WO2019012830A1 - 発電装置及び発電システム - Google Patents

発電装置及び発電システム Download PDF

Info

Publication number
WO2019012830A1
WO2019012830A1 PCT/JP2018/020664 JP2018020664W WO2019012830A1 WO 2019012830 A1 WO2019012830 A1 WO 2019012830A1 JP 2018020664 W JP2018020664 W JP 2018020664W WO 2019012830 A1 WO2019012830 A1 WO 2019012830A1
Authority
WO
WIPO (PCT)
Prior art keywords
harmonic
tap
power
power generation
reactor
Prior art date
Application number
PCT/JP2018/020664
Other languages
English (en)
French (fr)
Inventor
正親 中谷
近藤 真一
智道 伊藤
坂本 潔
満 佐伯
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019012830A1 publication Critical patent/WO2019012830A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output

Definitions

  • the present invention relates to a power generation apparatus and a power generation system for supplying generated power to a power system (commercial power system), and more particularly to a power generation apparatus including a power converter and a harmonic filter for converting the frequency of the generated power and sending it to the power system. And the power generation system.
  • Such a power generation system may be connected to a power system (commercial power system) via a cable. Since the cable itself has inductance and capacitance, the cable and the harmonic filter form a resonant circuit. This is not a problem when the cable length is short, but when it is several kilometers or more, the resonant circuit may amplify harmonic currents flowing out of the power converter. With respect to a method of suppressing harmonic current by resonance, proposals have been made to improve the harmonic filter. For example, Patent Document 1 discloses a method of connecting a resistor in series to a capacitor of a harmonic filter. The resistance suppresses the amplification of the harmonic current due to the resonance of the inductance and capacitance.
  • the present invention provides a power generation device and a power generation system capable of suppressing amplification of harmonic current due to resonance while preventing a decrease in power generation efficiency.
  • a power generation apparatus at least includes a power converter that converts a frequency of generated power and sends it to a power system, and a harmonic filter disposed between the power converter and the power system. And ac power connection to the power system via a cable and a connection point, and the harmonic filter may include an inductance or a static current to suppress amplification of harmonic current at the connection point. It is characterized in that the capacitance is adjusted.
  • the power generation system includes at least one power generation device, an electronic terminal, and a communication network that communicably connects them to each other, wherein the power generation device converts at least the frequency of generated power A power converter for sending power to the power system, and a harmonic filter disposed between the power converter and the power system, and AC connected to the power system via a cable and an interconnection point, the harmonic The filter is characterized by adjusting an inductance or capacitance so as to suppress amplification of harmonic current at the connection point.
  • FIG. 1 It is a whole schematic block diagram of the wind power generation system of Example 1 which concerns on one Example of this invention. It is a figure which shows the structure of the principal part of the wind power generation system shown in FIG. It is a block diagram of the harmonic filter shown in FIG. It is a figure which shows the equivalent circuit of the power converter in Example 1, a harmonic filter, a cable, an interconnection point, and an electric power system. It is a figure which shows the impedance of the equivalent circuit shown in FIG.
  • FIG. 7 is a diagram for describing suppression of harmonic current at a connection point by a harmonic filter in Embodiment 1.
  • FIG. 6 is a diagram showing a configuration of modification 1 of the harmonic filter shown in FIG.
  • FIG. 17 is a functional block diagram of a resonance gain inspection unit shown in FIG. It is a figure which shows the processing flow of the resonance gain test
  • FIG. 20 is a functional block diagram of a resonance gain inspection unit shown in FIG. 19; It is a figure which shows the processing flow of the resonance gain test
  • FIG. 18 is a diagram showing the configuration of the main part of a storage system of a seventh embodiment according to another embodiment of the present invention.
  • a power generation device refers to, for example, a power generation device using natural energy such as a wind power generation device and a solar power generation device, and a storage device to smooth generated power by charging and discharging and send it to a power system (commercial power system). It is included.
  • a power generation device using natural energy such as a wind power generation device and a solar power generation device
  • a storage device to smooth generated power by charging and discharging and send it to a power system (commercial power system). It is included.
  • FIG. 1 is an overall schematic configuration diagram of a wind power generation system according to a first embodiment of the present invention.
  • the wind power generation system 100 includes the wind power generation device 1 and an electronic terminal 32 installed in the operation management center 31, which are mutually connected via the communication network 5 so as to be communicable with each other.
  • the communication network 5 may be wired or wireless.
  • the power generated by the wind turbine generator 1 is sent to the power grid 4 (commercial power grid) via the cable 2 and the interconnection point 3.
  • the example shown in FIG. 1 shows 1 unit
  • the wind turbine generator 1 includes a blade 24 rotating in response to wind, a hub 23 supporting the blade 24, a nacelle 22, and a tower 21 rotatably supporting the nacelle 22.
  • a main shaft 25 connected to the hub 23 and rotating with the hub 23, a shrink disk 26 connected to the main shaft 25, and a speed increasing gear 27 connected to the main shaft 25 via the shrink disk 26 to increase rotational speed
  • the portion for transmitting the rotational energy of the blade 24 to the generator 12 is referred to as a power transmission portion, and in the present embodiment, the main shaft 25, the shrink disk 26, and the speed increasing gear 27 are included in the power transmission portion.
  • the speed increasing gear 27 and the generator 12 are held on the main frame 28. Further, the rotor 24 is configured by the blades 24 and the hub 23. As shown in FIG. 1, at the bottom (bottom) in the tower 21, a power converter 13 for converting the frequency of electric power, a switch and transformer (not shown) for switching for switching the current, and a controller 29 etc are arranged.
  • the power converter 13 may also be referred to as a PCS (Power Conditioning System).
  • control device 29 for example, a control board or SCADA (Supervisory Control And Data Acquisition) is used.
  • SCADA Supervisory Control And Data Acquisition
  • a downwind type wind power generator is described as an example, but the present invention can be applied to an upwind type wind power generator as well.
  • the rotor 11 is configured by the three blades 24 and the hub 23 is shown, the present invention is not limited to this, and the rotor 11 may be configured by the hub 23 and at least one blade 24. Further, as shown in FIG.
  • the sensor 30 is, for example, a sensor installed at the root of the blade 24 to measure the blade pitch angle, a sensor installed at the root of the main shaft 25 to measure the rotor azimuth angle, an azimuth angle of the nacelle 22 And a wind speed and a wind direction sensor installed at the top of the nacelle 22 to measure the wind speed and the wind direction. Furthermore, the sensor 30 includes a sensor (not shown) that measures the number of rotations of the generator 12, the amount of power generation, and the like. In other words, the sensor 30 is a sensor that measures various states necessary to control the wind turbine 1.
  • the SCADA as the control device 29 acquires measurement data (information) from the above-described sensor 30 via the signal line, and based on the acquired measurement data (information), the pitch angle, the nacelle azimuth angle, and the generator rotational speed And the like, and transmits the acquired measurement data (information) to the electronic terminal 32 installed in the operation management center 31 via the communication network 5.
  • the wind conditions including the wind speed and direction
  • the signals (outputs) representing various states of the wind turbine 1 are included. included.
  • FIG. 2 is a diagram showing the configuration of the main part of the wind power generation system 100 shown in FIG.
  • the wind turbine generator 1 is interconnected to a power system 4 (commercial power system) via a cable 2.
  • the power system 4 includes a system impedance 41 and a power supply 42.
  • a point where the cable 2 and the power system 4 are connected is referred to as an interconnection point 3.
  • Each part which comprises the wind power generator 1 is demonstrated.
  • the wind turbine generator 1 includes the rotor 11, the generator 12, the power converter 13, and the harmonic filter 14 as described above.
  • the wind energy received by the rotor 11 is converted by the generator 12 into electrical energy and sent to the power converter 13.
  • the power converter 13 converts the voltage and current of the generator 12 into the frequency (50 Hz or 60 Hz) of the power system 4 (commercial power system).
  • the harmonic voltage and part of the harmonic current flowing out of the power converter 13 are removed by the harmonic filter 14.
  • FIG. 3 is a block diagram of the harmonic filter 14 shown in FIG.
  • the harmonic filter 14 is configured of a reactor 141, a tap switching reactor 142, and a capacitor 143.
  • the reactor 141 is connected to the power converter 13, and the tap switching reactor 142 is connected to the cable 2.
  • the tap switching reactor 142 includes a plurality of taps (142 a, 142 b, 142 c) in the reactor.
  • the terminal 142d of the tap switching reactor 142 is connected to one of the plurality of taps (142a, 142b, 142c).
  • the taps (142a, 142b, 142c) connected to the terminal 142d are determined to avoid amplification of the harmonic current flowing through the connection point 3 due to resonance.
  • three taps 142a, 142b, and 142c are shown as an example, but the number of taps is not limited. For example, three or more taps may be set as appropriate. good.
  • FIG. 4 shows an equivalent circuit for the nth harmonic of power converter 13, harmonic filter 14, cable 2, interconnection point 3, and grid impedance 41.
  • the relationship between the angular frequency ⁇ and the harmonic order n shown in FIG. 4 is given by the following equation (1).
  • f is the frequency (50 Hz or 60 Hz) of the voltage and current of the power system 4 (commercial power system).
  • 2 ⁇ f ⁇ n (1)
  • the impedances of the equivalent circuit shown in FIG. 4 are summarized in Z 1 to Z 6 for each branch, resulting in FIG.
  • the impedance Z 1 is the impedance due to the capacitor 143 impedance due reactor 141 constituting a harmonic filter 14 (j.omega.L F1)
  • the impedance Z 2 is constituting the harmonic filter 14 (j [omega] C F)
  • the impedance Z 3 the impedance due to harmonics tap changer reactor 142 constituting the filter 14 (j.omega.L F2) and resistance of the cable 2 connected in series to the tap changer reactor 142 (R C1) and the reactor (j.omega.L C1)
  • the impedance Z 4 is impedance due to the capacitor (j [omega] C C) of the cable 2
  • the impedance Z 5 are impedance due cables 2 resistance (R C2) and the reactor (j.omega.L C2)
  • the impedance Z 6 is the resistance of the system impedance 41 (R )
  • the impedance due to the reactor (j.omega.L L) the impedance due to the reactor (j.omega
  • the current I 1 (n) is divided into a current I 2 (n) flowing in the impedance Z 2 and a current I 3 (n) flowing in the impedance Z 3 .
  • the current I 2 (n) is shown in equation (10)
  • the current I 3 (n) is shown in equation (11).
  • the current I 3 (n) is divided into a current I 4 (n) flowing through the impedance Z 4 , and a current I PCC (n) flowing through the impedance Z 5 and the impedance Z 6 , and the connection point 3.
  • the current I 4 (n) is shown in equation (12)
  • the current I PCC (n) is shown in equation (13).
  • FIG. 6 shows an example in which the horizontal axis represents the harmonic order n and the vertical axis represents the resonance gain ⁇ (n).
  • a resonance gain ⁇ (n) when the terminal 142d and the tap 142b are connected is indicated by a broken line.
  • a resonance gain ⁇ (n) when the terminal 142d and the tap 142a are connected is indicated by a solid line.
  • the harmonic voltage V PCS (n) of the power converter 13 is obtained by a real machine test and numerical simulation of the power converter 13. Further, the harmonic voltage V PCS (n) is a component of the power converter 13 such as a switching frequency of a semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor) or a CMOS (Complementary MOS), or an operation of the power converter 13 It depends on conditions such as power factor.
  • a semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor) or a CMOS (Complementary MOS)
  • IGBT Insulated Gate Bipolar Transistor
  • CMOS Complementary MOS
  • the lower part in FIG. 6 shows an example in which the horizontal axis represents the harmonic order n and the vertical axis represents the harmonic current I PCC (n) of the connection point 3.
  • the harmonic current I PCC (n) of the connection point 3 is the harmonic voltage V of the power converter 13 shown in the middle stage of FIG. 6 at the resonance gain ⁇ (n) shown in the upper stage of FIG. It is obtained by multiplying PCS (n).
  • the connection tap of the tap switching reactor 142 of the harmonic filter 14 is 142b
  • the 23rd harmonic current I PCC (n) of the connection point 3 exceeds the upper limit of the interconnection specification.
  • the upper limit of the interconnection definition may be referred to as a grid code.
  • the 23rd resonance gain ⁇ (n) decreases, and the 23rd harmonic current I PCC (n) of the interconnection point 3 is the upper limit of the interconnection regulation It can be put into the following.
  • the twenty-fourth resonance gain ⁇ (n) is increased by switching the connection tap from 142b to 142a.
  • the 24th harmonic current I PCC (n) of the connection point 3 is below the upper limit. That is, the output voltage V PCS (n) of the power converter 13 usually does not include even-order harmonics.
  • FIG. 7 is a diagram showing the configuration of a modification 1 of the harmonic filter 14 shown in FIG.
  • the harmonic filter 14 shown in FIG. 3 is different in that the resonance gain ⁇ (n) is adjusted by adjusting the inductance of the harmonic filter 14a by switching the number of parallel connection of reactors.
  • the harmonic filter 14 a in place of the tap switching reactor 142 (FIG. 3), the harmonic filter 14 a includes a plurality of parallel reactors 144 (144 a, 144 b, 144 c) and reactor switches 145 (145 a, 145b and 145c).
  • the number of connections of the parallel reactors 144 (144a, 144b, 144c) is switched by shorting or opening the reactor switch 145. For example, when one parallel reactor 144 is connected, the reactor switch 145a is short-circuited and the reactor switch 145b and the reactor switch 145c are opened. Further, for example, when two parallel reactors 144 are connected, the reactor switch 145a and the reactor switch 145b are short-circuited and the reactor switch 145c is opened.
  • FIG. 8 is a diagram showing a configuration of modification 2 of harmonic filter 14 shown in FIG.
