WO2019011202A1 - 惯性约束牵连运动的诱导钻进方法和惯性约束诱导钻进装置 - Google Patents

惯性约束牵连运动的诱导钻进方法和惯性约束诱导钻进装置 Download PDF

Info

Publication number
WO2019011202A1
WO2019011202A1 PCT/CN2018/094949 CN2018094949W WO2019011202A1 WO 2019011202 A1 WO2019011202 A1 WO 2019011202A1 CN 2018094949 W CN2018094949 W CN 2018094949W WO 2019011202 A1 WO2019011202 A1 WO 2019011202A1
Authority
WO
WIPO (PCT)
Prior art keywords
drilling
inertial
ring gear
drill bit
torsion spring
Prior art date
Application number
PCT/CN2018/094949
Other languages
English (en)
French (fr)
Inventor
陶亮
陶毅
于洋
陶冠合
陶炎午
Original Assignee
西安漫垣机电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710558964.1A external-priority patent/CN107299825B/zh
Priority claimed from CN201710997940.6A external-priority patent/CN107701100B/zh
Application filed by 西安漫垣机电设备有限公司 filed Critical 西安漫垣机电设备有限公司
Priority to US16/629,894 priority Critical patent/US11306537B2/en
Publication of WO2019011202A1 publication Critical patent/WO2019011202A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/006Mechanical motion converting means, e.g. reduction gearings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B3/00Rotary drilling
    • E21B3/02Surface drives for rotary drilling
    • E21B3/025Surface drives for rotary drilling with a to-and-fro rotation of the tool
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B3/00Rotary drilling
    • E21B3/02Surface drives for rotary drilling
    • E21B3/03Surface drives for rotary drilling with an intermittent unidirectional rotation of the tool
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/16Plural down-hole drives, e.g. for combined percussion and rotary drilling; Drives for multi-bit drilling units
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/24Drilling using vibrating or oscillating means, e.g. out-of-balance masses
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/20Computer models or simulations, e.g. for reservoirs under production, drill bits

