WO2019012838A1 - Obstruction detection device - Google Patents

Obstruction detection device Download PDF

Info

Publication number
WO2019012838A1
WO2019012838A1 PCT/JP2018/020863 JP2018020863W WO2019012838A1 WO 2019012838 A1 WO2019012838 A1 WO 2019012838A1 JP 2018020863 W JP2018020863 W JP 2018020863W WO 2019012838 A1 WO2019012838 A1 WO 2019012838A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
vehicle
distance
unit
detection
Prior art date
Application number
PCT/JP2018/020863
Other languages
French (fr)
Japanese (ja)
Inventor
誠也 高辻
加藤 智啓
豊 濱本
田中 秀典
洋一 岩田
御幸 大森
絵里子 山崎
裕之 立花
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2019012838A1 publication Critical patent/WO2019012838A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to an obstacle detection device.
  • the apparatus described in Japanese Patent Laid-Open No. 2008-21039 includes a distance measuring sensor and shape estimation means.
  • the distance measuring sensor detects the distance from the vehicle to the obstacle. Specifically, the distance measuring sensor transmits a sound wave or the like in a predetermined direction centered on the vehicle width direction, and receives the reflected wave to perform distance detection on an obstacle present on the side of the vehicle.
  • the detection result of the distance measurement sensor is also referred to as point train data.
  • the shape estimation means estimates the shape of the obstacle by performing curve approximation on point sequence data obtained from the distance measurement sensor.
  • the end position can be well estimated based on the acquired point sequence data.
  • the end position estimated based on the acquired point sequence data may largely deviate from the actual end position. Therefore, the type of obstacle is important information when estimating the end position of the obstacle.
  • the present disclosure has been made in view of the circumstances and the like exemplified above.
  • An obstacle detection device configured to be mounted on a mobile body and configured to detect an obstacle existing outside the mobile body, The detection distance corresponding to the distance to the obstacle is transmitted along with the movement of the mobile body by transmitting the search wave toward the outside of the mobile body and receiving the reflected wave of the search wave due to the obstacle.
  • a distance measuring unit provided to repeatedly acquire,
  • a frequency distribution acquisition unit provided to acquire the change amount of the detection distance for each acquisition of the detection distance in the distance measuring unit and to acquire the acquired frequency distribution of the change amount;
  • a type determination unit provided to determine the type of the obstacle based on the frequency distribution acquired by the frequency distribution acquisition unit; Equipped with
  • the ranging unit transmits the search wave toward the outside of the moving body while the moving body is moving, and receives the reflected wave by the obstacle of the search wave.
  • the distance measuring unit repeatedly acquires the detection distance corresponding to the distance to the obstacle as the moving object moves.
  • the frequency distribution acquisition unit acquires the frequency distribution of the change amount of the detection distance. That is, the frequency distribution acquisition unit acquires the amount of change in the detection distance for each acquisition of the detection distance in the distance measurement unit. Further, the frequency distribution acquisition unit acquires the frequency distribution of the amount of change based on the acquired amount of change.
  • the change amount of the detection distance may be acquired based on the detection distance acquired this time and the detection distance acquired at a point before this time.
  • the plurality of acquired detection distances are indicated by a point sequence in a coordinate system in which the vertical axis is the detection distance and the horizontal axis is the position of the distance measurement sensor.
  • the change amount of the detection distance can be typically indicated by the slope of a line segment connecting two adjacent points in the point sequence.
  • the type determination unit determines the type of obstacle based on the frequency distribution acquired by the frequency distribution acquisition unit. Specifically, for example, the type determination unit determines the first condition based on the first number, which is the frequency of the small change region where the absolute value of the change amount is small, and the frequency of the large change region where the absolute value of the change amount is large. Based on the second condition based on a certain second frequency and the third condition based on the relationship between the first number and the second frequency, it is determined whether the obstacle is a vehicle.
  • the type of obstacle can be favorably determined based on the frequency distribution of the change amount of the detection distance. Therefore, according to such a configuration, the end position of the obstacle can be estimated better than before based on the determined type. That is, for example, the end position can be favorably corrected based on the type determined by the type determination unit.
  • FIG. 1 It is a block diagram showing a schematic structure of a parking assistance device. It is a conceptual diagram which shows the operation
  • the parking assistance device 1 corresponding to an embodiment of the obstacle detection device of the present disclosure is mounted on a vehicle V, which is a mobile body, to provide parking assistance including an obstacle detection operation. It is configured to perform an action. That is, the parking assistance device 1 detects the obstacle B existing outside the vehicle V, detects the parking space PS based on the detection result of the obstacle B, and detects the parking space PS based on the detection result of the parking space PS. It is designed to support parking in the parking space PS.
  • the parking assistance device 1 includes a distance measuring unit 2, a traveling state acquisition unit 3, a camera 4, an image display device 5, an audio output device 6, an operation unit 7, and a torque control ECU 8.
  • a braking control ECU 9 and a parking assist ECU 10 are provided.
  • ECU is an abbreviation of Electronic Control Unit.
  • the distance measuring unit 2 is provided to repeatedly acquire a detection distance corresponding to the distance to the obstacle B as the vehicle V on which the parking assistance device 1 is mounted moves.
  • the distance measuring unit 2 is electrically connected to the parking assist ECU 10 so as to transmit the acquired detected distance to the parking assist ECU 10.
  • the distance measuring unit 2 includes a distance measuring sensor 20.
  • the distance measurement sensor 20 is provided to transmit a survey wave toward the outside of a vehicle V equipped with the parking assistance device 1 and to receive a reflected wave by an obstacle B of the survey wave.
  • the distance measurement sensor 20 is configured to repeat the transmission of the search wave and the reception of the reflected wave at a predetermined detection cycle.
  • the predetermined detection cycle is, for example, 30 milliseconds.
  • sound waves, radio waves, or light waves may be used as the search waves.
  • an ultrasonic wave, a millimeter wave, or a laser can be suitably used as a search wave.
  • the distance measurement sensor 20 may also be referred to as an “ultrasound sensor”.
  • the distance measuring sensor 20 is fixed at a predetermined position on the vehicle V on which the parking assistance device 1 is mounted so as to face in a predetermined direction. Typically, as shown in FIG. 2, the distance measuring sensor 20 is provided on both sides of the vehicle V so as to transmit a survey wave in the vehicle width direction.
  • the distance measuring sensor 20 has a predetermined detectable range CR which extends in a triangular pyramid shape to a predetermined distance and then extends along the vehicle width direction. That is, the distance measuring sensor 20 is configured to output an electric signal corresponding to the detected distance by receiving a reflected wave from the obstacle B located in the detectable range CR.
  • the traveling state acquisition unit 3 is provided to acquire the traveling state of the vehicle V on which the parking assistance device 1 is mounted.
  • the traveling state of the vehicle V will be simply referred to as “the traveling state”.
  • the traveling state includes, for example, the wheel speeds of the wheels of the vehicle V, the traveling speed of the vehicle V, the steering angle of the vehicle V, the yaw rate acting on the vehicle V, and the like. That is, the traveling state acquisition unit 3 includes a wheel speed sensor, a steering angle sensor, a yaw rate sensor, an acceleration sensor, and the like.
  • the traveling state acquisition unit 3 is electrically connected to the parking assistance ECU 10 so as to transmit the acquired traveling state to the parking assistance ECU 10.
  • the traveling speed of the vehicle V which mounts the parking assistance apparatus 1 is only hereafter called "vehicle speed.”
  • the camera 4 is mounted on the vehicle V so as to capture an image around the vehicle V on which the parking assistance device 1 is mounted.
  • the image display device 5, the voice output device 6, and the operation unit 7 are disposed in the vehicle compartment of the vehicle V on which the parking assistance device 1 is mounted.
  • the image display device 5 is a liquid crystal display panel, and is provided to perform image display accompanying the parking assistance operation under the control of the parking assistance ECU 10.
  • the voice output device 6 is a speaker device, and is provided so as to perform voice output according to the parking assistance operation under the control of the parking assistance ECU 10.
  • the operation unit 7 is at least one of a touch panel superimposed on the image display device 5, an operation switch disposed around the image display device 5, an audio microphone disposed near the driver's seat of the vehicle V, and the like. , And is provided to receive user input accompanying the parking assistance operation.
  • the torque control ECU 8 and the braking control ECU 9 are electrically connected to the parking assist ECU 10.
  • the torque control ECU 8 controls the engine output of the vehicle V equipped with the parking assistance device 1 at the time of parking assistance operation by controlling the operation of an injector or the like (not shown) based on a signal received from the parking assistance ECU 10 It is provided.
  • the braking control ECU 9 is provided to control the braking force of the vehicle V equipped with the parking assistance device 1 at the time of parking assistance operation by driving a brake actuator etc. (not shown) based on a signal received from the parking assistance ECU 10 It is done.
  • the parking assistance ECU 10 is configured to control the parking assistance operation based on inputs from the distance measuring unit 2, the traveling state acquisition unit 3, the camera 4, and the operation unit 7. Specifically, the parking assistance ECU 10 generates a drive control signal for controlling the operation of the image display device 5, the audio output device 6, the torque control ECU 8, and the braking control ECU 9 based on the various inputs described above, The generated drive control signal is output to each part.
  • the parking assist ECU 10 is a so-called microcomputer, and includes a CPU, a ROM, a RAM, a non-volatile RAM, an input / output interface, and the like (not shown). That is, the parking assist ECU 10 is configured to be able to realize various control operations by the CPU reading and executing the program from the ROM or the nonvolatile RAM.
  • the ROM or nonvolatile RAM various data used when executing a program are stored in advance.
  • Various data stored in advance in the ROM or nonvolatile RAM are, for example, initial values, look-up tables, maps, and the like.
  • the RAM is configured to temporarily store data such as calculation results when the CPU executes a program.
  • the non-volatile RAM is, for example, a flash ROM.
  • the parking assistance ECU 10 includes a distance measurement information processing unit 101, a reflection position acquisition unit 102, an end position estimation unit 103, a type determination unit 104, and an end position correction unit. 105, a parking space detection unit 106, and a traveling condition calculation unit 107.
  • the distance measurement information processing unit 101 is provided to execute predetermined processing on a plurality of detection distances acquired from the distance measurement unit 2 based on the traveling state acquired from the traveling state acquisition unit 3. Specifically, the distance measurement information processing unit 101 is configured to perform curve approximation on a plurality of detection distances acquired from the distance measurement unit 2. Further, the distance measurement information processing unit 101 is configured to acquire the change amount of the detection distance for each of the plurality of detection distances after the curve approximation. Furthermore, the ranging information processing unit 101 is configured to acquire the frequency distribution of the acquired amount of change.
  • the reflection position acquisition unit 102 is provided to acquire an estimated reflection position using the principle of triangulation based on the detection distance after processing by the distance measurement information processing unit 101.
  • the estimated reflection position is a position estimated as a specific position on the outer surface of the obstacle B, which is a starting point of a reflected wave corresponding to the detection distance acquired by the distance measuring unit 2 at a certain time.
  • the reflection position acquisition unit 102 is configured to sequentially acquire estimated reflection positions corresponding to each of a plurality of detection distances based on the acquired detection distance and the movement state.
  • the end position estimation unit 103 detects the end of the obstacle B based on the estimated reflection position located at the end in the moving direction of the vehicle V among the plurality of estimated reflection positions acquired by the reflection position acquisition unit 102. It is provided to estimate the position.
  • vehicle traveling direction the moving direction of the vehicle V on which the parking assistance device 1 is mounted.
  • the type determination unit 104 is provided to determine the type of the obstacle B based on the frequency distribution of the change amount of the detection distance acquired by the distance measurement information processing unit 101. Specifically, the type determination unit 104 is configured to determine whether the obstacle B is a vehicle based on the feature of the frequency distribution. Furthermore, the type determination unit 104 determines whether or not the obstacle B is a vehicle based on the distribution state of a plurality of estimated reflection positions acquired by the reflection position acquisition unit 102 in correspondence with one obstacle B. It is supposed to The details of the type determination by the type determination unit 104 will be described in more detail in the operation outline description to be described later.
  • the end position correction unit 105 is provided to correct the end position of the obstacle B based on the type of the obstacle B determined by the type determination unit 104. Specifically, when the type determined by the type determination unit 104 is a vehicle, the end position correction unit 105 corrects the end position of the obstacle B based on the vehicle dimensions defined in the vehicle standard. It is supposed to The details of the correction by the end position correction unit 105 will also be described in more detail in the outline of operation described later.
  • the parking space detection unit 106 is provided to detect the parking space PS based on the end position of the obstacle B after correction by the end position correction unit 105.
  • the traveling condition calculation unit 107 is provided to calculate traveling conditions for guiding the vehicle V to the parking space PS based on the parking space PS detected by the parking space detection unit 106.
  • the travel conditions at least include a travel path from the current position of the vehicle V to the parking space PS.
  • FIG. 3A indicates the sensor position, that is, the position of the distance measuring sensor 20.
  • Y indicates a detection distance, that is, a distance from the distance measurement sensor 20.
  • the parking assistance ECU 10 acquires a plurality of detection distances as the vehicle V travels.
  • the position of the distance measurement sensor 20 at the time when the distance measurement unit 2 acquires a certain detection distance can be specified based on the traveling state acquired from the traveling state acquisition unit 3. Therefore, a certain detection distance acquired by the distance measurement unit 2 is indicated as one point in a two-dimensional coordinate by the sensor position X and the detection distance Y. This reversal is referred to as a detection position PD. Therefore, as shown in FIG. 3A, the ranging information processing unit 101 acquires a point sequence at a plurality of detection positions PD while searching for the parking space PS.
  • the distance measurement information processing unit 101 performs curve approximation on the point sequence in the above two-dimensional coordinates.
  • the approximate curve PL in FIG. 3B is a curve approximation of a series of points at a plurality of detection positions PD in FIG. 3A.
  • Each of the point sequences according to the plurality of detection positions PD in FIG. 3A is corrected to be located on the approximate curve PL in FIG. 3B.
  • the noise component in the detection distance is favorably reduced by correcting each of the plurality of acquired detection positions PD by curve approximation based on the acquisition history of the plurality of detection distances.
  • FIG. 4 shows acquisition results of point sequences at a plurality of detection positions PD when the obstacle B is a prism.
  • each of the plurality of detection positions PD illustrated is after correction by curve approximation.
  • the ranging information processing unit 101 acquires the change amount of the detection distance for each acquisition of the detection distance in the ranging unit 2. That is, the distance measurement information processing unit 101 acquires the change amount of the detection distance based on the detection distance acquired this time and the detection distance acquired at a point before this time.
  • the “amount of change in detection distance” may be indicated by the inclination of a line segment connecting two adjacent points in a point sequence at a plurality of detection positions PD. Therefore, in the present embodiment, the ranging information processing unit 101 acquires, as a variation, the inclination of a line segment connecting two adjacent detection positions PD in a point sequence based on a plurality of detection positions PD after curve approximation. Do. Specifically, assuming that N is an integer of 1 or more and the Nth detection position PD is a detection position PD (N), the change amount T (N) in the detection position PD (N) is the detection position PD (N). It is an inclination of a line segment connecting -1) and the detection position PD (N).
  • the distance measurement information processing unit 101 acquires a frequency distribution of the change amount of the detection distance. That is, the ranging information processing unit 101 in the present embodiment functions as a frequency distribution acquisition unit in the present disclosure. In the present embodiment, the ranging information processing unit 101 performs curve approximation and updates the frequency distribution each time the detection distance is acquired once. Details of the frequency distribution will be described later.
  • the reflection position acquisition unit 102 acquires the estimated reflection position PR by applying the principle of triangulation to the acquisition results of the plurality of detection positions PD.
  • the acquisition of the plurality of detection positions PD, the correction of these corrections by curve approximation, and the acquisition of the estimated reflection position PR based on triangulation as described above are already known at the time of filing of the present application. Detailed description will be omitted.
  • the end position estimation unit 103 determines, among the plurality of estimated reflection positions PR acquired by the reflection position acquisition unit 102, positions at both ends in the X direction as the estimated end positions P1 and P2, respectively.
  • the estimated end positions P1 and P2 are positions estimated based on the plurality of estimated reflection positions PR as the end positions of the obstacle B.
  • the estimated end position P1 is the one on the near side in the vehicle traveling direction among the plurality of estimated reflection positions PR corresponding to one obstacle B.
  • the estimated end position P2 is on the vehicle traveling direction side among a plurality of estimated reflection positions PR corresponding to one obstacle B.
  • the type determination unit 104 determines the type of the obstacle B based on the frequency distribution of the change amount of the detection distance acquired by the distance measurement information processing unit 101.
  • FIG. 5 shows, as an example, an example of a frequency distribution in the case where obstacle B is a parked vehicle parked in such a manner that the front face follows the direction of travel of the vehicle as shown in FIG.
  • the horizontal axis indicates the amount of change.
  • “D7”, “D6”, “D1”, “C”, “U1”, “U2”, “U7” on the horizontal axis are classified by dividing the amount of change within a predetermined range It is.
  • “C” is the case where the slope is substantially zero, that is, the amount of change T (N) is in the range of ⁇ to + ⁇ .
  • is a predetermined small positive value.
  • “C” is a case where the detection distance corresponding to the detection position PD (N ⁇ 1) and the detection distance corresponding to the detection position PD (N) are substantially equal.
  • “U1”, “U2”,... Are cases where the slope is a positive value, and “D1”, “D2”, etc.
  • FIG. 6 to 8 show the relationship between the shape of the obstacle B and the shape of the frequency distribution.
  • the frequency concentrates on a specific class near “C”.
  • FIG. 7 when the obstacle B is a cylinder, the curvature of the surface facing the traveling path of the vehicle V is constant, so the frequency is almost uniform in a wide class.
  • FIG. 8 when the obstacle B is a vehicle, the shape of the surface facing the traveling path of the vehicle V is configured by a portion close to a plane and a curved portion, and the frequency distribution The shape of is a “convex” shape centered on the class near “C”.
  • the type determination unit 104 determines whether the obstacle B is a vehicle based on the shape feature of the frequency distribution.
  • the type determination unit 104 calculates the absolute value of the first condition based on the first number Q1 which is the sum of the frequencies of the small change region R1 having a small absolute value of the change amount, and the absolute value of the change amount. Based on the second condition based on the second frequency Q2 which is the sum of the frequencies of the large change region R2 having a large value, and the third condition based on the relationship between the first number Q1 and the second frequency Q2, the obstacle B Determines whether the vehicle is a vehicle.
  • the first condition is whether or not the first number Q1 is equal to or greater than a predetermined number Qth1, that is, whether a predetermined number Qth1 or more of detection positions PD included in the small change region R1 are present. If the first number Q1 is equal to or greater than the predetermined number Qth1, the possibility that the type of the obstacle B is a vehicle is high.
  • the second condition is whether or not the second frequency Q2 is a predetermined number Qth2 or more, that is, whether a predetermined number Qth2 or more of detection positions PD included in the large change region R2 exist. When the second frequency Q2 is equal to or greater than the predetermined number Qth2, the possibility that the type of the obstacle B is a vehicle is high.
  • the third condition is whether the first number Q1 is larger than the second frequency Q2, that is, the detected position PD included in the small change region R1 is larger than the detected position PD included in the large change region R2 It is.
  • the type of the obstacle B is more likely to be a vehicle.
  • FIGS. 9A and 9B show the case where the vehicle speed, that is, the moving speed of the distance measurement sensor 20 is a low speed of, for example, about 1 km / h.
  • FIGS. 10A and 10B show the case where the vehicle speed, that is, the moving speed of the distance measurement sensor 20 is higher than that of FIGS. 9A and 9B, for example, about 15 km / h.
  • the obstacle B is a parked vehicle parked in such a manner that the front surface is along the vehicle traveling direction.
  • the obstacle B is a cylinder.
  • the type determination unit 104 determines whether the obstacle B is a vehicle based on the distribution state of the plurality of estimated reflection positions PR acquired by the reflection position acquisition unit 102 in correspondence with one obstacle B. judge. Specifically, for example, when the frequency distribution is wide and the density of the plurality of estimated reflection positions PR in the X direction is low for one obstacle B, the type of the obstacle B is likely to be a vehicle . This condition is hereinafter referred to as the "fourth condition".
  • the end position correction unit 105 corrects the end position of the obstacle B based on the type determined by the type determination unit 104.
  • the end position correction unit 105 determines the estimated end positions P1 and P2 as the vehicle standard of “ordinary car” in the Japanese Road Transport Vehicle Act. Make corrections based on the size of the vehicle.
  • the end position correction unit 105 sets X as a reference dimension, with a vehicle width of 1,800 mm and a total vehicle length of 4,900 mm, which is a standard vehicle size of an ordinary automobile.
  • the estimated end positions P1 and P2 are corrected so that the distance between P1 and P2 in the direction becomes the above reference dimension.
  • the distance between P1 and P2 in the X direction is less than the reference dimension described above. Therefore, in this case, for example, the estimated end position P1 before correction shown in the figure is a distance obtained by multiplying the difference between the distance between P1 and P2 and the reference dimension by 0.5, in the direction opposite to the X direction Can be moved to Similarly, the estimated end position P2 before correction shown in the figure can be moved in the X direction by a distance obtained by multiplying the difference between the distance between P1 and P2 and the reference dimension by 0.5.
  • the correction amount of each of P1 and P2 may be obtained by a calculation method different from the above example.
  • the distance between P1 and P2 may be determined by XY coordinates.
  • the movement of each of P1 and P2 due to the correction is not limited to the X direction, but may be performed in a specific direction of the XY coordinates, for example, a movement in a linear direction connecting P1-P2. Good.
  • the parking space detection unit 106 detects the parking space PS based on the end position of the obstacle B after correction by the end position correction unit 105.
  • the traveling condition calculation unit 107 calculates traveling conditions for guiding the vehicle V to the parking space PS based on the parking space PS detected by the parking space detection unit 106. That is, the determination result of the type of the obstacle B by the type determination unit 104 is the detection of the parking space PS between a plurality of obstacles B and the collision of the obstacle V with the vehicle V while avoiding the collision with the vehicle B. It is used to calculate the traveling conditions for reaching.
  • the traveling conditions include, for example, a traveling route and a traveling speed.
  • the parking support routine shown in FIG. 11 is initially activated by a predetermined operation on the operation unit 7 by the user such as the driver of the vehicle V, and thereafter started at predetermined time intervals until the parking support operation is completed.
  • the predetermined time may be set to, for example, 30 milliseconds, which is the same as the acquisition interval of the detection distance in the distance measuring unit 2.
  • the CPU first determines in S1101 whether a flag F indicating whether a parking support operation is in progress has been reset.
  • the CPU skips the processing of S1102 to S1105 and advances the processing to S1106. That is, the flag F is a flag for switching whether to skip the processing of S1103 to S1105.
  • the CPU determines a parking method. That is, the CPU selects the parking method of the vehicle V in the current parking assistance operation from parallel parking and parallel parking.
  • the choice of parking method may be made based on user input, for example.
  • the selection of the parking method may be determined by the CPU based on the output of the distance measuring unit 2 and / or the camera 4 or the like.
  • the CPU detects the parking space PS based on the distance measurement result and the like by the distance measurement unit 2.
  • the CPU calculates traveling conditions for parking the vehicle V in the parking space PS, starting from the current position of the vehicle V, based on the distance measurement result by the distance measuring unit 2 and the like.
  • the traveling condition calculation for example, when the obstacle B located along the traveling route is a vehicle, the traveling route may be set to be larger than when the obstacle B is a non-vehicle. For example, in the vicinity of the obstacle B which is a vehicle, the vehicle speed may be reduced more than when traveling in the vicinity of a non-vehicle.
  • the CPU determines whether or not the parking assistance operation under the current traveling conditions can be continued. Specifically, for example, when the obstacle B is present at a position where there is a possibility of collision when the vehicle V travels as it is at the determination time of S1106, the determination of S1106 is "NO". Typically, when the parking space PS is detected in S1104, the obstacle B, which is a parked vehicle adjacent to the parking space PS, starts in the parking assistance operation, but the determination in S1106 is "NO". This is an example of
  • the CPU advances the process to S1107.
  • the CPU permits traveling for a predetermined time under the current traveling conditions.
  • the predetermined time may be set to, for example, 30 milliseconds, which is the same as the acquisition interval of the detection distance in the distance measuring unit 2. After that, the CPU advances the process to S1109.
  • the CPU determines whether the parking assistance operation has ended.
  • the end of the parking assistance operation is, for example, when the vehicle V has reached a predetermined position in the parking space PS, and the parking of the vehicle V in the parking space PS is completed.
  • the end of the parking assistance operation is, for example, the case where the parking assistance operation is forcibly ended based on a user input or the like before the vehicle V reaches a predetermined position in the parking space PS.
  • the CPU executes the processing for the termination of the parking assistance operation in S1110, and then completely terminates the processing according to this routine.
  • the end process in S1110 includes the end notification to the user by the image display device 5 and / or the audio output device 6, and the reset of the flag F.
  • the determination in S1106 is NO, and the flag F is reset.
  • the determination in S1101 becomes YES, and the processing in S1103 to S1105 is executed.
  • redetection of the parking space PS and resetting of the traveling conditions are performed.
  • FIG. 12 shows an example of an obstacle detection routine for detecting an obstacle B present around the vehicle V.
  • the detection result of the obstacle B by this routine is used when executing the processing of S1103, S1104, S1105, and S1106.
  • the CPU repeatedly executes the obstacle detection routine shown in FIG. 12 at a predetermined activation timing.
  • the activation interval of this routine may be set to, for example, 30 milliseconds, which is the same as the acquisition interval of the detection distance in the distance measuring unit 2.
  • the CPU acquires a detection distance based on the output of the distance measurement sensor 20.
  • the CPU executes curve approximation on the detection distance obtained this time and before this time. That is, the CPU calculates the approximate curve PL shown in FIG. 3B based on the plurality of detected positions PD shown in FIG. 3A. Subsequently, the CPU corrects the detection position PD based on the calculated approximate curve PL to acquire the corrected detection distance. After that, the CPU advances the process to S1204 and S1205.
  • the CPU acquires the amount of change T (N) at the detection position PD (N) by the slope of the line connecting the detection position PD (N-1) and the detection position PD (N).
  • the CPU generates a distribution of change amounts T using the change amounts T (N) acquired this time. That is, the CPU updates the distribution of the change amount T using the change amount T (N) acquired this time. Thereafter, the CPU advances the process to S1206 to S1211.
  • the CPU determines a first condition. That is, the CPU determines whether the first number Q1 is equal to or greater than a predetermined number Qth1.
  • the CPU determines a second condition. That is, the CPU determines whether the second frequency Q2 is equal to or greater than a predetermined number Qth2.
  • the CPU determines the third condition. That is, the CPU determines whether the first number Q1 is larger than the second frequency Q2.
  • the CPU determines whether or not the obstacle B currently acquiring the detection distance is a vehicle, based on the determination results of the conditions in S1206 to S1208 and S1210. Specifically, the CPU first performs the first condition that the first number Q1 is the predetermined number Qth1 or more, the second condition the second frequency Q2 is the predetermined number Qth2 or more, and the first number Q1 is the second It is determined whether all the third conditions larger than the frequency Q2 are satisfied. Next, the CPU determines whether a fourth condition where the density K is smaller than the predetermined value Kth is satisfied. If all of the first to fourth conditions are satisfied, the CPU makes the determination of S 1211 “YES”.
  • the one having a frequency that is not 0 and the maximum number of subscripts is DI.
  • I is an integer of 1 or more and 7 or less.
  • UJ having a frequency that is not 0 and the number of subscripts is largest is UJ.
  • J is an integer of 1 or more and 7 or less.
  • the CPU advances the process to S1212.
  • the CPU sets the type determination result of the obstacle B as "vehicle”.
  • the CPU advances the process to S1213.
  • the CPU sets the type determination result of the obstacle B as "non-vehicle”. As described above, after the type determination result of the obstacle B is set based on the determination result of S1211, the CPU temporarily ends this routine.
  • FIG. 13 shows an example of an end position estimation routine for estimating the end position of the obstacle B.
  • the CPU repeatedly executes the end position estimation routine shown in FIG. 13 at a predetermined activation timing.
  • the activation interval of this routine may be set to, for example, 30 milliseconds, which is the same as the acquisition interval of the detection distance in the distance measuring unit 2.
  • the CPU first determines in S1301 whether an obstacle boundary has been detected.
  • the obstacle boundary is an end point of a series of detection positions PD corresponding to one obstacle B.
  • the obstacle boundary can be detected, for example, when the reflected wave intensity is less than the threshold intensity continuously for a predetermined time.
  • the obstacle boundary may be detected based on, for example, the arrangement state of the detection position PD before or after the curve approximation.
  • the CPU obtains estimated end positions P1 and P2.
  • the CPU advances the process to S1306 and S1307.
  • the CPU corrects the estimated end positions P1 and P2 with the correction value acquired in S1304 or S1305 according to the determination result in S1303.
  • the CPU stores the corrected estimated end positions P1 and P2 in the RAM or nonvolatile RAM. After that, the CPU ends this routine once.
  • the type of the obstacle B can be favorably determined based on the frequency distribution of the change amount of the detection distance. Therefore, according to such a configuration, the end position of the obstacle B can be estimated better than in the past based on the determined type. That is, for example, the end position of the obstacle B can be corrected well based on the determined type. Further, based on the determined type, detection of the parking space PS and setting of the traveling condition of the vehicle V may be appropriately performed.
  • the distance measuring unit 2 may include only the distance measuring sensor 20, and the function of calculating the detected distance may be provided on the parking assist ECU 10 side.
  • the parking assistance ECU 10 may be configured as an ASIC such as a gate array.
  • ASIC is an abbreviation of Application Specific Integrated Circuit.
  • curve approximation and generation of a frequency distribution based thereon may be started after acquisition of a predetermined number of detection distances. That is, until there is acquisition of a predetermined number of detection distances, curve approximation and generation of a frequency distribution based on this may be awaited. In this case, also in the type determination, the process waits until the predetermined number of detection distances are obtained.
  • the curve approximation and the creation of the frequency distribution based thereon may be performed after the acquisition of the detection distance corresponding to one obstacle B is completed. That is, until the acquisition of the detection distance corresponding to one obstacle B is completed, the curve approximation and the creation of the frequency distribution based on this may be on standby. In this case, the type determination is also on standby until acquisition of the detection distance corresponding to one obstacle B is completed.
  • the variation range may be changed from the above example.
  • the vehicle speed is substantially constant, and the traveling direction of the vehicle is also constant.
  • the vehicle speed during detection of the parking space PS can be controlled uniformly by the torque control ECU 8.
  • the amount of change in the detection distance which is the basis of the frequency distribution, is specified by a parameter different from the slope of the line segment connecting two adjacent points in the point sequence by multiple detection positions PD. It can be done.
  • the change amount of the detection distance may be a difference of the detection distance. That is, the change amount of the detection distance can also be defined as a change rate of the detection distance per unit time or per unit travel distance.
  • the tangent of the approximate curve at the detection position PD may be used as the amount of change of the detection distance.
  • the correction value by the end position correction unit 105 is not limited to the above specific example. That is, for example, when the determination result by the type determination unit 104 is a vehicle, the reference dimension in the end position correction unit 105 is the maximum value of the practical vehicle dimensions in an ordinary car except limousine type It is good also as 1,920 mm x vehicle total length 5,300 mm.
  • the correction value by the end position correction unit 105 may be a constant value as in the above specific example, unlike the above specific example. It may be a variable value.
  • the end position correction unit 105 determines the vehicle type based on the distance between P1 and P2 in the X direction before correction, and
  • the reference dimension may be changeable based on the determination result. That is, when the determination result by the type determination unit 104 is a vehicle and the distance between P1 and P2 is less than 1,480 mm, the end position correction unit 105 determines the vehicle width 1, which is the vehicle standard dimension of a mini vehicle
  • the reference dimension may be 480 mm ⁇ total vehicle length 3,400 mm.
  • the end position correction unit 105 may have a function of learning the correction value by measuring the distance between the side surface of the parked vehicle adjacent to the vehicle V and the vehicle V when parking is completed.
  • the learning value may have an upper limit value based on the reference dimension as described above.
  • the end position correction unit 105 may determine the correction amount by means or method other than the means or method described above. For example, the end position correction unit 105 may determine the correction amount based on the country, region, time zone, and other information in which the vehicle V is traveling. Specifically, the end position correction unit 105 determines the reference dimension based on the information of the country, the region, and the like acquired by the traveling state acquisition unit 3 or the like, and determines the correction amount based on the determined reference dimension. May be
  • the initial activation of the parking assistance routine shown in FIG. 11 is not limited to activation by user operation. That is, for example, the CPU may automatically start the parking assistance routine after a predetermined time has elapsed from the start of the engine. In addition, the CPU automatically activates the parking assistance routine after a predetermined time has elapsed from when the parking assistance operation is interrupted for any reason or when the parking assistance operation is forcibly ended based on user input or the like. May be
  • the contents of the travel condition calculation in S1105 are not limited to the above specific example. Even while the determination in S1106 is YES, the CPU may recalculate the parking space PS and the traveling condition without skipping the process of detecting the parking space PS and calculating the traveling condition. The traveling for a predetermined time in S1107 may be changed to traveling for a predetermined distance.
  • the determination of the fourth condition may be performed only when the vehicle speed is equal to or higher than a predetermined value or when the density of the detection position PD is low.
  • the travel distance of the vehicle V from the time of acquisition of PD (1) to the time of acquisition of PD (N) is RD (the detection position PD (N) acquired up to this time corresponding to one obstacle B). N).
  • the fourth condition determination in S1210 is executed, while when it is the predetermined value or more, the fourth condition determination in S1210 is It may be skipped.
  • the non-vehicle correction value may be absent. That is, the process of S1305 may be omitted.
  • the CPU may interpolate between the detection position PD (N-1) and PD (N). Specifically, the CPU divides the approximate curve PL between PD (N-1) and PD (N) at equal intervals in the X direction, calculates the amount of change T for each division point, and updates the distribution You may Such interpolation processing may be performed, for example, when N is less than a predetermined value Nth1.
  • the determination content in S1211 is not limited to the above specific example. That is, for example, when all of the first to third conditions are satisfied, the CPU makes the determination of S 1211 “YES”, while any one of the first to third conditions is satisfied. Even if not, if the above-mentioned fourth condition is satisfied, the determination of S 1211 may be set to “YES”.
  • the CPU may not determine the fourth condition when N is a predetermined value Nth2 or more, but may determine the fourth condition when N is less than the predetermined value Nth2.
  • the predetermined value Nth2 may be the same value as the predetermined value Nth1 or may be a different value.
  • the determination content of the fourth condition is also not limited to the above specific example.
  • the modified example is also not limited to the above example. Also, multiple variants may be combined with one another. Furthermore, all or part of the above embodiment and all or part of the modification may be combined with each other.

