WO2019011030A1 - 一种碗状双极化基站天线辐射单元及天线 - Google Patents

一种碗状双极化基站天线辐射单元及天线 Download PDF

Info

Publication number
WO2019011030A1
WO2019011030A1 PCT/CN2018/084028 CN2018084028W WO2019011030A1 WO 2019011030 A1 WO2019011030 A1 WO 2019011030A1 CN 2018084028 W CN2018084028 W CN 2018084028W WO 2019011030 A1 WO2019011030 A1 WO 2019011030A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
coaxial cable
bowl
base station
radiating
Prior art date
Application number
PCT/CN2018/084028
Other languages
English (en)
French (fr)
Inventor
鲍重杰
徐成耀
胡成军
李帅邦
雷响
Original Assignee
武汉虹信通信技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉虹信通信技术有限责任公司 filed Critical 武汉虹信通信技术有限责任公司
Publication of WO2019011030A1 publication Critical patent/WO2019011030A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a broadband dual-polarized base station antenna radiating element and an antenna.
  • the base station antenna As one of the network elements of wireless networks, the base station antenna has evolved to meet the requirements of wireless network development. It is a key component of outdoor coverage of mobile communication systems and has a very broad application prospect.
  • the electrical performance of the base station antenna directly affects the coverage and communication quality of the mobile communication system. Therefore, operators have put forward high requirements on the existing base station antenna.
  • the polarization isolation requires more than 30 dB. Above 25dB, the axial cross-polarization ratio is above 20dB, and the positive-negative 60-degree cross-polar ratio is also above 10dB. And as communication systems improve, these requirements will become higher and higher.
  • the present invention provides a bowl-shaped dual-polarized antenna radiating unit and an antenna to meet market demands.
  • the technical solution of the present invention provides a bowl-shaped dual-polarized base station antenna radiating unit, comprising a metal base and four pairs of metal supporting members, the metal supporting members are mounted on the metal base, and each metal supporting member is provided with a metal radiating arm at the top end thereof.
  • the front ends of the metal radiating arms are bent downward by 90°;
  • a metal feed connection block is disposed between the two metal radiating arms at the top of each pair of metal supports, and the metal feed connection block is connected to one of the metal radiating arms.
  • Another metal radiating arm has a coaxial cable welding groove at the top of the corresponding metal supporting member, and the outer conductor of the feeding coaxial cable is welded with the coaxial cable welding groove;
  • the metal feed connection block is provided with a back groove, and the inner conductor of the feed coaxial cable extends into the back groove to be welded with the metal feed connection block.
  • the metal base adopts a ring-shaped structure, and the metal base is provided with a metal screw hole, and the convex surface of the metal screw hole is higher than the metal base.
  • metal support has a length of 1/4 of the center frequency and an angle of 45 degrees with the metal base.
  • each pair of metal supports are disposed on a horizontal plane, and each pair of metal radiating arms are at 90 degrees to each other.
  • the distance between the metal radiating arm and the reflecting plate is 0.25 center frequency wavelengths.
  • the bottom surface of the metal base, the back side of the metal support, the metal radiating arm and/or the bent metal radiating arm are hollowed out.
  • the metal base, the metal support, the metal radiating arm and the metal feed connection block are integrally die cast.
  • the metal support member is provided with a coaxial cable fixing groove, the position of the coaxial cable welding groove is higher than the coaxial cable fixing groove, the coaxial cable fixing groove wraps the feeding coaxial cable, and the back surface of the metal feeding connection block is concave.
  • the slot is on the extension of the coaxial cable securing slot of the metal support.
  • the back side of the metal support member is provided with a restriction card boss, and the feed buckle is used to securely feed the feed coaxial cable to the metal support member through the feed card limit boss.
  • the present invention also provides an antenna comprising a bowl-shaped dual-polarized base station antenna radiating element as described above.
