WO2019011128A1 - 关节型机器人及其直线驱动器 - Google Patents

关节型机器人及其直线驱动器 Download PDF

Info

Publication number
WO2019011128A1
WO2019011128A1 PCT/CN2018/093218 CN2018093218W WO2019011128A1 WO 2019011128 A1 WO2019011128 A1 WO 2019011128A1 CN 2018093218 W CN2018093218 W CN 2018093218W WO 2019011128 A1 WO2019011128 A1 WO 2019011128A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear actuator
push rod
screw
drive motor
output shaft
Prior art date
Application number
PCT/CN2018/093218
Other languages
English (en)
French (fr)
Inventor
蔡颖鹏
陈希
李欣
Original Assignee
北京因时机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京因时机器人科技有限公司 filed Critical 北京因时机器人科技有限公司
Publication of WO2019011128A1 publication Critical patent/WO2019011128A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/123Linear actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints

Definitions

  • the present invention relates to the field of home robot technology, and in particular to an articulated robot and a linear actuator thereof.
  • the present invention provides a linear actuator of an articulated robot to improve control performance.
  • the present invention also provides an articulated robot having the above linear actuator.
  • the present invention provides the following technical solutions:
  • a linear actuator for an articulated robot comprising:
  • a drive motor a speed reducer, a screw and a push rod disposed in the housing and arranged in sequence, wherein an output shaft of the drive motor is coupled to the reducer, and the screw is coupled to an output shaft of the reducer Rotating synchronously with the output shaft of the reducer, the axis of the screw being collinear with the output shaft of the drive motor, the push rod being threadedly coupled to the screw and linearly moving along the axis of the screw, the push The resistance value of the conductive member changes when the rod moves along the screw;
  • control module coupled to the drive motor and the sensor signal.
  • the speed reducer is a planetary reducer.
  • the gear of the planetary reducer and the material of the push rod are both polyetheretherketone, stainless steel or nylon.
  • the screw is rotatably disposed in a deep groove ball bearing inside the outer casing.
  • the conductive member includes a brush and a slider resistor, and the brush and the slider resistor are disposed on the push rod, and the other is disposed on the housing Inner wall.
  • the brush is fixed on the push rod, and the slider resistance is disposed on an inner wall of the outer casing.
  • the sensor is installed between the push rod and the outer casing.
  • the senor is a carbon film resistive sensor.
  • control module is integrated on an integrated circuit board, and the integrated circuit board is installed inside the outer casing.
  • An articulated robot comprising a linear actuator, wherein the linear actuator is a linear actuator according to any one of the preceding claims, and the linear actuator is a waterproof linear actuator.
  • the present invention discloses a linear actuator of an articulated robot, comprising a housing, a driving motor disposed in the housing and sequentially arranged, a speed reducer, a screw and a push rod, wherein the output shaft of the driving motor is The reducer is connected, the screw is connected with the output shaft of the reducer and rotates synchronously with the output shaft of the reducer, the axis of the screw is collinear with the output shaft of the drive motor, and the push rod is screwed with the screw and linearly moves along the axis of the screw
  • the resistance value of the conductive member changes when the push rod moves along the screw, and the sensor is used to obtain the resistance value of the conductive member, and is connected to the driving motor signal through the control module.
  • the linear actuator in the present application drives the rotation of the screw by the operation of the driving motor to realize the linear motion of the push rod, and completes the linear driving.
  • the resistance value of the conductive member is obtained by the sensor to determine the position of the push rod, and is realized by the control module. Signal feedback, which improves the control performance of the linear drive.
  • FIG. 1 is a schematic structural view of a housing of a linear actuator according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an internal push rod of a linear actuator according to an embodiment of the present invention
  • FIG. 3 is a partial structural diagram of a linear driver according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a dismantling device of a linear actuator according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a push rod overhanging structure of a linear actuator according to an embodiment of the present invention.
  • the core of the present invention is to provide a linear actuator for an articulated robot to improve control performance.
  • Another core of the present invention is to provide an articulated robot having the above linear actuator.
  • the present invention discloses a linear actuator of an articulated robot, comprising a casing 1, a driving motor 2, a speed reducer 3, a screw 4 and a push rod 5 which are disposed in the casing 1 and arranged in sequence.
  • the output shaft of the driving motor 2 is connected to the speed reducer 3, and the screw 4 is connected to the output shaft of the speed reducer 3 and rotates synchronously with the output shaft of the speed reducer 3.
  • the axis of the screw 4 is collinear with the output shaft of the drive motor 2,