Abstract

This obstruction detection device (1) is mounted in a moving body and detects obstructions on the outside of the moving body. Specifically, the obstruction detection device is equipped with a distance measurement sensor (2) and a type determination unit (104). The distance measurement sensor emits probe waves toward the outside of the moving body and receives reflected waves resulting from the reflection of the probe waves by an obstruction, thereby repeatedly acquiring a detected distance corresponding to the distance to the obstruction while the moving body is moving. The type determination unit determines the type of obstruction on the basis of a frequency distribution for the amount of change in the detected distance.

Description

障害物検知装置Obstacle detection device 関連出願への相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2017年7月11日に出願された日本特許出願番号2017-135580号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2017-135580 filed on Jul. 11, 2017, the contents of which are incorporated herein by reference.
 本開示は、障害物検知装置に関する。 The present disclosure relates to an obstacle detection device.
 特開2008-21039号公報に記載の装置は、測距センサと形状推定手段とを備える。測距センサは、車両から障害物までの距離を検出する。具体的には、測距センサは、車幅方向を中心とした所定方向に音波等を発信し、その反射波を受信することで、車両側方に存在する障害物に対する距離検出を行う。測距センサの検出結果は、点列データとも称される。形状推定手段は、測距センサから得られる点列データに対して曲線近似を行うことにより、前記障害物の形状を推定する。 The apparatus described in Japanese Patent Laid-Open No. 2008-21039 includes a distance measuring sensor and shape estimation means. The distance measuring sensor detects the distance from the vehicle to the obstacle. Specifically, the distance measuring sensor transmits a sound wave or the like in a predetermined direction centered on the vehicle width direction, and receives the reflected wave to perform distance detection on an obstacle present on the side of the vehicle. The detection result of the distance measurement sensor is also referred to as point train data. The shape estimation means estimates the shape of the obstacle by performing curve approximation on point sequence data obtained from the distance measurement sensor.
 この種の装置においては、障害物のうちの一部分について、測距センサによる反射波受信が困難となるために、点列データが充分に取得できなくなる場合がある。このような、障害物の一部分は、典型的には、測距センサの移動方向における、障害物の端部である。特に、障害物が駐車車両である場合、駐車車両のコーナー部は、形状が複雑である。 In this type of device, it may be difficult to obtain point train data sufficiently because it becomes difficult to receive a reflected wave by the distance measurement sensor for a part of obstacles. Such a portion of the obstacle is typically the end of the obstacle in the direction of movement of the ranging sensor. In particular, when the obstacle is a parked vehicle, the corner portion of the parked vehicle has a complicated shape.
 例えば、障害物が壁又は角柱のような比較的単純な形状を有する物体である場合、端部位置は、取得した点列データに基づいて良好に推定され得る。しかしながら、障害物が駐車車両である場合、取得した点列データに基づいて推定した端部位置が、実際の端部位置から大きく乖離することがある。故に、障害物の種別は、障害物の端部位置の推定の際に、重要な情報となる。本開示は、上記に例示した事情等に鑑みてなされたものである。 For example, when the obstacle is an object having a relatively simple shape such as a wall or a prism, the end position can be well estimated based on the acquired point sequence data. However, when the obstacle is a parked vehicle, the end position estimated based on the acquired point sequence data may largely deviate from the actual end position. Therefore, the type of obstacle is important information when estimating the end position of the obstacle. The present disclosure has been made in view of the circumstances and the like exemplified above.
 本開示の1つの観点によれば、
 移動体に搭載されることで前記移動体の外側に存在する障害物を検知するように構成された、障害物検知装置は、
 探査波を前記移動体の外側に向けて発信するとともに前記探査波の前記障害物による反射波を受信することで、前記障害物との距離に対応する検知距離を、前記移動体の移動に伴い繰返し取得するように設けられた、測距部と、
 前記測距部における前記検知距離の取得毎に前記検知距離の変化量を取得するとともに、取得した前記変化量の度数分布を取得するように設けられた、度数分布取得部と、
 前記度数分布取得部によって取得された前記度数分布に基づいて、前記障害物の種別を判定するように設けられた、種別判定部と、
 を備える。
According to one aspect of the present disclosure,
An obstacle detection device configured to be mounted on a mobile body and configured to detect an obstacle existing outside the mobile body,
The detection distance corresponding to the distance to the obstacle is transmitted along with the movement of the mobile body by transmitting the search wave toward the outside of the mobile body and receiving the reflected wave of the search wave due to the obstacle. A distance measuring unit provided to repeatedly acquire,
A frequency distribution acquisition unit provided to acquire the change amount of the detection distance for each acquisition of the detection distance in the distance measuring unit and to acquire the acquired frequency distribution of the change amount;
A type determination unit provided to determine the type of the obstacle based on the frequency distribution acquired by the frequency distribution acquisition unit;
Equipped with
 かかる構成において、測距部は、移動体の移動中に、探査波を移動体の外側に向けて発信するとともに、探査波の障害物による反射波を受信する。これにより、測距部は、障害物との距離に対応する検知距離を、移動体の移動に伴い繰返し取得する。度数分布取得部は、検知距離の変化量の度数分布を取得する。即ち、度数分布取得部は、測距部における検知距離の取得毎に、検知距離の変化量を取得する。また、度数分布取得部は、取得した変化量に基づいて、変化量の度数分布を取得する。 In such a configuration, the ranging unit transmits the search wave toward the outside of the moving body while the moving body is moving, and receives the reflected wave by the obstacle of the search wave. Thus, the distance measuring unit repeatedly acquires the detection distance corresponding to the distance to the obstacle as the moving object moves. The frequency distribution acquisition unit acquires the frequency distribution of the change amount of the detection distance. That is, the frequency distribution acquisition unit acquires the amount of change in the detection distance for each acquisition of the detection distance in the distance measurement unit. Further, the frequency distribution acquisition unit acquires the frequency distribution of the amount of change based on the acquired amount of change.
 検知距離の変化量は、今回取得された検知距離と、今回よりも前の時点で取得された検知距離とに基づいて取得され得る。具体的には、例えば、取得された複数の検知距離は、縦軸を検知距離とし横軸を測距センサの位置とする座標系において点列で示される。この場合、検知距離の変化量は、典型的には、点列における互いに隣接する2点を結ぶ線分の傾きで示され得る。 The change amount of the detection distance may be acquired based on the detection distance acquired this time and the detection distance acquired at a point before this time. Specifically, for example, the plurality of acquired detection distances are indicated by a point sequence in a coordinate system in which the vertical axis is the detection distance and the horizontal axis is the position of the distance measurement sensor. In this case, the change amount of the detection distance can be typically indicated by the slope of a line segment connecting two adjacent points in the point sequence.
 鋭意研究の結果、発明者は、検知距離の変化量の度数分布について着目した。即ち、異なる種別の障害物について、検知距離の変化量の度数分布を取得してみたところ、障害物の種別毎に、度数分布の形状が異なることが見出された。そこで、種別判定部は、度数分布取得部によって取得された度数分布に基づいて、障害物の種別を判定する。具体的には、例えば、種別判定部は、変化量の絶対値が小さい小変化領域の度数である第一度数に基づく第一条件と、変化量の絶対値が大きい大変化領域の度数である第二度数に基づく第二条件と、第一度数と第二度数との関係に基づく第三条件とに基づいて、障害物が車両であるか否かを判定する。 As a result of earnest research, the inventor focused on the frequency distribution of the change amount of the detection distance. That is, when frequency distribution of the amount of change of detection distance was acquired about obstacles of different types, it was found that the shape of frequency distribution was different for each type of obstacle. Therefore, the type determination unit determines the type of obstacle based on the frequency distribution acquired by the frequency distribution acquisition unit. Specifically, for example, the type determination unit determines the first condition based on the first number, which is the frequency of the small change region where the absolute value of the change amount is small, and the frequency of the large change region where the absolute value of the change amount is large. Based on the second condition based on a certain second frequency and the third condition based on the relationship between the first number and the second frequency, it is determined whether the obstacle is a vehicle.
 上記の通り、かかる構成においては、検知距離の変化量の度数分布に基づいて、障害物の種別が良好に判定され得る。したがって、かかる構成によれば、判定された種別に基づいて、障害物の端部位置の推定が、従来よりも良好に行われ得る。即ち、例えば、種別判定部により判定された種別に基づいて、端部位置が良好に補正され得る。 As described above, in such a configuration, the type of obstacle can be favorably determined based on the frequency distribution of the change amount of the detection distance. Therefore, according to such a configuration, the end position of the obstacle can be estimated better than before based on the determined type. That is, for example, the end position can be favorably corrected based on the type determined by the type determination unit.
 なお、各要素に付された括弧付きの参照符号は、同要素と後述する実施形態に記載の具体的手段との対応関係の一例を示すものである。 In addition, the parenthesized reference symbol attached to each element indicates an example of the correspondence between the element and the specific means described in the embodiments to be described later.
駐車支援装置の概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a parking assistance device. 図1に示された駐車支援装置の動作概要を示す概念図である。It is a conceptual diagram which shows the operation | movement outline | summary of the parking assistance apparatus shown by FIG. 図1に示された駐車支援装置の動作概要を示す概念図である。It is a conceptual diagram which shows the operation | movement outline | summary of the parking assistance apparatus shown by FIG. 図1に示された駐車支援装置の動作概要を示す概念図である。It is a conceptual diagram which shows the operation | movement outline | summary of the parking assistance apparatus shown by FIG. 図1に示された駐車支援装置の動作概要を示す概念図である。It is a conceptual diagram which shows the operation | movement outline | summary of the parking assistance apparatus shown by FIG. 図1に示された測距情報処理部により取得される度数分布の概要を示すヒストグラムである。It is a histogram which shows the outline | summary of frequency distribution acquired by the ranging information processing part shown by FIG. 図1に示された駐車支援装置の動作概要を示す概念図である。It is a conceptual diagram which shows the operation | movement outline | summary of the parking assistance apparatus shown by FIG. 図1に示された駐車支援装置の動作概要を示す概念図である。It is a conceptual diagram which shows the operation | movement outline | summary of the parking assistance apparatus shown by FIG. 図1に示された駐車支援装置の動作概要を示す概念図である。It is a conceptual diagram which shows the operation | movement outline | summary of the parking assistance apparatus shown by FIG. 図1に示された駐車支援装置の動作概要を示す概念図である。It is a conceptual diagram which shows the operation | movement outline | summary of the parking assistance apparatus shown by FIG. 図1に示された駐車支援装置の動作概要を示す概念図である。It is a conceptual diagram which shows the operation | movement outline | summary of the parking assistance apparatus shown by FIG. 図1に示された駐車支援装置の動作概要を示す概念図である。It is a conceptual diagram which shows the operation | movement outline | summary of the parking assistance apparatus shown by FIG. 図1に示された駐車支援装置の動作概要を示す概念図である。It is a conceptual diagram which shows the operation | movement outline | summary of the parking assistance apparatus shown by FIG. 図1に示された駐車支援装置の動作例を説明するためのフローチャートである。It is a flowchart for demonstrating the operation example of the parking assistance apparatus shown by FIG. 図1に示された駐車支援装置の動作例を説明するためのフローチャートである。It is a flowchart for demonstrating the operation example of the parking assistance apparatus shown by FIG. 図1に示された駐車支援装置の動作例を説明するためのフローチャートである。It is a flowchart for demonstrating the operation example of the parking assistance apparatus shown by FIG.
 以下、実施形態を、図面に基づいて説明する。 Hereinafter, embodiments will be described based on the drawings.
 (構成)
 図1及び図2を参照すると、本開示の障害物検知装置の一実施形態に相当する駐車支援装置1は、移動体である車両Vに搭載されることで、障害物検知動作を含む駐車支援動作を実行するように構成されている。即ち、駐車支援装置1は、車両Vの外側に存在する障害物Bを検知し、障害物Bの検知結果に基づいて駐車スペースPSを検出し、駐車スペースPSの検出結果に基づいて車両Vの駐車スペースPSへの駐車を支援するようになっている。
(Constitution)
With reference to FIGS. 1 and 2, the parking assistance device 1 corresponding to an embodiment of the obstacle detection device of the present disclosure is mounted on a vehicle V, which is a mobile body, to provide parking assistance including an obstacle detection operation. It is configured to perform an action. That is, the parking assistance device 1 detects the obstacle B existing outside the vehicle V, detects the parking space PS based on the detection result of the obstacle B, and detects the parking space PS based on the detection result of the parking space PS. It is designed to support parking in the parking space PS.
 具体的には、駐車支援装置1は、測距部2と、走行状態取得部3と、カメラ4と、画像表示装置5と、音声出力装置6と、操作部7と、トルク制御ECU8と、制動制御ECU9と、駐車支援ECU10とを備えている。ECUはElectronic Control Unitの略である。 Specifically, the parking assistance device 1 includes a distance measuring unit 2, a traveling state acquisition unit 3, a camera 4, an image display device 5, an audio output device 6, an operation unit 7, and a torque control ECU 8. A braking control ECU 9 and a parking assist ECU 10 are provided. ECU is an abbreviation of Electronic Control Unit.
 測距部2は、障害物Bとの距離に対応する検知距離を、駐車支援装置1を搭載する車両Vの移動に伴い繰返し取得するように設けられている。また、測距部2は、取得した検知距離を駐車支援ECU10に送信するように、駐車支援ECU10に電気接続されている。 The distance measuring unit 2 is provided to repeatedly acquire a detection distance corresponding to the distance to the obstacle B as the vehicle V on which the parking assistance device 1 is mounted moves. In addition, the distance measuring unit 2 is electrically connected to the parking assist ECU 10 so as to transmit the acquired detected distance to the parking assist ECU 10.
 具体的には、測距部2は、測距センサ20を備えている。測距センサ20は、駐車支援装置1を搭載する車両Vの外側に向けて探査波を発信するとともに、探査波の障害物Bによる反射波を受信するように設けられている。具体的には、測距センサ20は、探査波の発信及び反射波の受信を、所定の検出周期で繰り返すようになっている。所定の検出周期は、例えば、30ミリ秒である。探査波としては、例えば、音波、電波、又は光波が用いられ得る。具体的には、例えば、超音波、ミリ波、又はレーザが、探査波として好適に用いられ得る。探査波が超音波である場合、測距センサ20は「超音波センサ」とも称され得る。 Specifically, the distance measuring unit 2 includes a distance measuring sensor 20. The distance measurement sensor 20 is provided to transmit a survey wave toward the outside of a vehicle V equipped with the parking assistance device 1 and to receive a reflected wave by an obstacle B of the survey wave. Specifically, the distance measurement sensor 20 is configured to repeat the transmission of the search wave and the reception of the reflected wave at a predetermined detection cycle. The predetermined detection cycle is, for example, 30 milliseconds. For example, sound waves, radio waves, or light waves may be used as the search waves. Specifically, for example, an ultrasonic wave, a millimeter wave, or a laser can be suitably used as a search wave. When the search wave is an ultrasonic wave, the distance measurement sensor 20 may also be referred to as an “ultrasound sensor”.
 測距センサ20は、駐車支援装置1を搭載する車両Vにおける所定の位置にて、所定方向を向くように固定されている。典型的には、測距センサ20は、図2に示されているように、車両Vの両側面にて、探査波を車幅方向に沿って発信するように設けられている。測距センサ20は、所定距離まで三角錐状に広がるとともにその後車幅方向に沿って延びる、所定の検知可能範囲CRを有している。即ち、測距センサ20は、この検知可能範囲CR内に位置する障害物Bからの反射波を受信することで、検知距離に対応する電気信号を出力するように構成されている。 The distance measuring sensor 20 is fixed at a predetermined position on the vehicle V on which the parking assistance device 1 is mounted so as to face in a predetermined direction. Typically, as shown in FIG. 2, the distance measuring sensor 20 is provided on both sides of the vehicle V so as to transmit a survey wave in the vehicle width direction. The distance measuring sensor 20 has a predetermined detectable range CR which extends in a triangular pyramid shape to a predetermined distance and then extends along the vehicle width direction. That is, the distance measuring sensor 20 is configured to output an electric signal corresponding to the detected distance by receiving a reflected wave from the obstacle B located in the detectable range CR.
