚みが薄くなる外周部511とで形成される。   Here, Embodiment 1 of the present invention will be described with reference to FIG. The high-pressure fuel pump of this embodiment includes a suction valve 501 that opens and closes a flow path, a seat portion 505 on which the suction valve 501 is seated, and a stopper that restricts the movement of the suction valve 501 toward the opposite side of the seat portion 501 when the valve is opened. And a rod that is configured separately from the suction valve 501 and urges the suction valve 501 toward the stopper portion 506. The suction valve 501 includes a central portion 509 and an outer peripheral portion 511 that is formed on the radially outer side of the central portion 509 from the downstream surface of the central portion 509 toward the upstream and has a smaller axial thickness than the central portion 509. Formed with.

つまり、電磁吸入弁機構50は、弁体上流部508で流路を開閉する吸入弁501と、閉弁時に吸入弁501を保持するシート部505と、開弁時に吸入弁501を保持するストッパ部506と、吸入弁501と別体に構成され吸入弁501を付勢するロッド部507と、吸入弁501をロッド部507に向かって付勢する弁体ばね504とを備える。そして図2に示すように中央部509は軸方向厚みが径方向外側に向かうにつれて薄くなるように構成されることが望ましい。吸入弁501は板厚(軸方向厚み)が最外周部510に向かうにつれて薄くなるように構成され、かつ、上流側に凹む曲面部511が形成されている。弁体ばね504の一端は吸入弁501の中央部509の内径側のばね接触部512と接触することで吸入弁501を閉弁方向に付勢する。本実施例では、ばね接触部512は中央部509と同じ傾きで同一面上に形成されるように構成される。   That is, the electromagnetic suction valve mechanism 50 includes a suction valve 501 that opens and closes the flow path at the valve body upstream portion 508, a seat portion 505 that holds the suction valve 501 when the valve is closed, and a stopper portion that holds the suction valve 501 when the valve is opened. 506, a rod part 507 configured separately from the suction valve 501 and biasing the suction valve 501, and a valve body spring 504 biasing the suction valve 501 toward the rod part 507. As shown in FIG. 2, the central portion 509 is preferably configured such that the axial thickness becomes thinner as it goes radially outward. The intake valve 501 is configured such that the plate thickness (axial thickness) decreases toward the outermost peripheral portion 510, and a curved surface portion 511 that is recessed upstream is formed. One end of the valve body spring 504 is in contact with the spring contact portion 512 on the inner diameter side of the central portion 509 of the suction valve 501, thereby urging the suction valve 501 in the valve closing direction. In the present embodiment, the spring contact portion 512 is configured to be formed on the same surface with the same inclination as the central portion 509.

また図2に示すように、外周部511は中央部509と繋がって形成され、外周部511の下流面は上流側に凹む曲面部を有するように構成されることが望ましい。また外周部511の全てが中央部509の下流面の全てに対して上流側に位置するように構成されることが望ましい。さらに中央部509の下流面が吸入弁501の開弁方向への動きを規制するストッパ部506に衝突するように構成されることが望ましい。さらに外周部511の下流面の曲面部は、吸入弁501の最外周部に形成されることが望ましい。   As shown in FIG. 2, the outer peripheral portion 511 is preferably formed so as to be connected to the central portion 509, and the downstream surface of the outer peripheral portion 511 is preferably configured to have a curved portion that is recessed upstream. Further, it is desirable that all of the outer peripheral portion 511 is configured to be located upstream with respect to all of the downstream surface of the central portion 509. Further, it is desirable that the downstream surface of the central portion 509 collides with a stopper portion 506 that restricts the movement of the intake valve 501 in the valve opening direction. Furthermore, it is desirable that the curved surface portion on the downstream surface of the outer peripheral portion 511 is formed on the outermost peripheral portion of the suction valve 501.

以上の通り、吸入弁501の軸方向厚みが最外周部510に向かうにつれて薄くなり、上流側に凹む曲面部511が形成されていれば、吸入弁501の質量が軽くなるため、高圧燃料ポンプの騒音を低減できる。   As described above, if the axial thickness of the intake valve 501 becomes thinner toward the outermost peripheral portion 510 and the curved surface portion 511 that is recessed upstream is formed, the mass of the intake valve 501 becomes lighter. Noise can be reduced.

