WO2019011151A1 - 发动机 - Google Patents

发动机 Download PDF

Info

Publication number
WO2019011151A1
WO2019011151A1 PCT/CN2018/094125 CN2018094125W WO2019011151A1 WO 2019011151 A1 WO2019011151 A1 WO 2019011151A1 CN 2018094125 W CN2018094125 W CN 2018094125W WO 2019011151 A1 WO2019011151 A1 WO 2019011151A1
Authority
WO
WIPO (PCT)
Prior art keywords
working cylinder
hole
medium
power output
output shaft
Prior art date
Application number
PCT/CN2018/094125
Other languages
English (en)
French (fr)
Inventor
游涛
Original Assignee
游涛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 游涛 filed Critical 游涛
Publication of WO2019011151A1 publication Critical patent/WO2019011151A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/0002Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F01B3/0005Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having two or more sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/0002Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F01B3/0017Component parts, details, e.g. sealings, lubrication
    • F01B3/0023Actuating or actuated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/3446Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • F01C1/3447Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface the vanes having the form of rollers, slippers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/40Other reciprocating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C2/00Rotary-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C2/00Rotary-piston engines
    • F03C2/30Rotary-piston engines having the characteristics covered by two or more of groups F03C2/02, F03C2/08, F03C2/22, F03C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F03C2/304Rotary-piston engines having the characteristics covered by two or more of groups F03C2/02, F03C2/08, F03C2/22, F03C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movements defined in sub-group F03C2/08 or F03C2/22 and relative reciprocation between members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a power plant, and more particularly to an engine.
  • the existing engine generally can only use gas as the working medium, and can not use high-pressure air, liquid working medium, etc., thereby limiting its application range.
  • the present invention provides an engine capable of driving work using gas, compressed air, liquid working medium, etc., to solve the technical problem that the existing engine has poor adaptability to the working medium form.
  • the engine of the present invention includes a frame on which a left working cylinder and a right working cylinder are disposed, and the left working cylinder and the right working cylinder are symmetrically arranged;
  • the engine further includes a double-acting vane pump, the piston rods of the left working cylinder and the right working cylinder are fixedly connected with the casing of the double-acting vane pump, and the piston and the piston rod of the left working cylinder are disposed in the communicating left working cylinder a medium through hole of the medium inlet of the left end of the cavity and the double acting vane pump, and a medium through hole connecting the right working cylinder inner cavity and the right end medium inlet of the double acting vane pump to the piston and the piston rod of the right working cylinder, the double acting vane a housing discharge hole is formed on the casing of the pump;
  • the engine further includes a crank, a power output shaft, and a reversing sleeve fixed on the frame and sleeved on the power output shaft, the power output shaft is rotatably engaged with the reversing sleeve; the first end of the crank is eccentrically connected On the rotor of the double-acting vane pump, and the eccentricity is a quarter of the stroke of the left working cylinder and the right working cylinder, and the second end of the crank is fixedly connected with the power output shaft;
  • the reversing sleeve is provided with a medium inlet hole and a medium discharge hole, and the power output shaft is provided with a first annular groove communicating with the medium inlet hole and a second annular groove communicating with the medium discharge hole,
  • the power output shaft is further provided with a first flow guiding slit connected to the first annular groove, and the power output shaft is further provided with a second guiding slit connected to the second annular groove, the first guiding flow
  • the slit and the second flow guiding slit are located on two sides of the radial direction of the power output shaft;
  • the reversing sleeve is provided with a first reversing hole and a second reversing hole, and the first shaft is in a rotating state, the first The reversing hole is alternately connected with the first diversion slit and the second diversion slit, and the second diversion hole is also alternately connected with the first diversion slit and the second diversion slit;
  • the rear end of the cylinders of the left working cylinder and the right working cylinder are respectively provided with a medium passage hole, and the medium on the cylinder of the left working cylinder is connected to the first reversing hole through the first draft tube through the hole.