  • the two metal radiating arms of the above-mentioned bowl-shaped dual-polarized base station antenna radiating unit adopt a 90 degree downward bending, which reduces the extension of the radiating arm, thereby effectively reducing the bandwidth while ensuring the bandwidth.
  • the volume of the radiating element After the unit array in the antenna, the metal arms that are bent parallel to each other make the debugging of the isolation degree, the positive and negative 60-degree cross-polar ratio easier.
  • the feeding connection block and the metal radiating arm and the metal supporting member adopt a die-casting integrated structure, so that the feeding is more stable and reliable.
  • the whole radiation unit has a simple structure, effectively reduces the production cost, is easy to install and fix, has the advantages of high impedance bandwidth, high isolation and high cross-polarization ratio, and is suitable for the development of the mobile communication system, and has important market value. .
  • FIG. 1 is a schematic front view of a front side of a reflector according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of a back side of an embodiment of the present invention.
  • FIG. 3 is a schematic front perspective view of an embodiment of the present invention.
  • FIG. 4 is a front elevational view showing the structure of an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a survey according to an embodiment of the present invention.
  • FIG. 6 is a schematic front view of the back side of the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a feed forward structure according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a power feeding side view according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a three-dimensional structure of a feeding back according to an embodiment of the present invention.
  • FIG. 10 is a schematic perspective view of a front side view of a feed according to an embodiment of the present invention.
  • the invention provides a bowl-shaped dual-polarized base station antenna radiating unit, the radiating unit comprises a metal base and four pairs of metal supporting members, the metal supporting members are mounted on the metal base, and the metal radiating arm is arranged at the top end of each metal supporting member , the front end of each metal radiating arm is bent downward by 90°;
  • a metal feed connection block is disposed between the two metal radiating arms at the top of each pair of metal supports, and the metal feed connection block is connected to one of the metal radiating arms.
  • Another metal radiating arm has a coaxial cable welding groove at the top of the corresponding metal supporting member, and the outer conductor of the feeding coaxial cable is welded with the coaxial cable welding groove;
  • the metal feed connection block is provided with a back groove, and the inner conductor of the feed coaxial cable extends into the back groove to be welded with the metal feed connection block.
  • the metal base adopts a ring-shaped structure
  • the bottom surface adopts a hollow structure
  • a metal screw hole is arranged on the metal base, and the convex surface of the metal screw hole is higher than the annular metal base.
  • the convex surface is 0.5 - 1 mm higher.
  • the metal support members have four groups, and each set of metal support members is composed of two parallel metal members.
  • a bowl-shaped dual-polarized base station antenna radiating unit is provided for mounting on a boundary of a reflector to form an antenna, and includes a circular metal base 6 and a fixing hole 2 through a screw. It is fixed to the reflector 1 and four screw fixing holes 2 are provided in the embodiment.
  • the metal base 6 of the circular ring is connected with four pairs of metal supports 5 having a length of 1/4 of the center frequency and an angle of 45 degrees with the metal base 6.
  • each pair of metal supports 5 is provided with a metal radiating arm 4, and the metal radiating arms 4 are disposed on a horizontal surface (surface parallel to the reflecting plate 1), and each pair of the metal radiating arms 4 is mutually formed. 90 degrees.
  • Each of the metal radiating arms 4 and one of the adjacent pairs of metal radiating arms 4 are on a horizontal line, and the four pairs of metal radiating arms 4 form a shape close to a quadrangle.
  • the metal radiating arm 4, the metal base 6, and the metal support 5 constitute a bowl shape.