また、図3の電磁吸入弁機構50の断面図に示すように、吸入弁501の軸方向厚みtは最外周部510(半径R)から中央部509の根元部514(半径R)にかけて以下の(数1)と(数2)で示す軸方向厚み以上となるように形成する。なお、本実施例において吸入弁501は径方向中心に最も軸方向厚みが大きくなり、弁体ばね504の内周部にガイドされるガイド部を有する。つまり、中央部509はガイド部に対して径方向外側に形成される。 Further, as shown in the sectional view of the electromagnetic suction valve mechanism 50 in FIG. 3, the axial thickness t of the suction valve 501 is as follows from the outermost peripheral portion 510 (radius R) to the root portion 514 (radius R 0 ) of the central portion 509. It is formed so as to be equal to or greater than the axial thickness indicated by (Equation 1) and (Equation 2). In the present embodiment, the suction valve 501 has the largest axial thickness at the radial center, and has a guide portion guided by the inner peripheral portion of the valve body spring 504. That is, the central portion 509 is formed on the radially outer side with respect to the guide portion.

このとき本実施例では吸入弁501の軸方向厚みt(x)を以下の(数1)に満たす関係とする。なお、Rはストッパ接触部513までの半径、tは根元部514の軸方向厚みである。 At this time, in this embodiment, the relationship is satisfied so that the axial thickness t (x) of the suction valve 501 satisfies the following (Equation 1). R 1 is the radius to the stopper contact portion 513, and t 0 is the axial thickness of the root portion 514.

Figure 2019019728
Figure 2019019728

Figure 2019019728
Figure 2019019728

図4に示す様に、長さR−R、幅xθの片持ちはりの端部に集中荷重Fが作用した場合を考える。はりの各断面に作用するモーメントM(x)は(数3)のように表せ、曲げ応力σ(x)は(数4)で表せる。(数4)を(数3)で整理すると、曲げ応力σ(x)は(数5)で表せる。図1の拡大図Aで示す通り、板厚tが一定の場合、応力σ(x)が最大となるのは根本部(x=R−R)となる。この根本部の応力σは(数6)で表せる。σ(x)とσの関係が常にσ(x)≦σを満たす板厚t(x)は(数1)に示す通りである。これにより、吸入弁501とストッパ部506の接触時に加わる吸入弁501の最外周部510から根元部514にかけての応力を根元部514に加わる応力以下とすることができる。 Consider the case where a concentrated load F acts on the end of a cantilever having a length R 1 -R 0 and a width xθ as shown in FIG. The moment M (x) acting on each cross section of the beam can be expressed as (Equation 3), and the bending stress σ (x) can be expressed as (Equation 4). By arranging (Equation 4) by (Equation 3), the bending stress σ (x) can be expressed by (Equation 5). As shown in the enlarged view A of FIG. 1, when the thickness t is constant, the stress σ (x) is maximized at the root (x = R 1 −R 0 ). The stress σ s at the root portion can be expressed by (Equation 6). The thickness t (x) where the relationship between σ (x) and σ s always satisfies σ (x) ≦ σ s is as shown in (Equation 1). Thereby, the stress applied from the outermost peripheral portion 510 to the root portion 514 of the suction valve 501 applied when the suction valve 501 and the stopper portion 506 are in contact with each other can be made equal to or less than the stress applied to the root portion 514.