Definitions

  • the invention relates to the field of oil drilling and machining, in particular to a method for continuously stabilizing drilling, drilling, etc. by utilizing the system's moment of inertia of the rotor and its dynamic alternating impact response.
  • the invention also relates to an inertial restraint inducing drilling device.
  • shock-absorbing high-frequency torsion impactor is disclosed in the invention of the application No. CN201610099208.2.
  • the invention is mainly applied to the technical field of oil drilling, in particular to a shock-absorbing high-frequency torsion impactor, comprising a main body of a drill, a water inlet and a water outlet respectively disposed at two ends of the main body of the drill, and a pressure switch between the water inlet and the water outlet
  • the device, the pressure switching device is peripherally mounted with an impact hammer, an impact chamber is arranged between the impact hammer and the main body of the drill, an impact chamber cover is arranged at the water inlet end of the impact chamber, and a torque transmission joint is installed between the end of the impact chamber and the end of the drill body.
  • a sealing ring and a shock absorbing disc spring set are disposed between the impact chamber and the torque transmitting joint.
  • a utility model patent with the application number CN201610177526.6 discloses a drill deep well actuator with a drill string based on a two-speed torsion drill bit, in particular a drill deep well actuator with a drill string based on a two-speed torsion drill bit
  • the utility model comprises a drill string, a pressure support plate, a pressure electromagnetic extension rod, a connection structure, a drill bit, a positioning bracket, a second positioning mechanism, a first positioning mechanism and a drill string, wherein the drill bit is mounted on the drill string and the drill string
  • the bearing is mounted on the pressure supporting plate, and the pressing electromagnetic telescopic rod is mounted on the positioning mechanism; the positioning mechanism adjusts the radial distance of the positioning contact head on the positioning mechanism by positioning the electromagnetic telescopic rod to ensure that the drill string is located at the center line of the well body
  • the positioning mechanism can be fixed relative to the well body, and a mounting platform is provided for the fixed portion of the drill bit; when the drill bit is pressed by the pressure supporting plate,
  • the impact frequency of the invention is at least doubled compared with other drill tools, and the axial vibration from the drill string is absorbed by the disc spring group installed at the bottom of the drill tool, which further protects the cutting teeth of the PDC drill bit, and the drill has a simple structure and is not easily damaged. Original, long life and low manufacturing cost.
  • a gas drilling liquid self-circulating gas drilling screw drilling tool is disclosed.
  • the invention is used for gas drilling technology to drill directional wells, horizontal wells and high-angle wells, gas drilling fluid self-circulation, gas drilling screw drilling tools capable of smoothly outputting torque; including motor assembly connected in order from top to bottom, 10,000 Shaft assembly and drive shaft assembly.
  • high-pressure gas injected from the ground is used to push the piston to reciprocate at high speed, drive the incompressible liquid inside the screw to realize self-circulating motion, convert the pressure energy into mechanical energy, and make the liquid push the rotor to rotate, and the output through the universal joint shaft and the transmission shaft is smooth and A large enough torque is given to the drill bit to achieve directional drilling of the gas well.
  • the invention has the effect of smoothing the output torque and extending the life of the drill.
  • the above drilling tools all have the application effect of better drilling speed, but need the power support of the mud pump, on the one hand, the energy consumption is large; on the other hand, the drilling force for the deep well or the drilling hole is not satisfactory.
  • the inertial system is mainly applied to flight control and inertial navigation, and no reports of application of inertial system drilling have been reported.
  • the above-mentioned drilling tool patent technology has the application effect of better drilling speed increase, but requires the power support of the mud pump or the gas pump, on the one hand, the energy consumption is large; on the other hand, it is not applicable to the drilling of the deep well drilling force without the heart or fluid circulation. .
  • the above literature data retrieval there is no literature report on a fluid-powered inertial-constrained drilling device.
  • the present invention proposes an induction drilling method for inertial restraint implicated motion.
  • the present invention also proposes an inertial restraint-inducing drilling device with a PDC bit.
  • Step 1 Model selection for induced drilling:
  • the determined induced drilling model selection can connect the inertial ring gear to the planet carrier via a torsion spring;
  • Step 2 inducing the potential energy storage of the drilling, the specific process is:
  • the drilling system is activated so that the drill string begins to store potential energy in the torsion spring at a rotational speed ⁇ 0 .
  • the inertial ring gear induces the torsion torsion spring to rotate ⁇ radians with respect to the bit.
  • the reverse potential energy - mT 0 ⁇ is stored in the torsion spring.
  • the drill bit begins to rotate and the stored reverse potential energy remains in the torsion spring.
  • the stored reverse potential energy exists as the median of the torque fluctuations throughout the drilling process.
  • the induced drilling potential energy storage is realized by a torsion spring deformation connection between the planetary carrier output shaft and the inertial ring gear of the planetary gear reducer, when the planetary carrier output shaft rotates relative to the inertial ring gear, and the carrier output shaft rotates clockwise During the rotation, the inertial ring gear rotates counterclockwise with respect to the output shaft of the carrier, and the torsion spring between the output shaft of the carrier and the inertial ring gear is elastically deformed.
  • the induced drilling potential energy storage direction is required to be opposite to the moving direction of the drilling system to form a reverse energy storage
  • the induced drilling potential energy storage phase requires a stage before the drill bit of the drilling system begins to break rock;
  • the induced drilling potential energy storage size is used as the median of fluctuations in the drilling process.
  • Step 3 Steady State and Transient Induction Drilling:
  • the stored potential energy is not relatively changed and remains in the torsion spring
  • the uniform cutting induced drilling in the steady state condition is an ideal working state, and this ideal working condition exists in reality, but the probability is not high.
  • the drill bit When the drilling is induced under the transient condition, the drill bit produces a shear S wave with a torsional shear stress amplitude of ⁇ 0 , and the shear S wave propagates upward at the transverse shear wave velocity.
  • the shearing S wave propagates through the planet carrier to the planet gear; the shearing S wave received by the planetary gear is in accordance with the principle of conservation of momentum and kinetic energy and the transmission ratio m, and the shear wave stress amplitude assigned to the inertial ring gear is -m ⁇ 0 , distribution
  • the shear wave stress amplitude to the sun gear is ⁇ 0 /m;
  • the inertial ring gear shear wave stress amplitude -m ⁇ 0 propagates into the torsion spring to cause circumferential fluctuation of the inertial ring gear, effectively guiding the shock wave absorption of the drill bit; and the sun gear shear wave stress amplitude ⁇ 0 /
  • the m continues to be uploaded along the drill string, which reduces the disturbance in the movement of the drill string, thereby improving the stability of the overall drilling system.
  • the uniform-cutting bit releases the elastic potential energy stored in the torsion spring when it is blocked during drilling; the inertial constraint implicates the energy released by the drilling system to naturally match the resistance energy to accommodate the drilling resistance.
  • the resistance of the drill bit during drilling means that the drill bit encounters zero speed of the card, or the speed of the drill bit is reduced;
  • the release energy naturally matches the resistance energy in accordance with the conservation of energy and the conservation of momentum.
  • the inertial ring gear When the torsion spring potential energy in the induced drilling is released under transient conditions, the inertial ring gear is decelerated to ⁇ i when the bit resistance speed decreases.
  • the forward inertia kinetic energy I( ⁇ 0 2 - ⁇ i 2 )/2 of the inertial ring gear is superimposed with the stored reverse potential energy -mT 0 ⁇ to instantaneously reduce the inertial ring gear kinetic energy and storage potential energy; the reduced reverse storage potential energy Instantly released onto the drill bit, giving the drill a sufficient torsional energy to overcome the resistance torque.
  • the moment is 10 to 900 milliseconds.
  • the dynamic redistribution is a momentum balance distribution of the system that varies with the time of resistance; the energy allocated to the inertial ring gear must return the inertial ring gear to the forward rotation; the energy allocated to the drill bit must continue to drill the drill bit uniformly.
  • the sources of potential energy compensation for induced drilling under transient conditions are:
  • the torque energy input generated by the drill string in the drilling is supplemented to the potential energy of the torsion spring;
  • the inertia constraint is based on the mechanism of the inertial ring gear connecting the drill bit through the torsion spring and the revolving condition of the drilling system. At the moment the drill bit encounters the resistance, the shear stress wave S has not propagated to the inertial ring gear, and the inertial ring gear is not generated. The corresponding dynamic response still maintains the rotational inertia of the original revolution speed and direction, and instantaneously constitutes a relatively static inertial motion state constraint of the inertial ring gear under the condition that the drill bit encounters resistance change;
  • the implicated motion is a cyclical alternating motion of the inertial ring gear relative to the drill bit caused by the torsion spring under the mechanical imbalance condition of the inertial ring gear and the bit instantaneous differential after the resistance.
  • the induced drilling refers to the change of the torque and speed of the drill bit caused by the sudden resistance during the uniform cutting movement, resulting in the instantaneous release of the energy storage and the resistance, and timely recovery and supplementation of the periodic drilling of the potential energy.
  • the technical features of the present invention consist of four parts: a kinetic model of induced drilling, a potential energy storage for induced drilling, an induced drilling of steady state and transient, and a periodic fluctuation diagram of transient induced drilling.
  • the invention is based on the invention of the application number 201710558964.1 and the movement of the planetary gear reducer mechanism, and forms a schematic diagram of the motion mechanism of the dynamic model shown in FIG.
  • the invention also has the power input end of the sun gear, there is no fixed constraint, so there are two power output ends: the outer ring gear and the output end of the planet carrier.
  • Such a speed reduction mechanism is uncontrollable.
  • a torsion spring of the elastic element is introduced between the outer ring gear and the planet carrier, the purpose of which is to elastically impede the output of the planet carrier on the one hand and to restrain the inertial output of the outer ring gear on the other hand.
  • the motion mechanism Under unconstrained conditions forms a continuous and smooth rotation. Once the outer ring gear or planet carrier of the output end is disturbed by the outside, the oscillating motion between the two output ends is induced, and an induced drilling dynamics model of the inertial restraint implicature motion described in the present invention is formed.
  • the specific practice of the present invention is to rigidly connect the sun gear to the drill string as an input shaft for drilling torque load, and fix the drill bit on the output shaft of the planet carrier, wherein the sun gear and the planet gear are defined as rigid transmission components;
  • the fixed constraint of the ring is used as the inertial element, the torsion spring is introduced as the elastic element, and the outer ring gear of the inertial element is connected with the planetary frame through the torsion spring of the elastic element to form the basic composition of the induced drilling dynamics model of the inertial restraint implicature motion.
  • structure A schematic diagram of the structure of the inertial constraint implicated drilling dynamics model as shown in FIG.
  • the kinetic model of induced drilling has three operating conditions during the movement: the potential energy storage condition during the drilling start phase, the dynamic model of the induced drilling is a simple mechanism motion model; the external disturbance during the drilling process is not disturbed by the outside world. Steady-state conditions, the dynamic model of induced drilling is a static model; the transient conditions subjected to external disturbance during drilling, the dynamic model of induced drilling is a complex dynamic model, and its dynamic model contains The time course of complex vibration and shock conversion.
  • the continuous vibration drilling process can prevent the formation of shock wave blockage, potential energy release, constrained buffer and potential energy compensation. Into the cycle process.
  • the ordinate indicates that the potential energy torque T 0 has been reserved in the induced drilling model, which is induced by the transient condition. Balance the position.
  • the O moment of the abscissa is the impact point of the drill bit; the moment A is the bit break of the bit drill bit; the B moment is the bit constraint buffer balance point; the C moment is the model implicated replenishment potential compensation point; the D moment is the highest point of the model inertia constraint.
  • the drill bit continues to increase after the 9th speed reaches the equilibrium position, the torque of the drill bit such as 9 continues to decrease, and the rotational speed of the model inertial ring gear 3 such as 12 lags behind the equilibrium position, and the drill passes the torsion spring. 6
  • the inertia ring gear 3 is dragged back to the equilibrium position, and the rotation angle of the rotation difference is larger, causing the torque of the model torsion spring 6 such as 11 to continuously increase.
  • the speed of the drill bit such as the speed of 10 is constrained and restrained in time, which limits the damage caused by the bit speed of the bit.
  • the rotation speed of the model inertial ring gear 3 such as 12 reaches the peak value
  • the rotation speed of the drill bit 10 decreases from the peak to the balance
  • the relative rotation angle of the model torsion spring 6 starts to become smaller
  • the model torsion spring 6 If the torque of 11 returns from the peak to the equilibrium position, the compensation stores the torsional elastic potential energy of the model.
  • the torque of the drill bit, such as 9, is also induced by the torsion spring 6 from the low point back to the equilibrium position. Only the rotational speed of the model inertial ring gear 3, such as 12, is at the peak point, and the vibration of the vibration shock system is required to gradually dissipate this part of the rock fracture energy.
  • the present invention has six advantages:
  • the present invention is shown in the schematic view of Fig. 1.
  • the drill string 1 of the input string continuously inputs torque smoothly, and the torque is transmitted to the drill bit 8 through the inertia restraining mechanism, and the synchronous rotary drilling motion is completed.
  • the drill string 1 and the drill bit 8 can realize continuous synchronous rotation; under the condition of non-uniform lithology, the drill string 1 and the drill bit 8 are not continuously synchronously rotated.
  • the torque fluctuation phenomenon occurs when the drill bit 8 rotates quickly and slowly.
  • This torque fluctuation rate is first transmitted to the inertial ring gear 3 to form the rotation fluctuation of the inertial ring gear 3.
  • the rotation of the drill string 1 is reduced, the drilling pressure and the movement stability of the drill bit 8 are good, and an adaptive drilling of the anisotropic geology can be realized.
  • the vibration shock response frequency requirement of the dynamic characteristic structure design of the invention is 5 times to 20 times higher than the drilling speed, and can meet the shock vibration frequency response of the drill bit 8 for 5 to 20 times per rotation, achieving a broad spectrum. Adapt to the drill.
  • the torque input by the sun gear 1 is first stored in the torsion spring 6 in the form of potential energy before drilling the starting bit cutting, before the bit reaches the cutting torque.
  • the drill bit 8 encounters a transverse shock wave that is torsionally sheared, and transmits a torsional shock transverse wave through the planet carrier 7 and is decomposed into three paths for upward transmission.
  • the first shock wave is decomposed by the torsion spring 6 to partially shear the shock wave, but the peak of the shear shock wave is reduced by the flexibility of the torsion spring; the second and third shock waves are decomposed by the planetary gear 4 and the sun gear 5 respectively by the transmission ratio
  • the impact torque in which most of the impact torque is transmitted to the inertial ring gear 3, only a small part of the torque shock wave is transmitted to the drill string, which greatly mitigates the shock wave propagation and suppresses the oscillation motion caused by the vibration shock response of the drill string system.
  • Cutting the rock requires the drill bit 8 to bear a certain load stress level, but if the load stress fluctuates too much, the drill bit will be damaged.
  • the drilling pressure and movement stability of the drill bit 8 during continuous drilling are good, and the fluctuation of the average stress of the drill cutting is small, that is, the stress ratio of the alternating load is small.
  • the invention can effectively control the stress ratio of the alternating load, buffer the inertial vibration of the drill bit, reduce the impact of the drill bit, and achieve the durability guarantee of the service life of the drill bit.
  • the drill bit 8 has only the cutting motion of the rotation, and the revolution movement of the pendulum drill is performed, and the drilling is performed. The diameter of the eyelet is guaranteed. At the same time, the cutting path of the drill bit 8 is smooth and continuous, so the drilling hole is relatively smooth and regular.
  • the device of the present invention has no fluid power requirements, and does not actively attack the rock like the Atlas Tork Buster, but only passively responds to the cutting after encountering the resistance.
  • the device of the invention does not consume fluid power, nor blindly consumes the power transmitted by the drill string, and the energy consumption is naturally reduced.
  • the basis of the method of the invention is not the static concept, the design principle is a design concept based on dynamics, involving time concepts such as rotation, speed, vibration, shock, frequency response, rush and lag. Not only is the principle structure peculiar, the full dynamic design method and the continuous vibration impact concept are also novel.
  • the inertial restraint implicated drilling method proposed by the present invention is different from the prior art drilling technology and drilling method for the problems of vibration, pendulum drilling, decompression and jump drilling of the existing drilling system.
  • the method of the invention releases the degree of freedom constraint of the inertia constraint of the rotor, rewrites the static design method of the system, matches the independent inertial component, restrains the circumferential alternating shock vibration response, and alleviates the fluctuation of the drilling system caused by the drill bit encountering the obstacle, and is stable.
  • the basic cutting conditions of the drilling system complete the continuous and stable drilling to ensure a good cutting environment for the drill bit, and provide a new inertial restraint impeding drilling method for deep drilling, deep hole machining and high-efficiency high-quality cutting.
  • the inertia restraint inducing drilling device of the present invention includes a sun gear input shaft, an inertial double ring gear, a planetary gear, an end pressure bearing, a carrier output shaft, a planet carrier, a planetary gear shaft, a small sliding bearing bush, and a multi-head torsion spring.
  • the planet carrier is set on an outer circumferential surface of the input shaft of the sun gear, and a small sliding bearing bush is disposed on a circumferential surface of the input shaft of the sun gear; four planetary gear shafts are evenly distributed on the surface of the planet carrier; eight planets The gears are divided into two groups, and the two sets of planetary gears are axially arranged on the respective planetary gear shafts, wherein the first set of planetary gears are connected to the drill collar end near the sun gear input shaft; An end surface of a set of planetary gears is fitted to an inner end surface of one end of the input shaft of the sun gear through an end surface pressure bearing.
  • the carrier output shaft is fitted on an outer circumferential surface of the sun gear input shaft, and an inner end surface of the carrier output shaft is engaged with an outer end surface of the carrier.
  • One end of the inertial double ring gear is disposed on an outer circumferential surface of one end of the sun gear input shaft connected to the drill collar, and the other end of the inertia double ring gear is fitted on an outer circumferential surface of the output shaft of the carrier, and An inner surface of the middle portion of the inertial double ring gear meshes with an outer circumferential surface of the planetary gear; a large sliding bearing shell is formed between the inner surface of the inertial double ring gear and the outer surface of the input shaft of the sun gear .
  • the multi-head torsion spring is a multi-head torsion spring restrained by an elastic coupling, the multi-head torsion spring is sleeved on an outer circumferential surface of the output shaft of the carrier, and the inner end surface of the multi-head torsion spring and the inertial double ring gear are The outer end surface is fitted, and the end surface of the outer end of the multi-head torsion spring is fastened to the outer end surface of the output shaft of the carrier by a fixing bolt.
  • An outer circumferential surface of one end of the sun gear input shaft is an equal diameter segment, and an outer circumferential surface of the other end is a stepped shape of a plurality of stages, wherein a circumferential surface of the first step is a mating surface of the first set of planetary gears,
  • the circumferential surface of the secondary step is the mounting surface of the end pressure bearing,
  • the circumferential surface of the third step is the mounting surface of the inertial double ring gear, and the radially protruding boss is formed on the circumferential surface of the third step For the axial positioning of the inertial double ring gear.
  • the outer diameter of the equal-diameter section of the sun gear input shaft is the same as the inner diameter of the planet carrier, and the end surface of the step between the equal-diameter section of the sun gear input shaft and the surface of the first step is the axial direction of the carrier. a positioning surface; an outer diameter of the third step is the same as a maximum outer diameter of the planet carrier output shaft.
  • An end face of the inner end of the output shaft of the carrier is uniformly provided with a pin hole for mounting the carrier.
  • the inner surface of the outer end of the output shaft of the planet carrier is a threaded surface for connecting the drill bit.
  • the inner surface of the inner end of the output shaft of the carrier is an equal diameter segment, and the inner diameter of the equal diameter segment is the same as the outer diameter of the input shaft of the sun gear, so that the carrier output shaft is in clearance with the input shaft of the sun gear.
  • the inner diameter of the inner surface of the inner surface of the planet carrier output shaft is the same as the outer diameter of the assembly nut, so that the planet carrier output shaft is clearance-fitted with the assembly nut.
  • the outer surface of the middle portion of the carrier is the smallest diameter, and the outer surface of the middle portion and the both ends are inclined with a slope, and a matching gap between the outer surface of the output shaft of the carrier and the inner surface of the torsion spring is formed in the middle portion as the multi-head twist a deformation space of the spring; an outer circumferential surface of the inner end of the output shaft of the carrier is a stepped surface for mounting the inertial double ring gear.
  • the multi-head torsion spring is fitted over the outer circumferential surface of the planet carrier output shaft.
  • the planetary gear has a modulus of 1.0 to 5.0.
  • the inner circumferential surface of the inertia double ring gear is axially arranged with two sets of straight tooth faces that mesh with the planetary gears.
