WO2019009428A1 - Implant and method for manufacturing same - Google Patents

Implant and method for manufacturing same Download PDF

Info

Publication number
WO2019009428A1
WO2019009428A1 PCT/JP2018/025800 JP2018025800W WO2019009428A1 WO 2019009428 A1 WO2019009428 A1 WO 2019009428A1 JP 2018025800 W JP2018025800 W JP 2018025800W WO 2019009428 A1 WO2019009428 A1 WO 2019009428A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant
laser light
irradiating
laser
irradiation
Prior art date
Application number
PCT/JP2018/025800
Other languages
French (fr)
Japanese (ja)
Inventor
板倉雅彦
清水潔
宇野孝之
片山昌広
Original Assignee
ダイセルポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018115873A external-priority patent/JP2019136472A/en
Application filed by ダイセルポリマー株式会社 filed Critical ダイセルポリマー株式会社
Priority to US16/623,906 priority Critical patent/US20210145553A1/en
Priority to EP18827933.5A priority patent/EP3649986B1/en
Priority to CN201880030274.1A priority patent/CN110603012A/en
Publication of WO2019009428A1 publication Critical patent/WO2019009428A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/84Preparations for artificial teeth, for filling teeth or for capping teeth comprising metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges

Definitions

  • the present invention relates to an implant suitable for bonding to a living tissue and a method of manufacturing the same.
  • An implant made of titanium or a titanium alloy is known as an implant for bonding to a living tissue.
  • the implant is required to have both connectivity and strength with bones, teeth, etc. in order to be present in the living body by being combined with living tissues such as bones, teeth etc. From such viewpoints, as described in the following document, in addition, an implant having a porous structure at a binding site with a living tissue is known.
  • Patent No. 5920030 is an invention of a porous implant material, which uses a porous metal body having a three-dimensional network structure in which a plurality of pores communicate with one another, which is formed by a continuous skeleton, and a metal powder And producing a foamed slurry containing the foaming agent and the foaming agent (Claim 1, paragraph 0013).
  • Japanese Patent Application Publication No. 2009-254581 is an invention of an implant for a living body, including a surface portion which is a bonding portion to a living tissue, and a core portion inside the surface portion, and the surface portion is formed with pores. It is described that the porous sintered body is made of metal (Claim 1).
  • JP-A-2014-161520 is an invention of an implant and a method of manufacturing the same, and it is described that a titanium base material is subjected to shot blasting and electrolytic treatment (claim 1).
  • Japanese Patent No. 5326164 is an invention of a biomaterial and a method for producing the same, and it is described that a biomaterial having a porous structure is manufactured using a molded body made of a thin plate laminate having a porous structure as a mold ( Claim 1, paragraph numbers 0025, 0026).
  • Non-patent document "Creating bone tissue compatible implant with nano pulse laser” (Masatani Mizutani, General Research Development Grant AF-2011212, Tohoku University graduate School of Engineering), bone tissue with nano pulse laser Techniques for creating compatible implants are described. Summary of the invention
  • An object of the present invention is to provide an implant that can be used in living tissue and a method of manufacturing the same.
  • the present invention relates, in one embodiment, to an implant used for bonding to a living tissue including bone or teeth, comprising a metal selected from titanium or titanium alloy, cobalt chromium alloy, tantalum,
  • a surface portion of a portion connected to a living tissue including a bone or a tooth has a porous structure.
  • the porous structure is formed in the thickness direction, a trunk hole having an opening on the coupling surface side, and an open hole comprising branch holes formed in a direction different from the inner wall surface of the trunk hole from the trunk hole; It has an internal space formed in the thickness direction and not having an opening on the side of the coupling surface, Furthermore, the present invention provides an implant comprising a tunnel connection path connecting the open hole and the internal space, and a tunnel connection path connecting the open holes.
  • the present invention provides, in another embodiment, a method for producing the above implant, which comprises the step of forming a porous structure in the surface layer of the implant,
  • the step of forming a porous structure in the surface layer of the implant is a step of irradiating a surface including the surface layer with a laser beam
  • a method of manufacturing an implant wherein the step of irradiating the laser light is a step of continuously irradiating the laser light so as to be a straight line, a curved line, or a combination of a straight line and a curved line.
  • the present invention provides, in yet another embodiment, a method for producing the above implant, which comprises the step of forming a porous structure in the surface layer of the implant,
  • the step of forming a porous structure in the surface layer of the implant is a step of irradiating a surface including the surface layer with a laser beam
  • the step of irradiating the laser light is a step of irradiating the laser light so that the irradiated portion and the non-irradiated portion are alternately generated when irradiating the laser light to be a straight line, a curved line or a combination of a straight line and a curved line.
  • a method of manufacturing an implant is provided.
  • the implant of the present invention has good connectivity with living tissue including bone or teeth due to the presence of the porous structure in the surface layer.
  • FIG. 1 (a), (b) is sectional drawing which shows the example of the porous structure of the implant surface layer part of this invention.
  • 2 (a) to 2 (c) are cross-sectional views showing an example of the porous structure of the surface layer portion of the implant of the present invention different from FIG.
  • FIG. 3 is explanatory drawing of one Embodiment of the laser beam irradiation process in the manufacturing method of the implant of this invention.
  • FIG. 4 is explanatory drawing of one Embodiment of the laser beam irradiation process in the manufacturing method of the implant of this invention.
  • FIG. 5 is a SEM photograph (129 ⁇ ) of a plate surface of pure titanium after laser light irradiation in Example 1.
  • FIG. 6 is a SEM photograph (137 ⁇ ) of a plate surface of pure titanium after laser light irradiation in Example 2.
  • FIG. 7 is a SEM photograph (110 times) of the surface of a plate of 64 titanium after laser light irradiation in Example 3.
  • FIG. 8 is a SEM photograph of the plate surface of pure titanium after laser light irradiation in Example 5.
  • FIG. 9 is a SEM photograph of the plate surface of pure titanium after laser light irradiation in Example 7.
  • FIG. 10 is a SEM photograph of the plate surface of pure titanium after laser light irradiation in Example 8.
  • FIG. 11 is a SEM photograph of the surface of a plate of 64 titanium after laser light irradiation in Example 9.
  • FIG. 12 is a SEM photograph of the plate surface of 64 titanium after laser light irradiation in Example 11.
  • FIG. 13 is a SEM photograph of the plate surface of 64 titanium after laser light irradiation in Example 12.
  • FIG. 14 is an X-ray CT scan photograph of the plate surface of 64 titanium after laser light irradiation in Example 13, (a) is a cross-sectional photograph parallel to the scanning direction of the laser light, (b) is the laser light It is a cross-sectional photograph perpendicular to the scanning direction.
  • FIG. 15 is an SEM photograph of a tantalum plate surface after laser light irradiation in Example 14.
  • FIG. 16 is an SEM photograph of a tantalum plate surface after laser light irradiation in Example 15.
  • FIG. 15 is an SEM photograph of a tantalum plate surface after laser light irradiation in Example 14.
  • FIG. 17 is a SEM photograph of the surface of a tantalum plate after laser light irradiation in Example 16.
  • FIG. 18 is an SEM photograph of a tantalum plate surface after laser light irradiation in Example 17.
  • FIG. 19 is an SEM photograph of a tantalum plate surface after laser light irradiation in Example 18.
  • the implant of the present invention is used to connect with living tissue including bone or teeth.
  • Examples of the implant include artificial hip joints (stems, cups), artificial joints such as artificial knee joints, for fracture fixation (plates, screws), artificial tooth roots and the like.
  • the implant of the present invention comprises a metal selected from titanium (pure titanium), a titanium alloy, a cobalt chromium alloy, and tantalum. Titanium alloys and cobalt chromium alloys are used as medical (including dental) titanium alloys and cobalt chromium alloys.
  • a cobalt chromium alloy Ichrome (manufactured by IDS Co., Ltd.), Premier Cast Hard (manufactured by Denken High Dental Co., Ltd.), or the like can be used.
  • the implant is one in which the surface layer of the portion to be joined with a living tissue including bone or teeth has a porous structure.
  • the porous structure includes a trunk hole having an opening on the side of the joint surface and an open hole formed in the thickness direction, and a branch hole formed in a direction different from the inner wall surface of the trunk hole to the trunk hole; It has an internal space formed in the thickness direction and not having an opening on the side of the joint surface, and further connects a tunnel connection path connecting the open hole and the internal space with the open hole. It has a tunnel connection.
  • the porous structure of the surface layer portion of the implant is, for example, a porous structure as shown in FIGS. 1 (a) and 1 (b) and FIGS. 2 (a) to 2 (c). It is the same as the porous structure shown.
  • the surface layer portion of the implant 10 has an open hole 30 having an opening 31 on the side of the joint surface 12 with the living tissue.
  • the open hole 30 includes a trunk hole 32 having an opening 31 formed in the thickness direction, and a branch hole 33 formed in a direction different from the inner wall surface of the trunk hole 32 from the trunk hole 32.
  • One or more branch holes 33 may be formed.
  • the surface layer portion of the implant 10 has an internal space 40 without an opening on the side of the joint surface 12 with the living tissue.
  • the interior space 40 is connected to the open hole 30 by a tunnel connection 50.
  • the surface layer portion of the implant 10 may have an open space 45 in which a plurality of open holes 30 are integrated, and the open space 45 is formed by integrating the open hole 30 and the internal space 40. It may be done.
  • One open space 45 has a larger internal volume than one open hole 30.
  • many open holes 30 may be one and the groove-shaped open space 45 may be formed.
  • the open hole 30 and the internal space 40 may be connected by the tunnel connection path 50 as shown in FIGS. 2A and 2B, and may be open as shown in FIG. 2C.
  • the holes 30 may be connected by the tunnel connection path 50.
  • the inner spaces 40 as shown in FIG. 2A may be connected by a tunnel connection line 50.
  • the surface layer portion having the porous structure of the implant preferably has a depth ranging from 10 to 1000 ⁇ m from the surface to the depth of the open hole.
  • the porous structure formed in the surface layer of the implant of the present invention is a complex structure as shown in FIG. 1 and FIG. 2, so that the complex porous structure acts to enhance the bonding between bone and implant. It is expected to do.
  • a method of manufacturing the implant of the present invention will be described.
  • a surface including the surface layer portion is irradiated with laser light to form a porous structure.
  • the first laser beam irradiation method is known, and the patent 5774246, the patent 5701414, the patent 5860190, the patent 5890054, the patent 5959689, the Japanese patent 2016-43413, a special It can carry out similarly to the continuous irradiation method of the laser beam described in the open 2016-36884 gazette and Unexamined-Japanese-Patent No. 2016-44337 gazette.
  • the energy density needs to be 1 MW / cm 2 or more.
  • the energy density at the time of laser beam irradiation can be determined from the laser beam output (W) and the laser beam (spot area (cm 2 ) ( ⁇ ⁇ [spot diameter / 2] 2 ). density is preferably 2 ⁇ 1000MW / cm 2, more preferably 10 ⁇ 800MW / cm 2, 10 ⁇ 700MW / cm 2 is more preferred.
  • energy density, or increase or decrease the output of the laser beam, the laser beam spot diameter Can be adjusted to fall within the above range by increasing or decreasing.
  • the output of the laser light is preferably 4 to 4000 W, more preferably 50 to 2500 W, still more preferably 150 to 2000 W, and still more preferably 150 to 1000 W. It is preferable to do.
  • the beam diameter is preferably 5 to 80 ⁇ m, but it is preferable to adjust it to the above-mentioned energy density in combination with the output of the laser beam within the above-mentioned range.
  • the laser beam irradiation rate is preferably 2,000 to 20,000 mm / sec, more preferably 2,000 to 18,000 mm / sec, and still more preferably 3,000 to 15,000 mm / sec.
  • the wavelength is preferably 500 to 11,000 nm.
  • the defocusing distance is preferably ⁇ 5 to +5 mm, more preferably ⁇ 1 to +1 mm, and still more preferably ⁇ 0.5 to +0.1 mm.
  • the defocusing distance may be a laser irradiation with a constant set value, or may be a laser irradiation while changing the defocusing distance. For example, at the time of laser irradiation, the defocusing distance may be reduced, increased, or periodically increased or decreased.
  • the number of repetitions (the total number of laser beam irradiations for forming one hole) is preferably 1 to 50 times, more preferably 5 to 30 times, and still more preferably 5 to 20 times.
  • the irradiation so as to alternately generate the irradiated portion and the non-irradiated portion of the laser light includes an embodiment in which the irradiation is performed as shown in FIG.
  • FIG. 3 shows a state where irradiation is performed so that non-irradiated portions 102 of the laser light alternately occur between the irradiated portions 101 of the laser light and the irradiated portions 101 of the laser light adjacent to each other to form a dotted line as a whole. It shows. At this time, the same portion can be repeatedly irradiated to form one dotted line in appearance as shown in FIG. The number of repetitions can be, for example, 1 to 20 times.