Figure 2019019728
Figure 2019019728

Figure 2019019728
Figure 2019019728

Figure 2019019728
Figure 2019019728

Figure 2019019728
Figure 2019019728

吸入弁501の軸方向厚みt(x)を上記した(数2)に満たす関係とすることが望ましい。図5に示す様に、長さR−R、幅xθの片持ちはりの端部に燃料圧力pが作用した場合を考える。はりの各断面に作用するモーメントM(x)は(数7)で表せ、曲げ応力σ(x)は(数3)で表せる。(数7)を(数3)で整理すると、曲げ応力σ(x)は(数8)で表せる。図1の拡大図Aで示す通り、板厚tが一定の場合、応力σ(x)が最大となるのは根本部(x=R−R)となる。この根本部の応力σssは(数9)で表せる。σ(x)とσssの関係が常にσ(x)≦σを満たす板厚t(x)は(数1)に示した通りである。これにより吸入弁下流側全面に燃圧が加わる時、吸入弁501の最外周部510から根元部514にかけての応力を根元部514に加わる応力以下とすることができる。したがって、吸入弁501の破損を防止することができる。 It is desirable that the axial thickness t (x) of the suction valve 501 satisfy the above-described (Equation 2). As shown in FIG. 5, a case is considered in which the fuel pressure p acts on the end of a cantilever beam having a length R-R 0 and a width xθ. The moment M (x) acting on each cross section of the beam can be expressed by (Equation 7), and the bending stress σ (x) can be expressed by (Equation 3). By arranging (Equation 7) by (Equation 3), the bending stress σ (x) can be expressed by (Equation 8). As shown in the enlarged view A of FIG. 1, when the thickness t is constant, the stress σ (x) is maximized at the root (x = R 1 −R 0 ). The stress σ ss at the root portion can be expressed by (Equation 9). The thickness t (x) where the relationship between σ (x) and σ ss always satisfies σ (x) ≦ σ s is as shown in (Equation 1). Thereby, when fuel pressure is applied to the entire downstream surface of the suction valve, the stress from the outermost peripheral portion 510 to the root portion 514 of the suction valve 501 can be made equal to or less than the stress applied to the root portion 514. Therefore, damage to the suction valve 501 can be prevented.

Figure 2019019728
Figure 2019019728

Figure 2019019728
Figure 2019019728

Figure 2019019728
Figure 2019019728

図6を用いて本発明の実施例2を説明する。実施例1と基本的な構成は同様であるため、ここでは異なる点のみについて説明する。図6の電磁吸入弁機構50の断面図に示すように、吸入弁501は中央部509の内径側に弁体ばね504とのばね接触部512を有する。ここで本実施例では、中央部509の下流面は弁体ばね504とのばね接触部512を備え、ばね接触部512は弁体ばね504の軸方向(図6の左右方向)と直交する方向(図6の上下方向)に平坦に形成されている。   A second embodiment of the present invention will be described with reference to FIG. Since the basic configuration is the same as that of the first embodiment, only different points will be described here. As shown in the sectional view of the electromagnetic suction valve mechanism 50 in FIG. 6, the suction valve 501 has a spring contact portion 512 with a valve body spring 504 on the inner diameter side of the central portion 509. Here, in the present embodiment, the downstream surface of the central portion 509 includes a spring contact portion 512 with the valve body spring 504, and the spring contact portion 512 is a direction orthogonal to the axial direction of the valve body spring 504 (the left-right direction in FIG. 6). It is formed flat in the vertical direction of FIG.

これにより、弁体ばね504とばね接触部512が均一に接触するため、弁体ばね504から吸入弁501が受ける付勢力を安定にすることができる。したがって、吸入弁501が暴れることを抑制でき、信頼性の高い電磁吸入弁機構50を提供することが可能である。   Thereby, since the valve body spring 504 and the spring contact part 512 contact uniformly, the urging | biasing force which the suction valve 501 receives from the valve body spring 504 can be stabilized. Therefore, it is possible to prevent the intake valve 501 from being violated and to provide a highly reliable electromagnetic intake valve mechanism 50.

図7を用いて本発明の実施例3を説明する。実施例1と基本的な構成は同様であるため、ここでは異なる点のみについて説明する。図7の電磁吸入弁機構50の断面図に示すように、吸入弁501は、ストッパ部506とのストッパ接触部513が平坦部となるように構成される。つまり、中央部509の下流面は、ストッパ部506とのストッパ接触部513を備え、ストッパ接触部513は弁体ばね504と直交する方向に平坦に形成される。   A third embodiment of the present invention will be described with reference to FIG. Since the basic configuration is the same as that of the first embodiment, only different points will be described here. As shown in the sectional view of the electromagnetic suction valve mechanism 50 in FIG. 7, the suction valve 501 is configured such that the stopper contact portion 513 with the stopper portion 506 is a flat portion. In other words, the downstream surface of the central portion 509 includes a stopper contact portion 513 with the stopper portion 506, and the stopper contact portion 513 is formed flat in a direction orthogonal to the valve body spring 504.