  • the medium on the cylinder of the right working cylinder is connected to the second reversing hole through the second draft tube through the hole.
  • left working cylinder and the right working cylinder are cylinders or cylinders.
  • the engine of the invention can use the piston of the working cylinder driven by gas, compressed air, liquid working medium, etc., and the piston rod pushes the shell of the double-acting vane pump to perform reciprocating translation movement, and simultaneously enters the double-acting blade from the medium through hole in the piston rod.
  • the working medium of the pump cavity also drives the rotation of the rotor of the double-acting vane pump.
  • the combined motion of the shell and the rotor of the double-acting vane pump is converted into the rotary motion of the power output shaft by the crank, thereby subtly converting the energy of the working medium into Rotational kinetic energy output of the PTO shaft.
  • the engine of the invention can work with gas, compressed air, liquid medium, etc., has good adaptability and can be applied in a wider range.
  • Figure 1 is a schematic view showing the first embodiment of the engine
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a cross-sectional view taken along line B-B of Figure 1;
  • Figure 4 is a cross-sectional view taken along line C-C of Figure 1;
  • Figure 5 is a schematic perspective view of the power output shaft
  • FIG. 6 is a schematic perspective view of a reversing sleeve
  • Figure 7 is a schematic view showing a second embodiment of the engine
  • Figure 8 is a schematic view of the relative position of the left working cylinder, the double acting vane pump, the right working cylinder, the crank and the power output shaft;
  • Figure 9 is a schematic diagram showing the relative positions of the left working cylinder, the double acting vane pump, the right working cylinder, the crank and the power output shaft;
  • Figure 10 is a schematic view of the relative positions of the left working cylinder, the double acting vane pump, the right working cylinder, the crank and the power output shaft;
  • Figure 11 is a schematic view of the relative positions of the left working cylinder, the double acting vane pump, the right working cylinder, the crank and the power output shaft.
  • the position of the crank in Fig. 4 and the position of the crank in Fig. 2 are symmetrical with respect to the center of the rotor;
  • the engine of the embodiment includes a frame 1, and the frame is provided with a left working cylinder 2 and a right working cylinder 3, and the left working cylinder and the right working cylinder are symmetrically arranged;
  • the engine further includes a double-acting vane pump 4, which belongs to the prior art.
  • a double-acting vane pump of a suitable type can be purchased as needed, or a suitable double-acting vane pump can be manufactured according to the prior art. .
  • the piston rods of the left working cylinder and the right working cylinder are fixedly connected with the casing of the double-acting vane pump, and the piston and the piston rod of the left working cylinder are provided with a medium inlet chamber connecting the left working cylinder and a left-side medium inlet of the double-acting vane pump.
  • the medium through hole 5, the piston and the piston rod of the right working cylinder are also provided with a medium through hole communicating with the right working cylinder inner chamber and the right end medium inlet of the double acting vane pump, and the double acting vane pump has a medium discharge hole on the casing 21.
  • the function of the medium discharge hole 21 is to discharge the working medium that enters the double-acting vane pump to push the rotor to rotate, so that the power output shaft of the engine can be normally started at any angle to avoid the dead point problem.
  • the engine further includes a crank 6, a power output shaft 7, and a reversing sleeve 8 fixed to the frame and sleeved on the power output shaft, the power output shaft is rotatably engaged with the reversing sleeve, the first of the crank The end is eccentrically connected to the rotor of the double-acting vane pump, and the eccentricity is one quarter of the left working cylinder and the right working cylinder stroke, and the first end of the crank is rotatably engaged with the rotor of the double-acting vane pump, the crank The second end is fixedly connected to the power output shaft.
  • the crank 6 in this embodiment is composed of a horizontal axis 61 and a connecting block 62 as shown in FIG. 4; in a specific implementation, the connecting block 62 and the horizontal axis 61 may be fixed or rotatably connected.
  • the reversing sleeve is provided with a medium inlet hole 9 and a medium discharge hole 10, and the power output shaft is provided with a first annular groove 11 communicating with the medium inlet hole and a second annular groove communicating with the medium discharge hole.
  • the power output shaft is further provided with a first flow guiding slit 13 connected to the first annular groove
  • the power output shaft is further provided with a second guiding slit 14 connected to the second annular groove