  • the irradiated part of the laser light may be the same, or by making the irradiated part of the laser light different (shifting the irradiated part of the laser light), the entire metal piece is roughened You may When the same portion of the laser light is irradiated and irradiated a plurality of times, it is irradiated like a dotted line, but the irradiated portion of the laser light is shifted, that is, the portion of the laser light is not irradiated at first. When the irradiation portions are repeatedly shifted and irradiated so as to overlap, even when the irradiation is performed in a dotted line, the irradiation is finally performed in a solid line state.
  • the metal compact is continuously irradiated with laser light, the temperature of the irradiated surface rises, and there is a possibility that deformation such as warpage may occur in a compact with a small thickness, so it is necessary to take measures such as cooling. May be However, as shown in FIG. 3, when the laser irradiation is performed in a dotted line shape, the irradiated portion 101 of the laser light and the non-irradiated portion 102 of the laser light are alternately generated, and the non-irradiated portion 102 of the laser light is cooled. When the irradiation of the laser beam is continued, deformation such as warpage is less likely to occur even with a compact having a small thickness, which is preferable.
  • the same effect can be obtained because the laser beam is irradiated in a dotted line shape.
  • the laser light irradiation method is a method of irradiating the surface of the implant 110 in one direction as shown in FIG. 4 (a) or a method of irradiating the surface of the implant 110 from both directions as shown by a dotted line in FIG. It can be used.
  • a laser beam as shown to FIG. 4 (a) and FIG. 4 (b)
  • it can also be irradiated so that it may become a continuous line by shifting and irradiating the irradiation part of a laser beam as mentioned above.
  • the method of irradiating so that the dotted line irradiation part of a laser beam may cross may be used.
  • the crossing angle at this time is not particularly limited, but can be, for example, in the range of 45 ° to 90 °, and irradiation can also be performed so that the solid lines cross in the above-described manner.
  • irradiation may be alternately performed in the cross direction, or irradiation may be performed in the cross direction a plurality of times after irradiation in only one direction a plurality of times.
  • the same number may be irradiated, or different numbers may be irradiated.
  • the distance b1 between the dotted lines after irradiation can be adjusted according to the area to be irradiated of the metal molded body, etc., but can be, for example, in the range of 0.01 to 5 mm.
  • Adjust the length (L1) of the irradiated part 101 of the laser light and the length (L2) of the non-irradiated part 102 of the laser light shown in FIG. 3 to be in the range of L1 / L2 1/9 to 9/1. can do.
  • the length (L1) of the laser beam irradiated portion 101 is preferably 0.05 mm or more in order to roughen to a complicated porous structure, 0.1 to 10 mm is more preferable, and 0.3 to 7 mm Is more preferred.
  • the second laser beam irradiation method is Method of irradiating a laser beam so that the irradiated part and the non-irradiated part are alternately generated by using a combination of a galvano mirror and a galvano controller and pulsing the laser light continuously oscillated from the laser oscillator by the galvano controller Or, using a fiber laser device in which a direct modulation type modulator that directly converts laser drive current is connected to a laser power source, and using a method of irradiating a laser beam so that an irradiated part and an unirradiated part are alternately generated. It can be implemented.
  • a pulse wave laser by pulse excitation is generally called a normal pulse.
  • the second laser beam irradiation method is different from the continuous wave laser used in the first laser irradiation method, but the energy density, laser beam irradiation speed, laser beam output, wavelength, beam diameter (spot The diameter) and the defocusing distance can be implemented in the same manner as the first laser irradiation method.
  • the duty ratio is adjusted and the irradiation is performed.
  • the duty ratio corresponds to L1 / (L1 + L2) when using L1 (length of irradiated portion of laser beam) and L2 (length of non-irradiated portion of laser beam) shown in FIG. It can be selected from the range of 10 to 90%.
  • the length (L1) of the laser beam irradiated portion 101 is preferably 0.05 mm or more in order to roughen to a complicated porous structure, preferably 0.1 to 10 mm, and 0.3 to 7 mm. More preferable.
  • Lasers used in the first laser irradiation method and the second laser irradiation method may be known ones, for example, YVO 4 laser, fiber laser (single mode fiber laser, multi mode fiber laser), excimer laser, Carbon dioxide gas laser, ultraviolet laser, YAG laser, semiconductor laser, glass laser, ruby laser, He-Ne laser, nitrogen laser, chelate laser, dye laser can be used.
  • YVO 4 laser fiber laser (single mode fiber laser, multi mode fiber laser), excimer laser, Carbon dioxide gas laser, ultraviolet laser, YAG laser, semiconductor laser, glass laser, ruby laser, He-Ne laser, nitrogen laser, chelate laser, dye laser can be used.
  • the metal forming body is subjected to the laser so as to satisfy the above energy density and irradiation speed.
  • the surface of the metal compact melts and partially evaporates, thereby forming a porous structure of complex structure (FIGS. 1 and 2).
  • thermo conductivity is 100 W / m ⁇ k or more
  • a non-irradiated surface of a laser beam of an implant and titanium or titanium alloy constituting the implant, cobalt chromium alloy, tantalum A method of contacting with a substrate (for example, a glass plate) made of a material having a thermal conductivity smaller than that of the metal selected from the above can be applied.
  • JP-A-2016-78090 can be applied to the method (i), and the method described in JP-A-2016-124024 can be applied to the method (ii).
  • the method (i) can suppress the temperature rise by radiating the heat generated when the laser beam is irradiated to the implant made of a metal selected from titanium or titanium alloy, cobalt chromium alloy, and tantalum.
  • the method (ii) can suppress the heat radiation generated when the laser beam is irradiated to the implant made of a metal selected from titanium or titanium alloy, cobalt chromium alloy, and tantalum.
  • the method (i) can suppress changes in pore size, depth and shape
  • the method (ii) can suppress changes in pore size, depth and shape. Can be promoted.
  • the size, depth and shape of the hole can be adjusted by selectively using the method (i) and the method (ii).
  • the manufacturing method of this invention When irradiating a laser beam by the manufacturing method of this invention, it can irradiate, supplying the assist gas chosen from air, oxygen, nitrogen, argon, and helium.
  • the assist gas chosen from air, oxygen, nitrogen, argon, and helium.
  • control of the depth, size and orientation (the direction of the opening of the hole) of the hole can be assisted, and further, the formation of carbide can be suppressed,
  • the surface quality can be controlled. For example, selection of argon gas can prevent surface oxidation, selection of oxygen can promote surface oxidation, and selection of nitrogen gas can prevent oxidation and improve surface hardness.
  • the hole orientation can be adjusted by adjusting all of the following requirements (a) to (g) or requirements (a) to (h): It is preferable to control the orientation of the openings of the holes, the size of the holes and the depth of the holes.
  • (A) Irradiation Direction and Angle of Laser Light By fixing the irradiation direction of the laser light to a specific direction and a specific angle, the formed holes can be oriented.
  • the irradiation angle is preferably 45 to 90 degrees with respect to the laser beam irradiation surface (implant surface).
  • the laser beam irradiation rate is preferably 2,000 to 20,000 mm / sec, more preferably 2,000 to 18,000 mm / sec, and 2,000 to 15,000 mm / sec, 3 It is more preferably 1,000 to 15,000 mm / sec.
  • the energy density is preferably 1 MW / cm 2 or more.
  • the energy density at the time of laser beam irradiation can be determined from the laser beam output (W) and the laser beam (spot area (cm 2 ) ( ⁇ ⁇ [spot diameter / 2] 2 ). density is more preferably 2 ⁇ 1000MW / cm 2, more preferably 10 ⁇ 800MW / cm 2, more preferably 50 ⁇ 700MW / cm 2, more preferably 100 ⁇ 500MW / cm 2, the 100 ⁇ 300MW / cm 2 More preferably, the higher the energy density, the deeper and the larger the holes.
  • the number of repetitions (the number of irradiations of the total laser light for forming one line) is preferably 1 to 40 times, more preferably 5 to 30 times, Twenty times is even more preferred.
  • the holes (grooves) formed along the line become deeper and larger as the number of repetitions increases, and the holes (grooves) formed along the lines become shallower as the number of repetitions decreases. It becomes smaller.
  • the focusing distance is preferably ⁇ 5 to +5 mm, more preferably ⁇ 1 to +1 mm, and still more preferably ⁇ 0.5 to +0.1 mm.
  • the defocusing distance may be a laser irradiation with a constant set value, or may be a laser irradiation while changing the defocusing distance. For example, at the time of laser irradiation, in addition to decreasing or increasing the defocusing distance, it may be increased or decreased periodically.
  • the defocusing distance is negative (-) (when focused on the inside of the surface of the metal molding), the hole is deep and large.
  • the defocus distance is preferably -1 to +0.5 mm, more preferably -0.5 to -0.05 mm, and still more preferably -0.3 to -0.05 mm.
  • the relationship between the thermal conductivity of the implant and the substrate on which the implant is placed when irradiating laser light As described above, the method of placing the implant on a substrate having a high thermal conductivity and the method of placing the implant on a substrate having a low thermal conductivity
  • the hole structure can be adjusted by selecting.
  • the thermal conductivity relationship may be such that the thermal conductivity of the implant ⁇ the thermal conductivity of the substrate.
  • the line interval of laser light is the interval of b1 in FIG. 4 (a) or (b).
  • the line interval of the laser beam is preferably 0.01 to 3 mm, more preferably 0.01 to 1 mm, still more preferably 0.03 to 0.5 mm, and still more preferably 0.03 to 0.1 mm.
  • the line spacing may be the same for all line spacings, or may be different for some or all of the line spacings.
  • the line spacing is narrow, the adjacent lines are also thermally affected, so the holes become large, the shape of the holes becomes complicated, and the depth of the holes tends to be deep, but the thermal effects become too large In some cases, an appropriate hole shape may not be formed. If the line spacing is large, the holes will be smaller, the shape of the holes will not be complicated and the holes will tend to be less deep, but the processing speed can be increased.
  • Duty ratio is preferably 10 to 90%, more preferably 30 to 80%.
  • the output of the laser beam is preferably 4 to 4000 W, more preferably 50 to 2000 W, further preferably 150 to 1000 W, still more preferably 150 to 500 W, and still more preferably 150 to 300 W. If the other laser light irradiation conditions are the same, the larger the output, the deeper and the larger the hole, and the smaller the output, the shallower and the smaller the hole.
  • the wavelength is preferably 500 to 11,000 nm.
  • Example 3 Using a laser apparatus described below, an area of 20 mm ⁇ 6 mm was continuously irradiated with laser light under the conditions shown in Table 1 with respect to a plate of 64 titanium (30 mm long, 30 mm wide, 1.5 mm thick).
  • the magnitude relationship of the thermal conductivity (100 ° C.) of pure titanium, 64 Ti, steel plate, glass plate and copper plate is copper> steel plate> pure titanium> 64 Ti> glass in descending order.
  • FIG. 5 Example 1
  • FIG. 6 Example 2
  • FIG. 7 Example 3
  • the living tissue including bones and teeth seems to be most easily intruded into the inside of the hole in FIG.
  • the more complex structure of the pore structure as shown in FIGS. 5 and 7, may eventually increase the bonding strength between the bone (tooth) and the implant.
  • Examples 4 to 8 Using the same laser apparatus as in Examples 1 and 2, laser light is continuously applied to an area of 5 mm ⁇ 10 mm under the conditions shown in Table 2 for a plate of pure titanium (60 mm long, 10 mm wide, 2 mm thick) Irradiated.
  • Example 8 irradiation was performed in the longitudinal direction of the pure titanium plate and in the direction orthogonal thereto.
  • the number of lines in the length direction was 63
  • the number of lines in the orthogonal direction was 125. Irradiation was performed in each direction. Specifically, 63 line irradiations were performed 10 times at a line interval of 0.08 mm in the length direction. After that, 125 line irradiations were performed 10 times at a line interval of 0.08 mm in the orthogonal direction.
  • FIG. 8 The surface photograph (SEM photograph) of the plate of pure titanium after laser light irradiation is shown in FIG. 8 (Example 5), FIG. 9 (Example 7), and FIG. 10 (Example 8).
  • Examples 9 to 13 Using the same laser apparatus as in Examples 1 and 2, laser light is continuously applied to an area of 5 mm long ⁇ 10 mm wide under the conditions shown in Table 3 with respect to a plate of 64 titanium (90 mm long, 10 mm wide, 2 mm thick) Irradiated.
  • FIG. 11 The surface photograph (SEM photograph) of the plate of 64 titanium after the laser light irradiation is shown in FIG. 11 (Example 9), FIG. 12 (Example 11), and FIG. 13 (Example 12).
  • FIG. 14 (a) (a cross-sectional photograph parallel to the scanning direction of the laser beam), FIG. Shown in the cross-sectional photograph perpendicular to the direction).
  • the maximum depth of the hole determined from the X-ray CT scan was 380 ⁇ m.
  • Test Example 1 Pure titanium plate (not irradiated with laser light), Pure titanium plate after laser light irradiation in Examples 4 to 6, 64 titanium plate (not irradiated with laser light), 64 titanium after laser light irradiation in Examples 9 to 11 Composition analysis of the plate was performed by SEM-EXD. The results are shown in Table 4.
  • Examples 14 to 18 Using a laser apparatus described below, a tantalum plate (50 mm long, 50 mm wide, 1.5 mm thick) was continuously irradiated with laser light in the area of 5 mm long ⁇ 10 mm wide under the conditions shown in Table 5. Assist gas was not used.
  • the implant of the present invention can be used as an artificial hip joint (stem, cup), an artificial joint such as an artificial knee joint, for fracture fixation (plate, screw), an artificial tooth root and the like.

