WO2019011145A1 - Shaped sawing wire - Google Patents

Shaped sawing wire Download PDF

Info

Publication number
WO2019011145A1
WO2019011145A1 PCT/CN2018/094068 CN2018094068W WO2019011145A1 WO 2019011145 A1 WO2019011145 A1 WO 2019011145A1 CN 2018094068 W CN2018094068 W CN 2018094068W WO 2019011145 A1 WO2019011145 A1 WO 2019011145A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
shaped
sawing wire
shaped sawing
axis
Prior art date
Application number
PCT/CN2018/094068
Other languages
French (fr)
Inventor
Wenxian HUANG
Kurt VAN RYSSELBERGE
Original Assignee
Bekaert Binjiang Steel Cord Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bekaert Binjiang Steel Cord Co., Ltd. filed Critical Bekaert Binjiang Steel Cord Co., Ltd.
Priority to JP2020600007U priority Critical patent/JP3227718U/en
Publication of WO2019011145A1 publication Critical patent/WO2019011145A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • B23D61/185Saw wires; Saw cables; Twisted saw strips

Definitions

  • the invention relates to a shaped sawing wire that is used for cutting hard and brittle materials such a silicon, sapphire, galliumarsenide, quartz and the like.
  • Sawing wires are used on sawing machines for cutting hard and brittle materials.
  • a sawing wire is spirally wound over two or more grooved capstans thereby forming a web.
  • the sawing wire is moved back and/or forth while a viscous liquid comprising abrasive particles -called slurry -is poured over the web.
  • the abrasive particles caught between the work piece and the sawing wire abrade the brittle material and thereby progressively cut through the work piece.
  • Sawing wires are round and thin steel wires with a high tensile strength.
  • the cutting length becomes long -e.g. longer than 200 mm -there is the possibility that at the exit of the cut no more abrasive particles are present and the cutting efficiency is locally reduced. This hampers the overall cutting speed of the process.
  • the object of the invention is to provide a sawing wire of double crimp that does not form a preferred cutting plane during use.
  • the problem is solved by providing a shaped sawing wire according claim 1.
  • the shaped sawing wire comprises a steel wire.
  • the steel wire has small bends with substantially straight segments in between the bends thereby connecting the bends.
  • the shaped sawing wire extends along a shaped sawing wire axis for example by keeping it taut under a small tension along the vertical.
  • a centre point can be defined in each perpendicular cross section of the steel wire. Connecting these centre points results in a central line of the steel wire.
  • a projection of the central line on a plane that is perpendicular to the shaped sawing wire axis shows a convex trace with corners.
  • the trace is the curve in the plane perpendicular to the shaped sawing wire axis formed by the intersection of that plane with lines parallel to the axis through any point of the central line.
  • a convex trace is a trace wherein all points on lines connecting any pair of points on the trace remain inside the trace.
  • the corners are connected by sides.
  • the corners have an increased curvature compared to the curvature of the sides.
  • the curvature is the inverse of the radius of curvature.
  • the radius of curvature at any point of the trace is the radius of an osculating circle to the trace at that point.
  • the plane of projection then becomes the XY plane perpendicular to the Z-axis.
  • the number of corners is three or four. Most preferred is four.
  • the steel wire is a round, far drawn, high tensile, high carbon steel wire with a diameter ‘d’ between 40 and 300 ⁇ m. Most preferred are between 100 and 120 ⁇ m such as 115 ⁇ m. Inroads are being made to use wire of even finer gauge such as 110, 100 or even 90 to 80 ⁇ m. As the wire must be tensioned during sawing, the tensile strength must also increase accordingly. Tensile strengths of above 4000 N/mm 2 are now customary for 120 ⁇ m wires.
  • the shaped sawing wire has a circumscribed diameter ‘D’ and the ratio D/d is between 1.04 and 1.40. More preferably, the ratio D/d is between 1.05 and 1.20, e.g. 1.10.
  • the ratio D/d is a convenient measure to use as a production control. It is the ratio of the optical diameter of the wire (corresponding to the diameter of the circumscribed cylinder) to the steel wire diameter. Large D/d values such as above 2.0 are less preferred as then the shaped wire obtains a too large elongation at low load which is detrimental for the bow formation in the cutting.
  • the average distance along the axis of the shaped sawing wire between bends is between 5 and 50 times the diameter ‘d’ of said sawing wire itself.
  • the average distance is the ratio of a measuring length ‘L’ along the shaped sawing wire axis and the number of bends in three dimensional space counted over that length ‘L’ .
  • the measuring length ‘L’ should at least comprise ten bends.
  • the average distance along the axis between bends of the shaped sawing wire is more than 50 times the diameter ‘d’ of the steel wire, the recesses are too distant leading to insufficient drag of abrasive material into the cut. Otherwise, if the average distance along the axis between bends of the shaped sawing wire is less than 5 times the diameter ‘d’ of the steel wire, there are too many bends per unit length and the wire will elongate too much during use. More preferably, the average distance along the axis of the shaped sawing wire between bends is between 15 to 25 times the diameter ‘d’ of said sawing wire itself, e.g. 20 times the diameter ‘d’ of said sawing wire.