  • the first flow guiding slit and the second flow guiding slit are located on two sides of the radial direction of the power output shaft
  • the reverse sleeve is provided with a first reversing hole 15 and a second reversing hole 16 at the power output shaft In the rotating state, the first reversing hole is alternately connected with the first guiding slit and the second guiding slit, and the second reversing hole is also alternately connected with the first guiding slit and the second guiding slit;
  • the rear end of the cylinders of the left working cylinder and the right working cylinder are respectively provided with a medium passage hole 17, and the medium on the cylinder of the left working cylinder is connected to the first reversing hole through the first draft tube 18 through the hole.
  • the medium on the cylinder of the right working cylinder is connected to the second reversing hole through the second draft tube 19 through the hole.
  • the left working cylinder and the right working cylinder are cylinders, and the cylinder can work with a gaseous medium such as gas or compressed air.
  • a gaseous medium such as gas or compressed air.
  • the left working cylinder and the right working cylinder may also be cylinders, and the cylinders may perform work using a liquid working medium.
  • the gaseous working medium enters from the medium inlet hole 9 on the reversing sleeve 8, and the gaseous working medium sequentially enters the inner cavity of the left working cylinder 2 through the first annular groove 11, the first guiding slit 13, and the first guiding tube 18.
  • the gaseous working medium pushes the piston rod of the left working cylinder to extend.
  • the first flow guiding slit 13 is completely separated from the first switching hole 15 on the reversing sleeve, and the first guiding slit 13 starts and the second reversing hole 16 on the reversing sleeve
  • the second flow guiding slit 14 is completely separated from the second switching hole 16 on the reversing sleeve, and the second guiding slit 14 starts to be connected to the first reversing hole 15 on the reversing sleeve.
  • the gaseous working medium enters from the medium inlet hole 9 on the reversing sleeve 8, and the gaseous working medium sequentially enters the right working cylinder 3 through the first annular groove 11, the first flow guiding slit 13, and the second guiding tube 19.
  • the gaseous working medium pushes the piston rod of the right working cylinder to extend from the right stop point to the left stop point, and the piston rod of the right working cylinder pushes the outer casing of the double-acting vane pump to the left, while the right working cylinder 3
  • the gaseous working medium in the chamber also enters the double acting vane pump through the medium through hole 5 on the piston rod, and the gaseous working medium pushes the rotor of the double acting vane pump to still rotate to the right (although the piston rod of the right working cylinder is from the right)
  • the translation direction of the rotor is from right to left, but since the direction of rotation of the rotor is determined by the inclination direction of the blades on the rotor, the rotor is still rotated to the right; and the translation of the rotor of the double-acting vane pump And the rotation is converted into a driving crank to rotate to the left, and the crank rotates to the left to drive the power
  • This embodiment only assumes that the piston rod of the left working cylinder starts to move from the left stop point in order to facilitate the operation of the engine.
  • the vane pump of the engine can start from any stopping position.
  • the functions of the medium inlet hole 9 and the medium discharge hole 10 on the reversing sleeve 8 can also be interchanged, that is, the current medium discharge hole 10 is connected with the working medium source, so that the medium discharge hole 10 becomes At the same time, the function of the medium entering the hole 9 now becomes exhaust, so that the power output shaft of the engine is reversely rotated.
  • the left working cylinder and the right working cylinder of the engine listed in this embodiment are respectively one.
  • the number of the left working cylinder and the right working cylinder can be increased as needed, as shown in FIG. 2, the left working cylinder thereof
  • the number of right working cylinders is two, respectively, and the rotor shafts of the two double-acting vane pumps are connected by the crankshaft 20.
  • the flywheel 22 may be disposed on the power output shaft.
  • the piston of the left working cylinder, the piston rod of the left working cylinder, the piston of the right working cylinder, the piston rod of the right working cylinder, and the housing of the double acting vane pump are integrated structures, and the structure of the engine can be Simpler; of course, in different embodiments, the piston of the left working cylinder, the piston rod of the left working cylinder, the piston of the right working cylinder, the piston rod of the right working cylinder, and the housing of the double acting vane pump may also be independent of each other. Components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hydraulic Motors (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