吸入弁501は、ストッパ部506との接触部513が平坦であると、弁体501がストッパ部506に対し局所的に接触することがなく、吸入弁501の摩耗を防止することができる。   When the contact portion 513 with the stopper portion 506 is flat, the suction valve 501 does not contact the valve portion 501 locally with respect to the stopper portion 506, and wear of the suction valve 501 can be prevented.

図8を用いて本発明の実施例4を説明する。実施例1、又は実施例4と基本的な構成は同様であるため、ここでは異なる点のみについて説明する。図8の電磁吸入弁機構50の断面図に示すように、吸入弁501の最外周部510は曲面、あるいは一定の厚みを有することが望ましい。   Embodiment 4 of the present invention will be described with reference to FIG. Since the basic configuration is the same as that of the first or fourth embodiment, only different points will be described here. As shown in the sectional view of the electromagnetic suction valve mechanism 50 in FIG. 8, it is desirable that the outermost peripheral portion 510 of the suction valve 501 has a curved surface or a certain thickness.

吸入弁501の最外周部510が尖った形をしていると、吸入弁501を旋盤加工により製作する際に最外周部510を固定できず、加工性が低下する。上記構成により、これを抑制し、吸入弁501の加工を容易化する。   If the outermost peripheral portion 510 of the suction valve 501 has a sharp shape, the outermost peripheral portion 510 cannot be fixed when the suction valve 501 is manufactured by lathe processing, and workability is deteriorated. With the above configuration, this is suppressed and the processing of the intake valve 501 is facilitated.

図9を用いて本発明の実施例5を説明する。実施例1と基本的な構成は同様であるため、ここでは異なる点のみについて説明する。図9の断面図に示すように、電磁吸入弁機構50は吸入弁501、弁体ばね504、シート部505、ストッパ部506、ロッド部507、最外周部510、ストッパ接触部513、吸入弁501の中央部509、中央部509の根元部514を備える。   Embodiment 5 of the present invention will be described with reference to FIG. Since the basic configuration is the same as that of the first embodiment, only different points will be described here. As shown in the sectional view of FIG. 9, the electromagnetic suction valve mechanism 50 includes a suction valve 501, a valve spring 504, a seat portion 505, a stopper portion 506, a rod portion 507, an outermost peripheral portion 510, a stopper contact portion 513, and a suction valve 501. The center part 509 and the root part 514 of the center part 509 are provided.

本実施例では、最外周部510からストッパ接触部513に向けて軸方向厚みが薄くなるように構成され、かつ上流側に凹む曲面部511が形成され、かつストッパ接触部513から中央部根元部514にかけて軸方向厚みが一定とする。   In the present embodiment, a curved surface portion 511 is formed so that the axial thickness decreases from the outermost peripheral portion 510 toward the stopper contact portion 513 and is recessed upstream, and the central portion root portion from the stopper contact portion 513 is formed. The thickness in the axial direction is constant over 514.

つまり本実施例では、吸入弁501の中央部509は軸方向厚みが一定の平板形状で構成される。具体的には吸入弁501は、ストッパ部506とのストッパ接触部513から最外周部510に向かうにつれて曲面形状の外周部511が形成され、かつストッパ接触部513から径方向内側に向かって軸方向厚みが一定の中央部509が形成される。そして、上記したように外周部511の下流面が上流側に凹む曲面部を有するように形成されるものである。   That is, in the present embodiment, the central portion 509 of the suction valve 501 is configured as a flat plate having a constant axial thickness. Specifically, the suction valve 501 has a curved outer peripheral portion 511 formed from the stopper contact portion 513 with the stopper portion 506 toward the outermost peripheral portion 510, and is axially directed radially inward from the stopper contact portion 513. A central portion 509 having a constant thickness is formed. And as above-mentioned, it forms so that the downstream surface of the outer peripheral part 511 may have a curved surface part dented in an upstream.