  • the centreline of the wire has a length ‘S’ when measured over an axial length ‘L’ taken along the shaped sawing wire axis, and preferably (S-L) /L is between 0.006 and 0.6 per cent.
  • This (S-L) /L is the ‘extra length’ that is build-in to the wire due to the shape of the wire. If this ‘extra length’ is below 0.006%there is insufficient deformation of the wire to entrain particles in the bends of the wire resulting in insufficient drag of abrasive. If this ‘extra length’ is above 0.6%the wire will elongate much too much during use, which would cause the saw wire to slacken during the sawing process.
  • Figure 1 shows a three dimensional representation of the inventive shaped sawing wire with indication of the axis of the sawing wire.
  • Figure 2 shows a first embodiment together with the generating function of the shaped sawing wire.
  • Figure 3 shows a second embodiment together with the generating function of the shaped sawing wire.
  • the shaped sawing wire is made by crimping. Crimping is the action whereby a straight steel wire is guided in between a pair of intermeshing toothed wheels.
  • the teeth of the wheels are rounded in order not to damage the wire. This is much like a pair of gear wheels except that the gear wheels are spaced apart to let the steel wire pass. As the teeth on the toothed wheel are regularly spaced apart the steel wire will receive a periodic deformation.
  • This periodic deformation can be described by a waveform ‘f (z) ’ wherein ‘z’ is the argument of the function that corresponds to the distance along the axis of the shaped sawing wire.
  • the value of the function ‘f’ corresponds to the deviation from the Z-axis in for example the X-direction.
  • f (z) must become zero for a value ‘z 0 ’ that is chosen as the origin of the Z axis.
  • f (0) becomes 0 and likewise f (W) must be zero.
  • the inventive sawing wire is now generated by one waveform f (z) wherein first a deformation in the X-direction is given (i.e. the steel wire obtains a crimp that is laying in the XZ plane) . Thereafter this single flat crimp obtains a second crimp in the Y-direction perpendicular to the plane of the already crimped wire with exactly the same waveform f (z) . However, the second crimp is shifted to the first crimp with a forward phase difference ‘F’ where F is between W/8 and 3W/8 for example W/4. Hence the waveform given in the Y-direction is f (z+F) .
  • the shaped steel wire will take a roughly helicoidal shape of which the projection of the central line of the steel wire on a plane perpendicular to the axis will show a convex trace with corners connected by sides and wherein the corners have an increased curvature.
  • the period of the helix corresponds to the wavelength of the crimpers.
  • Figure 1 gives a perspective view of such a shaped sawing wire 100. It comprises a steel wire that has obtained a helicoidal squared deformation by first deforming the steel wire into a single crimp wire in the X direction according a certain waveform f (z) . The crimped wire then lays in plane XZ. The wire is subsequently deformed in the Y direction by the same waveform but shifted W/4. In this way a helical space curve is obtained of which the projection forms a tetragonal trace on the XY plane. Note that the scale in the X and Y direction is equal but these scales are different in the Z direction.
  • Figure 2 shows the three projections of the central line of the steel wire.
  • the generating deformation f (z) is a triangular function as depicted the upper right figure. It has a wavelength of 4 mm.
  • the amplitude ‘a’ of the deformation is 0.008 mm or 8 ⁇ m.
  • the phase difference ‘F’ between the two deformations has been set to 0.78 mm or 0.19 ⁇ W.
  • the wire itself has a diameter ‘d’ of 120 ⁇ m.
  • the circumscribed diameter D is 135 ⁇ m.
  • the ratio D/d is thus 1.125.
  • the difference between the actual length of the central line ‘S’ compared to the axial length ‘L’ over which this length is determined is (S-L) /L is equal to 0.0061%. On average the distance between bends is 1 mm or 9.2 times the diameter ‘d’ .
  • Figure 3 shows the projection of the central line of the steel wire of a shaped sawing wire according another embodiment.
  • the deformation function f (z) is a skewed triangular waveform as shown in the lower left figure.
  • the maximum of the triangle is not reached at the quarter of the 4 mm i.e. 1 mm wavelength but at 1.2 mm.
  • the phase difference ‘F’ was set to 1 mm i.e. W/4.
  • the central line shows in projection on the XY plane a convex tetragon with varying curvature at the corners and at the sides.
  • the diameter of the steel wire is 120 ⁇ m.
  • the circumscribed circle diameter of the shaped sawing wire is 136 ⁇ m.
  • D/d is 1.13.
  • the extra length (S-L) /L is 0.0067 %.
  • the average distance between bends is 9.2 ⁇ d.
  • the shaped sawing wire with the described shape has the advantage that it provides for gaps between the sawing wire and the circumscribed cylinder in which abrasive particles can get trapped. This leads to a better sawing efficiency. Due to the helical shape the sawing wire will not start to saw according a preferred crimping direction. Moreover the wire can be made at high speed as only two phase shifted crimps need to be made in order to obtain a helix structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

