WO2019009297A1 - Analysis system, analysis method, program, and storage medium - Google Patents

Analysis system, analysis method, program, and storage medium Download PDF

Info

Publication number
WO2019009297A1
WO2019009297A1 PCT/JP2018/025232 JP2018025232W WO2019009297A1 WO 2019009297 A1 WO2019009297 A1 WO 2019009297A1 JP 2018025232 W JP2018025232 W JP 2018025232W WO 2019009297 A1 WO2019009297 A1 WO 2019009297A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
analyte
information
concentration
unit
Prior art date
Application number
PCT/JP2018/025232
Other languages
French (fr)
Japanese (ja)
Inventor
本間 務
淳 ▼高▲橋
南 昌人
矢野 哲哉
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018125187A external-priority patent/JP2019013218A/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2019009297A1 publication Critical patent/WO2019009297A1/en
Priority to US16/733,112 priority Critical patent/US20200150135A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to an analysis system, an analysis method, a program, and a storage medium.
  • Digital PCR has attracted attention as a method of quantitatively analyzing a nucleic acid (target nucleic acid) having a specific base sequence as an analyte.
  • a sample containing a target nucleic acid is mixed and diluted with an amplification reagent for amplifying the target nucleic acid, a fluorescent reagent for detecting the target nucleic acid, etc., and divided into a large number of physically independent reaction fields.
  • the sample is diluted (hereinafter, such dilution is referred to as “limit dilution”) such that the number of target nucleic acids contained in each reaction field is either 1 or 0.
  • limit dilution such dilution
  • PCR is independently generated in each of the plurality of reaction fields to amplify the target nucleic acid so as to be detectable.
  • the concentration of the target nucleic acid in the sample is obtained from the number of reaction fields in which the signal is detected after amplification (the number of positive reaction fields) and / or the number of reaction fields in which the signal is not detected after amplification (the number of negative reaction fields) can do.
  • a method of forming droplets of a reaction solution in oil as a method of dividing a reaction solution containing a sample into a large number of physically independent reaction fields in digital PCR, that is, a water-in-oil emulsion (W / O emulsion)
  • W / O emulsion water-in-oil emulsion
  • each single droplet in a water-in-oil emulsion is used as a reaction site (Patent Document 1).
  • one reaction site may contain a plurality of analytes.
  • a method of correcting an error resulting from this there is known a method of stochastically calculating the number or concentration of an analyte based on a Poisson model.
  • a method of forming a water-in-oil emulsion there is a method using a microchannel device, a method using mechanical agitation, etc.
  • the size of the droplets That is, the size of the reaction site tends to vary.
  • each reaction field contains an analyte depends on the size of the reaction field. Therefore, there is a problem that when there is variation in the size of the reaction field, the reliability of the analysis result may not be sufficiently high only by performing the calculation based on the conventional Poisson model.
  • An analysis system is an analysis system that analyzes the concentration of an analyte in a sample, and the plurality of reactions for a plurality of reaction fields generated by dividing a liquid containing the sample.
  • a size information acquisition unit for acquiring information on each size of the field, an information on acquisition of the presence of the analysis object in each of the plurality of reaction fields, an analysis object information acquisition unit, and a distribution of sizes of the reaction fields.
  • the information is divided into a plurality of sections, and information on the number of positive reaction fields which are reaction fields in which the analyte is detected, and negative reaction fields which are reaction fields in which the analyte is not detected.
  • Distribution data including at least one information selected from the group consisting of information related to the number is acquired by the size information acquisition unit and the signal information acquisition unit Of the concentration based on at least one information selected from the group consisting of: a distribution data generation unit generated based on the information, information on the number of positive reaction fields, and information on the number of negative reaction fields And a concentration deriving unit for deriving the concentration of the analyte in the sample based on data of the section determined by the section determining unit among the distribution data. It is characterized by having.
  • the reliability of the analysis result can be enhanced.
  • FIG. 7 is a fluorescence microscope image of Emulsion 6 after thermal cycling.
  • 7 is a fluorescence microscope image of Emulsion 7 after thermal cycling.
  • 8 is a fluorescence microscope image of Emulsion 8 after thermal cycling.
  • It is a graph which shows the relationship between relative dilution magnification and the calculation result of the concentration of the analyte in the sample in Comparative Example 1.
  • 5 is a graph showing the relationship between relative dilution factor and calculation result of concentration of an analyte in a sample in Example 1.
  • FIG. FIG. 16 is a graph showing the relationship between relative dilution factor and calculation result of concentration of analyte in sample in Example 2.
  • FIG. 16 is a graph showing the relationship between relative dilution magnification and the calculation result of the concentration of the analyte in the sample in Comparative Example 2.
  • FIG. 16 is a graph showing the relationship between relative dilution factor and calculation result of concentration of analyte in sample in each of Example 3.
  • FIG. 16 is a graph showing the relationship between relative dilution factor and calculation result of concentration of analyte in sample in each of Example 4.
  • FIG. 8 is a fluorescence microscope image of Emulsion 9 after thermal cycling. 8 is a fluorescence microscopy image of Emulsion 10 after thermal cycling. 7 is a fluorescence microscope image of emulsion 11 after thermal cycling. 8 is a fluorescence microscopy image of Emulsion 12 after thermal cycling.
  • FIG. 7 is a fluorescence microscope image of emulsion 13 after thermal cycling. It is a graph showing the relationship between the preparation result in each of comparative example 3 and Example 5, and the calculation result of the DNA concentration in a sample. 15 is a graph showing the relationship between the calculation results of the concentrations of each of the emulsions 9 to 11 and the calculation results of the relative dilution ratio and the concentration of the analyte in the sample at the concentration of a commercially available device.
  • FIG. 1 is a view schematically showing a configuration of an analysis system according to the present embodiment.
  • the analysis system 1 according to the present embodiment includes a reaction field generation unit U1, a reaction unit U2, a detection unit U3, and an information processing unit U4.
  • the units may be partially or totally connected via a network such as a LAN or the Internet.
  • the reaction field generation unit U1 is a unit that divides a liquid such as a reaction liquid containing an analyte in a sample to generate a plurality of reaction fields physically independent of one another.
  • reaction site refers to a space surrounded by at least one interface selected from the group consisting of a liquid-liquid interface, a gas-liquid interface, and a solid-liquid interface.
  • the reaction in the reaction site takes place in this closed space and proceeds independently of the other reaction sites.
  • the reaction in one reaction site involves only the substance confined in the space defined by the above-mentioned interface.
  • each reaction solution dispensed to each well serves as a reaction site.
  • the reaction site is surrounded by the solid-liquid interface between the wall of the well and the reaction liquid, and the gas-liquid interface between the atmosphere and the reaction liquid.
  • the reaction liquid forms droplets in an emulsion such as a water-in-oil emulsion (W / O emulsion)
  • W / O emulsion water-in-oil emulsion
  • each droplet in the emulsion is a reaction site.
  • the reaction site is surrounded by the liquid-liquid interface between the continuous phase and the dispersed phase.
  • an analyte refers to a compound or particle contained in a sample and subjected to quantitative analysis.
  • the analyte according to the present embodiment is not particularly limited as long as it can be detected by a reaction in a reaction site described later, and examples thereof include nucleic acids, peptides, proteins, enzymes, etc. .
  • nucleic acid containing genes involved in diseases such as cancer and infectious diseases that can be contained in the sample is the analysis target It can be expected that useful information can be obtained for the diagnosis of diseases.
  • food inspection such as evaluation of genetically modified crops (GMO) can be performed.
  • environmental monitoring can be performed by using soil and water in the environment as samples.
  • a sample is a source of a sample collected or extracted from an organism, food, environment or the like.
  • concentration of the analyte in the quantitatively analyzed sample is converted to the concentration in the sample and then used for various purposes such as medical diagnosis and evaluation of food and environment.
  • the sample means one to be subjected to analysis according to the present embodiment, and in the present embodiment, the concentration of the analyte in the sample is measured.
  • the sample may be the sample itself, or may be subjected to pretreatment or adjustment for analysis such as purification or concentration of the sample, chemical modification or fragmentation of the analyte, or the like.
  • the concentration (number per unit volume) of analyte in the sample is not particularly limited, but when multiple reaction sites are generated, the number of analytes contained in each of the multiple reaction sites is one or zero.
  • the amount is By doing this, the reliability of the analysis result can be improved.
  • the reaction field generation unit U1 includes a sample injection unit 101, a reaction field generation unit 102, and a container 103.
  • the sample injection unit 101 is a unit for injecting a reaction liquid, which is a liquid containing a sample, into the reaction field generation unit 102.
  • the reaction solution injected from the sample injection unit 101 is sent to the reaction field generation unit 102.
  • the reaction liquid may be fed by a liquid feeding means (not shown) such as a pump.
  • the reaction liquid injected from the sample injection unit 101 may be mixed with oil as a continuous phase for forming an emulsion while being sent to the reaction site generation unit 102.
  • the reaction solution may be generated by mixing with a drug or the like for detecting an analyte.
  • reaction liquid refers to a liquid containing at least a sample containing an analyte and an agent for making the analyte detectable.
  • the reaction solution is preferably an aqueous liquid containing water.
  • the analyte can be made detectable by amplifying the nucleic acid using a nucleic acid amplification reaction using an enzyme, as typified by the PCR method.
  • a nucleic acid amplification reaction a reaction method is carried out by subjecting the reaction site to a thermal cycle, a PCR method for advancing the reaction, a LCR (Ligase Chain Reaction) method, or a reaction field by temperature control without subjecting it to a thermal cycle.
  • an SDA Strand Displacement Amplification
  • an ICAN Isothermal and Chimeric primer-Initiated Amplification of Nucleic acids
  • a LAMP Loop-Mediated Isothermal Amplification
  • nucleic acid amplification reaction When a nucleic acid amplification reaction is used, it is used as an amplification reagent for amplifying a nucleic acid, a fluorescence reagent that interacts with the nucleic acid to emit fluorescence, and an agent for making the nucleic acid detectable.
  • the amplification reagent is one or a pair of primers (forward primer and reverse primer) having a base sequence complementary to a predetermined base sequence of the target nucleic acid to be analyzed, and a biocatalyst promoting a nucleic acid synthesis reaction And a polymerase.
  • the polymerase is preferably a heat-resistant polymerase, and more preferably a heat-resistant DNA polymerase.
  • the amplification reagent contains ribonucleic acid such as dNTP (DeoxyriboNucleotide-5'-TriPhosphate) as a raw material of nucleic acid.
  • the amplification reagent preferably contains a buffer or buffer for controlling the hydrogen ion concentration (pH) in the reaction solution, or a salt.
  • a buffer or buffer for controlling the hydrogen ion concentration (pH) in the reaction solution or a salt.
  • the primer is not particularly limited as long as it is an oligonucleotide that hybridizes with the base sequence of a partial region of the target nucleic acid under stringent conditions and can be used for a nucleic acid amplification reaction.
  • stringent conditions mean that the primer can specifically hybridize to the template nucleic acid when there is at least 90% or more, preferably 95% or more, of sequence identity between the primer and the template nucleic acid. It is.
  • the primers can be appropriately designed based on the base sequence of the target nucleic acid. Also, it is desirable that the primers be designed according to the type of nucleic acid amplification method.
  • the length of the primer is usually 5 to 50 nucleotides, preferably 10 to 40 nucleotides.