  • An inner circumferential surface of one end of the inertia double ring gear cooperates with a step surface on an outer circumference of one end of the input shaft of the sun gear, and an inner circumferential surface of the other end cooperates with a step surface on an outer circumference of the output shaft of the carrier.
  • a groove is arranged on the end surface of the inertia double ring gear and the output shaft of the carrier, and is configured to be engaged with the end surface of the multi-head torsion spring.
  • a fitting nut is mounted at a rear end of the input shaft of the sun gear; the fitting nut is fitted on an outer circumferential surface of the input shaft of the sun gear, and is located on an outer circumferential surface of the input shaft of the sun gear and an output shaft of the carrier Between the circumferential surfaces.
  • the planet carrier is a hollow rotor. Mounting holes of the planetary gears are evenly distributed on the housing of the carrier. Four shaft holes for mounting the output shafts of the planet carriers are uniformly disposed on both end faces of the carrier; the shaft holes are respectively penetrated with the two ends of the rectangular through holes, and are respectively located The mutually corresponding through holes on the end faces of the two ends of the carrier are concentric. An axially projecting annular boss is provided at an inner edge of one end surface of the carrier, the boss being at the mouth.
  • the outer diameter of the planet carrier is smaller than the inner diameter of the inertia double ring gear, and the inner diameter of the planet carrier is 3 to 8 mm larger than the outer diameter of the input shaft of the sun gear.
  • the invention is based on the structure of a planetary gear reducer.
  • the structure of the present invention consists of five parts: the first part is the assembled planet carrier output member: eight planetary gears are fixed to the planet carrier output shaft through four planetary gear shafts to form a planet carrier output member; the second portion is at the sun gear input
  • the shaft is equipped with a large sliding bearing bush and is equipped with an elastically-incorporated inertial double ring gear to ensure that the inner ring end face of the inertial double ring gear is in a transitional fit with the large sliding bearing bush;
  • the third part is to install a small sliding bearing bush on the sun gear input shaft and The end face bearing, then filling the planet carrier output shaft member between the sun gear shaft and the inertia double ring gear, ensuring that the sun gear, the planetary gear and the inline gear mesh with each other, and the transition fit between the small sliding bearing bush and the output shaft component of the star frame, And the assembly shaft of the sun gear input shaft locks the planet carrier output shaft component, and the
  • the present invention proposes an inertial restraint induced drilling method.
  • the invention utilizes the principle of impact vibration response of rotor dynamic inertial load, and an inertial constraint induced drilling method realized by cyclic alternating.
  • the principle of the invention is to release the constraint of the inertia constraint induced by the rotor, rewrite the system static design method, and match the independent inertial component to restrain the circumferential alternating shock vibration response, and alleviate the fluctuation response of the drilling system in the drilling system.
  • the basic cutting conditions of the stable drilling system and the method of continuous and stable drilling provide a new method of inertial restraint-induced drilling for deep drilling, deep hole machining and high-efficiency cutting.
  • the invention has five characteristics:
  • the drill bit encounters a transverse shock wave that is torsionally sheared, and transmits the torsional shock transverse wave through the inertial planet carrier 9 and decomposes into three paths for upward transmission.
  • the first shock wave is decomposed by the torsion spring 12 to partially shear the shock wave, but the peak of the shear shock wave is reduced by the flexibility of the torsion spring;
  • the second and third shock waves are decomposed by the planetary gear 8 and the sun gear 1 respectively by the transmission ratio Impact torque, in which most of the impact torque is transmitted to the inertial double outer ring gear 4, only a small part of the torque shock wave is transmitted to the drill pipe, which greatly mitigates the shock wave propagation and suppresses the oscillation movement caused by the vibration shock response of the drill string system. Reduced bit vibration.
  • the torque input by the sun gear 1 is first stored in the torsion spring 12 in the form of potential energy before the bit reaches the cutting torque.
  • the device of the present invention rotates in parallel with the drill bit, and the drilling begins to progress.
  • the synchronously rotating inertial outer ring gear 4 relies on the inertial release portion to store the potential energy and is instantaneously applied to the drill bit, correspondingly providing additional rock breaking torque, and the rotational speed thereof is correspondingly reduced.
  • the extra rock breaking torque and deceleration provided by the device depend on the size of the resistance.
  • the buffer damping system of the invention can effectively control the amplitude of the stress fluctuation of the alternating load, buffer the inertial vibration shock of the drill bit, reduce the breakage of the drill bit and the speed of the impact, and achieve the durability guarantee of the service life of the drill bit.
  • the drill rod has small fluctuation response and the cutting of the drill bit is continuous, and the drill rod is not prone to the movement stability problem of the pendulum drill.
  • the drill bit only has the rotation motion of the rotation, and the revolution movement of the swing drill is rare, and the drill is drilled.
  • the enlargement rate of the diameter of the entrance hole is guaranteed.
  • the cutting path of the drill bit is smooth and continuous, so the drilling hole is relatively smooth and regular.
  • the device of the present invention has no fluid power requirements, and does not actively attack the rock like the Atlas Tork Buster, but only passively responds to the cutting after encountering the resistance.
  • the device of the invention does not consume fluid power, nor blindly consumes the power transmitted by the drill string, and the energy consumption is naturally reduced.
  • the design principle of the device of the present invention is a design concept based on dynamics, involving time concepts such as rotation, velocity, vibration, shock, frequency response, rush, and hysteresis. Not only is the principle structure strange, but its dynamic design method and continuous impact vibration concept are also novel.
  • Figure 1 is a schematic diagram of a mechanical model for inducing drilling.
  • Figure 2 is a schematic diagram of torsional energy storage for induced drilling.
  • Figure 3 is a schematic diagram of uniform cutting for induced drilling.
  • Figure 4 is a schematic diagram of shear wave distribution for induced drilling.
  • Figure 5 is a schematic diagram of the potential energy release induced by drilling.
  • Figure 6 is a schematic diagram of inertial restraint buffering for induced drilling.
  • Figure 7 is a schematic diagram of potential energy supplementation for induced drilling.
  • Fig. 8 is a schematic diagram showing the comparison of the torque velocity fluctuations between the drill bit and the induced drilling model; wherein: 8a is a schematic diagram of the fluctuation torque of the drill bit, 8b is a schematic diagram of the fluctuation speed of the drill bit, 8c is a schematic diagram of the fluctuation torque of the model, and 8d is a schematic diagram of the fluctuation speed of the model.
  • Figure 9 is a flow chart of the present invention.
  • FIG. 10a and 10b are structural views of an inertial restraint drilling device accompanying a PDC bit, wherein FIG. 10a is a front view, and FIG. 10b is an A-A arrow view of 1a;
  • FIG. 11a and 11b are schematic views showing the structure of a sun gear input shaft, wherein Fig. 11a is a front view and Fig. 11b is a right side view;
  • FIG. 12a and 12b are schematic views showing the structure of the output shaft of the carrier, wherein FIG. 12a is a left side view and FIG. 12b is a front view;
  • FIG. 13a, 13b and 13c are schematic views of the planetary gear structure, wherein Fig. 13a is a left side view, Fig. 13b is a front view, and Fig. 13c is a perspective view;
  • FIG. 14a and 14b are schematic views of the structure of a planetary gear shaft, wherein Fig. 14a is a left side view, and Fig. 14b is a front view;
  • FIG. 15a, 15b, and 15c are schematic views of the structure of the inertial double ring gear, wherein Fig. 15a is a front view, Fig. 15b is a right view, and Fig. 15c is a perspective view;
  • FIG. 16a, 16b and 16c are schematic views of the structure of the planet carrier, wherein Fig. 16a is a front view, Fig. 16b is a right side view, and Fig. 16c is a perspective view;
  • FIG. 17a and 17b are schematic views showing the structure of a multi-head torsion spring, wherein Fig. 17a is a front view and Fig. 17b is a cross-sectional view of Fig. 17a.
  • Step 1 Model selection for induced drilling.
  • the geological structure of the oil drilling is granite stratum, drilling with PDC, drilling 654m ⁇ 760m, drilling wellbore diameter is 8-1/2 inches, the selected drill bit is 5 blade PDC, and the wellhead is 20 drilling machine equipment.
  • the application case implementation is carried out using an 8-1/2 inch PDC bit inertia-constrained induction drilling device.
  • an inertial restraint-inducing drilling device accompanying a PDC bit disclosed in the invention of the application No.
  • the inertial restraint-inducing drilling device accompanying the PDC bit includes a sun gear input shaft, an inertial double ring gear, a planetary gear, an end pressure bearing, a carrier output shaft, a planet carrier, a planetary gear shaft, a small sliding bearing bush, and a multi-head twist. spring.
  • the planet carrier is set on an outer circumferential surface of the input shaft of the sun gear, and a small sliding bearing bush is disposed on a circumferential surface of the input shaft of the sun gear; four planetary gear shafts are evenly distributed on the surface of the planet carrier; eight planets The gears are divided into two groups, and the two sets of planetary gears are axially arranged on the respective planetary gear shafts, wherein the first set of planetary gears are connected to the drill collar end near the sun gear input shaft; An end surface of a set of planetary gears is fitted to an inner end surface of one end of the input shaft of the sun gear through an end surface pressure bearing.
  • the carrier output shaft is fitted on an outer circumferential surface of the sun gear input shaft, and an inner end surface of the carrier output shaft is engaged with an outer end surface of the carrier.
  • One end of the inertial double ring gear is disposed on an outer circumferential surface of one end of the sun gear input shaft connected to the drill collar, and the other end of the inertia double ring gear is fitted on an outer circumferential surface of the output shaft of the carrier, and An inner surface of the middle portion of the inertial double ring gear meshes with an outer circumferential surface of the planetary gear; a large sliding bearing shell is formed between the inner surface of the inertial double ring gear and the outer surface of the input shaft of the sun gear .
  • the multi-head torsion spring is a multi-head torsion spring restrained by an elastic coupling, the multi-head torsion spring is sleeved on an outer circumferential surface of the output shaft of the carrier, and the inner end surface of the multi-head torsion spring and the inertial double ring gear are The outer end surface is fitted, and the end surface of the outer end of the multi-head torsion spring is fastened to the outer end surface of the output shaft of the carrier by a fixing bolt.
  • the output shaft of the bottom carrier of the model is docked with an 8-1/2 inch PDC bit through the API 4-1/2REG threaded interface, and the sun gear on the upper part of the model is connected to the drill collar through the API NC46 threaded interface;
  • the drilling height of the wellhead is drilled and connected to the drilling mud circulation system; the input rotary torque of the wellhead turntable is 270Nm.
  • Step 2 Inductive potential energy storage.
  • the drilling system is activated so that the drill string begins to store potential energy in the torsion spring at a rotational speed ⁇ 0 .
  • the inertial ring gear induces the torsion torsion spring to rotate ⁇ radians with respect to the bit.
  • the reverse potential energy - mT 0 ⁇ is stored in the torsion spring.
  • the drill bit begins to rotate and the stored reverse potential energy remains in the torsion spring.
  • the stored reverse potential energy exists as the median of the torque fluctuations throughout the drilling process.
  • the induced drilling potential energy storage is realized by a torsion spring deformation connection between the planetary carrier output shaft and the inertial ring gear of the planetary gear reducer, when the planetary carrier output shaft rotates relative to the inertial ring gear, and the carrier output shaft rotates clockwise During the rotation, the inertial ring gear rotates counterclockwise with respect to the output shaft of the carrier, and the torsion spring between the output shaft of the carrier and the inertial ring gear is elastically deformed.
  • the induced drilling potential energy storage direction is required to be opposite to the moving direction of the drilling system to form a reverse energy storage
  • the induced drilling potential energy storage phase requires a stage before the drill bit of the drilling system begins to break rock;
  • the induced drilling potential energy storage size is used as the median of fluctuations in the drilling process.
  • the torque is input at the beginning of the drill string. Since the starting torque of the drill bit has not reached the rock breaking torque T 0 of the drilling, the drill bit has not yet started, and the inertia constraint implicates the drilling dynamics model in the sun gear input and the fixed planet of the planet carrier.
  • the static motion conditions of the wheel reducer are adapted to the kinematic model calculation.
  • Step 3 Induction and drilling of steady state and transient.
  • the drilling material is homogenized, the bit torque is stable, the drilling system is balanced, the running speed is stable, the continuous cutting meets the requirements of smooth drilling technology, and the inertial restraint implicated motion induces the drilling system without vibration shock. Dynamic response.
  • the rotational speeds of the sun gear, the planet carrier and the inertial ring gear are the same, and the transmission element, the inertia element and the energy storage torsion spring have no relative motion, and the impact vibration of the inertial dynamics does not occur, and the stored potential energy exists in the form of internal force.
  • the inertia of the uniform motion constrains the moving drill bit to suddenly encounter resistance.
  • the bite suddenly encounters the resistance of gravel addition or anisotropic material during the cutting process, and the torsion shear stress amplitude is ⁇ 0
  • the S wave propagates through the planet carrier to the planet gear.
  • the S wave of the planetary gear is equal to the momentum and kinetic energy conservation principle and the gear ratio.
  • the torsional fluctuation amplitude of the drill bit is mostly transmitted to the independently impregnated inertial ring gear element system, which basically does not affect the drill string movement system of continuous input torque.
  • the inertial constraint of constant running implicates the moment of encountering the drilling, which is also the moment when the stored energy of the structure of the present embodiment is released.
  • the drill bit When the drill bit encounters a decrease in the rotational speed, it will also involve the inertial ring gear decelerating to ⁇ i .
  • the forward inertia kinetic energy of the inertial ring gear I( ⁇ 0 2 - ⁇ i 2 )/2 ⁇ 14 Joule and the stored reverse potential energy-mT 0 ⁇ -1540 Joule superposition, instantaneously reduce the inertial ring gear kinetic energy and storage potential energy, the reduced storage potential can be instantaneously released to the drill bit, and the drill bit has enough torsional energy to overcome the resistance torque.
  • the inertia constraint implicates the amount of energy released by the drilling system to naturally match the resistance energy according to the momentum and energy conservation, and automatically adapts to the drilling resistance.
  • the instant described in this embodiment is 10 to 900 milliseconds.
  • the constraint buffer of the inertia constraint implicated drilling system of the present embodiment is a condition in which the inertia ring gear stops or reverses under the condition of a large resistance torque such as a card.
  • the inertial ring gear is basically in the state of deceleration, stop 0 or reverse ⁇ j , which determines the energy demand of the bit. Dynamic redistribution. The dynamic redistributed energy is distributed on the one hand to the inertial ring gear to return to the positive rotation, and on the other hand to the drill bit to continue the drilling movement.
  • V Compensation for potential energy induced by drilling under transient conditions.
  • the drill bit involved in the inertia constraint encounters the obstacle encountering the card, and after the stored energy is released, each moving component is in a relatively differential state: the speed of the drill planet carrier lags behind the input speed of the drill string sun gear; the inertia ring gear speed lags The speed of the drill planet carrier.
  • the most dramatic change is the inertial ring gear speed.
  • the drastic change is the speed of the drill bit carrier.
  • the basic constant is always the input speed of the drill string sun gear.
  • the source of potential energy compensation for the inertia constraint implicated drilling of the present embodiment is a continuous input of the drill string torque.
  • the rotational speed of the drill has not been followed up.
  • the speed difference between the input and output compensates for the reserve potential energy released by the torsion spring, forming the incremental energy -mT 0 ⁇ , and the dynamic redistribution after the release of the rock energy.
  • the portion I( ⁇ k 2 - ⁇ j 2 )/2-mT 0 ⁇ is recovered and the inertial ring gear is dragged back to the forward rotational speed.
  • the practical application effect of the invention is that the drilling pressure is 50KN, the rotation speed is 45r/min, the slurry is uniformly gravel, the well drill string is stable and smooth, the drilling speed range is 6.0 ⁇ 10.3m/H, and the 6.4 hour reaches the predetermined depth of 705m.
  • the present embodiment is an inertial restraining drilling device with a PDC bit, including a sun gear input shaft 1, an inertial double ring gear 4, a planetary gear 5, an end pressure bearing 3, and a planet carrier.
  • the planet carrier 6 is set on the outer circumferential surface of the sun gear input shaft 1, and four planetary gear shafts 7 are evenly distributed on the surface of the planet carrier; the eight planetary gears 5 are equally divided into two groups, and The two sets of planetary gears are axially arranged on the respective planetary gear shafts, wherein the first set of planetary gears are connected to the drill collar near the sun gear input shaft; the end faces of the first set of planetary gears and the sun The inner end surface of the step of one end of the wheel input shaft is fitted by the end face pressure bearing 3.
  • the carrier output shaft 9 is fitted on an outer circumferential surface of the sun gear input shaft 1 such that an inner end surface of the carrier output shaft abuts an outer end surface of the carrier.
  • a small sliding bearing shell 1 is fitted on the circumferential surface of the sun gear input shaft 1;
  • a fitting nut 10 is located at the tail end of the sun gear input shaft, is fitted on the outer circumferential surface of the sun gear input shaft, and is at the input shaft of the sun gear
  • the outer circumferential surface is between the inner circumferential surface of the planet carrier output shaft 9.
  • An anti-back bolt 11 is drilled on the end surface of the assembly nut and the sun gear input shaft 1.
  • One end of the inertial double ring gear 4 is disposed on an outer circumferential surface of one end of the input shaft of the sun gear connected to the drill collar, and the other end of the inertia double ring gear is fitted on the outer circumferential surface of the output shaft 9 of the carrier. And engaging an inner surface of the middle portion of the inertia double ring gear with an outer circumferential surface of the planetary gear 5; a cavity inner circumference between an inner surface of the inertial double ring gear and an outer surface of the sun gear input shaft 1 There are large sliding bearing pads 2.
  • the multi-head torsion spring 12 is a multi-head torsion spring that is elastically constrained, and the multi-head torsion spring 12 is fitted over the outer circumferential surface of the carrier output shaft 9 and the inner end surface of the multi-head torsion spring is doubled with the inertia.
  • the outer end surface of the ring gear 4 is fitted, and the end surface of the outer end of the multi-head torsion spring is fastened to the outer end surface of the carrier output shaft 9 by a fixing bolt 13.
  • the sun gear input shaft 1 is a hollow shaft.
  • An outer circumferential surface of one end of the input shaft of the sun gear is an equal diameter section, and an outer circumferential surface of the other end is a stepped manner of a plurality of stages, wherein a circumferential surface of the first step is a mating surface of the first set of planetary gears, and a second
  • the circumferential surface of the step is the mounting surface of the end pressure bearing
  • the circumferential surface of the third step is the mounting surface of the inertial double ring gear 4
  • the radially protruding boss is formed on the circumferential surface of the third step For the axial positioning of the inertial double ring gear.
  • An outer diameter of the equal-diameter section of the sun gear input shaft is the same as an inner diameter of the carrier 6, and an end surface of the step between the equal-diameter section of the sun gear input shaft and the first step surface becomes the carrier 6
  • An axial positioning surface; an outer diameter of the third step is the same as a maximum outer diameter of the carrier output shaft 9.
  • the planet carrier output shaft 9 is a hollow rotor.
  • the end faces of the inner ends of the output shafts of the carrier are uniformly provided with pin holes for mounting the carrier 6.
  • the inner surface of the outer end of the output shaft of the planet carrier is a threaded surface for connecting the drill bit.
  • the inner surface of the inner end of the output shaft of the carrier is an equal diameter segment, and the inner diameter of the equal diameter segment is the same as the outer diameter of the sun gear input shaft 1, so that the carrier output shaft is in clearance fit with the sun gear input shaft.
  • the inner diameter of the inner surface of the inner surface of the planet carrier output shaft 9 is the same as the outer diameter of the assembly nut 10, so that the planet carrier output shaft is clearance-fitted with the assembly nut.
  • the outer surface of the middle portion of the carrier is the smallest diameter, and the outer surface of the middle portion and the both ends are inclined with a slope, and a matching gap between the outer surface of the output shaft of the carrier and the inner surface of the torsion spring 12 is formed in the middle portion as the multi-head.
  • the deformation space of the torsion spring; the outer circumferential surface of the inner end of the output shaft of the carrier is a stepped surface for mounting the inertial double ring gear 4.
  • the multi-head torsion spring is fitted over the outer circumferential surface of the planet carrier output shaft.
  • the planetary gear 5 is a standard spur gear.
  • the planetary gear has a modulus of 1.0 to 5.0. In this embodiment, the planetary gear has a modulus of 2.0.
  • the inertial double ring gear 4 is a hollow rotating body.
  • the inner circumferential surface of the inertial double ring gear is axially arranged with two sets of straight tooth faces that mesh with the planetary gears.
  • An inner circumferential surface of one end of the inertia double ring gear is engaged with a stepped surface on an outer circumference of one end of the sun gear input shaft 1, and an inner circumferential surface of the other end is engaged with a stepped surface on the outer circumference of the carrier output shaft 9.
  • a groove is formed in an end surface of the one end of the inertia double ring gear and the output shaft of the carrier for fitting and connecting with the end surface of the multi-head torsion spring 12.
  • the planet carrier 6 is a hollow rotor.
  • Four rectangular through holes are uniformly distributed on the housing of the carrier, and the rectangular through holes are mounting holes of the planetary gears.
  • Four shaft holes are arranged on both end faces of the carrier for mounting the planet carrier output shafts 9; the shaft holes are respectively penetrated with the two ends of the rectangular through holes, and respectively The corresponding through holes on the end faces of the two ends of the carrier are concentric.
  • An axially projecting annular boss is provided at an inner edge of one end surface of the carrier, the boss being at the mouth.
  • the outer diameter of the planet carrier is smaller than the inner diameter of the inertia double ring gear 4, and the inner diameter of the planet carrier is 3 to 8 mm larger than the outer diameter of the sun gear input shaft 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