 走行状態取得部3は、駐車支援装置1を搭載する車両Vの走行状態を取得するように設けられている。車両Vの走行状態を、以下単に「走行状態」と略称する。走行状態には、例えば、車両Vの各車輪の車輪速、車両Vの走行速度、車両Vにおける舵角、車両Vに作用するヨーレート、等が含まれている。即ち、走行状態取得部3は、車輪速センサ、舵角センサ、ヨーレートセンサ、加速度センサ、等を含んでいる。走行状態取得部3は、取得した走行状態を駐車支援ECU10に送信するように、駐車支援ECU10に電気接続されている。なお、駐車支援装置1を搭載する車両Vの走行速度を、以下単に「車速」と称する。 The traveling state acquisition unit 3 is provided to acquire the traveling state of the vehicle V on which the parking assistance device 1 is mounted. Hereinafter, the traveling state of the vehicle V will be simply referred to as “the traveling state”. The traveling state includes, for example, the wheel speeds of the wheels of the vehicle V, the traveling speed of the vehicle V, the steering angle of the vehicle V, the yaw rate acting on the vehicle V, and the like. That is, the traveling state acquisition unit 3 includes a wheel speed sensor, a steering angle sensor, a yaw rate sensor, an acceleration sensor, and the like. The traveling state acquisition unit 3 is electrically connected to the parking assistance ECU 10 so as to transmit the acquired traveling state to the parking assistance ECU 10. In addition, the traveling speed of the vehicle V which mounts the parking assistance apparatus 1 is only hereafter called "vehicle speed."
 カメラ4は、駐車支援装置1を搭載する車両Vの周囲の画像を撮像するように、車両Vに装着されている。画像表示装置5、音声出力装置6、及び操作部7は、駐車支援装置1を搭載する車両Vにおける車室内に配置されている。画像表示装置5は、液晶表示パネルであって、駐車支援ECU10の制御下で、駐車支援動作に伴う画像表示を行うように設けられている。音声出力装置6は、スピーカ装置であって、駐車支援ECU10の制御下で、駐車支援動作に伴う音声出力を行うように設けられている。操作部7は、画像表示装置5に重畳されたタッチパネル、画像表示装置5の周囲に配置された操作スイッチ、車両Vの運転席近傍に配置された音声マイク、等のうちの少なくともいずれか一つを含み、駐車支援動作に伴うユーザー入力を受け付けるように設けられている。 The camera 4 is mounted on the vehicle V so as to capture an image around the vehicle V on which the parking assistance device 1 is mounted. The image display device 5, the voice output device 6, and the operation unit 7 are disposed in the vehicle compartment of the vehicle V on which the parking assistance device 1 is mounted. The image display device 5 is a liquid crystal display panel, and is provided to perform image display accompanying the parking assistance operation under the control of the parking assistance ECU 10. The voice output device 6 is a speaker device, and is provided so as to perform voice output according to the parking assistance operation under the control of the parking assistance ECU 10. The operation unit 7 is at least one of a touch panel superimposed on the image display device 5, an operation switch disposed around the image display device 5, an audio microphone disposed near the driver's seat of the vehicle V, and the like. , And is provided to receive user input accompanying the parking assistance operation.
 トルク制御ECU8及び制動制御ECU9は、駐車支援ECU10に電気接続されている。トルク制御ECU8は、駐車支援ECU10から受信した信号に基づいて不図示のインジェクタ等の動作を制御することで、駐車支援動作時に、駐車支援装置1を搭載する車両Vにおけるエンジン出力を制御するように設けられている。制動制御ECU9は、駐車支援ECU10から受信した信号に基づいて不図示のブレーキアクチュエータ等を駆動することで、駐車支援動作時に、駐車支援装置1を搭載する車両Vにおける制動力を制御するように設けられている。 The torque control ECU 8 and the braking control ECU 9 are electrically connected to the parking assist ECU 10. The torque control ECU 8 controls the engine output of the vehicle V equipped with the parking assistance device 1 at the time of parking assistance operation by controlling the operation of an injector or the like (not shown) based on a signal received from the parking assistance ECU 10 It is provided. The braking control ECU 9 is provided to control the braking force of the vehicle V equipped with the parking assistance device 1 at the time of parking assistance operation by driving a brake actuator etc. (not shown) based on a signal received from the parking assistance ECU 10 It is done.
 駐車支援ECU10は、測距部2、走行状態取得部3、カメラ4、及び操作部7からの入力に基づいて、駐車支援動作を制御するように構成されている。具体的には、駐車支援ECU10は、上記の各種入力に基づいて、画像表示装置5、音声出力装置6、トルク制御ECU8、及び制動制御ECU9の動作を制御するための駆動制御信号を生成し、生成した駆動制御信号を各部に出力するようになっている。 The parking assistance ECU 10 is configured to control the parking assistance operation based on inputs from the distance measuring unit 2, the traveling state acquisition unit 3, the camera 4, and the operation unit 7. Specifically, the parking assistance ECU 10 generates a drive control signal for controlling the operation of the image display device 5, the audio output device 6, the torque control ECU 8, and the braking control ECU 9 based on the various inputs described above, The generated drive control signal is output to each part.
 本実施形態においては、駐車支援ECU10は、いわゆるマイクロコンピュータであって、不図示のCPU、ROM、RAM、不揮発性RAM、入出力インタフェース、等を備えている。即ち、駐車支援ECU10は、CPUがROM又は不揮発性RAMからプログラムを読み出して実行することで、各種の制御動作を実現可能に構成されている。ROM又は不揮発性RAMには、プログラムの実行の際に用いられる各種のデータが、予め格納されている。ROM又は不揮発性RAMに予め格納される各種のデータは、例えば、初期値、ルックアップテーブル、マップ、等である。RAMは、CPUがプログラムを実行する際に、計算結果等のデータを一時的に格納するようになっている。不揮発性RAMは、例えば、フラッシュROMである。 In the present embodiment, the parking assist ECU 10 is a so-called microcomputer, and includes a CPU, a ROM, a RAM, a non-volatile RAM, an input / output interface, and the like (not shown). That is, the parking assist ECU 10 is configured to be able to realize various control operations by the CPU reading and executing the program from the ROM or the nonvolatile RAM. In the ROM or nonvolatile RAM, various data used when executing a program are stored in advance. Various data stored in advance in the ROM or nonvolatile RAM are, for example, initial values, look-up tables, maps, and the like. The RAM is configured to temporarily store data such as calculation results when the CPU executes a program. The non-volatile RAM is, for example, a flash ROM.
 駐車支援ECU10は、CPUによって実現される機能上の構成として、測距情報処理部101と、反射位置取得部102と、端部位置推定部103と、種別判定部104と、端部位置補正部105と、駐車スペース検出部106と、走行条件算出部107とを備えている。 As the functional configuration realized by the CPU, the parking assistance ECU 10 includes a distance measurement information processing unit 101, a reflection position acquisition unit 102, an end position estimation unit 103, a type determination unit 104, and an end position correction unit. 105, a parking space detection unit 106, and a traveling condition calculation unit 107.
 測距情報処理部101は、走行状態取得部3から取得した走行状態に基づいて、測距部2から取得した複数の検知距離に対して、所定の処理を実行するように設けられている。具体的には、測距情報処理部101は、測距部2から取得した複数の検知距離に対して、曲線近似を実行するようになっている。また、測距情報処理部101は、曲線近似後の複数の検知距離の各々について、検知距離の変化量を取得するようになっている。さらに、測距情報処理部101は、取得した変化量の度数分布を取得するようになっている。 The distance measurement information processing unit 101 is provided to execute predetermined processing on a plurality of detection distances acquired from the distance measurement unit 2 based on the traveling state acquired from the traveling state acquisition unit 3. Specifically, the distance measurement information processing unit 101 is configured to perform curve approximation on a plurality of detection distances acquired from the distance measurement unit 2. Further, the distance measurement information processing unit 101 is configured to acquire the change amount of the detection distance for each of the plurality of detection distances after the curve approximation. Furthermore, the ranging information processing unit 101 is configured to acquire the frequency distribution of the acquired amount of change.
 反射位置取得部102は、測距情報処理部101による処理後の検知距離に基づいて、三角測量の原理を用いて推定反射位置を取得するように設けられている。推定反射位置は、或る時点で測距部2によって取得された検知距離に対応する反射波の起点となる、障害物Bの外表面における特定の位置として、推定される位置である。反射位置取得部102は、取得された検知距離及び移動状態に基づいて、複数の検知距離の各々に対応する推定反射位置を、順次取得するようになっている。 The reflection position acquisition unit 102 is provided to acquire an estimated reflection position using the principle of triangulation based on the detection distance after processing by the distance measurement information processing unit 101. The estimated reflection position is a position estimated as a specific position on the outer surface of the obstacle B, which is a starting point of a reflected wave corresponding to the detection distance acquired by the distance measuring unit 2 at a certain time. The reflection position acquisition unit 102 is configured to sequentially acquire estimated reflection positions corresponding to each of a plurality of detection distances based on the acquired detection distance and the movement state.
 端部位置推定部103は、反射位置取得部102によって取得された複数の推定反射位置のうちの、車両Vの移動方向における端部に位置する推定反射位置に基づいて、障害物Bの端部位置を推定するように設けられている。駐車支援装置1を搭載する車両Vの移動方向を、以下「車両進行方向」と称する。 The end position estimation unit 103 detects the end of the obstacle B based on the estimated reflection position located at the end in the moving direction of the vehicle V among the plurality of estimated reflection positions acquired by the reflection position acquisition unit 102. It is provided to estimate the position. Hereinafter, the moving direction of the vehicle V on which the parking assistance device 1 is mounted will be referred to as “vehicle traveling direction”.
 種別判定部104は、測距情報処理部101によって取得された、検知距離の変化量の度数分布に基づいて、障害物Bの種別を判定するように設けられている。具体的には、種別判定部104は、度数分布の特徴に基づいて、障害物Bが車両であるか否かを判定するようになっている。さらに、種別判定部104は、反射位置取得部102によって一個の障害物Bに対応して取得された複数の推定反射位置の分布状態に基づいて、障害物Bが車両であるか否かを判定するようになっている。種別判定部104による種別判定の詳細については、後述の動作概要説明にて、より詳細に説明する。 The type determination unit 104 is provided to determine the type of the obstacle B based on the frequency distribution of the change amount of the detection distance acquired by the distance measurement information processing unit 101. Specifically, the type determination unit 104 is configured to determine whether the obstacle B is a vehicle based on the feature of the frequency distribution. Furthermore, the type determination unit 104 determines whether or not the obstacle B is a vehicle based on the distribution state of a plurality of estimated reflection positions acquired by the reflection position acquisition unit 102 in correspondence with one obstacle B. It is supposed to The details of the type determination by the type determination unit 104 will be described in more detail in the operation outline description to be described later.
 端部位置補正部105は、種別判定部104により判定された、障害物Bの種別に基づいて、障害物Bの端部位置を補正するように設けられている。具体的には、端部位置補正部105は、種別判定部104により判定された種別が車両である場合に、車両規格に定められた車両寸法に基づいて、障害物Bの端部位置を補正するようになっている。端部位置補正部105による補正の詳細についても、後述の動作概要説明にて、より詳細に説明する。 The end position correction unit 105 is provided to correct the end position of the obstacle B based on the type of the obstacle B determined by the type determination unit 104. Specifically, when the type determined by the type determination unit 104 is a vehicle, the end position correction unit 105 corrects the end position of the obstacle B based on the vehicle dimensions defined in the vehicle standard. It is supposed to The details of the correction by the end position correction unit 105 will also be described in more detail in the outline of operation described later.
 駐車スペース検出部106は、端部位置補正部105による補正後の、障害物Bの端部位置に基づいて、駐車スペースPSを検出するように設けられている。走行条件算出部107は、駐車スペース検出部106によって検出された駐車スペースPSに基づいて、車両Vを駐車スペースPSに誘導するための走行条件を算出するように設けられている。走行条件には、車両Vの現在位置から駐車スペースPSまでの走行経路が少なくとも含まれている。 The parking space detection unit 106 is provided to detect the parking space PS based on the end position of the obstacle B after correction by the end position correction unit 105. The traveling condition calculation unit 107 is provided to calculate traveling conditions for guiding the vehicle V to the parking space PS based on the parking space PS detected by the parking space detection unit 106. The travel conditions at least include a travel path from the current position of the vehicle V to the parking space PS.
 (動作概要)
 以下、本実施形態の駐車支援装置1の動作概要について、図1及び図2に加えて、図3A~図10Bを用いて説明する。図3A等において、説明を単純化するため、車両Vは、駐車スペースPSの探索中、X方向に走行しているものとする。この場合、Xは、センサ位置、即ち測距センサ20の位置を示す。また、Yは、検知距離、即ち、測距センサ20からの距離を示す。
(Operation summary)
Hereinafter, an operation outline of the parking assistance device 1 of the present embodiment will be described with reference to FIGS. 3A to 10B in addition to FIGS. 1 and 2. In FIG. 3A etc., in order to simplify the description, it is assumed that the vehicle V is traveling in the X direction while searching for the parking space PS. In this case, X indicates the sensor position, that is, the position of the distance measuring sensor 20. Also, Y indicates a detection distance, that is, a distance from the distance measurement sensor 20.
 図3Aに示されているように、駐車スペースPSの探索中、駐車支援ECU10は、車両Vの走行に伴い、複数の検知距離を取得する。測距部2が或る一つの検知距離を取得した時点における、測距センサ20の位置は、走行状態取得部3から取得した走行状態に基づいて特定可能である。故に、測距部2が取得した、或る一つの検知距離は、センサ位置Xと検知距離Yとによる二次元座標における一点として示される。この一転を検知位置PDと称する。したがって、測距情報処理部101は、図3Aに示されているように、駐車スペースPSの探索中、複数の検知位置PDによる点列を取得する。 As shown in FIG. 3A, while searching for the parking space PS, the parking assistance ECU 10 acquires a plurality of detection distances as the vehicle V travels. The position of the distance measurement sensor 20 at the time when the distance measurement unit 2 acquires a certain detection distance can be specified based on the traveling state acquired from the traveling state acquisition unit 3. Therefore, a certain detection distance acquired by the distance measurement unit 2 is indicated as one point in a two-dimensional coordinate by the sensor position X and the detection distance Y. This reversal is referred to as a detection position PD. Therefore, as shown in FIG. 3A, the ranging information processing unit 101 acquires a point sequence at a plurality of detection positions PD while searching for the parking space PS.
 また、測距情報処理部101は、上記の二次元座標中の点列に対して、曲線近似を実行する。図3Bにおける近似曲線PLは、図3Aにおける複数の検知位置PDによる点列を、曲線近似したものである。図3Aにおける、複数の検知位置PDによる点列の各々は、図3Bにおける近似曲線PL上に位置するように補正される。このように、取得した複数の検知位置PDの各々を、複数の検知距離の取得履歴に基づく曲線近似によって補正することで、検知距離におけるノイズ成分が良好に低減される。 Further, the distance measurement information processing unit 101 performs curve approximation on the point sequence in the above two-dimensional coordinates. The approximate curve PL in FIG. 3B is a curve approximation of a series of points at a plurality of detection positions PD in FIG. 3A. Each of the point sequences according to the plurality of detection positions PD in FIG. 3A is corrected to be located on the approximate curve PL in FIG. 3B. Thus, the noise component in the detection distance is favorably reduced by correcting each of the plurality of acquired detection positions PD by curve approximation based on the acquisition history of the plurality of detection distances.
 図4は、障害物Bが角柱である場合の、複数の検知位置PDによる点列の取得結果を示す。図4においては、図示されている複数の検知位置PDの各々は、曲線近似による補正後のものである。 FIG. 4 shows acquisition results of point sequences at a plurality of detection positions PD when the obstacle B is a prism. In FIG. 4, each of the plurality of detection positions PD illustrated is after correction by curve approximation.
 また、測距情報処理部101は、測距部2における検知距離の取得毎に、検知距離の変化量を取得する。即ち、測距情報処理部101は、検知距離の変化量を、今回取得された検知距離と、今回よりも前の時点で取得された検知距離とに基づいて取得する。 In addition, the ranging information processing unit 101 acquires the change amount of the detection distance for each acquisition of the detection distance in the ranging unit 2. That is, the distance measurement information processing unit 101 acquires the change amount of the detection distance based on the detection distance acquired this time and the detection distance acquired at a point before this time.
 「検知距離の変化量」は、複数の検知位置PDによる点列における、互いに隣接する2点を結ぶ線分の傾きで示され得る。そこで、本実施形態においては、測距情報処理部101は、曲線近似後の複数の検知位置PDによる点列における、隣り合う二個の検知位置PDを結ぶ線分の傾きを、変化量として取得する。具体的には、Nを1以上の整数とし、N個目の検知位置PDを検知位置PD(N)とすると、検知位置PD(N)における変化量T(N)は、検知位置PD(N-1)と検知位置PD(N)とを結ぶ線分の傾きである。 The “amount of change in detection distance” may be indicated by the inclination of a line segment connecting two adjacent points in a point sequence at a plurality of detection positions PD. Therefore, in the present embodiment, the ranging information processing unit 101 acquires, as a variation, the inclination of a line segment connecting two adjacent detection positions PD in a point sequence based on a plurality of detection positions PD after curve approximation. Do. Specifically, assuming that N is an integer of 1 or more and the Nth detection position PD is a detection position PD (N), the change amount T (N) in the detection position PD (N) is the detection position PD (N). It is an inclination of a line segment connecting -1) and the detection position PD (N).
 さらに、測距情報処理部101は、検知距離の変化量の度数分布を取得する。即ち、本実施形態における測距情報処理部101は、本開示における度数分布取得部として機能する。本実施形態においては、測距情報処理部101は、検知距離を1回取得する毎に、曲線近似を行うと共に度数分布を更新する。度数分布の詳細については後述する。 Further, the distance measurement information processing unit 101 acquires a frequency distribution of the change amount of the detection distance. That is, the ranging information processing unit 101 in the present embodiment functions as a frequency distribution acquisition unit in the present disclosure. In the present embodiment, the ranging information processing unit 101 performs curve approximation and updates the frequency distribution each time the detection distance is acquired once. Details of the frequency distribution will be described later.