  • each pair of metal radiating arms 4 is bent downward by 90°, and the bending length is 1/8 of the center frequency wavelength. That is, the top end of the metal radiating arm 4 is bent downward to form a bent metal radiating arm 7, and the bent metal radiating arm 7 is 90 degrees in the vertical direction with the metal radiating arm 4.
  • the parts after the bending are parallel and coupled to each other after feeding, so the debugging is simpler.
  • a metal feed connection block 3 is provided between each pair of metal radiating arms 4, and the metal feed connection block 3 is linked with one of the metal radiating arms 4 and disconnected from the other metal radiating arm 4.
  • the distance between the metal radiating arm 4 and the reflecting plate 1 is 0.2-0.3 center frequency wavelengths.
  • the distance between the metal radiating arm and the reflector is 0.25 center frequency wavelengths.
  • the metal base 6, the metal support 5, the metal radiating arm 4 and the metal feed connection block 3 are integrally die-cast.
  • the bottom surface of the metal base, the back side of the metal support, the metal radiating arm and/or the bent metal radiating arm adopt a hollow structure.
  • the back hollow portion 9 of the metal support member, the back hollow portion 10 of the metal base, the hollow portion 11 of the metal radiating arm, and the hollow portion 14 of the bent metal radiating arm are provided to reduce the weight of the radiating unit.
  • the convex surface of the four metal screw holes on the metal base 6 is higher than the annular metal base, which can reduce the contact area with the reflector 1, which greatly contributes to improving the stability of the third-order intermodulation index.
  • the metal support member 5 is provided with a coaxial cable fixing groove 13 at the top end of which has a coaxial cable welding groove 12, and the coaxial cable welding groove 12 is positioned higher than the coaxial cable fixing groove 13.
  • the coaxial cable fixing groove 13 wraps the feed coaxial cable 17, and the coaxial cable welding groove 12 is welded to the outer conductor of the feed coaxial cable 17, thereby realizing feeding.
  • the back side of the metal support member 5 is provided with a feed card limit boss 15 , and the feed clamp 17 is firmly clamped on the metal support member 5 by the feed card limit boss 15 .
  • the material buckle 16 is an elastic material buckle
  • the paper card limiting boss 15 is composed of a plurality of metal protrusions protruding from the back of the metal support 5, for example, three metal protrusions. station.
  • the feed coaxial cable 17 is firmly fixed to the metal support 5 by the pick-up snap 16 to prevent slippage of the feed coaxial cable 17.
  • the inner conductor of the feed coaxial cable 17 extends into the back recess 8 of the metal feed connection block, and the back groove 8 of the metal feed connection block is on the extension of the coaxial cable fixing slot 13 of the metal support Upper, the inner conductor of the feed coaxial cable 17 is welded to the metal feed connection block 3 to realize feeding.
  • Embodiments of the present invention also provide an antenna including a bowl-shaped dual-polarized base station antenna radiating unit as described above.
  • the radiating elements are arranged in a matrix or nested with other high frequency oscillators.
  • the orientation indicating arrow 18 provides a direction for the unit array.
  • the bowl-shaped radiation unit is in the frequency band of 790-960MHz by 90 degree bending of the radiation arm, adjusting the spacing of the two 90 degree bending parts, the angle between the metal support and the circular base, and the curvature of the metal support.
  • the horizontal beamwidth can be converged within 65 ⁇ 5°, the isolation of three radiating elements is above -30db, and the voltage standing wave ratio is below 1.5, which is obviously superior to other types of radiating elements. , isolation and cross-polarization ratios are greatly improved, and are conducive to processing and assembly.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明提供一种碗状双极化基站天线辐射单元及天线,所述的辐射单元包含金属底座和4对金属支撑件,金属支撑件安装在金属底座上,每个金属支撑件顶端设有金属辐射臂,每个金属辐射臂的前端都向下90°弯折;每对金属支撑件顶端的两个金属辐射臂之间设有金属馈电连接块,金属馈电连接块与其中一个金属辐射臂相连,另一个金属辐射臂相应金属支撑件顶端有同轴电缆焊接槽,馈电同轴线缆的外导体与同轴电缆焊接槽焊接;金属馈电连接块上设有背面凹槽,馈电同轴电缆的内导体延伸到背面凹槽内,与金属馈电连接块进行焊接。本发明具有高阻抗带宽、高隔离度和高交叉极化比的优点,其结构简单,易于安装。