  • the push rod 5 described above is screwed with the screw 4 and linearly moves along the axis of the screw 4.
  • the resistance value of the conductive member changes, and the sensor is used to obtain the resistance value of the conductive member and pass the control module. Connected to the drive motor 2 signal.
  • the linear actuator of the present application the linear motion of the push rod 5 is realized by the rotation of the screw by the operation of the driving motor, and the linear driving is completed.
  • the resistance value of the conductive member is obtained by the sensor to determine the position of the push rod 5, and the control is performed.
  • the module implements feedback of the signal, which improves the control performance of the linear drive.
  • the outer casing 1 includes a rear end cover 101, a motor housing 102, a reduction case outer casing 103 and a push rod housing 104, and a front end cover 105.
  • the rear end cover 101, the motor housing 102, the reduction box housing 103, the push rod housing 104 and the front end cover 105 are sequentially coaxially connected by an external screw to form a cylindrical structure, and the rear end of the motor housing 102 is screwed to the rear end cover 101 by The rear end cover 101 is sealed to form a unitary outer casing 1 structure having a cubic space of 51 mm x 15 mm x 10 mm.
  • a waterproof sealing ring is disposed between the rear end cover 101, the motor housing 102, the reduction housing 103, the push rod housing 104 and the front end cover 105, so that the housing 1 has a waterproof function, which facilitates the underwater operation of the articulated robot.
  • a drive motor 2 is mounted inside the motor housing 102
  • a speed reducer 3 is mounted in the reduction case housing 103
  • a push rod 5 is mounted in the push rod housing 104.
  • the left end of the reducer housing 103 is designed with a positioning shoulder for positioning the drive motor 2.
  • the front end of the push rod housing 104 is screwed to the front end cover 105, and the front end cover 105 has a through hole on the end surface thereof, which is a push rod expansion hole and is used for the circumferential direction.
  • the push rod 5 is positioned to guide the telescopic movement of the push rod 5, and the push rod 5 is moved along the axis of the screw 4.
  • the drive motor 2 in the present application may be a brushed hollow cup motor, a brushless hollow cup motor, a brushed iron core motor or a brushless iron core motor.
  • the speed reducer 3 is set as a planetary reducer.
  • the planetary reducer in the present application may be a planetary gear train having the same structure of one or more stages (the reducer has a two-stage planetary gear train in this embodiment), and the planetary gear wheel used with the reducer 3 The increase in the number of lines can increase the speed of the output shaft of the drive motor 2, thereby increasing the output force of the final push rod 4.
  • the primary planetary gear train includes a sun gear 301, three planetary gears 302, and a carrier 303; and the inner circumference of the reduction gear casing 103 is designed with an internal tooth structure 304 as an internal gear of the speed reducer 3.
  • the above planetary gears are designed using a miniature planetary gear design method, and the modulus used may be 0.1, 0.12, 0.15, 0.16, 0.18, 0.2 or 0.25 mode.
  • the specific installation manner is as follows: three planetary gears 302 are circumferentially evenly distributed, and are mounted on the rear side of the carrier 303 through the rotating shaft; the screw 4 is coaxially mounted on the front side of the carrier.
  • the sun gear 301 is fixedly mounted on the output shaft of the drive motor 2; and the sun gear 301 is meshed with the three planet gears 302, while the three planet wheels 302 are both meshed with the inner circumferential inner tooth structure 304 of the reduction gear housing 103.
  • the output shaft movement of the driving motor 2 can drive the sun gear 301 to rotate, and the three planetary gears 302 are rotated by the sun gear 301, thereby driving the planet carrier 303 and the screw 4 to rotate; finally, the movement of the output shaft of the driving motor 2 is passed.
  • the planetary gear train is decelerated and transmitted to the screw 4.
  • the specific installation method is as follows: the planetary gear trains of each stage are set from the back to the front.
  • the planetary gear trains from the rear to the front are respectively 1, 2, 3, ..., i, ..., n-stage planetary gear trains; wherein the sun wheels are 1, 2, 3, ... ..., i, ..., n-level sun gear; planetary wheels are 1, 2, 3, ..., i, ..., n planetary gears; planet carriers are 1, 2, 3, ..., i, ... ..., n-stage planet carrier.
  • the three first-stage planetary gears are evenly distributed in the circumferential direction, and are mounted on the rear side of the first-stage planetary carrier through the rotating shaft; the second-stage sun gear is coaxially mounted on the front side of the first-stage planetary carrier.
  • the first stage sun gear is fixedly mounted on the output shaft of the drive motor 2; and the first stage sun gear is meshed with the three first stage planetary gears.
  • the three n-stage planetary gear wheeling the three n-stage planetary gears are evenly distributed in the circumferential direction, and are mounted on the rear side of the n-stage carrier through the rotating shaft; the screw 4 is coaxially mounted on the front side of the n-stage carrier.