  • a primer can be produced
  • buffer or the type of buffer those commonly used in the molecular biology area can be used, for example, Tris (Tris (hydroxymethyl) aminomethane) buffer, HEPES (4- (2-hydroxyethyl) -1-Piperazineethanesulfonic acid) buffer, MES (2-morpholinoethanesulfonic acid) buffer, etc. can be used.
  • a salt for example, a salt appropriately selected from CaCl 2 , KCl, MgCl 2 , MgSO 4 , NaCl, and a combination thereof can be used.
  • a fluorescent reagent is an agent that fluoresces by interacting with a nucleic acid, and a fluorescent intercalator (fluorescent dye) or a probe for a probe assay (fluorescently labeled probe) generally used in a PCR method can be used.
  • a fluorescent intercalator ethidium bromide, SYBR Green I ("SYBR" is a registered trademark of Molecular Probes), LC Green, etc.
  • the fluorescently labeled probe is an oligonucleotide (probe) that specifically hybridizes to a target nucleic acid, and one end (5 'end) is modified with a reporter, and the other end (3' end) is a quencher. Those modified with can be used.
  • the analyte is a peptide or a protein
  • the analyte is obtained by an antigen-antibody reaction and an enzyme reaction using an antibody (or an antigen) that specifically reacts with the analyte, such as ELISA.
  • an antibody (or an antigen) labeled with an enzyme is conjugated to an analyte by an antigen-antibody reaction, and a colored or luminescent substance generated by the enzyme reaction of this enzyme is detected.
  • the analyte and the antibody (or antigen) that causes an antigen-antibody reaction may not be previously labeled with an enzyme, and may be labeled with an enzyme after the antigen-antibody reaction.
  • a reagent containing an antibody (or an antigen) and an enzyme is used as an agent for making an analyte detectable.
  • a commercially available kit may be used as a reagent for use in the ELISA method.
  • a plurality of types of drugs that can be detected so that a plurality of analytes can be distinguished, for example, different wavelengths of fluorescence to be generated, a plurality of types of analytes are collectively detected in one analysis You can also.
  • the reaction field generation unit 102 divides the reaction solution injected from the sample injection unit 101 to generate a plurality of reaction fields physically independent of each other.
  • generating several reaction fields the following method is mentioned, for example.
  • a first method there is a method of dispensing a reaction solution to each well using a glass or resin substrate having a plurality of minute wells formed on a substrate such as a microwell plate. Thereby, the inside of each of the minute wells becomes a reaction site.
  • a reaction liquid on a substrate using a glass or resin substrate which has been subjected to a water repellent treatment or an oil repellent treatment in a predetermined pattern shape on the surface.
  • a reaction liquid for example, when an aqueous reaction solution is applied on a glass substrate water-repellently treated in the form of a grid, droplets are formed inside each grid, and each of the plurality of droplets serves as a reaction site.
  • an emulsion in which a reaction liquid is dispersed in the form of droplets from a reaction liquid and a liquid incompatible with the reaction liquid hereinafter referred to as "non-phase solution" in the non-phase solution.
  • Methods to form This method is, in other words, a method of forming an emulsion in which the non-phase solution is a continuous phase and the reaction liquid is a dispersed phase. For example, if a reaction liquid which is an aqueous liquid containing water and an oily liquid (oil) are mixed to form a water-in-oil emulsion (W / O emulsion), the reaction liquid dispersed in the oil Each of the liquid droplets is a reaction site.
  • the reaction field generation unit 102 forms a reaction field by the third method, that is, a method of forming an emulsion in which the reaction liquid is dispersed in the form of droplets from the reaction liquid and the nonphase solution in the nonphase solution. It is preferred to produce That is, the reaction field generation unit 102 is preferably an emulsion generation unit that generates an emulsion from the reaction liquid and the non-phase solution body incompatible with the reaction liquid.
  • Emmulsion part There is no particular limitation on the method of producing the emulsion, and conventionally known emulsification methods can be used. For example, there is a mechanical emulsification method in which an emulsion is formed by applying mechanical energy with a stirring device or an ultrasonic crushing device. In addition, a method using a microchannel device such as a microchannel emulsification method or a microchannel bifurcation emulsification method, a membrane emulsification method using an emulsification film, and the like can be mentioned. These methods may be used alone or in combination of two or more.
  • the reaction site generation unit 102 is more preferably a membrane emulsification means or a mechanical emulsification means, and particularly preferably a membrane emulsification means.
  • the membrane emulsification method is a method of forming an emulsion by permeating a dispersed phase or a continuous phase, or a mixture of a dispersed phase and a continuous phase to an emulsion membrane having a plurality of pores and slits.
  • the number of times the dispersed phase or the continuous phase, or the mixture of the dispersed phase and the continuous phase is allowed to permeate through the emulsion membrane in the membrane emulsification method is not particularly limited, and may be once or plural times.
  • the membrane emulsification method As the membrane emulsification method, a direct membrane emulsification method, a pumping emulsification method or the like can be used.
  • the direct membrane emulsification method is a method of forming an emulsion in a continuous phase flowing slowly on the extruded side by extruding the dispersed phase at a constant pressure through the emulsification membrane.
  • the pumping emulsification method is a method of preparing an emulsion by sandwiching the emulsification membrane with a syringe from which the continuous phase is collected and a syringe from which the dispersion phase is collected, and alternately pushing out the liquid from the two syringes to pass through the emulsification membrane. is there.
  • a mixture of the continuous phase and the dispersed phase may be collected in one of two syringes, and the other syringe may be emptied.
  • the pumping emulsification method it is possible to use a pumping emulsification device in which an emulsification film is sandwiched between a pair of connectors that can be connected to a syringe.
  • a membrane of a porous body having a plurality of pores or a membrane having a slit can be used.
  • a porous glass membrane such as SPG (Shirasu porous glass), a polycarbonate membrane filter, a polytetrafluoroethylene (PTFE) membrane filter, or the like can be used.
  • PTFE polytetrafluoroethylene
  • the pore diameter of the emulsion film can be selected according to the size of droplets in the water-in-oil emulsion to be formed, and is preferably 0.2 ⁇ m to 100 ⁇ m, and is 5 ⁇ m to 50 ⁇ m. More preferable.
  • hydrocarbon oil silicone oil, fluorine oil and the like
  • hydrocarbon oils include mineral oils; oils derived from animals and plants such as squalane oil and olive oil; paraffin hydrocarbons having 10 to 20 carbon atoms such as n-hexadecane; olefin hydrocarbons having 10 to 20 carbon atoms Etc.
  • TEGOSOFT DEC diethylhexyl carbonate
  • TEGOSOFT is a registered trademark of Evonik
  • a surfactant may be further added in forming the emulsion.
  • a surfactant By adding a surfactant, effects such as control of the size of droplets in the emulsion and keeping the emulsion stable can be expected.
  • the surfactant conventionally known surfactants generally used in emulsification treatment can be used.
  • nonionic surfactant fluorocarbon resin, phosphocholine containing resin, etc.
  • a nonionic surfactant a hydrocarbon surfactant, a silicone surfactant, or a fluorine surfactant can be used.
  • hydrocarbon non-ionic surfactants include, for example, Pluronic F-68 (polyoxyethylene-polyoxypropylene block copolymer) (manufactured by Sigma-Aldrich, “Pluronic” is a registered trademark of BASF), Span 60 (Sorbitan Monostearate) (manufactured by Tokyo Chemical Industry Co., Ltd., "Span” is a registered trademark of Croda International), Span 80 (Sorbitan monooleate) (manufactured by Sigma-Aldrich, "Span” is a registered trademark of Croda International), Triton- X100 (polyoxyethylene (10) octyl phenyl ether) (manufactured by Sigma-Aldrich, “Triton” is a registered trademark of Union Carbide), Tween 20 (polyoxyethylene sorbitan monolaur) ), Tween 80 (polyoxyethylene sorbitan monooleate) (or, Sigma - Al- Al
  • ABIL EM90 Cosmetic type nonionic surfactant
  • ABIL EM 120 Bis- (glyceryl / lauryl) glyceryl lauryl dimethicone
  • ABIL EM180 Cetyl PEG / PPG10-1 dimethicone
  • ABIL WE09 polyglyceryl isostearate-4, cetyl dimethicone copolyol, hexyl laurate
  • Krytox-AS (“Krytox” is a registered trademark of Chemers) can be used.
  • phosphocholine-containing resin Lipidure-S (manufactured by NOF Corporation, “Lipidure” is a registered trademark of NOF, etc.) can be used.
  • the concentration of the surfactant in the emulsion is not particularly limited, but is preferably 0.01% by mass to 10% by mass and more preferably 0.1% by mass to 8% by mass, and more preferably 1% by mass. It is more preferable to set it as% or more and 4 mass% or less.
  • the volume ratio of the non-phase solution (continuous phase) to the reaction liquid (dispersed phase) in the emulsion is not particularly limited, but is preferably 1 or more and 300 or less, and more preferably 1 or more and 150 or less.
  • the size of the droplets in the emulsion is not particularly limited, but the diameter is preferably 1 ⁇ m or more and 300 ⁇ m or less, more preferably 1 ⁇ m or more and 200 ⁇ m or less, and still more preferably 20 ⁇ m or more and 150 ⁇ m or less.
  • the diameter is preferably 1 ⁇ m or more and 300 ⁇ m or less, more preferably 1 ⁇ m or more and 200 ⁇ m or less, and still more preferably 20 ⁇ m or more and 150 ⁇ m or less.
  • the number of droplets in the emulsion is preferably 100 or more and 1,000,000,000 or less, more preferably 100 or more and 20,000,000 or less, and 2,000 or more and 20 or more. It is more preferable that the number is, 000,000 or less. As described later, in the estimation by the present inventors, in order to ensure the reliability of the analysis result in the digital analysis, it is preferable that it is determined that at least 100 droplets or more contain the analyte. The number of droplets is preferably 100 or more.
  • the volume of the reaction solution is generally set to about 0.01 mL to 0.5 mL in many cases, and when the droplet size is about 10 ⁇ m to 200 ⁇ m, the number of droplets is approximately It will be set between 2,000 and 1,000,000,000.
  • the container 103 is a container for holding a plurality of reaction fields generated by the reaction field generation unit 102.
  • the reaction site generation unit 102 is an emulsion generation unit
  • the container 103 is a container for containing the emulsion generated by the emulsion generation unit.
  • the reaction field generation unit 102 generates a plurality of reaction fields by dispensing reaction liquid in each well using a glass or resin substrate in which a plurality of minute wells are formed on the substrate.
  • the substrate on which the well is formed is the container 103.
  • the container 103 is transported by the transport unit (not shown) from the reaction field generation unit U1 to the reaction unit U2 and to the detection unit U3 while holding a plurality of reaction sites.
  • the transport unit not shown
  • the operator of the analysis system 1 may convey the container 103.
  • the container 103 is preferably configured to be removable from the reaction field generation unit U1 together with part or all of the sample injection unit 101 and the reaction field generation unit 102. That is, it is preferable that the reaction field production
  • the cartridge may include a reaction controller 201 described later.
  • the reaction unit U2 has a reaction controller 201, and is a unit that causes a reaction to proceed in each of the plurality of reaction fields generated by the reaction field generation unit U1. This reaction can make the analyte contained in each of the plurality of reaction sites detectable.
  • reaction When the analyte is a nucleic acid, as described above, it is possible to detect the analyte by amplifying the nucleic acid using a nucleic acid amplification reaction using an enzyme, as typified by the PCR method. Out.
  • a nucleic acid amplification reaction as described above, PCR method, LCR method, SDA method, ICAN method, LAMP method and the like can be preferably used.
