WO2019010830A1 - 智能化塑料管道的光纤光栅传感器嵌件、植入系统及方法 - Google Patents

智能化塑料管道的光纤光栅传感器嵌件、植入系统及方法 Download PDF

Info

Publication number
WO2019010830A1
WO2019010830A1 PCT/CN2017/103874 CN2017103874W WO2019010830A1 WO 2019010830 A1 WO2019010830 A1 WO 2019010830A1 CN 2017103874 W CN2017103874 W CN 2017103874W WO 2019010830 A1 WO2019010830 A1 WO 2019010830A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
sensor
insert
fiber grating
grating
Prior art date
Application number
PCT/CN2017/103874
Other languages
English (en)
French (fr)
Inventor
贾玉玺
高琳琳
安立佳
姚卫国
万国顺
叶慧
张雷达
Original Assignee
山东大学
中国科学院长春应用化学研究所
吉林科尔物流涂装设备有限公司
山东格蓝云天环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学, 中国科学院长春应用化学研究所, 吉林科尔物流涂装设备有限公司, 山东格蓝云天环境科技有限公司 filed Critical 山东大学
Priority to US16/066,215 priority Critical patent/US10458862B2/en
Publication of WO2019010830A1 publication Critical patent/WO2019010830A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings

Definitions

  • the invention relates to a fiber grating sensor insert, an implant system and a method for intelligent plastic pipes.
  • the sensor is one of the key technical means to realize the intelligence of the equipment.
  • Fiber Bragg Grating is a very sensitive sensing element for external environment such as temperature and temperature. Distributed multi-point measurement of single fiber can be realized by fiber grating string.
  • the FBG sensor has the advantages of light weight, small size, high sensitivity, corrosion resistance and electromagnetic interference resistance. It is widely used in aerospace and large-scale civil engineering structures for health monitoring and intelligent control.
  • the use of FBG sensors mainly includes surface mount and implant. If the FBG sensor is attached to the inner surface of the pipe, the erosion of the fluid in the pipe can easily cause the sensor to be debonded, displaced or even broken. If the FBG sensor is attached to the outer surface of the pipe, the outside of the pipe is bad. The construction or enabling environment is easy to deactivate the sensor, which seriously affects the test accuracy and service life of the sensor. Therefore, it is necessary to implant the FBG sensor in the pipeline to ensure its survival rate and test accuracy. However, it is quite difficult to implant fiber grating sensors in the process of industrial continuous extrusion of pipes. The implantation of fiber grating sensors in continuous extruded pipes is still the technical bottleneck of intelligent plastic pipes.
  • the present invention provides a fiber grating sensor insert, an implant system and a method for intelligent plastic pipes, and the invention can ensure that the sensor survives in a poor pipeline manufacturing and service environment, and realizes the temperature and strain of the pipeline. Real-time online monitoring of parameters such as pressure.
  • the first object of the present invention is to provide a fiber grating sensor insert for an intelligent plastic pipe.
  • the insert has a long strip structure, and the reinforcing fiber and the matrix resin are used together to ensure that the fiber grating sensor insert is implanted in the plastic pipe. Melt and breakage do not occur, ensuring a solid foundation for the formation of intelligent plastic pipes.
  • a second object of the present invention is to provide a fiber grating sensor implantation system for an intelligent plastic pipe.
  • the system adopts oblique introduction in the process of continuous extrusion molding of a plastic pipe material to accurately form a long strip-shaped insert of the fiber grating sensor.
  • the ground is implanted on the outer surface of the pipe to embed the temperature and strain sensors pre-planted in the elongated inserts in the pipe.
  • a third object of the present invention is to provide a fiber grating sensor implantation method for an intelligent plastic pipe, and the method specifically comprises the preparation of a long strip-shaped insert of a fiber grating sensor, and the coextrusion of a long strip-shaped insert of a plastic and a fiber grating sensor.
  • Important steps such as forming and welding the tube with the long strip-shaped insert of the fiber Bragg grating sensor, comprehensively and systematically guarantee the quality of the finished plastic pipe, contribute to the construction of urban pipelines, and build a “smart city”.
  • a fiber-grating sensor strip-like insert of an intelligent plastic pipe comprising a base resin, a fiber grating temperature sensor, a fiber grating strain sensor and a reinforcing fiber, wherein the fiber grating temperature sensor and the fiber grating strain sensor are placed in parallel and juxtaposed
  • Each has a plurality of grating units, and the grating unit positions correspond to each other to form a grating pair having both temperature and strain monitoring functions;
  • the fiber grating temperature sensor and the fiber grating strain sensor are embedded in a matrix resin, and the matrix resin is longitudinally filled with reinforcing fibers.
  • the reinforcing fibers are evenly and juxtaposed in the strip-like insert of the fiber grating sensor to support the skeleton of the entire strip-shaped insert of the fiber grating sensor.
  • the fiber grating temperature sensor and the fiber grating strain sensor can engrave a plurality of gate regions for each fiber to form a distributed multi-point detection fiber grating string, and the spacing between the gate regions can be set according to requirements.
  • the parallel spacing between the adjacent fiber grating temperature sensor and the fiber grating strain sensor is 0.25 to 2 mm.
  • the gate region of the fiber grating temperature sensor is packaged with a capillary tube, and the capillary tubes are sealed at both ends.
  • the fiber grating temperature sensor and the fiber grating strain sensor have a core diameter of 5 to 50 ⁇ m.
  • the FBG sensor strip-shaped insert is a rectangular strip having a thickness of 0.4 to 1.2 mm and a width of 1 to 10 mm to facilitate the implantation operation.
  • those skilled in the art can replace other shapes, such as a cylindrical shape, etc. on the basis of the working principle of the present invention, but the purpose is to make a pass.
  • the sensor inserts are both flexible, easy to entangle, and easy to implant. Therefore, such improvements are conventional replacements that are readily apparent to those skilled in the art and are intended to be within the scope of the present invention.
  • the base resin material of the FBG sensor strip insert is the same as the pipe material to be implanted, so as to improve the strength compatibility, interface compatibility and field distribution compatibility of the long strip insert of the FBG sensor and the tube. To minimize the influence of the long strip insert of the sensor on the performance of the product, while reducing the strain transmission loss of the sensor and improving the test accuracy.
  • the reinforcing fiber of the FBG sensor strip insert has a melting point of at least 60 ° C higher than the melting point of the matrix resin to ensure that the reinforcing fiber does not melt when the sensor strip insert and the plastic tube are co-extruded.
  • the fiber grating in the long strip insert of the sensor does not shift and bend during the entire implantation process.
  • the volume of the reinforcing fibers in the elongated strip-shaped insert of the fiber Bragg grating sensor is 30-50%, so that the sensor strip-like insert has both rigidity and flexibility. If the content of the reinforcing fiber is too low, the FBG sensor insert is easily broken during pultrusion, and the molding of the insert is difficult to manufacture; on the contrary, the long strip-shaped insert of the FBG sensor is not easily bent due to too large rigidity. Therefore, it is difficult to attach the sensor strip-like insert to the cavity wall surface after being obliquely introduced into the extrusion cavity.
  • the long strip-shaped insert of the fiber Bragg grating sensor needs to be marked with a color to facilitate positioning of the sensor, and the construction worker is reminded to protect the long strip-shaped insert of the protection sensor from being damaged. It should be noted that the sensor The color of the long strip insert cannot conflict with the color of the pipe common mark to facilitate differentiation.
  • a fiber grating sensor insert inserting system comprising a barrel body, the barrel body is internally provided with a receiving cavity, the receiving cavity is sleeved with a rotating propulsion component, and the rotating propulsion component is connected to the transmission motor, the machine
  • An extruder head is disposed on one side of the barrel body, the accommodating cavity is in communication with an extrusion cavity inside the extruder head, and an extrusion die is disposed at a front end of the extruder head;
  • the extrusion cavity is in communication with an outwardly obliquely extending conveying passage provided on the extruder head, and a conveying member for conveying the elongated insert of the fiber grating sensor is disposed outside the conveying passage so as to be in the extrusion cavity
  • the plastic raw materials are extruded together.
  • the rotary propulsion unit is rotated at a high speed to stir and melt the plastic material in the accommodating cavity, and the long-gear insert of the FBG sensor is obliquely conveyed to the extruder through the conveying passage under the guiding action of the conveying member.