一种发动机,包括机架(1),机架(1)上设置有左工作缸(2)和右工作缸(3);还包括双作用叶片泵(4),左工作缸(2)和右工作缸(3)的活塞杆与双作用叶片泵(4)的壳体固定连接,且左工作缸(2)的活塞及活塞杆上设置有连通左工作缸内腔和双作用叶片泵(4)内腔的介质通孔(5),右工作缸(3)的活塞及活塞杆上也设置有连通右工作缸内腔和双作用叶片泵(4)内腔的介质通孔(5);还包括与双作用叶片泵(4)的转子轴连接的曲柄(6)、与曲柄(6)连接的动力输出轴(7)、以及固定在机架(1)上并套在动力输出轴(7)上的换向套(8),动力输出轴(7)与换向套(8)转动配合。

Description

发动机 技术领域
本发明涉及一种动力设备,特别涉及一种发动机。
背景技术
现有的发动机,一般只能采用燃气作为工作介质,不能采用高压空气、液态工作介质等,从而限制了其应用范围。
发明内容
有鉴于此,本发明提供一种发动机,其能采用燃气、压缩空气、液态工作介质等驱动做功,以解决现有发动机对工作介质形式适应性差的技术问题。
本发明发动机,包括机架,所述机架上设置有左工作缸和右工作缸,所述左工作缸和右工作缸对称布置;
所述发动机还包括双作用叶片泵,所述左工作缸和右工作缸的活塞杆与双作用叶片泵的壳体固定连接,且左工作缸的活塞及活塞杆上设置有连通左工作缸内腔和双作用叶片泵左端介质进口的介质通孔,右工作缸的活塞及活塞杆上也设置有连通右工作缸内腔和双作用叶片泵右端介质进口的介质通孔,所述双作用叶片泵的壳体上具有介质排出孔;
所述发动机还包括曲柄、动力输出轴、以及固定在机架上并套在动力输出轴上的换向套,所述动力输出轴与换向套转动配合;所述曲柄的第一端偏心连接于双作用叶片泵的转子上,且偏心距为左工作缸、及右工作缸行程的四分之一,所述曲柄的第二端与动力输出轴固定连接;
所述换向套上设置有介质进入孔和介质排出孔,所述动力输出轴上设置有与介质进入孔连通的第一环形凹槽和与介质排出孔连通的第二环形凹槽,所述动力输出轴上还设置有与第一环形凹槽相连的第一导流切口,所述动力 输出轴上还设置有与第二环形凹槽相连的第二导流切口,所述第一导流切口和第二导流切口位于动力输出轴的径向两侧;所述换向套上设置有第一换向孔和第二换向孔,在动力输出轴处于旋转状态下,所述第一换向孔与第一导流切口和第二导流切口交替连通,所述第二换向孔与第一导流切口和第二导流切口也交替连通;
所述左工作缸和右工作缸的缸体后端均设置有介质通过孔,所述左工作缸的缸体上的介质通过孔通过第一导流管与第一换向孔连接,所述右工作缸的缸体上的介质通过孔通过第二导流管与第二换向孔连接。
进一步,所述左工作缸和右工作缸为气缸或油缸。
本发明的有益效果:
本发明发动机,其能利用燃气、压缩空气、液态工作介质等驱动工作缸的活塞做功,活塞杆推动双作用叶片泵的壳体做往复平移运动,同时从活塞杆中介质通孔进入双作用叶片泵内腔的工作介质还推动双作用叶片泵的转子转动,双作用叶片泵的壳体和转子的复合运动通过曲柄转换为动力输出轴的旋转运动,从而巧妙的将工质介质的能量转换为动力输出轴的旋转动能输出。本发明发动机能采用燃气、压缩空气、液态介质等工作做功,适应性好,可在更广的范围进行应用。
附图说明
图1为发动机的第一种实施结构示意图;
图2为图1中沿A-A的剖视示意图;
图3为图1中沿B-B的剖视示意图;
图4为图1中沿C-C的剖视示意图;
图5为动力输出轴的立体结构示意图;
图6为换向套的立体结构示意图;
图7为发动机的第二种实施结构示意图;
图8为左工作缸、双作用叶片泵、右工作缸、曲柄和动力输出轴的相对 位置示意图一;
图9为左工作缸、双作用叶片泵、右工作缸、曲柄和动力输出轴的相对位置示意图二;
图10为左工作缸、双作用叶片泵、右工作缸、曲柄和动力输出轴的相对位置示意图三;
图11为左工作缸、双作用叶片泵、右工作缸、曲柄和动力输出轴的相对位置示意图四,图四曲柄的位置和图2中曲柄的位置相对于转子中心对称;