  • the harmonic filter 14 shown in FIG. 3 is different from the harmonic filter 14 in that the capacitance of the harmonic filter 14 b is adjusted by switching the number of parallel connection of capacitors to adjust the resonance gain ⁇ (n).
  • the harmonic filter 14b includes a plurality of parallel capacitors 146 (146a, 146b, 146c), and a capacitor switch 147 (147a, 147b, 147c) connected thereto as the reactor 141 instead of the tap switching reactor 142. . Then, the number of connections of the parallel capacitors 146 is switched by shorting or opening the capacitor switch 147.
  • the capacitor switch 147a when one parallel capacitor 146 is connected, the capacitor switch 147a is short-circuited and the capacitor switch 147b and the capacitor switch 147c are opened. Also, for example, when two parallel capacitors 146 are connected, the capacitor switch 147a and the capacitor switch 147b are short-circuited and the capacitor switch 147c is opened.
  • the harmonic current I PCC (n) of the interconnection point 3 can be suppressed.
  • the harmonic current I PCC (n) of the interconnection point 3 can be suppressed by switching the number of parallel connections of the parallel reactors 144 of the harmonic filter 14a.
  • the harmonic current I PCC (n) of the connection point 3 can be suppressed by switching the number of parallel connections of the parallel capacitors 146 of the harmonic filter 14 b.
  • FIG. 9 is a block diagram of a harmonic filter 14c according to a second embodiment of the present invention.
  • the present embodiment differs from the first embodiment in that a plurality of tap switching reactors (148, 149) are provided in the harmonic filter 14c.
  • the harmonic filter 14 c includes a first tap switching reactor 148 and a second tap switching reactor 149 instead of the tap switching reactor 142.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 10 is a diagram for explaining the adjustment performance of the inductance of the harmonic filter 14c shown in FIG.
  • the inductance adjustment candidates of the first tap switching reactor 148 are, for example, three types of 1.7 mH (connection tap 148 a), 2.0 mH (connection tap 148 b), and 2.3 mH (tap 148 c).
  • inductance adjustment candidates of the second tap switching reactor 149 are, for example, three types of 0.0 mH (connection tap 149 a), 0.1 mH (connection tap 149 b), and 0.2 mH (tap 149 c).
  • the combined inductance is 1.7 mH. It becomes. Further, by connecting the terminal 148 d of the first tap switching reactor 148 and the tap 148 b and connecting the terminal 149 d of the second tap switching reactor 149 and the tap 149 c, the combined inductance is 2.2 mH. By connecting the terminal 148d of the first tap switching reactor 148 and the tap 148c and connecting the terminal 149d of the second tap switching reactor 149 and the tap 149c, the combined inductance is 2.5 mH.
  • Adjustment of the combined inductance of the first tap switching reactor 148 and the second tap switching reactor 149 by setting the inductance adjustment candidate of the first tap switching reactor 148 to three and the inductance adjustment candidate of the second tap switching reactor 149 to three There are nine candidates in increments of 0.1 mH from 1.7 mH to 2.5 mH.
  • the correspondence between the combination of the inductance adjustment candidate of the first tap switching reactor 148 and the inductance adjustment candidate of the second tap switching reactor 149 shown in FIG. 10 and the combined inductance of the respective combinations is, for example, the control device 29 shown in FIG. Are stored in a storage unit (not shown) in the SCADA or in the control panel.
  • three inductance adjustment candidates for the first tap switching reactor 148 and three inductance adjustment candidates for the second tap switching reactor 149 are illustrated as an example, but the first tap switching reactor 148
  • the number of inductance adjustment candidates and the number of inductance adjustment candidates of the second tap switching reactor 149 are not limited to these, and may be set as appropriate.
  • the number of inductance adjustment candidates of the first tap switching reactor 148 and the number of inductance adjustment candidates of the second tap switching reactor 149 do not have to be the same.
  • the inductance in addition to the effects of the first embodiment, by providing a plurality of tap switching reactors in the harmonic filter, the inductance can be adjusted more finely than the total number of taps of the plurality of tap switching reactors. It is possible to improve the adjustment performance of the inductance.
  • FIG. 11 is a block diagram of a tap switching reactor constituting a harmonic filter of a third embodiment according to another embodiment of the present invention.
  • the present embodiment differs from the first and second embodiments in that the tap switching reactor 142a is provided with an operation unit for tap switching.
  • the tap switching reactor 142 a of the present embodiment will be described with the tap switching reactor 142 shown in the first embodiment as a comparison target.
  • the configuration of the present embodiment is similarly applicable to the above-described second embodiment.
  • the tap switching reactor 142a is different from the tap switching reactor 142 (FIG. 3) of the first embodiment, and the tap switching reactor board 1421 storing the tap switching reactor 142a, the connection tap operation unit 1422, and the connection A tap display unit 1423 is provided.
  • the connection tap operating unit 1422 and the connection tap display unit 1423 are provided outside the tap switching reactor board 1421.
  • the white arrow in FIG. 11 when the connection tap operation unit 1422 rotates clockwise, the tap connected with the terminal of the tap switching reactor 142a via the link mechanism or the crank is positioned clockwise. Switch to the tap you want to Similarly, as indicated by a black arrow in FIG.
  • connection tap display unit 1423 displays the number or symbol of the current tap connected to the terminal of the tap switching reactor 142a. In addition, if it is a display form which can identify a tap not only in the number or symbol of a tap, it is good also as any display form. Also, instead of the connection tap display unit 1423, for example, the connection state of the tap switching reactor 142a stored in the tap switching reactor board 1421 may be visible from the outside like a glass window.
  • connection tap operation unit 1422 in addition to the effects of the first embodiment and the second embodiment, the operability of tap switching can be improved by the connection tap operation unit 1422. Furthermore, the connection tap display portion 1423 can improve the visibility of the connection tap. Thereby, the labor of the operator or worker required for tap switching can be reduced.
  • FIG. 12 is a block diagram of a harmonic filter 14d according to a fourth embodiment of the present invention.
  • the present embodiment is different from the first to third embodiments in that a tap settling device 15 for determining connection taps of the tap switching reactor 142 that constitutes the harmonic filter 14 d is provided in the harmonic filter 14 d.
  • the harmonic filter 14d of this embodiment will be described with reference to the harmonic filter 14 shown in the first embodiment.
  • the configuration of this embodiment is similarly applicable to the above-described second and third embodiments.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the same descriptions as those in the first embodiment are omitted.
  • FIG. 13 is a functional block diagram of the tap settling device 15 shown in FIG.
  • the tap settling unit 15 includes an input unit 153, an input I / F 154a, an output I / F 154b, a display unit 152, a connection tap determination unit 151, an FFT 155 (Fast Fourier Transform), a storage unit 156, and communication.
  • An I / F 157 is provided, which are mutually connected via an internal bus 158 so as to be accessible.
  • the FFT 155 and the connection tap determination unit 151 are, for example, a processor such as a CPU (Central Processing Unit) (not shown), a ROM storing various programs, a RAM temporarily storing data of operation processes, and a storage device such as an external storage device.
  • a processor such as a CPU reads and executes various programs stored in the ROM, and stores the calculation result as the execution result in the RAM or an external storage device.
  • the input unit 153 is used by the operator or a worker, for example, to set the upper limit value of the above-described connection regulation.
  • the input I / F 154a acquires the measured value of the harmonic current at the interconnection point 3 and the upper limit value of the interconnection regulation input in advance from the input unit 153, and acquires the acquired measurement value of the harmonic current at the interconnection point 3
  • the upper limit value of the interconnection definition is stored in a predetermined storage area of the storage unit 156 via the internal bus 158.
  • the input I / F 154 a transfers the measured value of the harmonic current at the connection point 3 to the FFT 155 via the internal bus 158.
  • the FFT 155 converts the transferred measurement value of the harmonic current of the connection point 3 into a harmonic current of each order.
  • the FFT 155 also transfers the converted harmonic current of each order of the interconnection point 3 to the connection tap determination unit 151 via the internal bus 158.
  • the connection tap determination unit 151 executes processing, which will be described in detail later, and transfers the determined connection tap number or alarm to the display unit 152 via the internal bus 158 and the output I / F 154 b.
  • the connection tap determination unit 151 also outputs the determined connection tap number or alarm to the SCADA or control panel as the control device 29 (FIG. 1) via the communication I / F 157.
  • the display unit 152 displays the transferred connection tap number or alarm on the screen.
  • connection tap determination unit 151 also outputs the determined connection tap number or alarm to the SCADA or control panel as the control device 29 (FIG. 1) via the communication I / F 157.
  • the output is not necessarily limited to this, and the output to the SCADA or control panel may be unnecessary.
  • FIG. 14 is a diagram showing a process flow of the tap settling device shown in FIG.
  • one of the plurality of taps (142a, 142b, 142c) of the tap switching reactor 142 and the terminal 142d are connected, and the number of the connected tap is set as the connection tap number i.
  • step S11 the input I / F 154a acquires the measured value of the harmonic current I PCC (n) of the connection point 3 for the connection tap number i, and the harmonic current of the connection point 3 for the acquired connection tap number i
  • the measured value of I PCC (n) is stored in a predetermined storage area of storage unit 156 via internal bus 158 and transferred to FFT 155 via internal bus 158.
  • FFT155 converts the measured value of the harmonic current I PCC interconnection node 3 (n) to the harmonic current I PCC (n) of each order for transfer connections tap number i. Further, the FFT 155 transfers the harmonic current I PCC (n) of each order of the connection point 3 for the converted connection tap number i to the connection tap determination unit 151 via the internal bus 158.
  • step S12 the connection tap determination unit 151 accesses the storage unit 156 via the internal bus 158, and reads out the preset upper limit of interconnection definition stored in the storage unit 156. Then, the connection tap determination unit 151 determines whether or not the harmonic current I PCC (n) of each order of the interconnection point 3 for the connection tap number i transferred from the FFT 155 is equal to or less than the interconnection regulation upper limit value. . If the determination result is that the harmonic current I PCC (n) of each order of the interconnection point 3 is less than or equal to the upper limit of interconnection specification, the process proceeds to step S13. On the other hand, when the determination result shows that the harmonic current I PCC (n) of each order of the interconnection point 3 exceeds the upper limit of interconnection definition, the process proceeds to step S14.
  • step S13 the connection tap determination unit 151 determines the connection tap as the connection tap number i, and outputs the connection tap number i to the display unit 152 via the internal bus 158 and the output I / F 154b.
  • step S14 the connection tap determination unit 151 determines whether or not the harmonic current I PCC (n) of the connection point 3 has been measured for all the taps. As a result of the determination, when the measurement of the harmonic current I PCC (n) of the connection point 3 has been completed for all the taps, the process proceeds to step S16.
  • step S15 connection tap number i is changed, and interconnection point 3 is changed.
  • the harmonic current I PCC (n) is re-measured, and the process returns to step S11, and the processes from step S11 to step S14 are repeatedly executed.
  • connection tap determination unit 151 outputs an alarm to the display unit 152 via the internal bus 158 and the output I / F 154b.
  • FIG. 15 is a functional block diagram of a modification of the tap settling device 15 shown in FIG.
  • the tap settling device 15 shown in FIG. 12 is a harmonic that estimates the harmonic current I PCC (n) at the connection point 3 from the harmonic voltage V PCS (n) and the resonance gain ⁇ (n) of the power converter 13 The difference is that the wave current estimation unit 159 is included.
  • the tap settling unit 15a includes an input unit 153, an input I / F 154a, an output I / F 154b, a display unit 152, a connection tap determination unit 151, a harmonic current estimation unit 159, a storage unit 156, and communication.
  • the connection tap determination unit 151 and the harmonic current estimation unit 159 are, for example, a processor such as a CPU (not shown), a ROM for storing various programs, a RAM for temporarily storing data of operation processes, and a storage device such as an external storage device.
  • a processor such as a CPU reads and executes various programs stored in the ROM, and stores the calculation result as the execution result in the RAM or an external storage device.
  • the input unit 153 is a resonance gain when the operator or the worker connects, for example, the harmonic voltage V PCS (n) of the power converter 13 and the taps (142 a, 142 b, 142 c) of the tap switching reactor 142 to each. It is used for setting ⁇ (n) and the upper limit value of the above-mentioned interconnection specification.
  • the input I / F 154a is a resonance when the harmonic voltage V PCS (n) of the power converter 13 and the taps (142a, 142b, 142c) of the tap switching reactor 142, which are input from the input unit 153, are connected to each.
  • the gain ⁇ (n) and the upper limit value of the interconnection specification are acquired, and the acquired harmonic voltage V PCS (n) of the power converter 13 and the taps (142a, 142b, 142c) of the tap switching reactor 142 are respectively selected.
  • the resonance gain ⁇ (n) in the case of connection and the upper limit value of the interconnection definition are stored in a predetermined storage area of the storage unit 156 via the internal bus 158.
  • the input I / F 154a has a resonance gain ⁇ (n) when the harmonic voltage V PCS (n) of the power converter 13 and the taps (142a, 142b, 142c) of the tap switching reactor 142 are respectively connected. Are transferred to the harmonic current estimation unit 159 via the internal bus 158.
  • the harmonic current estimation unit 159 determines the resonance voltage ⁇ when the transferred harmonic voltage V PCS (n) of the power converter 13 and the taps (142 a, 142 b, 142 c) of the tap switching reactor 142 are connected to each other.