  • the i+1-stage sun gear is coaxially disposed with the outer casing, and is fixedly mounted on the front end surface of the i-stage planetary carrier, and Engages with three i-stage planetary gears.
  • Each of the three planetary gears of each of the above-described gear trains meshes with the inner circumferential internal tooth structure 304 of the reduction gear housing 103.
  • the rotation of the three 2-stage planetary gears finally drives the rotation of the two-stage planetary carrier.
  • the transmission mode of the 3- to n-stage planetary gear reducer is the same as that between the first and second stages, so that the n-stage carrier and the screw 4 will eventually be driven. Rotation, finally, the movement of the output shaft of the drive motor 2 is decelerated by the n-stage planetary gear train and transmitted to the screw 4.
  • the number of planetary gears of each stage of the above-described speed reducer 3 may also be four, which is also a uniform arrangement.
  • the material of the gear of the planetary reducer in the present application is PEEK (polyether ether ketone), and the polyether ether ketone has good wear resistance and can prolong the service life of the linear actuator.
  • the gear of the planetary reducer may be made of stainless steel, low alloy steel, cemented carbide, tool steel or nylon.
  • the material of the push rod 5 can also be set as polyetheretherketone.
  • the material of the push cylinder 5 can also be stainless steel, low alloy steel, cemented carbide, tool steel or nylon.
  • the rear end of the screw 4 is connected to the push rod housing 104 in the circumferential direction through the bearing 6.
  • the left and right positioning of the outer ring of the bearing 6 is respectively realized by a shoulder designed on the front end of the reduction housing shell 103 and the inner wall of the rear end of the push rod housing 104; the bearing 6 is The left and right positioning of the ring is realized by the front side of the 2-stage carrier and the positioning nut 7 which is sleeved on the screw 4.
  • the output end of the screw 4 is an externally threaded section, and the push rod 5 of the insulating material is threadedly connected with the output end of the screw 4 to form a screw transmission between the screw 4 and the push rod 5.
  • the bearing 6 is a deep groove ball bearing that enables bidirectional movement of the radial and axle boxes.
  • the rear end of the push rod 5 is designed as a rectangular cross section
  • the inside of the push rod housing 104 is designed as a rectangular passage having the same cross section as the rear end of the push rod 5, thereby being pushed by the rear end of the push rod 5 and the inner wall surface of the push rod housing 104.
  • the cross section of the rear end of the rod 5 may also be other non-circular shapes (not limited in shape), and the inside of the push rod housing 104 is designed to be the same as the rear end section of the push rod 5, restricting the rotation of the push rod 5 in the push rod housing 104.
  • Linear actuators with position feedback have sensors that can be used to feed back position information.
  • the specific sensor may be a carbon film resistive sensor, or a capacitive gate sensor, a grating sensor or a magnetic grid sensor.
  • the sensor in the present application is mounted between the push rod 5 and the push rod housing 104.
  • the sensor can also be directly mounted on the output shaft of the drive motor 2 to directly monitor the motion information of the drive motor 2.
  • the conductive member comprises a brush 8 and a slider resistor 9 and is mounted in the following manner: a brush 8 is mounted on the outer wall of the rear end of the push rod 5, and is mounted on the inner wall of the push rod housing 104.
  • a strip-shaped slider resistor 9 is disposed along the axial direction of the push rod housing 104 to ensure that the brush 8 is in contact with the slider resistor 9 after installation.
  • the brush 8 can slide along the axial direction of the casing 1 on the surface of the slider resistor 9, and the pin resistance of the brush 8 changes, thereby reflecting the push rod 5
  • the position is finally monitored by reading the change in the resistance value of the brush 8 to monitor the extension length of the push rod 5.
  • the sensor is connected to the integrated circuit board, and the controller is integrated on the integrated circuit board, and the integrated circuit board is disposed in the outer casing 1 to realize the control of the position of the push rod 5, and the circuit board is not required to be externally connected; the integrated circuit board is a flexible board.
  • the utility model has the advantages of small volume, convenient installation and deformation, so as to reduce the volume of the linear actuator and reduce the volume of the articulated robot.
  • the present application also discloses an articulated robot including a linear actuator, wherein the linear actuator is the linear actuator disclosed in the above embodiment, and therefore, the articulated robot having the linear actuator also has all the above technical effects. This will not be repeated one by one, wherein the linear actuator is a waterproof linear drive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种关节型机器人的直线驱动器,包括外壳(1),设置在外壳(1)内并依次布置的驱动电机(2)、减速器(3)、螺杆(4)和推杆(5)。其中,驱动电机(2)的输出轴与减速器(3)相连,螺杆(4)与减速器(3)的输出轴连接并与减速器(3)的输出轴同步转动,螺杆(4)的轴线与驱动电机(2)的输出轴共线,推杆(5)与螺杆(4)螺纹连接并沿螺杆(4)的轴线直线运动,推杆(5)沿螺杆(4)移动时导电部件的电阻值发生变化。还包括用于获取导电部件的电阻值的传感器,以及将驱动电机(2)和传感器信号连接的控制模块。直线驱动器通过驱动电机(2)的工作带动螺杆(4)转动,实现推杆(5)的直线运动,完成直线驱动,通过传感器获取导电部件的电阻值从而确定推杆(5)的位置,并通过控制模块实现信号的反馈,从而提高了直线驱动器的控制性能。还涉及一种使用直线驱动器的关节型机器人。