A shaped sawing wire having a specific shape is described. The shaped sawing wire is made of steel wire that is provided with two crimps in mutual perpendicular directions that are on their turn perpendicular to the shaped sawing wire axis. The applied waveform is equal in both mutual perpendicular directions and only differs by a phase that is introduced between both crimps. The shaped wire is characterised by its projection along its axis that forms a convex trace with corners connected by sides, wherein the number of corners is three or four. In other words the sawing wire has the shape of a tetragonal or trigonal helix i.e. a helix of which the projection along its axis shows a trigonal or tetragonal trace with three or four corners. The shaped sawing wire is cheap to make and shows no preferential direction during sawing due to its helix form.

Description

SHAPED SAWING WIRE Description Technical Field
The invention relates to a shaped sawing wire that is used for cutting hard and brittle materials such a silicon, sapphire, galliumarsenide, quartz and the like.
Background Art
Sawing wires are used on sawing machines for cutting hard and brittle materials. In the sawing machine a sawing wire is spirally wound over two or more grooved capstans thereby forming a web. The sawing wire is moved back and/or forth while a viscous liquid comprising abrasive particles -called slurry -is poured over the web. The abrasive particles caught between the work piece and the sawing wire abrade the brittle material and thereby progressively cut through the work piece.
Sawing wires are round and thin steel wires with a high tensile strength. When the cutting length becomes long -e.g. longer than 200 mm -there is the possibility that at the exit of the cut no more abrasive particles are present and the cutting efficiency is locally reduced. This hampers the overall cutting speed of the process. In order to overcome this it has been suggested to provide the straight wire with small local bends with in between straight segments that connect the bends resulting in a ‘shaped sawing wire’ . Due to the bends the slurry is better dragged into the cut and the depletion of abrasive material towards the end of the cut is reduced.
Various suggestions have been made in order to implement such bends. Initially a single, zig-zag crimp implemented on a steel wire has been suggested (JP19880117836) . However, such embodiment suffers from the fact that the zig-zag plane does not align with the cut resulting in non-straight cutting. This problem was resolved partly by WO 2006 067062. Therein a monofilament saw wire is described that is provided with two crimps, each crimp having a pitch length and an amplitude, the crimps being arranged in at least two different planes. However, when one of the crimps prevails, the cutting will only be done by that crimp. In addition, two  pairs of crimper wheels are needed to implement the crimps which makes it an expensive operation.
In order to provide a shaped sawing wire that does not have a preferred plane of sawing and that is efficient in making, the inventor suggests what follows.
Disclosure of Invention
The object of the invention is to provide a sawing wire of double crimp that does not form a preferred cutting plane during use.
The problem is solved by providing a shaped sawing wire according claim 1. The shaped sawing wire comprises a steel wire. The steel wire has small bends with substantially straight segments in between the bends thereby connecting the bends. The shaped sawing wire extends along a shaped sawing wire axis for example by keeping it taut under a small tension along the vertical. In each perpendicular cross section of the steel wire a centre point can be defined. Connecting these centre points results in a central line of the steel wire.
A projection of the central line on a plane that is perpendicular to the shaped sawing wire axis shows a convex trace with corners. In other words the trace is the curve in the plane perpendicular to the shaped sawing wire axis formed by the intersection of that plane with lines parallel to the axis through any point of the central line. A convex trace is a trace wherein all points on lines connecting any pair of points on the trace remain inside the trace. The corners are connected by sides. The corners have an increased curvature compared to the curvature of the sides. The curvature is the inverse of the radius of curvature. The radius of curvature at any point of the trace is the radius of an osculating circle to the trace at that point. In three dimensional space one can identify the axis of the shaped sawing wire with the Z-axis, while the plane of projection then becomes the XY plane perpendicular to the Z-axis.