一种惯性约束牵连运动的诱导钻进方法和伴随PDC钻头的惯性约束诱导钻进装置。惯性约束牵连运动的诱导钻进方法实现钻压与扭矩分离,包括以下步骤:步骤1,诱导钻进的模型选型;步骤2,诱导钻进的势能储存;步骤3,稳态与瞬态的诱导钻进。

Description

惯性约束牵连运动的诱导钻进方法和惯性约束诱导钻进装置 技术领域
本发明涉及石油钻井和机械加工领域,具体是利用回转体的系统转动惯量及其动力学的交变冲击响应,来实现连续稳定钻井、钻孔等的一种方法。本发明还涉及一种惯性约束诱导钻进装置。
背景技术
石油钻井和机械加工的过程中经常会钻遇各向异性或硬质夹杂的材料,引起钻进系统的脱压、跳钻、振动和冲击等,严重影响了钻进进度、加工质量和精度控制。随着现代工业自动化技术的发展和深入,钻井进度、加工质量和控制精度的技术要求与成本控制的矛盾日益突出,迫切需要一种能够在恶劣工作环境下实现快速、耐久、高效、平稳钻进加工的钻进方法。
申请号为CN201610099208.2的发明创造中公开了一种吸震式高频扭力冲击器。该发明主要应用于石油钻井技术领域,特别涉及一种吸震式高频扭力冲击器,包括钻具主体,钻具主体两端分别设置进水口和出水口,进水口和出水口之间设置压力切换装置,压力切换装置外周安装冲击锤,冲击锤与钻具主体之间设置冲击腔体,冲击腔体进水口端设置冲击腔体盖,冲击腔体末端和钻具本体末端之间安装扭力传送接头,冲击腔体和扭力传送接头之间设置密封圈及吸震碟簧组。
申请号为CN201610177526.6的实用新型专利中公开了一种基于双速变扭钻头的带钻柱的钻深井执行机构,具体是一种基于双速变扭钻头的带钻柱的钻深井执行机构,包括钻头钻柱、施压支板、施压电磁伸缩杆、连接结构、钻头、定位支架、第二定位机构、第一定位机构和钻柱,其中钻头安装在钻头钻柱上,钻头钻柱通过轴承安装在施压支板上,施压电磁伸缩杆安装在定位机构上;定位机构通过定位电磁伸缩杆调节定位机构上的定位接触头的径向距离,保证了钻柱位于井身中心线上,还能够使定位机 构相对于井身固定,为钻头的固定部分提供了安装平台;当钻头在施压支板施压下,钻头与定位机构之间的距离是变化的,连接结构具有传动和长度可以伸缩的特性,能够保证传动的顺利进行。该发明冲击频率较其它钻具至少提升1倍,来自钻柱的轴向震动被安装在钻具底部的碟簧组吸收,更加全面的保护了PDC钻头的切削齿,钻具结构简单,不易损原件,寿命长,制造成本低。
申请号为CN201511028393.8的发明创造中公开了一种气驱液自循环的气体钻井螺杆钻具。该发明用于气体钻井技术钻定向井、水平井和大斜度井,利用气驱液自循环,能够平稳输出扭矩的气体钻井螺杆钻具;包括从上至下依次连接的马达总成、万向轴总成和传动轴总成。气体钻井时,利用地面注入的高压气体推动活塞高速往复运动,驱动螺杆内部不可压缩液体实现自循环运动,将压力能转化为机械能,使液体推动转子转动,通过万向轴和传动轴输出平稳和足够大的扭矩给钻头,从而实现气体钻井定向钻进作业。该发明具有平稳输出扭矩、延长钻具使用寿命的效能。
上述钻具都具有较好钻井提速的应用效果,但是需要泥浆泵的动力支援,一方面能耗较大;另一方面对于深井或钻孔钻进力不从心。上述文献数据检索,惯性系统主要应用于飞行控制和惯性导航上,未见到应用惯性系统钻进的报道。
《石油机械》2013.42的文献报道SLTIT型扭转冲击钻井提速工具消除PDC钻头卡滑现象、提高难钻地层机械钻速。该工具与PDC钻头配合使用,形成一种新的钻井工程提速技术,在缩短钻井周期的同时,还能够稳定钻进过程,延长钻具寿命。采用流体动力学理论、3D虚拟设计技术与试验研究相结合的研制方法,提速工具室内试验寿命>150H。
《石油钻探技术》2015.1文献分别报道当前国内外应用的三种提速技术:液动旋冲提速工具、螺杆或涡轮马达钻具以及气体钻井技术。
上述钻具专利技术都具有较好钻井提速的应用效果,但是需要泥浆泵或气体泵的动力支援,一方面能耗较大;另一方面对于深井钻进力不从心或无流体循环的钻孔不适用。上述文献数据检索,未见到不依赖流体动力的惯性约束钻进装置的文献报道。
发明内容
为克服现有技术中存在的需要流体动力支援和深孔钻进末端控制的不足,本发明提出了一种惯性约束牵连运动的诱导钻进方法。本发明还提出了一种伴随PDC钻头的惯性约束诱导钻进装置。
本发明的惯性约束牵连运动的诱导钻进方法的具体过程是:
步骤1,诱导钻进的模型选型:
所确定的诱导钻进模型选型能够通过扭转弹簧将惯性齿圈与行星架连接;
所确定的诱导钻进运动模型的参数为:伴随PDC钻头的惯性约束诱导钻进装置中钻柱输入与钻头输出的传动比m≥1.0,惯性齿圈转动惯量I=0.25~5.4kgm 2
步骤2,诱导钻进的势能储存,具体过程是:
启动钻进系统,使钻柱以转动速度ω 0在扭转弹簧中开始储存势能。当钻头扭矩达到破岩扭矩T 0时,惯性齿圈牵连扭转扭转弹簧相对钻头转动θ弧度,根据传动比为m的行星轮减速器的传动方法,扭转弹簧中储存反向势能-mT 0θ。钻头开始转动切削,并且储存的反向势能保持在所述扭转弹簧中。储存的反向势能作为扭矩波动变化的中值存在于整个钻进过程中。
所述诱导钻进势能储存是基于行星轮减速器的行星架输出轴与惯性齿圈之间连接的扭转弹簧形变实现,当行星架输出轴与惯性齿圈相对转动,并且行星架输出轴顺时针转动过程中,惯性齿圈相对该行星架输出轴逆时针转动,行星架输出轴与惯性齿圈之间的扭转弹簧产生弹性形变。
所述诱导钻进势能储存方向要求与钻进系统的运动方向相反,形成逆向储能;
所述诱导钻进势能储存阶段要求在钻进系统的钻头开始破岩之前阶段;
所述诱导钻进势能储存大小作为钻进过程中波动变化的中值。
步骤3,稳态与瞬态的诱导钻进:
所述的稳态与瞬态的诱导钻进中存在不同的工况,具体是:
I、稳态工况下的匀速切削诱导钻进
所述的稳态工况下匀速切削诱导钻进时,惯性约束诱导钻进装置的太 阳轮、行星架和惯性齿圈的转速一致;
所述的储存势能没有相对变化,依然保持在所述扭转弹簧中;
所述的稳态工况下的匀速切削诱导钻进是一种理想的工作状态,这种理想工况现实中也存在,但是概率不高。
II、瞬态工况下诱导钻进冲击波传播的分配
在所述瞬态工况下诱导钻进时,钻头产生扭转剪切应力幅值为τ 0的剪切S波,剪切S波以横向剪切波速度向上传播。剪切S波通过行星架传播到行星轮上;行星轮接收的剪切S波按照动量和动能守恒原理以及传动比m,分配给惯性齿圈的剪切波应力幅值是-mτ 0,分配给太阳轮的剪切波应力幅值是τ 0/m;
所述惯性齿圈剪切波应力幅值-mτ 0传播到扭簧中引起惯性齿圈的周向波动,有效地引导吸收了钻头的冲击波动;而太阳轮剪切波应力幅值τ 0/m沿着钻柱继续上传,则减弱钻柱运动中的扰动,从而提升了整体钻进系统的运动稳定性。
III、瞬态工况下诱导钻进中的扭转弹簧势能释放
匀速切削的钻头在钻进中遇阻时释放储存在所述扭转弹簧中的弹性势能;惯性约束牵连钻进系统所释放的能量自然匹配遇阻能量,以适应钻进遇阻阻力。所述的钻头在钻进中遇阻是指钻头遇卡转速为零,或者钻头遇阻转速降低;
所述的释放能量自然匹配遇阻能量符合能量守恒与动量守恒定理。
瞬态工况下诱导钻进中的扭转弹簧势能释放时,当所述的钻头遇卡转速为零时,惯性齿圈在扭转弹簧的牵连下停止转动,存在于惯性齿圈中的惯性动能Iω 0 2/2与储存的反向势能-mT 0θ叠加,储存的反向势能瞬间减小,也瞬间降低了对钻头牵连力矩;这部分减小的储存势能瞬间释放到钻头上,形成对钻头阻力点的冲击,得以突破钻遇卡点的阻力功。
瞬态工况下诱导钻进中的扭转弹簧势能释放时,当钻头遇阻转速降低时,惯性齿圈减速到ω i。惯性齿圈的正向惯性动能I(ω 0 2i 2)/2与储存的反向势能-mT 0θ叠加,瞬间减小惯性齿圈动能和储存势能;减小的反向储存势能瞬间释放到钻头上,使钻头具有足够的扭转能量以克服遇阻力矩。
所述的瞬间为10~900毫秒。
IV、瞬态工况下诱导钻进的约束缓冲
当钻头突破阻力点现转动加速突进,对钻头破岩突进能量动态再分配;
所述的动态再分配是随遇阻时间变化的系统的动量平衡分配;分配给惯性齿圈的能量须使该惯性齿圈回到正向转动;分配给钻头的能量须使该钻头继续匀速钻进运动;
V、瞬态工况下诱导钻进的势能补偿
所述瞬态工况下诱导钻进的势能补偿的来源有:
将在钻进中钻柱产生的扭矩能量输入补充至扭转弹簧的势能;
将惯性齿圈的正向转动与钻头的匀速钻进运动之间的相对位移变化产生的势能输入补充至扭转弹簧中。
至此,完成了惯性约束牵连运动的诱导钻进。
所述的惯性约束是基于惯性齿圈通过扭转弹簧连接钻头的机构和钻进系统的公转条件上,在钻头遇阻时刻剪切应力波S还没有传播到惯性齿圈,惯性齿圈也没有产生相应的动态响应,依然保持原来公转速度与方向的转动惯性不变,瞬间构成惯性齿圈在钻头遇阻变化条件下的一种相对静止的惯性运动状态约束;
所述的牵连运动是在遇阻后惯性齿圈和钻头瞬时差动的力学不平衡条件下,由扭转弹簧牵连惯性齿圈相对于钻头产生的周向交变运动。
所述的诱导钻进是指匀速切削运动过程中突遇阻力引发的钻头扭矩和速度变化,导致瞬间释放储能破阻,并及时回收和补充势能的周期性钻进。
本发明的技术特征共有四部分:诱导钻进的动力学模型、诱导钻进的势能储存、稳态与瞬态的诱导钻进、瞬态诱导钻进的周期波动图解。
本发明是在申请号201710558964.1的发明创造和行星轮减速器机构运动基础上,形成了如图1所示的动力学模型的运动机构示意图。与行星轮减速器机构运动模式不同,本发明虽然也有太阳轮的动力输入端,但是没有固定约束,所以存在两个动力输出端:外齿圈与行星架的输出端。这样的减速机构运动不可控,为此在外齿圈与行星架之间引入了弹性元件的扭转弹簧,目的是一方面弹性牵连行星架的输出,另一方面约束外齿圈的惯性输出。当钻柱连续平稳输入动力到太阳轮,无约束条件下的运动机构就形成连续平稳的转动。一旦输出端的外齿圈或行星架受到外界的扰动,都 会诱导这两个输出端之间的振荡运动,形成了本发明所述的一种惯性约束牵连运动的诱导钻进动力学模型。
本发明的具体做法是将太阳轮刚性连接在钻柱上作为钻进扭矩载荷的输入轴,在行星架输出轴上固定钻头,其中太阳轮和行星轮定义为刚性的传动元件;放开外齿圈的固定约束作为惯性元件,引入扭转弹簧作为弹性元件,并将惯性元件的外齿圈与行星架通过弹性元件的扭转弹簧进行连接,形成惯性约束牵连运动的诱导钻进动力学模型的基本组成结构。如图1所示的惯性约束牵连钻进动力学模型的结构示意图。
诱导钻进的动力学模型在运动过程中存在三种工况:钻进启动阶段的势能储存工况,诱导钻进的动力学模型是简单的机构运动模型;钻进过程中未受外界干扰的稳态工况,诱导钻进的动力学模型是的静力学模型;钻进过程中受外界干扰的瞬态工况,诱导钻进的动力学模型就是复杂的动力学模型,其动力学模型包含了复杂的振动冲击相互转换的时间历程。
在上述诱导钻进的动力学模型基础上,根据输入一定的转速和扭矩条件,可以描述这种惯性约束牵连运动的诱导钻进方法,并按时间展开阐述本发明模型的机构运动的动力学响应历程。
经过钻头启动储能T 0之后,在钻头连续匀速钻进运动过程中,一旦遇阻诱导才能够形成冲击波阻断、势能释放、约束缓冲和势能补偿的周期性振动冲击,完成连续循环的诱导钻进周期过程。
如图8所示,在本发明的惯性约束牵连钻进的钻头模型周期波动对比示意图中,纵坐标表示诱导钻进模型中已经储备了势能扭矩T 0,是瞬态工况下诱导钻进的平衡位置。横座标的O时刻是钻头遇阻冲击点;A时刻是钻头钻头破岩突进点;B时刻是钻头约束缓冲平衡点;C时刻是模型牵连补势能偿点;D时刻是模型惯性约束最高点。其中9是钻头的扭矩波动示意图;10是钻头的转速波动示意图;11是模型的扭矩波动示意图;12是模型的转速波动示意图。
在钻头遇阻的O-A时段,如10的钻头转速必然下降,钻头所产生的剪切波尚未传导到诱导钻进模型上,则12的模型滞后响应,仍然转速保持原来速度ω 0的惯性。这种钻头与模型差速造成扭转弹簧3转角瞬间变小,则其扭转弹簧3的储存势能得以瞬间释放,模型如11的扭矩下降。根据能 量守恒原理,瞬间释放的能量不会消失,必然加在钻头上,故钻头如9的扭矩瞬间获得增量部分,形成钻头破岩的扭矩条件。
在钻头破岩突进的A-B时段,钻头破岩后能量释放出现真空,钻头如9扭矩下降,钻头如10转速加速恢复,并出现突进趋势。此时遇阻剪切波传导到惯性齿圈3产生滞后,模型惯性齿圈3的如12响应转速出现下降,原来扭转弹簧6转角变小开始变大,则模型如11的扭矩开始恢复增加到平衡状态。遇阻诱导下,钻头与模型都各自产生相应的响应运动,形成自我动态平衡系统。
在钻头牵连约束的B-C时段,钻头如9转速突进到平衡位置后继续增大,钻头如9的扭矩继续下降,而模型惯性齿圈3如12的转速却滞后于平衡位置,则钻头通过扭转弹簧6牵连惯性齿圈3回归平衡位置,这种转动差速的转角更大,造成了模型扭转弹簧6如11的扭矩持续增加。这种运动状态下,钻头如10的转速突进趋势及时得到约束遏制,限制了钻头突进速度幅值的带来的伤害。
在模型势能补偿的C-D时段,牵连运动带动模型惯性齿圈3如12的转速达到峰值,钻头如10的转速从高峰下降到平衡,模型扭转弹簧6的相对转角开始变小,则模型扭转弹簧6如11的扭矩从峰值回归到平衡位置,补偿储存了模型的扭转弹性势能。同时钻头如9的扭矩也被扭转弹簧6从低点牵连回到平衡位置。只有模型惯性齿圈3如12的转速处于峰值点,需要振动冲击系统的阻尼逐渐耗散这部分岩石破裂能量。
与现有技术相比,本发明具有6个优点:
1)广谱自适应:地质岩性砾石夹杂,软硬交错与各向异性,会导致常规钻进管柱扭矩波动的不稳定现象。
本发明如图1示意图所示,输入管柱的钻柱1连续平稳输入扭矩,通过惯性约束牵连机构将扭矩传导到钻头8,并完成同步旋转钻进运动。在钻遇均匀岩性条件下钻柱1与钻头8能够实现连续的同步转动;在钻遇非均匀岩性条件下钻柱1与钻头8就不是连续的同步转动。钻头8转动出现时快时慢的扭矩波动现象,这种扭矩波动率先传导到惯性齿圈3上,形成惯性齿圈3的转动波动,钻头8遇阻越大则惯性齿圈3波动响应越大,就自适应缓解钻柱1的转动波动。钻柱1转动波动减小则钻头8的钻压和运动 稳定性就好,就能实现各向异性地质的自适应性钻进。