  • the reaction field is subjected to a thermal cycle, maintained at a constant temperature, or given a temperature with a predetermined profile, etc. to control the reaction field temperature. It is preferable to control.
  • a method of controlling a reaction by flowing a reaction field in a microchannel of a microchannel device having a microchannel of a predetermined shape (Science, 280, 1046 (1998)).
  • the analyte is a peptide or a protein, as described above, the analyte can be made detectable by a molecular biological technique combining an enzyme reaction and an antigen-antibody reaction such as ELISA. . In this case, it is preferable to adjust the temperature of the reaction site so as to maintain the temperature of the reaction site at a predetermined temperature.
  • the reaction controller 201 controls the reaction in each of the plurality of reaction sites in the vessel 103.
  • the reaction controller 201 can also be referred to as a reaction unit that causes a reaction to proceed in each of a plurality of reaction sites in the vessel 103.
  • the reaction may be controlled by controlling the temperature of the reaction field, or the reaction in the microchannel
  • the reaction site may be controlled by controlling the position and velocity of the field. That is, the reaction controller 201 may have a temperature controller such as a heater or a cooler, or may have a pump connected to a microchannel.
  • reaction controller 201 applies at least one selected from the group consisting of heat, magnetic field, electric field, current, light, and radiation to each of the plurality of reaction fields according to the type of reaction in the reaction field. It may be one.
  • a commercially available thermal cycler can also be used as the reaction unit U2.
  • the detection unit U3 is a unit that performs detection of the size of each of the plurality of reaction fields and detection of an analyte for each of the plurality of reaction fields.
  • the detection unit U3 acquires an analysis target object information acquisition unit 301 that acquires information on the presence of the analysis target in each of the plurality of reaction fields, and a size information acquisition unit 302 that acquires information on the respective sizes of the plurality of reaction sites. And.
  • the detection by the detection unit U3 may be performed by taking out some of the reaction fields among the plurality of reaction fields held in the container 103, it is preferable to carry out the detection for all the reaction fields that can be measured. . Thereby, the number of reaction fields to be detected can be increased, and the reliability of the analysis result can be improved.
  • the analyte information acquisition unit 301 is a part that detects an analyte for each of a plurality of reaction fields.
  • the analyte information acquiring unit 301 detects a signal derived from the analyte for each of a plurality of reaction fields in which the reaction has progressed in the reaction unit U2.
  • the analyte information acquisition unit 301 detects a signal derived from the analyte, and determines whether or not the analyte is contained for each of the plurality of reaction sites. Thereby, the analyte information acquisition unit 301 acquires information (analyte information) on the presence of the analyte in each of the plurality of reaction sites. Light is preferably used as the signal.
  • reaction field in which a signal is detected by the analyte information acquiring unit 301 that is, a reaction field in which an analyte is contained is referred to as a “positive reaction field”.
  • reaction fields in which no signal is detected by the analyte information acquiring unit 301 that is, reaction fields in which no analyte is contained are referred to as "negative reaction fields”.
  • the intensity of the signal detected by the analyte information acquisition unit 301 is weaker than a preset threshold value, it is considered that the signal is not detected. That is, whether or not the reaction site contains the analyte is determined by comparing the intensity of the signal from the reaction site with a predetermined threshold.
  • the analyte information acquiring unit 301 uses the signal derived from the analyte as a signal.
  • fluorescence of a predetermined wavelength is detected.
  • the analysis subject information acquisition unit 301 may be configured of a light source 303a, a detector 304a, and a control unit (not shown). It can.
  • the light source 303 a emits light of a wavelength according to the signal to be detected to each of the plurality of reaction fields held in the container 103.
  • the detector 304a detects a signal emitted from each of the plurality of reaction fields irradiated with light. That is, the light source 303a functions as an excitation unit, and the detector 304a functions as a light detection unit.
  • a photodiode, a line sensor, an image sensor (image sensor) or the like can be used, and among them, it is preferable to use an image sensor in that signals can be detected collectively for a large number of reaction fields.
  • an image sensor a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor image sensor) can be used.
  • a digital camera provided with an image sensor may be used.
  • an optical filter may be used to adjust the wavelength of light from the reaction field.
  • the analyte information acquisition unit 301 may be a flow cytometer that sequentially detects a plurality of reaction fields flowing in the flow path.
  • the analyte information acquisition unit 301 may two-dimensionally excite and detect a plurality of reaction fields. In other words, even if a plurality of reaction fields arranged in a plane are two-dimensionally irradiated with light to be excited, signals generated from the reaction fields are detected two-dimensionally using an image sensor. Good. This configuration is preferable because signal detection can be performed with high throughput for a large number of reaction sites.
  • the size information acquisition unit 302 is a part that detects the size of each of a plurality of reaction fields.
  • the size information acquisition unit 302 detects the size of each of the plurality of reaction fields for each of the plurality of reaction fields where the reaction has progressed in the reaction unit U2.
  • the size information acquisition unit 302 can be configured by a detector 304 b and a control unit (not shown).
  • the detector 304 b detects light from the reaction field.
  • a detector similar to the detector 304 a can be used as the detector 304 b.
  • the detector 304a may have the function of the detector 304b.
  • the size detection unit 302 may further include a light source 303 b.
  • the light source 303 b is preferably a light source that emits light having a wavelength different from that of the light source 303 a. When the light source 303 b is a wavelength variable light source, the light source 303 b may have the function of the light source 303 a.
  • the information processing unit U4 derives the concentration of the analyte in the sample based on the detection results of the detection unit U3 (information on the respective sizes of the reaction fields and the information on the presence of the analytes in each of the reaction fields). It is a unit.
  • FIG. 2 is a hardware block diagram of the information processing unit U4.
  • the information processing unit U4 has the CPU 451, the ROM 452, the RAM 453, the storage 454, the input / output I / F 455, the communication I / F 456, and the image output I / F 457 in terms of hardware.
  • the CPU 451 executes a program stored in the ROM 452 or a program loaded to the RAM 453 and controls each part of the information processing unit U4.
  • the ROM 452 is a non-volatile memory, and stores programs and the like necessary for the initial operation of the information processing unit U4.
  • the RAM 453 is a volatile memory, and is used to read a program stored in the ROM 452 or storage 454 or an external storage device (not shown). The RAM 453 is also used as a work area of the CPU 451 when executing these programs.
  • the storage 454 has installed therein various programs to be executed by the CPU 451 such as an operating system and application programs, and data used to execute the programs.
  • a program for analyzing measurement data supplied from the detection unit U3 and outputting an analysis result is installed in the storage 454 .
  • the input / output interface (I / F) 455 is connected to an input unit 407 including a mouse, a keyboard, a touch panel, etc., and the user uses the input unit 407 to input data to the information processing unit U4. Be done.
  • An image output interface (I / F) 457 is connected to the display unit 408 configured of a liquid crystal panel or the like, and outputs a video signal corresponding to the image data to the display unit 408.
  • the display unit 408 displays an image based on the input video signal.
  • the information processing unit U4 is connected to each of the reaction field generation unit U1, the reaction unit U2, the detection unit, and the transport unit (not shown) via a communication interface (I / F) 456.
  • the information processing unit U4 can transmit and receive data to and from each unit described above through the communication interface 456.
  • the information processing unit U4 has, as its functions, a storage unit 401, a control unit 402, a distribution data generation unit 403, a section determination unit 404, and a concentration derivation unit 405, as shown in FIG.
  • the storage unit 401 is a portion that stores data received from the detection unit U3 or the input unit 407 or data generated by processing by the information processing unit U4.
  • the control unit 402 is a part that controls the operation of each of the reaction field generation unit U1, the reaction unit U2, the detection unit U3, and the transport unit (not shown).
  • the distribution data generation unit 403 acquires, from the detection unit U3, information on the size of each reaction field and information on the presence of the analyte in each of the reaction fields, integrates these pieces of information, and obtains distribution data. Generate In the following description, data including information on the size of each of the reaction fields and information on the presence of the analyte in each of the reaction fields obtained from the detection unit U3 may also be referred to as detection data. is there.
  • the distribution data generation unit 403 divides the distribution of the size of the reaction field into a plurality of sections (classes), and for each section, information on the number of positive reaction sites and information on the number of negative reaction sites Generating distribution data including at least one information selected from the group consisting of
  • the information regarding a number here, a number itself, a ratio, etc. are mentioned, for example.
  • the size of the reaction field is a minimum of 10 ⁇ m and a maximum of 210 ⁇ m as a sphere equivalent diameter in the case where the respective shapes of the plurality of reaction fields are substantially spherical.
  • the distribution data generation unit 403 divides, for example, the distribution of the size of the reaction field into 10 sections in 20 ⁇ m steps. Then, the number of positive reaction fields and the number of negative reaction fields are totaled for a plurality of reaction fields having a size included in each section.
  • the information on the size of the reaction field obtained from the detection unit U3 is linked to the information on whether the reaction field contained an analyte (whether it is a positive reaction field or a negative reaction field). Be acquired.
  • the analysis object information acquisition unit 301 and the size information acquisition unit 302 both include means for acquiring image data using an image sensor, the image data acquired from the respective units are superimposed to obtain the above information. Can be tied.
  • the section determination unit 404 determines, of the distribution data generated by the distribution data generation unit 403, data to be used for deriving the concentration in the concentration derivation unit 405 described later. More specifically, the section determining unit 404 configures distribution data based on at least one piece of information selected from the group consisting of information on the number of positive reaction sites and information on the number of negative reaction sites. From among the sections of, the section used to derive the concentration is determined.
  • the section determination unit 404 determines that the number or ratio of positive reaction fields or the number or ratio of negative reaction fields is included in a preset numerical range for each of a plurality of sections constituting the distribution data. It is determined whether or not Then, the section determining unit 404 determines a section determined to be included in a preset numerical range as a section to be used for deriving the concentration.
  • each reaction field will have two or more of each reaction field in the large reaction field size even if the reaction area is close to the limiting dilution state in the small area. In some cases, it may contain an analyte of As a result of studies by the present inventors, in such a case, in the region where the size of the reaction field is small, the calculation based on the Poisson model has the effect of bringing the calculation result closer to the true value. Then, it turned out that the effect may not be obtained enough.
  • the section determining unit 404 selects a section in which the number or ratio of positive reaction sites or the number or ratio of negative reaction sites is included in a preset numerical range, and the concentration is derived therefrom. Determined as the interval used for Then, the concentration deriving unit 405 selects data of at least a part of all the sections selected by the section determining unit 404 (information on the size of each reaction field and information on the presence of the analyte in each reaction field) Used to derive the concentration of analyte in the sample.
  • the section determining unit 404 preferably selects a section that can ensure the reliability of the calculation result based on the Poisson model. It is preferable that the interval determination unit 404 select an interval other than an interval in which the proportion of positive reaction fields is too high or an interval in which the proportion of negative reaction fields is too low. In a section where the proportion of positive reaction fields is too high or in a section where the proportion of negative reaction fields is too low, the probability that two or more analytes are included in one reaction field is too high, and calculation based on Poisson model There is a possibility that even if you do not get close to the true value.
  • the lower limit of the numerical range of the ratio of positive reaction fields in the section selected by the section determining unit 404 is not particularly limited, and may be 0% or more, or 5% or more.
  • the interval determination unit 404 preferably selects an interval in which the proportion of negative reaction fields is greater than 0%, more preferably selects an interval larger than 10%, and further selects an interval larger than 20%. preferable.