Description

一种碗状双极化基站天线辐射单元及天线 技术领域
本发明涉及无线通信领域,特别涉及一种宽频双极化基站天线辐射单元及天线。
背景技术
随着移动通信系统的迅速发展,系统的复杂度越来越高,天线作为其重要组成部分也面临着严峻的考验。市场对宽频带通信基站天线提出了巨大的需求,要求基站天线兼容尽可能多的通信制式。中国移动GSM900,中国联通GSM900工作频段分布在890-960MHz内,中国电信CDMA800工作频段分布在820-880MHz内。为了解决天线安装选址困难,不同制式的系统天线实现共体或共用等难题,现行最有效的解决方式就是兼顾上述通信制式,需要满足从820MHz到960MHz的基站天线。
基站天线作为无线网络的网元之一,其形态的发展一直以满足无线网络发展的诉求而演进,是移动通信系统室外覆盖的关键部件,具有非常广阔的应用前景。基站天线的各项电气性能的好坏直接影响了移动通信系统的覆盖范围和通信质量,所以运营商对现有的基站天线提出了很高的要求,异极化隔离度要求30dB以上,前后比25dB以上,轴向的交叉极化比在20dB以上,正负60度交叉极比也要在10dB以上。而且随着通信系统的完善,这些要求也会变得越来越高。
发明内容
针对背景技术需求,本发明提供一种碗状双极化天线辐射单元及天线,以满足市场需求。
本发明的技术方案提供一种碗状双极化基站天线辐射单元,包括金属底座和4对金属支撑件,金属支撑件安装在金属底座上,每个金属支撑件顶端设有金属辐射臂,每个金属辐射臂的前端都向下90°弯折;
每对金属支撑件顶端的两个金属辐射臂之间设有金属馈电连接块,金属馈电连接块与其中一个金属辐射臂相连,
另一个金属辐射臂相应金属支撑件顶端有同轴电缆焊接槽,馈电同轴线缆的外导体与同轴电缆焊接槽焊接;
金属馈电连接块上设有背面凹槽,馈电同轴电缆的内导体延伸到背面凹槽内,与金属馈电连接块进行焊接。
而且,所述的金属底座采用圆环状结构,所述的金属底座上设置金属螺丝孔,金属螺丝 孔的凸面高出金属底座。
而且,金属底座上连接有4对金属支撑件,金属支撑件的长度为1/4中心频率波长,与金属底座成45度夹角。
而且,每对金属支撑件顶端的金属辐射臂在水平面上设置,每对金属辐射臂相互成90度。
而且,安装时,金属辐射臂与反射板的距离为0.25个中心频率波长。
而且,金属底座的底面、金属支撑件的背面、金属辐射臂和/或折弯金属辐射臂采用镂空结构。
而且,所述的金属底座、金属支撑件、金属辐射臂以及金属馈电连接块为一体化压铸成型。
而且,所述的金属支撑件上设置同轴电缆固定槽,同轴电缆焊接槽位置比同轴电缆固定槽高,同轴电缆固定槽包裹馈电同轴电缆,金属馈电连接块的背面凹槽在金属支撑件的同轴电缆固定槽的延长线上。
而且,金属支撑件背面设置朔料卡限位凸台,采用朔料卡扣,通过朔料卡限位凸台将馈电同轴电缆牢固的卡在金属支撑件上。
本发明还提供一种天线,包括如上所述的碗状双极化基站天线辐射单元。
与现有技术相比,上述碗状双极化基站天线辐射单元的两金属辐射臂采用90度向下折弯,减小了辐射臂的伸展,从而在保证带宽的情况下有效的减小了辐射单元的体积。在天线中单元组阵以后,折弯部分相互平行的金属臂,使得隔离度、正负60度交叉极比等指标调试更加简单。馈电连接块与金属辐射臂,金属支撑件采用压铸一体结构,使得馈电更加的稳固可靠。并且整个辐射单元结构简单,有效的降低了生产成本,而且易于安装和固定,具有高阻抗带宽、高隔离度和高交叉极化比的优点,适应移动通信系统的发展需求,具有重要的市场价值。
附图说明
图1为本发明实施例加反射板的正面立体结构示意图;
图2为本发明实施例的背面立体结构示意图;
图3为本发明实施例的正面立体结构示意图;
图4为本发明实施例的正面正视结构示意图;
图5为本发明实施例的测视结构示意图;
图6为本发明实施例的背面正视结构示意图;
图7为本发明实施例的馈电正视结构示意图;
图8为本发明实施例的馈电侧视结构示意图;
图9为本发明实施例的馈电背面立体结构示意图;
图10为本发明实施例的馈电正面侧视立体结构示意图。