  • the inside of the head is close to the surface of the extrusion cavity and passes through the extrusion die together with the molten plastic material, and is cooled and shaped to obtain an intelligent plastic pipe.
  • the barrel body is provided with a raw material inlet, and the raw material inlet is in communication with the receiving cavity.
  • the rotary propulsion member is a screw.
  • the conveying member comprises a plurality of pairs of rollers, the rollers are arranged in pairs at the front end of the conveying passage, and are arranged in sequence, at least one pair of rollers are adjacent to the extruder head for adjusting and positioning the introduction direction of the sensor strip-shaped insert. And the angle, guiding the sensor strip insert to run forward to the transfer channel.
  • the cross-sectional dimension of the transmission channel is set according to the cross-sectional dimension of the long strip-shaped insert of the fiber grating sensor, and the width thereof is larger than the width of the long strip-shaped insert of the sensor by 1 to 2 mm, and the height thereof is larger than the thickness of the long strip-shaped insert of the sensor. 0.5 to 1 mm, ensuring that the sensor strip insert can pass through the transfer channel without twisting.
  • the angle between the conveying passage and the axis of the extruder head should be less than 60° to avoid the fiber grating
  • the long strip-shaped insert of the sensor is broken due to excessive bending when it is attached to the wall surface of the cavity after being obliquely introduced into the extrusion cavity.
  • the embedding point of the long strip-shaped insert of the fiber grating sensor is located on the surface of the extrusion cavity and passes through the extrusion die together with the molten plastic to form a plastic pipe of the long-shaped insert of the built-in fiber grating sensor.
  • Such an arrangement ensures that the long strip-shaped insert of the fiber grating sensor is implanted on the outer surface of the plastic pipe, so that it can be peeled off from the pipe body during the subsequent welding operation, thereby respectively welding the plastic and the plastic, and welding the fiber and the optical fiber.
  • the length of the plastic pipe of the inlaid fiber grating sensor strip-shaped insert can be cut as needed, but the cutting position should avoid the gate region of the fiber grating sensor and maintain a distance of at least 10 cm from the grid region.
  • a method for preparing an intelligent plastic pipe includes the following steps:
  • the method specifically includes:
  • the fiber grating sensor insert is implanted in the connecting flange of the plastic pipe, and the fiber ends of the flange are connected at both ends of the flange, and the fiber in the transmission fiber joint at both ends of the flange is respectively connected with the plastic pipe.
  • the embedded fiber is fused to complete fiber extension and optical signal relay. It should be noted that the number of transmission fibers implanted in the connecting flange is the same as the number of fiber grating sensors implanted in the plastic pipe, and the colors are in one-to-one correspondence to ensure that the same fiber grating sensor is welded to the front and rear of the flange.
  • the strip-shaped insert of the sensor needs to be peeled off from the surface of the tube for a short length of 4 to 10 cm.
  • the peeled out sensor insert is heated and melted to remove the encapsulating material of the outer layer of the optical fiber to expose the bare fiber to facilitate welding.
  • the excess portion after the transmission fiber is welded is placed in the fiber joint hole of the connecting flange, and the fiber fusion portion is sealed after the plastic pipe is welded, thereby protecting the fiber grating transmission optical path from being damaged.
  • the present invention provides a long strip-like insert of a fiber grating sensor implanted in a plastic pipe.
  • the sensor insert has both rigidity and flexibility, and can be accurately and reliably embedded in continuous extrusion of a plastic pipe.
  • the surface of the pipe avoids damage and damage of the sensor under severe working conditions, thereby significantly improving the survival rate and test accuracy of the sensor, and facilitating the fusion between the plastic pipes and the fusion of the fiber grating sensor and the transmission fiber;
  • the present invention provides a fiber grating sensor implantation system for an intelligent plastic pipe, the system
  • the system can conveniently embed the long-shaped inserts of the fiber grating sensor on the surface of the plastic pipe while producing the plastic pipe, and integrate the molding and facilitate the production of the pipeline;
  • the invention provides a fiber grating sensor implantation method for an intelligent plastic pipe.
  • the method is simple in operation, and combines the traditional plastic pipe continuous extrusion process technology with the fiber communication technology to manufacture an intelligent plastic pipe.
  • Real-time online monitoring of parameters such as temperature, strain, pressure, etc., to achieve safety warning, fault diagnosis and automatic control of urban pipe network, thus effectively promoting the construction of “smart city”.
  • FIG. 1(a) is a schematic structural view of a long strip-shaped insert of a fiber grating sensor according to the present invention
  • Figure 1 (b) is a partial side view of Figure 1 (a) of the present invention.
  • FIG. 2 is a schematic view showing a manufacturing process of a plastic pipe with a long strip-shaped insert of a built-in fiber grating sensor
  • Figure 3 is an overall schematic view of the intelligent plastic pipe after welding.
  • 1 is a fiber grating temperature sensor
  • 2 is a fiber grating strain sensor
  • 3 is a temperature grating unit
  • 4 is a strain grating unit
  • 5 is a capillary steel pipe
  • 6 is a reinforcing fiber
  • 7 is a matrix resin
  • 8 is an extruder driving motor 9 is gear
  • 10 is plastic material
  • 11 is screw
  • 12 is barrel
  • 13 is extruder head
  • 14 is extrusion cavity
  • 15 is extrusion die
  • 16 is fiber grating sensor strip insert
  • 17 is a conveying roller
  • 18 is a conveying passage
  • 19 is an intelligent plastic pipe
  • 20 is a connecting flange.
  • orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is merely a relative relationship for the purpose of describing the structural relationship of the components or components of the present invention, and is not specifically referring to any component or component of the present invention, and may not be construed as a Limitations of the invention.
  • the present application proposes a fiber grating sensor implantation system and method for an intelligent plastic pipe.
  • the invention adopts an oblique introduction method to extend a fiber grating sensor strip in a process of continuous extrusion molding of a plastic pipe.
  • the insert is accurately embedded in the outer surface of the pipe, thereby burying the temperature and strain sensor pre-planted in the long insert into the pipe, ensuring that the sensor survives in harsh pipe manufacturing and service environments, achieving the pipe Temperature, strain, pressure Real-time online monitoring of parameters.
  • a method for implanting a fiber grating sensor of an intelligent plastic pipe comprising the steps of preparing a long strip-shaped insert of a fiber grating sensor, a step of co-extruding a tube of a strip of plastic and a fiber-optic grating sensor, and an optical fiber
  • the tube welding step of the strip-shaped insert of the grating sensor comprising the steps of preparing a long strip-shaped insert of a fiber grating sensor, a step of co-extruding a tube of a strip of plastic and a fiber-optic grating sensor, and an optical fiber.
  • the first step the preparation steps of the long strip-shaped insert of the fiber grating sensor.
  • the prepared fiber grating sensor strip insert is a rectangular strip having a thickness of 0.4 to 1.2 mm and a width of 1 to 10 mm, and includes at least one temperature fiber grating sensor and a strain fiber grating sensor.
  • the temperature FBG sensor measures the temperature
  • the strained fiber grating sensor detects the strain
  • all the FBG sensors in the same insert are marked with different colors to facilitate differentiation.
  • each fiber can be engraved with multiple gate regions to form a distributed multi-point detection fiber grating string, and the spacing between the gate regions can be set according to needs.
  • the parallel spacing between the adjacent fiber grating sensors is 0.25 to 2 mm.
  • the gate region of the temperature fiber grating is packaged with a capillary tube having an outer diameter of 0.7 mm, and the ends are used DG-4 two-component adhesive is sealed.
  • the fiber grating sensor has a core diameter of 5 to 50 ⁇ m.
  • the base resin material of the long strip-shaped insert of the fiber grating sensor is the same as the pipeline material, so as to improve the strength compatibility, interface compatibility and field distribution compatibility of the long strip-shaped insert of the fiber grating sensor and the pipe, and maximize the compatibility.
  • the ground reduces the influence of the long strip insert of the sensor on the performance of the product, and at the same time reduces the strain transmission loss of the sensor and improves the test accuracy.
  • the reinforcing fiber of the FBG sensor strip insert has a melting point of at least 60 ° C higher than the melting point of the matrix resin to ensure that the reinforcing fiber does not melt when the sensor strip insert and the plastic tube are co-extruded.
