WO2019010623A1 - 充电控制方法、充电系统和充电装置 - Google Patents

充电控制方法、充电系统和充电装置 Download PDF

Info

Publication number
WO2019010623A1
WO2019010623A1 PCT/CN2017/092455 CN2017092455W WO2019010623A1 WO 2019010623 A1 WO2019010623 A1 WO 2019010623A1 CN 2017092455 W CN2017092455 W CN 2017092455W WO 2019010623 A1 WO2019010623 A1 WO 2019010623A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
interface
memory
status data
Prior art date
Application number
PCT/CN2017/092455
Other languages
English (en)
French (fr)
Inventor
吴旭民
敖继渊
冯壮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/092455 priority Critical patent/WO2019010623A1/zh
Priority to CN201780017737.6A priority patent/CN109041585A/zh
Publication of WO2019010623A1 publication Critical patent/WO2019010623A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to the field of battery technologies, and in particular, to a charging control method, a charging system, and a charging device.
  • the battery is the power source of the system and is the heart of the whole system, especially in places with high safety and stability, such as electric vehicles and drones. Taking the drone as an example, the power consumption of the battery is faster, and the battery needs to be charged in time to supplement the power, thereby ensuring the normal operation of the drone. Therefore, during the entire life of the battery, the charging process of the charger is an important project of the battery, but if a failure occurs during the charging process, for example, the charger stops supplying power to the battery, and since the charger and the battery are separately Individuals need to check the problem of the charger or the battery one by one, which makes the positioning fault problem inefficient.
  • Embodiments of the present invention provide a charging control method, a charging system, and a charging device for accurately and quickly locating a cause of a failure of a battery during charging.
  • an embodiment of the present invention provides a charging control method, including:
  • the stored state data is transmitted to the external device according to the read command.
  • the storing state data of the battery includes:
  • the status data of the battery is stored in a memory.
  • the memory is a non-volatile memory.
  • the non-volatile memory is a ferroelectric memory.
  • the status data includes at least one of the following: electricity of the battery Pressure, current of the battery, amount of electricity of the battery, temperature of the battery.
  • an embodiment of the present invention provides a charging system, including: a charging interface, a first communication interface, a charging circuit, a controller, and a memory; the charging circuit is electrically connected to the charging interface; The first communication interface and the memory are electrically connected;
  • the charging interface is configured to connect a battery
  • the first communication interface is configured to connect a battery
  • a controller configured to receive status data of the battery sent by the battery through the first communication interface, and store the status data to the battery during charging of the battery by the charging circuit
  • the memory is configured to store state data of the battery
  • the controller is further configured to: when receiving a read instruction sent by the external device, acquire the state data stored by the memory according to the read instruction, and send the status data to the external device.
  • the memory is a non-volatile memory.
  • the non-volatile memory is a ferroelectric memory.
  • the charging interface and the first communication interface are integrated into one interface.
  • the charging system further includes: a communication interface; the second communication interface is for communicating with an external device, and the second communication interface is electrically connected to the controller,
  • the controller can receive the read instruction sent by the external device through the second communication interface, and according to the read instruction, can send the memory to the external device through the second communication interface
  • the external device is capable of receiving, by the second communication interface, the status data stored by the memory sent by the controller to analyze a cause of the battery generating a charging failure.
  • the status data includes at least one of: a voltage of the battery, a current of the battery, a quantity of the battery, a temperature of the battery.
  • an embodiment of the present invention provides a charging apparatus, including: a housing; and the charging system of the first aspect;
  • the charging system is installed in the housing.
  • the charging device further includes a power interface, and the power interface is mounted on the housing;
  • the power interface is electrically connected to the charging system, and the power interface is further configured to be connected to a charger;
  • the charging system is capable of acquiring DC power output by the charger through the power interface.
  • the charging device further includes a charger and a power interface; the charger is installed in the housing, the power interface is mounted on the housing, and the charger is respectively Electrically connecting the charging system and the power interface;
  • the power interface is configured to connect to an external power source
  • the charger is configured to convert alternating current in an external power source into direct current.
  • the charging control method, the charging system and the charging device provided by the embodiment of the present invention receive the state data of the battery sent by the battery by charging the battery and charging the battery, and storing the The status data of the battery is then transmitted to the external device based on the read command when receiving a read command sent by the external device. Therefore, in this embodiment, when the battery is charged, the state data of the battery is simultaneously received and stored. Once the battery fails during the charging process, the cause of the fault may be located according to the stored state data of the battery, and the cause of the fault is more accurate. Faster.