另外,本发明动态特性结构设计的振动冲击响应频率要求高于钻进转速5倍~20倍,能够跟得上钻头8每旋转一圈遇阻5~20次的冲击振动频响,实现广谱适应钻。
2)冲击平稳连续:缓解钻头遇阻冲击波传播,从源头抑制消除钻柱体系振动;遇阻及时响应破阻,避免钻进间断,保障切削连续;
在钻进启动钻头切削时,钻头没有达到切削扭矩之前,太阳轮1输入的扭矩先以势能的形式储存在扭转弹簧6中。钻头8遇阻产生扭转剪切的横向冲击波,并通过行星架7向上传递扭转冲击横波,并分解成三路向上传递。第一路冲击波通过扭转弹簧6分解部分剪切冲击波,但是由扭转弹簧的柔性将剪切冲击波的峰值缓冲降低;第二路与第三路冲击波分别通过行星轮4和太阳轮5按传动比分解冲击扭矩,其中大部分冲击扭矩传递到惯性齿圈3上,仅有小部分扭矩冲击波传导到钻柱上大大缓解了冲击波传播,抑制了钻柱体系振动冲击响应带来的振荡运动。
同时大部分冲击扭矩引起惯性齿圈3的遇阻冲击响应,转动速度瞬间下降,预先储存的扭转势能瞬间释放,释放势能的瞬间加注到钻头8上,增加破岩扭矩突破阻力切削岩石;破岩后钻头8要突进超越钻柱1旋转速度,惯性齿圈3却已经迟滞于钻柱1旋转速度,但是本发明的相互牵连系统平衡载荷约束了钻头的突进,拉回了惯性齿圈3的迟滞,完成一轮冲击响应的切削过程,形成连续切削条件。
3)耐久性保障:受交变应力结构的疲劳寿命决定了钻头的耐久性,保障钻头耐久性就是保证受交变应力钻头的疲劳寿命。
切削岩石需要钻头8承担一定的载荷应力水平,但是如果这种载荷应力波动过大,就会损伤钻头。连续钻进中钻头8的钻压和运动稳定性好,则钻头切削平均应力的波动小,也就是交变载荷的应力比小。本发明能够有效控制住交变载荷的应力比,缓冲钻头惯性振动,减小钻头破阻突进冲击,实现钻头使用寿命的耐久性保障。
4)井眼质量保证:连续平稳钻进钻头不摆动,孔眼直径有保障,孔眼光滑规则;
正是由于钻柱1的波动响应小以及钻头8切削连续,钻柱1不容易受 扰动出现摆钻的运动稳定性问题,钻头8只有自转的切削运动,没有摆钻的公转运动,则钻进的孔眼直径有保证。同时切削的钻头8运动轨迹平稳连续,所以钻孔孔眼相对光滑规则。
5)经济性:无额外动力需求,无排量要求,不做无用功,低损耗长寿命;
相对于国内外利用流体排量来辅助切削的发明专利,如阿特拉斯的Tork Buster和国内的扭冲钻井工具,以及螺杆泵复合钻井等技术,在同等泥浆排量下必然会增加井口泥浆柱塞泵负荷带来的能耗消耗。本发明装置无流体动力需求,也不像阿特拉斯Tork Buster主动攻击岩石,仅是遇阻后被动响应切削。本发明装置即不消耗流体动力,也不盲目消耗钻柱传导的动力,则能耗自然降低。
6)新颖性:突破传统静力学设计理念,应用动力学设计原理的实现技术。
本发明方法的基础不是静力学理念,其设计原理都是从动力学出发的设计概念,涉及到转动、速度、振动、冲击、频响、突进和迟滞等时间概念。不仅原理结构奇特,全动力学设计方法和连续振动冲击概念也是新颖的。
总之,针对现有钻进体系的振动、摆钻、脱压和跳钻等的问题,本发明提出的惯性约束牵连钻进方法不同于现有技术中的钻进技术和钻进方法,是利用转子动力学惯性载荷的冲击振动响应原理,在近钻头处交变循环克服钻遇阻力和钻卡,自洽解决钻头钻遇第一线问题的一种惯性约束牵连钻进方法。本发明方法是释放转子惯性约束的自由度约束,改写系统静力学设计方法,匹配独立的惯性元件,约束周向交变冲击振动响应,缓解钻头钻进遇阻遇卡引起钻进体系波动,稳定钻进体系的基本切削条件,完成连续稳定钻进,保证钻头良好切削环境,为深地钻探、深孔加工和高效高品质切削提供一种全新的惯性约束牵连钻进方法。
本发明的惯性约束诱导钻进装置包括太阳轮输入轴、惯性双联齿圈、行星齿轮、端面压力轴承、行星架输出轴、行星架、行星齿轮轴、小滑动轴瓦和多头扭转弹簧。其中:所述行星架套装在所述太阳轮输入轴的外圆周表面,小滑动轴瓦套装在该太阳轮输入轴的圆周表面;4根行星齿轮轴均 布在该行星架的表面;8个行星齿轮均分为2组,并使所述2组行星齿轮轴向排列的套装在所述各行星齿轮轴上,其中第一组行星齿轮靠近所述太阳轮输入轴连接钻铤端;所述第一组行星齿轮的端面与所述太阳轮输入轴一端台阶的内端面通过端面压力轴承贴合。
所述行星架输出轴套装在所述太阳轮输入轴的外圆周表面,并使该行星架输出轴的内端面与所述行星架的外端面贴合。
所述惯性双联齿圈的一端套装在所述太阳轮输入轴连接钻铤一端的外圆周表面,该惯性双联齿圈的另一端套装在所述行星架输出轴的外圆周表面,并使该惯性双联齿圈中部的内表面与所述行星齿轮的外圆周表面之间啮合;所述惯性双联齿圈的内表面与太阳轮输入轴的外表面之间腔内周有大滑动轴瓦。
所述多头扭转弹簧为弹性牵连约束的多头扭转弹簧,该多头扭转弹簧套装在所述述行星架输出轴的外圆周表面,并使该多头扭转弹簧的内端面与所述惯性双联齿圈的外端面嵌合,该多头扭转弹簧的外端的端面通过固定螺栓与所述行星架输出轴的外端端面固紧。
所述太阳轮输入轴的一端的外圆周表面为等径段,另一端的外圆周表面为多级的台阶状,其中的第一级台阶的圆周表面为第一组行星齿轮的配合表面,第二级台阶的圆周表面为端面压力轴承的安装面,第三级台阶的圆周表面为惯性双联齿圈的安装面,并且在所述第三级台阶的圆周表面有径向凸出的凸台,用于该惯性双联齿圈的轴向定位。所述太阳轮输入轴等径段的外径与行星架的内径相同,并使该太阳轮输入轴等径段与所述第一级台阶表面之间阶梯差的端面成为该行星架的轴向定位面;所述第三级台阶的外径与所述行星架输出轴的最大外径相同。
所述行星架输出轴内端的端面均布有用于安装所述行星架的销孔。该行星架输出轴外端的内表面为用于连接钻头的螺纹面。该行星架输出轴内端的内表面为等径段,该等径段的内径与所述太阳轮输入轴的外径相同,使该行星架输出轴与所述太阳轮输入轴间隙配合。所述行星架输出轴内表面中段的内径与所述装配螺母的外径相同,使该行星架输出轴与所述装配螺母间隙配合。该行星架中段的外表面直径最小,并且该中段与两端的外表面均以斜面过渡,在该中段形成了所述行星架输出轴外表面与多头扭转 弹簧内表面的配合间隙,作为该多头扭转弹簧的变形空间;该行星架输出轴内端的外圆周表面为阶梯面,用于安装所述惯性双联齿圈。所述多头扭转弹簧套装在行星架输出轴的外圆周表面。
所述行星齿轮的模数为1.0~5.0。
所述惯性双联齿圈的内圆周表面轴向排列有2组与所述行星齿轮啮合的直齿面。所述惯性双联齿圈一端的内圆周表面与所述太阳轮输入轴一端外圆周上的台阶面配合,另一端的内圆周表面与行星架输出轴外圆周上的台阶面配合。在该惯性双联齿圈与行星架输出轴配合一端的端面均布有凹槽,用于与多头扭转弹簧的端面嵌合连接。
在所述太阳轮输入轴的尾端按装有装配螺母;该装配螺母套装在所述太阳轮输入轴的外圆周表面,并处于该太阳轮输入轴的外圆周表面与行星架输出轴的内圆周表面之间。
所述行星架为中空回转体。在该行星架的壳体上均布有行星齿轮的安装孔。在所述行星架两端端面上均布有四个用于安装各行星架输出轴的轴孔;所述的轴孔均分别与各所述的矩形通孔的两端贯通,并使分别位于行星架两端端面上的相互对应的通孔同心。在该行星架一端端面的内缘处有轴向突出的环形凸台,该凸台为止口。
所述行星架的外径小于所述惯性双联齿圈的内径,所述行星架的内径比太阳轮输入轴的外径大3~8mm。
本发明是在行星轮减速器结构基础上完成的。本发明的结构由五部分组成:第一部分是组装行星架输出部件:八个行星齿轮通过4个行星齿轮轴固定在行星架输出轴,形成了行星架输出部件;第二部分是在太阳轮输入轴上装大滑动轴瓦,并套装弹性牵连的惯性双联齿圈,保证惯性双联齿圈的内环端面与大滑动轴瓦处于过渡配合;第三部分是在太阳轮输入轴上安装小滑动轴瓦和端面轴承,然后在太阳轮轴和惯性双联齿圈之间填装行星架输出轴部件,保证太阳齿轮、行星齿轮与内联齿轮相互啮合,以及小滑动轴瓦与星架输出轴部件的过渡配合,并通过太阳轮输入轴端部的装配螺母锁紧行星架输出轴部件,还要加装防退螺栓确保锁紧可靠;第四部分是在星架输出轴部件安装另一端的大滑动轴瓦,并在外部套装弹性牵连约束的多头扭转弹簧,使得其端部的牵连槽与弹性牵连惯性双联齿圈的端部 牵连槽相互配合,形成惯性扭转牵连机构;第五部分是在多头扭转弹簧与行星架输出轴部件配合的端部,用4个固定螺拴约束锁锭多头扭转弹簧的另一端,则结构装配完成。
针对现有钻进体系的振动、跳钻和脱压的问题,本发明提出惯性约束诱导钻进方法。本发明利用转子动力学惯性载荷的冲击振动响应原理,循环交变实现的一种惯性约束诱导钻进方法。本发明原理是释放转子惯性约束诱导的自由度约束,改写系统静力学设计方法,匹配独立的惯性元件约束周向交变冲击振动响应,缓解钻头钻进遇阻遇卡的钻进体系波动响应,稳定钻进体系的基本切削条件,实现连续稳定钻进的方法,为深地钻探、深孔加工和高效切削提供一种全新的惯性约束诱导钻进的方法。
与现有技术相比,本发明具有5个特点:
1)冲击平稳连续:缓解钻头遇阻冲击波传播,从源头抑制消除钻柱体系振动;遇阻及时响应破阻,避免钻进间断,保障切削连续;
钻头遇阻产生扭转剪切的横向冲击波,并通过惯性行星架9向上传递扭转冲击横波,并分解成三路向上传递。第一路冲击波通过扭转弹簧12分解部分剪切冲击波,但是由扭转弹簧的柔性将剪切冲击波的峰值缓冲降低;第二路与第三路冲击波分别通过行星轮8和太阳轮1按传动比分解冲击扭矩,其中大部分冲击扭矩传递到惯性双联外齿圈4上,仅有小部分扭矩冲击波传导到钻杆上大大缓解了冲击波传播,抑制了钻柱体系振动冲击响应带来的振荡运动,减小了钻头振动。
同时在钻进启动钻头切削时,钻头没有达到切削扭矩之前,太阳轮1输入的扭矩先以势能的形式储存在扭转弹簧12中。钻头达到切削扭矩之时,本发明装置与钻头同步旋转钻进,钻进才开始有了进展。钻进过程中一旦钻头遇阻,同步转动的惯性双联外齿圈4依靠惯性释放部分储存势能,并瞬间加到钻头上,相应提供额外的破岩扭矩,同时其转动速度也相应减小。本装置所提供的额外破岩扭矩和减速的大小取决于遇阻的大小,遇阻大释放能量多,减速大,反之亦然。钻头破岩后的能量突然释放,钻头会表现转动加速突进;同时减速的惯性双联外齿圈4也同步要求加速跟进原来的钻进转动速度;结果就是破岩后释放的能量重新分配,钻头加速突进减缓,惯性双联外齿圈4同步跟上来。如此钻头受到的交变应力减小,完成一轮 冲击响应的切削循环,钻头连续缓冲的循环周期形成,形成连续切削的条件。
2)耐久性保障:结构减缓钻头受到的交变应力,保障钻头疲劳寿命的。
切削岩石需要钻头承担一定的载荷应力水平,但是如果这种载荷应力波动过大,波动冲击载荷就会更容易损伤钻头;如果连续钻进中钻头钻压和运动稳定性好,则钻头切削平均应力的波动小,也就是交变波动载荷的应力比小。本发明通过上述的缓冲减振系统,能够有效控制住交变载荷的应力波动幅值,缓冲钻头惯性振动冲击,减小钻头破阻突进以及遇阻冲击速度,实现钻头使用寿命的耐久性保障。
3)井眼质量保证:连续平稳钻进钻头不摆动,孔眼直径有保障,孔眼光滑规则;
正是由于上述的缓冲和原因,钻杆波动响应小以及钻头切削连续,钻杆不容易出现摆钻的运动稳定性问题,钻头只有自转的切削运动,少有摆动钻进的公转运动,则钻进孔眼直径的扩大率才有保证。同时切削的钻头运动轨迹平稳连续,所以钻孔孔眼相对光滑规则。
4)经济性:无额外动力需求,无排量要求,不做无用功,低能耗;
相对于国内外利用流体排量来辅助切削的发明专利,如阿特拉斯的Tork Buster和国内的扭冲钻井工具,以及螺杆泵复合钻井等技术,在同等泥浆排量下必然会增加井口泥浆柱塞泵负荷带来的能耗消耗。本发明装置无流体动力需求,也不像阿特拉斯Tork Buster主动攻击岩石,仅是遇阻后被动响应切削。本发明装置即不消耗流体动力,也不盲目消耗钻柱传导的动力,则能耗自然降低。
5)新颖性:突破传统静力学设计理念,应用动力学设计原理的实现技术。
本发明装置的设计原理是从动力学出发的设计概念,涉及到转动、速度、振动、冲击、频响、突进和迟滞等时间概念。不仅原理结构奇特,其动力学设计方法和连续冲击振动概念也是新颖的。
附图说明
图1为诱导钻进的力学模型示意图。
图2为诱导钻进的扭转储能示意图。
图3为诱导钻进的匀速切削示意图。
图4为诱导钻进的剪切波分配示意图。
图5为诱导钻进的势能释放示意图。
图6为诱导钻进的惯性约束缓冲示意图。
图7为诱导钻进的势能补充示意图。
图8为钻头与诱导钻进模型的扭矩速度波动对比示意图;其中:8a是钻头的波动扭矩示意图,8b是钻头的波动转速示意图,8c是模型的波动扭矩示意图,8d是模型的波动转速示意图。
图9是本发明的流程图;
图10a和图10b为伴随PDC钻头的惯性约束钻进装置结构图,其中,图10a是主视图,图10b是1a的A-A向视图;
图11a和图11b为太阳轮输入轴结构示意图,其中,图11a是主视图,图11b是右视图;
图12a和图12b为行星架输出轴结构示意图,其中,图12a是左视图,图12b是主视图;
图13a、图13b和图13c为行星齿轮结构示意图,其中,图13a是左视图,图13b是主视图,图13c是轴测图;
图14a和图14b为行星齿轮轴结构示意图,其中,图14a是左视图,图14b是主视图;
图15a、图15b和图15c为惯性双联齿圈结构示意图,其中,图15a是主视图,图15b是右视图,图15c是轴测图;
图16a、图16b和图16c为行星架结构示意图,其中,图16a是主视图,图16b是右视图,图16c是轴测图;以及
图17a和图17b为多头扭转弹簧结构示意图,其中,图17a是主视图,图17b是图17a的剖视图。
具体实施方式
在各个附图中,相同的附图标记代表相同或对应的元素或部件。
步骤1、诱导钻进的模型选型。