  • the above equation (14) is calculated using (n) to obtain an estimated value of the harmonic current I PCC (n) at the connection point 3.
  • the harmonic current estimation unit 159 transfers the obtained estimated value of the harmonic current I PCC (n) of the connection point 3 to the connection tap determination unit 151 via the internal bus 158.
  • the connection tap determination unit 151 executes the above-described processing, and transfers the determined connection tap number or alarm to the display unit 152 via the internal bus 158 and the output I / F 154 b.
  • the connection tap determination unit 151 also outputs the determined connection tap number or alarm to the SCADA or control panel as the control device 29 (FIG. 1) via the communication I / F 157.
  • the display unit 152 displays the transferred connection tap number or alarm on the screen
  • connection tap determination unit 151 also outputs the determined connection tap number or alarm to the SCADA or control panel as the control device 29 (FIG. 1) via the communication I / F 157.
  • the output is not necessarily limited to this, and the output to the SCADA or control panel may be unnecessary.
  • the configuration in which the tap settling device 15 or the tap settling device 15a is installed in the harmonic filter 14d has been described as an example, but the present invention is not limited thereto.
  • the function of the above-described tap settling device 15 or tap settling device 15a may be implemented on the electronic terminal 31 installed in the operation management center 31 shown in FIG. 1 described above.
  • the harmonic filter 14 d is the harmonic current I PCC (n) at the interconnection point 3 or the harmonic wave at the interconnection point 3 by adjusting the connection taps of the tap changer reactor in accordance with the estimated value of the current I PCC (n), it can be suppressed harmonic current I PCC (n) of the connecting point 3.
  • the harmonic current I PCC (n) at the interconnection point 3 can not be suppressed below the upper limit of the interconnection regulation even if the connection tap is adjusted, the operator or worker can display the alarm. Measures such as stopping the wind turbine 1 can be taken.
  • FIG. 16 is a block diagram of a harmonic filter 14e according to a fifth embodiment of the present invention.
  • the present embodiment is different from the first to fourth embodiments in that a voltage sensor 17, a current sensor 18, and a resonance gain inspection unit 16 for detecting changes in the resonance gain ⁇ (n) are provided in the harmonic filter 14 e.
  • the harmonic filter 14d of this embodiment will be described with reference to the harmonic filter 14 shown in the first embodiment.
  • the configuration of this embodiment is similarly applicable to the above-described second to fourth embodiments.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the same descriptions as those in the first embodiment are omitted.
  • the harmonic filter 14 e includes a voltage sensor 17, a current sensor 18, and a resonance gain inspection unit 16.
  • FIG. 17 is a functional block diagram of the resonance gain inspection unit 16 shown in FIG.
  • the resonance gain inspection unit 16 includes an input unit 163, an input I / F 164a, an output I / F 164b, a display unit 162, an impedance change detection unit 161, a storage unit 166, and a communication I / F 167. These are mutually connected via an internal bus 168 so as to be accessible.
  • the impedance change detection unit 161 is realized by, for example, a processor such as a CPU (not shown), a ROM that stores various programs, a RAM that temporarily stores data of calculation processes, and a storage device such as an external storage device. And the like processor read and execute various programs stored in the ROM, and store the calculation result as the execution result in the RAM or the external storage device.
  • the input unit 163 is, for example, by the operator or personnel is subjected to the setting of the set value Z 0 and the error tolerance of the combined impedance.
  • the input I / F 164 a is input from the harmonic voltage measurement value V S (n) measured by the voltage sensor 17, the harmonic current measurement value I S (n) measured by the current sensor 18, and the input unit 163.
  • the input I / F 154 a transfers the harmonic voltage measurement value V s (n) and the harmonic current measurement value I s (n) to the impedance change detection unit 161 via the internal bus 168.
  • the impedance change detection unit 161 uses the actual value Z 0 S of the combined impedance from the transferred harmonic voltage measurement value V S (n) and the harmonic current measurement value I S (n) using the following equation (15) Ask.
  • a process to be described in detail later is executed based on the obtained information, and a signal indicating that the impedance has changed is transferred to the display unit 162 via the internal bus 168 and the output I / F 164b. Further, the impedance change detection unit 161 also outputs a signal indicating that the impedance has changed, to the SCADA as the control device 29 (FIG. 1) or the control panel via the communication I / F 167. . The display unit 162 displays a signal indicating that the transferred impedance has changed on the screen. In this embodiment, the impedance change detection unit 161 also outputs a signal indicating that the impedance has changed to the SCADA as the control device 29 (FIG. 1) or the control panel via the communication I / F 167. Although shown, the present invention is not necessarily limited to this, and the output to the SCADA or control panel may be unnecessary.
  • FIG. 18 is a diagram showing a process flow of the resonance gain inspection unit 16 shown in FIG.
  • the input I / F 164a is a harmonic voltage measurement value V S (n) measured by the voltage sensor 17 and a harmonic current measurement value I S (measured by the current sensor 18).
  • the set value Z 0 is stored in a predetermined storage area of the storage unit 166 via the internal bus 168 and transferred to the impedance change detection unit 161 via the internal bus 168.
  • the set value Z 0 of the combined impedance is a value obtained by 5 and the above formula (8).
  • step S22 the impedance change detection unit 161 executes the calculation of the above equation (15) using the transferred harmonic voltage measurement value V S (n) and the harmonic current measurement value I S (n), and combines them.
  • the measured value Z 0S of impedance is determined.
  • step S23 the impedance change detection unit 161 accesses the storage unit 166 via the internal bus 168, and reads out the allowable value of the preset error stored in the storage unit 166. Then, calculate the errors between the measured values Z 0S synthetic impedance determined by the setting value Z 0 and step S22 of the transferred composite impedance, the obtained error is determined whether the allowable value or less of error.
  • step S24 the impedance change detection unit 161 outputs a signal indicating that the impedance has changed to the display unit 162 via the internal bus 168 and the output I / F 164b.
  • the operator or the operator can immediately grasp that the impedance has changed, and the operator or the worker taps the harmonic filter 14 e Since the readjustment of the tap of the switching reactor 142 can be performed quickly, amplification of the harmonic current I PCC (n) at the connection point 3 can be suppressed.
  • FIG. 19 is a block diagram of a modification of the harmonic filter 14e shown in FIG.
  • the harmonic filter 14 e differs from the harmonic filter 14 e shown in FIG. 16 in that the voltage sensor 17 is omitted.
  • the harmonic filter 14 e has a current sensor 18 and a resonance gain inspection unit 16 a.
  • FIG. 20 is a functional block diagram of the resonance gain inspection unit 16a shown in FIG.
  • the resonance gain inspection unit 16a includes an input unit 163, an input I / F 164a, an output I / F 164b, a display unit 162, an impedance change detection unit 161a, a storage unit 166, and a communication I / F 167. These are mutually connected via an internal bus 168 so as to be accessible.
  • the impedance change detection unit 161a is realized by, for example, a processor such as a CPU (not shown), a ROM that stores various programs, a RAM that temporarily stores data of an operation process, and a storage device such as an external storage device. And the like processor read and execute various programs stored in the ROM, and store the calculation result as the execution result in the RAM or the external storage device.
  • the input unit 163 is used by, for example, the operator or a worker to set the set value I 1 (n) of the harmonic current and the allowable value of the error.
  • the set value I 1 (n) of the harmonic current is calculated in advance from the harmonic voltage V PCS (n) of the power converter 13 and the set value Z 0 of the combined impedance using the above equation (9) Use the same value.
  • the input I / F 164a acquires the harmonic current measurement value I S (n) measured by the current sensor 18, the setting value I 1 (n) of the harmonic current input from the input unit 163, and the tolerance of the error And stores the acquired harmonic current measurement value I S (n), the setting value I 1 (n) of the harmonic current, and the tolerance value of the error in a predetermined storage area of the storage unit 166 via the internal bus 168. . Also, the input I / F 164a transfers the harmonic current measurement value I S (n) and the harmonic current measurement value I S (n) to the impedance change detection unit 161a via the internal bus 168.
  • the impedance change detection unit 161a performs processing to be described later based on the transferred harmonic current measurement value I S (n), the harmonic current measurement value I S (n), and the allowable value of the error stored in the storage unit 166. And transfers a signal indicating that the impedance has changed to the display unit 162 via the internal bus 168 and the output I / F 164b. Also, the impedance change detection unit 161a also outputs a signal indicating that the impedance has changed, to the SCADA as the control device 29 (FIG. 1) or the control panel via the communication I / F 167. .
  • the display unit 162 displays a signal indicating that the transferred impedance has changed on the screen.
  • the structure output to SCADA or a control panel as a control apparatus 29 (FIG. 1) via communication I / F 167 is not necessarily required.
  • FIG. 21 is a diagram showing a processing flow of the resonance gain inspection unit shown in FIG.
  • the input I / F 164a is the harmonic current measurement value I S (n) measured by the current sensor 18 and the setting value I 1 of the harmonic current input from the input unit 163.
  • (N) is acquired, and the acquired harmonic current measurement value I S (n) and the setting value I 1 (n) of harmonic current are stored in a predetermined storage area of the storage unit 166 via the internal bus 168 And to the impedance change detection unit 161a via the internal bus 168.
  • step S ⁇ b> 32 the impedance change detection unit 161 a accesses the storage unit 166 via the internal bus 168, and reads the tolerance of the preset error stored in the storage unit 166. Then, an error between the transferred harmonic current measurement value I S (n) and the setting value I 1 (n) of the harmonic current is obtained, and it is determined whether the obtained error is equal to or less than an allowable value of the error. As a result of the determination, if the calculated error is equal to or less than the allowable value of the error, the process is ended. On the other hand, as a result of the determination, if the obtained error exceeds the allowable value of the error, the process proceeds to step S33. In step S33, the impedance change detection unit 161a outputs a signal indicating that the impedance has changed to the display unit 162 via the internal bus 168 and the output I / F 164b.
  • the configuration in which the resonance gain inspection unit 16 is installed in the harmonic filter 14e or the configuration in which the resonance gain inspection unit 16a is installed in the harmonic filter 14f has been described as an example. Absent.
  • the function of the above-described resonance gain inspection unit 16 or resonance gain inspection unit 16a may be mounted on the electronic terminal 31 installed in the operation management center 31 shown in FIG. 1 described above.
  • the measured value V S (n) of the harmonic voltage of the harmonic filter and the measured value I S (n) of the harmonic current Since a change can be detected, amplification of the harmonic current I PCC (n) at connection point 3 due to a change in impedance can be suppressed.
  • FIG. 22 is a diagram showing the configuration of the main part of a solar photovoltaic power generation system according to a sixth embodiment of the present invention.
  • the wind turbine generator 1 is taken as an example of the power generation device, and the wind turbine power generation system 100 is described as an example of the power generation system.
  • a solar power generation device 6 is used as a power generation device instead of the wind power generation device 1 will be described.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and duplicate descriptions will be omitted below.
  • the solar power generation system includes the solar power generation device 6, the cable 2, and the power system 4 (commercial power system), and the solar power generation device 6 includes the cable 2 and the interconnection point 3.
  • the power system 4 is interconnected via the power system 4.
  • the solar power generation device 6 has a solar panel 61 in place of the rotor 11 and the generator 12 constituting the wind power generation device 1 shown in FIG. 2 described above.
  • the harmonics filter 14 which comprises the solar power generation device 6 has the structure similar to the harmonics filter shown in the above-mentioned Example 1 thru
  • FIG. 23 is a diagram showing the configuration of the main part of a storage system of a seventh embodiment according to another embodiment of the present invention.
  • the wind turbine generator 1 is taken as an example of the power generation device, and the wind turbine power generation system 100 is described as an example of the power generation system.
  • the storage battery power generation device 7 is used as a power generation device instead of the wind power generation device 1 will be described.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and duplicate descriptions will be omitted below.
  • the storage system includes storage battery power generator 7, cable 2, and electric power grid 4 (commercial power grid), and storage battery power generator 7 includes power grid 4 via cable 2 and interconnection point 3. It is connected to The storage battery generator 7 has a storage battery 71 in place of the rotor 11 and the generator 12 that constitute the wind turbine 1 shown in FIG. 2 described above.
  • the storage battery power generation device 7 charges the storage battery 71 with, for example, late-night power from the power system 4, and discharges the storage battery 71 to send power to the power system 4.
  • the harmonic filter 14 constituting the storage battery power generation device 7 has the same configuration as that of the harmonic filters shown in the above-mentioned first to fifth embodiments, and the above-described embodiment is also applied to the storage battery power generation device 7 and the storage system. The same effects as those of the first to fifth embodiments can be obtained.
  • the present invention is not limited to the above-described first to seventh embodiments, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