  • FIG. 1 is a flowchart of a charging control method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a charging system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a charging system according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a charging device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a charging device according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a charging device according to another embodiment of the present invention.
  • FIG. 1 is a flowchart of a charging control method according to Embodiment 1 of the present invention. As shown in FIG. 1 , the method in this embodiment may include:
  • S102 Receive status data of the battery sent by the battery during charging of the battery.
  • the battery is charged.
  • the state of the battery changes, and the battery can collect state data of the battery during charging. Therefore, in this embodiment, during charging of the battery, status data of the battery transmitted by the battery is received from the battery.
  • the battery, the voltage, the current, the power, the temperature, and the like of the battery may change during the charging process. Therefore, the status data of the battery received in this embodiment includes at least one of the following: a voltage of the battery, and a battery The current, the amount of the battery, and the temperature of the battery, but the embodiment is not limited thereto. Then, the embodiment stores the state data of the received battery.
  • the embodiment is to receive status data of the battery sent by the battery in real time, and store the status data of the battery in real time; optionally, the status data of the battery is received and stored in real time in real time.
  • the generation time of the state data of the battery can be received in real time, and the generation time of the state data is stored in real time when the state data of the battery is stored in real time. Based on the above, the state data in the charging period of the battery of the present embodiment is stored.
  • the stored state data of the battery is transmitted to the external device according to the read command.
  • the external device analyzes the cause of the failure of the battery during the charging process according to the status data of the battery. It should be noted that the external device is not the above battery.
  • the battery by charging the battery, and during charging of the battery, receiving status data of the battery sent by the battery, and storing status data of the battery, and then transmitting when receiving an external device
  • the stored state data is transmitted to the external device according to the read command. Therefore, in this embodiment, when the battery is charged, the state data of the battery is simultaneously received and stored. Once the battery fails during the charging process, the cause of the fault may be located according to the stored state data of the battery, and the cause of the fault is more accurate. Faster.
  • a possible implementation manner of the foregoing S103 is: storing status data of the received battery in a memory.
  • the status data of the received battery is stored in the memory in real time.
  • the memory is a non-volatile memory.
  • the non-volatile memory can realize real-time and fast storage of state data of the battery, and the power state does not lose the state data of the battery, thereby ensuring the battery. The integrity of the state data of the battery during charging.
  • the non-volatile memory described above may be a ferroelectric memory.
  • the charging system 20 of the present embodiment may include: a charging interface 21, a first communication interface 22, a charging circuit 23, a controller 24, and The memory circuit 25 is electrically connected to the charging interface 21; the controller 24 is electrically connected to the first communication interface 22 and the memory 25, respectively.
  • the charging interface 21 is configured to connect a battery.
  • the first communication interface 22 is configured to connect a battery.
  • the charging circuit 23 is configured to charge the battery through the charging interface 21.
  • the controller 24 is configured to receive status data of the battery sent by the battery through the first communication interface 22 during charging of the battery by the charging circuit 23, and store the status data. To the memory 25.
  • the memory 25 is configured to store state data of the battery.
  • the controller 24 is further configured to: when receiving a read instruction sent by the external device, acquire the status data stored by the memory 25 according to the read instruction, and send the status data to the external device. .
  • the battery when the battery is charged, the battery is connected to the charging interface 21, and the battery is also connected to the first communication interface 22. Since the battery is connected to the charging interface 21, the charging circuit 23 charges the battery through the charging interface 21. At the same time, since the battery is connected to the first communication interface 22, During charging of the battery, the battery transmits status data of the battery to the first communication interface 22, and therefore, the controller 24 receives status data of the battery transmitted by the battery through the first communication interface 22. The controller 24 then stores the status data of the received battery in the memory 25, which stores the status data of the battery received by the controller 24.
  • the controller 24 When receiving the read command sent by the external device, the controller 24 acquires the state data of the battery from the memory 25 according to the read command, and transmits the state data to the external device, so that the external device transmits the battery according to the controller.
  • the status data analyzes the cause of the battery failure during charging.
  • the memory 25 is a non-volatile memory.
  • the non-volatile memory is a ferroelectric memory, that is, the memory 25 may be a ferroelectric memory.
  • the charging interface 21 and the first communication interface 22 are integrated into one interface. That is, the charging interface 21 and the first communication interface 22 are in the same physical interface, so that in the process of charging the battery, only the battery needs to be connected to an interface, and the state data of the battery can be charged and transmitted.
  • the function simplifies the appearance of the charging system and facilitates the user's operation.