Abstract

[Problem] To provide a medical implant of good biocompatibility. [Solution] Provided is an implant used for joining to biological tissue, including bone and teeth, the implant being made of a metal selected from titanium or titanium alloy, cobalt chromium alloy, and tantalum. A surface layer of the part of the implant that is joined to biological tissue, including bone and teeth, has a porous structure. The porous structure comprises a trunk hole that is formed in the through-thickness direction and has an opening on the joining face side, open holes constituted by branch holes formed extending from inner walls of the trunk hole in different directions with respect to the trunk hole, and an interior space that is formed in the through-thickness direction and does not comprise an opening on the joining face side, as well as tunnel connecting paths that connect the open holes and the interior space, and a tunnel connecting path that connects the open holes.

Description

インプラントとその製造方法Implant and its manufacturing method
 本発明は、生体組織と結合させるために好適なインプラントとその製造方法に関する。 The present invention relates to an implant suitable for bonding to a living tissue and a method of manufacturing the same.
 生体組織と結合させるためのインプラントとして、チタンまたはチタン合金製のインプラントが知られている。インプラントは骨や歯などの生体組織と結合させて生体内に存在させるため、骨や歯などとの結合性と強度の両方が要求されており、このような観点から、下記文献に記載のように、生体組織との結合部位を多孔構造にしたインプラントが知られている。 An implant made of titanium or a titanium alloy is known as an implant for bonding to a living tissue. The implant is required to have both connectivity and strength with bones, teeth, etc. in order to be present in the living body by being combined with living tissues such as bones, teeth etc. From such viewpoints, as described in the following document, In addition, an implant having a porous structure at a binding site with a living tissue is known.
 特許第5920030号公報は、多孔質インプラント素材の発明であり、連続した骨格により形成される、複数の気孔が連通した三次元網目状構造を有する多孔質金属体を使用するものであり、金属粉末と発泡剤を含有する発泡スラリーを成形して、発泡および焼結させて製造することが記載されている(請求項1、段落番号0013)。 Patent No. 5920030 is an invention of a porous implant material, which uses a porous metal body having a three-dimensional network structure in which a plurality of pores communicate with one another, which is formed by a continuous skeleton, and a metal powder And producing a foamed slurry containing the foaming agent and the foaming agent (Claim 1, paragraph 0013).
 特開2009-254581号公報は、生体用インプラントの発明であり、生体組織との接合部位である表面部と、表面部の内部に芯部を備えており、前記表面部は空孔が形成された金属製の多孔質焼結体からなることが記載されている(請求項1)。 Japanese Patent Application Publication No. 2009-254581 is an invention of an implant for a living body, including a surface portion which is a bonding portion to a living tissue, and a core portion inside the surface portion, and the surface portion is formed with pores. It is described that the porous sintered body is made of metal (Claim 1).
 特開2014-161520号公報は、インプラントとその製造方法の発明であり、チタン系基材にショットブラスト加工と電解処理を行うことが記載されている(請求項1)。 JP-A-2014-161520 is an invention of an implant and a method of manufacturing the same, and it is described that a titanium base material is subjected to shot blasting and electrolytic treatment (claim 1).
 特許第5326164号公報は、生体材料とその作製方法の発明であり、多孔構造の薄板積層体からなる成形体を鋳型として使用して、多孔構造の生体材料を製造することが記載されている(請求項1、段落番号0025、0026)。 Japanese Patent No. 5326164 is an invention of a biomaterial and a method for producing the same, and it is described that a biomaterial having a porous structure is manufactured using a molded body made of a thin plate laminate having a porous structure as a mold ( Claim 1, paragraph numbers 0025, 0026).
 非特許文献である「ナノパルスレーザによる骨組織適合型インプラントの創製」(東北大学大学院工学研究科准教授 水谷正義,平成23年度一般研究開発助成AF-2011212)には、ナノパルスレーザによる骨組織適合型インプラントの創製の技術が記載されている。
発明の概要
Non-patent document "Creating bone tissue compatible implant with nano pulse laser" (Masatani Mizutani, General Research Development Grant AF-2011212, Tohoku University Graduate School of Engineering), bone tissue with nano pulse laser Techniques for creating compatible implants are described.
Summary of the invention
 本発明は、生体組織内にて使用できるインプラントとその製造方法を提供することを課題とする。 An object of the present invention is to provide an implant that can be used in living tissue and a method of manufacturing the same.
 本発明は、一つの実施形態において、チタンまたはチタン合金、コバルトクロム合金、タンタルから選ばれる金属からなる、骨または歯を含む生体組織と結合させるために使用するインプラントであって、
 前記インプラントが、骨または歯を含む生体組織と結合される部分の表層部が多孔構造を有しているものであり、
 前記多孔構造が、厚さ方向に形成された、前記結合面側に開口部を有する幹孔と、幹孔の内壁面から幹孔とは異なる方向に形成された枝孔からなる開放孔と、
 厚さ方向に形成された、前記結合面側に開口部を有していない内部空間を有しており、
 さらに前記開放孔と前記内部空間を接続するトンネル接続路と前記開放孔同士を接続するトンネル接続路を有しているものである、インプラントを提供する。
The present invention relates, in one embodiment, to an implant used for bonding to a living tissue including bone or teeth, comprising a metal selected from titanium or titanium alloy, cobalt chromium alloy, tantalum,
In the implant, a surface portion of a portion connected to a living tissue including a bone or a tooth has a porous structure.
The porous structure is formed in the thickness direction, a trunk hole having an opening on the coupling surface side, and an open hole comprising branch holes formed in a direction different from the inner wall surface of the trunk hole from the trunk hole;
It has an internal space formed in the thickness direction and not having an opening on the side of the coupling surface,
Furthermore, the present invention provides an implant comprising a tunnel connection path connecting the open hole and the internal space, and a tunnel connection path connecting the open holes.
 また本発明は、別の実施形態において、インプラントの表層部に多孔構造を形成する工程を含む、上記インプラントの製造方法であって、
 前記インプラントの表層部に多孔構造を形成する工程が、前記表層部を含む面にレーザー光を照射する工程であり、
 前記レーザー光を照射する工程が、直線、曲線または直線と曲線の組み合わせになるようにレーザー光を連続照射する工程である、インプラントの製造方法を提供する。
In addition, the present invention provides, in another embodiment, a method for producing the above implant, which comprises the step of forming a porous structure in the surface layer of the implant,
The step of forming a porous structure in the surface layer of the implant is a step of irradiating a surface including the surface layer with a laser beam,
There is provided a method of manufacturing an implant, wherein the step of irradiating the laser light is a step of continuously irradiating the laser light so as to be a straight line, a curved line, or a combination of a straight line and a curved line.
 さらに本発明は、さらに別の実施形態において、インプラントの表層部に多孔構造を形成する工程を含む、上記インプラントの製造方法であって、
 前記インプラントの表層部に多孔構造を形成する工程が、前記表層部を含む面にレーザー光を照射する工程であり、
 前記レーザー光を照射する工程が、直線、曲線または直線と曲線の組み合わせになるようにレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する工程である、インプラントの製造方法を提供する。
Furthermore, the present invention provides, in yet another embodiment, a method for producing the above implant, which comprises the step of forming a porous structure in the surface layer of the implant,
The step of forming a porous structure in the surface layer of the implant is a step of irradiating a surface including the surface layer with a laser beam,
The step of irradiating the laser light is a step of irradiating the laser light so that the irradiated portion and the non-irradiated portion are alternately generated when irradiating the laser light to be a straight line, a curved line or a combination of a straight line and a curved line. Provided is a method of manufacturing an implant.
 本発明のインプラントは、表層部の多孔構造の存在により骨または歯を含む生体組織との結合性が良くなる。 The implant of the present invention has good connectivity with living tissue including bone or teeth due to the presence of the porous structure in the surface layer.
  図1(a)、(b)は、本発明のインプラント表層部の多孔構造の例を示す断面図である。
  図2(a)~(c)は、図1とは異なる本発明のインプラント表層部の多孔構造の例を示す断面図である。
  図3は、本発明のインプラントの製造方法におけるレーザー光照射工程の一実施形態の説明図である。
  図4は、本発明のインプラントの製造方法におけるレーザー光照射工程の一実施形態の説明図である。
  図5は、実施例1にてレーザー光照射後の純チタンの板表面のSEM写真(129倍)である。
  図6は、実施例2にてレーザー光照射後の純チタンの板表面のSEM写真(137倍)である。
  図7は、実施例3にてレーザー光照射後の64チタンの板表面のSEM写真(110倍)である。
  図8は、実施例5にてレーザー光照射後の純チタンの板表面のSEM写真である。
  図9は、実施例7にてレーザー光照射後の純チタンの板表面のSEM写真である。
  図10は、実施例8にてレーザー光照射後の純チタンの板表面のSEM写真である。
  図11は、実施例9にてレーザー光照射後の64チタンの板表面のSEM写真である。
  図12は、実施例11にてレーザー光照射後の64チタンの板表面のSEM写真である。
  図13は、実施例12にてレーザー光照射後の64チタンの板表面のSEM写真である。
  図14は、実施例13にてレーザー光照射後の64チタンの板表面のX線CTスキャン写真であり、(a)はレーザー光の走査方向に平行な断面写真、(b)はレーザー光の走査方向に垂直な断面写真である。
  図15は、実施例14にてレーザー光照射後のタンタルの板表面のSEM写真である。
  図16は、実施例15にてレーザー光照射後のタンタルの板表面のSEM写真である。
  図17は、実施例16にてレーザー光照射後のタンタルの板表面のSEM写真である。
  図18は、実施例17にてレーザー光照射後のタンタルの板表面のSEM写真である。
  図19は、実施例18にてレーザー光照射後のタンタルの板表面のSEM写真である。
Fig.1 (a), (b) is sectional drawing which shows the example of the porous structure of the implant surface layer part of this invention.
2 (a) to 2 (c) are cross-sectional views showing an example of the porous structure of the surface layer portion of the implant of the present invention different from FIG.
FIG. 3: is explanatory drawing of one Embodiment of the laser beam irradiation process in the manufacturing method of the implant of this invention.
FIG. 4 is explanatory drawing of one Embodiment of the laser beam irradiation process in the manufacturing method of the implant of this invention.
FIG. 5 is a SEM photograph (129 ×) of a plate surface of pure titanium after laser light irradiation in Example 1.
FIG. 6 is a SEM photograph (137 ×) of a plate surface of pure titanium after laser light irradiation in Example 2.
FIG. 7 is a SEM photograph (110 times) of the surface of a plate of 64 titanium after laser light irradiation in Example 3.
FIG. 8 is a SEM photograph of the plate surface of pure titanium after laser light irradiation in Example 5.
FIG. 9 is a SEM photograph of the plate surface of pure titanium after laser light irradiation in Example 7.
FIG. 10 is a SEM photograph of the plate surface of pure titanium after laser light irradiation in Example 8.
FIG. 11 is a SEM photograph of the surface of a plate of 64 titanium after laser light irradiation in Example 9.
FIG. 12 is a SEM photograph of the plate surface of 64 titanium after laser light irradiation in Example 11.