Description

关节型机器人及其直线驱动器
本申请要求于2017年07月13日提交中国专利局、申请号为201710570338.4、发明名称为“关节型机器人及其直线驱动器”的中国专利申请的优先权,以上全部内容通过引用结合在本申请中。
技术领域
本发明涉及家用机器人技术领域,具体的说,涉及一种关节型机器人及其直线驱动器。
背景技术
当今关节型机器人发展迅速,仿人型家用机器人作为家庭娱乐、教育消费品,大量涌入市场。现有的直线驱动器通常使用大模数齿轮,一般尺寸较大,并且缺少传感器反馈运动信息,从而导致控制性能较差。
因此,提供一种关节型机器人的直线驱动器,以提高控制性能,是本领域技术人员目前需要解决的技术问题。
发明内容
有鉴于此,本发明提供了一种关节型机器人的直线驱动器,以提高控制性能。本发明还提供了一种具有上述直线驱动器的关节型机器人。
为实现上述目的,本发明提供如下技术方案:
一种关节型机器人的直线驱动器,其包括:
外壳;
设置在所述外壳内并依次布置的驱动电机、减速器、螺杆和推杆,其中,所述驱动电机的输出轴与所述减速器相连,所述螺杆与所述减速器的输出轴连接并与所述减速器的输出轴同步转动,所述螺杆的轴线与所述驱动电机的输出轴共线,所述推杆与所述螺杆螺纹连接并沿所述螺杆的轴线直线运动,所述推 杆沿所述螺杆移动时导电部件的电阻值发生变化;
用于获取所述导电部件电阻值的传感器;
与所述驱动电机和所述传感器信号连接的控制模块。
优选的,上述的直线驱动器中,所述减速器为行星减速器。
优选的,上述的直线驱动器中,所述行星减速器的齿轮和所述推杆的材料均为聚醚醚酮、不锈钢或尼龙。
优选的,上述的直线驱动器中,所述螺杆可转动的设置在所述外壳内部的深沟球轴承内。
优选的,上述的直线驱动器中,所述导电部件包括电刷和滑片电阻,且所述电刷和所述滑片电阻一者设置在所述推杆上,另一者设置在所述外壳内壁。
优选的,上述的直线驱动器中,所述电刷固定在所述推杆上,所述滑片电阻设置在所述外壳内壁。
优选的,上述的直线驱动器中,所述传感器安装在所述推杆和所述外壳之间。
优选的,上述的直线驱动器中,所述传感器为碳膜电阻式传感器。
优选的,上述的直线驱动器中,所述控制模块集成在集成电路板上,且所述集成电路板安装在所述外壳内部。
一种关节型机器人,包括直线驱动器,其中,所述直线驱动器为如上述任一项所述的直线驱动器,所述直线驱动器为防水直线驱动器。
经由上述的技术方案可知,本发明公开了一种关节型机器人的直线驱动器,包括外壳、设置在外壳内并依次布置的驱动电机、减速器、螺杆和推杆,其中,驱动电机的输出轴与减速器相连,螺杆与减速器的输出轴连接并与减速器的输出轴同步转动,该螺杆的轴线与驱动电机的输出轴共线,上述的推杆与螺杆螺纹连接并沿螺杆的轴线直线运动,该推杆沿螺杆移动时导电部件的电阻值发生变化,传感器用于获取导电部件的电阻值,并通过控制模块与驱动电机信号连接。本申请中的直线驱动器,通过驱动电机的工作带动螺杆的转动,实现推杆的直线运动,完成直线驱动,此外,通过传感器获取导电部件的电阻值从而确 定推杆的位置,并通过控制模块实现信号的反馈,从而提高了直线驱动器的控制性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的直线驱动器的外壳的结构示意图;
图2为本发明实施例提供的直线驱动器的内部推杆内缩时的结构示意图;
图3为本发明实施例提供的直线驱动器的部分结构示意图;
图4为本发明实施例提供的直线驱动器的减速器拆解结构示意图;
图5为本发明实施例提供的直线驱动器的推杆外伸结构示意图。