  • the status data includes at least one of the following: a voltage of the battery, a current of the battery, a quantity of the battery, and a temperature of the battery.
  • the charging system of this embodiment may be used to implement the technical solutions of the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 3 is a schematic structural diagram of a charging system according to another embodiment of the present invention.
  • the charging system 20 of the present embodiment may further include: a second communication interface 26, based on the embodiment shown in FIG.
  • the second communication interface 26 is for communicating with an external device, and the second communication interface 26 is electrically connected to the controller 24.
  • the controller 24 can receive the read command sent by the external device through the second communication interface 26, and can send the external device to the external device according to the read command.
  • the status data stored in the memory.
  • the external device is capable of receiving, by the second communication interface, the status data stored by the memory sent by the controller to analyze a cause of the battery generating a charging failure.
  • the charging system 20 is provided with a second communication interface 26 for communication connection with an external device, and the second communication interface 26 is electrically connected to the controller 24, and the external device can pass
  • the second communication interface 26 acquires state data of the battery stored in the memory 25.
  • the controller 24 can transmit the status data of the battery stored in the memory 25 to the external device through the second communication interface 26, and improve the output efficiency of the status data of the battery through the second communication interface 26.
  • the external device can analyze the cause of the failure of the battery during the charging process by using the state data of the received battery, and the accuracy of the obtained fault is more accurate, and the external device can also use the battery state data to the battery. The charging process is monitored.
  • the charging device 40 of the present embodiment may include: a housing 41 and a charging system 42; wherein the charging system 42 is installed in the Inside the housing 41.
  • the charging system 42 can adopt the structure of the charging system embodiment shown in FIG. 2 or FIG. 3, and correspondingly, the technical solution of any of the foregoing method embodiments can be executed, and the implementation principle and the technical effect are similar. Narration.
  • FIG. 5 is a schematic structural diagram of a charging apparatus according to another embodiment of the present invention. As shown in FIG. 5, the charging apparatus 40 of the present embodiment is based on the embodiment shown in FIG. A power interface 43 is mounted on the housing 41.
  • the power interface 43 is electrically connected to the charging system 42 , and the power interface 43 is further configured to be connected to a charger; the charging system 42 can obtain the DC power output by the charger through the power interface 43 .
  • the power interface 43 in the charging device 40 is connected to the charger, wherein the charger outputs direct current, for example, the charger converts the alternating current in the external power source. It is DC and output.
  • the charging system 42 (such as the charging circuit in the charging system 42) in the charging device 40 of the present embodiment can control the direct current output by the charger to charge the current.
  • the charging device 40 of the embodiment can be used to match the charger to charge the battery, and can receive the state data of the battery during the charging of the battery, and store the state data of the battery in time, and the stored battery The status data is used to analyze the cause of the battery failure during charging.
  • FIG. 6 is a schematic structural diagram of a charging apparatus according to another embodiment of the present invention.
  • the charging apparatus 40 of the present embodiment further includes a charger 44 and a power interface 45 on the basis of the embodiment shown in FIG. 4 .
  • the charger 44 is mounted in the housing 41, and the power interface 45 is mounted on The charger 44 is electrically connected to the charging system 42 and the power interface 45, respectively, on the housing 41.
  • the power interface 45 is configured to connect to an external power source.
  • the charger 44 is configured to convert alternating current in the external power source into direct current.
  • the charging device 40 of the embodiment is provided with a charger 44 and a power interface 45, and the charger 44 is disposed between the power interface 45 and the charging system 42.
  • the charging device The power interface 45 of 40 is connected to an external power source such that the charger 44 is electrically connected to an external power source, and the charger 44 converts the alternating current in the external power source into direct current through the power source interface 45 and outputs it to the charging system 42.
  • the charger 44 of the present embodiment may be a rechargeable charger 44, that is, the charger 44 may convert the alternating current in the external power source into direct current and store it, and then when the charging device 40 charges the battery, The charger 44 then outputs the stored direct current.
  • the charging system 42 e.g., the charging circuit in the charging system 42
  • in the charging device 40 of the present embodiment can then control the direct current output by the charger 44 to charge the current.
  • the charging device 40 of the embodiment can be used in combination with an external power source, can be used to charge the battery, and can receive the state data of the battery during the charging of the battery, and store the state data of the battery in time, and the state of the stored battery. The data is used to analyze the cause of the battery failure during charging.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, and the like, which can store program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电控制方法、充电系统(20)和充电装置(40),包括:对电池进行充电(S101);在对电池的充电过程中,接收电池发送的电池的状态数据(S102);存储电池的状态数据(S103);当接收到外部装置发送的读取指令时,根据读取指令,向外部装置发送存储的状态数据(S104)。在对电池进行充电时,可以同时接收并存储电池的状态数据,一旦电池在充电过程中发生故障,可以根据存储的电池的状态数据定位故障原因,使得定位故障原因准确、快速。