图8-图11中的箭头表示转子旋转方向,图中的A点位于转子中心上,图中的B点位于转子和曲柄的连点上,A点和B点之间的距离为偏心距。
具体实施方式
下面结合附图和实施例对本发明作进一步描述。
如图所示,本实施例发动机,包括机架1,所述机架上设置有左工作缸2和右工作缸3,所述左工作缸和右工作缸对称布置;
所述发动机还包括双作用叶片泵4,双作用叶片泵属于现有技术,在具体实施中可根据需要选择购买合适型号的双作用叶片泵,或者根据现有技术制造合适型号的双作用叶片泵。
所述左工作缸和右工作缸的活塞杆与双作用叶片泵的壳体固定连接,且左工作缸的活塞及活塞杆上设置有连通左工作缸内腔和双作用叶片泵左端介质进口的介质通孔5,右工作缸的活塞及活塞杆上也设置有连通右工作缸内腔和双作用叶片泵右端介质进口的介质通孔,所述双作用叶片泵的壳体上具有介质排出孔21,介质排出孔21的作用是将进入双作用叶片泵中推动转子旋转的工作介质排出,以使发动机的动力输出轴在任何角度都能正常启动,避免死点问题。
所述发动机还包括曲柄6、动力输出轴7、以及固定在机架上并套在动力输出轴上的换向套8,所述动力输出轴与换向套转动配合,所述曲柄的第一端偏心连接于双作用叶片泵的转子上,且偏心距为左工作缸、及右工作缸行程 的四分之一,而且曲柄的第一端与双作用叶片泵的转子转动配合,所述曲柄的第二端与动力输出轴固定连接。本实施例中的曲柄6如图4所示由横轴61和连接块62组成;在具体实施中连接块62和横轴61可以是固定连接,也可以是转动连接。
所述换向套上设置有介质进入孔9和介质排出孔10,所述动力输出轴上设置有与介质进入孔连通的第一环形凹槽11和与介质排出孔连通的第二环形凹槽12,所述动力输出轴上还设置有与第一环形凹槽相连的第一导流切口13,所述动力输出轴上还设置有与第二环形凹槽相连的第二导流切口14,所述第一导流切口和第二导流切口位于动力输出轴的径向两侧;所述换向套上设置有第一换向孔15和第二换向孔16,在动力输出轴处于旋转状态下,所述第一换向孔与第一导流切口和第二导流切口交替连通,所述第二换向孔与第一导流切口和第二导流切口也交替连通;
所述左工作缸和右工作缸的缸体后端均设置有介质通过孔17,所述左工作缸的缸体上的介质通过孔通过第一导流管18与第一换向孔连接,所述右工作缸的缸体上的介质通过孔通过第二导流管19与第二换向孔连接。
本实施例中,所述左工作缸和右工作缸为气缸,气缸可以利用燃气、压缩空气等气态介质做功。当然在不同实施例中,所述左工作缸和右工作缸还可为油缸,油缸可以利用液态工作介质进行做功。
本实施例中发动机的工作原理为:
气态工作介质从换向套8上的介质进入孔9进入,气态工作介质依次通过第一环形凹槽11、第一导流切口13、第一导流管18进入到左工作缸2的内腔中,气态工作介质推动左工作缸的活塞杆伸出。
以左工作缸的活塞杆从左止点开始运动为例,此时左工作缸、双作用叶片泵、右工作缸、曲柄和动力输出轴的位置如图8所示。当左工作缸的活塞杆从左向右伸出从而推动双作用叶片泵的外壳向右平移时,由于叶片泵的转子能在作为定子的外壳中旋转,因此双作用叶片泵的外壳向右平移时会同时推动其内的转子做平移和旋转运动(转子旋转的方向可以是左转,也可以是 右转,具体由安装好的双作用叶片泵的叶片倾斜方向而定,本实施例以转子向右旋转为例);在双作用叶片泵的外壳推动其内的转子向右转动的同时,左工作缸2内腔中的气态工作介质还通过活塞杆上的介质通孔5进入到双作用叶片泵中推动转子向右旋转;这样双作用叶片泵的转子便在外壳和进入双作用叶片泵内腔的工作介质的共同推动下做向右的平移运动和向右的旋转运动,而双作用叶片泵转子的平移和旋转又转化成带动曲柄向左旋转,曲柄向左旋转又带动动力输出轴向左旋转,从而将动力输出。