 反射位置取得部102は、複数の検知位置PDの取得結果に対して三角測量の原理を適用することで、推定反射位置PRを取得する。上記のような、複数の検知位置PDの取得、曲線近似によるこれらの補正、及び三角測量に基づく推定反射位置PRの取得については、本願の出願時点で既に周知となっているので、これ以上の詳細な説明については省略する。必要に応じ、米国特許第7,843,767号明細書、特開2007-71536号公報、特開2012-146024号公報、特開2012-146025号公報、等を参照のこと。 The reflection position acquisition unit 102 acquires the estimated reflection position PR by applying the principle of triangulation to the acquisition results of the plurality of detection positions PD. The acquisition of the plurality of detection positions PD, the correction of these corrections by curve approximation, and the acquisition of the estimated reflection position PR based on triangulation as described above are already known at the time of filing of the present application. Detailed description will be omitted. As necessary, refer to US Pat. No. 7,843,767, JP-A-2007-71536, JP-A-2012-146024, JP-A-2012-146025, and the like.
 端部位置推定部103は、反射位置取得部102によって取得された複数の推定反射位置PRのうちの、X方向における両端部に位置するものを、それぞれ、推定端部位置P1及びP2とする。推定端部位置P1及びP2は、障害物Bの端部位置として、複数の推定反射位置PRに基づいて推定された位置である。具体的には、推定端部位置P1は、一個の障害物Bに対応する複数の推定反射位置PRのうちの、車両進行方向における手前側のものである。推定端部位置P2は、一個の障害物Bに対応する複数の推定反射位置PRのうちの、車両進行方向側のものである。 The end position estimation unit 103 determines, among the plurality of estimated reflection positions PR acquired by the reflection position acquisition unit 102, positions at both ends in the X direction as the estimated end positions P1 and P2, respectively. The estimated end positions P1 and P2 are positions estimated based on the plurality of estimated reflection positions PR as the end positions of the obstacle B. Specifically, the estimated end position P1 is the one on the near side in the vehicle traveling direction among the plurality of estimated reflection positions PR corresponding to one obstacle B. The estimated end position P2 is on the vehicle traveling direction side among a plurality of estimated reflection positions PR corresponding to one obstacle B.
 種別判定部104は、測距情報処理部101によって取得された、検知距離の変化量の度数分布に基づいて、障害物Bの種別を判定する。図5は、一例として、障害物Bが、図2に示されているように、前面が車両進行方向に沿うような態様で駐車された駐車車両である場合の、度数分布の一例を示す。 The type determination unit 104 determines the type of the obstacle B based on the frequency distribution of the change amount of the detection distance acquired by the distance measurement information processing unit 101. FIG. 5 shows, as an example, an example of a frequency distribution in the case where obstacle B is a parked vehicle parked in such a manner that the front face follows the direction of travel of the vehicle as shown in FIG.
 図5において、横軸は変化量を示す。横軸における「D7」、「D6」・・・、「D1」、「C」、「U1」、「U2」・・・「U7」は、変化量を所定範囲で区分して階級化したものである。「C」は、傾きがほぼ0、即ち、変化量T(N)が-α~+αの範囲内にある場合である。αは所定の小さな正値である。換言すれば、「C」は、検知位置PD(N-1)に対応する検知距離と検知位置PD(N)に対応する検知距離とが、ほぼ等しい場合である。「U1」、「U2」・・・は、傾きが正値の場合であり、「D1」、「D2」・・・は、傾きが負値の場合である。添え字の数字が大きくなるほど、傾きの絶対値が大きくなる。具体的には、「U1」は、傾きが小さな正値であって、変化量T(N)が+α~+3αの範囲内にある場合である。「U2」は、傾きが小さな正値であって、変化量T(N)が+3α~+5αの範囲内にある場合である。図5において、縦軸は度数を示す。 In FIG. 5, the horizontal axis indicates the amount of change. “D7”, “D6”, “D1”, “C”, “U1”, “U2”, “U7” on the horizontal axis are classified by dividing the amount of change within a predetermined range It is. “C” is the case where the slope is substantially zero, that is, the amount of change T (N) is in the range of −α to + α. α is a predetermined small positive value. In other words, “C” is a case where the detection distance corresponding to the detection position PD (N−1) and the detection distance corresponding to the detection position PD (N) are substantially equal. “U1”, “U2”,... Are cases where the slope is a positive value, and “D1”, “D2”, etc. are cases where the slope is a negative value. The larger the subscript number, the larger the absolute value of the slope. Specifically, “U1” is a positive value with a small slope, and the amount of change T (N) is in the range of + α to + 3α. “U2” is a positive value with a small slope, and the amount of change T (N) is in the range of + 3α to + 5α. In FIG. 5, the vertical axis indicates the frequency.
 図6~図8は、障害物Bの形状と度数分布の形状との関係を示す。図6に示されているように、障害物Bが角柱である場合、車両Vの走行経路に対向する表面が平面状であるため、「C」付近の特定の階級に度数が集中する。これに対し、図7に示されているように、障害物Bが円柱である場合、車両Vの走行経路に対向する表面の曲率が一定であるため、幅広い階級にて、度数がほぼ一様に分布する。また、図8に示されているように、障害物Bが車両である場合、車両Vの走行経路に対向する表面の形状が平面に近い部分と曲面の部分とで構成されており、度数分布の形状は、「C」付近の階級を中心とした「凸」形状となる。 6 to 8 show the relationship between the shape of the obstacle B and the shape of the frequency distribution. As shown in FIG. 6, when the obstacle B is a prism, since the surface facing the traveling path of the vehicle V is flat, the frequency concentrates on a specific class near “C”. On the other hand, as shown in FIG. 7, when the obstacle B is a cylinder, the curvature of the surface facing the traveling path of the vehicle V is constant, so the frequency is almost uniform in a wide class. Distributed in Further, as shown in FIG. 8, when the obstacle B is a vehicle, the shape of the surface facing the traveling path of the vehicle V is configured by a portion close to a plane and a curved portion, and the frequency distribution The shape of is a “convex” shape centered on the class near “C”.
 上記のように、発明者は、障害物Bの種別毎に度数分布の形状が異なること、即ち、障害物Bの形状の特徴が度数分布の形状的な特徴に現れることを、鋭意研究の結果見出した。そこで、種別判定部104は、度数分布の形状的な特徴に基づいて、障害物Bが車両であるか否かを判定する。 As described above, the inventor of the present invention has found that the shape of the frequency distribution differs depending on the type of the obstacle B, that is, the feature of the shape of the obstacle B appears in the shape feature of the frequency distribution. I found it. Therefore, the type determination unit 104 determines whether the obstacle B is a vehicle based on the shape feature of the frequency distribution.
 具体的には、本実施形態においては、種別判定部104は、変化量の絶対値が小さい小変化領域R1の度数の合計である第一度数Q1に基づく第一条件と、変化量の絶対値が大きい大変化領域R2の度数の合計である第二度数Q2に基づく第二条件と、第一度数Q1と第二度数Q2との関係に基づく第三条件とに基づいて、障害物Bが車両であるか否かを判定する。 Specifically, in the present embodiment, the type determination unit 104 calculates the absolute value of the first condition based on the first number Q1 which is the sum of the frequencies of the small change region R1 having a small absolute value of the change amount, and the absolute value of the change amount. Based on the second condition based on the second frequency Q2 which is the sum of the frequencies of the large change region R2 having a large value, and the third condition based on the relationship between the first number Q1 and the second frequency Q2, the obstacle B Determines whether the vehicle is a vehicle.
 第一条件は、第一度数Q1が所定数Qth1以上であるか否か、即ち、小変化領域R1に含まれる検知位置PDが所定数Qth1以上存在するか否かである。第一度数Q1が所定数Qth1以上である場合、障害物Bの種別が車両である可能性が高くなる。第二条件は、第二度数Q2が所定数Qth2以上であるか否か、即ち、大変化領域R2に含まれる検知位置PDが所定数Qth2以上存在するか否かである。第二度数Q2が所定数Qth2以上である場合、障害物Bの種別が車両である可能性が高くなる。第三条件は、第一度数Q1が第二度数Q2よりも大きいか否か、即ち、小変化領域R1に含まれる検知位置PDが大変化領域R2に含まれる検知位置PDよりも多いか否かである。第一度数Q1が第二度数Q2よりも大きい場合、障害物Bの種別が車両である可能性が高くなる。 The first condition is whether or not the first number Q1 is equal to or greater than a predetermined number Qth1, that is, whether a predetermined number Qth1 or more of detection positions PD included in the small change region R1 are present. If the first number Q1 is equal to or greater than the predetermined number Qth1, the possibility that the type of the obstacle B is a vehicle is high. The second condition is whether or not the second frequency Q2 is a predetermined number Qth2 or more, that is, whether a predetermined number Qth2 or more of detection positions PD included in the large change region R2 exist. When the second frequency Q2 is equal to or greater than the predetermined number Qth2, the possibility that the type of the obstacle B is a vehicle is high. The third condition is whether the first number Q1 is larger than the second frequency Q2, that is, the detected position PD included in the small change region R1 is larger than the detected position PD included in the large change region R2 It is. When the first number Q1 is larger than the second frequency Q2, the type of the obstacle B is more likely to be a vehicle.
 図9A及び図9Bは、車速即ち測距センサ20の移動速度が、例えば1km/h程度の低速である場合を示す。図10A及び図10Bは、車速即ち測距センサ20の移動速度が、例えば15km/h程度のように、図9A及び図9Bの場合よりも高速である場合を示す。図9A及び図10Aにおいては、障害物Bは、前面が車両進行方向に沿うような態様で駐車された駐車車両である。図9B及び図10Bにおいては、障害物Bは、円柱である。図9A、図9B、図10A、及び図10Bから明らかなように、車速、即ち駐車支援装置1を搭載する車両Vの走行速度が高くなると、度数分布において、障害物Bの形状に起因する特徴が現れ難くなる。 9A and 9B show the case where the vehicle speed, that is, the moving speed of the distance measurement sensor 20 is a low speed of, for example, about 1 km / h. FIGS. 10A and 10B show the case where the vehicle speed, that is, the moving speed of the distance measurement sensor 20 is higher than that of FIGS. 9A and 9B, for example, about 15 km / h. In FIG. 9A and FIG. 10A, the obstacle B is a parked vehicle parked in such a manner that the front surface is along the vehicle traveling direction. In FIGS. 9B and 10B, the obstacle B is a cylinder. As apparent from FIGS. 9A, 9B, 10A, and 10B, when the vehicle speed, that is, the traveling speed of the vehicle V equipped with the parking assistance device 1 becomes high, the feature caused by the shape of the obstacle B in the frequency distribution Is less likely to appear.
 しかしながら、図10Aに示されているように、障害物Bが車両である場合は、度数分布が広くなり、且つ、推定反射位置PRがX方向に幅広く分布する。これに対し、図10Bに示されているように、障害物Bが円柱である場合は、度数分布が広くなり、推定反射位置PRのX方向についての分布が狭くなる。そこで、種別判定部104は、反射位置取得部102によって一個の障害物Bに対応して取得された複数の推定反射位置PRの分布状態に基づいて、障害物Bが車両であるか否かを判定する。具体的には、例えば、一個の障害物Bについて、度数分布が広く、且つ複数の推定反射位置PRのX方向における密度が低い場合、当該障害物Bの種別が車両である可能性が高くなる。この条件を以下「第四条件」と称する。 However, as shown in FIG. 10A, when the obstacle B is a vehicle, the frequency distribution becomes wide, and the estimated reflection positions PR are widely distributed in the X direction. On the other hand, as shown in FIG. 10B, when the obstacle B is a cylinder, the frequency distribution becomes wide and the distribution of the estimated reflection position PR in the X direction becomes narrow. Therefore, the type determination unit 104 determines whether the obstacle B is a vehicle based on the distribution state of the plurality of estimated reflection positions PR acquired by the reflection position acquisition unit 102 in correspondence with one obstacle B. judge. Specifically, for example, when the frequency distribution is wide and the density of the plurality of estimated reflection positions PR in the X direction is low for one obstacle B, the type of the obstacle B is likely to be a vehicle . This condition is hereinafter referred to as the "fourth condition".
 端部位置補正部105は、種別判定部104により判定された種別に基づいて、障害物Bの端部位置を補正する。本実施形態においては、端部位置補正部105は、判定結果が車両の場合には、推定端部位置P1及びP2を、日本国の道路運送車両法における「普通自動車」の車両規格に定められた車両寸法に基づいて補正する。具体的には、端部位置補正部105は、判定結果が車両の場合には、普通自動車の標準的な車両寸法である、車両幅1,800mm×車両全長4,900mmを基準寸法として、X方向におけるP1-P2間の距離が上記の基準寸法となるように、推定端部位置P1及びP2を補正する。 The end position correction unit 105 corrects the end position of the obstacle B based on the type determined by the type determination unit 104. In the present embodiment, when the determination result is a vehicle, the end position correction unit 105 determines the estimated end positions P1 and P2 as the vehicle standard of “ordinary car” in the Japanese Road Transport Vehicle Act. Make corrections based on the size of the vehicle. Specifically, when the determination result is a vehicle, the end position correction unit 105 sets X as a reference dimension, with a vehicle width of 1,800 mm and a total vehicle length of 4,900 mm, which is a standard vehicle size of an ordinary automobile. The estimated end positions P1 and P2 are corrected so that the distance between P1 and P2 in the direction becomes the above reference dimension.
 例えば、図8の場合、図中に示された補正前の推定端部位置P1及びP2について、X方向におけるP1-P2間の距離は、上記の基準寸法未満である。故に、この場合、例えば、図中に示された補正前の推定端部位置P1は、P1-P2間の距離と基準寸法との差に0.5を乗じた距離分、X方向と反対方向に移動させられ得る。同様に、図中に示された補正前の推定端部位置P2は、P1-P2間の距離と基準寸法との差に0.5を乗じた距離分、X方向に移動させられ得る。なお、P1,P2それぞれの補正量は、上記の例とは別の計算方法により求められてもよい。また、P1-P2間の距離は、X-Y座標で求められてもよい。補正によるP1,P2それぞれの移動も、X方向に限定されるものではなく、例えば、P1-P2を結んだ直線方向への移動のように、X-Y座標の特定の方向に実施してもよい。 For example, in the case of FIG. 8, for the estimated end positions P1 and P2 before correction shown in the figure, the distance between P1 and P2 in the X direction is less than the reference dimension described above. Therefore, in this case, for example, the estimated end position P1 before correction shown in the figure is a distance obtained by multiplying the difference between the distance between P1 and P2 and the reference dimension by 0.5, in the direction opposite to the X direction Can be moved to Similarly, the estimated end position P2 before correction shown in the figure can be moved in the X direction by a distance obtained by multiplying the difference between the distance between P1 and P2 and the reference dimension by 0.5. The correction amount of each of P1 and P2 may be obtained by a calculation method different from the above example. Also, the distance between P1 and P2 may be determined by XY coordinates. The movement of each of P1 and P2 due to the correction is not limited to the X direction, but may be performed in a specific direction of the XY coordinates, for example, a movement in a linear direction connecting P1-P2. Good.
 駐車スペース検出部106は、端部位置補正部105による補正後の、障害物Bの端部位置に基づいて、駐車スペースPSを検出する。走行条件算出部107は、駐車スペース検出部106によって検出された駐車スペースPSに基づいて、車両Vを駐車スペースPSに誘導するための走行条件を算出する。即ち、種別判定部104による障害物Bの種別の判定結果は、複数の障害物Bの間の駐車スペースPSの検出、及び、障害物Bとの衝突を回避しつつ車両Vが駐車スペースPSに到達するための走行条件の算出に用いられる。走行条件には、例えば、走行経路及び走行速度が含まれる。 The parking space detection unit 106 detects the parking space PS based on the end position of the obstacle B after correction by the end position correction unit 105. The traveling condition calculation unit 107 calculates traveling conditions for guiding the vehicle V to the parking space PS based on the parking space PS detected by the parking space detection unit 106. That is, the determination result of the type of the obstacle B by the type determination unit 104 is the detection of the parking space PS between a plurality of obstacles B and the collision of the obstacle V with the vehicle V while avoiding the collision with the vehicle B. It is used to calculate the traveling conditions for reaching. The traveling conditions include, for example, a traveling route and a traveling speed.
 (動作例)
 以下、本実施形態の構成による具体的な動作例について、図11~図13のフローチャートを用いて説明する。なお、図面及び明細書中の以下の説明において、「ステップ」を単に「S」と略記する。また、以下のフローチャートの説明において、駐車支援ECU10のCPU、ROM、RAM、不揮発性RAMを、単に「CPU」、「ROM」、「RAM」、「不揮発性RAM」と略称する。
(Operation example)
Hereinafter, a specific operation example according to the configuration of the present embodiment will be described using the flowcharts of FIGS. In the following description in the drawings and specification, "step" is simply abbreviated as "S". In the following description of the flowchart, the CPU, the ROM, the RAM, and the non-volatile RAM of the parking assistance ECU 10 will be simply referred to as “CPU”, “ROM”, “RAM”, and “non-volatile RAM”.
 図11に示されている駐車支援ルーチンは、車両Vの運転者等のユーザーによる、操作部7における所定の操作によって初回起動され、その後、駐車支援動作が終了するまで所定時間間隔で起動される。この所定時間は、例えば、測距部2における検知距離の取得間隔と同一の30ミリ秒に設定され得る。この駐車支援ルーチンが起動されると、まず、CPUは、S1101にて、駐車支援動作中であるか否かを示すフラグFがリセットされているか否かを判定する。 The parking support routine shown in FIG. 11 is initially activated by a predetermined operation on the operation unit 7 by the user such as the driver of the vehicle V, and thereafter started at predetermined time intervals until the parking support operation is completed. . The predetermined time may be set to, for example, 30 milliseconds, which is the same as the acquisition interval of the detection distance in the distance measuring unit 2. When the parking support routine is started, the CPU first determines in S1101 whether a flag F indicating whether a parking support operation is in progress has been reset.