Description

充电控制方法、充电系统和充电装置 技术领域
本发明实施例涉及电池技术领域,尤其涉及一种充电控制方法、充电系统和充电装置。
背景技术
电池是系统的动力来源,是整个系统的心脏,特别是在电动汽车和无人机等高安全性、稳定性运行的场所。以无人机为例,电池中电量的消耗速度较快,需要及时对电池进行充电,以补充电量,从而保证无人机的正常运行。因此,在电池的整个寿命过程中,采用充电器充电过程是电池的一项重要工程,但是,如果在充电过程中出现故障,例如充电器停止向电池供电,又由于充电器与电池分别是单独的个体,需要逐一排查是充电器的问题还是电池的问题,从而造成定位故障问题的效率低下。
发明内容
本发明实施例提供一种充电控制方法、充电系统和充电装置,用于准确并快速地定位电池在充电过程中发生故障的原因。
第一方面,本发明实施例提供一种充电控制方法,包括:
对电池进行充电;
在对所述电池的充电过程中,接收所述电池发送的所述电池的状态数据;
存储所述电池的状态数据;
当接收到外部装置发送的读取指令时,根据所述读取指令,向所述外部装置发送存储的所述状态数据。
在一种可能的设计中,所述存储所述电池的状态数据,包括:
将所述电池的状态数据存储在存储器中。
在一种可能的设计中,所述存储器为非易失性存储器。
在一种可能的设计中,所述非易失性存储器为铁电存储器。
在一种可能的设计中,所述状态数据包括以下至少一项:所述电池的电 压、所述电池的电流、所述电池的电量、所述电池的温度。
第二方面,本发明实施例提供一种充电系统,包括:充电接口、第一通信接口、充电电路、控制器和存储器;所述充电电路与所述充电接口电连接;所述控制器分别与所述第一通信接口和所述存储器电连接;
所述充电接口,用于连接电池;
所述第一通信接口,用于连接电池;
充电电路,用于通过所述充电接口对所述电池进行充电;
控制器,用于在所述充电电路对所述电池进行充电的过程中,通过所述第一通信接口接收所述电池发送的所述电池的状态数据,并将所述状态数据存储至所述存储器中;
所述存储器,用于存储所述电池的状态数据;
所述控制器,还用于在接收外部装置发送的读取指令时,根据所述读取指令,获取所述存储器存储的所述状态数据,并向所述外部装置发送所述状态数据。
在一种可能的设计中,所述存储器为非易失性存储器。
在一种可能的设计中,所述非易失性存储器为铁电存储器。
在一种可能的设计中,所述充电接口和所述第一通信接口集成为一个接口。
在一种可能的设计中,所述充电系统还包括:通信接口;所述第二通信接口用于与外部装置通讯连接,所述第二通信接口与所述控制器电连接,
所述控制器能够通过所述第二通信接口接收所述外部装置发送的所述读取指令,并根据所述读取指令,能够通过所述第二通信接口向所述外部装置发送所述存储器中存储的所述状态数据;
所述外部装置能够通过所述第二通信接口接收所述控制器发送的所述存储器存储的所述状态数据,以分析所述电池产生充电故障的原因。
在一种可能的设计中,所述状态数据包括以下至少一项:所述电池的电压、所述电池的电流、所述电池的电量、所述电池的温度。
第三方面,本发明实施例提供一种充电装置,包括:壳体以及第一方面所述的充电系统;
其中,所述充电系统安装在所述壳体内。
在一种可能的设计中,所述充电装置还包括电源接口,所述电源接口安装在所述壳体上;
所述电源接口与所述充电系统电连接,而且所述电源接口还用于与充电器连接;
所述充电系统能够通过所述电源接口获取所述充电器输出的直流电。
在一种可能的设计中,所述充电装置还包括充电器和电源接口;所述充电器安装在所述壳体内,所述电源接口安装在所述壳体上,所述充电器分别与所述充电系统和所述电源接口电连接;
所述电源接口,用于连接外部电源;
所述充电器,用于将外部电源中的交流电转换为直流电。
本发明实施例提供的充电控制方法、充电系统和充电装置,通过对电池进行充电,并在对所述电池的充电过程中,接收所述电池发送的所述电池的状态数据,且存储所述电池的状态数据,然后当接收到外部装置发送的读取指令时,根据所述读取指令,向所述外部装置发送存储的所述状态数据。因此,本实施例可以在对电池进行充电时,同时接收并存储电池的状态数据,一旦电池在充电过程中发生故障,可以根据存储的电池的状态数据定位故障原因,而且定位故障原因更加准确、更加快速。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的充电控制方法的流程图;
图2为本发明一实施例提供的充电系统的结构示意图;
图3为本发明另一实施例提供的充电系统的结构示意图;
图4为本发明一实施例提供的充电装置的结构示意图;