  • the fiber grating in the long strip insert of the sensor does not shift and bend during the entire implantation process.
  • reinforcing fibers commonly used, and polyester fibers, nylon fibers, and spandex are preferred.
  • the volume of the reinforcing fibers in the elongated strip-shaped insert of the fiber Bragg grating sensor is 30-50%, so that the sensor strip-like insert has both rigidity and flexibility. If the content of the reinforcing fiber is too low, the FBG sensor insert is easily broken during pultrusion, and the molding of the insert is difficult to manufacture; on the contrary, the long strip-shaped insert of the FBG sensor is not easily bent due to too large rigidity. Therefore, it is difficult to attach the sensor strip-like insert to the cavity wall surface after being obliquely introduced into the extrusion cavity.
  • the FBG sensor strip inserts need to be marked with a specific color to facilitate positioning of the sensor and to alert the constructor to protect the sensor strip insert from damage. It should be noted that the color of the sensor strip insert cannot conflict with the color of the pipe common mark to facilitate differentiation.
  • the second step is the co-extrusion of the plastic and FBG sensor strip inserts:
  • the obtained FBG sensor strip insert is conveyed obliquely to the inside of the extruder head through the conveying passage after being unwound by the clamping, guiding and pushing action of the pair of rollers, close to the surface of the extrusion cavity and
  • the molten plastic is passed through an extrusion die, and after cooling, the plastic pipe of the long-line insert of the built-in fiber grating sensor is obtained, and is cut and packaged as needed.
  • the clamping, pushing and guiding device of the sensor strip-shaped insert is mainly composed of a plurality of pairs of rollers and a special conveying channel, and the first pair of rollers are at a position far from the extruder head, and the pushing sensor is elongated.
  • the conveying passage is a long strip insert of the fiber grating sensor reaching the extrusion cavity The path of the surface to determine the initial embedded position of the sensor strip insert in the plastic melt.
  • the embedding point of the long strip-shaped insert of the FBG sensor is located on the surface of the extrusion cavity and passes through the extrusion die together with the molten plastic to form an elongated insert of the embedded fiber grating sensor.
  • Plastic pipe At this time, the long strip-shaped insert of the FBG sensor is implanted on the outer surface of the plastic pipe, so that it can be peeled off from the pipe body during the subsequent welding operation, thereby respectively splicing the plastic and the plastic, and welding the optical fiber and the optical fiber.
  • the length of the plastic tube of the inlaid fiber grating sensor strip-shaped insert can be cut as needed, but the cutting position should avoid the gate area of the fiber grating sensor and maintain a distance of at least 10 cm from the grid area.
  • the third step is a pipe welding step comprising a long strip-shaped insert of the fiber grating sensor:
  • the prepared plastic pipe of the long-gear insert of the built-in fiber grating sensor is used to weld the plastic pipe and the fiber grating sensor therein through a connecting flange (with a fiber grating insert) to complete the pipe penetration and light. Relay of the signal.
  • the fiber-grating sensor insert is embedded in the connecting flange of the plastic pipe, and the fiber-optic connector is taken out at both ends of the flange, and the fiber in the transmission fiber connector at both ends of the flange is respectively welded with the fiber embedded in the plastic pipe to complete the fiber.
  • Extended, optical signal relay It should be noted that the transmission fiber implanted in the connection flange The number is the same as the number of FBG sensors embedded in the plastic pipe, and the colors are in one-to-one correspondence to ensure that the same FBG sensor is welded to the front and rear of the flange.
  • the strip-shaped insert of the sensor needs to be peeled off from the surface of the tube for a short length of 4 to 10 cm.
  • the peeled out sensor insert is heated and melted to remove the encapsulating material of the outer layer of the optical fiber to expose the bare fiber to facilitate welding.
  • the excess portion after the transmission fiber is welded is placed in the fiber joint hole of the connecting flange, and the fiber fusion portion is sealed after the plastic pipe is welded, thereby protecting the fiber grating transmission optical path from being damaged.
  • the utility model relates to a long-shaped insert of a fiber grating sensor for online monitoring of an intelligent plastic pipe, and the structure thereof is as shown in FIG. 1(a) and FIG. 1(b), comprising: a fiber grating temperature sensor 1, a fiber grating strain sensor 2, and an enhancement.
  • the fiber 6 (the reinforcing fiber is selected from the polyester fiber in the embodiment) and the matrix resin 7 (the base resin in the embodiment is a random copolymer polypropylene).
  • the manufacturing process of the plastic tube of the long-line insert of the built-in fiber grating sensor is shown in Fig. 2, wherein the extruder drive motor 8 provides power, and the gear 9 drives the screw 11 to rotate and mix the plastic material 10 at a high speed (the plastic in this embodiment)
  • the raw material is randomly fused with polypropylene to melt it, and the FBG sensor strip insert 16 is conveyed obliquely to the extruder head 13 via the conveying passage 18 under the action of the conveying, conveying and guiding of the conveying roller 17. Internally, it is placed close to the surface of the extrusion cavity 14 and passes through the extrusion die 15 together with the molten random copolymer polypropylene 10, and is cooled and shaped to obtain an intelligent plastic pipe 19.
  • FIG. 3 is an overall schematic view of the intelligent plastic pipe after welding, and the intelligent plastic pipe 19 and the fiber grating sensor therein are respectively welded and protected by the connecting flange 20, and the pipe penetration and the optical signal are completed. Number relay.
  • a fiber grating sensor implantation method for an intelligent plastic pipe includes the following steps:
  • thermoplastic protective layer with a certain thickness and different colors on the outer periphery of the optical fiber by hot extrusion, coating, winding and other forming processes.
  • step b) selecting one of the optical fibers completed in step b), encapsulating all the gate regions engraved on the capillary tube 5, and ensuring that the gate region is free in the tube, and the outer diameter of the capillary tube 5 for packaging is 0.7.
  • Mm wall thickness 0.2mm, sealed at both ends with DG-4 two-component glue, placed at room temperature for 24 hours to fully cure, forming fiber grating temperature sensor 1; another fiber optic grid area without capillary tube 5, as fiber Grating strain sensor 2.
  • the FBG sensor strip insert 16 reaches the winder at a uniform speed under the drag of the tractor to perform winding and packaging processing.
  • the particulate random copolymer polypropylene 10 is added to the barrel 12 of the extruder, and there is a heater outside the extruder barrel 12, and the heat generated by the heater is transferred to the barrel 12 by heat conduction.
  • the polypropylene 10 is copolymerized to gradually increase the temperature.
  • the random copolymer polypropylene 10 With the rotation of the screw 11, the random copolymer polypropylene 10 is continuously conveyed forward, and collides with the screw 11 and the barrel 12 during the conveying process to generate a large amount of heat, which cooperates with the heat conduction to make the joining
  • the random copolymer polypropylene 10 is continuously melted, and the molten random copolymer polypropylene 10 is continuously and stably delivered to the extruder head 13.
  • the intelligent plastic pipe 19 is continuously advanced, and after being cut into the cutting device, it is cut and packaged for storage and transportation.
  • the FBG sensor strip insert 16 is stripped from the surface of the intelligent plastic tube 19 by a small length of 5 cm, and the stripped sensor insert is heated and melted to remove the outer layer of the fiber.
  • the encapsulating material exposes the bare fiber.
  • the optical fiber fusion splicer is used to fuse the optical fiber in the corresponding transmission fiber connector with the fiber embedded in the plastic pipe, and then the excess portion after the transmission fiber is fused is placed in the fiber connector hole of the connection flange 20, and the fiber is sealed. Welding site.
  • the transmission fiber is taken out from the pipeline, welded to the external transmission cable, and the cable joint is connected to the fiber grating demodulation system to realize on-line monitoring of the temperature and strain of the plastic pipe.
  • the reinforcing fiber in the long strip-shaped insert of the fiber grating sensor is made of nylon fiber
  • the base resin and the pipe material in the sensor strip-shaped insert are made of polyvinyl chloride.
  • the reinforcing fiber in the long strip-shaped insert of the fiber grating sensor is made of spandex, and the base resin and the pipe material in the sensor strip-shaped insert are made of polyethylene.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