图中:1-反射板;2-螺钉固定孔;3-金属馈电连接块;4-金属辐射臂;5-金属支撑件;6-金属底座;7-折弯金属辐射臂;8-金属馈电连接块的背面凹槽;9-金属支撑件的背面镂空部位;10-金属底座的背面镂空部位;11-金属辐射臂的镂空部位;12-同轴电缆焊接槽;13-同轴电缆固定槽;14-折弯金属辐射臂的镂空部位;15-朔料卡限位凸台;16-朔料卡扣;17-馈电同轴电缆;18-方位指示箭头。
具体实施方式
下面结合所列的附图和具体的实例方式对本发明作进一步详细说明。
本发明提供一种碗状双极化基站天线辐射单元,所述的辐射单元包含金属底座和4对金属支撑件,金属支撑件安装在金属底座上,每个金属支撑件顶端设有金属辐射臂,每个金属辐射臂的前端都向下90°弯折;
每对金属支撑件顶端的两个金属辐射臂之间设有金属馈电连接块,金属馈电连接块与其中一个金属辐射臂相连,
另一个金属辐射臂相应金属支撑件顶端有同轴电缆焊接槽,馈电同轴线缆的外导体与同轴电缆焊接槽焊接;
金属馈电连接块上设有背面凹槽,馈电同轴电缆的内导体延伸到背面凹槽内,与金属馈电连接块进行焊接。
进一步地,所述的金属底座采用圆环状结构,底面采用镂空结构,并且在金属底座上设有金属螺丝孔,金属螺丝孔的凸面要高出环形金属底座。优选地,凸面高出0.5——1mm。
进一步地,所述的金属支撑件有四组,每一组金属支撑件由两条平行的金属件组成。
如图1至图10,实施例提供的一种碗状双极化基站天线辐射单元,用于安装在反射板边界上构成天线,包括1个圆环形的金属底座6,通过螺钉固定孔2固定于所述反射板1上,实施例中设置了四个螺钉固定孔2。
圆形环的金属底座6上连接有4对金属支撑件5,金属支撑件的长度为1/4中心频率波长,与金属底座6成45度夹角。
所述的每对金属支撑件5顶端设有金属辐射臂4,所述的金属辐射臂4在水平面上设置(与反射板1平行的面上),每对所述的金属辐射臂4相互成90度。每个金属辐射臂4与相 邻的另一对金属辐射臂4中的一个在一条水平线上,四对金属辐射臂4构成接近四边形的形状。金属辐射臂4、金属底座6和金属支撑件5构成碗状。
所述的每对金属辐射臂4的前端都向下90°弯折,折弯长度为1/8中心频率波长。即所述的金属辐射臂4顶端向下折弯形成折弯金属辐射臂7,所述的折弯金属辐射臂7与所述的金属辐射臂4在垂直方向上成90度。折弯后的部分平行,在馈电后相互耦合,所以使得调试更加简单。
每对金属辐射臂4之间设有金属馈电连接块3,金属馈电连接块3与其中一个金属辐射臂4链接在一起,与另一个金属辐射臂4断开。
优选地,所述金属辐射臂4与所述反射板1的距离为0.2-0.3个中心频率波长。优选地,金属辐射臂与反射板的距离为0.25个中心频率波长。
优选的,所述的金属底座6、金属支撑件5、金属辐射臂4以及金属馈电连接块3为一体化压铸成型。
优选的,金属底座的底面、金属支撑件的背面、金属辐射臂和/或折弯金属辐射臂采用镂空结构。
如图2,设置金属支撑件的背面镂空部位9、金属底座的背面镂空部位10、金属辐射臂的镂空部位11、折弯金属辐射臂的镂空部位14,可以减小辐射单元的重量。所述的金属底座6上四个金属螺丝孔的凸面要高出环形金属底座,可以减少与所述反射板1的接触面积,其对改善三阶互调指标的稳定性有很大的帮助。所述的金属支撑件5上设置同轴电缆固定槽13,的顶端有同轴电缆焊接槽12,同轴电缆焊接槽12位置比同轴电缆固定槽13高。
如图8,同轴电缆固定槽13将馈电同轴电缆17包裹起来,所述的同轴电缆焊接槽12与馈电同轴电缆17的外导体进行焊接,实现馈电。
进一步地,金属支撑件5背面设置朔料卡限位凸台15,采用朔料卡扣16通过朔料卡限位凸台15将馈电同轴电缆17牢固的卡在金属支撑件5上。优选地,所述的朔料卡扣16为弹性的朔料卡扣,所述的朔料卡限位凸台15由若干突出在金属支撑件5背面的金属凸台组成,例如三个金属凸台。通过朔料卡扣16将馈电同轴电缆17牢牢地固定在金属支撑件5上,防止馈电同轴电缆17的滑动。
馈电同轴电缆17的内导体延伸到金属馈电连接块的背面凹槽8内,所述的金属馈电连接块的背面凹槽8在金属支撑件的同轴电缆固定槽13的延长线上,将馈电同轴电缆17的内导体与金属馈电连接块3进行焊接,实现馈电。