発電効率の低下を防止しつつ、共振による高調波電流の増幅を抑制し得る発電装置及び発電システムを提供する。 発電装置1は、少なくとも、発電電力の周波数を変換して電力系統へ送る電力変換器13と、電力変換器13と電力系統4の間に配される高調波フィルタ14と、を備え、電力系統4にケーブル2及び連系点3を介して交流接続される。高調波フィルタ14は、連系点における高調波電流の増幅を抑制するよう、インダクタンス又は静電容量を調整することにより、発電効率の低下を防止しつつ、共振による高調波電流の増幅を抑制する。

Description

発電装置及び発電システム
 本発明は、発電電力を電力系統(商用電力系統)に供給する発電装置及び発電システムに係り、特に、発電電力の周波数を変換して電力系統へ送る電力変換器及び高調波フィルタを備える発電装置及び発電システムに関する。
 地球温暖化の原因と考えられている二酸化炭素の排出量削減が大きな課題になっている。二酸化炭素排出量削減の手法の一つとして、太陽光発電或いは風力発電などの自然エネルギーを利用した発電装置の導入が盛んになっている。また、自然エネルギーは発電電力の変動が大きいため、蓄電装置を併設し、蓄電装置の充放電によって発電電力を平滑化する発電システムの導入も増えてきている。これらの発電システムは、風力発電装置、太陽光発電装置、または蓄電池が発電した電力を、電力変換器を介して電力系統へ供給する。一般に、電力変換器には、電力変換器から流出する高調波を除去する高調波フィルタが内蔵されている。高調波フィルタは、リアクトル及びコンデンサにて構成される。
 このような発電システムは、ケーブルを介して電力系統(商用電力系統)に連系されることがある。ケーブルはそれ自身がインダクタンスと静電容量を持つため、ケーブルと高調波フィルタで共振回路を構成する。ケーブルの長さが短い場合には問題にならないが、数km以上ある場合には、共振回路によって電力変換器から流出する高調波電流が増幅することがある。 
 共振による高調波電流の抑制方法に関し、高調波フィルタを改良する提案がなされている。例えば、特許文献1には、高調波フィルタのコンデンサに抵抗を直列に接続する方法が開示されている。抵抗によって、インダクタンスと静電容量の共振による高調波電流の増幅を抑制するものである。
特開2005-184990号公報
 しかしながら、特許文献1に開示される構成では、高調波フィルタのコンデンサに直列に接続される抵抗で発生する電力損失により発電効率が低下する点については、何ら考慮されていない。 
 そこで、本発明は、発電効率の低下を防止しつつ、共振による高調波電流の増幅を抑制し得る発電装置及び発電システムを提供する。
 上記課題を解決するため、本発明に係る発電装置は、少なくとも、発電電力の周波数を変換して電力系統へ送る電力変換器と、前記電力変換器と電力系統の間に配される高調波フィルタと、を備える発電装置であって、前記電力系統にケーブル及び連系点を介して交流接続され、前記高調波フィルタは、前記連系点における高調波電流の増幅を抑制するよう、インダクタンス又は静電容量を調整することを特徴とする。 
 また、本発明に係る発電システムは、少なくとも一つの発電装置と、電子端末と、これらを相互に通信可能に接続する通信ネットワークを備え、前記発電装置は、少なくとも、発電電力の周波数を変換して電力系統へ送る電力変換器と、前記電力変換器と電力系統の間に配される高調波フィルタと、を有し、前記電力系統にケーブル及び連系点を介して交流接続され、前記高調波フィルタは、前記連系点における高調波電流の増幅を抑制するよう、インダクタンス又は静電容量を調整することを特徴とする。
 本発明によれば、発電効率の低下を防止しつつ、共振による高調波電流の増幅を抑制し得る発電装置及び発電システムを提供することが可能となる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例に係る実施例1の風力発電システムの全体概略構成図である。 図1に示す風力発電システムの主要部の構成を示す図である。 図2に示す高調波フィルタの構成図である。 実施例1における電力変換器、高調波フィルタ、ケーブル、連系点、及び電力系統の等価回路を示す図である。 図4に示す等価回路のインピーダンスを示す図である。 実施例1における高調波フィルタによる連系点の高調波電流の抑制を説明する図である。 図3に示す高調波フィルタの変形例1の構成を示す図である。 図3に示す高調波フィルタの変形例2の構成を示す図である。 本発明の他の実施例に係る実施例2の高調波フィルタの構成図である。 図9に示す高調波フィルタのインダクタンスの調整性能を説明する図である。 本発明の他の実施例に係る実施例3の高調波フィルタを構成するタップ切替リアクトルの構成図である。 本発明の他の実施例に係る実施例4の高調波フィルタの構成図である。 図12に示すタップ整定装置の機能ブロック図である。 図13に示すタップ整定装置の処理フローを示す図である。 図13に示すタップ整定装置の変形例の機能ブロック図である。 本発明の他の実施例に係る実施例5の高調波フィルタの構成図である。 図16に示す共振ゲイン検査部の機能ブロック図である。 図17に示す共振ゲイン検査部の処理フローを示す図である。 図16に示す高調波フィルタの変形例の構成図である。 図19に示す共振ゲイン検査部の機能ブロック図である。 図20に示す共振ゲイン検査部の処理フローを示す図である。 本発明の他の実施例に係る実施例6の太陽光発電システムの主要部の構成を示す図である。 本発明の他の実施例に係る実施例7の蓄電システムの主要部の構成を示す図である。
 本明細書において発電装置とは、例えば、風力発電装置及び太陽光発電装置などの自然エネルギーを利用した発電装置と、充放電により発電電力を平滑化し電力系統(商用電力系統)へ送る蓄電装置を含むものである。 
 以下、図面を用いて本発明の実施例について説明する。
 図1は、本発明の一実施例に係る実施例1の風力発電システムの全体概略構成図である。図1に示すように、風力発電システム100は、風力発電装置1及び運転管理センター31に設置される電子端末32を備え、これらは相互に通信可能に通信ネットワーク5を介して接続されている。なお、通信ネットワーク5は有線か無線かを問わない。また、風力発電装置1による発電電力は、ケーブル2及び連系点3を介して電力系統4(商用電力系統)へ送られる。なお、図1に示す例では、1基の風力発電装置1を示すがこれに限られるものではなく、例えば、複数基の風力発電装置1が設置されるウィンドファームに適用できることは言うまでもない。
 風力発電装置1は、風を受けて回転するブレード24、ブレード24を支持するハブ23、ナセル22、及びナセル22を回動可能に支持するタワー21を備える。ナセル22内に、ハブ23に接続されハブ23と共に回転する主軸25、主軸25に連結されるシュリンクディスク26、シュリンクディスク26を介して主軸25に接続され回転速度を増速する増速機27、及び増速機27により増速された回転速度で回転子を回転させて発電運転する発電機12を備えている。ブレード24の回転エネルギーを発電機12に伝達する部位は、動力伝達部と称され、本実施例では、主軸25、シュリンクディスク26、及び増速機27が動力伝達部に含まれる。そして、増速機27及び発電機12は、メインフレーム28上に保持されている。また、ブレード24及びハブ23によりロータ11が構成される。図1に示すように、タワー21内の底部(下部)に、電力の周波数を変換する電力変換器13、電流の開閉を行うスイッチング用の開閉器及び変圧器(図示せず)、及び制御装置29などが配されている。なお、電力変換器13は、PCS(Power Conditioning System)とも称される場合もある。
 制御装置29として、例えは、制御盤またはSCADA(Supervisory Control And Data Acquisition)が用いられる。本実施例では、ダウンウィンド型の風力発電装置を例に説明するが、アップウィンド型の風力発電装置においても同様に適用できる。また、3枚のブレード24とハブ23にてロータ11を構成する例を示すが、これに限られず、ロータ11はハブ23と少なくとも1枚のブレード24にて構成しても良い。 
 また、図1に示すように、センサ30は、例えば、ブレード24の根元に設置されブレードピッチ角を計測するセンサ、主軸25の根元に設置されロータアジマス角を計測するセンサ、ナセル22の方位角を計測するセンサ、及びナセル22の上部に設置され風速・風向を計測する風速・風向計を含む。更には、センサ30は、発電機12の回転数、発電量などを計測するセンサ(図示せず)を含む。換言すれば、センサ30は、風力発電装置1の制御に必要な種々の状態を計測するセンサである。 
 制御装置29としてのSCADAは、上述のセンサ30から信号線を介して計測データ(情報)を取得し、当該取得された計測データ(情報)に基づき、ピッチ角、ナセル方位角、発電機回転速度などを適切に制御すると共に、取得された計測データ(情報)を、通信ネットワーク5を介して運転管理センター31に設置される電子端末32へ送信する。なお、通信ネットワーク5を介して、SCADAより電子端末32へ送信される計測データ(情報)には、風況(含む風速及び風向)及び風力発電装置1の種々の状態を表す信号(出力)が含まれる。
 図2は、図1に示す風力発電システム100の主要部の構成を示す図である。風力発電装置1は、ケーブル2を介して電力系統4(商用電力系統)に連系される。電力系統4は、系統インピーダンス41と電源42で構成される。ケーブル2と電力系統4が接続される地点を連系点3と称する。風力発電装置1を構成する各部について説明する。 
 風力発電装置1は、上述のようにロータ11、発電機12、電力変換器13、及び高調波フィルタ14を備える。ロータ11で受けた風力エネルギーは、発電機12によって電気エネルギーに変換され、電力変換器13へ送られる。電力変換器13は、発電機12の電圧及び電流を電力系統4(商用電力系統)の周波数(50Hzまたは60Hz)に変換する。電力変換器13から流出する高調波電圧及び高調波電流の一部は、高調波フィルタ14によって除去される。
 <高調波フィルタの構成> 
 図3は、図2に示す高調波フィルタ14の構成図である。高調波フィルタ14は、リアクトル141、タップ切替リアクトル142、コンデンサ143にて構成される。リアクトル141は電力変換器13に接続され、タップ切替リアクトル142はケーブル2に接続される。タップ切替リアクトル142は、リアクトルに複数のタップ(142a,142b,142c)を備える。複数のタップ(142a,142b,142c)のうちの1つと、タップ切替リアクトル142の端子142dが接続される。端子142dと接続するタップ(142a,142b,142c)は、共振によって連系点3を流れる高調波電流の増幅を回避するように決定する。なお、本実施例では、タップ142a、タップ142b、及びタップ142cの3個を一例として示すが、タップの個数は限定されるものではなく、例えば、3個以上、適宜タップの個数を設定すれば良い。
 [高調波共振の原理] 
 次に高調波共振の原理を、図4~図6及び数式を用いて説明する。図4に、電力変換器13、高調波フィルタ14、ケーブル2、連系点3、及び系統インピーダンス41についての第n次高調波に対する等価回路を示す。なお、図4に示す角周波数ωと高調波の次数nの関係は以下の式(1)となる。式(1)において、fは電力系統4(商用電力系統)の電圧及び電流の周波数(50Hzまたは60Hz)である。 
 ω=2πf×n   ・・・(1)
 図4に示す等価回路のインピーダンスを、ブランチ毎にZ~Zに集約すると、図5となる。ここで、具体的には、インピーダンスZは高調波フィルタ14を構成するリアクトル141(jωLF1)によるインピーダンス、インピーダンスZは高調波フィルタ14を構成するコンデンサ143(jωC)によるインピーダンス、インピーダンスZは高調波フィルタ14を構成するタップ切替リアクトル142(jωLF2)と当該タップ切替リアクトル142に直列に接続されるケーブル2の抵抗(RC1)及びリアクトル(jωLC1)によるインピーダンス、インピーダンスZはケーブル2のコンデンサ(jωC)によるインピーダンス、インピーダンスZはケーブル2の抵抗(RC2)及びリアクトル(jωLC2)によるインピーダンス、及び、インピーダンスZは系統インピーダンス41の抵抗(R)及びリアクトル(jωL)によるインピーダンスである。
 図5に示すインピーダンスZ~Zを用いて、電力変換器13の出力電圧VPCS(n)と連系点3を流れる電流IPCC(n)の関係を導出する。図4及び図5から、インピーダンスZ~Zは、以下の式(2)~式(7)で表される。 
 Z=jωLF1   ・・・(2) 
Figure JPOXMLDOC01-appb-M000001
 Z=RC1+jω(LF2+LC1)   ・・・(4) 
Figure JPOXMLDOC01-appb-M000002
 Z=RC2+jωLC2   ・・・(6) 
 Z=R+jωL   ・・・(7) 
 電力変換器13から見た合成インピーダンスZは、式(8)となる。 
Figure JPOXMLDOC01-appb-M000003
 電力変換器13の出力電圧VPCS(n)と合成インピーダンスZから、インピーダンスZに流れる電流I(n)は、式(9)で表される。 
Figure JPOXMLDOC01-appb-M000004
 電流I(n)は、インピーダンスZに流れる電流I(n)と、インピーダンスZに流れる電流I(n)に分流する。電流I(n)を式(10)に示し、電流I(n)を式(11)に示す。 
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 電流I(n)は、インピーダンスZに流れる電流I(n)と、インピーダンスZとインピーダンスZ、及び連系点3に流れる電流IPCC(n)とに分流する。電流I(n)を式(12)に示し、電流IPCC(n)を式(13)に示す。 
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 式(13)に式(9)及び式(11)を代入すると、式(14)となる。 
Figure JPOXMLDOC01-appb-M000009
 式(14)から、電力変換器13の出力電圧VPCS(n)と連系点3を流れる電流IPCC(n)の関係は、インピーダンスZ~Zから求められる係数α(n)によって表されることがわかる。以下では、係数α(n)を共振ゲインと称する。
 前述の図4、図5、及び式(4)から、高調波フィルタ14のタップ切替リアクトル142の接続タップを切替えてインダクタンスを調整すると、インピーダンスZの定数は変化することがわかる。そして、式(14)から、インピーダンスZの定数を変化させると、共振ゲインα(n)を調整できることがわかる。すなわち、タップ切替リアクトル142の接続タップを切替えることで、共振ゲインα(n)を調整できる。
 高調波フィルタ14のタップ切替リアクトル142の接続タップを切替えたことによって、連系点3の高調波電流IPCC(n)を抑制した例を、図6を用いて説明する。 
 図6において上段に、横軸を高調波の次数n、縦軸を共振ゲインα(n)とした場合の一例を示す。高調波フィルタ14のタップ切替リアクトル142について、端子142dとタップ142bを接続した場合の共振ゲインα(n)を破線で示す。また、端子142dとタップ142aを接続した場合の共振ゲインα(n)を実線で示す。 
 図6において中段に、横軸を高調波の次数n、縦軸を電力変換器13の高調波電圧VPCS(n)とした場合の一例を示す。電力変換器13の高調波電圧VPCS(n)は、電力変換器13の実機試験や数値シミュレーションによって得られる。また、高調波電圧VPCS(n)は、電力変換器13の構成要素である、IGBT(Insulated Gate Bipolar Transistor)或いはCMOS(Complementary MOS)などの半導体素子のスイッチング周波数や、電力変換器13の運転力率などの条件によって決まる。
 図6において下段に、横軸を高調波の次数n、縦軸を連系点3の高調波電流IPCC(n)とした場合の一例を示す。式(14)から、連系点3の高調波電流IPCC(n)は、図6の上段に示す共振ゲインα(n)に、図6の中段に示す電力変換器13の高調波電圧VPCS(n)を乗じることで求められる。高調波フィルタ14のタップ切替リアクトル142の接続タップを142bとしたとき、連系点3の23次高調波電流IPCC(n)は連系規定の上限を超過する。なお、ここで連系規定の上限はグリッドコードと称される場合もある。タップ切替リアクトル142の接続タップを142bから142aに切替えることで、23次の共振ゲインα(n)は減少し、連系点3の23次高調波電流IPCC(n)は連系規定の上限以下に収めることができる。なお、接続タップを142bから142aに切替えたことで、24次の共振ゲインα(n)は増加する。しかし、24次の電力変換器13の出力電圧VPCS(n)は非常に小さいため、連系点3の24次高調波電流IPCC(n)は上限以下に収まっている。すなわち、電力変換器13の出力電圧VPCS(n)は、通常、偶数次の高調波を含まない。従って、共振ゲインα(n)のピークを、偶数次或いは、電力変換器13の高調波電圧VPCS(n)が低い或いは高い高調波の次数にシフトさせるため、トライ・アンド・エラーにてタップの切り替えを行う。 
 以上のように、高調波フィルタ14のタップ切替リアクトル142の接続タップを調整することで、連系点3の高調波電流IPCC(n)を抑制することができる。
 <高調波フィルタの変形例1> 
 図7は、図3に示す高調波フィルタ14の変形例1の構成を示す図である。図3に示した高調波フィルタ14とは、リアクトルの並列接続数を切替えることによって高調波フィルタ14aのインダクタンスを調整し、共振ゲインα(n)を調整する構成とした点で異なる。図7に示すように、高調波フィルタ14aは、タップ切替リアクトル142(図3)の代わりに、複数の並列リアクトル144(144a,144b,144c)とそれらに接続するリアクトル用開閉器145(145a,145b,145c)を備える。そして、リアクトル用開閉器145を短絡または開放することで、並列リアクトル144(144a,144b,144c)の接続数を切替える。例えば、並列リアクトル144を1台接続する場合は、リアクトル用開閉器145aを短絡すると共にリアクトル用開閉器145b及びリアクトル用開閉器145cを開放する。また例えば、並列リアクトル144を2台接続する場合は、リアクトル用開閉器145a及びリアクトル用開閉器145bを短絡すると共にリアクトル用開閉器145cを開放する。
 <高調波フィルタの変形例2> 
 図8は、図3に示す高調波フィルタ14の変形例2の構成を示す図である。図3に示した高調波フィルタ14とは、コンデンサの並列接続数を切替えることによって高調波フィルタ14bの静電容量を調整し、共振ゲインα(n)を調整する構成とした点で異なる。高調波フィルタ14bには、タップ切替リアクトル142の代わりにリアクトル141とし、複数の並列コンデンサ146(146a,146b,146c)と、それらに接続するコンデンサ用開閉器147(147a,147b,147c)を備える。そして、コンデンサ用開閉器147を短絡または開放することで、並列コンデンサ146の接続数を切替える。例えば、並列コンデンサ146を1台接続する場合は、コンデンサ用開閉器147aを短絡すると共にコンデンサ用開閉器147b及びコンデンサ用開閉器147cを開放する。また例えば、並列コンデンサ146を2台接続する場合は、コンデンサ用開閉器147a及びコンデンサ用開閉器147bを短絡すると共にコンデンサ用開閉器147cを開放する。
 以上の通り、本実施例によれば、発電効率の低下を防止しつつ、共振による高調波電流の増幅を抑制し得る発電装置及び発電システムを提供することが可能となる。 
 また、本実施例によれば、高調波フィルタ14のタップ切替リアクトル142の接続タップを調整することで、連系点3の高調波電流IPCC(n)を抑制することができる。
 