一种智能化塑料管道的光纤光栅传感器嵌件,包括基体树脂(7)、光纤光栅温度传感器(1)、光纤光栅应变传感器(2)和增强纤维(6),所述光纤光栅温度传感器(1)、光纤光栅应变传感器(2)平行并列放置,两者均具有多个光栅单元(4),且光栅单元位置相对应,共同组成一个兼具温度和应变监测功能的光栅对;所述光纤光栅温度传感器、光纤光栅应变传感器埋设于基体树脂(7)内,同时基体树脂内填充有增强纤维,所述增强纤维在光纤光栅传感器长条状嵌件内均匀并列分布,用以支撑起整个光纤光栅传感器长条状嵌件的骨架。此外还公开了一种光纤光栅传感器长条状嵌件植入系统和一种智能化塑料管道的制备方法。根据本发明, 将传统的塑料管材连续挤出工艺技术与光纤通信技术相结合,制造的智能化塑料管道可实现对温度、应变、压力等参数的实时在线监测。

Description

智能化塑料管道的光纤光栅传感器嵌件、植入系统及方法 技术领域
本发明涉及一种智能化塑料管道的光纤光栅传感器嵌件、植入系统及方法。
背景技术
随着我国城市化进程加速,城市地下管线建设发展异常迅猛,管线已成为城市基础设施的重要组成部分,是城市的“血管”和“神经”。伴随地下管道需求量的日益增加,我国城市也正面临着各种地下管网问题的挑战:城市内涝、道路地面塌陷、燃烧爆炸、饮水污染等一系列问题,因此城市管道的智能化建设刻不容缓。
传感器是实现装备设施智能化的关键技术手段之一。光纤光栅是一种对应变和温度等外部环境非常敏感的传感元件,通过光纤光栅串可实现单根光纤的分布式多点测量。此外,光纤光栅传感器具有质量轻、体积小、灵敏度高、耐腐蚀、抗电磁干扰等优点,在航空航天、大型土木工程结构的健康监测和智能控制等方面应用广泛。
要实现城市地下管道温度、应变、压力等关键参数的实时监测、智能数据分析,需要集成地下管网系统与光纤光栅传感系统的独特优势,从而形成智能管道安全监测系统,以实现城市管网的安全预警、故障诊断和自动控制。
目前,光纤光栅传感器的使用方式主要有表贴和内植两种。若将光纤光栅传感器表贴于管道的内表面,则管道内流体的冲刷腐蚀很容易使传感器发生脱粘、移位甚至折断;若将光纤光栅传感器表贴于管道的外表面,管道外部恶劣 的施工或使役环境则容易使传感器断裂失活,严重影响传感器的测试精度和使役寿命。因此,需要将光纤光栅传感器内植于管道中以确保其存活率和测试精度。然而在工业化连续挤出管材的过程中内植光纤光栅传感器相当困难,在连续挤出管材中植入光纤光栅传感器尚是智能化塑料管道的技术瓶颈。
发明内容
本发明为了解决上述问题,提出了一种智能化塑料管道的光纤光栅传感器嵌件、植入系统及方法,本发明能够确保传感器在恶劣的管道制造和使役环境下存活,实现对管道温度、应变、压力等参数的实时在线监测。
本发明的第一目的是提供一种智能化塑料管道的光纤光栅传感器嵌件,本嵌件采用长条状结构,利用增强纤维和基体树脂的配合,保证光纤光栅传感器嵌件在植入塑料管材时不会发生熔融和拉断的情况,保证了形成智能化塑料管道的坚实基础。
本发明的第二目的是提供一种智能化塑料管道的光纤光栅传感器植入系统,本系统在塑料管材连续挤出成型的过程中采用斜向导入的方式将光纤光栅传感器长条状嵌件准确地埋植于管材外表面,从而把预先内植于长条状嵌件的温度和应变传感器内埋于管材中。
本发明的第三目的是提供一种智能化塑料管道的光纤光栅传感器植入方法,本方法具体包括光纤光栅传感器长条状嵌件的制备、塑料和光纤光栅传感器长条状嵌件的共挤出成型、内含光纤光栅传感器长条状嵌件的管材熔接等重要步骤,全面而系统的保证了智能化塑料管道成品的质量,有助于城市管路建设,构建“智慧城市”。
为了实现上述目的,本发明采用如下技术方案:
一种智能化塑料管道的光纤光栅传感器长条状嵌件,包括基体树脂、光纤光栅温度传感器、光纤光栅应变传感器和增强纤维,所述光纤光栅温度传感器、光纤光栅应变传感器平行并列放置,两者均具有多个光栅单元,且光栅单元位置相对应,共同组成一个兼具温度和应变监测功能的光栅对;
所述光纤光栅温度传感器、光纤光栅应变传感器埋设于基体树脂内,基体树脂内纵向填充有增强纤维。
所述增强纤维在光纤光栅传感器长条状嵌件内均匀并列分布,用以支撑起整个光纤光栅传感器长条状嵌件的骨架。
进一步的,所述光纤光栅温度传感器、光纤光栅应变传感器每根光纤可刻制多个栅区,形成分布式多点检测的光纤光栅串,栅区之间的间距可根据需要自行设定。
优选的,所述相邻光纤光栅温度传感器、光纤光栅应变传感器之间的平行间距为0.25~2mm。
优选的,所述光纤光栅温度传感器的栅区用毛细钢管封装,毛细钢管两端进行密封。
优选的,所述光纤光栅温度传感器、光纤光栅应变传感器的纤芯直径为5~50μm。
优选的,所述光纤光栅传感器长条状嵌件为厚0.4~1.2mm、宽1~10mm的矩形条料,以方便进行植入操作。当然,本领域技术人员可以在本发明的工作原理的基础上将其替换为其他形状,如圆柱状等等,但是其目的均是起到使传 感器嵌件兼具柔性、便于缠绕和方便植入,因此,该类改进属于本领域技术人员容易想到的常规替换,理应属于本发明的保护范围。
所述光纤光栅传感器长条状嵌件的基体树脂材料与待植入的管道材料相同,以提高光纤光栅传感器长条状嵌件与管材的强度相容性、界面相容性和场分布相容性,最大限度地降低传感器长条状嵌件对制品性能的影响,同时减小传感器的应变传递损耗,提高测试精度。
优选的,所述光纤光栅传感器长条状嵌件中增强纤维的熔点至少高出基体树脂熔点60℃,以确保增强纤维在传感器长条状嵌件与塑料管材共挤出成型时不会发生熔融,从而保证传感器长条状嵌件中的光纤光栅在整个植入过程中不会发生偏移和弯折。
常用增强纤维种类较多,优选聚酯纤维、尼龙纤维和氨纶。当然,本领域技术人员可以在本发明的工作原理的基础上将增强纤维替换为其他材质,但是其目的均是起到使传感器嵌件兼具刚度和柔韧性,因此,该类改进属于本领域技术人员容易想到的常规替换,理应属于本发明的保护范围。
优选的,所述光纤光栅传感器长条状嵌件中增强纤维的体积含量为30~50%,从而使传感器长条状嵌件兼具刚度和柔韧性。若增强纤维含量过低,光纤光栅传感器嵌件在拉挤成型时很容易被拉断,嵌件的成型制造困难;反之,光纤光栅传感器长条状嵌件会由于刚度太大而不易弯折,从而造成传感器长条状嵌件在斜向导入挤出模腔后贴合模腔壁面困难。
所述光纤光栅传感器长条状嵌件需要用颜色标明,以便于定位传感器,同时提醒施工人员注意保护传感器长条状嵌件不被破坏。需要说明的是,传感器 长条状嵌件的颜色不能和管道通用标志颜色冲突,以便于区分。
一种光纤光栅传感器嵌件植入系统,包括机筒本体,所述机筒本体内部设置有容纳腔体,所述容纳腔体内套设有旋转推进部件,旋转推进部件连接传动电机,所述机筒本体一侧设置有挤出机头,所述容纳腔体与挤出机头内部的挤出模腔连通,挤出机头的前端设置有挤出口模;
所述挤出模腔与挤出机头上设置的向外斜向延伸的传送通道连通,传送通道外侧设置有输送光纤光栅传感器长条状嵌件的传送件,使得其与挤出模腔内的塑料原料一起挤出成型。通过传动电机提供动力,带动旋转推进部件高速旋转搅拌容纳腔体内的塑料原料使其熔融,光纤光栅传感器长条状嵌件在传送件的导向作用下,经由传送通道被斜向传送至挤出机头内部,贴近挤出模腔表面并与熔融的塑料原料一起通过挤出口模,经冷却定型后得到智能化塑料管材。
进一步的,所述机筒本体上设置有原料入口,原料入口与容纳腔体连通。
优选的,所述旋转推进部件为螺杆。
优选的,所述传送件包括多对辊子,所述辊子成对设置于传送通道前端,依次布设,至少有一对辊子靠近挤出机头,用以调整、定位传感器长条状嵌件的导入方向和角度,引导传感器长条状嵌件向前运行至传送通道。
所述传送通道的截面尺寸根据光纤光栅传感器长条状嵌件的截面尺寸设定,其宽度比传感器长条状嵌件的宽度大1~2mm,其高度比传感器长条状嵌件的厚度大0.5~1mm,从而确保传感器长条状嵌件可以顺利通过传送通道而不会发生扭转。