  • the upper limit of the numerical range of the ratio of negative reaction sites in the section selected by the section determining unit 404 is not particularly limited, and may be 100% or less or 95% or less. These numerical ranges regarding the proportion of positive reaction fields and the proportion of negative reaction fields are appropriately determined according to the accuracy required for analysis.
  • the interval determination unit 404 select an interval other than an interval in which the number of positive reaction fields is too small. If the number of positive reaction sites is too small, the reliability of the analysis results tends to decrease. Therefore, the concentration of the analysis results can be derived by using the data of the sections other than the section where the number of positive reaction sites is too small. Confidence can be increased. In order to know the relationship between the number of positive reaction fields and the dispersion of the analysis results, the present inventors have described “relative uncertainty” when the number of positive reaction fields is changed, as described in the technical literature Lab Chip , 14, 1176 (2014). The calculated results are shown in FIG. According to FIG.
  • the interval determination unit 404 can increase the reliability of the analysis result to such an extent that “the uncertainty of measurement” becomes 10% or less by selecting the interval in which the number of positive reaction sites is 100 or more.
  • permissible_range of the required "measurement uncertainty” may change with the objective of analysis, and is not limited to said numerical value. For example, if the required “measurement uncertainty” is 20% or less, the section determination unit 404 may select a section having 30 or more positive reaction fields.
  • the section determining unit 404 When the section determining unit 404 discards a section not used for concentration derivation and determines it as a section used for concentration derivation, the section to be rejected may be determined by the same method as the method for selecting the above section. it can. More specifically, the section determining unit 404 does not include the number or proportion of positive reaction fields or the number or proportion of negative reaction fields in a predetermined range for each of a plurality of sections constituting distribution data. You may reject the data of the section.
  • the section determining unit 404 preferably discards sections with a percentage of positive reaction fields of 100%, more preferably discards sections with 90% or more, and discards sections with 80% or more. Is more preferred.
  • the section determining unit 404 may discard a section in which the proportion of positive reaction sites is 10% or more.
  • the section determination unit 404 may determine a section to be used for deriving the concentration, and extract data of the section from the distribution data generated by the distribution data generation unit 403.
  • the section determined object 404 can also be referred to as a data processing unit that processes the distribution data generated by the distribution data generation unit 403. That is, the data processing unit generates the distribution data generated by the distribution data generation unit 403 based on at least one piece of information selected from the group consisting of information on the number of positive reaction sites and information on the number of negative reaction sites.
  • the data processing unit selects at least one selected from the group consisting of information on the number of positive reaction fields and information on the number of negative reaction fields instead of determining the section used for deriving the concentration by the section determining unit 404.
  • the weighting of each section may be changed based on one piece of information.
  • the data processing unit is a data correction factor based on at least one piece of information selected from the group consisting of information on the number of positive reaction fields and information on the number of negative reaction fields in the data included in each of the plurality of sections. Processing may be performed.
  • the concentration deriving unit 405 derives the concentration of the analyte in the sample based on the data of the section determined by the section determining unit 404 among the distribution data generated by the distribution data generating unit 403. That is, the concentration deriving unit 405 derives the concentration of the analyte in the sample using at least a part of the distribution data generated by the distribution data generating unit 403.
  • the concentration deriving unit 405 may perform part or all of the following calculation processing for each section of the distribution data.
  • the concentration deriving unit 405 preferably derives, for each of the sections of the distribution data, the analyte included in the section based on the Poisson model. Then, it is preferable that the concentration deriving unit 405 derives the concentration by totaling the number of analytes in each of the derived sections and dividing it by the total volume of the reaction field used for the calculation. Alternatively, it is preferable that the concentration deriving unit 405 derives the concentration of the analyte for each section, weighted averages it, and derives the concentration of the analyte in the reaction liquid or the sample. Thus, the reliability of the analysis result can be enhanced by deriving the number or concentration of the analyte based on the Poisson model for each section.
  • the calculation of the concentration of the analyte can be carried out using a conventional method of calculating the concentration in digital analysis.
  • the number x of reaction fields (positive reaction fields) in which the analyte is detected is the number of analytes contained in the reaction solution of the volume Vs in which the detection unit U3 is the target of detection of the analyte. It can be regarded as Therefore, the concentration ⁇ r of the analyte in the reaction liquid can be calculated by the following formula (1).
  • the volume Vs which the detection unit U3 made the detection object of the analysis object can be calculated based on the information regarding the size of the reaction field acquired from the detection unit U3.
  • ⁇ r x / Vs (1)
  • the concentration of the analyte is calculated by estimating the average number C of the analytes contained in each reaction site before the reaction in the reaction unit U2. Specifically, assuming that the average number of analytes contained in one reaction field is C for the reaction fields for which the detection unit U3 is the target of detection of the analytes, n analysis targets in one reaction field The probability that an object is included is expressed as the following equation (2) from the Poisson model equation.
  • equation (3) is used based on the ratio of reaction fields in which no analyte is detected (the ratio of reaction fields in which a signal is not detected) to the total number of reaction fields targeted by detection unit U3. The number of analytes contained in the reaction solution to be detected is estimated.
  • the concentration ⁇ r of the analyte in the reaction liquid can be calculated by the following equation (5).
  • the average volume v which the detection unit U3 made the detection object of the analysis object can be calculated based on the information regarding the size of the reaction field acquired from the detection unit U3.
  • ⁇ r C / v formula (5)
  • the concentration ⁇ r of the analyte in the reaction solution is the total number of analytes obtained by multiplying the average number C of analytes by the number of reaction sites, the average volume v of reaction sites and the number of reaction sites It may be calculated based on the total volume of the reaction site obtained by multiplying
  • the concentration of the analyte in the reaction solution thus obtained is converted to the concentration of the analyte in the specimen or sample by using the dilution factor when adjusting the reaction solution from the specimen or sample. be able to.
  • FIG. 4 is a flow chart showing the procedure of analysis processing by the analysis system.
  • a sample for performing quantitative analysis of an analyte is prepared.
  • the sample is prepared by diluting and pretreating the sample.
  • the preparation of the sample may be performed in the analysis system 1, or may be performed using an apparatus outside the analysis system 1, for example, a commercially available sample pretreatment apparatus.
  • the reaction field generation unit U1 divides the reaction solution containing the sample to generate a plurality of reaction fields independent of each other.
  • the reaction unit U2 causes the reaction to proceed in each of the plurality of reaction sites, making the analyte detectable.
  • the detection unit U3 performs detection of the analyte and detection of the size of each of the plurality of reaction fields for each of the plurality of reaction fields. Thereby, information on the size and information on the presence of the analyte are obtained for each of the plurality of reaction sites.
  • the information processing unit U4 acquires information on the size of each of the reaction fields and information on the presence of the analyte in each of the reaction fields from the detection unit U3 and integrates these pieces of information, Generate distribution data.
  • the information processing unit U4 determines a section to be used for deriving the concentration of the analyte based on the number or proportion of positive reaction fields, or the number or proportion of negative reaction fields. At this time, the information processing unit U4 compares the number or ratio of positive reaction fields or the number or ratio of negative reaction fields with a preset numerical range and uses it for deriving the concentration of the analyte Determine the interval.
  • the information processing unit U4 derives the concentration of the analyte using the data of the section determined at S406.
  • analysis system 1 was explained as an embodiment of the present invention, the present invention is not limited to this, and the present invention can also be realized by an analysis system which consists of a part of each part which constitutes analysis system 1.
  • the present invention provides a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or computer readable storage medium, and one or more of the computer of the system or apparatus are provided. It can also be realized by a process in which a processor reads and executes a program. It can also be implemented by a circuit (eg, an ASIC) that implements one or more functions.
  • a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or computer readable storage medium, and one or more of the computer of the system or apparatus are provided. It can also be realized by a process in which a processor reads and executes a program. It can also be implemented by a circuit (eg, an ASIC) that implements one or more functions.
  • a circuit eg, an ASIC
  • Emulsion 1 a water-in-oil emulsion.
  • ⁇ PCR using emulsion> The resulting emulsion 1 was subjected to thermal cycling under the following thermal cycling conditions to perform PCR.
  • the diameter of each droplet was measured from the obtained visible light image using image processing software. At this time, the resolution of measurement was 10 ⁇ m, and droplets having a diameter of 10 ⁇ m or less were excluded from measurement. Moreover, the presence or absence of fluorescence enhancement due to gene proliferation was determined for each droplet by visual determination based on the obtained fluorescence image, and it was determined whether or not an analyte was detected. By superimposing the visible light image and the fluorescence image, data in which the information on the size of each droplet was associated with the information on whether or not the analyte was detected was created.
  • the droplet size was divided into a plurality of sections to create frequency distribution data. Specifically, the droplet diameter was divided into 18 segments, with the droplet diameter of 20 ⁇ m or more and less than 30 ⁇ m as one segment, and the measurement resolution of 10 ⁇ m as the segment width. Then, the number of droplets, the number of positive droplets, and the number of negative droplets were counted for each section. The results are summarized in Table 1.
  • the droplet diameter is the average diameter of droplets
  • Total is the total number of droplets
  • Positive is the number of droplets with fluorescence enhancement (positive droplets)
  • Negative is the droplet without fluorescence enhancement (negative droplets The number of) is shown, respectively (following, it is the same).
  • Preparation example 2 In Preparation Example 1, template 1 was diluted 10 times to form template 2. That is, in the template 2, the concentration of the amplicon is approximately 5 ⁇ 10 3 copies / ⁇ L. Emulsion 2 was produced in the same manner as in Preparation Example 1 except that template 2 was used instead of template 1 to form a dispersed phase.
  • the emulsion 2 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 1, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 1.
  • photographed image is shown to FIG. 5B.
  • the measurement results are summarized in Table 1 below.
  • Preparation example 3 In Preparation Example 1, template 1 was diluted 100 times to form template 3. That is, in the template 3, the concentration of the amplicon is approximately 5 ⁇ 10 2 copies / ⁇ L. Emulsion 3 was produced in the same manner as in Preparation Example 1 except that template 3 was used instead of template 1 to form a dispersed phase.
  • the emulsion 3 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 1, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 1.
  • photographed image is shown to FIG. 5C.
  • the measurement results are summarized in Table 1 below.
  • Preparation example 4 In Preparation Example 1, template 1 was diluted 1000 times to form template 4. That is, in the template 4, the concentration of the amplicon is approximately 5 ⁇ 10 copies / ⁇ L. Emulsion 4 was produced in the same manner as in Preparation Example 1 except that template 4 was used instead of template 1 to form a dispersed phase.
  • the emulsion 4 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 1, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 1.
  • photographed image is shown to FIG. 5D.
  • the measurement results are summarized in Table 1 below.
  • Preparation example 5 In Preparation Example 1, PCR was carried out in the same manner as in Preparation Example 1 except that Human ⁇ -Actin (Human ACTB Endogenous Control, Thermo Fisher Scientific Co., Ltd.) was used instead of 16S rDNA (QuickPrimer Escherichia / Shigella group). Did. The solution was diluted so that the concentration of human ⁇ -Actin amplicon was approximately 5 ⁇ 10 4 copies / ⁇ L, and used as template 5. An emulsion 5 was produced in the same manner as in Preparation Example 1 except that template 5 was used instead of template 1 to form a dispersed phase.
  • Human ⁇ -Actin Human ACTB Endogenous Control, Thermo Fisher Scientific Co., Ltd.
  • 16S rDNA QuickPrimer Escherichia / Shigella group
  • the emulsion 5 was subjected to a thermal cycle in the same manner as in Preparation Example 1 to perform PCR, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 1.
  • photographed image is shown to FIG. 6A.