 また、本実施例によれば、高調波フィルタ14aの並列リアクトル144の並列接続数を切替えることで、連系点3の高調波電流IPCC(n)を抑制することができる。 
 更にまた、本実施例によれば、高調波フィルタ14bの並列コンデンサ146の並列接続数を切替えることで、連系点3の高調波電流IPCC(n)を抑制することができる。
 図9は、本発明の他の実施例に係る実施例2の高調波フィルタ14cの構成図である。本実施例では、高調波フィルタ14cに複数のタップ切替リアクトル(148,149)を設ける点が実施例1と異なる。具体的には、高調波フィルタ14cには,タップ切替リアクトル142の代わりに、第1タップ切替リアクトル148及び第2タップ切替リアクトル149を備える。実施例1と同一の構成要素に同一の符号を付し、以下では実施例1と重複する説明を省略する。
 図9に示すように、高調波フィルタ14cによる第1タップ切替リアクトル148及び第2タップ切替リアクトル149の合成インダクタンスの調整を、図10を用いて説明する。図10は、図9に示す高調波フィルタ14cのインダクタンスの調整性能を説明する図である。第1タップ切替リアクトル148のインダクタンス調整候補を、例えば1.7mH(接続タップ148a)、2.0mH(接続タップ148b)、及び2.3 mH(タップ148c)の3通りとする。また、第2タップ切替リアクトル149のインダクタンス調整候補を、例えば0.0mH(接続タップ149a)、0.1mH(接続タップ149b)、及び0.2mH(タップ149c)の3通りとする。 
 図10に示すように、例えば、第1タップ切替リアクトル148の端子148dとタップ148aを接続すると共に、第2タップ切替リアクトル149の端子149dとタップ149aを接続することで、合成インダクタンスは1.7mHとなる。また、第1タップ切替リアクトル148の端子148dとタップ148bを接続すると共に、第2タップ切替リアクトル149の端子149dとタップ149cを接続することで、合成インダクタンスは2.2mHとなる。第1タップ切替リアクトル148の端子148dとタップ148cを接続すると共に、第2タップ切替リアクトル149の端子149dとタップ149cを接続することで、合成インダクタンスは2.5mHとなる。
 第1タップ切替リアクトル148のインダクタンス調整候補を3通り及び第2タップ切替リアクトル149のインダクタンス調整候補を3通りとすることで、第1タップ切替リアクトル148及び第2タップ切替リアクトル149の合成インダクタンスの調整候補は、1.7mH~2.5mHまで0.1mH刻みの9通りとなる。図10に示す第1タップ切替リアクトル148のインダクタンス調整候補及び第2タップ切替リアクトル149のインダクタンス調整候補の組み合わせと、当該各組み合わせによる合成インダクタンスとの対応関係は、例えば、図1に示す制御装置29としてのSCADA或いは制御盤内の図示しない記憶部に格納されている。
 なお、本実施例では、第1タップ切替リアクトル148のインダクタンス調整候補を3通り及び第2タップ切替リアクトル149のインダクタンス調整候補を3通りとする場合を一例として示したが、第1タップ切替リアクトル148のインダクタンス調整候補数及び第2タップ切替リアクトル149のインダクタンス調整候補数はこれに限られるものではなく、適宜設定すれば良い。また、第1タップ切替リアクトル148のインダクタンス調整候補数と第2タップ切替リアクトル149のインダクタンス調整候補数とを必ずしも同一とする必要は無い。
 以上の通り本実施例によれば、実施例1の効果に加え、高調波フィルタに複数のタップ切替リアクトルを設けることで、当該複数のタップ切替リアクトルの合計タップ数より細かくインダクタンスを調整できることから、インダクタンスの調整性能を向上することが可能となる。
 図11は、本発明の他の実施例に係る実施例3の高調波フィルタを構成するタップ切替リアクトルの構成図である。本実施例では、タップ切替リアクトル142aに、タップ切替用の操作部を設ける点が実施例1及び実施例2と異なる。以下では、実施例1において示したタップ切替リアクトル142を比較対象として、本実施例のタップ切替リアクトル142aについて説明する。なお、本実施例の構成は上述の実施例2に対しても同様に適用可能である。
 図11に示すように、タップ切替リアクトル142aは、実施例1のタップ切替リアクトル142(図3)とは異なり、タップ切替リアクトル142aを格納するタップ切替リアクトル盤1421、接続タップ操作部1422、及び接続タップ表示部1423を備える。接続タップ操作部1422及び接続タップ表示部1423は、タップ切替リアクトル盤1421の外部に設けられている。図11において白抜き矢印にて示すように、接続タップ操作部1422が時計回りに回動することによりリンク機構或いはクランクなどを介してタップ切替リアクトル142aの端子と接続されるタップが時計回りに位置するタップに切替えられる。同様に、図11において黒矢印にて示すように、接続タップ操作部1422が反時計回りに回動することによりリンク機構或いはクランクなどを介してタップ切替リアクトル142aの端子と接続されるタップが反時計回りに位置するタップに切替えられる。接続タップ表示部1423には、タップ切替リアクトル142aの端子と接続される現在のタップの番号或いは記号が表示される。なお、タップの番号或いは記号に限らず、タップを特定可能な表示形態であれば如何なる表示形態としても良い。また、接続タップ表示部1423に代えて、例えば、ガラス窓のように、タップ切替リアクトル盤1421内に格納されるタップ切替リアクトル142aの接続状態を外部より目視可能な構成としても良い。
 以上の通り実施例によれば、実施例1及び実施例2の効果に加え、接続タップ操作部1422によってタップ切替えの操作性を向上できる。更に、接続タップ表示部1423によって接続タップの視認性を向上できる。これにより、タップ切替えに要する運用者或いは作業員の労力を削減できる。
 図12は、本発明の他の実施例に係る実施例4の高調波フィルタ14dの構成図である。本実施例では、高調波フィルタ14dを構成するタップ切替リアクトル142の接続タップを決定するタップ整定装置15を高調波フィルタ14d内に設ける点が実施例1乃至実施例3と異なる。以下では、実施例1において示した高調波フィルタ14を比較対象として、本実施例の高調波フィルタ14dを説明する。なお、本実施例の構成は上述の実施例2及び実施例3に対しても同様に適用可能である。また、実施例1と同一の構成要素に同一の符号を付し、実施例1と重複する説明を省略する。
 図12に示すように、高調波フィルタ14dは、タップ整定装置15を有する。 
 <タップ整定装置の構成> 
 図13は、図12に示すタップ整定装置15の機能ブロック図である。図13に示すように、タップ整定部15は、入力部153、入力I/F154a、出力I/F154b、表示部152、接続タップ決定部151、FFT155(Fast Fourier Transform)、記憶部156、及び通信I/F157を備え、これらは相互に内部バス158にてアクセス可能に接続されている。FFT155及び接続タップ決定部151は、例えば、図示しないCPU(Central Processing Unit)などのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に格納するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。
 入力部153は、運用者或いは作業員により例えば、上述の連系規定の上限値の設定に供される。 
 入力I/F154aは、連系点3の高調波電流の計測値及び予め入力部153より入力される連系規定の上限値を取得し、取得された連系点3の高調波電流の計測値及び連系規定の上限値を記憶部156の所定の記憶領域に内部バス158を介して格納する。また、入力I/F154aは、連系点3の高調波電流の計測値をFFT155へ内部バス158を介して転送する。 
 FFT155は、転送された連系点3の高調波電流の計測値を各次数の高調波電流に変換する。また、FFT155は、変換された連系点3の各次数の高調波電流を接続タップ決定部151へ内部バス158を介して転送する。 
 接続タップ決定部151は、詳細後述する処理を実行し、決定した接続タップ番号またはアラームを、表示部152へ内部バス158及び出力I/F154bを介して転送する。また、接続タップ決定部151が、決定した接続タップ番号またはアラームを、通信I/F157を介して制御装置29(図1)としてのSCADAまたは制御盤へも出力する。 
 表示部152は、転送された決定した接続タップ番号またはアラームを画面上に表示する。 
 なお、本実施例では、接続タップ決定部151が、決定した接続タップ番号またはアラームを、通信I/F157を介して制御装置29(図1)としてのSCADAまたは制御盤へも出力する構成を示したが、必ずしもこれに限らず、SCADAまたは制御盤への出力を不要としても良い。
 [タップ整定装置の動作] 
 図14は、図13に示すタップ整定装置の処理フローを示す図である。なお、以下では、タップ切替リアクトル142の複数タップ(142a,142b,142c)のうちの1つと端子142dを接続し、接続したタップの番号を接続タップ番号iとする。接続タップ番号iのときの連系点3の高調波電流IPCC(n)を計測する場合を想定し説明する。 
 ステップS11では、入力I/F154aが接続タップ番号iについて連系点3の高調波電流IPCC(n)の計測値を取得し、取得された接続タップ番号iについて連系点3の高調波電流IPCC(n)の計測値を記憶部156の所定の記憶領域に内部バス158を介して格納すると共にFFT155へ内部バス158を介して転送する。FFT155は、転送された接続タップ番号iについて連系点3の高調波電流IPCC(n)の計測値を各次数の高調波電流IPCC(n)に変換する。また、FFT155は、変換された接続タップ番号iについて連系点3の各次数の高調波電流IPCC(n)を接続タップ決定部151へ内部バス158を介して転送する。
 ステップS12では、接続タップ決定部151が、内部バス158を介して記憶部156へアクセスし、記憶部156に格納される予め設定された連系規定の上限値を読み出す。そして、接続タップ決定部151は、FFT155より転送された接続タップ番号iについて連系点3の各次数の高調波電流IPCC(n)が、連系規定の上限値以下か否かを
判定する。判定の結果が連系点3の各次数の高調波電流IPCC(n)が連系規定の上限値以下の場合、ステップS13へ進む。一方、判定の結果が連系点3の各次数の高調波電流IPCC(n)が連系規定の上限値を超える場合、ステップS14へ進む。
 ステップS13では、接続タップ決定部151は、接続タップを接続タップ番号iに決定し、内部バス158及び出力I/F154bを介して表示部152へ接続タップ番号iを出力する。 
 ステップS14では、接続タップ決定部151は、全てのタップについて、連系点3の高調波電流IPCC(n)を計測したか否かを判定する。判定の結果、全てのタップについて連系点3の高調波電流IPCC(n)の計測を完了している場合、ステップS16へ進む。一方、判定の結果、全てのタップについて連系点3の高調波電流IPCC(n)の計測が完了していない場合にはステップS15へ進み、接続タップ番号iを変更して連系点3の高調波電流IPCC(n)を再計測し、ステップS11へ戻り、ステップS11~ステップS14までの処理を繰り返し実行する。
 ステップS16では、接続タップ決定部151は、内部バス158及び出力I/F154bを介して表示部152へアラームを出力する。
 <タップ整定装置の変形例> 
 図15は、図12に示すタップ整定装置15の変形例の機能ブロック図である。図12に示したタップ整定装置15とは、電力変換器13の高調波電圧VPCS(n)及び共振ゲインα(n)から連系点3の高調波電流IPCC(n)を推定する高調波電流推定部159を有する点で異なる。 
 図15に示すように、タップ整定部15aは、入力部153、入力I/F154a、出力I/F154b、表示部152、接続タップ決定部151、高調波電流推定部159、記憶部156、及び通信I/F157を備え、これらは相互に内部バス158にてアクセス可能に接続されている。接続タップ決定部151及び高調波電流推定部159は、例えば、図示しないCPUなどのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に格納するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。
 入力部153は、運用者或いは作業員により例えば、電力変換器13の高調波電圧VPCS(n)、タップ切替リアクトル142のタップ(142a,142b,142c)を各々に接続した場合での共振ゲインα(n)、及び上述の連系規定の上限値の設定に供される。 
 入力I/F154aは、入力部153より入力される、電力変換器13の高調波電圧VPCS(n)、タップ切替リアクトル142のタップ(142a,142b,142c)を各々に接続した場合での共振ゲインα(n)、及び連系規定の上限値を取得し、取得された電力変換器13の高調波電圧VPCS(n)、タップ切替リアクトル142のタップ(142a,142b,142c)を各々に接続した場合での共振ゲインα(n)、及び連系規定の上限値を記憶部156の所定の記憶領域に内部バス158を介して格納する。また、入力I/F154aは、電力変換器13の高調波電圧VPCS(n)、及びタップ切替リアクトル142のタップ(142a,142b,142c)を各々に接続した場合での共振ゲインα(n)を高調波電流推定部159へ内部バス158を介して転送する。
 高調波電流推定部159は、転送された電力変換器13の高調波電圧VPCS(n)、及びタップ切替リアクトル142のタップ(142a,142b,142c)を各々に接続した場合での共振ゲインα(n)を用いて、上述の式(14)の演算を実行し、連系点3の高調波電流IPCC(n)の推定値を求める。高調波電流推定部159は、求めた連系点3の高調波電流IPCC(n)の推定値を、内部バス158を介して接続タップ決定部151へ転送する。
 接続タップ決定部151は、上述した処理を実行し、決定した接続タップ番号またはアラームを、表示部152へ内部バス158及び出力I/F154bを介して転送する。また、接続タップ決定部151が、決定した接続タップ番号またはアラームを、通信I/F157を介して制御装置29(図1)としてのSCADAまたは制御盤へも出力する。 
 表示部152は、転送された決定した接続タップ番号またはアラームを画面上に表示する。
 なお、本実施例では、接続タップ決定部151が、決定した接続タップ番号またはアラームを、通信I/F157を介して制御装置29(図1)としてのSCADAまたは制御盤へも出力する構成を示したが、必ずしもこれに限らず、SCADAまたは制御盤への出力を不要としても良い。 