优选的,所述传送通道与挤出机头轴线的夹角应小于60°,避免光纤光栅 传感器长条状嵌件在斜向导入挤出模腔后贴合模腔壁面时因过度弯折而断裂。
进一步的,光纤光栅传感器长条状嵌件的嵌入点位于挤出模腔表面并与熔融的塑料一同经过挤出口模,形成内植光纤光栅传感器长条状嵌件的塑料管材。这样的设置保证光纤光栅传感器长条状嵌件内植于塑料管材的外表面,便于在后续的熔接操作时将其与管材本体剥离,从而分别实现塑料与塑料的熔接、光纤与光纤的熔接。
所述内植光纤光栅传感器长条状嵌件的塑料管材的长度可根据需要进行切割,但切割位置应避开光纤光栅传感器的栅区部位,与栅区保持至少10cm的距离。
一种智能化塑料管道的制备方法,包括以下步骤:
(1)制备光纤光栅传感器长条状嵌件;
(2)将得到的光纤光栅传感器长条状嵌件由传送通道被斜向传送至挤出机头内部,贴近挤出模腔表面并与熔融的塑料一起通过挤出口模,经冷却定型后即得到内植光纤光栅传感器的塑料管材,并根据需要进行切割和包装;
(3)通过内植有光纤光栅嵌件的连接法兰将塑料管材以及其中的光纤光栅传感器分别熔接,完成管道的贯通以及光信号的中继。
所述步骤(1)中,具体包括:
a)将增强纤维、刻栅完成后的光纤固定于纱架,并使其穿过导纱板,其中,光纤位于中间位置,增强纤维纱束均布于光纤四周;
b)将穿过导纱板的光纤和增强纤维进行烘干、浸润液态高温树脂处理;
c)浸润液态高温树脂后的光纤和增强纤维以拉挤工艺的形式穿过成型模具, 在成型的同时挤去多余的树脂,并排除材料中的气泡,得到一定截面形状的光纤光栅传感器长条状嵌件;
d)将得到的光纤光栅传感器长条状嵌件在牵引机的拖曳作用下匀速到达收卷机,进行收卷和包装处理。
所述步骤(3)中,塑料管材的连接法兰内植了光纤光栅传感器嵌件,法兰的两端有引出的光纤接头,将法兰两端的传输光纤接头中的光纤分别与塑料管材中内植的光纤熔接,完成光纤延长、光信号中继。需要说明的是,连接法兰中内植的传输光纤的数量与塑料管材中内植的光纤光栅传感器的数量相同,且颜色一一对应,以确保法兰前后熔接的是同一根光纤光栅传感器。
进一步的,在光纤光栅熔接之前需要将传感器长条状嵌件从管材表面剥离出一小段,长度为4~10cm。将剥离出的传感器嵌件加热熔融以去除光纤外层的封装材料,露出裸纤,以便于熔接。然后将传输光纤熔接后的多余部分置于连接法兰的光纤接头孔内,在塑料管材熔接完成后胶封光纤熔接部位,从而保护光纤光栅传输光路不受破坏。
与现有技术相比,本发明的有益效果为:
(1)本发明提供了一种内植于塑料管道的光纤光栅传感器长条状嵌件,该传感器嵌件兼具刚度和柔韧性,可以在塑料管材连续挤出成型时被准确可靠地埋入管材表面,避免传感器在恶劣的工况下受损破坏,从而显著提高传感器的存活率和测试精度,同时便于塑料管材之间的熔接以及光纤光栅传感器与传输光纤的熔接;
(2)本发明提供了一种智能化塑料管道的光纤光栅传感器植入系统,该系 统可以便利的在生产塑料管材的同时将光纤光栅传感器长条状嵌件埋植于塑料管材表面,一体化成型且便于流水线生产;
(3)本发明提供了一种智能化塑料管道的光纤光栅传感器植入方法,该方法操作简单,将传统的塑料管材连续挤出工艺技术与光纤通信技术相结合,制造的智能化塑料管道可实现对温度、应变、压力等参数的实时在线监测,进而实现城市管网的安全预警、故障诊断和自动控制,从而有力推动“智慧城市”建设。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1(a)为本发明光纤光栅传感器长条状嵌件的结构示意图;
图1(b)为本发明图1(a)的局部侧视图;
图2为内植光纤光栅传感器长条状嵌件的塑料管材的制造过程示意图;
图3为熔接后智能化塑料管道的整体示意图。
其中,1为光纤光栅温度传感器;2为光纤光栅应变传感器;3为温度光栅单元;4为应变光栅单元;5为毛细钢管;6为增强纤维;7为基体树脂;8为挤出机传动电机;9为齿轮;10为塑料原料;11为螺杆;12为机筒;13为挤出机头;14为挤出模腔;15为挤出口模;16为光纤光栅传感器长条状嵌件;17为传送辊子;18为传送通道;19为智能化塑料管材;20为连接法兰。
具体实施方式:
下面结合附图与实施例对本发明作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的 普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本发明中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本发明各部件或元件结构关系而确定的关系词,并非特指本发明中任一部件或元件,不能理解为对本发明的限制。
本发明中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本发明中的具体含义,不能理解为对本发明的限制。
正如背景技术所介绍的,现有技术中存在工业化连续挤出管材的过程中内植光纤光栅传感器相当困难,在连续挤出管材中植入光纤光栅传感器尚是智能化塑料管道的技术瓶颈,为了解决如上的技术问题,本申请提出了一种智能化塑料管道的光纤光栅传感器植入系统及方法,本发明在塑料管材连续挤出成型的过程中采用斜向导入的方式将光纤光栅传感器长条状嵌件准确地埋植于管材外表面,从而把预先内植于长条状嵌件的温度和应变传感器内埋于管材中,确保传感器在恶劣的管道制造和使役环境下存活,实现对管道温度、应变、压力 等参数的实时在线监测。
一种智能化塑料管道的光纤光栅传感器的植入方法,具体包括光纤光栅传感器长条状嵌件的制备步骤、塑料和光纤光栅传感器长条状嵌件的共挤出成型管材步骤和内含光纤光栅传感器长条状嵌件的管材熔接步骤。
其中,第一步:光纤光栅传感器长条状嵌件的制备步骤。
将增强纤维、刻栅完成后的光纤固定于纱架,并使其穿过导纱板,其中,光纤位于中间位置,增强纤维纱束均布于光纤四周;将上述两种材料进行烘干、浸润液态高温树脂处理;浸润液态高温树脂后的光纤和增强纤维以拉挤工艺的形式穿过成型模具,在成型的同时挤去多余的树脂,并排除材料中的气泡,得到一定截面形状的光纤光栅传感器长条状嵌件;将上述得到的光纤光栅传感器长条状嵌件在牵引机的拖曳作用下匀速到达收卷机,进行收卷和包装处理。
制备成的光纤光栅传感器长条状嵌件为厚0.4~1.2mm、宽1~10mm的矩形条料,包括至少一条温度光纤光栅传感器和一条应变光纤光栅传感器。温度光纤光栅传感器测量温度,应变光纤光栅传感器检测应变,同一嵌件中的所有光纤光栅传感器分别用不同的颜色标记,以便于区分。
进一步的,所述温度光纤光栅传感器和应变光纤光栅传感器平行并列放置,两者的光栅单元位置相对应,共同组成一个兼具温度和应变监测功能的光栅对。此外,每根光纤可刻制多个栅区,形成分布式多点检测的光纤光栅串,栅区之间的间距可根据需要自行设定。
优选的,所述相邻光纤光栅传感器之间的平行间距为0.25~2mm。
优选的,所述温度光纤光栅的栅区用外径0.7mm的毛细钢管封装,两端用 DG-4双组份胶进行密封。
优选的,所述光纤光栅传感器的纤芯直径为5~50μm。
所述光纤光栅传感器长条状嵌件的基体树脂材料与管道材料相同,以提高光纤光栅传感器长条状嵌件与管材的强度相容性、界面相容性和场分布相容性,最大限度地降低传感器长条状嵌件对制品性能的影响,同时减小传感器的应变传递损耗,提高测试精度。
优选的,所述光纤光栅传感器长条状嵌件中增强纤维的熔点至少高出基体树脂熔点60℃,以确保增强纤维在传感器长条状嵌件与塑料管材共挤出成型时不会发生熔融,从而保证传感器长条状嵌件中的光纤光栅在整个植入过程中不会发生偏移和弯折。常用增强纤维种类较多,优选聚酯纤维、尼龙纤维和氨纶。