  • the measurement results are summarized in Table 2.
  • Preparation example 6 In Preparation Example 5, template 5 was diluted 10 times to form template 6. That is, in the template 6, the concentration of the amplicon is approximately 5 ⁇ 10 3 copies / ⁇ L. Emulsion 6 was produced in the same manner as in Preparation Example 5, except that template 6 was used instead of template 5 to form a dispersed phase.
  • the emulsion 6 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 5, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 5.
  • photographed image is shown to FIG. 6B.
  • the measurement results are summarized in Table 2.
  • Preparation example 7 In Preparation Example 5, the template 5 was diluted 100 times to be a template 7. That is, in the template 7, the concentration of the amplicon is approximately 5 ⁇ 10 2 copies / ⁇ L. Emulsion 7 was produced in the same manner as in Preparation Example 5 except that template 7 was used instead of template 5 to form a dispersed phase.
  • the emulsion 7 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 5, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 5.
  • photographed image is shown to FIG. 6C.
  • the measurement results are summarized in Table 2.
  • Preparation example 8 In Preparation Example 5, template 5 was diluted 1000 times to form template 8. That is, in the template 8, the concentration of the amplicon is approximately 5 ⁇ 10 copies / ⁇ L.
  • An emulsion 8 was produced in the same manner as in Preparation Example 5 except that the dispersed phase was formed using template 8 instead of template 5.
  • the emulsion 8 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 5, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 5.
  • photographed image is shown to FIG. 6D.
  • the measurement results are summarized in Table 2.
  • the concentration of the analyte (target nucleic acid) in the sample was calculated by a method commonly performed in digital PCR using droplets. Specifically, the percentage of negative droplets is calculated using the sum of the total number of droplets in all sections and the total number of negative droplets in all sections, and is included in one reaction field using equation (4) The average number C of analyzed analytes was calculated. Then, the total number of analytes contained in all droplets to be detected was calculated by multiplying the average number C and the sum of the total number of droplets in all sections.
  • the volume of droplets contained in each section was calculated from the total number of droplets in each section and the droplet diameter of the droplet in that section, and the total volume of droplets to be detected was calculated.
  • the concentration in the reaction solution is calculated by dividing the total number of analytes contained in all droplets to be detected by the total volume of all droplets to be detected, and multiplying this by 10 times the dilution ratio Were converted to the concentration of the analyte in the sample. The results are shown in Table 3.
  • Example 1 For the emulsion 1, the concentration of the analyte in the sample was calculated using only the data in the interval of 0% or more and less than 100% of the distribution data among the distribution data. Specifically, as shown in Table 4, the data is rejected for the sections 10, 14, 15 and 17 in which the percentage of positive droplets is 100%, and the calculation is performed using data of other sections. The For each of the sections that were not rejected, the number of analytes was calculated for each section by the same calculation as in Comparative Examples 1 to 4. Also, for each of the sections that were not rejected, the total volume of droplets in the section was calculated for each section.
  • the concentration in the reaction solution is calculated by dividing the sum of the number of analytes in each section obtained by the total volume of droplets in each section, and multiplying this by 10 times the dilution rate of the sample Thus, it was converted to the concentration of the analyte in the sample.
  • Example 2 The concentration of the analyte in the sample was calculated in the same manner as in Example 1 except that the width of the droplet diameter section was changed from 10 ⁇ m to 20 ⁇ m in Example 1.
  • Table 6 shows frequency distribution data and calculation results in the case where the width of the droplet diameter section of the emulsion 1 is changed from 10 ⁇ m to 20 ⁇ m.
  • Comparative Example 1 and Examples 1 and 2 As shown in Tables 3, 5, and 7, in each of Comparative Example 1 and Examples 1 and 2, the emulsions 1, 2, 3 and 4 had a relative dilution ratio to the emulsion 1 of 1, 10, respectively. It corresponds to 100 times and 1000 times. Therefore, the concentrations of analyte in the sample in emulsions 1, 2, 3 and 4 should be 1 times, 0.1 times, 0.01 times and 0.001 times that of emulsion 1, respectively. .
  • FIG. 7 is a graph showing the relationship between the relative dilution ratio and the calculation result of the concentration of the analyte in the sample in each of Comparative Example 1 and Examples 1 and 2.
  • FIG. 7A shows the result of Comparative Example 1
  • FIG. 7B shows the result of Example 1
  • FIG. 7C shows the result of Example 2 by a double logarithm graph in which the horizontal axis represents relative dilution ratio and the vertical axis is calculation result of concentration. ing.
  • Example 3 The concentrations of the analytes in the samples were calculated in the same manner as in Example 1 with respect to emulsions 5 to 8 of Preparation Examples 5 to 8. The results are shown in Table 9.
  • Comparative Example 2 and Examples 3 and 4 As shown in Tables 8, 9 and 10, in each of Comparative Example 2 and Examples 3 and 4, the emulsions 5, 6, 7 and 8 have a relative dilution ratio to the emulsion 5 of 1, 10, respectively. It corresponds to 100 times and 1000 times. Thus, the concentrations of analyte in the sample in emulsions 5, 6, 7 and 8 should be 1 times, 0.1 times, 0.01 times and 0.001 times that of emulsion 5, respectively. .
  • FIG. 8 is a graph showing the relationship between the relative dilution ratio and the calculation result of the concentration of the analyte in the sample in each of Comparative Example 2 and Examples 3 and 4.
  • FIG. 8A shows the result of Comparative Example 2
  • FIG. 8B shows the result of Example 3
  • FIG. 8C shows the result of Example 4 by a double logarithm graph in which the horizontal axis represents relative dilution factor and the vertical axis is calculation result of concentration. ing.
  • the relationship between relative dilution ratio and concentration is shown by a dotted line assuming that the concentration of the analyte in the sample in emulsion 5 is 5 ⁇ 10 4 copies / ⁇ L.
  • a solid line indicates an approximate curve when the results of Comparative Example 2 and Examples 3 and 4 are power-approximated in a double logarithm graph.
  • a surfactant KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.), was dissolved in Isopar L (manufactured by Exxon Mobil), which is an isoparaffin aliphatic hydrocarbon, to prepare Emulsion 9.
  • Isopar L manufactured by Exxon Mobil
  • the oil-based composition was prepared such that the concentration of the surfactant was 4% by mass when the entire oil-based composition was 100% by mass.
  • SPG film (DC 20 U, manufactured by SPG Techno), which is an emulsified film, was connected to the tip of a syringe (08040, manufactured by Nipro) from which the aqueous composition was collected.
  • ⁇ PCR using emulsion> The obtained emulsion 9 was subjected to thermal cycling under the following thermal cycling conditions to perform PCR.
  • the diameter of each droplet was measured using image processing software (ImageJ). At this time, since a droplet with a diameter of 40 ⁇ m or less was difficult to separate from noise, it was excluded from measurement. Furthermore, using the above-mentioned image processing software, the presence or absence of fluorescence enhancement by gene proliferation is determined for each droplet, and information on the size of each droplet and information on whether or not an analyte is detected I created the data that I matched.
  • the droplet size was divided into a plurality of sections to create frequency distribution data. Specifically, the droplet diameter was divided into 19 segments, with the droplet diameter being 40 ⁇ m or more and less than 50 ⁇ m as one segment, and the measurement resolution of 10 ⁇ m as the segment width. Then, the number of droplets, the number of positive droplets, and the number of negative droplets were counted for each section. The results are summarized in Table 11.
  • the droplet diameter is the average diameter of droplets
  • Total is the total number of droplets
  • Positive is the number of droplets with fluorescence enhancement (positive droplets)
  • Negative is the droplet without fluorescence enhancement (negative Each indicates the number of droplets) (the same applies hereinafter).
  • the emulsion 10 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 9, and in the same manner as in Preparation Example 9, the total number of droplets after thermal cycling (Total), the number of positive droplets (Positive), and the negative droplets. The number (Negative) was measured. An example of the image
  • photographed image is shown to FIG. 9B. The measurement results are summarized in Table 11.
  • Emulsion 11 was produced in the same manner as in Preparation Example 9 except that the DNA concentration was changed to 2500 copies / ⁇ L.
  • the emulsion 11 was subjected to thermal cycling in the same manner as in Preparation Example 9 to conduct PCR, and the total number of droplets after thermal cycling, the number of positive droplets, and the number of negative droplets were measured in the same manner as in Preparation Example 9.
  • photographed image is shown to FIG. 9C.
  • the measurement results are summarized in Table 11.
  • Emulsion 12 was produced in the same manner as in Preparation Example 9 except that the DNA concentration was changed to 6250 copies / ⁇ L.
  • the emulsion 12 was subjected to thermal cycling in the same manner as in Preparation Example 9 to perform PCR, and the total number of droplets after thermal cycling, the number of positive droplets, and the number of negative droplets were measured in the same manner as in Preparation Example 9. An example of the photographed image is shown in FIG. 9D. The measurement results are summarized in Table 11.
  • the emulsion 13 was subjected to thermal cycling in the same manner as in Preparation Example 9 to conduct PCR, and the total number of droplets after thermal cycling, the number of positive droplets, and the number of negative droplets were measured in the same manner as in Preparation Example 9.
  • photographed image is shown to FIG. 9E.
  • the measurement results are summarized in Table 11.
  • Example 5 The concentration of the analyte in the sample was calculated in the same manner as in Example 1 for emulsions 9-12. The results are shown in Table 13.
  • the dispersed phase of the droplet was prepared by adding the primers (forward primer and reverse primer respectively) as the dispersed phase final concentration to 0.5 ⁇ M and the FAM labeled probe as the dispersed phase final concentration to 0.25 ⁇ M in the same manner as in Example 5.
  • the mix (Model No. 186-3023, manufactured by Bio-Rad Laboratory) and sterile distilled water were further mixed to prepare a dispersed phase corresponding to emulsions 9-11.
  • the prepared dispersed phase was used to generate droplets in a droplet generator (Automated Droplet Generator system, manufactured by Bio-Rad Laboratory), and subjected to thermal cycling under the following thermal cycle conditions to conduct PCR.
  • a droplet generator Automated Droplet Generator system, manufactured by Bio-Rad Laboratory
  • FIG. 11 shows the results of the examples of the emulsions 9 to 11 and the results carried out in the comparative example 4, with the relative dilution factor on the horizontal axis and the double logarithm graph on the vertical axis as the calculation result of the concentration.
  • the black dotted line indicates the approximate curve when the result of the comparative example in the commercial apparatus is approximated by a power approximation. Comparing the two, it was found that the slopes of the approximate curves were -1.002 and -0.966, respectively, and values close to the ideal -1 were obtained. Furthermore, since both plots were within 9% of the true value in the concentration range studied, it was found that both results close to the true value and high quantitativity were obtained for both. . From the above, it was found that according to the embodiment of the present invention, highly reliable analysis results can be obtained even when the droplet size varies.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Sustainable Development (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention concerns analysis of the concentration of a to-be-analysed object within a sample. A plurality of reaction sites is generated by dividing a fluid comprising the sample. A distribution of reaction site sizes is divided into a plurality of partitions. A partition used to derive the concentration is determined, per partition, on the basis of the number or the proportion of positive reaction sites, or the number or the proportion of negative reaction sites. The concentration of the to-be-analysed object is derived on the basis of data from the determined partition.

Description

分析システム、分析方法、プログラム、および記憶媒体Analysis system, analysis method, program, and storage medium
 本発明は、分析システム、分析方法、プログラム、および記憶媒体に関する。 The present invention relates to an analysis system, an analysis method, a program, and a storage medium.