而在左工作缸的活塞杆伸出时,右工作缸的活塞杆又同步缩回,右工作缸内腔中的空气依次通过第二导流管19、第二导流切口14、第二环形凹槽12后从介质排出孔10排出。
当左工作缸的活塞杆向右伸出至形成一半时,此时左工作缸、双作用叶片泵、右工作缸、曲柄和动力输出轴的位置如图9所示,动力输出轴在这个过程中也相应的旋转了90°。
当左工作缸的活塞杆向右伸出至右止点时,此时左工作缸、双作用叶片泵、右工作缸、曲柄和动力输出轴的位置如图10所示,动力输出轴在这个过程中也相应的又旋转了90°,即左工作缸的活塞杆从左止点开始运动到右止点为止,动力输出轴刚好旋转180°。
在动力输出轴旋转180°后,第一导流切口13与换向套上的第一换向孔15完全分离,且第一导流切口13开始与换向套上的第二换向孔16接通;同时第二导流切口14与换向套上的第二换向孔16完全分离,且第二导流切口14开始与换向套上的第一换向孔15接通。这时,气态工作介质从换向套8上的介质进入孔9进入,气态工作介质依次通过第一环形凹槽11、第一导流切口13、第二导流管19进入到右工作缸3的内腔中,气态工作介质又推动右工作缸的活塞杆从右止点向左止点伸出,右工作缸的活塞杆推动双作用叶片泵的外壳向左平移,同时右工作缸3内腔中的气态工作介质还通过活塞杆上的介质通孔5进入到双作用叶片泵中,气态工作介质推动双作用叶片泵的转子向仍然向右旋转(虽然右工作缸的活塞杆从右止点向左止点伸出时转子的平 移方向是从右向左,但是由于转子旋转方向是由转子上叶片的倾斜方向决定,因此转子仍然是向右旋转);而双作用叶片泵转子的平移和旋转又转化成带动曲柄向左旋转,曲柄向左旋转又带动动力输出轴向左旋转,从而将动力输出,曲柄和动力输出轴的旋转方向式中保持不变。
并且在右工作缸的活塞杆伸出时,左工作缸的活塞杆同步缩回,左工作缸内腔中的空气依次通过第一导流管18、第二导流切口14、第二环形凹槽12后从介质排出孔10排出。
当右工作缸的活塞杆向左伸出至形成一半时,此时左工作缸、双作用叶片泵、右工作缸、曲柄和动力输出轴的位置如图11所示,动力输出轴在这个过程中又相应的旋转了90°。当右工作缸的活塞杆向左伸出至左止点时,此时左工作缸、双作用叶片泵、右工作缸、曲柄和动力输出轴的位置便回到如图8所示的起始位置。
如此,动力输出轴每旋转180°,左工作缸和右工作缸便交换进排气一次,进而反复循环推动动力输出轴旋转将动力输出。并且由于双作用叶片泵的转子始终有工质介质的推动,因此当双作用叶片泵的转子在旋转到使转子与曲轴的偏心连接部处于水平最左端、及水平最右端时(此时活塞杆对应的伸出到最大行程,达到左止点或右止点),转子能顺利的越过左止点和右止点,而不会出现在左止点和右止点卡死的问题。
本实施例只是为了便于表示发动机的工作原理才假设左工作缸的活塞杆从左止点开始运动,在具体实施中,发动机的叶片泵可以从任意停留位置开始工作。
并且在具体实施中,还可将换向套8上的介质进入孔9和介质排出孔10的功能互换,即将现在的介质排出孔10与工作介质源连接,使介质排出孔10变为进气,同时现在的介质进入孔9的功能变为排气,这样发动机的动力输出轴便进行反向旋转。
本实施例中列举的发动机的左工作缸和右工作缸分别为一个,当然在具体实施中,左工作缸和右工作缸的数量可以根据需要进行增加,如图2所示, 其左工作缸和右工作缸的数量为分别为两个,这时通过曲轴20连接两个双作用叶片泵的转子轴即可。
并且为了提高动力输出轴的旋转惯性动能,还可在动力输出轴上设置飞轮22。
本实施例中,所述左工作缸的活塞、左工作缸的活塞杆、右工作缸的活塞、右工作缸的活塞杆、以及双作用叶片泵的壳体为一体结构,可使发动机的结构更简单;当然在不同实施例中,左工作缸的活塞、左工作缸的活塞杆、右工作缸的活塞、右工作缸的活塞杆、以及双作用叶片泵的壳体也可为相互独立的零件。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (2)