 駐車支援ルーチンが開始された直後は、フラグFはリセットされている(即ちF=0)。このため、S1101における判定は「YES」となる。そこで、CPUは、処理をS1102~S1106に進行させる。S1102にて、CPUは、フラグFをセットする(即ちF=1)。 Immediately after the parking assistance routine is started, the flag F is reset (ie, F = 0). Therefore, the determination in S1101 is "YES". Therefore, the CPU advances the process to S1102 to S1106. At S1102, the CPU sets a flag F (ie, F = 1).
 一方、S1101の判定時点において、フラグFが既にセットされている場合(即ちS1101=NO)、CPUは、S1102~S1105の処理をスキップして、処理をS1106に進行させる。即ち、フラグFは、S1103~S1105の処理をスキップするか否かを切り換えるためのフラグである。 On the other hand, if the flag F is already set at the determination time of S1101 (ie, S1101 = NO), the CPU skips the processing of S1102 to S1105 and advances the processing to S1106. That is, the flag F is a flag for switching whether to skip the processing of S1103 to S1105.
 S1103にて、CPUは、駐車方法を決定する。即ち、CPUは、今回の駐車支援動作における、車両Vの駐車方法を、縦列駐車と並列駐車とのうちから選択する。駐車方法の選択は、例えば、ユーザー入力に基づいて行われ得る。あるいは、駐車方法の選択は、測距部2及び/又はカメラ4の出力等に基づいて、CPUにより判断され得る。 At S1103, the CPU determines a parking method. That is, the CPU selects the parking method of the vehicle V in the current parking assistance operation from parallel parking and parallel parking. The choice of parking method may be made based on user input, for example. Alternatively, the selection of the parking method may be determined by the CPU based on the output of the distance measuring unit 2 and / or the camera 4 or the like.
 S1104にて、CPUは、測距部2による測距結果等に基づいて、駐車スペースPSを検出する。S1105にて、CPUは、測距部2による測距結果等に基づいて、現在の車両Vの位置を起点として、車両Vを駐車スペースPSに駐車するための走行条件を算出する。走行条件算出においては、例えば、走行経路に沿って位置する障害物Bが車両である場合には、非車両である場合よりも、走行経路が大回りに設定され得る。例えば、車両である障害物Bの近傍においては、非車両近傍を走行中よりも、車速が減速され得る。 At S1104, the CPU detects the parking space PS based on the distance measurement result and the like by the distance measurement unit 2. At S1105, the CPU calculates traveling conditions for parking the vehicle V in the parking space PS, starting from the current position of the vehicle V, based on the distance measurement result by the distance measuring unit 2 and the like. In the traveling condition calculation, for example, when the obstacle B located along the traveling route is a vehicle, the traveling route may be set to be larger than when the obstacle B is a non-vehicle. For example, in the vicinity of the obstacle B which is a vehicle, the vehicle speed may be reduced more than when traveling in the vicinity of a non-vehicle.
 S1106にて、CPUは、現在の走行条件による駐車支援動作が継続可能であるか否かを判定する。具体的には、例えば、S1106の判定時点において、障害物Bが、車両Vがこのまま走行すると衝突する可能性がある位置に存在する場合、S1106の判定が「NO」となる。典型的には、S1104にて駐車スペースPSが検出された際に当該駐車スペースPSに隣接する駐車車両である障害物Bが、駐車支援動作中に発進した場合が、S1106の判定が「NO」となる一例である。 At S1106, the CPU determines whether or not the parking assistance operation under the current traveling conditions can be continued. Specifically, for example, when the obstacle B is present at a position where there is a possibility of collision when the vehicle V travels as it is at the determination time of S1106, the determination of S1106 is "NO". Typically, when the parking space PS is detected in S1104, the obstacle B, which is a parked vehicle adjacent to the parking space PS, starts in the parking assistance operation, but the determination in S1106 is "NO". This is an example of
 現在の走行条件による駐車支援動作が継続可能である場合(即ちS1106=YES)、CPUは、処理をS1107に進行させる。S1107にて、CPUは、現在の走行条件による所定時間の走行を許可する。これにより、車両Vは、所定時間走行する。この所定時間は、例えば、測距部2における検知距離の取得間隔と同一の30ミリ秒に設定され得る。その後、CPUは、処理をS1109に進行させる。 If the parking assistance operation under the current traveling conditions can be continued (that is, S1106 = YES), the CPU advances the process to S1107. At S1107, the CPU permits traveling for a predetermined time under the current traveling conditions. Thus, the vehicle V travels for a predetermined time. The predetermined time may be set to, for example, 30 milliseconds, which is the same as the acquisition interval of the detection distance in the distance measuring unit 2. After that, the CPU advances the process to S1109.
 一方、現在の走行条件による駐車支援動作が継続不可能である場合(即ちS1106=NO)、CPUは、処理をS1108に進行させる。S1108にて、CPUは、フラグFをリセットする(即ちF=0)。このとき、車両Vは、一旦停止する。その後、CPUは、処理をS1109に進行させる。 On the other hand, when the parking assistance operation under the current traveling conditions can not be continued (ie, S1106 = NO), the CPU advances the process to S1108. At S1108, the CPU resets flag F (ie, F = 0). At this time, the vehicle V is temporarily stopped. After that, the CPU advances the process to S1109.
 S1109にて、CPUは、駐車支援動作が終了したか否かを判定する。駐車支援動作の終了は、例えば、車両Vが駐車スペースPS内における所定位置に到達することで、車両Vの駐車スペースPSへの駐車が完了した場合である。あるいは、駐車支援動作の終了は、例えば、車両Vが駐車スペースPS内における所定位置に到達する前に、ユーザー入力等に基づいて駐車支援動作が強制的に終了させられた場合である。 At S1109, the CPU determines whether the parking assistance operation has ended. The end of the parking assistance operation is, for example, when the vehicle V has reached a predetermined position in the parking space PS, and the parking of the vehicle V in the parking space PS is completed. Alternatively, the end of the parking assistance operation is, for example, the case where the parking assistance operation is forcibly ended based on a user input or the like before the vehicle V reaches a predetermined position in the parking space PS.
 駐車支援動作が終了した場合(即ちS1109=YES)、CPUは、S1110にて、駐車支援動作の終了のための処理を実行した後、本ルーチンによる処理を完全に終了する。S1110における終了処理は、画像表示装置5及び/又は音声出力装置6によるユーザーへの終了報知と、フラグFのリセットとを含む。 When the parking assistance operation is completed (that is, S1109 = YES), the CPU executes the processing for the termination of the parking assistance operation in S1110, and then completely terminates the processing according to this routine. The end process in S1110 includes the end notification to the user by the image display device 5 and / or the audio output device 6, and the reset of the flag F.
 一方、駐車支援動作が終了していない場合(即ちS1109=NO)、CPUは、S1110の処理をスキップし、本ルーチンを一旦終了する。この場合、CPUは、次の起動タイミングにて、本ルーチンを再び起動する。 On the other hand, when the parking assistance operation has not ended (that is, S1109 = NO), the CPU skips the processing of S1110 and once ends this routine. In this case, the CPU starts this routine again at the next start timing.
 現在の走行条件による駐車支援動作が継続可能である間は、駐車スペースPSの再検出及び走行条件の再設定の必要はない。故に、駐車支援動作中であって、S1106の判定がYESである間は、フラグFがセットされているので、S1103~S1105の処理はスキップされる。 While the parking assistance operation can be continued under the current traveling conditions, it is not necessary to redetect the parking space PS and reset the traveling conditions. Therefore, while the parking assistance operation is being performed, and the determination of S1106 is YES, the flag F is set, so the processing of S1103 to S1105 is skipped.
 これに対し、現在の走行条件による駐車支援動作が、何らかの理由により継続不可能になった場合、駐車スペースPSの再検出及び走行条件の再設定を行う必要がある。そこで、この場合、S1106の判定がNOとなり、フラグFがリセットされる。これにより、次の起動タイミングにて、S1101の判定がYESとなり、S1103~S1105の処理が実行される。これにより、駐車スペースPSの再検出及び走行条件の再設定が行われる。 On the other hand, when the parking assistance operation under the current traveling condition can not be continued for some reason, it is necessary to redetect the parking space PS and reset the traveling condition. Therefore, in this case, the determination in S1106 is NO, and the flag F is reset. As a result, at the next activation timing, the determination in S1101 becomes YES, and the processing in S1103 to S1105 is executed. As a result, redetection of the parking space PS and resetting of the traveling conditions are performed.
 図12は、車両Vの周囲に存在する障害物Bを検知するための、障害物検知ルーチンの一例を示す。このルーチンによる障害物Bの検知結果は、S1103、S1104、S1105、S1106の処理の実行時に利用される。 FIG. 12 shows an example of an obstacle detection routine for detecting an obstacle B present around the vehicle V. The detection result of the obstacle B by this routine is used when executing the processing of S1103, S1104, S1105, and S1106.
 CPUは、所定の起動タイミングにて、図12に示された障害物検知ルーチンを繰り返し実行する。本ルーチンの起動間隔は、例えば、測距部2における検知距離の取得間隔と同一の30ミリ秒に設定され得る。 The CPU repeatedly executes the obstacle detection routine shown in FIG. 12 at a predetermined activation timing. The activation interval of this routine may be set to, for example, 30 milliseconds, which is the same as the acquisition interval of the detection distance in the distance measuring unit 2.
 本ルーチンが起動されると、まずS1201にて、CPUは、測距センサ20の出力に基づいて検知距離を取得する。次に、S1202にて、CPUは、今回及び今回よりも前に取得した検知距離に対して曲線近似を実行する。即ち、CPUは、図3Aに示された複数の検知位置PDに基づいて、図3Bに示された近似曲線PLを算出する。続いて、CPUは、算出した近似曲線PLに基づいて検知位置PDを補正することで、補正後の検知距離を取得する。その後、CPUは、処理をS1204及びS1205に進行させる。 When this routine is started, first, in S1201, the CPU acquires a detection distance based on the output of the distance measurement sensor 20. Next, in S1202, the CPU executes curve approximation on the detection distance obtained this time and before this time. That is, the CPU calculates the approximate curve PL shown in FIG. 3B based on the plurality of detected positions PD shown in FIG. 3A. Subsequently, the CPU corrects the detection position PD based on the calculated approximate curve PL to acquire the corrected detection distance. After that, the CPU advances the process to S1204 and S1205.
 S1204にて、CPUは、検知位置PD(N)における変化量T(N)を、検知位置PD(N-1)と検知位置PD(N)とを結ぶ線分の傾きによって取得する。S1205にて、CPUは、今回取得した変化量T(N)を用いて、変化量Tの分布を生成する。即ち、CPUは、今回取得した変化量T(N)を用いて、変化量Tの分布を更新する。その後、CPUは、処理をS1206~S1211に進行させる。 In S1204, the CPU acquires the amount of change T (N) at the detection position PD (N) by the slope of the line connecting the detection position PD (N-1) and the detection position PD (N). In S1205, the CPU generates a distribution of change amounts T using the change amounts T (N) acquired this time. That is, the CPU updates the distribution of the change amount T using the change amount T (N) acquired this time. Thereafter, the CPU advances the process to S1206 to S1211.
 Nは、1以上の整数であって、一個の障害物Bに対する検知距離の取得回数である。即ち、Nは、本ルーチンの起動回数に相当する。換言すれば、今回の本ルーチンの起動は、N回目の起動である。したがって、N=1の場合は、前回取得された検知位置PD(N-1)は存在しないため、S1204及びS1205の処理はスキップされる。 N is an integer greater than or equal to 1 and is the number of times of detection distance detection for one obstacle B. That is, N corresponds to the number of activations of this routine. In other words, the start of this routine is the Nth start. Therefore, in the case of N = 1, the processing of S1204 and S1205 is skipped because the previously acquired detected position PD (N-1) does not exist.
 S1206にて、CPUは、第一条件を判定する。即ち、CPUは、第一度数Q1が所定数Qth1以上であるか否かを判定する。S1207にて、CPUは、第二条件を判定する。即ち、CPUは、第二度数Q2が所定数Qth2以上であるか否かを判定する。S1208にて、CPUは、第三条件を判定する。即ち、CPUは、第一度数Q1が第二度数Q2よりも大きいか否かを判定する。 At S1206, the CPU determines a first condition. That is, the CPU determines whether the first number Q1 is equal to or greater than a predetermined number Qth1. At S1207, the CPU determines a second condition. That is, the CPU determines whether the second frequency Q2 is equal to or greater than a predetermined number Qth2. At S1208, the CPU determines the third condition. That is, the CPU determines whether the first number Q1 is larger than the second frequency Q2.
 S1209にて、CPUは、補正後の複数の検知位置PD(N)に対して三角測量の原理を適用することで、推定反射位置PRを取得する。続いて、CPUは、S1210にて、X方向に沿った推定反射位置PRの分布状態を判定する。即ち、CPUは、一個の障害物Bに対応して取得された複数の推定反射位置PRの、X方向における密度Kを算出する。具体的には、例えば、一個の障害物Bに対応して取得された複数の推定反射位置PRについて、X方向における分布幅をXD、個数をMとすると、密度K=M/XDとなる。Kの単位は個数/メートルである。また、CPUは、Kの値が所定値Kthよりも小さいか否かを判定する。 In S1209, the CPU acquires the estimated reflection position PR by applying the principle of triangulation to the plurality of corrected detection positions PD (N). Subsequently, in S1210, the CPU determines the distribution state of the estimated reflection position PR along the X direction. That is, the CPU calculates the density K in the X direction of the plurality of estimated reflection positions PR acquired corresponding to one obstacle B. Specifically, for example, for a plurality of estimated reflection positions PR acquired corresponding to one obstacle B, assuming that the distribution width in the X direction is XD and the number is M, the density K = M / XD. The unit of K is number / meter. The CPU also determines whether the value of K is smaller than a predetermined value Kth.
 S1211にて、CPUは、S1206~S1208及びS1210における各条件の判定結果に基づいて、検知距離を現在取得中の障害物Bが車両であるか否かを判定する。具体的には、CPUは、まず、第一度数Q1が所定数Qth1以上である第一条件、第二度数Q2が所定数Qth2以上である第二条件、及び第一度数Q1が第二度数Q2よりも大きい第三条件の全てが成立しているか否かを判定する。次に、CPUは、密度Kが所定値Kthよりも小さい第四条件が成立しているか否かを判定する。これら第一条件~第四条件の全てが成立している場合、CPUは、S1211の判定を「YES」とする。 In S1211, the CPU determines whether or not the obstacle B currently acquiring the detection distance is a vehicle, based on the determination results of the conditions in S1206 to S1208 and S1210. Specifically, the CPU first performs the first condition that the first number Q1 is the predetermined number Qth1 or more, the second condition the second frequency Q2 is the predetermined number Qth2 or more, and the first number Q1 is the second It is determined whether all the third conditions larger than the frequency Q2 are satisfied. Next, the CPU determines whether a fourth condition where the density K is smaller than the predetermined value Kth is satisfied. If all of the first to fourth conditions are satisfied, the CPU makes the determination of S 1211 “YES”.
 具体的には、階級D1~D7のうち、度数が0でなく且つ添え字の数字が最大のものをDIとする。Iは1以上7以下の整数である。また、階級U1~U7のうち、度数が0でなく且つ添え字の数字が最大のものをUJとする。Jは1以上7以下の整数である。W=I+J+1とする。このとき、Wが所定値Wthよりも大きく、且つKの値が所定値Kthよりも小さい場合、CPUは、第四条件が成立していると判定する。 Specifically, among classes D1 to D7, the one having a frequency that is not 0 and the maximum number of subscripts is DI. I is an integer of 1 or more and 7 or less. Further, among classes U1 to U7, UJ having a frequency that is not 0 and the number of subscripts is largest is UJ. J is an integer of 1 or more and 7 or less. Let W = I + J + 1. At this time, when W is larger than the predetermined value Wth and the value of K is smaller than the predetermined value Kth, the CPU determines that the fourth condition is satisfied.
 S1211の判定が「YES」の場合、CPUは、処理をS1212に進行させる。S1212にて、CPUは、障害物Bの種別判定結果を「車両」とする。一方、S1211の判定が「NO」の場合、CPUは、処理をS1213に進行させる。S1213にて、CPUは、障害物Bの種別判定結果を「非車両」とする。上記のようにして、S1211の判定結果に基づいて障害物Bの種別判定結果が設定された後、CPUは、本ルーチンを一旦終了する。 If the determination in S1211 is "YES", the CPU advances the process to S1212. At S1212, the CPU sets the type determination result of the obstacle B as "vehicle". On the other hand, if the determination in S1211 is "NO", the CPU advances the process to S1213. At S1213, the CPU sets the type determination result of the obstacle B as "non-vehicle". As described above, after the type determination result of the obstacle B is set based on the determination result of S1211, the CPU temporarily ends this routine.
 図13は、障害物Bの端部位置を推定するための、端部位置推定ルーチンの一例を示す。CPUは、所定の起動タイミングにて、図13に示された端部位置推定ルーチンを繰り返し実行する。本ルーチンの起動間隔は、例えば、測距部2における検知距離の取得間隔と同一の30ミリ秒に設定され得る。 FIG. 13 shows an example of an end position estimation routine for estimating the end position of the obstacle B. The CPU repeatedly executes the end position estimation routine shown in FIG. 13 at a predetermined activation timing. The activation interval of this routine may be set to, for example, 30 milliseconds, which is the same as the acquisition interval of the detection distance in the distance measuring unit 2.
 本ルーチンが起動されると、まずS1301にて、CPUは、障害物境界が検知されたか否かを判定する。障害物境界とは、一個の障害物Bに対応する一連の検知位置PDの終点である。障害物境界は、例えば、所定時間連続して反射波強度が閾値強度未満である場合に検知され得る。あるいは、障害物境界は、例えば、曲線近似前又は曲線近似後の検知位置PDの配列状態に基づいて検知され得る。 When this routine is activated, the CPU first determines in S1301 whether an obstacle boundary has been detected. The obstacle boundary is an end point of a series of detection positions PD corresponding to one obstacle B. The obstacle boundary can be detected, for example, when the reflected wave intensity is less than the threshold intensity continuously for a predetermined time. Alternatively, the obstacle boundary may be detected based on, for example, the arrangement state of the detection position PD before or after the curve approximation.
 障害物境界が検知されていない場合、一個の障害物Bに対応する一連の検知位置PDの取得は完了していない。そこで、この場合、S1301の判定がNOとなり、CPUはS1302以降の処理を全てスキップして、本ルーチンを一旦終了する。 If an obstacle boundary is not detected, acquisition of a series of detection positions PD corresponding to one obstacle B has not been completed. Therefore, in this case, the determination in S1301 is NO, and the CPU skips all the processes after S1302 and once ends this routine.