 特定の塩基配列を有する核酸(標的核酸)を分析対象物として定量分析する方法として、デジタルPCR(dPCR;digital Polymerase Chain Reaction)法が注目されている。 Digital PCR (dPCR; digital Polymerase Chain Reaction) has attracted attention as a method of quantitatively analyzing a nucleic acid (target nucleic acid) having a specific base sequence as an analyte.
 デジタルPCRでは、標的核酸を含むサンプルを、標的核酸を増幅するための増幅試薬、標的核酸を検出するための蛍光試薬などと混合して希釈し、物理的に独立した多数の反応場に分割する。このとき、それぞれの反応場に含まれる標的核酸の数が1個または0個のいずれかとなるようにサンプルを希釈(以下、このような希釈を「限界希釈」と称する)しておく。そして、複数の反応場のそれぞれにおいて独立にPCRを生じさせ、標的核酸を増幅して検出可能にする。これにより、増幅後にシグナルが検出された反応場の数(陽性反応場数)および/または増幅後にシグナルが検出されなかった反応場の数(陰性反応場数)から、サンプル中の標的核酸の濃度を取得することができる。 In digital PCR, a sample containing a target nucleic acid is mixed and diluted with an amplification reagent for amplifying the target nucleic acid, a fluorescent reagent for detecting the target nucleic acid, etc., and divided into a large number of physically independent reaction fields. . At this time, the sample is diluted (hereinafter, such dilution is referred to as “limit dilution”) such that the number of target nucleic acids contained in each reaction field is either 1 or 0. Then, PCR is independently generated in each of the plurality of reaction fields to amplify the target nucleic acid so as to be detectable. Thereby, the concentration of the target nucleic acid in the sample is obtained from the number of reaction fields in which the signal is detected after amplification (the number of positive reaction fields) and / or the number of reaction fields in which the signal is not detected after amplification (the number of negative reaction fields) can do.
 デジタルPCRにおいてサンプルを含む反応液を物理的に独立した多数の反応場に分割する方法として、反応液の液滴をオイル中に形成する方法、すなわち、油中水型エマルジョン(W/Oエマルジョン)を形成する方法がある。この方法では、油中水型エマルジョン中の1つ1つの液滴を反応場として用いる(特許文献1)。 A method of forming droplets of a reaction solution in oil as a method of dividing a reaction solution containing a sample into a large number of physically independent reaction fields in digital PCR, that is, a water-in-oil emulsion (W / O emulsion) There is a way to form In this method, each single droplet in a water-in-oil emulsion is used as a reaction site (Patent Document 1).
 また、限界希釈した場合であっても、1つの反応場に複数の分析対象物が含まれる場合がある。これに起因する誤差を補正する方法として、分析対象物の数または濃度をポアソン(Poisson)モデルに基づいて確率論的に計算する方法が知られている。 In addition, even in the case of limiting dilution, one reaction site may contain a plurality of analytes. As a method of correcting an error resulting from this, there is known a method of stochastically calculating the number or concentration of an analyte based on a Poisson model.
特表2012-503773号公報Japanese Patent Application Publication No. 2012-503773
 油中水型エマルジョンを形成する方法としては、マイクロ流路デバイスを用いた方法や、機械撹拌を用いる方法などがあるが、油中水型エマルジョンの形成を高速に行うと、液滴のサイズ、すなわち反応場のサイズにばらつきが生じやすい。 As a method of forming a water-in-oil emulsion, there is a method using a microchannel device, a method using mechanical agitation, etc. When the water-in-oil emulsion is formed at high speed, the size of the droplets, That is, the size of the reaction site tends to vary.
 それぞれの反応場に分析対象物が含まれる確率は反応場のサイズに依存している。そのため、反応場のサイズのばらつきがある場合には、従来のポアソンモデルに基づく計算を行うだけでは分析結果の信頼度を十分に高くすることができない場合があるという課題があった。 The probability that each reaction field contains an analyte depends on the size of the reaction field. Therefore, there is a problem that when there is variation in the size of the reaction field, the reliability of the analysis result may not be sufficiently high only by performing the calculation based on the conventional Poisson model.
 そこで本発明では、上述の課題に鑑み、反応場のサイズのばらつきがある場合であっても、分析結果の信頼度を高めることを目的とする。 Therefore, in the present invention, in view of the above-mentioned problems, it is an object of the present invention to increase the reliability of analysis results even when there is variation in the size of reaction sites.
 本発明の一側面としての分析システムは、サンプル中の分析対象物の濃度を分析する分析システムであって、前記サンプルを含む液体を分割して生成された複数の反応場について、前記複数の反応場のそれぞれのサイズに関する情報を取得するサイズ情報取得部と、前記複数の反応場のそれぞれにおける前記分析対象物の存在に関する情報を取得分析対象物情報取得部と、前記反応場のサイズの分布を複数の区間に分け、前記区間ごとに、前記分析対象物が検出された反応場である陽性反応場の数に関する情報、および、前記分析対象物が検出されなかった反応場である陰性反応場の数に関する情報、からなる群から選択される少なくとも1つの情報を含む分布データを、前記サイズ情報取得部および前記シグナル情報取得部で取得された情報に基づいて生成する分布データ生成部と、前記陽性反応場の数に関する情報、および、前記陰性反応場の数に関する情報、からなる群から選択される少なくとも1つの情報に基づいて、濃度の導出に用いる区間を決定する区間決定部と、前記分布データのうち、前記区間決定部で決定された区間のデータに基づいて、前記サンプル中の前記分析対象物の濃度を導出する濃度導出部と、を有することを特徴とする。 An analysis system according to one aspect of the present invention is an analysis system that analyzes the concentration of an analyte in a sample, and the plurality of reactions for a plurality of reaction fields generated by dividing a liquid containing the sample. A size information acquisition unit for acquiring information on each size of the field, an information on acquisition of the presence of the analysis object in each of the plurality of reaction fields, an analysis object information acquisition unit, and a distribution of sizes of the reaction fields The information is divided into a plurality of sections, and information on the number of positive reaction fields which are reaction fields in which the analyte is detected, and negative reaction fields which are reaction fields in which the analyte is not detected. Distribution data including at least one information selected from the group consisting of information related to the number is acquired by the size information acquisition unit and the signal information acquisition unit Of the concentration based on at least one information selected from the group consisting of: a distribution data generation unit generated based on the information, information on the number of positive reaction fields, and information on the number of negative reaction fields And a concentration deriving unit for deriving the concentration of the analyte in the sample based on data of the section determined by the section determining unit among the distribution data. It is characterized by having.
 本発明によれば、反応場のサイズのばらつきがある場合であっても、分析結果の信頼度を高めることができる。 According to the present invention, even in the case where there is variation in the size of the reaction site, the reliability of the analysis result can be enhanced.
分析システムの構成を模式的に示す図である。It is a figure showing composition of an analysis system typically. 情報処理ユニットのハードウエア構成を模式的に示す図である。It is a figure which shows the hardware constitutions of an information processing unit typically. デジタル分析における、分析対象物を含む反応場の数と、「測定の不確かさ」の関係を示すグラフである。It is a graph which shows the number of reaction fields containing an analyte and the relationship of "the uncertainty of measurement" in digital analysis. 分析システムによる分析処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the analysis process by an analysis system. サーマルサイクル後のエマルジョン1の蛍光顕微鏡画像である。8 is a fluorescence microscope image of Emulsion 1 after thermal cycling. サーマルサイクル後のエマルジョン2の蛍光顕微鏡画像である。8 is a fluorescence microscope image of Emulsion 2 after thermal cycling. サーマルサイクル後のエマルジョン3の蛍光顕微鏡画像である。8 is a fluorescence microscope image of Emulsion 3 after thermal cycling. サーマルサイクル後のエマルジョン4の蛍光顕微鏡画像である。7 is a fluorescence microscope image of Emulsion 4 after thermal cycling. サーマルサイクル後のエマルジョン5の蛍光顕微鏡画像である。7 is a fluorescence microscope image of Emulsion 5 after thermal cycling. サーマルサイクル後のエマルジョン6の蛍光顕微鏡画像である。7 is a fluorescence microscope image of Emulsion 6 after thermal cycling. サーマルサイクル後のエマルジョン7の蛍光顕微鏡画像である。7 is a fluorescence microscope image of Emulsion 7 after thermal cycling. サーマルサイクル後のエマルジョン8の蛍光顕微鏡画像である。8 is a fluorescence microscope image of Emulsion 8 after thermal cycling. 比較例1における、相対希釈倍率とサンプル中の分析対象物の濃度の計算結果との関係を示すグラフである。It is a graph which shows the relationship between relative dilution magnification and the calculation result of the concentration of the analyte in the sample in Comparative Example 1. 実施例1における、相対希釈倍率とサンプル中の分析対象物の濃度の計算結果との関係を示すグラフである。5 is a graph showing the relationship between relative dilution factor and calculation result of concentration of an analyte in a sample in Example 1. FIG. 実施例2における、相対希釈倍率とサンプル中の分析対象物の濃度の計算結果との関係を示すグラフである。FIG. 16 is a graph showing the relationship between relative dilution factor and calculation result of concentration of analyte in sample in Example 2. FIG. 比較例2における、相対希釈倍率とサンプル中の分析対象物の濃度の計算結果との関係を示すグラフである。It is a graph which shows the relationship between relative dilution magnification and the calculation result of the concentration of the analyte in the sample in Comparative Example 2. 実施例3のそれぞれにおける、相対希釈倍率とサンプル中の分析対象物の濃度の計算結果との関係を示すグラフである。FIG. 16 is a graph showing the relationship between relative dilution factor and calculation result of concentration of analyte in sample in each of Example 3. FIG. 実施例4のそれぞれにおける、相対希釈倍率とサンプル中の分析対象物の濃度の計算結果との関係を示すグラフである。FIG. 16 is a graph showing the relationship between relative dilution factor and calculation result of concentration of analyte in sample in each of Example 4. FIG. サーマルサイクル後のエマルジョン9の蛍光顕微鏡画像である。8 is a fluorescence microscope image of Emulsion 9 after thermal cycling. サーマルサイクル後のエマルジョン10の蛍光顕微鏡画像である。8 is a fluorescence microscopy image of Emulsion 10 after thermal cycling. サーマルサイクル後のエマルジョン11の蛍光顕微鏡画像である。7 is a fluorescence microscope image of emulsion 11 after thermal cycling. サーマルサイクル後のエマルジョン12の蛍光顕微鏡画像である。8 is a fluorescence microscopy image of Emulsion 12 after thermal cycling. サーマルサイクル後のエマルジョン13の蛍光顕微鏡画像である。7 is a fluorescence microscope image of emulsion 13 after thermal cycling. 比較例3,実施例5のそれぞれにおける調製DNA濃度とサンプル中のDNA濃度の計算結果との関係を表すグラフである。It is a graph showing the relationship between the preparation result in each of comparative example 3 and Example 5, and the calculation result of the DNA concentration in a sample. エマルジョン9~11それぞれの濃度の計算結果と、市販装置の濃度における、相対希釈倍率とサンプル中の分析対象物の濃度の計算結果との関係を示すグラフである。15 is a graph showing the relationship between the calculation results of the concentrations of each of the emulsions 9 to 11 and the calculation results of the relative dilution ratio and the concentration of the analyte in the sample at the concentration of a commercially available device.