 また、本実施例では、タップ整定装置15またはタップ整定装置15aを高調波フィルタ14d内に設置する構成を一例として説明したがこれに限られるものではない。例えば、上述の図1に示す運転管理センター31に設置される電子端末31に、上述のタップ整定装置15またはタップ整定装置15aの機能を実装する構成としても良い。
 以上の通り本実施例によれば、上述の実施例1乃至実施例3の効果に加え、高調波フィルタ14dは連系点3の高調波電流IPCC(n)又は連系点3の高調波電流IPCC(n)の推定値に応じてタップ切替リアクトルの接続タップを調整することにより、連系点3の高調波電流IPCC(n)を抑制できる。一方、接続タップを調整しても連系点3の高調波電流IPCC(n)を連系規定の上限値以下に抑制できない場合には、アラームを表示することで、運用者或いは作業員は風力発電装置1を停止する等の対策をすることができる。
 図16は、本発明の他の実施例に係る実施例5の高調波フィルタ14eの構成図である。本実施例では、電圧センサ17、電流センサ18、及び共振ゲインα(n)の変化を検出する共振ゲイン検査部16を高調波フィルタ14e内に設ける点が実施例1乃至実施例4と異なる。以下では、実施例1において示した高調波フィルタ14を比較対象として、本実施例の高調波フィルタ14dを説明する。なお、本実施例の構成は上述の実施例2乃至実施例4に対しても同様に適用可能である。また、実施例1と同一の構成要素に同一の符号を付し、実施例1と重複する説明を省略する。 
 図16に示すように、高調波フィルタ14eは、電圧センサ17、電流センサ18、及び共振ゲイン検査部16を有する。
 <共振ゲイン検査部の構成> 
 図17は、図16に示す共振ゲイン検査部16の機能ブロック図である。図17に示すように、共振ゲイン検査部16は、入力部163、入力I/F164a、出力I/F164b、表示部162、インピーダンス変化検出部161、記憶部166、及び通信I/F167を備え、これらは相互に内部バス168にてアクセス可能に接続されている。インピーダンス変化検出部161は、例えば、図示しないCPUなどのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に格納するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。
 入力部163は、運用者或いは作業員により例えば、合成インピーダンスの設定値Z及び誤差の許容値の設定に供される。 
 入力I/F164aは、電圧センサ17により計測される高調波電圧計測値V(n)、電流センサ18により計測される高調波電流計測値I(n)、及び入力部163より入力される合成インピーダンスの設定値Z及び誤差の許容値を取得し、取得された高調波電圧計測値V(n)、高調波電流計測値I(n)、合成インピーダンスの設定値Z及び誤差の許容値を記憶部156の所定の記憶領域に内部バス158を介して格納する。また、入力I/F154aは、高調波電圧計測値V(n)及び高調波電流計測値I(n)をインピーダンス変化検出部161へ内部バス168を介して転送する。 
 インピーダンス変化検出部161は、転送された高調波電圧計測値V(n)及び高調波電流計測値I(n)から、合成インピーダンスの実測値Z0Sを、以下の式(15)を用いて求める。 
Figure JPOXMLDOC01-appb-M000010
 求めたに基づき詳細後述する処理を実行し、インピーダンスが変化したことを示す信号を、表示部162へ内部バス168及び出力I/F164bを介して転送する。また、インピーダンス変化検出部161は、接続タップ決定部151が、インピーダンスが変化したことを示す信号を、通信I/F167を介して制御装置29(図1)としてのSCADAまたは制御盤へも出力する。 
 表示部162は、転送されたインピーダンスが変化したことを示す信号を画面上に表示する。 
 なお、本実施例では、インピーダンス変化検出部161が、インピーダンスが変化したことを示す信号を、通信I/F167を介して制御装置29(図1)としてのSCADAまたは制御盤へも出力する構成を示したが、必ずしもこれに限らず、SCADAまたは制御盤への出力を不要としても良い。
 [共振ゲイン検査部の動作] 
 図18は、図17に示す共振ゲイン検査部16の処理フローを示す図である。 
 図18に示すように、ステップS21では、入力I/F164aが、電圧センサ17により計測される高調波電圧計測値V(n)、電流センサ18により計測される高調波電流計測値I(n)、及び入力部163より入力される合成インピーダンスの設定値Zを取得し、取得された高調波電圧計測値V(n)、高調波電流計測値I(n)、及び合成インピーダンスの設定値Zを記憶部166の所定の記憶領域に内部バス168を介して格納すると共にインピーダンス変化検出部161へ内部バス168を介して転送する。ここで、合成インピーダンスの設定値Zとは、上述の図5及び式(8)により求められる値である。
 ステップS22では、インピーダンス変化検出部161は、転送された高調波電圧計測値V(n)及び高調波電流計測値I(n)を用いて上述の式(15)の演算を実行し合成インピーダンスの実測値Z0Sを求める。 
 ステップS23では、インピーダンス変化検出部161は、内部バス168を介して記憶部166へアクセスし、記憶部166に格納される予め設定された誤差の許容値を読み出す。そして、転送された合成インピーダンスの設定値ZとステップS22にて求めた合成インピーダンスの実測値Z0Sとの誤差を求め、当該求めた誤差が誤差の許容値以下か否かを判定する。判定の結果、求めた誤差が誤差の許容値以下の場合、処理を終了する。一方、判定の結果、求めた誤差が誤差の許容値を超える場合、ステップS24に進む。
 ステップS24では、インピーダンス変化検出部161は、インピーダンスが変化したことを示す信号を、内部バス168及び出力I/F164bを介して表示部162へ出力する。
 ここで、インピーダンスが変化する理由としては、例えば、電力系統4(商用電力系統)の系統切替えによる系統インピーダンス41の変化、及び電力系統4への力率改善用コンデンサの接続等が挙げられる。これらの理由によりインピーダンスが変化した場合、上述の式(14)に示す共振ゲインα(n)の特性も変化するため、連系点3の高調波電流IPCC(n)が増幅する可能性がある。しかし、共振ゲイン検査部16によってインピーダンスの変化を表示部162に出力することで、運用者或いは作業員はインピーダンスが変化したことを即座に把握でき、運用者或いは作業員は高調波フィルタ14eのタップ切替リアクトル142のタップの再調整を迅速に行うことができるため,連系点3の高調波電流IPCC(n)の増幅を抑制できる。
 <高調波フィルタの変形例>
 図19は、図16に示す高調波フィルタ14eの変形例の構成図である。図16に示した高調波フィルタ14eとは、電圧センサ17を省略する点で異なる。 
 図19に示すように、高調波フィルタ14eは、電流センサ18及び共振ゲイン検査部16aを有する。
 図20は、図19に示す共振ゲイン検査部16aの機能ブロック図である。図20に示すように、共振ゲイン検査部16aは、入力部163、入力I/F164a、出力I/F164b、表示部162、インピーダンス変化検出部161a、記憶部166、及び通信I/F167を備え、これらは相互に内部バス168にてアクセス可能に接続されている。インピーダンス変化検出部161aは、例えば、図示しないCPUなどのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に格納するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。
 入力部163は、運用者或いは作業員により例えば、高調波電流の設定値I(n)及び誤差の許容値の設定に供される。ここで、高調波電流の設定値I(n)は、電力変換器13の高調波電圧VPCS(n)及び合成インピーダンスの設定値Zから、上述の式(9)を用いて予め計算した値を用いる。 
 入力I/F164aは、電流センサ18により計測される高調波電流計測値I(n)、及び入力部163より入力される高調波電流の設定値I(n)及び誤差の許容値を取得し、取得された高調波電流計測値I(n)、高調波電流の設定値I(n)及び誤差の許容値を記憶部166の所定の記憶領域に内部バス168を介して格納する。また、入力I/F164aは、高調波電流計測値I(n)及び高調波電流計測値I(n)をインピーダンス変化検出部161aへ内部バス168を介して転送する。 
 インピーダンス変化検出部161aは、転送された高調波電流計測値I(n)、高調波電流計測値I(n)、及び記憶部166に格納される誤差の許容値に基づき後述する処理を実行し、インピーダンスが変化したことを示す信号を、表示部162へ内部バス168及び出力I/F164bを介して転送する。また、インピーダンス変化検出部161aは、接続タップ決定部151が、インピーダンスが変化したことを示す信号を、通信I/F167を介して制御装置29(図1)としてのSCADAまたは制御盤へも出力する。
 表示部162は、転送されたインピーダンスが変化したことを示す信号を画面上に表示する。 
 なお、通信I/F167を介して制御装置29(図1)としてのSCADAまたは制御盤へも出力する構成は必ずしも必要ではない。
 図21は、図20に示す共振ゲイン検査部の処理フローを示す図である。
 図20に示すように、ステップS31では、入力I/F164aが、電流センサ18により計測される高調波電流計測値I(n)及び入力部163より入力される高調波電流の設定値I(n)を取得し、取得された高調波電流計測値I(n)及び高調波電流の設定値I(n)を記憶部166の所定の記憶領域に内部バス168を介して格納すると共にインピーダンス変化検出部161aへ内部バス168を介して転送する。
 ステップS32では、インピーダンス変化検出部161aは、内部バス168を介して記憶部166へアクセスし、記憶部166に格納される予め設定された誤差の許容値を読み出す。そして、転送された高調波電流計測値I(n)及び高調波電流の設定値I(n)との誤差を求め、当該求めた誤差が誤差の許容値以下か否かを判定する。判定の結果、求めた誤差が誤差の許容値以下の場合、処理を終了する。一方、判定の結果、求めた誤差が誤差の許容値を超える場合、ステップS33に進む。 
 ステップS33では、インピーダンス変化検出部161aは、インピーダンスが変化したことを示す信号を、内部バス168及び出力I/F164bを介して表示部162へ出力する。
 なお、本実施例では、共振ゲイン検査部16を高調波フィルタ14e内に設置する構成または共振ゲイン検査部16aを高調波フィルタ14f内に設置する構成を一例として説明したがこれに限られるものではない。例えば、上述の図1に示す運転管理センター31に設置される電子端末31に、上述の共振ゲイン検査部16または共振ゲイン検査部16aの機能を実装する構成としても良い。
 以上の通り本実施例によれば、上述の実施例1の効果に加え、高調波フィルタの高調波電圧の計測値V(n)及び高調波電流の計測値I(n)からインピーダンスの変化を検出できるため、インピーダンスの変化による連系点3の高調波電流IPCC(n)の増幅を抑制できる。
 図22は、本発明の他の実施例に係る実施例6の太陽光発電システムの主要部の構成を示す図である。上述の実施例1乃至実施例5では、発電装置の一例として風力発電装置1を挙げ、発電システムとして風力発電システム100を例に説明した。本実施例では、風力発電装置1に代えて太陽光発電装置6を発電装置とした場合について説明する。実施例1と同一の構成要素に同一符号を付し、以下では重複する説明を省略する。
 図22に示すように、太陽光発電システムは、太陽光発電装置6、ケーブル2、及び電力系統4(商用電力系統)より構成され、太陽光発電装置6は、ケーブル2及び連系点3を介して電力系統4に連系される。 
 太陽光発電装置6は、上述の図2に示した風力発電装置1を構成するロータ11及び発電機12に代えて太陽光パネル61を有する。太陽光発電装置6を構成する高調波フィルタ14は、上述の実施例1乃至実施例5に示した高調波フィルタと同様の構成を有し、太陽光発電装置6及び太陽光発電システムにおいても、上述の実施例1乃至実施例5と同様の作用効果を奏し得るものである。
 図23は、本発明の他の実施例に係る実施例7の蓄電システムの主要部の構成を示す図である。上述の実施例1乃至実施例5では、発電装置の一例として風力発電装置1を挙げ、発電システムとして風力発電システム100を例に説明した。本実施例では、風力発電装置1に代えて蓄電池発電装置7を発電装置とした場合について説明する。実施例1と同一の構成要素に同一符号を付し、以下では重複する説明を省略する。
 図23に示すように、蓄電システムは蓄電池発電装置7、ケーブル2、及び電力系統4(商用電力系統)より構成され、蓄電池発電装置7は、ケーブル2及び連系点3を介して電力系統4に連系される。 
 蓄電池発電装置7は、上述の図2に示した風力発電装置1を構成するロータ11及び発電機12に代えて蓄電池71を有する。蓄電池発電装置7は、電力系統4から、例えば深夜電力を蓄電池71に充電し、蓄電池71より放電することで電力を電力系統4へ送る。蓄電池発電装置7を構成する高調波フィルタ14は、上述の実施例1乃至実施例5に示した高調波フィルタと同様の構成を有し、蓄電池発電装置7及び蓄電システムにおいても、上述の実施例1乃至実施例5と同様の作用効果を奏し得るものである。
 なお、本発明は上述の実施例1乃至実施例7に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
1・・・風力発電装置
2・・・ケーブル
3・・・連系点
4・・・電力系統
5・・・通信ネットワーク
6・・・太陽光発電装置
7・・・蓄電池発電装置
11・・・ロータ
12・・・発電機
13・・・電力変換器
14・・・高調波フィルタ
15・・・タップ整定装置
16・・・共振ゲイン検査部
17・・・電圧センサ
18・・・電流センサ
21・・・タワー
22・・・ナセル
23・・・ハブ
24・・・ブレード
25・・・主軸
26・・・シュリンクディスク
27・・・増速機
28・・・メインフレーム
29・・・制御装置
30・・・センサ
31・・・運転管理センター
32・・・電子端末
41・・・系統インピーダンス
42・・・電源
61・・・太陽光パネル)
71・・・蓄電池
100・・・風力発電システム
141・・・リアクトル
142・・・タップ切替リアクトル
143・・・コンデンサ
144・・・並列リアクトル
145・・・リアクトル用開閉器
146・・・並列コンデンサ
147・・・コンデンサ用開閉器
148・・・第1タップ切替リアクトル
149・・・第2タップ切替リアクトル
151・・・接続タップ決定部151
152,162,1423・・・表示部
153,163・・・入力部
154a,164a・・・入力I/F
154b,164b・・・出力I/F
155・・・FFT
156,166・・・記憶部
157,167・・・通信I/F
158,168・・・内部バス
159・・・高調波電流推定部
161・・・インピーダンス変化検出部
1421・・・タップ切替リアクトル盤
1422・・・タップ操作部