これにより、ストッパ部506と吸入弁501の接触による摩耗を防ぐことができる。ただし、吸入弁501の破損を防止するため、吸入弁501の軸方向厚みは実施例1に示す(数1)と(数2)に示す関係を満たすように構成されることが望ましい。   As a result, wear due to contact between the stopper portion 506 and the suction valve 501 can be prevented. However, in order to prevent damage to the intake valve 501, it is desirable that the axial thickness of the intake valve 501 be configured to satisfy the relationship shown in (Equation 1) and (Equation 2) shown in the first embodiment.

図10を用いて本発明の実施例6を説明する。実施例1、又は実施例5と基本的な構成は同様であるため、ここでは異なる点のみについて説明する。図10の電磁吸入弁機構50の断面図に示すように、吸入弁501の最外周部510は曲面、あるいは一定の厚みを有することが望ましい。   A sixth embodiment of the present invention will be described with reference to FIG. Since the basic configuration is the same as that of the first embodiment or the fifth embodiment, only different points will be described here. As shown in the sectional view of the electromagnetic suction valve mechanism 50 in FIG. 10, it is desirable that the outermost peripheral portion 510 of the suction valve 501 has a curved surface or a certain thickness.

吸入弁501の最外周部510が尖った形をしていると、吸入弁501を旋盤加工により製作する際に固定できず、加工が困難となる。上記構成により、これを抑制し、吸入弁501の加工を容易化する。   If the outermost peripheral portion 510 of the suction valve 501 has a sharp shape, it cannot be fixed when the suction valve 501 is manufactured by lathe processing, and the processing becomes difficult. With the above configuration, this is suppressed and the processing of the intake valve 501 is facilitated.

本発明は、内燃機関の高圧燃料ポンプに限らず、各種の高圧ポンプに広く利用可能である。   The present invention is not limited to high-pressure fuel pumps for internal combustion engines, and can be widely used for various high-pressure pumps.

1:ボディ
2:プランジャ
3:リテーナ
4:戻しばね
5:磁気コア
50:電磁吸入弁機構
501:吸入弁
502:アンカーばね
503:可動部
504:弁体ばね
505:シート部
506:ストッパ部
507:ロッド部
508:弁体上流部
509:中央部
510:最外周部
511:外周部(曲面部)
512:弁体ばね接触部
513:ストッパ接触部
514:根元部
6:タペット
7:カム
8:吐出弁
9:吸入通路
11:加圧室
12:吐出通路
15:リリーフ通路
53:コモンレール
54:インジェクタ
56:圧力センサ
1: Body 2: Plunger 3: Retainer 4: Return spring 5: Magnetic core 50: Electromagnetic suction valve mechanism 501: Suction valve 502: Anchor spring 503: Movable part 504: Valve body spring 505: Seat part 506: Stopper part 507: Rod portion 508: Valve body upstream portion 509: Center portion 510: Outermost peripheral portion 511: Outer peripheral portion (curved surface portion)
512: Valve body spring contact portion 513: Stopper contact portion 514: Root portion 6: Tappet 7: Cam 8: Discharge valve 9: Suction passage 11: Pressurization chamber 12: Discharge passage 15: Relief passage 53: Common rail 54: Injector 56 : Pressure sensor

Claims (11)