优选的,所述光纤光栅传感器长条状嵌件中增强纤维的体积含量为30~50%,从而使传感器长条状嵌件兼具刚度和柔韧性。若增强纤维含量过低,光纤光栅传感器嵌件在拉挤成型时很容易被拉断,嵌件的成型制造困难;反之,光纤光栅传感器长条状嵌件会由于刚度太大而不易弯折,从而造成传感器长条状嵌件在斜向导入挤出模腔后贴合模腔壁面困难。
光纤光栅传感器长条状嵌件需要用特定颜色标明,以便于定位传感器,同时提醒施工人员注意保护传感器长条状嵌件不被破坏。需要说明的是,传感器长条状嵌件的颜色不能和管道通用标志颜色冲突,以便于区分。
第二步,塑料和光纤光栅传感器长条状嵌件的共挤出成型管材步骤:
得到的光纤光栅传感器长条状嵌件在开卷后通过多对辊子的夹持、导向和推送作用,经由传送通道被斜向传送至挤出机头内部,贴近挤出模腔表面并与 熔融的塑料一起通过挤出口模,经冷却定型后即得到内植光纤光栅传感器长条状嵌件的塑料管材,并根据需要进行切割和包装处理。
其中,传感器长条状嵌件的夹持、推送、导向装置主要由多对辊子和特制传送通道组成,第一对辊子在距离挤出机头较远的位置,起到推送传感器长条状嵌件向前运行的作用;至少有一对辊子靠近挤出机头,用以调整、定位传感器长条状嵌件的导入方向和角度;传送通道是光纤光栅传感器长条状嵌件到达挤出模腔表面的路径,用以确定传感器长条状嵌件在塑料熔体中的初始嵌入位置。需要说明的是,在挤出成型时,光纤光栅传感器长条状嵌件的嵌入点位于挤出模腔表面并与熔融的塑料一同经过挤出口模,形成内植光纤光栅传感器长条状嵌件的塑料管材。此时,光纤光栅传感器长条状嵌件内植于塑料管材的外表面,便于在后续的熔接操作时将其与管材本体剥离,从而分别实现塑料与塑料的熔接、光纤与光纤的熔接。
内植光纤光栅传感器长条状嵌件的塑料管材的长度可根据需要进行切割,但切割位置应避开光纤光栅传感器的栅区部位,与栅区保持至少10cm的距离。
第三步,内含光纤光栅传感器长条状嵌件的管材熔接步骤:
制备的内植光纤光栅传感器长条状嵌件的塑料管材在使用时,通过连接法兰(内植了光纤光栅嵌件)将塑料管材以及其中的光纤光栅传感器分别熔接,完成管道的贯通以及光信号的中继。
塑料管材的连接法兰内植了光纤光栅传感器嵌件,法兰的两端有引出的光纤接头,将法兰两端的传输光纤接头中的光纤分别与塑料管材中内植的光纤熔接,完成光纤延长、光信号中继。需要说明的是,连接法兰中内植的传输光纤 的数量与塑料管材中内植的光纤光栅传感器的数量相同,且颜色一一对应,以确保法兰前后熔接的是同一根光纤光栅传感器。
进一步的,在光纤光栅熔接之前需要将传感器长条状嵌件从管材表面剥离出一小段,长度为4~10cm。将剥离出的传感器嵌件加热熔融以去除光纤外层的封装材料,露出裸纤,以便于熔接。然后将传输光纤熔接后的多余部分置于连接法兰的光纤接头孔内,在塑料管材熔接完成后胶封光纤熔接部位,从而保护光纤光栅传输光路不受破坏。
以下通过几个典型实施例对技术方案进行更详细的说明:
实施例1:
一种智能化塑料管道在线监测用光纤光栅传感器长条状嵌件,其结构如图1(a)、图1(b)所示,包括:光纤光栅温度传感器1、光纤光栅应变传感器2、增强纤维6(本实施例中增强纤维选用聚酯纤维)、基体树脂7(本实施例中基体树脂选用无规共聚聚丙烯)。
内植光纤光栅传感器长条状嵌件的塑料管材的制造过程如图2所示,其中,挤出机传动电机8提供动力,齿轮9带动螺杆11高速旋转搅拌塑料原料10(本实施例中塑料原料选用无规共聚聚丙烯)使其熔融,而光纤光栅传感器长条状嵌件16在传送辊子17的夹持、传送和导向作用下,经由传送通道18被斜向传送至挤出机头13内部,贴近挤出模腔14表面并与熔融的无规共聚聚丙烯10一起通过挤出口模15,经冷却定型后得到智能化塑料管材19。
图3为熔接后智能化塑料管道的整体示意图,通过连接法兰20将智能化塑料管材19以及其中的光纤光栅传感器分别熔接保护,完成管道的贯通以及光信 号的中继。
一种智能化塑料管道的光纤光栅传感器植入方法,包括如下步骤:
(1)光纤光栅传感器长条状嵌件的制备
a)选取两条掺入光敏性材料的光纤,通过热挤出、涂覆、缠绕等成型工艺,使光纤外周形成一定厚度、不同颜色的热塑性塑料保护层。
b)将上述制备的光纤每隔3m剥去长10mm的光纤保护层,形成多个光纤裸露区,并在每个光纤裸露区刻制不同中心波长的光栅,形成多个光纤光栅传感器单元。
c)选取步骤b)中一条刻栅完成的光纤,将其上刻制的所有栅区封装在毛细钢管5中,且保证栅区在管中处于自由状态,封装所用毛细钢管5外径为0.7mm,壁厚0.2mm,两端用DG-4双组份胶进行密封,常温放置24小时使其完全固化,形成光纤光栅温度传感器1;另外一条光纤的栅区未套毛细钢管5,作为光纤光栅应变传感器2。
d)将光纤光栅温度传感器1、光纤光栅应变传感器2、聚酯纤维6固定于纱架,并使其穿过导纱板,其中,光纤光栅温度传感器1和光纤光栅应变传感器2位于中间位置,聚酯纤维6均布于光纤光栅传感器的四周,调节张力,防止纤维下垂、缠绕。
e)上述两种材料通过干燥设备进行除湿处理后,进入胶槽浸润液态高温的无规共聚聚丙烯7。
f)浸润无规共聚聚丙烯7后的光纤光栅温度传感器1、光纤光栅应变传感器2和聚酯纤维6以拉挤工艺的形式穿过成型模具,得到1mm厚、1.5mm宽的光 纤光栅传感器长条状嵌件16。
g)光纤光栅传感器长条状嵌件16在牵引机的拖曳作用下匀速到达收卷机,进行收卷和包装处理。
(2)内植光纤光栅传感器长条状嵌件的塑料管材的制备
a)打开挤出机传动电机8,由齿轮9带动螺杆11转动。
b)将颗粒状的无规共聚聚丙烯10加入到挤出机的机筒12中,挤出机机筒12外有加热器,通过热传导将加热器产生的热量传给机筒12内的无规共聚聚丙烯10,使温度逐渐上升。
c)随着螺杆11的转动,无规共聚聚丙烯10不断向前输送,并在输送过程中与螺杆11、机筒12之间相互碰撞摩擦,产生大量的热,与热传导共同作用使加入的无规共聚聚丙烯10不断熔融,熔融的无规共聚聚丙烯10被连续、稳定地输送至挤出机头13中。
d)将步骤(1)中制备的光纤光栅传感器长条状嵌件16开卷,开卷后的光纤光栅传感器长条状嵌件16通过传送辊子的夹持、导向和推送作用,经由传送通道18被斜向传送至挤出机头13内部,贴近挤出模腔14表面并与熔融的无规共聚聚丙烯10一起通过挤出口模15,经冷却定型后得到智能化塑料管材19。
e)在牵引装置的作用下,智能化塑料管材19连续前进,到达切割装置后进行切割和包装处理,以便储存和运输。
(3)智能化塑料管材的熔接
a)首先,将光纤光栅传感器长条状嵌件16从智能化塑料管材19的表面剥离出一小段,长度为5cm,并将剥离出的传感器嵌件加热熔融以去除光纤外层 的封装材料,露出裸纤。
b)连接法兰20的两端分别有两条引出的光纤接头,光纤接头中传输光纤的颜色与光纤光栅传感器长条状嵌件16中的光纤光栅温度传感器1和光纤光栅应变传感器2一一对应,采用光纤熔接机将对应的传输光纤接头中的光纤与塑料管材中内植的光纤熔接,然后将传输光纤熔接后的多余部分置于连接法兰20的光纤接头孔内,并胶封光纤熔接部位。
c)加热智能化塑料管材19的管口位置并将其嵌入到连接法兰20内,与另一端嵌入的智能化塑料管材熔接,完成管道的贯通、光纤的延长和光信号的中继。
d)在管道完全贯通后,从管道中引出传输光纤,与外部的传输光缆熔接,并将光缆接头连接光纤光栅解调系统,即可实现对塑料管道温度和应变的在线监测。
实施例2:
与实施例1的不同之处在于,光纤光栅传感器长条状嵌件中的增强纤维选用尼龙纤维,传感器长条状嵌件中的基体树脂和管材原料选用聚氯乙烯。
实施例3:
与实施例1的不同之处在于,光纤光栅传感器长条状嵌件中的增强纤维选用氨纶,传感器长条状嵌件中的基体树脂和管材原料选用聚乙烯。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则 之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (14)