  1. 一种发动机,其特征在于:包括机架,所述机架上设置有左工作缸和右工作缸,所述左工作缸和右工作缸对称布置;
    所述发动机还包括双作用叶片泵,所述左工作缸和右工作缸的活塞杆与双作用叶片泵的壳体固定连接,且左工作缸的活塞及活塞杆上设置有连通左工作缸内腔和双作用叶片泵左端介质进口的介质通孔,右工作缸的活塞及活塞杆上也设置有连通右工作缸内腔和双作用叶片泵右端介质进口的介质通孔,所述双作用叶片泵的壳体上具有介质排出孔;
    所述发动机还包括曲柄、动力输出轴、以及固定在机架上并套在动力输出轴上的换向套,所述动力输出轴与换向套转动配合;所述曲柄的第一端偏心连接于双作用叶片泵的转子上,且偏心距为左工作缸、及右工作缸行程的四分之一,所述曲柄的第二端与动力输出轴固定连接;
    所述换向套上设置有介质进入孔和介质排出孔,所述动力输出轴上设置有与介质进入孔连通的第一环形凹槽和与介质排出孔连通的第二环形凹槽,所述动力输出轴上还设置有与第一环形凹槽相连的第一导流切口,所述动力输出轴上还设置有与第二环形凹槽相连的第二导流切口,所述第一导流切口和第二导流切口位于动力输出轴的径向两侧;所述换向套上设置有第一换向孔和第二换向孔,在动力输出轴处于旋转状态下,所述第一换向孔与第一导流切口和第二导流切口交替连通,所述第二换向孔与第一导流切口和第二导流切口也交替连通;
    所述左工作缸和右工作缸的缸体后端均设置有介质通过孔,所述左工作缸的缸体上的介质通过孔通过第一导流管与第一换向孔连接,所述右工作缸的缸体上的介质通过孔通过第二导流管与第二换向孔连接。
  2. 根据权利要求1所述的发动机,其特征在于:所述左工作工作缸和右工作缸为气缸或油缸。
PCT/CN2018/094125 2017-07-10 2018-07-02 发动机 WO2019011151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710556905.0A CN107143379A (zh) 2017-07-10 2017-07-10 发动机
CN201710556905.0 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019011151A1 true WO2019011151A1 (zh) 2019-01-17