图5为本发明另一实施例提供的充电装置的结构示意图;
图6为本发明另一实施例提供的充电装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例一提供的充电控制方法的流程图,如图1所示,本实施例的方法可以包括:
S101、对电池进行充电。
S102、在对所述电池的充电过程中,接收所述电池发送的所述电池的状态数据。
S103、存储所述电池的状态数据。
S104、当接收到外部装置发送的读取指令时,根据所述读取指令,向所述外部装置发送存储的所述状态数据。
本实施例中,对电池进行充电,当电池处于充电过程中时,电池的状态会发生变化,电池可以采集该电池在充电过程中的状态数据。因此,本实施例在对电池的充电过程中,从电池处接收该电池发送的电池的状态数据。其中,电池在充电过程中,电池的电压、电流、电量、温度等等会发生变化,因此,本实施例接收的电池的状态数据包括以下至少一项:所述电池的电压、所述电池的电流、所述电池的电量、所述电池的温度,但本实施例并不限于此。然后,本实施例再存储接收的电池的状态数据。可选地,在对电池的充电过程中,本实施例是实时接收电池发送的电池的状态数据,并实时存储电池的状态数据;可选地,在实时接收并实时存储电池的状态数据的情况下,本实施例还可以实时接收该电池的状态数据的产生时间,并在实时存储电池的状态数据时实时存储该状态数据的产生时间。基于上述,本实施例电池的充电时段内的状态数据均进行了存储。
当接收到外部装置发送的读取指令时,根据该读取指令,将存储的该电池的状态数据发送给外部装置。外部装置接收到电池在充电过程中的状态数据后,根据该电池的状态数据,分析所述电池在充电过程中发生故障的原因。需要说明的是,该外部装置不是上述电池。
本实施例,通过对电池进行充电,并在对所述电池的充电过程中,接收所述电池发送的所述电池的状态数据,且存储所述电池的状态数据,然后当接收到外部装置发送的读取指令时,根据所述读取指令,向所述外部装置发送存储的所述状态数据。因此,本实施例可以在对电池进行充电时,同时接收并存储电池的状态数据,一旦电池在充电过程中发生故障,可以根据存储的电池的状态数据定位故障原因,而且定位故障原因更加准确、更加快速。
可选地,上述S103的一种可能的实现方式为:将接收的电池的状态数据存储在存储器。本实施例在接收到电池发送的电池的状态数据后,实时将接收的电池的状态数据存储在存储器中。可选地,该存储器为非易失性存储器,通过该非易失性存储器本实施例可以实现实时并快速存储电池的状态数据,并且掉电也不会丢失该电池的状态数据,保证了电池在充电过程中的电池的状态数据的完整性。
可选地,上述的非易失性存储器可以为铁电存储器。
图2为本发明一实施例提供的充电系统的结构示意图,如图2所示,本实施例的充电系统20可以包括:充电接口21、第一通信接口22、充电电路23、控制器24和存储器25;所述充电电路23与所述充电接口21电连接;所述控制器24分别与所述第一通信接口22和所述存储器25电连接。
所述充电接口21,用于连接电池。
所述第一通信接口22,用于连接电池。
充电电路23,用于通过所述充电接口21对所述电池进行充电。
控制器24,用于在所述充电电路23对所述电池进行充电的过程中,通过所述第一通信接口22接收所述电池发送的所述电池的状态数据,并将所述状态数据存储至所述存储器25中。
所述存储器25,用于存储所述电池的状态数据。
所述控制器24,还用于在接收外部装置发送的读取指令时,根据所述读取指令,获取所述存储器25存储的所述状态数据,并向所述外部装置发送所述状态数据。
本实施例在对电池进行充电时,电池与充电接口21连接,而且电池也与第一通信接口22连接。由于电池与充电接口21连接,因此充电电路23通过充电接口21向电池进行充电。同时,由于电池与第一通信接口22连接,在 电池的充电过程中,电池向第一通信接口22发送电池的状态数据,因此,控制器24通过第一通信接口22接收电池发送的电池的状态数据。然后控制器24将接收的电池的状态数据存储在存储器25,存储器25中存储控制器24接收的电池的状态数据。
控制器24在接收到外部装置发送的读取指令时,根据该读取指令,从存储器25中获取电池的状态数据,并将该状态数据发送给外部装置,使得外部装置根据控制器发送的电池的状态数据,分析电池在充电过程中发生故障的原因。
可选地,所述存储器25为非易失性存储器。
可选地,所述非易失性存储器为铁电存储器,也就是,存储器25可以为铁电存储器。