In a preferred embodiment the number of corners is three or four. Most preferred is four.
The steel wire is a round, far drawn, high tensile, high carbon steel wire with a diameter ‘d’ between 40 and 300 μm. Most preferred are between 100 and 120 μm such as 115μm. Inroads are being made to use wire of even finer gauge such as 110, 100 or even 90 to 80 μm. As the wire must be tensioned during sawing, the tensile strength must also increase accordingly. Tensile strengths of above 4000 N/mm 2 are now customary for 120 μm wires.
Preferably, the shaped sawing wire has a circumscribed diameter ‘D’ and the ratio D/d is between 1.04 and 1.40. More preferably, the ratio D/d is between 1.05 and 1.20, e.g. 1.10. The ratio D/d is a convenient measure to use as a production control. It is the ratio of the optical diameter of the wire (corresponding to the diameter of the circumscribed cylinder) to the steel wire diameter. Large D/d values such as above 2.0 are less preferred as then the shaped wire obtains a too large elongation at low load which is detrimental for the bow formation in the cutting.
Preferably, the average distance along the axis of the shaped sawing wire between bends is between 5 and 50 times the diameter ‘d’ of said sawing wire itself. The average distance is the ratio of a measuring length ‘L’ along the shaped sawing wire axis and the number of bends in three dimensional space counted over that length ‘L’ . The measuring length ‘L’ should at least comprise ten bends.
If the average distance along the axis between bends of the shaped sawing wire is more than 50 times the diameter ‘d’ of the steel wire, the recesses are too distant leading to insufficient drag of abrasive material into the cut. Otherwise, if the average distance along the axis between bends of the shaped sawing wire is less than 5 times the diameter ‘d’ of the steel wire, there are too many bends per unit length and the wire will elongate too much during use. More preferably, the average distance along the axis of the shaped sawing wire between bends is between 15 to 25 times the diameter ‘d’ of said sawing wire itself, e.g. 20 times the diameter ‘d’ of said sawing wire.
The centreline of the wire has a length ‘S’ when measured over an axial length ‘L’ taken along the shaped sawing wire axis, and preferably (S-L) /L is between 0.006 and 0.6 per cent. This (S-L) /L is the ‘extra length’ that is  build-in to the wire due to the shape of the wire. If this ‘extra length’ is below 0.006%there is insufficient deformation of the wire to entrain particles in the bends of the wire resulting in insufficient drag of abrasive. If this ‘extra length’ is above 0.6%the wire will elongate much too much during use, which would cause the saw wire to slacken during the sawing process.
Brief Description of Figures in the Drawings
Figure 1 shows a three dimensional representation of the inventive shaped sawing wire with indication of the axis of the sawing wire.
Figure 2 shows a first embodiment together with the generating function of the shaped sawing wire.
Figure 3 shows a second embodiment together with the generating function of the shaped sawing wire.
Mode (s) for Carrying Out the Invention
The shaped sawing wire is made by crimping. Crimping is the action whereby a straight steel wire is guided in between a pair of intermeshing toothed wheels. The teeth of the wheels are rounded in order not to damage the wire. This is much like a pair of gear wheels except that the gear wheels are spaced apart to let the steel wire pass. As the teeth on the toothed wheel are regularly spaced apart the steel wire will receive a periodic deformation.