FIG. 13 is a SEM photograph of the plate surface of 64 titanium after laser light irradiation in Example 12.
FIG. 14 is an X-ray CT scan photograph of the plate surface of 64 titanium after laser light irradiation in Example 13, (a) is a cross-sectional photograph parallel to the scanning direction of the laser light, (b) is the laser light It is a cross-sectional photograph perpendicular to the scanning direction.
FIG. 15 is an SEM photograph of a tantalum plate surface after laser light irradiation in Example 14.
FIG. 16 is an SEM photograph of a tantalum plate surface after laser light irradiation in Example 15.
FIG. 17 is a SEM photograph of the surface of a tantalum plate after laser light irradiation in Example 16.
FIG. 18 is an SEM photograph of a tantalum plate surface after laser light irradiation in Example 17.
FIG. 19 is an SEM photograph of a tantalum plate surface after laser light irradiation in Example 18.
 <インプラント>
 本発明のインプラントは、骨または歯を含む生体組織と結合させるために使用するものである。インプラントとしては、人工股関節(ステム、カップ)、人工膝関節などの人工関節、骨折固定用(プレート、スクリュー)、人工歯根などを挙げることができる。
<Implant>
The implant of the present invention is used to connect with living tissue including bone or teeth. Examples of the implant include artificial hip joints (stems, cups), artificial joints such as artificial knee joints, for fracture fixation (plates, screws), artificial tooth roots and the like.
 本発明のインプラントは、チタン(純チタン)、チタン合金、コバルトクロム合金、タンタルから選ばれる金属からなるものである。チタン合金、コバルトクロム合金は、医療用(歯科用を含む)チタン合金、コバルトクロム合金として使用されているものである。例えば、コバルトクロム合金としては、アイクローム(株式会社アイディエス社製)、プレミアキャストハード(デンケン・ハイデンタル株式会社社製)などを使用することができる。 The implant of the present invention comprises a metal selected from titanium (pure titanium), a titanium alloy, a cobalt chromium alloy, and tantalum. Titanium alloys and cobalt chromium alloys are used as medical (including dental) titanium alloys and cobalt chromium alloys. For example, as a cobalt chromium alloy, Ichrome (manufactured by IDS Co., Ltd.), Premier Cast Hard (manufactured by Denken High Dental Co., Ltd.), or the like can be used.
 インプラントは、骨または歯を含む生体組織と接合される部分の表層部が多孔構造を有しているものである。 The implant is one in which the surface layer of the portion to be joined with a living tissue including bone or teeth has a porous structure.
 前記多孔構造は、厚さ方向に形成された、前記接合面側に開口部を有する幹孔と、幹孔の内壁面から幹孔とは異なる方向に形成された枝孔からなる開放孔と、厚さ方向に形成された、前記接合面側に開口部を有していない内部空間を有しており、さらに前記開放孔と前記内部空間を接続するトンネル接続路と前記開放孔同士を接続するトンネル接続路を有しているものである。 The porous structure includes a trunk hole having an opening on the side of the joint surface and an open hole formed in the thickness direction, and a branch hole formed in a direction different from the inner wall surface of the trunk hole to the trunk hole; It has an internal space formed in the thickness direction and not having an opening on the side of the joint surface, and further connects a tunnel connection path connecting the open hole and the internal space with the open hole. It has a tunnel connection.
 インプラントの表層部の多孔構造は、例えば、図1(a)、(b)、図2(a)~(c)に示すような多孔構造であり、特許第5860190号の図4、図5に示す多孔構造と同じものである。 The porous structure of the surface layer portion of the implant is, for example, a porous structure as shown in FIGS. 1 (a) and 1 (b) and FIGS. 2 (a) to 2 (c). It is the same as the porous structure shown.
 インプラント10の表層部は、生体組織との結合面12側に開口部31のある開放孔30を有している。開放孔30は、厚さ方向に形成された開口部31を有する幹孔32と、幹孔32の内壁面から幹孔32とは異なる方向に形成された枝孔33からなる。枝孔33は、1本または複数本形成されていてもよい。 The surface layer portion of the implant 10 has an open hole 30 having an opening 31 on the side of the joint surface 12 with the living tissue. The open hole 30 includes a trunk hole 32 having an opening 31 formed in the thickness direction, and a branch hole 33 formed in a direction different from the inner wall surface of the trunk hole 32 from the trunk hole 32. One or more branch holes 33 may be formed.
 またインプラント10の表層部は、生体組織との結合面12側に開口部のない内部空間40を有している。内部空間40は、トンネル接続路50により開放孔30と接続されている。 Further, the surface layer portion of the implant 10 has an internal space 40 without an opening on the side of the joint surface 12 with the living tissue. The interior space 40 is connected to the open hole 30 by a tunnel connection 50.
 またインプラント10の表層部は、複数の開放孔30が一つになった開放空間45を有していてもよいし、開放空間45は、開放孔30と内部空間40が一つになって形成されたものでもよい。一つの開放空間45は、一つの開放孔30よりも内容積の大きなものである。なお、多数の開放孔30が一つになって溝状の開放空間45が形成されていてもよい。 In addition, the surface layer portion of the implant 10 may have an open space 45 in which a plurality of open holes 30 are integrated, and the open space 45 is formed by integrating the open hole 30 and the internal space 40. It may be done. One open space 45 has a larger internal volume than one open hole 30. In addition, many open holes 30 may be one and the groove-shaped open space 45 may be formed.
 また図示していないが、図2(a)、(b)に示すような開放孔30と内部空間40がトンネル接続路50で接続されたものでもよく、図2(c)に示すように開放孔30同士がトンネル接続路50で接続されているものでもよい。 Although not shown, the open hole 30 and the internal space 40 may be connected by the tunnel connection path 50 as shown in FIGS. 2A and 2B, and may be open as shown in FIG. 2C. The holes 30 may be connected by the tunnel connection path 50.
 また図2(a)に示すような内部空間40同士がトンネル接続路50で接続されていてもよい。 Further, the inner spaces 40 as shown in FIG. 2A may be connected by a tunnel connection line 50.
 インプラントの多孔構造を有している表層部は、表面から開放孔の深さまでが10~1000μmの深さ範囲のものであることが好ましい。 The surface layer portion having the porous structure of the implant preferably has a depth ranging from 10 to 1000 μm from the surface to the depth of the open hole.
 本発明の表層部に多孔質構造を有しているインプラントを骨内部に埋設されるように接続したとき、前記非特許文献のP.158の左欄に記載されているとおり、まず体液中に過飽和に含まれているリン酸カルシウム類が析出し、同時に骨芽細胞が空間を感知することで活性化し、骨の成分を骨とインプラントの双方の表面上で生産する。最終的に新生骨が骨-インプラント(インプラント表層部の多孔構造部)間を完全に埋め、堅く密な接着状態が得られることになるものと考えられる。 When an implant having a porous structure is connected to the surface layer portion of the present invention so as to be embedded in a bone, P. P. et al. As described in the left column of 158, calcium phosphates contained in supersaturation are first precipitated in the body fluid, and at the same time, osteoblasts are activated by sensing space, and the bone component is activated by both bone and implant. Produce on the surface of Ultimately, it is considered that the new bone completely fills the space between the bone and the implant (the porous structure in the surface layer of the implant) to obtain a tight and tight adhesion state.
 本発明のインプラントの表層部に形成された多孔構造は、図1、図2に示すように複雑な構造になっているため、前記複雑な多孔構造が骨とインプラントの結合力を高めるように作用することが期待される。 The porous structure formed in the surface layer of the implant of the present invention is a complex structure as shown in FIG. 1 and FIG. 2, so that the complex porous structure acts to enhance the bonding between bone and implant. It is expected to do.
 <インプラントの製造方法>
 次に本発明のインプラントの製造方法を説明する。インプラントの製造時においてインプラントの表層部に多孔構造を形成する工程において、前記表層部を含む面にレーザー光を照射して多孔構造を形成させる。
<Method of manufacturing implant>
Next, a method of manufacturing the implant of the present invention will be described. In the step of forming a porous structure in the surface layer portion of the implant at the time of manufacturing the implant, a surface including the surface layer portion is irradiated with laser light to form a porous structure.
 レーザー光の照射方法としては、
 (I)インプラントの生体組織との結合部分となる表面に対して、直線、曲線または直線と曲線の組み合わせになるようにレーザー光を連続的に照射する方法(第1のレーザー光照射方法)と、
 (II)インプラントの生体組織との結合部分となる表面に対して、直線、曲線または直線と曲線の組み合わせになるようにレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する方法(第2のレーザー光照射方法)のいずれかのレーザー光照射方法を使用することができる。
As a method of irradiating a laser beam,
(I) A method (first laser beam irradiation method) of continuously irradiating a laser beam on a surface to be a part to be connected to a living tissue of an implant so as to be a straight line, a curved line or a combination of a straight line and a curved line ,
(II) When a laser beam is irradiated on the surface of the implant to be connected to the living tissue so as to be a straight line, a curved line or a combination of a straight line and a curved line, the irradiated part and the non-irradiated part of the laser light alternate. It is possible to use any of the laser beam irradiation methods of the irradiation method (second laser light irradiation method) so as to occur.
 <第1のレーザー光照射方法>
 第1のレーザー光照射方法は公知であり、特許第5774246号公報、特許第5701414号公報、特許第5860190号公報、特許第5890054号公報、特許第5959689号、特開2016-43413号公報、特開2016-36884号公報、特開2016-44337号公報に記載されたレーザー光の連続照射方法と同様にして実施することができる。
<First laser beam irradiation method>
The first laser beam irradiation method is known, and the patent 5774246, the patent 5701414, the patent 5860190, the patent 5890054, the patent 5959689, the Japanese patent 2016-43413, a special It can carry out similarly to the continuous irradiation method of the laser beam described in the open 2016-36884 gazette and Unexamined-Japanese-Patent No. 2016-44337 gazette.
 エネルギー密度は1MW/cm以上にする必要がある。レーザー光の照射時のエネルギー密度は、レーザー光の出力(W)と、レーザー光(スポット面積(cm)(π・〔スポット径/2〕)から求められる。レーザー光の照射時のエネルギー密度は、2~1000MW/cmが好ましく、10~800MW/cmがより好ましく、10~700MW/cmがさらに好ましい。エネルギー密度は、レーザー光の出力を増減したり、レーザー光のスポット径を大きくしたり小さくしたりすることで、前記範囲内になるように調整することができる。 The energy density needs to be 1 MW / cm 2 or more. The energy density at the time of laser beam irradiation can be determined from the laser beam output (W) and the laser beam (spot area (cm 2 ) (π · [spot diameter / 2] 2 ). density is preferably 2 ~ 1000MW / cm 2, more preferably 10 ~ 800MW / cm 2, 10 ~ 700MW / cm 2 is more preferred. energy density, or increase or decrease the output of the laser beam, the laser beam spot diameter Can be adjusted to fall within the above range by increasing or decreasing.
 レーザー光の出力は4~4000Wが好ましく、50~2500Wがより好ましく、150~2000Wがさらに好ましく、150~1000Wがさらに好ましいが、前記範囲内でスポット径と合わせて上記エネルギー密度になるように調整することが好ましい。 The output of the laser light is preferably 4 to 4000 W, more preferably 50 to 2500 W, still more preferably 150 to 2000 W, and still more preferably 150 to 1000 W. It is preferable to do.
 ビーム径(スポット径)は、5~80μmが好ましいが、前記範囲内でレーザー光の出力と合わせて上記エネルギー密度になるように調整することが好ましい。 The beam diameter (spot diameter) is preferably 5 to 80 μm, but it is preferable to adjust it to the above-mentioned energy density in combination with the output of the laser beam within the above-mentioned range.