所述石油钻井的地质结构为花岗岩地层,采用PDC钻进,钻进654m~760m,钻井井眼直径8-1/2英寸,选用钻头是5刀翼PDC,井口用20钻机设备。模型选型确定参数之后,采用8-1/2英寸的伴随PDC钻头惯性约束诱导钻进装置开展应用案例实施。模型选型的具体结构类型和设计参数,参考申请号为201710558964.1的发明创造中公开的“一种伴随PDC钻头的惯性约束诱导钻进装置”,其中钻柱输入与钻头输出的传动比m=2.75,扭转弹簧的扭转刚度K t=1200kNm/rad,惯性齿圈转动惯量I=1.25kgm 2
所述的伴随PDC钻头的惯性约束诱导钻进装置包括太阳轮输入轴、惯性双联齿圈、行星齿轮、端面压力轴承、行星架输出轴、行星架、行星齿轮轴、小滑动轴瓦和多头扭转弹簧。其中:所述行星架套装在所述太阳轮输入轴的外圆周表面,小滑动轴瓦套装在该太阳轮输入轴的圆周表面;4根行星齿轮轴均布在该行星架的表面;8个行星齿轮均分为2组,并使所述2组行星齿轮轴向排列的套装在所述各行星齿轮轴上,其中第一组行星齿轮靠近所述太阳轮输入轴连接钻铤端;所述第一组行星齿轮的端面与所述太阳轮输入轴一端台阶的内端面通过端面压力轴承贴合。
所述行星架输出轴套装在所述太阳轮输入轴的外圆周表面,并使该行星架输出轴的内端面与所述行星架的外端面贴合。
所述惯性双联齿圈的一端套装在所述太阳轮输入轴连接钻铤一端的外圆周表面,该惯性双联齿圈的另一端套装在所述行星架输出轴的外圆周表面,并使该惯性双联齿圈中部的内表面与所述行星齿轮的外圆周表面之间啮合;所述惯性双联齿圈的内表面与太阳轮输入轴的外表面之间腔内周有大滑动轴瓦。
所述多头扭转弹簧为弹性牵连约束的多头扭转弹簧,该多头扭转弹簧套装在所述述行星架输出轴的外圆周表面,并使该多头扭转弹簧的内端面与所述惯性双联齿圈的外端面嵌合,该多头扭转弹簧的外端的端面通过固定螺栓与所述行星架输出轴的外端端面固紧。
本实施例中,模型底部行星架输出轴通过API 4-1/2REG螺纹接口对接8-1/2英寸PDC钻头,模型上部的太阳轮通过API NC46螺纹接口对接钻铤;下入PDC钻头+配套模型+钻铤到井筒内,连续对接12根钻铤和若干根钻杆,下入深度654m到达井底,井口的钻高对接方钻干,连接钻井泥浆循 环系统;井口转盘输入空转扭矩为270Nm,设定钻机大钩释放钻压50KN,钻机转盘设定转速ω 0=45r/min=4.70rad/s,开始循环泥浆并钻进启动。
钻进扭矩达到钻头切削破岩扭矩后钻头开始启动,此时的井口转盘输入扭矩已经达到1090Nm,于是粗略计算钻头扭矩参数T 0=1090Nm-270Nm=820Nm。
步骤2、诱导钻进的势能储存。
启动钻进系统,使钻柱以转动速度ω 0在扭转弹簧中开始储存势能。当钻头扭矩达到破岩扭矩T 0时,惯性齿圈牵连扭转扭转弹簧相对钻头转动θ弧度,根据传动比为m的行星轮减速器的传动方法,扭转弹簧中储存反向势能-mT 0θ。钻头开始转动切削,并且储存的反向势能保持在所述扭转弹簧中。储存的反向势能作为扭矩波动变化的中值存在于整个钻进过程中。
所述诱导钻进势能储存是基于行星轮减速器的行星架输出轴与惯性齿圈之间连接的扭转弹簧形变实现,当行星架输出轴与惯性齿圈相对转动,并且行星架输出轴顺时针转动过程中,惯性齿圈相对该行星架输出轴逆时针转动,行星架输出轴与惯性齿圈之间的扭转弹簧产生弹性形变。
所述诱导钻进势能储存方向要求与钻进系统的运动方向相反,形成逆向储能;
所述诱导钻进势能储存阶段要求在钻进系统的钻头开始破岩之前阶段;
所述诱导钻进势能储存大小作为钻进过程中波动变化的中值。
本发明在钻柱刚开始输入扭矩,由于钻头起动扭矩尚未达到钻削的破岩扭矩T 0,钻头还没有启动,则惯性约束牵连诱导钻进动力学模型处于太阳轮输入与行星架固定的行星轮减速器的静力学运动条件,适应运动学模型计算。
如图2所示,起动前输入轴转速,所述轴转速为ω 0=4.7rad/s,根据传动比为m=2.75的行星轮减速器的传动方法,得到的惯性齿圈反相转动速度为-ω 0/m=-1.71rad/s。一旦钻头扭矩累积达到钻削的破岩扭矩T 0=820Nm时,惯性约束牵连运动的诱导钻进就开始进入了钻进切削状态,此时的惯性齿圈反转牵连扭转弹簧已经转动的弧度角为-θ=-T 0/K t=-0.683rad,牵连的扭转弹簧扭矩mT 0为2255N,得到牵连扭转弹簧储存的扭转势能为-mT 0θ=-1540 J。
步骤3、稳态与瞬态的诱导钻进。
I、稳态工况下的匀速切削诱导钻进:
在诱导钻进的钻头启动后,钻削材料匀质,钻头扭矩稳定,则钻进系统平衡,运转匀速平稳,连续切削达到平稳钻进技术要求,惯性约束牵连运动的诱导钻进系统没有振动冲击的动力学响应。此时太阳轮、行星架和惯性齿圈的转速一致,传动元件、惯性元件和储能扭簧无相对运动,不出现惯性动力学的冲击振动,储存的势能以内力的形式存在着。
如图3所示,钻柱、太阳轮、行星架、惯性齿圈和钻头的转动速度一致,均为ω 0=4.70rad/s,钻柱的输入扭矩与钻头的输出扭矩均等于T 0=820Nm,扭转弹簧的扭矩为mT 0=2255N,并且扭转弹簧储备的势能-mT 0θ=-1540焦耳,保持了钻头启动切削的初始状态,没有诱导运动的动力响应。
II、瞬态工况下诱导钻进的冲击波传播分配:
在诱导钻进的钻头启动后,当钻遇非均匀各向异性材质或钻压不稳时,钻头将难以避免地出现周向波动,此时惯性约束牵连运动的诱导钻进系统就开始产生振动冲击的动力学响应。
如图4所示,匀速运动的惯性约束牵连运动的钻头突然遇阻,例如钻头切削过程中突然遇到砾石加杂或各向异性材质的阻力,产生扭转剪切应力幅值为τ 0的S波,S波并以横向剪切波速度向上传播;所述扭转剪切应力幅值τ 0=70MPa。首先S波通过行星架传播到行星轮上;其次,行星轮的S波按照动量和动能守恒原理以及传动比,分配给惯性齿圈和太阳轮的剪切波应力幅值分别是-mτ 0=-193MPa和τ 0/m=25MPa;最后,放大的惯性齿圈剪切波-mτ 0=-193MPa传播到扭簧中引起惯性约束的周向波动,有效地引导吸收了钻头的冲击波动;而弱化的太阳轮剪切波τ 0/m=25MPa沿着钻柱继续上传,则对整体钻进运动系统的扰动减弱,提升了整体钻进系统的稳定性。
换而言之,钻头的扭转波动幅度大部分传给了独立牵连的惯性齿圈元件系统,基本不影响连续输入扭矩的钻柱运动体系。
III、瞬态工况下诱导钻进中的扭转弹簧势能释放。
匀速运行的惯性约束牵连钻进遇阻时刻,也是本实施例的结构储存能 量释放的时刻。
如图5所示,当钻头遇卡转速为零时将会牵连惯性齿圈停止再反转,但是转动惯性矩为I=1.25kgm 2的惯性齿圈尚有正向的惯性动能Iω 0 2/2=14焦耳,其惯性动能与储存的反向势能-mT 0θ=-1540焦耳叠加,瞬间导致惯性齿圈动能消失为0,储存的反向势能瞬间减小为-1526焦耳,减小的反向势能降低了对钻头牵连力矩,反向势能瞬间释放到钻头上,形成对钻头阻力点的冲击,得以突破钻遇卡点的阻力功。
当钻头遇阻转速降低时,也会牵连惯性齿圈减速到ω i,惯性齿圈的正向惯性动能I(ω 0 2i 2)/2<14焦耳与储存的反向势能-mT 0θ=-1540焦耳叠加,瞬间减小惯性齿圈动能和储存势能,减小的储存势能瞬间释放到钻头上,钻头就具有足够的扭转能量以克服遇阻力矩。这其中,惯性约束牵连钻进系统所释放能量大小根据动量与能量守恒定理自然匹配遇阻能量,自动适应钻遇阻力。
本实施例所述的瞬间为10~900毫秒。
IV、瞬态工况下诱导钻进的约束缓冲。
通常钻头突破阻力点常出现转动加速突进,会引起更大的冲撞振动,导致钻头崩齿损伤。本实施例的惯性约束牵连钻进系统的约束缓冲是在遇卡等大阻力矩的条件下,惯性齿圈出现停止或反转的工况。
如图6所示,当钻头突破卡钻阻力后,钻头匹配的破阻能量不会消失,一旦岩石破裂,钻头能量突然释放使得钻头对非高阻力区具备了突进的条件。而此刻惯性钻进系统力矩并不平衡:扭转弹簧释放势能后储备能量亏空,钻头力矩过大,惯性齿圈基本处于减速、停止的0或反转的ω j状态,就决定了钻头突进能量需要动态再分配。动态再分配的能量一方面要分配给惯性齿圈回到正向转动,另一方面分配给钻头继续钻进运动,动态能量再分配的趋势是分给惯性齿圈I(ω j 2i 2)/2-mT 0θ能量,分给钻头能量为0,就形成约束缓冲钻头突进的效果,避免钻头突进冲击。
V、瞬态工况下诱导钻进的势能补偿。
本实施例针对惯性约束牵连钻进的钻头遇阻遇卡,储存的能量释放后,各个运动部件都处于相对差动状态:钻头行星架转速滞后于钻柱太阳轮输入转速;惯性齿圈转速滞后于钻头行星架转速。在这个差动状态,变化最 剧烈的是惯性齿圈转速,变化激烈的是钻头行星架转速,基本不变的永远是钻柱太阳轮的输入转速。储存的能量释放后也需要及时补充,否则惯性约束牵连钻进无法保证系统的连续钻进运动。
如图7所示,本实施例的惯性约束牵连钻进的势能补偿来源是源源不断的钻柱扭矩输入。此时钻头破阻后转速还没有跟上来,这种输入与输出的速度差动补偿了扭转弹簧释放的储备势能,形成增量能-mT 0Δθ,另外也有破岩能量释放后的动态再分配回收部分I(ω k 2j 2)/2-mT 0θ,并将惯性齿圈牵连回到正向的转动速度上。
本发明的实际应用效果:钻压50KN、转速45r/min、返浆岩屑均匀砂砾,井口钻柱稳定平顺,钻进进尺速度范围6.0~10.3m/H,约6.4小时到达预定深度705m后起钻,进行钻井取芯;取芯后继续钻进,钻压50KN,转速45r/min,钻进进尺速度4.2~9.5m/H;井口钻柱稳定平顺,约7.2小时到达深度760m后起钻,实施完成。
各实施例的工艺参数
Figure PCTCN2018094949-appb-000001
Figure PCTCN2018094949-appb-000002
如图10a-图17b所示,本实施例是一种伴随PDC钻头的惯性约束钻进装置,包括太阳轮输入轴1、惯性双联齿圈4、行星齿轮5、端面压力轴承3、行星架输出轴6、行星齿轮轴7、小滑动轴瓦8和多头扭转弹簧12。
其中:所述行星架6套装在所述太阳轮输入轴1的外圆周表面,4根行星齿轮轴7均布在该行星架的表面;8个行星齿轮5均分为2组,并使所述2组行星齿轮轴向排列的套装在所述各行星齿轮轴上,其中第一组行星齿轮靠近所述太阳轮输入轴连接钻铤端;所述第一组行星齿轮的端面与所述太阳轮输入轴一端台阶的内端面通过端面压力轴承3贴合。
所述行星架输出轴9套装在所述太阳轮输入轴1的外圆周表面,并使该行星架输出轴的内端面与所述行星架的外端面贴合。小滑动轴瓦1套装在该太阳轮输入轴1的圆周表面;装配螺母10位于该太阳轮输入轴的尾端,套装在所述太阳轮输入轴的外圆周表面,并处于该太阳轮输入轴的外圆周表面与行星架输出轴9的内圆周表面之间。在所述装配螺母与太阳轮输入轴1的端面配钻有防退螺栓11。
所述惯性双联齿圈4的一端套装在所述太阳轮输入轴连接钻铤一端的外圆周表面,该惯性双联齿圈的另一端套装在所述行星架输出轴9的外圆周表面,并使该惯性双联齿圈中部的内表面与所述行星齿轮5的外圆周表面之间啮合;所述惯性双联齿圈的内表面与太阳轮输入轴1的外表面之间 腔内周有大滑动轴瓦2。
所述多头扭转弹簧12为弹性牵连约束的多头扭转弹簧,该多头扭转弹簧12套装在所述述行星架输出轴9的外圆周表面,并使该多头扭转弹簧的内端面与所述惯性双联齿圈4的外端面嵌合,该多头扭转弹簧的外端的端面通过固定螺栓13与所述行星架输出轴9的外端端面固紧。
所述太阳轮输入轴1为中空轴。该太阳轮输入轴的一端的外圆周表面为等径段,另一端的外圆周表面为多级的台阶状,其中的第一级台阶的圆周表面为第一组行星齿轮的配合表面,第二级台阶的圆周表面为端面压力轴承的安装面,第三级台阶的圆周表面为惯性双联齿圈4的安装面,并且在所述第三级台阶的圆周表面有径向凸出的凸台,用于该惯性双联齿圈的轴向定位。所述太阳轮输入轴等径段的外径与行星架6的内径相同,并使该太阳轮输入轴等径段与所述第一级台阶表面之间阶梯差的端面成为该行星架6的轴向定位面;所述第三级台阶的外径与所述行星架输出轴9的最大外径相同。
所述行星架输出轴9为中空回转体。该行星架输出轴内端的端面均布有销孔,用于安装所述行星架6。该行星架输出轴外端的内表面为用于连接钻头的螺纹面。该行星架输出轴内端的内表面为等径段,该等径段的内径与所述太阳轮输入轴1的外径相同,使该行星架输出轴与所述太阳轮输入轴间隙配合。所述行星架输出轴9内表面中段的内径与所述装配螺母10的外径相同,使该行星架输出轴与所述装配螺母间隙配合。该行星架中段的外表面直径最小,并且该中段与两端的外表面均以斜面过渡,在该中段形成了所述行星架输出轴外表面与多头扭转弹簧12内表面的配合间隙,作为该多头扭转弹簧的变形空间;该行星架输出轴内端的外圆周表面为阶梯面,用于安装所述惯性双联齿圈4。所述多头扭转弹簧套装在行星架输出轴的外圆周表面。
所述行星齿轮5为标准直齿轮。该行星齿轮的模数为1.0~5.0。本实施例中,该行星齿轮的模数为2.0。
所述惯性双联齿圈4为中空回转体。该惯性双联齿圈的内圆周表面轴向排列有2组与所述行星齿轮啮合的直齿面。所述惯性双联齿圈一端的内圆周表面与所述太阳轮输入轴1一端外圆周上的台阶面配合,另一端的内 圆周表面与行星架输出轴9外圆周上的台阶面配合。在该惯性双联齿圈与行星架输出轴配合一端的端面均布有凹槽,用于与多头扭转弹簧12的端面嵌合连接。
所述行星架6为中空回转体。在该行星架的壳体上均布有四个矩形通孔,该矩形通孔为行星齿轮的安装孔。在所述行星架两端端面上均布有四个轴孔,用于安装各行星架输出轴9;所述的轴孔均分别与各所述的矩形通孔的两端贯通,并使分别位于行星架两端端面上的相互对应的通孔同心。在该行星架一端端面的内缘处有轴向突出的环形凸台,该凸台为止口。
所述行星架的外径小于所述惯性双联齿圈4的内径,所述行星架的内径比太阳轮输入轴1的外径大3~8mm。
附图标记一览
1   钻柱
2   推力轴承
3   惯性齿圈
4   行星轮
5   太阳轮
6   扭转弹簧
7   行星架
8   小滑动轴瓦
9   行星架输出轴
10  装配螺母
11  防退螺栓
12  多头扭转弹簧
13  固定螺栓
18  PDC钻头
19  钻头的波动扭矩
20  钻头的波动转速
21  模型的波动扭矩
22  模型的波动转速