可选地,所述充电接口21和所述第一通信接口22集成为一个接口。即在充电接口21与第一通信接口22在外观上为同一个物理接口,这样在对电池的充电过程中,只需要将电池与一个接口进行连接,就可以实现充电和传输电池的状态数据的功能,简化了充电系统的外观,也方便了用户的操作。
可选地,所述状态数据包括以下至少一项:所述电池的电压、所述电池的电流、所述电池的电量、所述电池的温度。
本实施例的充电系统,可以用于执行上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图3为本发明另一实施例提供的充电系统的结构示意图,如图3所示,本实施例的充电系统20在图2所示实施例的基础上,还可以包括:第二通信接口26;所述第二通信接口26用于与外部装置通讯连接,所述第二通信接口26与所述控制器24电连接。
所述控制器24能够通过所述第二通信接口26接收所述外部装置发送的所述读取指令,并根据所述读取指令,能够通过所述第二通信接口26向所述外部装置发送所述存储器中存储的所述状态数据。
所述外部装置能够通过所述第二通信接口接收所述控制器发送的所述存储器存储的所述状态数据,以分析所述电池产生充电故障的原因。
本实施例中,充电系统20设有用于与外部装置通讯连接的第二通信接口26,所述第二通信接口26与所述控制器24电连接,所述外部装置能够通过 所述第二通信接口26获取存储器25中存储的电池的状态数据。控制器24通过第二通信接口26可以向外部装置发送存储器25中存储的电池的状态数据,通过第二通信接口26提高了电池的状态数据的输出效率。而且,外部装置可以利用接收的电池的状态数据对电池在充电过程中产生故障的原因进行分析,分析获得的发生故障的原因精确性更高,而且外部装置还可以利用电池的状态数据对该电池的充电过程进行监控。
图4为本发明一实施例提供的充电装置的结构示意图,如图4所示,本实施例的充电装置40可以包括:壳体41以及充电系统42;其中,所述充电系统42安装在所述壳体41内。
其中,充电系统42可以采用图2或图3所示的充电系统实施例的结构,其对应地,可以执行上述任一方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图5为本发明另一实施例提供的充电装置的结构示意图,如图5所示,本实施例的充电装置40在图4所示实施例的基础上,本实施例的充电装置40还包括电源接口43,所述电源接口43安装在所述壳体41上。
所述电源接口43与所述充电系统42电连接,而且所述电源接口43还用于与充电器连接;所述充电系统42能够通过所述电源接口43获取所述充电器输出的直流电。
本实施例中,在本实施例的充电装置40对电池进行充电时,充电装置40中的电源接口43与充电器连接,其中,充电器输出直流电,例如:充电器将外部电源中的交流电转换为直流电并输出。这样,本实施例的充电装置40中的充电系统42(如充电系统42中的充电电路)可以控制充电器输出的直流电对电流进行充电。
本实施例的充电装置40可以用于与充电器匹配使用,来对电池进行充电,并且在对电池进行充电的过程中可以接收电池的状态数据,并及时存储电池的状态数据,存储的电池的状态数据用于分析电池在充电过程中发生故障的原因。
图6为本发明另一实施例提供的充电装置的结构示意图,如图6所示,本实施例的充电装置40在图4所示实施例的基础上,还包括充电器44和电源接口45;所述充电器44安装在所述壳体41内,所述电源接口45安装在 所述壳体41上,所述充电器44分别与所述充电系统42和所述电源接口45电连接。
所述电源接口45,用于连接外部电源。
所述充电器44,用于将外部电源中的交流电转换为直流电。
本实施例的充电装置40中设有充电器44和电源接口45,而且充电器44设于电源接口45与充电系统42之间,在本实施例的充电装置40对电池进行充电时,充电装置40中的电源接口45与外部电源连接,使得充电器44与外部电源电连接,充电器44通过电源接口45将外部电源中的交流电转换为直流电并输出给充电系统42。可选地,本实施例的充电器44可以为可充电的充电器44,即该充电器44可以将外部电源中的交流电转换为直流电并进行存储,然后在充电装置40对电池进行充电时,充电器44再将存储的直流电输出。然后本实施例的充电装置40中的充电系统42(如充电系统42中的充电电路)可以控制充电器44输出的直流电对电流进行充电。
本实施例的充电装置40可以与外部电源配合使用,可用于对电池进行充电,并且在对电池进行充电的过程中可以接收电池的状态数据,并及时存储电池的状态数据,存储的电池的状态数据用于分析电池在充电过程中发生故障的原因。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (14)