 レーザー光の照射速度は2,000~20,000mm/secが好ましく、2,000~18,000mm/secがより好ましく、3,000~15,000mm/secがさらに好ましい。波長は500~11,000nmが好ましい。 The laser beam irradiation rate is preferably 2,000 to 20,000 mm / sec, more preferably 2,000 to 18,000 mm / sec, and still more preferably 3,000 to 15,000 mm / sec. The wavelength is preferably 500 to 11,000 nm.
 焦点はずし距離は、-5~+5mmが好ましく、-1~+1mmがより好ましく、-0.5~+0.1mmがさらに好ましい。焦点はずし距離は、設定値を一定にしてレーザー照射しても良いし、焦点はずし距離を変化させながらレーザー照射しても良い。例えば、レーザー照射時に、焦点はずし距離を小さくしたり、大きくしたり、さらに周期的に大きくしたり小さくしたりしても良い。 The defocusing distance is preferably −5 to +5 mm, more preferably −1 to +1 mm, and still more preferably −0.5 to +0.1 mm. The defocusing distance may be a laser irradiation with a constant set value, or may be a laser irradiation while changing the defocusing distance. For example, at the time of laser irradiation, the defocusing distance may be reduced, increased, or periodically increased or decreased.
 繰り返し回数(一つの孔を形成するための合計のレーザー光の照射回数)は、1~50回が好ましく、5~30回がより好ましく、5~20回がさらに好ましい。 The number of repetitions (the total number of laser beam irradiations for forming one hole) is preferably 1 to 50 times, more preferably 5 to 30 times, and still more preferably 5 to 20 times.
 <第2のレーザー光照射方法>
 第2のレーザー光照射方法において、レーザー光の照射部分と非照射部分が交互に生じるように照射するとは、図3に示すように照射する実施形態を含んでいる。
<Second laser beam irradiation method>
In the second laser light irradiation method, the irradiation so as to alternately generate the irradiated portion and the non-irradiated portion of the laser light includes an embodiment in which the irradiation is performed as shown in FIG.
 図3は、レーザー光の照射部分101と隣接するレーザー光の照射部分101の間にあるレーザー光の非照射部分102が交互に生じて、全体として点線状に形成されるように照射した状態を示している。このとき、同じ部分を繰り返して照射して、図3に示すように外観上1本の点線にすることもできる。繰り返し回数は、例えば1~20回にすることができる。 FIG. 3 shows a state where irradiation is performed so that non-irradiated portions 102 of the laser light alternately occur between the irradiated portions 101 of the laser light and the irradiated portions 101 of the laser light adjacent to each other to form a dotted line as a whole. It shows. At this time, the same portion can be repeatedly irradiated to form one dotted line in appearance as shown in FIG. The number of repetitions can be, for example, 1 to 20 times.
 複数回照射するときは、レーザー光の照射部分を同じにしてもよいし、レーザー光の照射部分を異ならせる(レーザー光の照射部分をずらす)ことで、金属片全体が粗面化されるようにしてもよい。レーザー光の照射部分を同じにして複数回照射したときは点線状に照射されるが、レーザー光の照射部分をずらして、即ち、最初はレーザー光の非照射部分であった部分にレーザー光の照射部分が重なるようにずらして照射することを繰り返すと、点線状に照射した場合であっても、最終的には実線状態に照射されることになる。 When irradiating multiple times, the irradiated part of the laser light may be the same, or by making the irradiated part of the laser light different (shifting the irradiated part of the laser light), the entire metal piece is roughened You may When the same portion of the laser light is irradiated and irradiated a plurality of times, it is irradiated like a dotted line, but the irradiated portion of the laser light is shifted, that is, the portion of the laser light is not irradiated at first. When the irradiation portions are repeatedly shifted and irradiated so as to overlap, even when the irradiation is performed in a dotted line, the irradiation is finally performed in a solid line state.
 金属成形体に対して連続的にレーザー光を照射すると、照射面の温度が上昇することから、厚さの小さい成形体ではそりなどの変形が生じるおそれもあるため、冷却するなどの対策が必要になる場合がある。しかし、図3に示すように点線状にレーザー照射すると、レーザー光の照射部分101とレーザー光の非照射部分102が交互に生じ、レーザー光の非照射部分102では冷却されていることになるため、レーザー光の照射を継続した場合、厚さの小さい成形体でもそりなどの変形が生じ難くなるので好ましい。このとき、上記のようにレーザー光の照射部分を異ならせた(レーザー光の照射部分をずらせた)場合でも、レーザー光の照射時には点線状に照射されているため、同様の効果が得られる。 If the metal compact is continuously irradiated with laser light, the temperature of the irradiated surface rises, and there is a possibility that deformation such as warpage may occur in a compact with a small thickness, so it is necessary to take measures such as cooling. May be However, as shown in FIG. 3, when the laser irradiation is performed in a dotted line shape, the irradiated portion 101 of the laser light and the non-irradiated portion 102 of the laser light are alternately generated, and the non-irradiated portion 102 of the laser light is cooled. When the irradiation of the laser beam is continued, deformation such as warpage is less likely to occur even with a compact having a small thickness, which is preferable. At this time, even in the case where the portions irradiated with the laser beam are different as described above (the portions irradiated with the laser beam are deviated), the same effect can be obtained because the laser beam is irradiated in a dotted line shape.
 レーザー光の照射方法は、インプラント110の表面に対して、図4(a)に示すように一方向に照射する方法、または図4(b)に示す点線のように双方向から照射する方法を使用することができる。図4(a)、図4(b)に示すようにレーザー光を照射するとき、上記したようにレーザー光の照射部分をずらして照射することで実線になるように照射することもできる。 The laser light irradiation method is a method of irradiating the surface of the implant 110 in one direction as shown in FIG. 4 (a) or a method of irradiating the surface of the implant 110 from both directions as shown by a dotted line in FIG. It can be used. When irradiating a laser beam as shown to FIG. 4 (a) and FIG. 4 (b), it can also be irradiated so that it may become a continuous line by shifting and irradiating the irradiation part of a laser beam as mentioned above.
 その他、レーザー光の点線照射部分が交差するように照射する方法でもよい。このときの交差角度は特に制限されるものではないが、例えば45°~90°の範囲にすることができ、さらに上記した方法で実線が交差するように照射することもできる。レーザー光を交差して照射するとき、交互に交差方向に照射してもよいし、一方向のみ複数回照射した後、交差方向に複数回照射することもできる。交差方向に照射するときは、同数を照射してもよいし、異なる数を照射してもよい。 In addition, the method of irradiating so that the dotted line irradiation part of a laser beam may cross may be used. The crossing angle at this time is not particularly limited, but can be, for example, in the range of 45 ° to 90 °, and irradiation can also be performed so that the solid lines cross in the above-described manner. When crossing and irradiating a laser beam, irradiation may be alternately performed in the cross direction, or irradiation may be performed in the cross direction a plurality of times after irradiation in only one direction a plurality of times. When irradiating in the cross direction, the same number may be irradiated, or different numbers may be irradiated.
 照射後の各点線の間隔b1は、金属成形体の照射対象面積などに応じて調整することができるものであるが、例えば、0.01~5mmの範囲にすることができる。 The distance b1 between the dotted lines after irradiation can be adjusted according to the area to be irradiated of the metal molded body, etc., but can be, for example, in the range of 0.01 to 5 mm.
 図3に示すレーザー光の照射部分101の長さ(L1)とレーザー光の非照射部分102の長さ(L2)は、L1/L2=1/9~9/1の範囲になるように調整することができる。レーザー光の照射部分101の長さ(L1)は、複雑な多孔構造に粗面化するためには0.05mm以上であることが好ましく、0.1~10mmがより好ましく、0.3~7mmがさらに好ましい。 Adjust the length (L1) of the irradiated part 101 of the laser light and the length (L2) of the non-irradiated part 102 of the laser light shown in FIG. 3 to be in the range of L1 / L2 = 1/9 to 9/1. can do. The length (L1) of the laser beam irradiated portion 101 is preferably 0.05 mm or more in order to roughen to a complicated porous structure, 0.1 to 10 mm is more preferable, and 0.3 to 7 mm Is more preferred.
 第2のレーザー光照射方法は、
 ガルバノミラーとガルバノコントローラーの組み合わせを使用し、レーザー発振器から連続的に発振させたレーザー光をガルバノコントローラーによりパルス化することで、照射部分と非照射部分が交互に生じるようにレーザー光を照射する方法、または
 レーザーの駆動電流を直接変換する直接変調方式の変調装置をレーザー電源に接続したファイバーレーザー装置を使用し、照射部分と非照射部分が交互に生じるようにレーザー光を照射する方法を用いて実施することができる。
The second laser beam irradiation method is
Method of irradiating a laser beam so that the irradiated part and the non-irradiated part are alternately generated by using a combination of a galvano mirror and a galvano controller and pulsing the laser light continuously oscillated from the laser oscillator by the galvano controller Or, using a fiber laser device in which a direct modulation type modulator that directly converts laser drive current is connected to a laser power source, and using a method of irradiating a laser beam so that an irradiated part and an unirradiated part are alternately generated. It can be implemented.
 レーザーの励起には、パルス励起と連続励起の2種類があり、パルス励起によるパルス波レーザーは一般にノーマルパルスと呼ばれる。 There are two types of laser excitation: pulse excitation and continuous excitation. A pulse wave laser by pulse excitation is generally called a normal pulse.
 連続励起であってもパルス波レーザーを作り出すことが可能であり、ノーマルパルスよりパルス幅(パルスON時間)を短くして、その分ピークパワーの高いレーザーを発振させるQスイッチパルス発振方法、AOMやLN光強度変調機により時間的に光を切り出すことでパルス波レーザーを生成させる外部変調方式、レーザーの駆動電流を直接変調してパルス波レーザーを生成する直接変調方式によりパルス波レーザーを作り出すことができる。 Even if it is continuous excitation, it is possible to create a pulse wave laser, and the Q switch pulse oscillation method that oscillates a laser with a high peak power by making the pulse width (pulse ON time) shorter than normal pulse An external modulation method that generates a pulse wave laser by temporally cutting out light with an LN light intensity modulator, or a direct modulation method that generates a pulse wave laser by directly modulating the drive current of the laser it can.
 第2のレーザー光照射方法は、第1のレーザー照射方法で使用した連続波レーザーとは別のものであるが、エネルギー密度、レーザー光の照射速度、レーザー光の出力、波長、ビーム径(スポット径)、焦点はずし距離は、第1のレーザー照射方法と同様に実施することができる。 The second laser beam irradiation method is different from the continuous wave laser used in the first laser irradiation method, but the energy density, laser beam irradiation speed, laser beam output, wavelength, beam diameter (spot The diameter) and the defocusing distance can be implemented in the same manner as the first laser irradiation method.
 第2のレーザー光照射方法においてレーザー光の照射部分と非照射部分が交互に生じるようにレーザー光を照射するときは、デューティ比を調整して照射する。デューティ比は、レーザー光の出力のON時間とOFF時間から次式により求められる比である。
 デューティ比(%)=ON時間/(ON時間+OFF時間)×100
In the second laser light irradiation method, when the laser light is irradiated so that the irradiated part and the non-irradiated part of the laser light are alternately generated, the duty ratio is adjusted and the irradiation is performed. The duty ratio is a ratio obtained by the following equation from the ON time and the OFF time of the laser light output.