 障害物境界が検知された場合、一個の障害物Bに対応する一連の検知位置PDの取得が完了し、当該障害物Bについて推定端部位置P1及びP2の取得が可能となる。そこで、この場合、S1301の判定がYESとなり、CPUはS1302以降に処理を進行させる。 When an obstacle boundary is detected, acquisition of a series of detection positions PD corresponding to one obstacle B is completed, and acquisition of estimated edge positions P1 and P2 can be performed for the obstacle B. Therefore, in this case, the determination in S1301 is YES, and the CPU advances the process to S1302 and subsequent steps.
 S1302にて、CPUは、推定端部位置P1及びP2を取得する。次に、S1303にて、CPUは、障害物Bの種別判定結果が車両であるか否かを判定する。障害物Bの種別判定結果が車両である場合(即ちS1303=YES)、CPUは、処理をS1304に進行させ、車両用補正値を取得する。これに対し、障害物Bの種別判定結果が非車両である場合(即ちS1303=NO)、CPUは、処理をS1305に進行させ、非車両用補正値を取得する。非車両用補正値は、車両用補正値よりも小さな値である。 At S1302, the CPU obtains estimated end positions P1 and P2. Next, in S1303, the CPU determines whether the type determination result of the obstacle B is a vehicle. If the type determination result of the obstacle B is a vehicle (that is, S1303 = YES), the CPU advances the process to S1304 and acquires a correction value for a vehicle. On the other hand, when the type determination result of the obstacle B is a non-vehicle (that is, S1303 = NO), the CPU advances the process to S1305 and acquires a non-vehicle correction value. The non-vehicle correction value is smaller than the vehicle correction value.
 S1303における判定結果に応じてS1304又はS1305の処理が実行された後、CPUは処理をS1306及びS1307に進行させる。S1306にて、CPUは、S1303における判定結果に応じてS1304又はS1305にて取得した補正値により、推定端部位置P1及びP2を補正する。S1307にて、CPUは、補正後の推定端部位置P1及びP2を、RAM又は不揮発性RAMに記憶する。その後、CPUは、本ルーチンを一旦終了する。 After the process of S1304 or S1305 is executed according to the determination result in S1303, the CPU advances the process to S1306 and S1307. In S1306, the CPU corrects the estimated end positions P1 and P2 with the correction value acquired in S1304 or S1305 according to the determination result in S1303. At S1307, the CPU stores the corrected estimated end positions P1 and P2 in the RAM or nonvolatile RAM. After that, the CPU ends this routine once.
 (効果)
 上記の通り、本実施形態の構成においては、検知距離の変化量の度数分布に基づいて、障害物Bの種別が良好に判定され得る。したがって、かかる構成によれば、判定された種別に基づいて、障害物Bの端部位置の推定が、従来よりも良好に行われ得る。即ち、例えば、判定された種別に基づいて、障害物Bの端部位置が良好に補正され得る。また、判定された種別に基づいて、駐車スペースPSの検出、及び車両Vの走行条件の設定が、適切に実行され得る。
(effect)
As described above, in the configuration of the present embodiment, the type of the obstacle B can be favorably determined based on the frequency distribution of the change amount of the detection distance. Therefore, according to such a configuration, the end position of the obstacle B can be estimated better than in the past based on the determined type. That is, for example, the end position of the obstacle B can be corrected well based on the determined type. Further, based on the determined type, detection of the parking space PS and setting of the traveling condition of the vehicle V may be appropriately performed.
 (変形例)
 本開示は、上記実施形態に限定されるものではない。故に、上記実施形態に対しては、適宜変更が可能である。以下、代表的な変形例について説明する。以下の変形例の説明においては、上記実施形態と異なる部分についてのみ説明する。また、上記実施形態と変形例とにおいて、互いに同一又は均等である部分には、同一符号が付されている。したがって、以下の変形例の説明において、上記実施形態と同一の符号を有する構成要素に関しては、技術的矛盾又は特段の追加説明なき限り、上記実施形態における説明が適宜援用され得る。
(Modification)
The present disclosure is not limited to the above embodiment. Therefore, the above embodiment can be modified as appropriate. Hereinafter, representative modifications will be described. In the following description of the modification, only parts different from the above embodiment will be described. Moreover, in the said embodiment and modification, the same code | symbol is attached | subjected to the part which is mutually identical or equal. Therefore, in the following description of the modification, with regard to components having the same reference numerals as the above embodiment, the description in the above embodiment may be appropriately incorporated unless a technical contradiction or a special additional description.
 本開示は、上記実施形態にて示された具体的な装置構成に限定されない。例えば、測距部2が測距センサ20のみを備えていて、検知距離を算出する機能が駐車支援ECU10側に備えられていてもよい。 The present disclosure is not limited to the specific device configuration shown in the above embodiment. For example, the distance measuring unit 2 may include only the distance measuring sensor 20, and the function of calculating the detected distance may be provided on the parking assist ECU 10 side.
 駐車支援ECU10は、ゲートアレイ等のASICとして構成されていてもよい。ASICはApplication Specific Integrated Circuitの略である。 The parking assistance ECU 10 may be configured as an ASIC such as a gate array. ASIC is an abbreviation of Application Specific Integrated Circuit.
 本開示は、上記実施形態にて示された具体的な動作態様及び処理態様に限定されない。例えば、曲線近似、及びこれに基づく度数分布の作成は、所定数の検知距離の取得後に開始されてもよい。即ち、所定数の検知距離の取得があるまでは、曲線近似、及びこれに基づく度数分布の作成は、待機されてもよい。この場合、種別判定についても、所定数の検知距離の取得があるまでは待機される。 The present disclosure is not limited to the specific operation aspect and processing aspect shown in the above embodiment. For example, curve approximation and generation of a frequency distribution based thereon may be started after acquisition of a predetermined number of detection distances. That is, until there is acquisition of a predetermined number of detection distances, curve approximation and generation of a frequency distribution based on this may be awaited. In this case, also in the type determination, the process waits until the predetermined number of detection distances are obtained.
 曲線近似、及びこれに基づく度数分布の作成は、一個の障害物Bに対応する検知距離の取得終了後に実行されてもよい。即ち、一個の障害物Bに対応する検知距離の取得が終了するまでは、曲線近似、及びこれに基づく度数分布の作成は、待機されてもよい。この場合、種別判定についても、一個の障害物Bに対応する検知距離の取得が終了するまでは待機される。図5等に示された度数分布のヒストグラムにおける「D7」、「D6」・・・、「D1」、「C」、「U1」、「U2」・・・「U7」の各区分に対応する変化量範囲は、上記の具体例から変更され得る。 The curve approximation and the creation of the frequency distribution based thereon may be performed after the acquisition of the detection distance corresponding to one obstacle B is completed. That is, until the acquisition of the detection distance corresponding to one obstacle B is completed, the curve approximation and the creation of the frequency distribution based on this may be on standby. In this case, the type determination is also on standby until acquisition of the detection distance corresponding to one obstacle B is completed. "D7", "D6" ..., "D1", "C", "U1", "U2" ... "U7" in the histogram of the frequency distribution shown in Fig. 5 etc. The variation range may be changed from the above example.
 駐車スペースPSの検出中においては、典型的には、車速はほぼ一定であり、車両進行方向も一定である。特に、駐車支援を自動運転又は半自動運転により実行する際、駐車スペースPSの検出中の車速は、トルク制御ECU8によって一定に制御可能である。車速且つ車両進行方向が一定の場合、度数分布の基礎となる、検知距離の変化量は、複数の検知位置PDによる点列における互いに隣接する2点を結ぶ線分の傾きとは異なるパラメータにより規定され得る。具体的には、検知距離の変化量は、検知距離の差分とされ得る。即ち、検知距離の変化量は、単位時間あたり又は単位走行距離あたりの、検知距離の変化率としても規定され得る。また、車速によらず、検知距離の変化量として検知位置PDにおける近似曲線の接線を用いてもよい。 During detection of the parking space PS, typically, the vehicle speed is substantially constant, and the traveling direction of the vehicle is also constant. In particular, when parking assistance is performed by automatic driving or semi-automatic driving, the vehicle speed during detection of the parking space PS can be controlled uniformly by the torque control ECU 8. When the vehicle speed and the traveling direction of the vehicle are constant, the amount of change in the detection distance, which is the basis of the frequency distribution, is specified by a parameter different from the slope of the line segment connecting two adjacent points in the point sequence by multiple detection positions PD. It can be done. Specifically, the change amount of the detection distance may be a difference of the detection distance. That is, the change amount of the detection distance can also be defined as a change rate of the detection distance per unit time or per unit travel distance. Further, regardless of the vehicle speed, the tangent of the approximate curve at the detection position PD may be used as the amount of change of the detection distance.
 種別判定部104による判定結果が車両である場合の、端部位置補正部105による補正値は、上記の具体例に限定されない。即ち、例えば、種別判定部104による判定結果が車両である場合の、端部位置補正部105における基準寸法は、リムジンタイプを除く普通自動車における、実際的な車両寸法の最大値である、車両幅1,920mm×車両全長5,300mmとしてもよい。また、種別判定部104による判定結果が車両である場合の、端部位置補正部105による補正値は、上記の具体例のような一定値であってもよいし、上記の具体例とは異なり可変な値であってもよい。 When the determination result by the type determination unit 104 is a vehicle, the correction value by the end position correction unit 105 is not limited to the above specific example. That is, for example, when the determination result by the type determination unit 104 is a vehicle, the reference dimension in the end position correction unit 105 is the maximum value of the practical vehicle dimensions in an ordinary car except limousine type It is good also as 1,920 mm x vehicle total length 5,300 mm. In addition, when the determination result by the type determination unit 104 is a vehicle, the correction value by the end position correction unit 105 may be a constant value as in the above specific example, unlike the above specific example. It may be a variable value.
 具体的には、例えば、端部位置補正部105は、種別判定部104による判定結果が車両である場合、補正前のX方向におけるP1-P2間の距離に基づいて車両種別を判定し、その判定結果に基づいて基準寸法を変更可能であってもよい。即ち、端部位置補正部105は、種別判定部104による判定結果が車両であり、且つP1-P2間の距離が1,480mm未満である場合、軽自動車の車両規格寸法である車両幅1,480mm×車両全長3,400mmを基準寸法としてもよい。あるいは、例えば、端部位置補正部105は、駐車完了時に、車両Vに隣接する駐車車両の側面と車両Vとの間隔を実測することで補正値を学習する機能を有していてもよい。この場合、学習値は、上記のような基準寸法に基づく上限値を有していてもよい。 Specifically, for example, when the determination result by the type determination unit 104 indicates a vehicle, the end position correction unit 105 determines the vehicle type based on the distance between P1 and P2 in the X direction before correction, and The reference dimension may be changeable based on the determination result. That is, when the determination result by the type determination unit 104 is a vehicle and the distance between P1 and P2 is less than 1,480 mm, the end position correction unit 105 determines the vehicle width 1, which is the vehicle standard dimension of a mini vehicle The reference dimension may be 480 mm × total vehicle length 3,400 mm. Alternatively, for example, the end position correction unit 105 may have a function of learning the correction value by measuring the distance between the side surface of the parked vehicle adjacent to the vehicle V and the vehicle V when parking is completed. In this case, the learning value may have an upper limit value based on the reference dimension as described above.
 また、端部位置補正部105は、上記に記載の手段又は方法とは別の手段又は方法により、補正量を決定してもよい。例えば、端部位置補正部105は、車両Vが走行している国、地域、時間帯その他の情報に基づいて、補正量を決定してもよい。具体的には、端部位置補正部105は、走行状態取得部3等により取得した、国、地域等の情報に基づいて基準寸法を決定し、決定した基準寸法に基づいて補正量を決定してもよい。 In addition, the end position correction unit 105 may determine the correction amount by means or method other than the means or method described above. For example, the end position correction unit 105 may determine the correction amount based on the country, region, time zone, and other information in which the vehicle V is traveling. Specifically, the end position correction unit 105 determines the reference dimension based on the information of the country, the region, and the like acquired by the traveling state acquisition unit 3 or the like, and determines the correction amount based on the determined reference dimension. May be
 図11に示されている駐車支援ルーチンの初回起動は、ユーザー操作による起動に限定されるものではない。即ち、例えば、CPUは、駐車支援ルーチンを、エンジン始動時点から所定時間経過後に、自動的に起動してもよい。また、CPUは、駐車支援動作が何らかの理由により中断された時点、又は駐車支援動作がユーザー入力等に基づいて強制的に終了した時点から、所定時間経過後に、駐車支援ルーチンを自動的に起動してもよい。 The initial activation of the parking assistance routine shown in FIG. 11 is not limited to activation by user operation. That is, for example, the CPU may automatically start the parking assistance routine after a predetermined time has elapsed from the start of the engine. In addition, the CPU automatically activates the parking assistance routine after a predetermined time has elapsed from when the parking assistance operation is interrupted for any reason or when the parking assistance operation is forcibly ended based on user input or the like. May be
 S1105における走行条件算出の内容は、上記の具体例に限定されない。S1106の判定がYESである間であっても、CPUは、駐車スペースPSの検出及び走行条件算出の処理をスキップせず、駐車スペースPS及び走行条件を再計算してもよい。S1107における所定時間の走行は、所定距離の走行に変更され得る。 The contents of the travel condition calculation in S1105 are not limited to the above specific example. Even while the determination in S1106 is YES, the CPU may recalculate the parking space PS and the traveling condition without skipping the process of detecting the parking space PS and calculating the traveling condition. The traveling for a predetermined time in S1107 may be changed to traveling for a predetermined distance.
 第四条件の判定は、車速が所定値以上の場合、又は検知位置PDの密度が低い場合にのみ実行されてもよい。後者の場合、一個の障害物Bに対応して今回までに取得された検知位置PD(N)について、PD(1)取得時からPD(N)取得時までの車両Vの走行距離をRD(N)とする。このとき、RD(N)をNで除した値が所定値未満である場合にS1210における第四条件の判定が実行される一方、所定値以上である場合にはS1210における第四条件の判定がスキップされてもよい。 The determination of the fourth condition may be performed only when the vehicle speed is equal to or higher than a predetermined value or when the density of the detection position PD is low. In the latter case, the travel distance of the vehicle V from the time of acquisition of PD (1) to the time of acquisition of PD (N) is RD (the detection position PD (N) acquired up to this time corresponding to one obstacle B). N). At this time, when the value obtained by dividing RD (N) by N is less than a predetermined value, the fourth condition determination in S1210 is executed, while when it is the predetermined value or more, the fourth condition determination in S1210 is It may be skipped.
 非車両用補正値は、なくてもよい。即ち、S1305の処理は、省略され得る。 The non-vehicle correction value may be absent. That is, the process of S1305 may be omitted.
 S1205にて変化量T(N)の分布を更新する際、CPUは、検知位置PD(N-1)からPD(N)の間を補間してもよい。具体的には、CPUは、PD(N-1)とPD(N)の間の近似曲線PLをX方向に等間隔に分割し、その分割点ごとに変化量Tを計算して分布を更新してもよい。かかる補間処理は、例えば、Nが所定値Nth1未満である場合に実行されてもよい。 When updating the distribution of the change amount T (N) in S1205, the CPU may interpolate between the detection position PD (N-1) and PD (N). Specifically, the CPU divides the approximate curve PL between PD (N-1) and PD (N) at equal intervals in the X direction, calculates the amount of change T for each division point, and updates the distribution You may Such interpolation processing may be performed, for example, when N is less than a predetermined value Nth1.
 S1211における判定内容は、上記の具体例に限定されない。即ち、例えば、CPUは、第一条件~第三条件の全てが成立している場合にS1211の判定を「YES」とする一方、第一条件~第三条件のうちのいずれか1つが成立していなくても上記の第四条件が成立していればS1211の判定を「YES」とするようになっていてもよい。CPUは、Nが所定値Nth2以上である場合に第四条件を判定しない一方、Nが所定値Nth2未満である場合に第四条件を判定するようになっていてもよい。所定値Nth2は所定値Nth1と同じ値であってもよいし、異なる値であってもよい。第四条件の判定内容も、上記の具体例に限定されない。 The determination content in S1211 is not limited to the above specific example. That is, for example, when all of the first to third conditions are satisfied, the CPU makes the determination of S 1211 “YES”, while any one of the first to third conditions is satisfied. Even if not, if the above-mentioned fourth condition is satisfied, the determination of S 1211 may be set to “YES”. The CPU may not determine the fourth condition when N is a predetermined value Nth2 or more, but may determine the fourth condition when N is less than the predetermined value Nth2. The predetermined value Nth2 may be the same value as the predetermined value Nth1 or may be a different value. The determination content of the fourth condition is also not limited to the above specific example.
  「取得」は、「推定」「検出」「検知」「算出」等の類似の表現に適宜変更可能である。各判定処理における不等号は、等号付きであってもよいし、等号無しであってもよい。即ち、例えば、「所定値未満」は、「所定値以下」に変更され得る。 "Acquisition" can be appropriately changed to similar expressions such as "estimate", "detection", "detection", "calculation" and the like. The inequality sign in each determination process may be with an equal sign or without an equal sign. That is, for example, "less than a predetermined value" may be changed to "equal to or less than a predetermined value".
 変形例も、上記の例示に限定されない。また、複数の変形例が、互いに組み合わされ得る。更に、上記実施形態の全部又は一部と、変形例の全部又は一部とが、互いに組み合わされ得る。 The modified example is also not limited to the above example. Also, multiple variants may be combined with one another. Furthermore, all or part of the above embodiment and all or part of the modification may be combined with each other.