  1. 一种充电控制方法,其特征在于,包括:
    对电池进行充电;
    在对所述电池的充电过程中,接收所述电池发送的所述电池的状态数据;
    存储所述电池的状态数据;
    当接收到外部装置发送的读取指令时,根据所述读取指令,向所述外部装置发送存储的所述状态数据。
  2. 根据权利要求1所述的方法,其特征在于,所述存储所述电池的状态数据,包括:
    将所述电池的状态数据存储在存储器中。
  3. 根据权利要求2所述的方法,其特征在于,所述存储器为非易失性存储器。
  4. 根据权利要求3所述的方法,其特征在于,所述非易失性存储器为铁电存储器。
  5. 根据权利要求1-4任意一项所述的方法,其特征在于,所述状态数据包括以下至少一项:所述电池的电压、所述电池的电流、所述电池的电量、所述电池的温度。
  6. 一种充电系统,其特征在于,包括:充电接口、第一通信接口、充电电路、控制器和存储器;所述充电电路与所述充电接口电连接;所述控制器分别与所述第一通信接口和所述存储器电连接;
    所述充电接口,用于连接电池;
    所述第一通信接口,用于连接电池;
    充电电路,用于通过所述充电接口对所述电池进行充电;
    控制器,用于在所述充电电路对所述电池进行充电的过程中,通过所述第一通信接口接收所述电池发送的所述电池的状态数据,并将所述状态数据存储至所述存储器中;
    所述存储器,用于存储所述电池的状态数据;
    所述控制器,还用于在接收外部装置发送的读取指令时,根据所述读取指令,获取所述存储器存储的所述状态数据,并向所述外部装置发送所述状态数据。
  7. 根据权利要求6所述的充电系统,其特征在于,所述存储器为非易失性存储器。
  8. 根据权利要求7所述的充电系统,其特征在于,所述非易失性存储器为铁电存储器。
  9. 根据权利要求6-8任意一项所述的充电系统,其特征在于,所述充电接口和所述第一通信接口集成为一个接口。
  10. 根据权利要求6-9任意一项所述的充电系统,其特征在于,所述充电系统还包括:第二通信接口;所述第二通信接口用于与外部装置通讯连接,所述第二通信接口与所述控制器电连接,
    所述控制器能够通过所述第二通信接口接收所述外部装置发送的所述读取指令,并根据所述读取指令,能够通过所述第二通信接口向所述外部装置发送所述存储器中存储的所述状态数据;
    所述外部装置能够通过所述第二通信接口接收所述控制器发送的所述存储器存储的所述状态数据,以分析所述电池产生充电故障的原因。
  11. 根据权利要求6-10任意一项所述的充电系统,其特征在于,所述状态数据包括以下至少一项:所述电池的电压、所述电池的电流、所述电池的电量、所述电池的温度。
  12. 一种充电装置,其特征在于,包括:壳体以及权利要求6-11任意一项所述的充电系统;
    其中,所述充电系统安装在所述壳体内。
  13. 根据权利要求12所述的充电装置,其特征在于,所述充电装置还包括电源接口,所述电源接口安装在所述壳体上;
    所述电源接口与所述充电系统电连接,而且所述电源接口还用于与充电器连接;
    所述充电系统能够通过所述电源接口获取所述充电器输出的直流电。
  14. 根据权利要求12所述的充电装置,其特征在于,所述充电装置还包括充电器和电源接口;所述充电器安装在所述壳体内,所述电源接口安装在所述壳体上,所述充电器分别与所述充电系统和所述电源接口电连接;
    所述电源接口,用于连接外部电源;
    所述充电器,用于将外部电源中的交流电转换为直流电。
PCT/CN2017/092455 2017-07-11 2017-07-11 充电控制方法、充电系统和充电装置 WO2019010623A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/092455 WO2019010623A1 (zh) 2017-07-11 2017-07-11 充电控制方法、充电系统和充电装置
CN201780017737.6A CN109041585A (zh) 2017-07-11 2017-07-11 充电控制方法、充电系统和充电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/092455 WO2019010623A1 (zh) 2017-07-11 2017-07-11 充电控制方法、充电系统和充电装置