Duty ratio (%) = ON time / (ON time + OFF time) x 100
 デューティ比は、図3に示すL1(レーザー光の照射部分の長さ)およびL2(レーザー光の非照射部分の長さ)を用いたとき、L1/(L1+L2)に対応するものであるから、10~90%の範囲から選択することができる。 The duty ratio corresponds to L1 / (L1 + L2) when using L1 (length of irradiated portion of laser beam) and L2 (length of non-irradiated portion of laser beam) shown in FIG. It can be selected from the range of 10 to 90%.
 デューティ比を調整してレーザー光を照射することで、図1に示すような点線状に照射することができる。デューティ比が大きいと粗面化工程の効率は良くなるが、冷却効果は低くなり、デューティ比が小さいと冷却効果は良くなるが、粗面化効率は悪くなる。目的に応じて、デューティ比を調整する。 By adjusting the duty ratio and irradiating a laser beam, it can be irradiated in a dotted line as shown in FIG. When the duty ratio is large, the efficiency of the surface roughening process is improved, but the cooling effect is lowered. When the duty ratio is small, the cooling effect is improved but the surface roughening efficiency is deteriorated. Adjust the duty ratio according to the purpose.
 レーザー光の照射部分101の長さ(L1)とレーザー光の非照射部分102の長さ(L2)は、L1/L2=1/9~9/1の範囲になるように調整することができる。レーザー光の照射部分101の長さ(L1)は、複雑な多孔構造に粗面化するためには0.05mm以上であることが好ましく、0.1~10mmが好ましく、0.3~7mmがより好ましい。 The length (L1) of the laser beam irradiated portion 101 and the length (L2) of the laser beam non-irradiated portion 102 can be adjusted to be in the range of L1 / L2 = 1/9 to 9/1. . The length (L1) of the laser beam irradiated portion 101 is preferably 0.05 mm or more in order to roughen to a complicated porous structure, preferably 0.1 to 10 mm, and 0.3 to 7 mm. More preferable.
 第1のレーザー照射方法と第2レーザー照射方法で使用するレーザーは公知のものを使用することができ、例えば、YVOレーザー、ファイバーレーザー(シングルモードファイバーレーザー、マルチモードファイバーレーザー)、エキシマレーザー、炭酸ガスレーザー、紫外線レーザー、YAGレーザー、半導体レーザー、ガラスレーザー、ルビーレーザー、He-Neレーザー、窒素レーザー、キレートレーザー、色素レーザーを使用することができる。 Lasers used in the first laser irradiation method and the second laser irradiation method may be known ones, for example, YVO 4 laser, fiber laser (single mode fiber laser, multi mode fiber laser), excimer laser, Carbon dioxide gas laser, ultraviolet laser, YAG laser, semiconductor laser, glass laser, ruby laser, He-Ne laser, nitrogen laser, chelate laser, dye laser can be used.
 レーザー光を照射して粗面化する工程において、第1のレーザー光照射方法または第2のレーザー光照射方法を実施したときは、上記したエネルギー密度と照射速度を満たすように金属成形体にレーザー光を照射すると、金属成形体の表面は溶融しながら一部が蒸発されることから、複雑な構造の多孔構造(図1、図2)が形成される。 When the first laser light irradiation method or the second laser light irradiation method is carried out in the step of roughening by irradiating the laser light, the metal forming body is subjected to the laser so as to satisfy the above energy density and irradiation speed. When irradiated with light, the surface of the metal compact melts and partially evaporates, thereby forming a porous structure of complex structure (FIGS. 1 and 2).
 本発明の製造方法でレーザー光を照射するときには、
 (i)インプラントのレーザー光の非照射面と、インプラントを構成するチタンまたはチタン合金、コバルトクロム合金、タンタルから選ばれる金属よりも熱伝導率の大きい材料(熱伝導率が100W/m・k以上である材料)からなる基板(例えば、鋼板、銅板、アルミニウム板)と接触させる方法、あるいは
 (ii)インプラントのレーザー光の非照射面と、インプラントを構成するチタンまたはチタン合金、コバルトクロム合金、タンタルから選ばれる金属よりも熱伝導率の小さい材料からなる基板(例えばガラス板)と接触させる方法を適用することができる。
When irradiating a laser beam by the manufacturing method of the present invention,
(I) A non-irradiated surface of the implant laser light and a material having a thermal conductivity greater than that of a metal selected from titanium, titanium alloy, cobalt chromium alloy, and tantalum constituting the implant (thermal conductivity is 100 W / m · k or more Or (ii) a non-irradiated surface of a laser beam of an implant and titanium or titanium alloy constituting the implant, cobalt chromium alloy, tantalum A method of contacting with a substrate (for example, a glass plate) made of a material having a thermal conductivity smaller than that of the metal selected from the above can be applied.
 (i)の方法は、特開2016-78090号公報に記載の方法を適用することができ、(ii)の方法は、特開2016-124024号公報に記載の方法を適用することができる。 The method described in JP-A-2016-78090 can be applied to the method (i), and the method described in JP-A-2016-124024 can be applied to the method (ii).
 (i)の方法は、チタンまたはチタン合金、コバルトクロム合金、タンタルから選ばれる金属からなるインプラントにレーザー光を照射するときに生じる熱を放熱させることで、温度の上昇を抑制することができる。 The method (i) can suppress the temperature rise by radiating the heat generated when the laser beam is irradiated to the implant made of a metal selected from titanium or titanium alloy, cobalt chromium alloy, and tantalum.
 (ii)の方法は、チタンまたはチタン合金、コバルトクロム合金、タンタルから選ばれる金属からなるインプラントにレーザー光を照射するときに生じる熱の放熱を抑制させることができる。 The method (ii) can suppress the heat radiation generated when the laser beam is irradiated to the implant made of a metal selected from titanium or titanium alloy, cobalt chromium alloy, and tantalum.
 このため、(i)の方法を実施すると、孔の大きさ、深さおよび形状の変化を抑制することができ、(ii)の方法を実施すると、孔の大きさ、深さおよび形状の変化を促進することができる。このように(i)の方法と(ii)の方法を使い分けることにより孔の大きさ、深さおよび形状を調整することができる。 For this reason, the method (i) can suppress changes in pore size, depth and shape, and the method (ii) can suppress changes in pore size, depth and shape. Can be promoted. Thus, the size, depth and shape of the hole can be adjusted by selectively using the method (i) and the method (ii).
 本発明の製造方法でレーザー光を照射するときには、空気、酸素、窒素、アルゴン、ヘリウムから選ばれるアシストガスを供給しながら照射することができる。 When irradiating a laser beam by the manufacturing method of this invention, it can irradiate, supplying the assist gas chosen from air, oxygen, nitrogen, argon, and helium.
 アシストガスを供給しながらレーザー光を照射することで、孔の深さ、大きさおよび配向性(孔の開口部の向き)の制御を補助することができるほか、炭化物の生成を抑制したり、表面性状を制御したりすることができる。例えば、アルゴンガスを選択すると表面の酸化を防止することができ、酸素を選択すると表面の酸化を促進することができ、窒素ガスを選択すると酸化を防止し、表面硬度を向上させることができる。 By irradiating the laser light while supplying the assist gas, control of the depth, size and orientation (the direction of the opening of the hole) of the hole can be assisted, and further, the formation of carbide can be suppressed, The surface quality can be controlled. For example, selection of argon gas can prevent surface oxidation, selection of oxygen can promote surface oxidation, and selection of nitrogen gas can prevent oxidation and improve surface hardness.
 第1のレーザー照射方法または第2レーザー照射方法を実施するとき、下記の要件(a)~要件(g)、または要件(a)~要件(h)を全て調整することで、孔の配向性(孔の開口部の向き)、孔の大きさおよび孔の深さを制御することが好ましい。 When the first laser irradiation method or the second laser irradiation method is performed, the hole orientation can be adjusted by adjusting all of the following requirements (a) to (g) or requirements (a) to (h): It is preferable to control the orientation of the openings of the holes, the size of the holes and the depth of the holes.
 (a)レーザー光の照射方向および角度
 レーザー光の照射方向を特定方向および特定角度に固定することで、形成される孔に配向性を生じさせることができる。照射角度は、レーザー光の照射面(インプラント表面)に対して45~90度が好ましい。
(A) Irradiation Direction and Angle of Laser Light By fixing the irradiation direction of the laser light to a specific direction and a specific angle, the formed holes can be oriented. The irradiation angle is preferably 45 to 90 degrees with respect to the laser beam irradiation surface (implant surface).
 (b)レーザー光の照射速度
 レーザー光の照射速度は2,000~20,000mm/secが好ましく、2,000~18,000mm/secがより好ましく、2,000~15,000mm/sec、3,000~15,000mm/secがさらに好ましい。
(B) Laser beam irradiation rate The laser beam irradiation rate is preferably 2,000 to 20,000 mm / sec, more preferably 2,000 to 18,000 mm / sec, and 2,000 to 15,000 mm / sec, 3 It is more preferably 1,000 to 15,000 mm / sec.
 (c)レーザー光を照射するときのエネルギー密度
 エネルギー密度は1MW/cm以上が好ましい。レーザー光の照射時のエネルギー密度は、レーザー光の出力(W)と、レーザー光(スポット面積(cm)(π・〔スポット径/2〕)から求められる。レーザー光の照射時のエネルギー密度は、2~1000MW/cmがより好ましく、10~800MW/cmがさらに好ましく、50~700MW/cmがさらに好ましく、100~500MW/cmがさらに好ましく、100~300MW/cmがさらに好ましい。エネルギー密度が大きくなるほど、孔は深くかつ大きくなる。
(C) Energy density when irradiating laser light The energy density is preferably 1 MW / cm 2 or more. The energy density at the time of laser beam irradiation can be determined from the laser beam output (W) and the laser beam (spot area (cm 2 ) (π · [spot diameter / 2] 2 ). density is more preferably 2 ~ 1000MW / cm 2, more preferably 10 ~ 800MW / cm 2, more preferably 50 ~ 700MW / cm 2, more preferably 100 ~ 500MW / cm 2, the 100 ~ 300MW / cm 2 More preferably, the higher the energy density, the deeper and the larger the holes.
 (d)レーザー光を照射するときの繰り返し回数
 繰り返し回数(一つのラインを形成するための合計のレーザー光の照射回数)は、1~40回が好ましく、5~30回がより好ましく、5~20回がよりさらに好ましい。同一のレーザー照射条件であれば、繰り返し回数が多いほどラインに沿って形成される孔(溝)が深くかつ大きくなり、繰り返し回数が少ないほどラインに沿って形成される孔(溝)が浅くかつ小さくなる。
(D) Number of repetitions when irradiating laser light The number of repetitions (the number of irradiations of the total laser light for forming one line) is preferably 1 to 40 times, more preferably 5 to 30 times, Twenty times is even more preferred. Under the same laser irradiation condition, the holes (grooves) formed along the line become deeper and larger as the number of repetitions increases, and the holes (grooves) formed along the lines become shallower as the number of repetitions decreases. It becomes smaller.
 (e)レーザー光の焦点はずし距離
 焦点はずし距離は、-5~+5mmが好ましく、-1~+1mmがより好ましく、-0.5~+0.1mmがさらに好ましい。焦点はずし距離は、設定値を一定にしてレーザー照射しても良いし、焦点はずし距離を変化させながらレーザー照射しても良い。例えば、レーザー照射時に、焦点はずし距離を小さくしたり、大きくしたりするほか、周期的に大きくしたり小さくしたりしても良い。焦点はずし距離がマイナス(-)であると(金属成形体表面の内側に焦点を合わせたとき)、孔は深くかつ大きくなる。孔を深くかつ大きくするときは、焦点はずし距離は-1~+0.5mmが好ましく、-0.5~-0.05mmがさらに好ましく、-0.3~-0.05mmがよりさらに好ましい。
(E) Focusing Distance of Laser Light The focusing distance is preferably −5 to +5 mm, more preferably −1 to +1 mm, and still more preferably −0.5 to +0.1 mm. The defocusing distance may be a laser irradiation with a constant set value, or may be a laser irradiation while changing the defocusing distance. For example, at the time of laser irradiation, in addition to decreasing or increasing the defocusing distance, it may be increased or decreased periodically. When the defocusing distance is negative (-) (when focused on the inside of the surface of the metal molding), the hole is deep and large. When the hole is made deep and large, the defocus distance is preferably -1 to +0.5 mm, more preferably -0.5 to -0.05 mm, and still more preferably -0.3 to -0.05 mm.
 (f)レーザー光を照射するときにインプラントを置く基板とインプラントの熱伝導率の関係
 上記したようにインプラントを熱伝導率の大きな基板上に置く方法と、熱伝導率の小さな基板上に置く方法を選択することで、孔構造などを調整することができる。一例では、熱伝導率の関係はインプラントの熱伝導率<基板の熱伝導率としてよい。