Claims (6)

  1.  移動体(V)に搭載されることで前記移動体の外側に存在する障害物(B)を検知するように構成された、障害物検知装置(1)であって、
     探査波を前記移動体の外側に向けて発信するとともに前記探査波の前記障害物による反射波を受信することで、前記障害物との距離に対応する検知距離を、前記移動体の移動に伴い繰返し取得するように設けられた、測距部(2)と、
     前記測距部における前記検知距離の取得毎に前記検知距離の変化量を取得するとともに、取得した前記変化量の度数分布を取得するように設けられた、度数分布取得部(101)と、
     前記度数分布取得部によって取得された前記度数分布に基づいて、前記障害物の種別を判定するように設けられた、種別判定部(104)と、
     を備えた障害物検知装置。
    An obstacle detection device (1) configured to detect an obstacle (B) present outside the mobile body by being mounted on the mobile body (V),
    The detection distance corresponding to the distance to the obstacle is transmitted along with the movement of the mobile body by transmitting the search wave toward the outside of the mobile body and receiving the reflected wave of the search wave due to the obstacle. A distance measuring unit (2) provided to repeatedly obtain
    A frequency distribution acquisition unit (101) provided to acquire the change amount of the detection distance for each acquisition of the detection distance in the distance measuring unit and to acquire the frequency distribution of the acquired change amount;
    A type determination unit (104) provided to determine the type of the obstacle based on the frequency distribution acquired by the frequency distribution acquisition unit;
    Obstacle detection device equipped with
  2.  前記種別判定部は、
     前記変化量の絶対値が小さい小変化領域の度数である第一度数に基づく第一条件と、
     前記変化量の絶対値が大きい大変化領域の度数である第二度数に基づく第二条件と、
     前記第一度数と前記第二度数との関係に基づく第三条件と、
     に基づいて、前記障害物が車両であるか否かを判定するように設けられた、
     請求項1に記載の障害物検知装置。
    The type determination unit
    A first condition based on a first number, which is a frequency of a small change area in which the absolute value of the change amount is small;
    A second condition based on a second frequency which is the frequency of the large change area where the absolute value of the change amount is large;
    A third condition based on a relationship between the first number and the second frequency,
    Provided to determine whether the obstacle is a vehicle based on
    The obstacle detection device according to claim 1.
  3.  前記移動体の移動状態を取得するように設けられた、移動状態取得部(3)と、
     前記検知距離と前記移動状態とに基づいて、前記測距部により取得された複数の前記検知距離の各々に対応する、前記障害物による前記探査波の推定反射位置を取得するように設けられた、反射位置取得部(102)と、
     をさらに備え、
     前記種別判定部は、前記反射位置取得部によって一個の前記障害物に対応して取得された複数の前記推定反射位置の分布状態に基づいて、前記障害物が車両であるか否かを判定するように設けられた、
     請求項1又は2に記載の障害物検知装置。
    A movement state acquisition unit (3) provided to acquire the movement state of the moving body;
    An estimated reflection position of the search wave by the obstacle corresponding to each of the plurality of detected distances acquired by the distance measuring unit is provided based on the detected distance and the movement state. , A reflection position acquisition unit (102),
    And further
    The type determination unit determines whether or not the obstacle is a vehicle based on the distribution state of the plurality of estimated reflection positions acquired by the reflection position acquisition unit corresponding to one of the obstacles. Provided as
    The obstacle detection device according to claim 1.
  4.  前記移動体の移動状態を取得するように設けられた、移動状態取得部(3)と、
     前記検知距離と前記移動状態とに基づいて、前記測距部により取得された複数の前記検知距離の各々に対応する、前記障害物による前記探査波の推定反射位置を取得するように設けられた、反射位置取得部(102)と、
     複数の前記推定反射位置のうちの、前記移動体の移動方向における端部に位置する前記推定反射位置に基づいて、前記障害物の端部位置を推定するように設けられた、端部位置推定部(103)と、
     前記種別判定部により判定された前記種別に基づいて、前記端部位置を補正するように設けられた、端部位置補正部(105)と、
     をさらに備えた、
     請求項1~3のいずれか1つに記載の障害物検知装置。
    A movement state acquisition unit (3) provided to acquire the movement state of the moving body;
    An estimated reflection position of the search wave by the obstacle corresponding to each of the plurality of detected distances acquired by the distance measuring unit is provided based on the detected distance and the movement state. , A reflection position acquisition unit (102),
    An edge position estimation provided to estimate an edge position of the obstacle based on the estimated reflection position located at an end of the plurality of estimated reflection positions in the moving direction of the movable body Part (103),
    An end position correction unit (105) provided to correct the end position based on the type determined by the type determination unit;
    Further equipped with
    The obstacle detection device according to any one of claims 1 to 3.
  5.  前記端部位置補正部は、前記種別判定部により判定された前記種別が前記車両である場合に、車両規格に定められた車両寸法に基づいて前記端部位置を補正するように設けられた、
     請求項4に記載の障害物検知装置。
    The end position correction unit is provided to correct the end position based on a vehicle dimension defined in a vehicle standard when the type determined by the type determination unit is the vehicle.
    The obstacle detection device according to claim 4.
  6.  前記種別の判定結果は、複数の前記障害物の間の駐車スペース(PS)の検出、又は前記障害物との衝突を回避しつつ前記移動体が移動するための移動条件の算出に用いられるようになっている、
     請求項1~5のいずれか1つに記載の障害物検知装置。
    The determination result of the type is used for detection of a parking space (PS) between a plurality of obstacles or calculation of movement conditions for the movement of the moving body while avoiding a collision with the obstacles. It has become,
    The obstacle detection device according to any one of claims 1 to 5.
PCT/JP2018/020863 2017-07-11 2018-05-30 Obstruction detection device WO2019012838A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-135580 2017-07-11
JP2017135580A JP6844457B2 (en) 2017-07-11 2017-07-11 Control device