Claims (15)

  1.  少なくとも、発電電力の周波数を変換して電力系統へ送る電力変換器と、前記電力変換器と電力系統の間に配される高調波フィルタと、を備える発電装置であって、
     前記電力系統にケーブル及び連系点を介して交流接続され、
     前記高調波フィルタは、前記連系点における高調波電流の増幅を抑制するよう、インダクタンス又は静電容量を調整することを特徴とする発電装置。
  2.  請求項1に記載の発電装置において、
     前記高調波フィルタは、
     コンデンサと、
     複数のタップが取り付けられたリアクトルと、前記複数のタップのうち何れか1つのタップと前記リアクトルの端子との接続を切替え可能なタップ切替リアクトルと、を有し、
     前記タップ切替リアクトルは、前記連系点における高調波電流の増幅を抑制するよう前記リアクトルの端子に接続されるタップを切替え、インダクタンスを調整することを特徴とする発電装置。
  3.  請求項1に記載の発電装置において、
     前記高調波フィルタは、
     コンデンサと、
     並列に接続される複数のリアクトルと、各リアクトルに直列接続される複数の開閉器と、を有し、
     前記複数の開閉器の短絡又は開放を切替え、前記リアクトルの接続数を切替えることにより、前記連系点における高調波電流の増幅を抑制するようインダクタンスを調整することを特徴とする発電装置。
  4.  請求項1に記載の発電装置において、
     前記高調波フィルタは、
     リアクトルと、
     並列に接続される複数のコンデンサと、各コンデンサに直列接続される複数の開閉器と、を有し、
     前記複数の開閉器の短絡又は開放を切替え、前記コンデンサの接続数を切替えることにより、前記連系点における高調波電流の増幅を抑制するよう静電容量を調整することを特徴とする発電装置。
  5.  請求項2に記載の発電装置において、
     前記高調波フィルタは、
     表示部と、
     前記連系点を流れる高調波電流の計測値と予め設定される連系規定の上限値を比較し、前記連系点を流れる高調波電流の計測値が前記連系規定の上限値以下の場合、前記リアクトルの端子に接続すべきタップを決定し、前記連系点を流れる高調波電流の計測値が前記連系規定の上限値を超える場合、前記表示部にアラーム出力する接続タップ決定部と、を有するタップ整定装置を備えることを特徴とする発電装置。
  6.  請求項2に記載の発電装置において、
     前記高調波フィルタは、
     表示部と、
     前記電力変換器の高調波電圧と、各タップを前記リアクトルの端子に接続した場合の共振ゲインとに基づき、前記連系点を流れる高調波電流の推定値を求める高騰は電流推定部と、
     前記連系点を流れる高調波電流の推定値と予め設定される連系規定の上限値を比較し、前記連系点を流れる高調波電流の推定値が前記連系規定の上限値以下の場合、前記リアクトルの端子に接続すべきタップを決定し、前記連系点を流れる高調波電流の推定値が前記連系規定の上限値を超える場合、前記表示部にアラーム出力する接続タップ決定部と、を有するタップ整定装置を備えることを特徴とする発電装置。
  7.  請求項2に記載の発電装置において、
     前記高調波フィルタは、
     高調波電圧を計測する電圧センサと、
     高調波電流を計測する電流センサと、
     高調波電圧の計測値及び高調波電流の計測値に基づき、前記高調波フィルタ及び前記ケーブル並びに前記電力系統の合成インピーダンスを求め、求めた合成インピーダンスと予め設定される合成インピーダンスの設定値との誤差を所定の許容値と比較し、合成インピーダンスの変化を検出するインピーダンス変化検出部と、を有することを特徴とする発電装置。
  8.  請求項2に記載の発電装置において、
     前記高調波フィルタは、
     高調波電流を計測する電流センサと、
     前記高調波フィルタ及び前記ケーブル並びに前記電力系統の合成インピーダンスと前記電力変換器の高調波電圧に基づき予め求められる高調波電流の設定値と、前記電流センサによる高調波電流の計測値との誤差を所定の許容値と比較し、合成インピーダンスの変化を検出するインピーダンス変化検出部と、を有することを特徴とする発電装置。
  9.  請求項1乃至請求項8のうちいずれか1項に記載の発電装置において、
     前記電力変換器へ発電電力を供給する機器は、風力発電装置を構成するロータと発電機及び太陽光パネル並びに蓄電池のうちいずれか1つであることを特徴とする発電装置。
  10.  少なくとも一つの発電装置と、電子端末と、これらを相互に通信可能に接続する通信ネットワークを備え、
     前記発電装置は、
     少なくとも、発電電力の周波数を変換して電力系統へ送る電力変換器と、前記電力変換器と電力系統の間に配される高調波フィルタと、を有し、
     前記電力系統にケーブル及び連系点を介して交流接続され、
     前記高調波フィルタは、前記連系点における高調波電流の増幅を抑制するよう、インダクタンス又は静電容量を調整することを特徴とする発電システム。
  11.  請求項10に記載の発電システムにおいて、
     前記高調波フィルタは、
     コンデンサと、
     複数のタップが取り付けられたリアクトルと、前記複数のタップのうち何れか1つのタップと前記リアクトルの端子との接続を切替え可能なタップ切替リアクトルと、を有し、
     前記タップ切替リアクトルは、前記連系点における高調波電流の増幅を抑制するよう前記リアクトルの端子に接続されるタップを切替え、インダクタンスを調整することを特徴とする発電システム。
  12.  請求項10に記載の発電システムにおいて、
     前記高調波フィルタは、
     コンデンサと、
     並列に接続される複数のリアクトルと、各リアクトルに直列接続される複数の開閉器と、を有し、
     前記複数の開閉器の短絡又は開放を切替え、前記リアクトルの接続数を切替えることにより、前記連系点における高調波電流の増幅を抑制するようインダクタンスを調整することを特徴とする発電システム。
  13.  請求項10に記載の発電システムにおいて、
     前記高調波フィルタは、
     リアクトルと、
     並列に接続される複数のコンデンサと、各コンデンサに直列接続される複数の開閉器と、を有し、
     前記複数の開閉器の短絡又は開放を切替え、前記コンデンサの接続数を切替えることにより、前記連系点における高調波電流の増幅を抑制するよう静電容量を調整することを特徴とする発電システム。
  14.  請求項11に記載の発電システムにおいて、
     前記高調波フィルタ又は前記電子端末は、
     表示部と、
     前記連系点を流れる高調波電流の計測値と予め設定される連系規定の上限値を比較し、前記連系点を流れる高調波電流の計測値が前記連系規定の上限値以下の場合、前記リアクトルの端子に接続すべきタップを決定し、前記連系点を流れる高調波電流の計測値が前記連系規定の上限値を超える場合、前記表示部にアラーム出力する接続タップ決定部と、を有するタップ整定装置を備えることを特徴とする発電システム。
  15.  請求項11に記載の発電システムにおいて、
     前記高調波フィルタ又は前記電子端末は、
     表示部と、
     前記電力変換器の高調波電圧と、各タップを前記リアクトルの端子に接続した場合の共振ゲインとに基づき、前記連系点を流れる高調波電流の推定値を求める高騰は電流推定部と、
     前記連系点を流れる高調波電流の推定値と予め設定される連系規定の上限値を比較し、前記連系点を流れる高調波電流の推定値が前記連系規定の上限値以下の場合、前記リアクトルの端子に接続すべきタップを決定し、前記連系点を流れる高調波電流の推定値が前記連系規定の上限値を超える場合、前記表示部にアラーム出力する接続タップ決定部と、を有するタップ整定装置を備えることを特徴とする発電システム。
PCT/JP2018/020664 2017-07-13 2018-05-30 発電装置及び発電システム WO2019012830A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017136838A JP2019022272A (ja) 2017-07-13 2017-07-13 発電装置及び発電システム
JP2017-136838 2017-07-13