具体实施方式
本发明的核心是提供一种关节型机器人的直线驱动器,以提高控制性能。本发明的另一核心是提供了一种具有上述直线驱动器的关节型机器人。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-图5所示,本发明公开了一种关节型机器人的直线驱动器,包括外壳1、设置在外壳1内并依次布置的驱动电机2、减速器3、螺杆4和推杆5,其中,驱动电机2的输出轴与减速器3相连,螺杆4与减速器3的输出轴连接并与减速器3的输出轴同步转动,该螺杆4的轴线与驱动电机2的输出轴共线,上述的推杆5与螺杆4螺纹连接并沿螺杆4的轴线直线运动,该推杆5沿螺杆4移动时导电部件的电阻值发生变化,传感器用于获取导电部件的电阻值,并 通过控制模块与驱动电机2信号连接。本申请中的直线驱动器,通过驱动电机的工作带动螺杆的转动,实现推杆5的直线运动,完成直线驱动,此外,通过传感器获取导电部件的电阻值从而确定推杆5的位置,并通过控制模块实现信号的反馈,从而提高了直线驱动器的控制性能。
将螺杆4的轴线与驱动电机2的输出轴的轴线设置为共线可减小直线驱动器纵向的宽度。
对上述各个部件进行单独说明:
外壳1包括后端盖101、电机外壳102、减速箱外壳103和推杆外壳104以及前端盖105。其中,后端盖101、电机外壳102、减速箱外壳103、推杆外壳104与前端盖105依次通过外螺钉同轴连接形成筒状结构,电机外壳102后端与后端盖101螺纹连接,由后端盖101密封,从而形成整体的外壳1结构,外壳1的内部具有51mm x 15mm x 10mm的立方体空间。后端盖101、电机外壳102、减速箱外壳103、推杆外壳104与前端盖105之间均设置可防水的密封圈,以使外壳1具有防水功能,便于关节型机器人进行水下作业。上述电机外壳102内部安装有驱动电机2,减速箱外壳103内安装有减速器3,推杆外壳104内安装有推杆5。减速箱外壳103左端设计有定位台肩用来定位驱动电机2,推杆外壳104前端与前端盖105螺纹连接,且前端盖105端面上开有通孔,为推杆伸缩孔,并用于周向定位推杆5,为推杆5的伸缩运动导向,实现推杆5沿螺杆4的轴线移动。
此外,本申请中的驱动电机2的一端与后端盖101贴合,实现驱动电机2轴向定位,驱动电机2的输出轴连接减速器3的输入轴。本申请中的驱动电机2可以是有刷空心杯电机、无刷空心杯电机、有刷铁芯电机或无刷铁芯电机。
具体的实施例中,为了保证驱动电机2的输出轴与螺杆4的轴线共线,同时降低驱动电机2的转速,将减速器3设置为行星减速器。具体的,本申请中的行星减速器可为具有一级或多级结构相同的行星齿轮齿轮系(本实施例中减速器具有两级行星齿轮轮系),随减速器3所采用行星齿轮轮系数量的增加,可使驱动电机2的输出轴运动速度下降幅度增加,进而使最终推杆4输出力增加。对于一级行星齿轮轮系具体包括一个太阳轮301、三个行星轮302与一个 行星架303;同时减速箱外壳103的内部周向上设计有内齿结构304,作为减速器3的内齿轮。上述行星齿轮采用微型行星齿轮设计方法设计,所使用的模数可以是0.1、0.12、0.15、0.16、0.18、0.2或0.25模。
当减速器设计具有一级行星齿轮轮系时,具体安装方式为:三个行星轮302周向均布,通过转轴安装于行星架303后侧面上;行星架前侧面同轴安装螺杆4。太阳轮301固定安装于驱动电机2的输出轴上;且太阳轮301与三个行星轮均302啮合,同时三个行星轮302均与减速箱外壳103内部周向内齿结构304啮合。由此,驱动电机2的输出轴运动可带动太阳轮301转动,由太阳轮301带动三个行星轮302转动,进而带动行星架303与螺杆4转动;最终使驱动电机2的输出轴的运动经过行星齿轮轮系减速后传递至螺杆4。