Publications (1)

Publication Number Publication Date
WO2019012838A1 true WO2019012838A1 (en) 2019-01-17

Family

ID=65001312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020863 WO2019012838A1 (en) 2017-07-11 2018-05-30 Obstruction detection device

Country Status (2)

Country Link
JP (1) JP6844457B2 (en)
WO (1) WO2019012838A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112172790A (en) * 2020-06-24 2021-01-05 上汽通用五菱汽车股份有限公司 Control method and device for automatic parking and computer readable storage medium
US20230025940A1 (en) * 2021-07-26 2023-01-26 Hyundai Motor Company Apparatus for estimating obstacle shape and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230193A1 (en) * 2019-05-10 2020-11-19 三菱電機株式会社 Parking form determination device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060975A1 (en) * 2015-10-06 2017-04-13 三菱電機株式会社 Parking mode determination device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5127182B2 (en) * 2006-08-14 2013-01-23 富士重工業株式会社 Object detection device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060975A1 (en) * 2015-10-06 2017-04-13 三菱電機株式会社 Parking mode determination device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112172790A (en) * 2020-06-24 2021-01-05 上汽通用五菱汽车股份有限公司 Control method and device for automatic parking and computer readable storage medium
US20230025940A1 (en) * 2021-07-26 2023-01-26 Hyundai Motor Company Apparatus for estimating obstacle shape and method thereof

Also Published As

Publication number Publication date
JP6844457B2 (en) 2021-03-17
JP2019020769A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP4461920B2 (en) Parking assistance device
JP4179285B2 (en) Parking assistance device
JP4386083B2 (en) Parking assistance device
JP6551525B2 (en) Parking support device and parking support method
JP4530060B2 (en) Parking support apparatus and method
JP2018189422A (en) Obstacle detector
US20100235053A1 (en) Parking assist device
JP2006189393A (en) Peripheral object information acquiring device, and parking support device using same
WO2019012838A1 (en) Obstruction detection device
US20210291814A1 (en) Parking assistance device and parking assistance method
JP5617643B2 (en) Parking space detection device
JP2008201178A (en) Parking assist device
JP6827285B2 (en) Parking support method and parking support device
KR20170000569A (en) Method for detecting collision of vehicle
JP5891188B2 (en) Parking space detector
US11934204B2 (en) Autonomous driving apparatus and method
JP5971197B2 (en) Parking assistance device
JP4645542B2 (en) Parking space detection device
JP4086060B2 (en) Point sequence approximation method and point sequence approximation apparatus
JP2019133324A (en) Object detection device and parking assist device
JP6906320B2 (en) Parking support device and parking support control device
CN111699121B (en) Parking assist device
KR20210119626A (en) System for parking assistance of vehicle using sensor calibration and method thereof
KR20130128893A (en) Parking assist system and method
JP2019123505A (en) Parking support device and parking support method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831128

Country of ref document: EP

Kind code of ref document: A1