  1. 一种智能化塑料管道的光纤光栅传感器长条状嵌件,其特征是:包括基体树脂、光纤光栅温度传感器、光纤光栅应变传感器和增强纤维,所述光纤光栅温度传感器、光纤光栅应变传感器平行并列放置,两者均具有多个光栅单元,且光栅单元位置相对应,共同组成一个兼具温度和应变监测功能的光栅对;
    所述光纤光栅温度传感器、光纤光栅应变传感器埋设于基体树脂内,同时基体树脂内填充有增强纤维,所述增强纤维在光纤光栅传感器长条状嵌件内均匀并列分布,用以支撑起整个光纤光栅传感器长条状嵌件的骨架。
  2. 如权利要求1所述的一种智能化塑料管道的光纤光栅传感器长条状嵌件,其特征是:所述光纤光栅温度传感器、光纤光栅应变传感器每根光纤可刻制多个栅区,形成分布式多点检测的光纤光栅串,栅区之间的间距可根据需要自行设定。
  3. 如权利要求1或2所述的一种智能化塑料管道的光纤光栅传感器长条状嵌件,其特征是:所述光纤光栅温度传感器的光纤光栅的栅区用毛细钢管封装,毛细钢管两端进行密封。
  4. 如权利要求1所述的一种智能化塑料管道的光纤光栅传感器长条状嵌件,其特征是:光纤光栅传感器长条状嵌件的基体树脂材料与待植入的管道材料相同。
  5. 如权利要求1所述的一种智能化塑料管道的光纤光栅传感器长条状嵌件,其特征是:所述光纤光栅传感器长条状嵌件中增强纤维的熔点至少高出基体树脂熔点60℃。
  6. 如权利要求1所述的一种智能化塑料管道的光纤光栅传感器长条状嵌件, 其特征是:所述光纤光栅传感器长条状嵌件中增强纤维的体积含量为30~50%。
  7. 一种光纤光栅传感器长条状嵌件植入系统,其特征是:包括机筒本体,所述机筒本体内部设置有容纳腔体,所述容纳腔体内套设有旋转推进部件,旋转推进部件连接传动电机,所述机筒本体一侧设置有挤出机头,所述容纳腔体与挤出机头内部的挤出模腔连通,挤出机头的前端设置有挤出口模;
    所述挤出模腔与挤出机头上设置的向外斜向延伸的传送通道连通,传送通道外侧设置有输送光纤光栅传感器长条状嵌件的传送件,使得其与挤出模腔内的塑料原料一起挤出成型。
  8. 如权利要求7所述的一种光纤光栅传感器长条状嵌件植入系统,其特征是:所述机筒本体上设置有原料入口,原料入口与容纳腔体连通。
  9. 如权利要求7所述的一种光纤光栅传感器长条状嵌件植入系统,其特征是:所述传送件包括多对辊子,所述辊子成对设置于传送通道前端,依次布设,至少有一对辊子靠近挤出机头,用以调整、定位传感器长条状嵌件的导入方向和角度,引导传感器嵌件向前运行至传送通道。
  10. 如权利要求7所述的一种光纤光栅传感器长条状嵌件植入系统,其特征是:光纤光栅传感器长条状嵌件的嵌入点位于挤出模腔表面并与熔融的塑料一同经过挤出口模,形成内植光纤光栅传感器长条状嵌件的塑料管材。
  11. 一种智能化塑料管道的制备方法,其特征是:包括以下步骤:
    (1)制备光纤光栅传感器长条状嵌件;
    (2)将得到的光纤光栅传感器长条状嵌件由传送通道被斜向传送至挤出机头内部,贴近挤出模腔表面并与熔融的塑料一起通过挤出口模,经冷却定型 后即得到内植光纤光栅传感器的塑料管材,并根据需要进行切割和包装;
    (3)通过内植有光纤光栅嵌件连接法兰将塑料管材以及其中的光纤光栅传感器分别熔接,完成管道的贯通以及光信号的中继。
  12. 如权利要求11所述的一种智能化塑料管道的制备方法,其特征是:所述步骤(1)中,具体包括:
    a)将增强纤维、刻栅完成后的光纤固定于纱架,并使其穿过导纱板,其中,光纤位于中间位置,增强纤维纱束均布于光纤四周;
    b)将穿过导纱板的光纤和增强纤维进行烘干、浸润液态高温树脂处理;
    c)浸润液态高温树脂后的光纤和增强纤维以拉挤工艺的形式穿过成型模具,在成型的同时挤去多余的树脂,并排除材料中的气泡,得到一定截面形状的光纤光栅传感器嵌件;
    d)将得到的光纤光栅传感器嵌件在牵引机的拖曳作用下匀速到达收卷机,进行收卷和包装处理。
  13. 如权利要求11所述的一种智能化塑料管道的制备方法,其特征是:所述步骤(3)中,塑料管材的连接法兰内植了光纤光栅传感器嵌件,法兰的两端有引出的光纤接头,将法兰两端的传输光纤接头中的光纤分别与塑料管材中内植的光纤熔接,完成光纤延长、光信号中继。
  14. 如权利要求11所述的一种智能化塑料管道的制备方法,其特征是:在光纤光栅熔接之前需要将传感器长条状嵌件从管材表面剥离出一小段,将剥离出的传感器嵌件加热熔融以去除光纤外层的封装材料,露出裸纤,以便于熔接,然后将传输光纤熔接后的多余部分置于连接法兰的光纤接头孔内,在塑料管材 熔接完成后胶封光纤熔接部位,以保护光纤光栅传输光路不受破坏。
PCT/CN2017/103874 2017-07-14 2017-09-28 智能化塑料管道的光纤光栅传感器嵌件、植入系统及方法 WO2019010830A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/066,215 US10458862B2 (en) 2017-07-14 2017-09-28 Fiber grating sensor insert, implanting system and method of intelligent plastic pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710575178.2A CN107271078B (zh) 2017-07-14 2017-07-14 智能化塑料管道的光纤光栅传感器嵌件、植入系统及方法
CN201710575178.2 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019010830A1 true WO2019010830A1 (zh) 2019-01-17