This periodic deformation can be described by a waveform ‘f (z) ’ wherein ‘z’ is the argument of the function that corresponds to the distance along the axis of the shaped sawing wire. The value of the function ‘f’ corresponds to the deviation from the Z-axis in for example the X-direction. The value of f (z) varies beween X=-a and X=+a wherein ‘a’ is the amplitude of the function. The waveform ‘f (z) ’ has the property that f (z+W) =f (z) for every argument ‘z’ of the function. ‘W’ is then the wavelength of the waveform. Consequently ‘f (z) ’ must become zero for a value ‘z 0’ that is chosen as the origin of the Z axis. By that choice f (0) becomes 0 and likewise f (W) must be zero. The waveform f (z) has one minimum at ‘w 1’ (f (w 1) =-a) and one maximum at ‘w 2’ (f (w 2) =+a and w 1 < w 2) within each range 0 to W and so  there must be another Z coordinate ‘w 0’ between 0 and W for which f (w 0) =0. If w 1=W/4 and w 2=W-w 1 the waveform is symmetric and ‘w 0’ is situated w 0=W/2. If w 1 is different from W/4 and w 2 = W-w 1 the waveform will be called ‘skewed’ . All other waveforms lead to non-convex projection traces.
The inventive sawing wire is now generated by one waveform f (z) wherein first a deformation in the X-direction is given (i.e. the steel wire obtains a crimp that is laying in the XZ plane) . Thereafter this single flat crimp obtains a second crimp in the Y-direction perpendicular to the plane of the already crimped wire with exactly the same waveform f (z) . However, the second crimp is shifted to the first crimp with a forward phase difference ‘F’ where F is between W/8 and 3W/8 for example W/4. Hence the waveform given in the Y-direction is f (z+F) .
In this way the shaped steel wire will take a roughly helicoidal shape of which the projection of the central line of the steel wire on a plane perpendicular to the axis will show a convex trace with corners connected by sides and wherein the corners have an increased curvature. The period of the helix corresponds to the wavelength of the crimpers.
Figure 1 gives a perspective view of such a shaped sawing wire 100. It comprises a steel wire that has obtained a helicoidal squared deformation by first deforming the steel wire into a single crimp wire in the X direction according a certain waveform f (z) . The crimped wire then lays in plane XZ. The wire is subsequently deformed in the Y direction by the same waveform but shifted W/4. In this way a helical space curve is obtained of which the projection forms a tetragonal trace on the XY plane. Note that the scale in the X and Y direction is equal but these scales are different in the Z direction.
Figure 2 shows the three projections of the central line of the steel wire. The generating deformation f (z) is a triangular function as depicted the upper right figure. It has a wavelength of 4 mm. The amplitude ‘a’ of the deformation is 0.008 mm or 8 μm. The phase difference ‘F’ between the two deformations has been set to 0.78 mm or 0.19×W. The wire itself has a diameter ‘d’ of 120 μm. The circumscribed diameter D is 135 μm. The ratio D/d is thus 1.125. The difference between the actual length of the  central line ‘S’ compared to the axial length ‘L’ over which this length is determined is (S-L) /L is equal to 0.0061%. On average the distance between bends is 1 mm or 9.2 times the diameter ‘d’ .
Figure 3 shows the projection of the central line of the steel wire of a shaped sawing wire according another embodiment. Here the deformation function f (z) is a skewed triangular waveform as shown in the lower left figure. The maximum of the triangle is not reached at the quarter of the 4 mm i.e. 1 mm wavelength but at 1.2 mm. The phase difference ‘F’ was set to 1 mm i.e. W/4. Again the central line shows in projection on the XY plane a convex tetragon with varying curvature at the corners and at the sides. The diameter of the steel wire is 120 μm. The circumscribed circle diameter of the shaped sawing wire is 136 μm. Hence D/d is 1.13. The extra length (S-L) /L is 0.0067 %. The average distance between bends is 9.2×d.
The shaped sawing wire with the described shape has the advantage that it provides for gaps between the sawing wire and the circumscribed cylinder in which abrasive particles can get trapped. This leads to a better sawing efficiency. Due to the helical shape the sawing wire will not start to saw according a preferred crimping direction. Moreover the wire can be made at high speed as only two phase shifted crimps need to be made in order to obtain a helix structure.