(F) The relationship between the thermal conductivity of the implant and the substrate on which the implant is placed when irradiating laser light As described above, the method of placing the implant on a substrate having a high thermal conductivity and the method of placing the implant on a substrate having a low thermal conductivity The hole structure can be adjusted by selecting. In one example, the thermal conductivity relationship may be such that the thermal conductivity of the implant <the thermal conductivity of the substrate.
 (g)レーザー光のライン間隔
 レーザー光のライン間隔は、図4(a)または(b)のb1の間隔である。レーザー光のライン間隔は、0.01~3mmが好ましく、0.01~1mmがより好ましく、0.03~0.5mmがさらに好ましく、0.03~0.1mmがさらに好ましい。ライン間隔は、全てのライン間隔が同一であってもよいし、一部または全部のライン間隔が異なっていてもよい。
(G) Line Interval of Laser Light The line interval of laser light is the interval of b1 in FIG. 4 (a) or (b). The line interval of the laser beam is preferably 0.01 to 3 mm, more preferably 0.01 to 1 mm, still more preferably 0.03 to 0.5 mm, and still more preferably 0.03 to 0.1 mm. The line spacing may be the same for all line spacings, or may be different for some or all of the line spacings.
 ライン間隔が狭いと、隣接するラインにも熱的影響が及ぶため、孔は大きくなり、孔の形状は複雑になり、孔の深さは深くなる傾向にあるが、熱的影響が大きくなり過ぎると適切な孔形状が形成されないこともある。ライン間隔が広いと、孔は小さくなり、孔の形状は複雑にはならず、孔はあまり深くならない傾向にあるが、処理速度を高めることはできる。 If the line spacing is narrow, the adjacent lines are also thermally affected, so the holes become large, the shape of the holes becomes complicated, and the depth of the holes tends to be deep, but the thermal effects become too large In some cases, an appropriate hole shape may not be formed. If the line spacing is large, the holes will be smaller, the shape of the holes will not be complicated and the holes will tend to be less deep, but the processing speed can be increased.
 (h)デューティ比
 デューティ比は10~90%が好ましく、30~80%がより好ましい。
(H) Duty ratio The duty ratio is preferably 10 to 90%, more preferably 30 to 80%.
 (その他)
 レーザー光の出力は4~4000Wが好ましく、50~2000Wがより好ましく、150~1000Wがさらに好ましく、150~500Wがさらに好ましく、150~300Wがさらに好ましい。他のレーザー光の照射条件が同一であれば、出力が大きいほど孔は深くかつ大きくなり、出力が小さいほど孔は浅くかつ小さくなる。波長は500~11,000nmが好ましい。
(Others)
The output of the laser beam is preferably 4 to 4000 W, more preferably 50 to 2000 W, further preferably 150 to 1000 W, still more preferably 150 to 500 W, and still more preferably 150 to 300 W. If the other laser light irradiation conditions are the same, the larger the output, the deeper and the larger the hole, and the smaller the output, the shallower and the smaller the hole. The wavelength is preferably 500 to 11,000 nm.
 第1のレーザー照射方法および/または第2レーザー照射方法を実施するときの上記した要件(a)~要件(g)、または要件(a)~要件(h)は、孔の配向性(孔の開口部の向き)、孔の大きさおよび孔の深さを制御するために、記載したそれぞれの範囲を任意に組み合わせることができる。 The requirements (a) to (g) or the requirements (a) to (h) described above when performing the first laser irradiation method and / or the second laser irradiation method The respective ranges described can be combined arbitrarily to control the orientation of the openings), the size of the holes and the depth of the holes.
 実施例1、2
 下記レーザー装置を使用して、純チタンの板(縦30mm、横30mm、厚み3mm)に対して、表1に示す条件で20mm×6mmの面積に連続照射した。
Examples 1 and 2
Using the following laser apparatus, a plate of pure titanium (30 mm long, 30 mm wide, 3 mm thick) was continuously irradiated to an area of 20 mm × 6 mm under the conditions shown in Table 1.
(レーザー装置)
 発振機:IPG-Ybファイバー;YLR-300-SM
 ガルバノミラー SQUIREEL(ARGES社製)
 集光系:fc=80mm/fθ=100mm
 レーザー光を照射後の純チタンの板の表面写真(SEM写真)を図5(実施例1)、図6(実施例2)に示す。
(Laser device)
Oscillator: IPG-Yb fiber; YLR-300-SM
Galvano mirror SQUIREEL (made by ARGES)
Light collecting system: fc = 80 mm / fθ = 100 mm
The surface photograph (SEM photograph) of the plate of pure titanium after laser light irradiation is shown in FIG. 5 (Example 1) and FIG. 6 (Example 2).
 実施例3
 下記レーザー装置を使用して、64チタンの板(縦30mm、横30mm、厚み1.5mm)に対して、表1に示す条件で20mm×6mmの面積にレーザー光を連続照射した。
Example 3
Using a laser apparatus described below, an area of 20 mm × 6 mm was continuously irradiated with laser light under the conditions shown in Table 1 with respect to a plate of 64 titanium (30 mm long, 30 mm wide, 1.5 mm thick).
(レーザー装置)
 発振機:IPG-Ybファイバー;YLR-300-SMAC
 ガルバノミラー SQUIREEL 16(ARGES社製)
 集光系:fc=80mm/fθ=100mm
 レーザー光を照射後の64チタンの板の表面写真(SEM写真)を図7に示す。
(Laser device)
Oscillator: IPG-Yb fiber; YLR-300-SMAC
Galvano mirror SQUIREEL 16 (manufactured by ARGES)
Light collecting system: fc = 80 mm / fθ = 100 mm
The surface photograph (SEM photograph) of the plate of 64 titanium after laser light irradiation is shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 純チタン、64Ti、鋼板、ガラス板および銅板の熱伝導率(100℃)の大小関係は、大きい方から順に、銅>鋼板>純チタン>64Ti>ガラスである。 The magnitude relationship of the thermal conductivity (100 ° C.) of pure titanium, 64 Ti, steel plate, glass plate and copper plate is copper> steel plate> pure titanium> 64 Ti> glass in descending order.
 図5(実施例1)、図6(実施例2)、図7(実施例3)を対比すると、骨や歯を含む生体組織は、図6が最も孔内部に侵入し易いように見えるが、より孔構造の複雑な図5、図7の方が、最終的に骨(歯)とインプラントの結合力が高められるとも考えられる。 By contrasting FIG. 5 (Example 1), FIG. 6 (Example 2), and FIG. 7 (Example 3), the living tissue including bones and teeth seems to be most easily intruded into the inside of the hole in FIG. The more complex structure of the pore structure, as shown in FIGS. 5 and 7, may eventually increase the bonding strength between the bone (tooth) and the implant.
 実施例4~8
 実施例1、2と同じレーザー装置を使用して、純チタンの板(縦60mm、横10mm、厚み2mm)に対して、表2に示す条件で縦5mm×横10mmの面積にレーザー光を連続照射した。
Examples 4 to 8
Using the same laser apparatus as in Examples 1 and 2, laser light is continuously applied to an area of 5 mm × 10 mm under the conditions shown in Table 2 for a plate of pure titanium (60 mm long, 10 mm wide, 2 mm thick) Irradiated.
 実施例8は、純チタン板の長さ方向とそれに直交する方向に照射した。前記長さ方向へのライン本数が63本、前記直交方向へのライン本数が125本とし、それぞれ方向への照射を実施した。具体的には、長さ方向にライン間隔0.08mmで63本のライン照射を10回実施した。その後、直交方向にライン間隔0.08mmで125本のライン照射を10回実施した。 In Example 8, irradiation was performed in the longitudinal direction of the pure titanium plate and in the direction orthogonal thereto. The number of lines in the length direction was 63, and the number of lines in the orthogonal direction was 125. Irradiation was performed in each direction. Specifically, 63 line irradiations were performed 10 times at a line interval of 0.08 mm in the length direction. After that, 125 line irradiations were performed 10 times at a line interval of 0.08 mm in the orthogonal direction.
 レーザー光を照射後の純チタンの板の表面写真(SEM写真)を図8(実施例5)、図9(実施例7)、図10(実施例8)に示す。 The surface photograph (SEM photograph) of the plate of pure titanium after laser light irradiation is shown in FIG. 8 (Example 5), FIG. 9 (Example 7), and FIG. 10 (Example 8).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例9~13
 実施例1、2と同じレーザー装置を使用して、64チタンの板(縦90mm、横10mm、厚み2mm)に対して、表3に示す条件で縦5mm×横10mmの面積にレーザー光を連続照射した。
Examples 9 to 13
Using the same laser apparatus as in Examples 1 and 2, laser light is continuously applied to an area of 5 mm long × 10 mm wide under the conditions shown in Table 3 with respect to a plate of 64 titanium (90 mm long, 10 mm wide, 2 mm thick) Irradiated.
 レーザー光を照射後の64チタンの板の表面写真(SEM写真)を図11(実施例9)、図12(実施例11)、図13(実施例12)に示す。 The surface photograph (SEM photograph) of the plate of 64 titanium after the laser light irradiation is shown in FIG. 11 (Example 9), FIG. 12 (Example 11), and FIG. 13 (Example 12).
 また実施例13におけるレーザー光を照射後の64チタンの板のX線CTスキャン写真を図14(a)(レーザー光の走査方向に平行な断面写真)、図14(b)(レーザー光の走査方向に垂直な断面写真)に示す。X線CTスキャン写真から求めた孔の最大深さは380μmであった。 In addition, an X-ray CT scan photograph of a plate of 64 titanium after irradiation with a laser beam in Example 13 is shown in FIG. 14 (a) (a cross-sectional photograph parallel to the scanning direction of the laser beam), FIG. Shown in the cross-sectional photograph perpendicular to the direction). The maximum depth of the hole determined from the X-ray CT scan was 380 μm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試験例1
 純チタン板(レーザー光を未照射)、実施例4~6のレーザー光照射後の純チタン板、64チタン板(レーザー光を未照射)、実施例9~11のレーザー光照射後の64チタン板の組成分析をSEM-EXDにより実施した。結果を表4に示す。
Test Example 1
Pure titanium plate (not irradiated with laser light), Pure titanium plate after laser light irradiation in Examples 4 to 6, 64 titanium plate (not irradiated with laser light), 64 titanium after laser light irradiation in Examples 9 to 11 Composition analysis of the plate was performed by SEM-EXD. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例14~18
 下記レーザー装置を使用して、タンタルの板(縦50mm、横50mm、厚み1.5mm)に対して、表5に示す条件で縦5mm×横10mmの面積にレーザー光を連続照射した。アシストガスは使用しなかった。
Examples 14 to 18
Using a laser apparatus described below, a tantalum plate (50 mm long, 50 mm wide, 1.5 mm thick) was continuously irradiated with laser light in the area of 5 mm long × 10 mm wide under the conditions shown in Table 5. Assist gas was not used.
(レーザー装置)
 発振機:IPG-Ybファイバー;YLR-300-AC
 ガルバノミラー SQUIREEL 16(ARGES社製)
 集光系:fc=80mm/fθ=100mm
 レーザー光を照射後のタンタルの板の表面写真(SEM写真)を、図15(実施例14)、図16(実施例15)、図17(実施例16)、図18(実施例17)、図19(実施例18)に示す。
(Laser device)
Oscillator: IPG-Yb fiber; YLR-300-AC
Galvano mirror SQUIREEL 16 (manufactured by ARGES)
Light collecting system: fc = 80 mm / fθ = 100 mm
The surface photograph (SEM photograph) of the tantalum plate after the laser light irradiation is shown in FIG. 15 (Example 14), FIG. 16 (Example 15), FIG. 17 (Example 16), FIG. 18 (Example 17), It is shown in FIG. 19 (Example 18).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例14~18のSEM写真から、レーザー照射速度と孔構造の関係が確認できる。 From the SEM photographs of Examples 14 to 18, the relationship between the laser irradiation rate and the pore structure can be confirmed.
 本発明のインプラントは、人工股関節(ステム、カップ)、人工膝関節などの人工関節、骨折固定用(プレート、スクリュー)、人工歯根などとして利用することができる。 The implant of the present invention can be used as an artificial hip joint (stem, cup), an artificial joint such as an artificial knee joint, for fracture fixation (plate, screw), an artificial tooth root and the like.
 10 インプラント
 12 生体組織との結合面
 30 開放孔
 31 開口部
 32 幹孔
 33 枝孔
 40 内部空間
 45 開放空間45
 50 トンネル接続路
 101 レーザー光の照射部分
 102 レーザー光の非照射部分