Publications (1)

Publication Number Publication Date
WO2019010623A1 true WO2019010623A1 (zh) 2019-01-17

Family

ID=64629724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092455 WO2019010623A1 (zh) 2017-07-11 2017-07-11 充电控制方法、充电系统和充电装置

Country Status (2)

Country Link
CN (1) CN109041585A (zh)
WO (1) WO2019010623A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036872A (zh) * 2021-03-23 2021-06-25 张成君 显示电量百分比的充电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656424A (zh) * 2008-08-22 2010-02-24 南亚电路板股份有限公司 电池管理系统及方法
CN203850872U (zh) * 2014-04-25 2014-09-24 可牛网络技术(北京)有限公司 充电器
CN105958581A (zh) * 2016-05-31 2016-09-21 零度智控(北京)智能科技有限公司 充电方法、充电装置以及无人机
CN106451627A (zh) * 2016-10-21 2017-02-22 广州极飞科技有限公司 智能电池充电系统及其控制方法、智能电池装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5400333B2 (ja) * 2008-09-24 2014-01-29 パナソニック株式会社 充電器
CN102377207A (zh) * 2010-08-05 2012-03-14 上海鼎研智能科技有限公司 一种带有历史数据记录功能的电池管理系统
KR101297507B1 (ko) * 2012-02-29 2013-08-16 엘에스산전 주식회사 전기 자동차 충전기 및 이의 충전 전류 설정 방법
CN104882940B (zh) * 2015-06-10 2017-11-17 安徽江淮汽车集团股份有限公司 一种充电器下电控制方法及装置
CN205646848U (zh) * 2016-01-11 2016-10-12 顺丰科技有限公司 适配于智能电池的智能充电器
WO2018076301A1 (zh) * 2016-10-28 2018-05-03 深圳市大疆创新科技有限公司 电池的控制方法、系统和电池
CN106451650A (zh) * 2016-11-09 2017-02-22 北京小米移动软件有限公司 充电检测设备及方法
CN106410921A (zh) * 2016-11-29 2017-02-15 珠海市魅族科技有限公司 一种充电监控方法及充电监控装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656424A (zh) * 2008-08-22 2010-02-24 南亚电路板股份有限公司 电池管理系统及方法
CN203850872U (zh) * 2014-04-25 2014-09-24 可牛网络技术(北京)有限公司 充电器
CN105958581A (zh) * 2016-05-31 2016-09-21 零度智控(北京)智能科技有限公司 充电方法、充电装置以及无人机
CN106451627A (zh) * 2016-10-21 2017-02-22 广州极飞科技有限公司 智能电池充电系统及其控制方法、智能电池装置

Also Published As

Publication number Publication date
CN109041585A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
TWI523370B (zh) 用於透過反向區域性資料傳送連接來提供電力之設備及方法
US8706448B2 (en) Wireless field device with removable power source
US8138722B2 (en) Activating an information handling system battery from a ship mode
US8450979B2 (en) Power adapter with internal battery
US9728999B2 (en) Wirelessly charging a second device from a first device
US9800075B2 (en) Smart charging cable and method for operating a portable electronic device
CN106575879A (zh) 通过数字反馈进行快速电池充电
TWI630486B (zh) 充電方法、移動終端和充電裝置
CN111602311A (zh) 发送无线充电停止原因的电子装置和方法
JP2017507638A (ja) 電源アダプター、端末及び充電回路のインピーダンス異常の処理方法
US20160181843A1 (en) Power supply terminal, and charging control method and apparatus
WO2018076301A1 (zh) 电池的控制方法、系统和电池
CN104617643A (zh) 充电方法、待充电设备、供电设备及充电系统
TWI704744B (zh) 使用移動機器人電池的電源橋接裝置
WO2019010623A1 (zh) 充电控制方法、充电系统和充电装置
WO2019023874A1 (zh) 电池充电控制方法、充电设备、用户终端设备及系统
US20230202339A1 (en) Methods, devices, and systems for submetering of an electric vehicle (ev) charging session
WO2021175212A1 (zh) 电池充电曲线学习装置以及充电器
JP6356816B2 (ja) 電力を伝送する装置および方法
CN104160579A (zh) 基于存储的电池特性对电池充电
WO2019084812A1 (zh) 适配器、充电线缆、电子设备以及充电系统
WO2016141814A1 (zh) 电源适配器
CN106130172A (zh) 电池供电设备应急备用电源接入保护系统
JP2013009468A (ja) 充電装置及び充電装置の制御方法
CN207853937U (zh) 一种基于云服务器的数控机床辅助设备控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917604

Country of ref document: EP

Kind code of ref document: A1