当减速器3设计具有一级以上的行星齿轮轮系时,具体安装方式为:各级行星齿轮轮系由后至前设置。为便于说明,令由后至前各级行星齿轮轮系分别为1、2、3、……、i、……、n级行星齿轮轮系;其中太阳轮分别为1、2、3、……、i、……、n级太阳轮;行星轮分别为1、2、3、……、i、……、n行星轮;行星架分别为1、2、3、……、i、……、n级行星架。则1级行星齿轮轮系中,三个1级行星轮周向均布,通过转轴安装于1级行星架后侧面上;1级行星架前侧面同轴安装2级太阳轮。1级太阳轮固定安装于驱动电机2的输出轴上;且1级太阳轮与三个1级行星轮啮合。n级行星齿轮轮吸中,三个n级行星轮周向均布,通过转轴安装于n级行星架后侧面上;n级行星架前侧面同轴安装螺杆4。而对于相邻两级行星齿轮轮系间的连接方式为:i+1级行星齿轮轮系中,i+1级太阳轮与外壳同轴设置,固定安装于i级行星架前端面上,且与三个i级行星轮啮合。上述各级齿轮轮系中的三个行星轮均与减速箱外壳103内部周向内齿结构304啮合。由此,驱动电机的输出轴运动可带动1级太阳轮转动,由1级太阳轮带动三个1级行星轮转动,进而带动1级行星架及2级太阳轮转动,由2级太阳轮带动三个2级行星轮转动,最终带动2级行星轮架转动,3~n级行星齿轮减速器的传动方式同1级与2级间的传动方式,因此最终会带动n级行星架与螺杆4转动,最终使驱动电机2输出轴的运动经过n级行星齿轮轮系减速后传递至螺杆4。
上述的减速器3的每一级的行星齿轮个数也可以为4个,同样为均布布置。
本申请中行星减速器的齿轮的材料为PEEK(聚醚醚酮),聚醚醚酮的耐磨性能好,可以延长直线驱动器的使用寿命。此外,该行星减速器的齿轮的材料还可为不锈钢、低合金钢、硬质合金、工具钢或尼龙。
同理,可将推杆5的材料也设置为聚醚醚酮,同时,该推缸5的材料也可为不锈钢、低合金钢、硬质合金、工具钢或尼龙。
螺杆4后端与推杆外壳104周向上通过轴承6连接,轴承6外圈的左右定位分别通过在减速箱外壳103前端和推杆外壳104后端内壁周向上设计的台肩实现;轴承6内圈的左右定位分别通过2级行星架前侧面以及螺杆4上套接的定位螺母7实现。螺杆4的输出端为外螺纹段,绝缘材料的推杆5与螺杆4输出端间螺纹套接,使螺杆4与推杆5间形成螺旋传动。轴承6为深沟球轴承,能够实现径向和轴箱双向运动。
推杆5后端设计为矩形截面,同时将推杆外壳104内设计为与推杆5后端截面相同的矩形通道,由此通过推杆5后端与推杆外壳104内壁面间配合,推杆5后端的截面也可以为其它非圆形形状(不限定形状),推杆外壳104内设计为与推杆5后端截面相同的通道,限制了推杆5在推杆外壳104内的转动运动,由此螺杆4的转动仅可带动推杆5沿壳体轴向直线运动,使推杆5由前端盖105上的推杆伸缩孔处伸缩。且当推杆5处于收缩状态时,推杆5前端端面与前端盖105的前端面齐平,如图2所示;推杆5处于伸出状态时如图5所示。
带位置反馈的直线驱动器带有传感器,可以用来反馈位置信息。具体的传感器可以为碳膜电阻式传感器,还可以是容栅式传感器、光栅式传感器或磁栅式传感器,本申请中的传感器安装在推杆5和推杆外壳104之间。所述的传感器还可以直接安装在驱动电机2的输出轴上,直接监测驱动电机2的运动信息。