本发明实施例还提供一种天线,包括如上所述的碗状双极化基站天线辐射单元。在天线 中,所述的辐射单元排列组阵或与其他高频振子嵌套组阵。如图7,所述的方位指示箭头18为单元组阵提供方向。
通过辐射臂进行90度折弯、调节两个90度折弯部分的间距、金属支撑件与圆形底座的夹角、金属支撑件的弧度等设计,本碗状辐射单元在790-960MHz频段内能使水平面波束宽度收敛在65±5°以内,三个辐射单元的隔离度在-30db以上,电压驻波比在1.5以下,明显优于其他种类的辐射单元,组阵后的天线的前后比、隔离度和交叉极化比均有很大的改善,而且有利于加工和装配。以上内容是结合具体的实施方式对本发明所作的进一步详细的说明,不能认定本发明的具体实施只局限于这些说明。本领域的技术人员应该明白,在不脱离本发明的精神和原则之内,对本发明所做的简单的的修改和替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种碗状双极化基站天线辐射单元,其特征在于:所述的辐射单元包含金属底座和4对金属支撑件,金属支撑件安装在金属底座上,每个金属支撑件顶端设有金属辐射臂,每个金属辐射臂的前端都向下90°弯折;
    每对金属支撑件顶端的两个金属辐射臂之间设有金属馈电连接块,金属馈电连接块与其中一个金属辐射臂相连,
    另一个金属辐射臂相应金属支撑件顶端有同轴电缆焊接槽,馈电同轴线缆的外导体与同轴电缆焊接槽焊接;
    金属馈电连接块上设有背面凹槽,馈电同轴电缆的内导体延伸到背面凹槽内,与金属馈电连接块进行焊接。
  2. 根据权利要求1所述碗状双极化基站天线辐射单元,其特征在于:所述的金属底座采用圆环状结构,且金属底座上设置金属螺丝孔,金属螺丝孔的凸面高出金属底座。
  3. 根据权利要求1或2所述碗状双极化基站天线辐射单元,其特征在于:金属底座上连接有4对金属支撑件,金属支撑件的长度为1/4中心频率波长,与金属底座成45度夹角。
  4. 根据权利要求1或2所述碗状双极化基站天线辐射单元,其特征在于:每对金属支撑件顶端的金属辐射臂在水平面上设置,每对金属辐射臂相互成90度。
  5. 根据权利要求4所述碗状双极化基站天线辐射单元,其特征在于:安装时,金属辐射臂与反射板的距离为0.25个中心频率波长。
  6. 根据权利要求1或2所述碗状双极化基站天线辐射单元,其特征在于:金属底座的底面、金属支撑件的背面、金属辐射臂和/或折弯金属辐射臂采用镂空结构。
  7. 根据权利要求1或2所述碗状双极化基站天线辐射单元,其特征在于:所述的金属底座、金属支撑件、金属辐射臂以及金属馈电连接块为一体化压铸成型。
  8. 根据权利要求1或2所述碗状双极化基站天线辐射单元,其特征在于:所述的金属支撑件上设置同轴电缆固定槽,同轴电缆焊接槽位置比同轴电缆固定槽高,同轴电缆固定槽包裹馈电同轴电缆,金属馈电连接块的背面凹槽在金属支撑件的同轴电缆固定槽的延长线上。
  9. 根据权利要求1或2所述碗状双极化基站天线辐射单元,其特征在于:金属支撑件背面设置朔料卡限位凸台,采用朔料卡扣,通过朔料卡限位凸台将馈电同轴电缆牢固的卡在金属支撑件上。
  10. 一种天线,其特征在于:包括如权利要求1至9所述的碗状双极化基站天线辐射单元。
PCT/CN2018/084028 2017-07-10 2018-04-23 一种碗状双极化基站天线辐射单元及天线 WO2019011030A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710557172.2A CN107425264A (zh) 2017-07-10 2017-07-10 一种碗状双极化基站天线辐射单元及天线
CN201710557172.2 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019011030A1 true WO2019011030A1 (zh) 2019-01-17