Claims (15)

  1. 一种惯性约束牵连运动的诱导钻进方法,其特征在于:
    步骤1,诱导钻进的模型选型:
    所确定的诱导钻进模型选型能够通过扭转弹簧将惯性齿圈与行星架连接;
    所确定的诱导钻进运动模型的参数为:伴随PDC钻头的惯性约束诱导钻进装置中钻柱输入与钻头输出的传动比m≥1.0,惯性齿圈转动惯量I=0.25~5.4kgm 2
    步骤2,诱导钻进的势能储存:
    启动钻进系统,使钻柱以转动速度ω 0在扭转弹簧中开始储存势能;当钻头扭矩达到破岩扭矩T 0时,惯性齿圈牵连扭转扭转弹簧相对钻头转动θ弧度,根据传动比为m的行星轮减速器的传动方法,扭转弹簧中储存反向势能-mT 0θ;钻头开始转动切削,并且储存的反向势能保持在所述扭转弹簧中;储存的反向势能作为扭矩波动变化的中值存在于整个钻进过程中;
    所述诱导钻进势能储存是基于行星轮减速器的行星架输出轴与惯性齿圈之间连接的扭转弹簧形变实现,当行星架输出轴与惯性齿圈相对转动,并且行星架输出轴顺时针转动过程中,惯性齿圈相对该行星架输出轴逆时针转动,行星架输出轴与惯性齿圈之间的扭转弹簧产生弹性形变;
    所述诱导钻进势能储存方向要求与钻进系统的运动方向相反,形成逆向储能;
    所述诱导钻进势能储存阶段要求在钻进系统的钻头开始破岩之前阶段;
    所述诱导钻进势能储存大小作为钻进过程中波动变化的中值;
    步骤3,稳态与瞬态的诱导钻进:
    所述的稳态与瞬态的诱导钻进中存在不同的工况,具体是:
    I、稳态工况下的匀速切削诱导钻进
    所述的稳态工况下匀速切削诱导钻进时,惯性约束诱导钻进装置的太阳轮、行星架和惯性齿圈的转速一致;
    所述的储存势能没有相对变化,依然保持在所述扭转弹簧中;
    II、瞬态工况下诱导钻进冲击波传播的分配
    在所述瞬态工况下诱导钻进时,钻头产生扭转剪切应力幅值为τ 0的剪切S波,剪切S波以横向剪切波速度向上传播;剪切S波通过行星架传播到行星轮上;行星轮接收的剪切S波按照动量和动能守恒原理以及传动比m,分配给惯性齿圈的剪切波应力幅值是-mτ 0,分配给太阳轮的剪切波应力幅值是τ 0/m;
    所述惯性齿圈剪切波应力幅值-mτ 0传播到扭簧中引起惯性齿圈的周向波动,有效地引导吸收了钻头的冲击波动;而太阳轮剪切波应力幅值τ 0/m沿着钻柱继续上传,则减弱钻柱运动中的扰动,从而提升了整体钻进系统的运动稳定性;
    III、瞬态工况下诱导钻进中的扭转弹簧势能释放
    匀速切削的钻头在钻进中遇阻时释放储存在所述扭转弹簧中的弹性势能;惯性约束牵连钻进系统所释放的能量自然匹配遇阻能量,以适应钻进遇阻阻力;所述的钻头在钻进中遇阻是指钻头遇卡转速为零,或者钻头遇阻转速降低;
    所述的释放能量自然匹配遇阻能量符合能量守恒与动量守恒定理;
    IV、瞬态工况下诱导钻进的约束缓冲
    当钻头突破阻力点现转动加速突进,对钻头破岩突进能量动态再分配;
    所述的动态再分配是随遇阻时间变化的系统的动量平衡分配;分配给惯性齿圈的能量须使该惯性齿圈回到正向转动;分配给钻头的能量须使该钻头继续匀速钻进运动;
    V、瞬态工况下诱导钻进的势能补偿
    所述瞬态工况下诱导钻进的势能补偿的来源有:
    将在钻进中钻柱产生的扭矩能量输入补充至扭转弹簧的势能;
    将惯性齿圈的正向转动与钻头的匀速钻进运动之间的相对位移变化产生的势能输入补充至扭转弹簧中;
    至此,完成了惯性约束牵连运动的诱导钻进。
  2. 如权利要求1所述惯性约束牵连运动的诱导钻进方法,其特征在于,所述瞬态工况下诱导钻进中的扭转弹簧势能释放时,当所述的钻头遇卡转速为零时,惯性齿圈在扭转弹簧的牵连下停止转动,存在于惯性齿圈中的 惯性动能Iω 0 2/2与储存的反向势能-mT 0θ叠加,储存的反向势能瞬间减小,也瞬间降低了对钻头牵连力矩;这部分减小的储存势能瞬间释放到钻头上,形成对钻头阻力点的冲击,得以突破钻遇卡点的阻力功。
  3. 如权利要求1所述惯性约束牵连运动的诱导钻进方法,其特征在于,所述瞬态工况下诱导钻进中的扭转弹簧势能释放时,当钻头遇阻转速降低时,惯性齿圈减速到ω i;惯性齿圈的正向惯性动能I(ω 0 2i 2)/2与储存的反向势能-mT 0θ叠加,瞬间减小惯性齿圈动能和储存势能;减小的反向储存势能瞬间释放到钻头上,使钻头具有足够的扭转能量以克服遇阻力矩。
  4. 如权利要求2和3所述惯性约束牵连运动的诱导钻进方法,其特征在于,所述的瞬间为10~900毫秒。
  5. 如权利要求1所述惯性约束牵连运动的诱导钻进方法,其特征在于,所述的惯性约束是基于惯性齿圈通过扭转弹簧连接钻头的机构和钻进系统的公转条件上,在钻头遇阻时刻剪切应力波S还没有传播到惯性齿圈,惯性齿圈也没有产生相应的动态响应,依然保持原来公转速度与方向的转动惯性不变,瞬间构成惯性齿圈在钻头遇阻变化条件下的一种相对静止的惯性运动状态约束。
  6. 如权利要求1所述惯性约束牵连运动的诱导钻进方法,其特征在于,所述的牵连运动是在遇阻后惯性齿圈和钻头瞬时差动的力学不平衡条件下,由扭转弹簧牵连惯性齿圈相对于钻头产生的周向交变运动。
  7. 如权利要求1所述惯性约束牵连运动的诱导钻进方法,其特征在于,所述的诱导钻进是指匀速切削运动过程中突遇阻力引发的钻头扭矩和速度变化,导致瞬间释放储能破阻,并及时回收和补充势能的周期性钻进。
  8. 一种伴随PDC钻头的惯性约束诱导钻进装置,其用于执行如权利要求1-7中任一项所述的惯性约束牵连运动的诱导钻进方法,其特征在于实现钻压与扭矩的分离作用,钻压通过太阳轮和行星架传递到钻头,扭矩通过惯性双联齿圈和扭转弹簧传递到钻头,分离结构包括太阳轮输入轴、惯性双联齿圈、行星齿轮、端面压力轴承、行星架输出轴、行星架、行星齿轮轴、小滑动轴瓦和多头扭转弹簧;其中:所述行星架套装在所述太阳轮输入轴的外圆周表面,小滑动轴瓦套装在该太阳轮输入轴的圆周表面;4根行星齿轮轴均布在该行星架的表面;8个行星齿轮均分为2组,并使所述 2组行星齿轮轴向排列的套装在所述各行星齿轮轴上,其中第一组行星齿轮靠近所述太阳轮输入轴连接钻铤端;
    所述第一组行星齿轮的端面与所述太阳轮输入轴一端台阶的内端面通过端面压力轴承贴合;
    所述行星架输出轴套装在所述太阳轮输入轴的外圆周表面,并使该行星架输出轴的内端面与所述行星架的外端面贴合;
    所述惯性双联齿圈的一端套装在所述太阳轮输入轴连接钻铤一端的外圆周表面,该惯性双联齿圈的另一端套装在所述行星架输出轴的外圆周表面,并使该惯性双联齿圈中部的内表面与所述行星齿轮的外圆周表面之间啮合;所述惯性双联齿圈的内表面与太阳轮输入轴的外表面之间腔内周有大滑动轴瓦;
    所述多头扭转弹簧为弹性牵连约束的多头扭转弹簧,该多头扭转弹簧套装在所述述行星架输出轴的外圆周表面,并使该多头扭转弹簧的内端面与所述惯性双联齿圈的外端面嵌合,该多头扭转弹簧的外端的端面通过固定螺栓与所述行星架输出轴的外端端面固紧。
  9. 如权利要求8所述伴随PDC钻头的惯性约束诱导钻进装置,其特征在于,所述太阳轮输入轴的一端的外圆周表面为等径段,另一端的外圆周表面为多级的台阶状,其中的第一级台阶的圆周表面为第一组行星齿轮的配合表面,第二级台阶的圆周表面为端面压力轴承的安装面,第三级台阶的圆周表面为惯性双联齿圈的安装面,并且在所述第三级台阶的圆周表面有径向凸出的凸台,用于该惯性双联齿圈的轴向定位;所述太阳轮输入轴等径段的外径与行星架的内径相同,并使该太阳轮输入轴等径段与所述第一级台阶表面之间阶梯差的端面成为该行星架的轴向定位面;所述第三级台阶的外径与所述行星架输出轴的最大外径相同。
  10. 如权利要求8所述伴随PDC钻头的惯性约束诱导钻进装置,其特征在于,所述行星架输出轴内端的端面均布有用于安装所述行星架的销孔;该行星架输出轴外端的内表面为用于连接钻头的螺纹面;该行星架输出轴内端的内表面为等径段,该等径段的内径与所述太阳轮输入轴的外径相同,使该行星架输出轴与所述太阳轮输入轴间隙配合;所述行星架输出轴内表面中段的内径与所述装配螺母的外径相同,使该行星架输出轴与所述装配 螺母间隙配合;该行星架中段的外表面直径最小,并且该中段与两端的外表面均以斜面过渡,在该中段形成了所述行星架输出轴外表面与多头扭转弹簧内表面的配合间隙,作为该多头扭转弹簧的变形空间;该行星架输出轴内端的外圆周表面为阶梯面,用于安装所述惯性双联齿圈;所述多头扭转弹簧套装在行星架输出轴的外圆周表面。
  11. 如权利要求8所述伴随PDC钻头的惯性约束诱导钻进装置,其特征在于,所述行星齿轮的模数为1.0~5.0。
  12. 如权利要求8所述伴随PDC钻头的惯性约束诱导钻进装置,其特征在于,所述惯性双联齿圈的内圆周表面轴向排列有2组与所述行星齿轮啮合的直齿面;所述惯性双联齿圈一端的内圆周表面与所述太阳轮输入轴一端外圆周上的台阶面配合,另一端的内圆周表面与行星架输出轴外圆周上的台阶面配合;在该惯性双联齿圈与行星架输出轴配合一端的端面均布有凹槽,用于与多头扭转弹簧的端面嵌合连接。
  13. 如权利要求8所述伴随PDC钻头的惯性约束诱导钻进装置,其特征在于,在所述太阳轮输入轴的尾端按装有装配螺母;该装配螺母套装在所述太阳轮输入轴的外圆周表面,并处于该太阳轮输入轴的外圆周表面与行星架输出轴的内圆周表面之间。
  14. 如权利要求8所述伴随PDC钻头的惯性约束诱导钻进装置,其特征在于,所述行星架为中空回转体;在该行星架的壳体上均布有行星齿轮的安装孔;在所述行星架两端端面上均布有四个用于安装各行星架输出轴的轴孔;所述的轴孔均分别与各所述的矩形通孔的两端贯通,并使分别位于行星架两端端面上的相互对应的通孔同心;在该行星架一端端面的内缘处有轴向突出的环形凸台,该凸台为止口。
  15. 如权利要求14所述伴随PDC钻头的惯性约束诱导钻进装置,其特征在于,所述行星架的外径小于所述惯性双联齿圈的内径,所述行星架的内径比太阳轮输入轴的外径大3~8mm。
PCT/CN2018/094949 2017-07-11 2018-07-09 惯性约束牵连运动的诱导钻进方法和惯性约束诱导钻进装置 WO2019011202A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/629,894 US11306537B2 (en) 2017-07-11 2018-07-09 Induced drilling method for inertia constrained implicated motion and inertial constraint induced drilling device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710558964.1A CN107299825B (zh) 2017-07-11 2017-07-11 一种伴随pdc钻头的惯性约束诱导钻进装置
CN201710558964.1 2017-07-11
CN201710997940.6 2017-10-24
CN201710997940.6A CN107701100B (zh) 2017-10-24 2017-10-24 一种惯性约束牵连运动的诱导钻进方法