 以下、本発明の実施形態に係る分析システムについて、図面を参照しながら説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対して適宜変更、改良等が加えられたものも本発明の範囲に含まれる。 Hereinafter, an analysis system according to an embodiment of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and appropriate modifications may be made to the following embodiments based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Those to which improvements and the like have been added are also included in the scope of the present invention.
 [分析システムの構成]
 図1は、本実施形態に係る分析システムの構成を模式的に示す図である。本実施形態に係る分析システム1は、反応場生成ユニットU1と、反応ユニットU2と、検出ユニットU3と、情報処理ユニットU4と、を有する。各ユニット間は、部分的にまたは全体的に、LANまたはインターネットなどのネットワークを介して接続されていてもよい。
[Analysis system configuration]
FIG. 1 is a view schematically showing a configuration of an analysis system according to the present embodiment. The analysis system 1 according to the present embodiment includes a reaction field generation unit U1, a reaction unit U2, a detection unit U3, and an information processing unit U4. The units may be partially or totally connected via a network such as a LAN or the Internet.
 <反応場生成ユニット>
 反応場生成ユニットU1は、サンプル中の分析対象物を含む反応液などの液体を分割して、互いに物理的に独立した、複数の反応場を生成するユニットである。
<Reaction field generation unit>
The reaction field generation unit U1 is a unit that divides a liquid such as a reaction liquid containing an analyte in a sample to generate a plurality of reaction fields physically independent of one another.
 (反応場)
 本明細書において反応場とは、液液界面、気液界面、および固液界面からなる群から選択される少なくとも1つの界面によって囲まれた空間をいう。反応場における反応はこの閉じた空間内で生じ、他の反応場とは独立して反応が進行する。換言すれば、1つの反応場における反応は、上述の界面によって規定される空間内に閉じ込められた物質のみが関与する。
(Reaction site)
In the present specification, the reaction site refers to a space surrounded by at least one interface selected from the group consisting of a liquid-liquid interface, a gas-liquid interface, and a solid-liquid interface. The reaction in the reaction site takes place in this closed space and proceeds independently of the other reaction sites. In other words, the reaction in one reaction site involves only the substance confined in the space defined by the above-mentioned interface.
 例えば、マイクロプレートのようなプレート上の複数のウエルに反応液がそれぞれ分注されている場合、それぞれのウエルに分注されているそれぞれの反応液が反応場となる。この場合、反応場はウエルの壁面と反応液との間の固液界面と、大気と反応液との間の気液界面と、によって囲まれている。あるいは、反応液が、油中水型エマルジョン(W/Oエマルジョン)などのエマルジョンにおける液滴を形成している場合は、エマルジョン中の各液滴が反応場となる。この場合、反応場は連続相と分散相との間の液液界面によって囲まれている。 For example, when the reaction solution is respectively dispensed to a plurality of wells on a plate such as a microplate, each reaction solution dispensed to each well serves as a reaction site. In this case, the reaction site is surrounded by the solid-liquid interface between the wall of the well and the reaction liquid, and the gas-liquid interface between the atmosphere and the reaction liquid. Alternatively, when the reaction liquid forms droplets in an emulsion such as a water-in-oil emulsion (W / O emulsion), each droplet in the emulsion is a reaction site. In this case, the reaction site is surrounded by the liquid-liquid interface between the continuous phase and the dispersed phase.
 (分析対象物)
 本明細書において分析対象物とは、サンプル中に含まれ、定量分析の対象となる化合物や粒子をいう。本実施形態に係る分析対象物は、後述する反応場中での反応によって検出可能にすることができるものであれば、特に限定はされず、例えば、核酸、ペプチド、タンパク質、酵素などが挙げられる。
(Analyte)
As used herein, an analyte refers to a compound or particle contained in a sample and subjected to quantitative analysis. The analyte according to the present embodiment is not particularly limited as long as it can be detected by a reaction in a reaction site described later, and examples thereof include nucleic acids, peptides, proteins, enzymes, etc. .
 本明細書において「検出可能にする」とは、後述する反応ユニットU2における反応によって分析対象物に由来するシグナルを検出可能にすることをいう。例えば、もともとは検出不可能な程に微弱だったシグナルが、反応ユニットU2における増幅反応により分析対象物の数または濃度が増加することでシグナルが増強することによって、検出可能になる。また、反応によって所定のシグナルを発する物質が分析対象物から生成されることでも、分析対象物を検出可能にすることができる。あるいは、分析対象物が化学変化するなどしてシグナルを発するように変化しても、分析対象物を検出可能にすることができる。 In the present specification, “to make detectable” means to make a signal derived from an analyte detectable by a reaction in a reaction unit U2 described later. For example, an originally undetectable weak signal can be detected by enhancing the signal by increasing the number or concentration of analytes by the amplification reaction in the reaction unit U2. The analyte can also be made detectable by the fact that a substance that emits a predetermined signal due to the reaction is generated from the analyte. Alternatively, the analyte can be made detectable even if it changes to emit a signal, such as a chemical change.
 核酸は、詳しくは後述するが、核酸を増幅させるための増幅試薬と、核酸と相互作用して蛍光を発する蛍光試薬と、核酸を検出可能にするための薬剤として用い、PCRなどの核酸増幅反応によって検出可能にすることができる。また、ペプチドやタンパク質は、ELISA(Enzyme-Linked ImmunoSorbent Assay)法などによって検出可能にすることができる。なお、分析対象物は上記の核酸、ペプチド、タンパク質などを含む物質であってもよい。例えば、核酸、ペプチド、およびタンパク質の少なくともいずれかが共有結合等で結合または付着した分子、マイクロ粒子、ナノ粒子、細胞などが挙げられる。 The nucleic acid, which will be described in detail later, is used as an amplification reagent for amplifying the nucleic acid, a fluorescent reagent which interacts with the nucleic acid to emit fluorescence, and an agent for making the nucleic acid detectable, and a nucleic acid amplification reaction such as PCR. Can be made detectable. In addition, peptides and proteins can be made detectable by ELISA (Enzyme-Linked Immunosorbent Assay) method or the like. The analyte may be a substance containing the above-described nucleic acid, peptide, protein or the like. For example, molecules, microparticles, nanoparticles, cells and the like in which at least any one of nucleic acids, peptides, and proteins are covalently bound or attached, etc. can be mentioned.
 例えば、ヒトから採取した血液や、そこから抽出された核酸などを検体とし、該検体に含まれ得る、がんや感染症などの疾病に関わる遺伝子を含む核酸を分析対象物とすれば、当該疾病の診断などに有用な情報が得られると期待できる。また、食品を検体とすれば、遺伝子組換え作物(GMO)の評価などの食品検査を行うことができる。あるいは、環境中の土壌や水を検体とすれば、環境モニタリングを行うことができる。 For example, if blood collected from human or nucleic acid extracted therefrom is used as a sample and nucleic acid containing genes involved in diseases such as cancer and infectious diseases that can be contained in the sample is the analysis target It can be expected that useful information can be obtained for the diagnosis of diseases. Moreover, if a food is used as a sample, food inspection such as evaluation of genetically modified crops (GMO) can be performed. Alternatively, environmental monitoring can be performed by using soil and water in the environment as samples.
 本実施形態において核酸を分析対象物とする場合、核酸は、増幅の対象になる鋳型核酸であれば特に限定されず、DNA(DeoxyriboNucleic Acid)であってもよいし、RNA(RiboNucleic Acid)であってもよい。核酸の形態も特に限定されず、直鎖状の核酸であってもよく、また環状の核酸であってもよい。また、核酸は単一の塩基配列を有する1種類の核酸であってもよく、また、種々の塩基配列をそれぞれ有する複数種類の核酸(例えば相補的DNAライブラリーなど)であってもよい。 In the present embodiment, when the nucleic acid is an analyte, the nucleic acid is not particularly limited as long as it is a template nucleic acid to be amplified, and may be DNA (DeoxyriboNucleic Acid) or RNA (RiboNucleic Acid). May be The form of the nucleic acid is also not particularly limited, and may be a linear nucleic acid or a circular nucleic acid. The nucleic acid may be a single type of nucleic acid having a single base sequence, or may be a plurality of types of nucleic acids (for example, complementary DNA library etc.) each having various base sequences.
 (検体)
 本明細書において検体とは、生物や食品、環境などから採取または抽出された、サンプルの供給源である。一般には、定量分析されたサンプル中の分析対象物の濃度は、検体中の濃度に換算した上で、医療診断や食品、環境の評価などの各種の目的に利用される。
(Sample)
As used herein, a sample is a source of a sample collected or extracted from an organism, food, environment or the like. In general, the concentration of the analyte in the quantitatively analyzed sample is converted to the concentration in the sample and then used for various purposes such as medical diagnosis and evaluation of food and environment.
 (サンプル)
 本明細書においてサンプルとは、本実施形態に係る分析に供するものをいい、本実施形態では、サンプル中の分析対象物の濃度が測定される。サンプルは、検体そのものであってもよいし、検体に対して精製や濃縮、分析対象物の化学修飾や断片化など、分析のための前処理や調整を施したものであってもよい。サンプル中の分析対象物の濃度(単位体積当たりの数)は特に限定されないが、複数の反応場を生成したときに、複数の反応場のそれぞれに含まれる分析対象物の数が1個または0個となるような量であることが好ましい。このようにすることで、分析結果の信頼度を向上させることができる。
(sample)
In the present specification, the sample means one to be subjected to analysis according to the present embodiment, and in the present embodiment, the concentration of the analyte in the sample is measured. The sample may be the sample itself, or may be subjected to pretreatment or adjustment for analysis such as purification or concentration of the sample, chemical modification or fragmentation of the analyte, or the like. The concentration (number per unit volume) of analyte in the sample is not particularly limited, but when multiple reaction sites are generated, the number of analytes contained in each of the multiple reaction sites is one or zero. Preferably, the amount is By doing this, the reliability of the analysis result can be improved.
 反応場生成ユニットU1は、サンプル注入部101と、反応場生成部102と、容器103と、を有する。 The reaction field generation unit U1 includes a sample injection unit 101, a reaction field generation unit 102, and a container 103.
 (サンプル注入部)
 サンプル注入部101は、サンプルを含む液体である反応液を反応場生成部102へと注入する部分である。
(Sample injection unit)
The sample injection unit 101 is a unit for injecting a reaction liquid, which is a liquid containing a sample, into the reaction field generation unit 102.
 サンプル注入部101から注入された反応液は、反応場生成部102へと送液される。このとき、反応液は、ポンプ等の送液手段(不図示)によって送液されてもよい。また、サンプル注入部101から注入された反応液は、反応場生成部102へと送液される間に、エマルジョンを形成するための連続相としてのオイルと混合されてもよい。あるいは、サンプル注入部101からサンプルのみが注入され、反応場生成部102へと送液される間に、分析対象物を検出するための薬剤等と混合されて反応液を生成してもよい。 The reaction solution injected from the sample injection unit 101 is sent to the reaction field generation unit 102. At this time, the reaction liquid may be fed by a liquid feeding means (not shown) such as a pump. In addition, the reaction liquid injected from the sample injection unit 101 may be mixed with oil as a continuous phase for forming an emulsion while being sent to the reaction site generation unit 102. Alternatively, while only the sample is injected from the sample injection unit 101 and sent to the reaction field generation unit 102, the reaction solution may be generated by mixing with a drug or the like for detecting an analyte.
 (反応液)
 本明細書において反応液とは、分析対象物を含むサンプルと、当該分析対象物を検出可能にするための薬剤と、を少なくとも含む液体をいう。反応液は、水を含む水性液体であることが好ましい。
(Reaction liquid)
In the present specification, the reaction liquid refers to a liquid containing at least a sample containing an analyte and an agent for making the analyte detectable. The reaction solution is preferably an aqueous liquid containing water.