Family

ID=60426993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084028 WO2019011030A1 (zh) 2017-07-10 2018-04-23 一种碗状双极化基站天线辐射单元及天线

Country Status (2)

Country Link
CN (1) CN107425264A (zh)
WO (1) WO2019011030A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107425264A (zh) * 2017-07-10 2017-12-01 武汉虹信通信技术有限责任公司 一种碗状双极化基站天线辐射单元及天线
CN108039570B (zh) * 2018-01-11 2024-03-08 江苏亨鑫科技有限公司 一种低剖面超宽频双极化辐射装置
CN108281765A (zh) * 2018-01-19 2018-07-13 武汉虹信通信技术有限责任公司 一种超宽频双极化辐射单元及天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013560A (zh) * 2010-09-25 2011-04-13 广东通宇通讯设备有限公司 一种宽带高性能双极化辐射单元及天线
CN103956564A (zh) * 2014-04-14 2014-07-30 江苏捷士通射频系统有限公司 一种宽带双极化辐射单元及天线
CN204348903U (zh) * 2015-01-26 2015-05-20 电联工程技术股份有限公司 一种低频双极化辐射单元
CN106356630A (zh) * 2016-10-31 2017-01-25 昆山恩电开通信设备有限公司 超宽带辐射单元及天线
CN107425264A (zh) * 2017-07-10 2017-12-01 武汉虹信通信技术有限责任公司 一种碗状双极化基站天线辐射单元及天线
CN107910636A (zh) * 2017-10-26 2018-04-13 武汉虹信通信技术有限责任公司 一种宽频辐射单元及天线

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203826542U (zh) * 2014-04-14 2014-09-10 江苏捷士通射频系统有限公司 一种宽带双极化辐射单元及天线
CN204441453U (zh) * 2015-01-07 2015-07-01 湖北日海通讯技术有限公司 用于多频组阵的小型化辐射单元

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013560A (zh) * 2010-09-25 2011-04-13 广东通宇通讯设备有限公司 一种宽带高性能双极化辐射单元及天线
CN103956564A (zh) * 2014-04-14 2014-07-30 江苏捷士通射频系统有限公司 一种宽带双极化辐射单元及天线
CN204348903U (zh) * 2015-01-26 2015-05-20 电联工程技术股份有限公司 一种低频双极化辐射单元
CN106356630A (zh) * 2016-10-31 2017-01-25 昆山恩电开通信设备有限公司 超宽带辐射单元及天线
CN107425264A (zh) * 2017-07-10 2017-12-01 武汉虹信通信技术有限责任公司 一种碗状双极化基站天线辐射单元及天线
CN107910636A (zh) * 2017-10-26 2018-04-13 武汉虹信通信技术有限责任公司 一种宽频辐射单元及天线

Also Published As

Publication number Publication date
CN107425264A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2018040839A1 (zh) 一种低剖面基站天线辐射单元及天线
CN107910636B (zh) 一种宽频辐射单元及天线
EP3739687B1 (en) Antenna radiation element and antenna
WO2013143364A1 (zh) 宽带双极化天线及其辐射单元
WO2019011030A1 (zh) 一种碗状双极化基站天线辐射单元及天线
CN102157783A (zh) 双极化宽频辐射单元及阵列天线
CN111193099B (zh) 双极化辐射单元及基站天线
CN103956564A (zh) 一种宽带双极化辐射单元及天线
CN105609921A (zh) 小型高低频共轴双极化基站天线单元
WO2015168845A1 (zh) 超宽带双极化辐射单元和基站天线
WO2024087593A1 (zh) 共口径辐射单元及天线
CN210142716U (zh) 耦合辐射单元及天线
CN116417786B (zh) 一种移动宽频段室内分布双极化定向挂墙天线
CN103337712B (zh) 一种天线辐射单元及其馈电方法
US7522118B2 (en) Wideband I-shaped monople dipole
CN210040503U (zh) 一种双频双馈全向天线
CN101826653B (zh) 一种移动通信基站天线的振子
CN217485700U (zh) 一种高增益超宽带双极化定向振子
CN214477888U (zh) 一种超宽频带双极化天线
CN215342987U (zh) 一种超宽频带的双极化全向吸顶天线
CN214153197U (zh) 一种天线单元及基站天线
CN214477887U (zh) 一种宽频带双极化方形天线
CN106532272B (zh) 一种双极化宽频天线
CN114824764A (zh) 一种高增益超宽带双极化定向振子
CN210692749U (zh) 一种小型化电调天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831343

Country of ref document: EP

Kind code of ref document: A1