Publications (1)

Publication Number Publication Date
WO2019012830A1 true WO2019012830A1 (ja) 2019-01-17

Family

ID=65001171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020664 WO2019012830A1 (ja) 2017-07-13 2018-05-30 発電装置及び発電システム

Country Status (3)

Country Link
JP (1) JP2019022272A (ja)
TW (1) TWI677625B (ja)
WO (1) WO2019012830A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181145B2 (ja) * 2019-04-08 2022-11-30 株式会社日立製作所 ウィンドファーム、ウィンドファームコントローラおよびウィンドファーム制御方法
JP7414661B2 (ja) * 2020-07-20 2024-01-16 株式会社東芝 風力発電システムおよび風力発電システム用保護・制御装置
JP7520701B2 (ja) 2020-11-24 2024-07-23 株式会社日立インダストリアルプロダクツ 電力変換装置、電力変換システム
CN115868108A (zh) * 2021-06-29 2023-03-28 东芝三菱电机产业系统株式会社 针对电力变换系统的控制装置的外部存储装置、以及电力变换系统的控制装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612821A (en) * 1979-07-13 1981-02-07 Tokyo Shibaura Electric Co Harmonic wave switching filter
JPH08126347A (ja) * 1994-10-20 1996-05-17 Canon Inc インバータおよびそれを用いた太陽光発電システム
JP2007306670A (ja) * 2006-05-09 2007-11-22 Fuji Electric Systems Co Ltd 電力安定化システム、電力安定化制御プログラム、電力安定化制御方法
JP2013074691A (ja) * 2011-09-27 2013-04-22 Toshiba Corp 交流送電系統の高調波共振回避システム
WO2014125649A1 (ja) * 2013-02-18 2014-08-21 富士電機株式会社 共振抑制装置
JP2017046451A (ja) * 2015-08-26 2017-03-02 株式会社日立製作所 発電装置のコントローラ、ウィンドファームのコントローラ、ウィンドファームの制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129795A1 (ja) * 2005-06-02 2006-12-07 Matsushita Electric Industrial Co., Ltd. 誘導加熱装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612821A (en) * 1979-07-13 1981-02-07 Tokyo Shibaura Electric Co Harmonic wave switching filter
JPH08126347A (ja) * 1994-10-20 1996-05-17 Canon Inc インバータおよびそれを用いた太陽光発電システム
JP2007306670A (ja) * 2006-05-09 2007-11-22 Fuji Electric Systems Co Ltd 電力安定化システム、電力安定化制御プログラム、電力安定化制御方法
JP2013074691A (ja) * 2011-09-27 2013-04-22 Toshiba Corp 交流送電系統の高調波共振回避システム
WO2014125649A1 (ja) * 2013-02-18 2014-08-21 富士電機株式会社 共振抑制装置
JP2017046451A (ja) * 2015-08-26 2017-03-02 株式会社日立製作所 発電装置のコントローラ、ウィンドファームのコントローラ、ウィンドファームの制御方法

Also Published As

Publication number Publication date
JP2019022272A (ja) 2019-02-07
TWI677625B (zh) 2019-11-21
TW201908597A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
CN105932916B (zh) 用于稳定风力涡轮发电机的次同步交互的系统和方法
WO2019012830A1 (ja) 発電装置及び発電システム
EP2528184B1 (en) Method and apparatus for controlling a DC-transmission link
US9046077B2 (en) Reactive power controller for controlling reactive power in a wind farm
CN103328816B (zh) 操作风力涡轮机的方法以及适用于此的系统
US8610306B2 (en) Power plant control system and method for influencing high voltage characteristics
US20120136494A1 (en) Method of controlling reactive power in a wind farm
Saad-Saoud et al. Models for predicting flicker induced by large wind turbines
CN107110119B (zh) 风力涡轮发电机的过额定值运转控制
CN105830303A (zh) 风力发电站的无功功率回路的重新配置
US9551323B2 (en) Power plant control during a low voltage or a high voltage event
TWI550992B (zh) 風力發電設備及饋入電能之方法
US10024305B2 (en) System and method for stabilizing a wind farm during one or more contingency events
Li et al. Modeling of large wind farm systems for dynamic and harmonics analysis
CN104279122A (zh) 将风轮机操作为阻尼负载
Slootweg et al. Reduced-order modelling of wind turbines
CN102334276A (zh) 用于调节双馈异步电机的装置
JP7080022B2 (ja) 風力発電装置および風力発電システム
EP4300747A1 (en) System and method for simulating electric power grid conditions
Wu et al. Research on pilot protection for single phase to ground fault in low resistance ground active distribution network
CN116298582A (zh) 用于新能源送出系统的距离保护适应性分析方法及装置
SAVA et al. FAULT RESPONSE FOR GRID CONNECTED OWPP WITH DFIG. ANALYTICAL APPROACH

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831871

Country of ref document: EP

Kind code of ref document: A1