Family

ID=59775638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094125 WO2019011151A1 (zh) 2017-07-10 2018-07-02 发动机

Country Status (2)

Country Link
CN (2) CN107143379A (zh)
WO (1) WO2019011151A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107143379A (zh) * 2017-07-10 2017-09-08 游涛 发动机
CN110344885B (zh) * 2019-07-22 2020-08-14 深圳市八达威科技有限公司 一种气动马达的间歇转动方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133306A (en) * 1991-10-23 1992-07-28 Honkanen Eric G Horizontally opposed internal combustion engine
CN101225808A (zh) * 2007-12-28 2008-07-23 西安交通大学 一种气/液驱动的往复活塞式压缩机或液体泵
CN102434380A (zh) * 2011-12-16 2012-05-02 泸州天府液压件有限公司 开放式重型液压马达
CN107143379A (zh) * 2017-07-10 2017-09-08 游涛 发动机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101004867B1 (ko) * 2008-10-09 2010-12-28 현경열 가변 토출량 베인 펌프
ITTO20130175U1 (it) * 2013-12-11 2015-06-12 Vallacqua Giulio Ditta Individuale Meccanismo per una macchina alternativa
CN208106494U (zh) * 2017-07-10 2018-11-16 游涛 发动机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133306A (en) * 1991-10-23 1992-07-28 Honkanen Eric G Horizontally opposed internal combustion engine
CN101225808A (zh) * 2007-12-28 2008-07-23 西安交通大学 一种气/液驱动的往复活塞式压缩机或液体泵
CN102434380A (zh) * 2011-12-16 2012-05-02 泸州天府液压件有限公司 开放式重型液压马达
CN107143379A (zh) * 2017-07-10 2017-09-08 游涛 发动机
CN108286462A (zh) * 2017-07-10 2018-07-17 游涛 发动机

Also Published As

Publication number Publication date
CN107143379A (zh) 2017-09-08
CN108286462B (zh) 2023-10-13
CN108286462A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
CN105570128B (zh) 一种压缩机泵体结构及压缩机
US6659744B1 (en) Rotary two axis expansible chamber pump with pivotal link
US5209190A (en) Rotary power device
CN203796560U (zh) 偏心活动叶片泵
US4257752A (en) Rotary alternating piston machine with coupling lever rotating around offset crankpin
WO2019011151A1 (zh) 发动机
US7421986B2 (en) Rotary radial internal combustion piston engine
US2257884A (en) Angular displacement engine or compressor
JP2015510069A (ja) 流体を同時に吸入・放出するための嵌合している揺動可能な羽根部材を備えるポンプおよび/または圧縮機の構成
CN103452836B (zh) 转子流体机械变容机构
JPS5819841B2 (ja) ロ−タリ−キカン
CN208106494U (zh) 发动机
JP2006132534A (ja) ロータリ流体原動機
US1574976A (en) Rotary engine
CN202545248U (zh) 双缸旋转式压缩机
CN100455772C (zh) 一种旋转活塞式气动马达
JP2005256793A (ja) 真空ポンプ
US11492907B2 (en) Cartiodal rotary machine with two-lobe rotor
US138622A (en) Improvement in steam-pumps
KR101406286B1 (ko) 편심회전 피스톤을 이용한 펌프
JP2007285148A (ja) 内燃機関、ポンプ、水車に関する羽根型回転機構。
RU2647289C2 (ru) Роторная машина
CN1256512C (zh) 一种旋转活塞式空气压缩机
RU2386045C2 (ru) Поршневой мотор
JPS6161984A (ja) 流体機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831274

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18831274

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18831274

Country of ref document: EP

Kind code of ref document: A1