Family

ID=60072710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103874 WO2019010830A1 (zh) 2017-07-14 2017-09-28 智能化塑料管道的光纤光栅传感器嵌件、植入系统及方法

Country Status (3)

Country Link
US (1) US10458862B2 (zh)
CN (2) CN109747067B (zh)
WO (1) WO2019010830A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111498606A (zh) * 2020-04-16 2020-08-07 南京中探海洋物联网有限公司 一种智能高精度绕纤机

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015004156T5 (de) * 2014-09-12 2017-06-08 Toshiba Kikai Kabushiki Kaisha Plastifizierungsvorrichtung; Einspritzvorrichtung; Formeinrichtung und Herstellungsverfahren von Formteilen
US20210107200A1 (en) * 2016-11-29 2021-04-15 Dow Global Technologies Llc Microcapillary Wire Coating Die Assembly
EP3956064B1 (en) * 2019-04-18 2024-10-16 H-E Parts International Crushing Solutions Pty Ltd Wear sensing liner
CN113460701B (zh) * 2020-03-31 2024-06-04 西安量子智能科技有限公司 一种管道内的物体输送方法
CN112964151B (zh) * 2021-01-19 2022-07-29 南京工程学院 一种设备位移计及其使用方法
CN113320120B (zh) * 2021-04-21 2022-09-09 临沂万用塑料制品有限公司 一种拉力自显式pp复合材料的制备方法
CN113340223B (zh) * 2021-06-02 2022-12-09 桂林理工大学 一种量程可调的光纤光栅应变传感器及其制备和使用方法
CN113532539B (zh) * 2021-07-27 2024-01-26 安徽理工大学 同时测量温度、应变和压力的光纤传感系统、方法及装置
CN113885139B (zh) * 2021-12-01 2022-03-11 广东电网有限责任公司东莞供电局 一种光纤插头连接器集成装置
CN114739434B (zh) * 2022-04-27 2023-07-04 兰州大学 一种分布式光纤传感器件的柔性封装方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2748888Y (zh) * 2004-12-10 2005-12-28 周智 纤维增强树脂筋封装光纤光栅温度传感器
CN1758017A (zh) * 2005-11-04 2006-04-12 哈尔滨工业大学 埋入公路中的光纤光栅传感器及其封装方法
CN1779067A (zh) * 2004-11-17 2006-05-31 欧进萍 光纤光栅纤维增强树脂筋智能拉索
CN101738214A (zh) * 2008-11-07 2010-06-16 深圳市海川实业股份有限公司 光纤光栅传感器内埋于纤维高聚物复合材料的系统及方法
CN104198083A (zh) * 2014-08-20 2014-12-10 中国石油集团渤海钻探工程有限公司 光纤光栅温度传感器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439387A (en) * 1979-09-13 1984-03-27 Polymer Composites, Inc. Method of manufacturing a composite reinforcing structure
DE4016784A1 (de) * 1990-05-25 1991-11-28 Werner & Pfleiderer Extruder zum aufbereiten von kunststoff unter zufuehrung mindestens eines faserstranges
US6444153B1 (en) * 1999-12-28 2002-09-03 Delphi Technologies, Inc. In-line compounding/extrusion deposition and molding apparatus and method of using the same
US7390118B2 (en) * 2004-10-15 2008-06-24 Husky Injection Molding Systems Ltd. Extruder assembly
CN101240864B (zh) * 2008-03-10 2011-06-15 云南金恒实业有限公司 中空消音管道成型设备
CN101930101B (zh) * 2009-06-25 2013-06-19 上海启鹏工程材料科技有限公司 一种光纤光栅复合材料智能筋的制备系统及方法
EP2431779A1 (en) * 2010-09-16 2012-03-21 GM Plast A/S Tube assembly for guiding and protecting optical fibre cables
CN204611121U (zh) * 2015-02-10 2015-09-02 航天晨光股份有限公司 一种预埋光纤微管的增强热塑性塑料复合管
US9366809B1 (en) * 2015-05-29 2016-06-14 Wojtek J. Bock Inter-grating fiber spaced multi-DRLPG doped optical sensor
CN105158256B (zh) * 2015-09-30 2017-08-29 山东大学 一种复合材料在线健康监测方法
CN105371880B (zh) * 2015-12-21 2017-07-18 山东大学 用于注塑制品检测的光纤光栅传感器嵌件及其制造方法
CN105371903B (zh) * 2015-12-21 2017-06-06 山东大学 一种塑料厚板制品检测用光纤光栅传感器嵌件及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1779067A (zh) * 2004-11-17 2006-05-31 欧进萍 光纤光栅纤维增强树脂筋智能拉索
CN2748888Y (zh) * 2004-12-10 2005-12-28 周智 纤维增强树脂筋封装光纤光栅温度传感器
CN1758017A (zh) * 2005-11-04 2006-04-12 哈尔滨工业大学 埋入公路中的光纤光栅传感器及其封装方法
CN101738214A (zh) * 2008-11-07 2010-06-16 深圳市海川实业股份有限公司 光纤光栅传感器内埋于纤维高聚物复合材料的系统及方法
CN104198083A (zh) * 2014-08-20 2014-12-10 中国石油集团渤海钻探工程有限公司 光纤光栅温度传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111498606A (zh) * 2020-04-16 2020-08-07 南京中探海洋物联网有限公司 一种智能高精度绕纤机

Also Published As

Publication number Publication date
CN109747067B (zh) 2021-09-21
CN107271078A (zh) 2017-10-20
CN109747067A (zh) 2019-05-14
CN107271078B (zh) 2020-04-07
US10458862B2 (en) 2019-10-29
US20190212213A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2019010830A1 (zh) 智能化塑料管道的光纤光栅传感器嵌件、植入系统及方法
CA3029863C (en) Continuous production device and method for glass fiber reinforced tape polyethylene composite pipe
CN105427948B (zh) 骨架式光电复合缆及其制造方法
CA2267713C (en) Optical-fiber cable and method of manufacturing the same
CN105637397B (zh) 光学通信电缆
CN103235376B (zh) 超细光纤松套管及其制造方法
CN101597869B (zh) 一种基于光纤传感的分布式高精度自监测frp筋/索的规模化生产工艺
JP2015108756A (ja) 光ファイバユニット、光ファイバケーブルおよび光ファイバユニットの製造方法
CN111983761A (zh) 全干式光缆及其制备方法
CN104730667A (zh) 骨架式光缆及制作方法
CN105511036A (zh) 一种非金属层绞式光缆
JP2007041382A (ja) 光ファイバケーブル
CN111965776A (zh) 一种螺旋微槽型气吹微缆、制造设备及制造方法
CN112433316B (zh) 一种中心管式微缆加工系统和制造工艺
CN105988160A (zh) 光纤、光纤的制造系统和制造方法
JP2017187691A (ja) 光ファイバユニット、光ファイバケーブルおよび光ファイバユニットの製造方法
CN206274473U (zh) 一种温度传感智能低压电缆
CN213302620U (zh) 一种微型气吹光缆
AU2012285834B2 (en) Method for extruding a drop cable
CN202472067U (zh) 圆形皮线光缆
CN209674069U (zh) 蒸汽管道泄漏监测传感光缆
CN104199158A (zh) 一种加强型室外蝶形光缆、加工方法及其加工装置
CN104459911B (zh) 大容量小直径光纤opgw及其生产方法
JP2019152825A (ja) 光ファイバケーブル及び光ファイバケーブルの製造方法
TW440722B (en) Apparatus for producing multiple channel duct assembly and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917337

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17917337

Country of ref document: EP

Kind code of ref document: A1