 
DESCRIPTION OF SYMBOLS 10 implant 12 joint surface with a biological tissue 30 open hole 31 opening 32 stem hole 33 branch hole 40 internal space 45 open space 45
50 tunnel connection 101 laser light irradiated portion 102 laser light non-irradiated portion

Claims (10)

  1.  チタンまたはチタン合金、コバルトクロム合金、タンタルから選ばれる金属からなる、骨または歯を含む生体組織と結合させるために使用するインプラントであって、
     前記インプラントが、骨または歯を含む生体組織と結合される部分の表層部が多孔構造を有しているものであり、
     前記多孔構造が、厚さ方向に形成された、前記結合面側に開口部を有する幹孔と、幹孔の内壁面から幹孔とは異なる方向に形成された枝孔からなる開放孔と、
     厚さ方向に形成された、前記結合面側に開口部を有していない内部空間を有しており、
     さらに前記開放孔と前記内部空間を接続するトンネル接続路と前記開放孔同士を接続するトンネル接続路を有しているものである、インプラント。
    An implant used for bonding to a living tissue including bone or teeth, comprising titanium, a titanium alloy, a cobalt chromium alloy, or a metal selected from tantalum,
    In the implant, a surface portion of a portion connected to a living tissue including a bone or a tooth has a porous structure.
    The porous structure is formed in the thickness direction, a trunk hole having an opening on the coupling surface side, and an open hole comprising branch holes formed in a direction different from the inner wall surface of the trunk hole from the trunk hole;
    It has an internal space formed in the thickness direction and not having an opening on the side of the coupling surface,
    The implant further includes a tunnel connection path connecting the open hole and the internal space, and a tunnel connection path connecting the open holes.
  2.  前記インプラントの多孔構造を有している表層部が、表面から開放孔の深さまでの10~1000μmの深さ範囲のものである請求項1記載のインプラント。 The implant according to claim 1, wherein the surface layer having the porous structure of the implant has a depth ranging from 10 to 1000 μm from the surface to the depth of the open hole.
  3.  インプラントの表層部に多孔構造を形成する工程を含む、請求項1または2記載のインプラントの製造方法であって、
     前記インプラントの表層部に多孔構造を形成する工程が、前記表層部を含む面にレーザー光を照射する工程であり、
     前記レーザー光を照射する工程が、直線、曲線または直線と曲線の組み合わせになるようにレーザー光を連続照射する工程である、インプラントの製造方法。
    The method for producing an implant according to claim 1 or 2, comprising the step of forming a porous structure in the surface layer of the implant,
    The step of forming a porous structure in the surface layer of the implant is a step of irradiating a surface including the surface layer with a laser beam,
    The method for manufacturing an implant, wherein the step of irradiating the laser light is a step of continuously irradiating the laser light so as to be a straight line, a curved line or a combination of a straight line and a curved line.
  4.  インプラントの表層部に多孔構造を形成する工程を含む、請求項1または2記載のインプラントの製造方法であって、
     前記インプラントの表層部に多孔構造を形成する工程が、前記表層部を含む面にレーザー光を照射する工程であり、
     前記レーザー光を照射する工程が、直線、曲線または直線と曲線の組み合わせになるようにレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する工程である、インプラントの製造方法。
    The method for producing an implant according to claim 1 or 2, comprising the step of forming a porous structure in the surface layer of the implant,
    The step of forming a porous structure in the surface layer of the implant is a step of irradiating a surface including the surface layer with a laser beam,
    The step of irradiating the laser light is a step of irradiating the laser light so that the irradiated portion and the non-irradiated portion are alternately generated when irradiating the laser light to be a straight line, a curved line or a combination of a straight line and a curved line. Method of manufacturing an implant
  5.  前記レーザー光を照射する工程が、ガルバノミラーとガルバノコントローラーの組み合わせを使用し、レーザー発振器から連続的に発振させたレーザー光をガルバノコントローラーによりパルス化することで、照射部分と非照射部分が交互に生じるようにレーザー光を照射する工程、またはレーザーの駆動電流を直接変換する直接変調方式の変調装置をレーザー電源に接続したファイバーレーザー装置を使用し、照射部分と非照射部分が交互に生じるようにレーザー光を照射する工程である、請求項4記載のインプラントの製造方法。 The step of irradiating the laser beam uses a combination of a galvano mirror and a galvano controller, and the galvano controller pulsates the laser beam continuously oscillated from the laser oscillator so that the irradiated portion and the non-irradiated portion alternate. In the step of irradiating the laser light as it occurs, or using a fiber laser device in which a direct modulation type modulation device directly converting the laser drive current is connected to the laser power source, the irradiated portion and the non-irradiated portion are alternately generated. The method for producing an implant according to claim 4, which is a step of irradiating a laser beam.
  6.  さらに前記レーザー光を照射するとき、空気、酸素、窒素、アルゴン、ヘリウムから選ばれるアシストガスを供給しながら照射する、請求項3~5のいずれか1項記載のインプラントの製造方法。 The method for producing an implant according to any one of claims 3 to 5, wherein when irradiating the laser light, the irradiation is performed while supplying an assist gas selected from air, oxygen, nitrogen, argon and helium.
  7.  前記レーザー光を照射するとき下記の要件(a)~(g)の全てを調整することで、孔の配向性、孔の大きさおよび孔の深さを制御する、請求項3~6のいずれか1項記載のインプラントの製造方法。
     (a)レーザー光の照射方向と角度
     (b)レーザー光の照射速度
     (c)レーザー光を照射するときのエネルギー密度
     (d)レーザー光を照射するときの繰り返し回数
     (e)レーザー光の焦点外し距離
     (f)レーザー光を照射するときにインプラントを置く基板と前記インプラントの熱伝導率の関係
     (g)レーザー光のライン間隔
    7. The alignment of holes, the size of holes, and the depth of holes are controlled by adjusting all of the following requirements (a) to (g) when irradiating the laser light: Method of producing an implant according to any one of the preceding claims.
    (A) Irradiation direction and angle of laser light (b) Irradiation speed of laser light (c) Energy density when irradiating laser light (d) Number of repetitions when irradiating laser light (e) Defocusing of laser light Distance (f) Relationship between the substrate on which the implant is placed when irradiating laser light and the thermal conductivity of the implant (g) Line spacing of the laser light
  8.  前記レーザー光を照射するとき、下記の要件(a)~(h)の全てを調整することで、孔の配向性、孔の大きさおよび孔の深さを制御する、請求項4~6記載のインプラントの製造方法。
     (a)レーザー光の照射方向と角度
     (b)レーザー光の照射速度
     (c)レーザー光を照射するときのエネルギー密度
     (d)レーザー光を照射するときの繰り返し回数
     (e)レーザー光の焦点外し距離
     (f)レーザー光を照射するときにインプラントを置く基板と前記インプラントの熱伝導率の関係
     (g)レーザー光のライン間隔
     (h)デューティ比:30~80%
    When irradiating the said laser beam, the orientation of a hole, the magnitude | size of a hole, and the depth of a hole are controlled by adjusting all the following requirements (a)-(h). Of manufacturing implants.
    (A) Irradiation direction and angle of laser light (b) Irradiation speed of laser light (c) Energy density when irradiating laser light (d) Number of repetitions when irradiating laser light (e) Defocusing of laser light Distance (f) Relationship between the thermal conductivity of the implant and the substrate on which the implant is placed when irradiating laser light (g) Line spacing of laser light (h) Duty ratio: 30 to 80%
  9.  前記(a)の照射角度が45~90度、
     前記(b)のレーザー光の照射速度が2,000~15,000mm/sec、
     前記(c)のレーザー光を照射するときのエネルギー密度が2~1000MW/cm
     前記(d)の繰り返し回数が1~40回、
     前記(e)のレーザー光の焦点外し距離が-1~+0.5mm、
     前記(f)の熱伝導率の関係がインプラントの熱伝導率<基板の熱伝導率、
     前記(g)のライン間隔が0.01~3mmである、請求項7または8記載のインプラントの製造方法。
    The irradiation angle of (a) is 45 to 90 degrees,
    The irradiation speed of the laser beam in (b) is 2,000 to 15,000 mm / sec,
    The energy density when irradiating the laser beam of said (c) is 2-1000 MW / cm < 2 >,
    The number of repetitions of (d) is 1 to 40 times,
    The defocusing distance of the laser light of (e) is -1 to +0.5 mm,
    The relation of the thermal conductivity of (f) is the thermal conductivity of the implant <the thermal conductivity of the substrate,
    The method for producing an implant according to claim 7, wherein the line spacing in (g) is 0.01 to 3 mm.
  10.  前記(a)の照射角度が45~90度、
     前記(b)のレーザー光の照射速度が3,000~15,000mm/sec、
     前記(c)のレーザー光を照射するときのエネルギー密度が100~300MW/cm
     前記(d)の繰り返し回数が5~20回、
     前記(e)のレーザー光の焦点外し距離が-0.3~-0.05mm、
     前記(f)の熱伝導率の関係がインプラントの熱伝導率<基板の熱伝導率、
     前記(g)のライン間隔が0.03~0.1mmである、請求項7または8記載のインプラントの製造方法。

     
    The irradiation angle of (a) is 45 to 90 degrees,
    The laser beam irradiation speed of (b) is 3,000 to 15,000 mm / sec,
    The energy density when irradiating the laser beam of said (c) is 100-300 MW / cm < 2 >,
    The number of repetitions of (d) is 5 to 20,
    The defocusing distance of the laser light of (e) is -0.3 to -0.05 mm,
    The relation of the thermal conductivity of (f) is the thermal conductivity of the implant <the thermal conductivity of the substrate,
    The method for producing an implant according to claim 7, wherein the line spacing in (g) is 0.03 to 0.1 mm.

PCT/JP2018/025800 2017-07-07 2018-07-09 Implant and method for manufacturing same WO2019009428A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/623,906 US20210145553A1 (en) 2017-07-07 2018-07-09 Implant and method for manufacturing same
EP18827933.5A EP3649986B1 (en) 2017-07-07 2018-07-09 Implant and method for manufacturing same
CN201880030274.1A CN110603012A (en) 2017-07-07 2018-07-09 Implant and method for producing the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017133498 2017-07-07
JP2017-133498 2017-07-07
JP2017-219912 2017-11-15
JP2017219912 2017-11-15
JP2018025671 2018-02-16
JP2018-025671 2018-02-16
JP2018-115873 2018-06-19
JP2018115873A JP2019136472A (en) 2017-07-07 2018-06-19 Implant and production method thereof

Publications (1)

Publication Number Publication Date
WO2019009428A1 true WO2019009428A1 (en) 2019-01-10

Family

ID=64950109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025800 WO2019009428A1 (en) 2017-07-07 2018-07-09 Implant and method for manufacturing same

Country Status (2)

Country Link
TW (1) TW201914622A (en)
WO (1) WO2019009428A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326164B2 (en) 1972-08-28 1978-07-31
JPS571414B2 (en) 1976-12-09 1982-01-11
JPS5920030B2 (en) 1979-10-09 1984-05-10 アキレス株式会社 Synthetic leather with excellent flexibility and durability
JPS63160662A (en) * 1986-12-23 1988-07-04 川崎製鉄株式会社 Surface treatment of metal material excellent in bone compatibility
JP2009254581A (en) 2008-04-16 2009-11-05 Toyo Advanced Technologies Co Ltd Implant for living body and its production method
JP2014161520A (en) 2013-02-25 2014-09-08 Shiga Prefecture Implant and manufacturing method thereof
JP5774246B2 (en) 2013-03-26 2015-09-09 ダイセルポリマー株式会社 Method of roughening a metal molded body
JP5860190B2 (en) 2013-07-18 2016-02-16 ダイセルポリマー株式会社 Composite molded body
JP2016036884A (en) 2014-08-08 2016-03-22 ダイセルポリマー株式会社 Polishing material
JP2016044337A (en) 2014-08-25 2016-04-04 ダイセルポリマー株式会社 Method of manufacturing composite molding
JP2016043413A (en) 2014-08-19 2016-04-04 ダイセルポリマー株式会社 Roughening method of metal molding
JP2016078090A (en) 2014-10-20 2016-05-16 ダイセルポリマー株式会社 Method of manufacturing metal molding having porous structure in surface layer part
JP2016124024A (en) 2015-01-08 2016-07-11 ダイセルポリマー株式会社 Manufacturing method of metal molding having porous structure on surface layer part

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326164B2 (en) 1972-08-28 1978-07-31
JPS571414B2 (en) 1976-12-09 1982-01-11
JPS5920030B2 (en) 1979-10-09 1984-05-10 アキレス株式会社 Synthetic leather with excellent flexibility and durability
JPS63160662A (en) * 1986-12-23 1988-07-04 川崎製鉄株式会社 Surface treatment of metal material excellent in bone compatibility
JP2009254581A (en) 2008-04-16 2009-11-05 Toyo Advanced Technologies Co Ltd Implant for living body and its production method
JP2014161520A (en) 2013-02-25 2014-09-08 Shiga Prefecture Implant and manufacturing method thereof
JP5774246B2 (en) 2013-03-26 2015-09-09 ダイセルポリマー株式会社 Method of roughening a metal molded body
JP5860190B2 (en) 2013-07-18 2016-02-16 ダイセルポリマー株式会社 Composite molded body
JP5890054B2 (en) 2013-07-18 2016-03-22 ダイセルポリマー株式会社 Method for producing composite molded body
JP5959689B2 (en) 2013-07-18 2016-08-02 ダイセルポリマー株式会社 Method for producing composite molded body
JP2016036884A (en) 2014-08-08 2016-03-22 ダイセルポリマー株式会社 Polishing material
JP2016043413A (en) 2014-08-19 2016-04-04 ダイセルポリマー株式会社 Roughening method of metal molding
JP2016044337A (en) 2014-08-25 2016-04-04 ダイセルポリマー株式会社 Method of manufacturing composite molding
JP2016078090A (en) 2014-10-20 2016-05-16 ダイセルポリマー株式会社 Method of manufacturing metal molding having porous structure in surface layer part
JP2016124024A (en) 2015-01-08 2016-07-11 ダイセルポリマー株式会社 Manufacturing method of metal molding having porous structure on surface layer part

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ASRI, R.I.M. ET AL: "Corrosion and surface modification on biocompatible metals: A review", MATERIALS SCIENCE AND ENGINEERING C, vol. 77, August 2017 (2017-08-01), pages 1261 - 1274, XP085028532, ISSN: 0928-4931, DOI: 10.1016/j.msec.2017.04.102 *
MIZUTANI, MASAYOSHI ET AL.: "High functionalization of Dental Implant with laser fabrication", JOURNAL OF THE JAPAN SOCIETY FOR PRECISION ENGINEERING, vol. 81, no. 12, 2015, pages 1073 - 1077, XP055658963, ISSN: 1882-675x, DOI: 10.2493/jjspe.81.1073 *
MIZUTANI, MASAYOSHI: "Creation of bone tissue-compatible implant by means of nano pulse laser", REPORT OF GRANT-SUPPORTED RESEARCHES, THE ARMADA FOUNDATION, vol. 27, pages 158 - 163, ISSN: 2434-0723 *
See also references of EP3649986A4 *

Also Published As

Publication number Publication date
TW201914622A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
JP4997452B2 (en) Laser processing apparatus, bone joining method, implant material, implant material manufacturing method, and implant material manufacturing apparatus
JP6646018B2 (en) Roughening method for metal compacts
US20110183292A1 (en) Material with a repetitive pattern of micro-features for application in a living organism and method of fabrication
JP6510296B2 (en) Method of roughening metal molded body
JP2019136472A (en) Implant and production method thereof
Miller et al. Laser micromachining for biomedical applications
Swift et al. Heat generation in hydroxyapatite-coated implants as a result of CO2 laser application
KR20200026475A (en) The coating method of apatite using laser
Man et al. Laser surface microdrilling of Ti and laser gas nitrided Ti for enhancing fixation of dental implants
Um et al. Recent advances in selective laser–material interaction for biomedical device applications
WO2019009428A1 (en) Implant and method for manufacturing same
JP2019034131A (en) Implant manufacturing method
CN108555437A (en) A kind of laser processing of orientation regulation and control biomedical metal material superficial cell growth
JP7164919B2 (en) METAL MOLDED BODY HAVING A POROUS STRUCTURE ON A SURFACE LAYER AND METHOD FOR MANUFACTURING THE SAME
JP6989328B2 (en) Method of roughening the surface of a metal molded body
WO2004047688A1 (en) Artificial joint, medical implant, and methods of producing the artificial joint and medical implant
JPWO2019216440A1 (en) Metal molded body and roughening method of metal molded body
AU2005206809B2 (en) Electromagnetic energy distributions for electromagnetically induced mechanical cutting
KR102115225B1 (en) One-step manufacturing method of laminated molding porous component
JP6590399B2 (en) Medical device material manufacturing method and medical device material
JP6479414B2 (en) Medical device material manufacturing method and medical device material
Panova et al. Application of lasers and laser processing technologies in modern dentistry: A review
Bartsch et al. Discover Mechanical Engineering
Khader Ultrashort Laser Ablation of Cortical Bone: Literature Review and Experimental Evaluation
KR100849024B1 (en) Manufacturing method for bone fixation plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018827933

Country of ref document: EP

Effective date: 20200207