在一具体实施中,上述的导电部件包括电刷8和滑片电阻9,并按以下形式安装:上述推杆5后端外侧壁上安装有电刷8,同时在推杆外壳104内壁上安装有条形的滑片电阻9,滑片电阻9沿推杆外壳104轴向设置,安装后保证电刷8与滑片电阻9接触。由此,在推杆5移动过程中,电刷8可在滑片电阻9的表面沿外壳1的轴向滑动,且电刷8的引脚电阻会发生变化,从而可以反 映出推杆5的位置,最终通过读取电刷8的电阻值变化来监测推杆5的伸出长度。
传感器连接集成电路板,上述的控制器集成在集成电路板上,集成电路板设置于外壳1内,实现对推杆5位置的控制,无需直线驱动器再外接电路板;集成电路板为柔性板,体积小、安装方便、允许变形,以减小直线驱动器的体积,减小关节型机器人的体积。
此外,本申请还公开了一种关节型机器人,包括直线驱动器,其中,该直线驱动器为上述实施例中公开的直线驱动器,因此,具有该直线驱动器的关节型机器人也具有上述所有技术效果,在此不再一一赘述,其中,该直线驱动器为防水直线驱动器。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种关节型机器人的直线驱动器,其特征在于,包括:
    外壳(1);
    设置在所述外壳(1)内并依次布置驱动电机(2)、减速器(3)、螺杆(4)和推杆(5),其中,所述驱动电机(2)的输出轴与所述减速器(3)相连,所述螺杆(4)与所述减速器(3)的输出轴连接并与所述减速器(3)的输出轴同步转动,所述螺杆(4)的轴线与所述驱动电机(2)的输出轴共线,所述推杆(5)与所述螺杆(4)螺纹连接并沿所述螺杆(4)的轴线直线运动,所述推杆(5)沿所述螺杆(4)移动时导电部件的电阻值发生变化;
    用于获取所述导电部件电阻值的传感器;
    与所述驱动电机(2)和所述传感器信号连接的控制模块。
  2. 根据权利要求1所述的直线驱动器,其特征在于,所述减速器(3)为行星减速器。
  3. 根据权利要求2所述的直线驱动器,其特征在于,所述行星减速器的齿轮和所述推杆(5)的材料均为聚醚醚酮、不锈钢或尼龙。
  4. 根据权利要求1所述的直线驱动器,其特征在于,所述螺杆(4)可转动的设置在所述外壳(1)内部的深沟球轴承内。
  5. 根据权利要求1所述的直线驱动器,其特征在于,所述导电部件包括电刷(8)和滑片电阻(9),且所述电刷(8)和所述滑片电阻(9)一者设置在所述推杆(5)上,另一者设置在所述外壳(1)内壁。
  6. 根据权利要求5所述的直线驱动器,其特征在于,所述电刷(8)固定在所述推杆(5)上,所述滑片电阻(9)设置在所述外壳(1)内壁。
  7. 根据权利要求1所述的直线驱动器,其特征在于,所述传感器安装在所述推杆(5)和所述外壳(1)之间。
  8. 根据权利要求1-7任一项所述的直线驱动器,其特征在于,所述传感器为碳膜电阻式传感器。
  9. 根据权利要求1-7任一项所述的直线驱动器,其特征在于,所述控制模块集成在集成电路板上,且所述集成电路板安装在所述外壳(1)内部。
  10. 一种关节型机器人,包括直线驱动器,其特征在于,所述直线驱动器为如上述权利要求1-9任一项所述的直线驱动器,所述直线驱动器为防水直线驱动器。
PCT/CN2018/093218 2017-07-13 2018-06-28 关节型机器人及其直线驱动器 WO2019011128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710570338.4A CN107127749A (zh) 2017-07-13 2017-07-13 关节型机器人及其直线驱动器
CN201710570338.4 2017-07-13