流路を開閉する吸入弁と、前記吸入弁が着座するシート部と、開弁時に前記吸入弁の前記シート部と反対側に向かう動きを規制するストッパ部と、前記吸入弁と別体に構成され前記吸入弁を前記ストッパ部に向かって付勢するロッドと、を備えた高圧燃料ポンプにおいて、
前記吸入弁は、中央部と、前記中央部の径方向外側において前記中央部の下流面から上流に向かって形成されるとともに前記中央部に対して軸方向厚みが薄くなる外周部とで形成された高圧燃料ポンプ。
A suction valve that opens and closes the flow path, a seat portion on which the suction valve is seated, a stopper portion that restricts movement of the suction valve toward the side opposite to the seat portion when the valve is opened, and a separate structure from the suction valve A high-pressure fuel pump comprising: a rod that urges the suction valve toward the stopper portion;
The intake valve is formed of a central portion and an outer peripheral portion that is formed radially outward of the central portion from the downstream surface of the central portion toward the upstream and has an axial thickness that is thinner than the central portion. High pressure fuel pump.
請求項1に記載の高圧燃料ポンプにおいて、
前記中央部は軸方向厚みが一定の平板形状で構成された高圧燃料ポンプ。
The high-pressure fuel pump according to claim 1,
The central portion is a high pressure fuel pump having a flat plate shape with a constant axial thickness.
請求項1に記載の高圧燃料ポンプにおいて、
前記中央部は軸方向厚みが径方向外側に向かうにつれて薄くなるように構成された高圧燃料ポンプ。
The high-pressure fuel pump according to claim 1,
The central portion is a high-pressure fuel pump configured such that the axial thickness becomes thinner as it goes radially outward.
請求項1に記載の高圧燃料ポンプにおいて、
前記外周部は前記中央部と繋がって形成され、前記外周部の下流面は上流側に凹む曲面部を有するように構成された高圧燃料ポンプ。
The high-pressure fuel pump according to claim 1,
The high-pressure fuel pump is configured such that the outer peripheral portion is formed to be connected to the central portion, and a downstream surface of the outer peripheral portion has a curved surface portion that is recessed upstream.
請求項1に記載の高圧燃料ポンプにおいて、
前記外周部の全てが前記中央部の下流面の全てに対して上流側に位置するように構成された高圧燃料ポンプ。
The high-pressure fuel pump according to claim 1,
A high-pressure fuel pump configured such that all of the outer peripheral portion is located upstream with respect to all of the downstream surface of the central portion.
請求項1に記載の高圧燃料ポンプにおいて、
前記中央部の下流面が前記吸入弁の開弁方向への動きを規制するストッパ部に衝突するように構成された高圧燃料ポンプ。
The high-pressure fuel pump according to claim 1,
A high-pressure fuel pump configured such that a downstream surface of the central portion collides with a stopper portion that restricts movement of the intake valve in a valve opening direction.
請求項1に記載の高圧燃料ポンプにおいて、
前記中央部の下流面は前記弁体ばねとのばね接触部を備え、前記ばね接触部は前記弁体ばねと直交する方向に平坦に形成された高圧燃料ポンプ。
The high-pressure fuel pump according to claim 1,
The high-pressure fuel pump in which the downstream surface of the central portion includes a spring contact portion with the valve body spring, and the spring contact portion is formed flat in a direction orthogonal to the valve body spring.
請求項1に記載の高圧燃料ポンプにおいて、
前記中央部の下流面は、前記ストッパ部とのストッパ接触部を備え、前記ストッパ接触部は前記弁体ばねと直交する方向に平坦に形成された高圧燃料ポンプ。
The high-pressure fuel pump according to claim 1,
A downstream surface of the central portion includes a stopper contact portion with the stopper portion, and the stopper contact portion is formed flat in a direction perpendicular to the valve body spring.
請求項4において記載の高圧燃料ポンプにおいて、
前記曲面部は、前記吸入弁の最外周部に形成された高圧燃料ポンプ。
The high-pressure fuel pump according to claim 4,
The curved surface portion is a high-pressure fuel pump formed on an outermost peripheral portion of the intake valve.
請求項2に記載の高圧燃料ポンプにおいて、
前記吸入弁は、前記ストッパ部とのストッパ接触部から最外周部に向かうにつれて前記外周部が形成され、かつ前記ストッパ接触部から径方向内側に向かって軸方向厚みが一定の前記中央部が形成された高圧燃料ポンプ。
The high-pressure fuel pump according to claim 2,
The suction valve has the outer peripheral portion formed from the stopper contact portion with the stopper portion toward the outermost peripheral portion, and the central portion having a constant axial thickness from the stopper contact portion toward the radially inner side. High pressure fuel pump.
請求項10に記載の高圧燃料ポンプにおいて、
前記外周部の下流面が上流側に凹む曲面部を有するように形成された高圧燃料ポンプ。
The high-pressure fuel pump according to claim 10,
A high-pressure fuel pump formed so that a downstream surface of the outer peripheral portion has a curved surface portion recessed on the upstream side.
JP2017137639A 2017-07-14 2017-07-14 High pressure fuel pump Active JP6855343B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017137639A JP6855343B2 (en) 2017-07-14 2017-07-14 High pressure fuel pump
PCT/JP2018/024091 WO2019012976A1 (en) 2017-07-14 2018-06-26 High-pressure fuel pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017137639A JP6855343B2 (en) 2017-07-14 2017-07-14 High pressure fuel pump