Publications (1)

Publication Number Publication Date
WO2019011202A1 true WO2019011202A1 (zh) 2019-01-17

Family

ID=65001057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094949 WO2019011202A1 (zh) 2017-07-11 2018-07-09 惯性约束牵连运动的诱导钻进方法和惯性约束诱导钻进装置

Country Status (2)

Country Link
US (1) US11306537B2 (zh)
WO (1) WO2019011202A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113638729A (zh) * 2021-08-06 2021-11-12 西南石油大学 一种考虑扭力冲击器的钻柱粘滑振动抑制方法
CN114233206A (zh) * 2021-12-03 2022-03-25 江苏和信石油机械有限公司 一种水电系统用反井钻机钻杆结构

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115405222A (zh) * 2022-08-12 2022-11-29 西南石油大学 高频复合冲击器
CN116256222B (zh) * 2023-05-15 2023-07-04 中国矿业大学(北京) 一种非均质性岩石i型断裂能的获取方法
CN117365301A (zh) * 2023-11-16 2024-01-09 东北石油大学 一种划眼器、设计方法、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721172A (en) * 1985-11-22 1988-01-26 Amoco Corporation Apparatus for controlling the force applied to a drill bit while drilling
CN204402386U (zh) * 2014-12-29 2015-06-17 中石化胜利石油工程有限公司钻井工艺研究院 钻头扭矩恒定器
CN105201403A (zh) * 2015-09-06 2015-12-30 四川省贝特石油技术有限公司 自主式恒扭恒压高效破岩工具
CN107299825A (zh) * 2017-07-11 2017-10-27 西北工业大学 一种伴随pdc钻头的惯性约束诱导钻进装置
CN107701100A (zh) * 2017-10-24 2018-02-16 西北工业大学 一种惯性约束牵连运动的诱导钻进方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934602B (zh) * 2013-12-23 2018-11-23 哈里伯顿能源服务公司 用于油井钻探组件的内联扭转振动减轻机构
US9890633B2 (en) * 2014-10-20 2018-02-13 Hunt Energy Enterprises, Llc System and method for dual telemetry acoustic noise reduction
US10760417B2 (en) * 2018-01-30 2020-09-01 Schlumberger Technology Corporation System and method for surface management of drill-string rotation for whirl reduction
US20190257153A1 (en) * 2018-02-19 2019-08-22 Nabors Drilling Technologies Usa, Inc. System and method for mitigating torsional vibrations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721172A (en) * 1985-11-22 1988-01-26 Amoco Corporation Apparatus for controlling the force applied to a drill bit while drilling
CN204402386U (zh) * 2014-12-29 2015-06-17 中石化胜利石油工程有限公司钻井工艺研究院 钻头扭矩恒定器
CN105201403A (zh) * 2015-09-06 2015-12-30 四川省贝特石油技术有限公司 自主式恒扭恒压高效破岩工具
CN107299825A (zh) * 2017-07-11 2017-10-27 西北工业大学 一种伴随pdc钻头的惯性约束诱导钻进装置
CN107701100A (zh) * 2017-10-24 2018-02-16 西北工业大学 一种惯性约束牵连运动的诱导钻进方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113638729A (zh) * 2021-08-06 2021-11-12 西南石油大学 一种考虑扭力冲击器的钻柱粘滑振动抑制方法
CN114233206A (zh) * 2021-12-03 2022-03-25 江苏和信石油机械有限公司 一种水电系统用反井钻机钻杆结构
CN114233206B (zh) * 2021-12-03 2023-07-28 江苏和信石油机械有限公司 一种水电系统用反井钻机钻杆结构

Also Published As

Publication number Publication date
US11306537B2 (en) 2022-04-19
US20210079728A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
WO2019011202A1 (zh) 惯性约束牵连运动的诱导钻进方法和惯性约束诱导钻进装置
Kamel et al. Modeling and analysis of stick-slip and bit bounce in oil well drillstrings equipped with drag bits
US20060237234A1 (en) Earth boring tool
CN105332655B (zh) 一种三维水力振荡器
CN204139968U (zh) 一种钻井用双脉冲水力振荡器
WO2016101387A1 (zh) 扰动破岩钻具及扰动破岩钻井方法
CN204941340U (zh) 一种轴向振动冲击器
CN107299825B (zh) 一种伴随pdc钻头的惯性约束诱导钻进装置
US10927607B2 (en) Drilling speed increasing device driven by downhole motor for generating shock vibration
CN205400595U (zh) 一种扭力冲击器
CN202990851U (zh) 螺杆式高频冲击钻井工具
CN105421996A (zh) 利用旋冲方式产生复合作用破岩的钻井工具
CN204402386U (zh) 钻头扭矩恒定器
CN105275405A (zh) 利用冲击作用提高破岩效率的新型pdc钻头
CN101988368A (zh) 一种pdc钻头粘滑振动减震器
CN103375133A (zh) 一种井下位移冲击式钻井工具
CN103790527B (zh) 井下高频压力脉冲发生装置
Kamel et al. Modeling and analysis of axial and torsional vibrations of drillstrings with drag bits
CN103306606B (zh) 一种油气深井钻进用行星轮系节能双层钻头
CN102373885B (zh) 一种用于石油天然气钻井的随钻动力扩眼器
CN202520220U (zh) 顶部液压冲击钻机
CN107701100B (zh) 一种惯性约束牵连运动的诱导钻进方法
CN210460490U (zh) 一种高频周向冲击式螺杆钻具结构
CN203035438U (zh) 井底发动机
CN103174791B (zh) 钻柱激振减阻工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832628

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/07/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18832628

Country of ref document: EP

Kind code of ref document: A1