Publications (1)

Publication Number Publication Date
WO2019011128A1 true WO2019011128A1 (zh) 2019-01-17

Family

ID=59737880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093218 WO2019011128A1 (zh) 2017-07-13 2018-06-28 关节型机器人及其直线驱动器

Country Status (2)

Country Link
CN (1) CN107127749A (zh)
WO (1) WO2019011128A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107127749A (zh) * 2017-07-13 2017-09-05 北京因时机器人科技有限公司 关节型机器人及其直线驱动器
CN112518733A (zh) * 2020-11-17 2021-03-19 深圳市优必选科技股份有限公司 直线伺服舵机及机器人
CN112901443A (zh) * 2020-12-30 2021-06-04 苏州瑞迈康健医疗科技有限公司 一种具有位置反馈功能的往复推杆气源驱动器
CN118763843A (zh) * 2024-09-09 2024-10-11 深圳市科创兴电机科技有限公司 一种可调节声控直流无刷电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050218727A1 (en) * 2002-03-05 2005-10-06 Moving Magnet Technologies M.M.T. Linear actuator comprising a brushless polyphase electric motor
KR20130045692A (ko) * 2011-10-26 2013-05-06 (주)로보티즈 싸이클로이드 감속기의 위치 피드백 장치
CN203605898U (zh) * 2013-12-24 2014-05-21 宁波市北仑机械电器有限公司 一种滑杆式微型直线位移传感器
CN103840601A (zh) * 2014-03-06 2014-06-04 北京精密机电控制设备研究所 一种机电作动器
CN106678283A (zh) * 2017-01-17 2017-05-17 北京因时机器人科技有限公司 一种带位置反馈的小型直线驱动器
CN107127749A (zh) * 2017-07-13 2017-09-05 北京因时机器人科技有限公司 关节型机器人及其直线驱动器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204794553U (zh) * 2015-06-26 2015-11-18 上海宇航系统工程研究所 一种驱动装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050218727A1 (en) * 2002-03-05 2005-10-06 Moving Magnet Technologies M.M.T. Linear actuator comprising a brushless polyphase electric motor
KR20130045692A (ko) * 2011-10-26 2013-05-06 (주)로보티즈 싸이클로이드 감속기의 위치 피드백 장치
CN203605898U (zh) * 2013-12-24 2014-05-21 宁波市北仑机械电器有限公司 一种滑杆式微型直线位移传感器
CN103840601A (zh) * 2014-03-06 2014-06-04 北京精密机电控制设备研究所 一种机电作动器
CN106678283A (zh) * 2017-01-17 2017-05-17 北京因时机器人科技有限公司 一种带位置反馈的小型直线驱动器
CN107127749A (zh) * 2017-07-13 2017-09-05 北京因时机器人科技有限公司 关节型机器人及其直线驱动器

Also Published As

Publication number Publication date
CN107127749A (zh) 2017-09-05

Similar Documents

Publication Publication Date Title
WO2019011128A1 (zh) 关节型机器人及其直线驱动器
US8197379B1 (en) Transmission mechanism for power tool
CN107234632B (zh) 一种基于差动轮系的节能变刚度弹性关节
CN101259547A (zh) 分度工作台
CN106926223A (zh) 一种蛇形机器人
CN106678283A (zh) 一种带位置反馈的小型直线驱动器
CN103072143A (zh) 用于scara型机械手臂的关节机构
CN201979132U (zh) 一种孔加工用手动进给装置
CN206883635U (zh) 关节型机器人及其直线驱动器
CN101318306A (zh) 金属刷子机
CN207018460U (zh) 一种丝杆传动电动推杆结构
US10144101B2 (en) Headstock assembly for machine tool
CN210867413U (zh) 一种高集成化电机
CN204559309U (zh) 机电直线驱动装置
CN210383145U (zh) 升降取暖桌
CN206211753U (zh) 压旋机
CN202491120U (zh) 直驱丝母旋转装置
CN203557178U (zh) 加工中心b轴铣头用行星减速机构
CN207975222U (zh) 带有双离合机构的复谐波传动装置
CN108916323B (zh) 一种通过双锥面丝杠切换的多速减速器
CN207104961U (zh) 十字轴关节结构
CN102229060A (zh) 一种新型数控电机传动与手动双控装置
CN206739565U (zh) 运动机构及应用其的空调柜机
CN205738091U (zh) 一种机器人翅膀组件设备
CN205709256U (zh) 一种任意止转的自动卷管器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832721

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO 1205 DATED 19.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18832721

Country of ref document: EP

Kind code of ref document: A1