Publications (2)

Publication Number Publication Date
JP2019019728A true JP2019019728A (en) 2019-02-07
JP6855343B2 JP6855343B2 (en) 2021-04-07

Family

ID=65002002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017137639A Active JP6855343B2 (en) 2017-07-14 2017-07-14 High pressure fuel pump

Country Status (2)

Country Link
JP (1) JP6855343B2 (en)
WO (1) WO2019012976A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218633A (en) * 2002-12-27 2004-08-05 Bosch Automotive Systems Corp High pressure fuel pump
JP2010156265A (en) * 2008-12-26 2010-07-15 Denso Corp High pressure pump
JP2016133010A (en) * 2015-01-16 2016-07-25 株式会社デンソー High pressure pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007034038A1 (en) * 2007-07-20 2009-01-22 Robert Bosch Gmbh High-pressure pump for a fuel system of an internal combustion engine
JP6032312B2 (en) * 2015-03-26 2016-11-24 株式会社デンソー High pressure pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004218633A (en) * 2002-12-27 2004-08-05 Bosch Automotive Systems Corp High pressure fuel pump
JP2010156265A (en) * 2008-12-26 2010-07-15 Denso Corp High pressure pump
JP2016133010A (en) * 2015-01-16 2016-07-25 株式会社デンソー High pressure pump

Also Published As

Publication number Publication date
JP6855343B2 (en) 2021-04-07
WO2019012976A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
US20110315909A1 (en) Constant-residual-pressure valve
JP6308921B2 (en) High pressure fuel supply pump
JP2006207451A (en) Fuel pump and delivery valve equipped in fuel pump
JP5653288B2 (en) Constant residual pressure valve
JPWO2018123323A1 (en) High pressure fuel supply pump with electromagnetic suction valve
JP5641031B2 (en) Electromagnetic actuator
JP2013133753A (en) Pressure regulating valve
JP2010071266A (en) High-pressure fuel supply system
JP6855343B2 (en) High pressure fuel pump
JP5529681B2 (en) Constant residual pressure valve
JP3925376B2 (en) High pressure fuel pump
JP2015137578A (en) High pressure pump
JP7349505B2 (en) Solenoid valve mechanism and high pressure fuel supply pump
JP4078320B2 (en) Poppet valve device and electronically controlled fuel injection device including the same
JP4241611B2 (en) Valve device for fuel injection pump
JP2001173816A (en) Check valve and fuel injection pump using the valve
WO2018016272A1 (en) Fuel supply pump
JP2017014920A (en) Solenoid valve and high pressure fuel supply pump
JP2009257451A (en) Structure of roller lifter
JP6342020B2 (en) Valve mechanism and high-pressure fuel supply pump provided with the same
JPWO2005111406A1 (en) High pressure fuel pump
JP2019167962A (en) Electromagnetic valve and high-pressure fuel supply pump
CN112243474B (en) Electromagnetic valve and high-pressure fuel supply pump
JP7397729B2 (en) Fuel pump
JP7482327B2 (en) Solenoid valve mechanism and fuel pump

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201030

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210317

R150 Certificate of patent or registration of utility model

Ref document number: 6855343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150