Claims (6)

  1. A shaped sawing wire comprising a steel wire having bends with segments in between, said shaped sawing wire extending along the shaped sawing wire axis, said steel wire having a central line
    characterised in that
    the projection parallel to said shaped sawing wire axis of said central line on a plane perpendicular to said shaped sawing wire axis has a convex trace having corners connected by sides, said corners having a larger curvature compared to the curvature of said sides.
  2. The shaped sawing wire according to claim 1 wherein said number of corners is three or four.
  3. The shaped sawing wire according to claim 1 or 2 wherein said steel wire has a diameter ‘d’ , said diameter being between 40 and 300 μm.
  4. The shaped sawing wire according to any one of claims 1 to 3 wherein said steel wire has a diameter ‘d’ and said shaped sawing wire has a circumscribed diameter ‘D’ and wherein the ratio D/d is between 1.04 and 1.40.
  5. The shaped sawing wire according to any one of claims 1 to 4 wherein said steel wire has a diameter ‘d’ and wherein the average distance between bends along said shaped sawing wire axis is between 5 and 50 times said diameter ‘d’ .
  6. The shaped sawing wire according claim 1 wherein the length ‘S’ of said central line when measured over an axial length ‘L’ is larger than said axial length ‘L’ by an amount of 0.006%to 0.6 %of said axial length ‘L’ , said axial length being measured along said shaped sawing wire axis.
PCT/CN2018/094068 2017-07-11 2018-07-02 Shaped sawing wire WO2019011145A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020600007U JP3227718U (en) 2017-07-11 2018-07-02 Molded saw wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720835960.9U CN207127339U (en) 2017-07-11 2017-07-11 Shaping saw silk
CN201720835960.9 2017-07-11

Publications (1)

Publication Number Publication Date
WO2019011145A1 true WO2019011145A1 (en) 2019-01-17

Family

ID=61633980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094068 WO2019011145A1 (en) 2017-07-11 2018-07-02 Shaped sawing wire

Country Status (3)

Country Link
JP (1) JP3227718U (en)
CN (1) CN207127339U (en)
WO (1) WO2019011145A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207127339U (en) * 2017-07-11 2018-03-23 江阴贝卡尔特合金材料有限公司 Shaping saw silk

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528940A (en) * 2010-11-22 2012-07-04 贝卡尔特公司 A structured sawing wire
CN203679432U (en) * 2012-09-07 2014-07-02 贝卡尔特公司 Molding sawing wire
WO2015028950A1 (en) * 2013-08-27 2015-03-05 Boart & Wire Srl Method for manufacturing a diamond wire for cutting stone material and diamond wires thus obtained
CN207127339U (en) * 2017-07-11 2018-03-23 江阴贝卡尔特合金材料有限公司 Shaping saw silk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528940A (en) * 2010-11-22 2012-07-04 贝卡尔特公司 A structured sawing wire
CN203679432U (en) * 2012-09-07 2014-07-02 贝卡尔特公司 Molding sawing wire
WO2015028950A1 (en) * 2013-08-27 2015-03-05 Boart & Wire Srl Method for manufacturing a diamond wire for cutting stone material and diamond wires thus obtained
CN207127339U (en) * 2017-07-11 2018-03-23 江阴贝卡尔特合金材料有限公司 Shaping saw silk

Also Published As

Publication number Publication date
JP3227718U (en) 2020-09-17
CN207127339U (en) 2018-03-23

Similar Documents

Publication Publication Date Title
JP4610618B2 (en) Monofilament metal saw wire
TWI599424B (en) A structured sawing wire
JP3686451B2 (en) Steel cord manufacturing method
JP2014159668A (en) Steel cord with waved element
EP2906382B2 (en) A shaped sawing wire with subsurface tensile residual stresses
WO1985001074A1 (en) Steel cord for rubber articles
WO2019011145A1 (en) Shaped sawing wire
TWI727760B (en) Tungsten wire and tungsten products
JPH07119059A (en) Production of superconducting laid wire
US20070082561A1 (en) Method and device for manufacturing a wire cord
JPH06306784A (en) Steel cord, its production and tire using the same
JP3215089U (en) Saw wire spool with elastic and plastic rotation
JP2920477B2 (en) Steel cord for rubber reinforcement and radial tire
JP2006225801A (en) Steel cord and method for producing the same
JP3070260B2 (en) Apparatus and method for producing metal cord for reinforcing rubber articles
JP6547236B2 (en) Method and apparatus for producing cord-rubber coating
JP3174803B2 (en) Steel cord for rubber reinforcement
CN110616581B (en) Method for weaving steel wire rope flat belt
CN118043518A (en) Steel cord with adapted elongation properties
RU2183523C1 (en) Method for making high carbon wire
JP6572316B2 (en) Molded saw wire with controlled curvature at the bend
SK278942B6 (en) Steel wire for reinforcing the embedding material, especially concrete, and process for making it
CN117794670A (en) Saw wire and method for producing a saw wire
JPH0931875A (en) Steel cord for reinforcing rubber products, its production and manufacturing equipment therefor
JPS616005A (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020600007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831157

Country of ref document: EP

Kind code of ref document: A1