 (分析対象物を検出可能にするための薬剤)
 分析対象物が核酸である場合は、PCR法に代表されるような、酵素を用いた核酸増幅反応を用いて核酸を増幅することで、分析対象物を検出可能にすることができる。ここで、核酸増幅反応としては、反応場をサーマルサイクルに供することで反応を進行させるPCR法やLCR(Ligase Chain Reaction)法や、反応場をサーマルサイクルに供さずに温度調節することで反応を進行させるSDA(Strand Displacement Amplification)法、ICAN(Isothermal and Chimeric primer-initiated Amplification of Nucleic acids)法、LAMP(Loop-Mediated Isothermal Amplification)法などを好ましく使用することができる。
(A drug to make an analyte detectable)
When the analyte is a nucleic acid, the analyte can be made detectable by amplifying the nucleic acid using a nucleic acid amplification reaction using an enzyme, as typified by the PCR method. Here, as a nucleic acid amplification reaction, a reaction method is carried out by subjecting the reaction site to a thermal cycle, a PCR method for advancing the reaction, a LCR (Ligase Chain Reaction) method, or a reaction field by temperature control without subjecting it to a thermal cycle. Preferably, an SDA (Strand Displacement Amplification) method, an ICAN (Isothermal and Chimeric primer-Initiated Amplification of Nucleic acids) method, a LAMP (Loop-Mediated Isothermal Amplification) method, etc. can be used.
 核酸増幅反応を用いる場合は、核酸を増幅させるための増幅試薬と、核酸と相互作用して蛍光を発する蛍光試薬と、核酸を検出可能にするための薬剤として用いる。 When a nucleic acid amplification reaction is used, it is used as an amplification reagent for amplifying a nucleic acid, a fluorescence reagent that interacts with the nucleic acid to emit fluorescence, and an agent for making the nucleic acid detectable.
 増幅試薬は、分析対象物である標的核酸の有する所定の塩基配列に相補的な塩基配列を有する1つまたは一対のプライマー(フォワードプライマーおよびリバースプライマー)と、核酸合成反応を促進する生体触媒であるポリメラーゼと、を含有する。ポリメラーゼは、耐熱ポリメラーゼであることが好ましく、耐熱DNAポリメラーゼであることがより好ましい。また、増幅試薬は、核酸の原料としてのdNTP(DeoxyriboNucleotide-5’-TriPhosphate)などのリボ核酸を含有する。さらに、増幅試薬は、反応液中の水素イオン濃度(pH)をコントロールするための緩衝液または緩衝剤や、塩を含むことが好ましい。なお、増幅試薬は、上記各成分を含む市販のキットを用いてもよい。 The amplification reagent is one or a pair of primers (forward primer and reverse primer) having a base sequence complementary to a predetermined base sequence of the target nucleic acid to be analyzed, and a biocatalyst promoting a nucleic acid synthesis reaction And a polymerase. The polymerase is preferably a heat-resistant polymerase, and more preferably a heat-resistant DNA polymerase. In addition, the amplification reagent contains ribonucleic acid such as dNTP (DeoxyriboNucleotide-5'-TriPhosphate) as a raw material of nucleic acid. Furthermore, the amplification reagent preferably contains a buffer or buffer for controlling the hydrogen ion concentration (pH) in the reaction solution, or a salt. In addition, you may use the commercially available kit which contains said each component as an amplification reagent.
 プライマーとしては、標的核酸の一部の領域の塩基配列とストリンジェントな条件でハイブリダイズし、核酸増幅反応に用いることができるオリゴヌクレオチドであれば特に限定されない。ここで、ストリンジェントな条件とは、プライマーと鋳型核酸との間に少なくとも90%以上、好ましくは95%以上の配列同一性があるときに、該プライマーが鋳型核酸に特異的にハイブリダイズできる条件である。プライマーは、標的核酸の塩基配列に基づいて適宜設計できる。また、プライマーは、核酸増幅法の種類に応じて設計されることが望ましい。プライマーの長さは、通常、5~50ヌクレオチド、好ましくは、10~40ヌクレオチドである。なお、プライマーは、分子生物学領域において一般に用いられる核酸合成方法により生成することができる。 The primer is not particularly limited as long as it is an oligonucleotide that hybridizes with the base sequence of a partial region of the target nucleic acid under stringent conditions and can be used for a nucleic acid amplification reaction. Here, stringent conditions mean that the primer can specifically hybridize to the template nucleic acid when there is at least 90% or more, preferably 95% or more, of sequence identity between the primer and the template nucleic acid. It is. The primers can be appropriately designed based on the base sequence of the target nucleic acid. Also, it is desirable that the primers be designed according to the type of nucleic acid amplification method. The length of the primer is usually 5 to 50 nucleotides, preferably 10 to 40 nucleotides. In addition, a primer can be produced | generated by the nucleic acid synthesis method generally used in the molecular biology area | region.
 緩衝液または緩衝剤としては、任意の適切な緩衝液または緩衝剤を用いることができる。緩衝液または緩衝剤は、反応液の水素イオン濃度(pH)を、所望の反応が効率的に起こり得るpH、または、その近傍に維持するよう構成することが好ましい。PCRを実施する場合、反応液のpHは、例えば6.5~9.0の間で、使用する増幅試薬の各成分にあわせて任意に選択することができる。緩衝液または緩衝剤の種類は、分子生物学領域で一般に使用されるものを使用することができ、例えば、Tris(トリス(ヒドロキシメチル)アミノメタン)バッファー、HEPES(4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルフォン酸)バッファー、MES(2-モルホリノエタンスルホン酸)バッファーなどを使用することができる。 As the buffer or buffer, any suitable buffer or buffer can be used. The buffer or buffer is preferably configured to maintain the hydrogen ion concentration (pH) of the reaction solution at or near the pH at which the desired reaction can efficiently occur. When PCR is carried out, the pH of the reaction solution can be arbitrarily selected according to each component of the amplification reagent to be used, for example, between 6.5 and 9.0. As the buffer or the type of buffer, those commonly used in the molecular biology area can be used, for example, Tris (Tris (hydroxymethyl) aminomethane) buffer, HEPES (4- (2-hydroxyethyl) -1-Piperazineethanesulfonic acid) buffer, MES (2-morpholinoethanesulfonic acid) buffer, etc. can be used.
 塩としては、例えば、CaCl、KCl、MgCl、MgSO、NaCl、およびこれらの組み合わせから適宜選択されたものを使用することができる。 As the salt, for example, a salt appropriately selected from CaCl 2 , KCl, MgCl 2 , MgSO 4 , NaCl, and a combination thereof can be used.
 蛍光試薬は、核酸と相互作用して蛍光を発する薬剤であり、一般的にPCR法に用いられる、蛍光インターカレーター(蛍光色素)やプローブアッセイ用のプローブ(蛍光標識プローブ)を用いることができる。蛍光インターカレーターとしては、エチジウムブロマイド、SYBR Green I(「SYBR」はモレキュラープローブスの登録商標)、LC Greenなどを好適に用いることができる。蛍光標識プローブとしては、標的核酸に特異的にハイブリダイズするオリゴヌクレオチド(プローブ)であって、一方の末端(5´末端)がレポーターで修飾され、もう一方の末端(3´末端)がクエンチャーで修飾されたものを用いることができる。レポーターとしてはFITC(Fluorescein-5-IsoThioCyanate)やVICなどの蛍光物質を、クエンチャーとしてTAMARAなどの蛍光物質や、Eclipse、DABCYL、MGBなどを用いることができる。蛍光標識プローブとしては、TaqMan(「TaqMan」はロシュダイアグノスティックスの登録商標)プローブなどを用いることができる。なお、ここでは蛍光試薬を用いる場合について説明したが、蛍光以外の発光を利用する発光試薬を使用してもよい。 A fluorescent reagent is an agent that fluoresces by interacting with a nucleic acid, and a fluorescent intercalator (fluorescent dye) or a probe for a probe assay (fluorescently labeled probe) generally used in a PCR method can be used. As a fluorescent intercalator, ethidium bromide, SYBR Green I ("SYBR" is a registered trademark of Molecular Probes), LC Green, etc. can be used suitably. The fluorescently labeled probe is an oligonucleotide (probe) that specifically hybridizes to a target nucleic acid, and one end (5 'end) is modified with a reporter, and the other end (3' end) is a quencher. Those modified with can be used. As a reporter, a fluorescent substance such as FITC (Fluorescein-5-IsoThioCyanate) or VIC can be used, and as a quencher, a fluorescent substance such as TAMARA, Eclipse, DABCYL, MGB or the like can be used. As a fluorescently labeled probe, TaqMan ("TaqMan" is a registered trademark of Roche Diagnostics) probe or the like can be used. In addition, although the case where a fluorescence reagent was used was demonstrated here, you may use the luminescence reagent which utilizes light emission other than fluorescence.
 一方、分析対象物がペプチドやタンパク質である場合は、ELISA法のような、分析対象物を特異的に反応する抗体(または抗原)と酵素を用いた抗原抗体反応および酵素反応により、分析対象物を検出可能にすることができる。より具体的には、例えば、分析対象物に酵素で標識された抗体(または抗原)を抗原抗体反応によって複合化させ、この酵素の酵素反応によって生じる発色または発光物質を検出する。なお、分析対象物と抗原抗体反応を生じさせる抗体(または抗原)は予め酵素標識されていなくてもよく、抗原抗体反応後に酵素によって標識されてもよい。 On the other hand, when the analyte is a peptide or a protein, the analyte is obtained by an antigen-antibody reaction and an enzyme reaction using an antibody (or an antigen) that specifically reacts with the analyte, such as ELISA. Can be made detectable. More specifically, for example, an antibody (or an antigen) labeled with an enzyme is conjugated to an analyte by an antigen-antibody reaction, and a colored or luminescent substance generated by the enzyme reaction of this enzyme is detected. The analyte and the antibody (or antigen) that causes an antigen-antibody reaction may not be previously labeled with an enzyme, and may be labeled with an enzyme after the antigen-antibody reaction.
 ELISA法を用いる場合は、抗体(または抗原)と酵素を含む試薬を、分析対象物を検出可能にするための薬剤として用いる。ELISA法に用いる試薬として市販されているキットを用いてもよい。 When the ELISA method is used, a reagent containing an antibody (or an antigen) and an enzyme is used as an agent for making an analyte detectable. A commercially available kit may be used as a reagent for use in the ELISA method.
 なお、発生させる蛍光の波長が異なるなど、複数の分析対象物を区別できるようにそれぞれ検出可能にする複数種類の薬剤を用いれば、複数種類の分析対象物を一度の分析でまとめて検出することもできる。 In addition, if a plurality of types of drugs that can be detected so that a plurality of analytes can be distinguished, for example, different wavelengths of fluorescence to be generated, a plurality of types of analytes are collectively detected in one analysis You can also.
 (反応場生成部)
 反応場生成部102は、サンプル注入部101から注入された反応液を分割して、互いに物理的に独立した、複数の反応場を生成する。反応液を分割して複数の反応場を生成する方法としては、例えば、下記の方法が挙げられる。
(Reaction site generator)
The reaction field generation unit 102 divides the reaction solution injected from the sample injection unit 101 to generate a plurality of reaction fields physically independent of each other. As a method of dividing | segmenting a reaction liquid and producing | generating several reaction fields, the following method is mentioned, for example.
 第1の方法として、マイクロウエルプレートのような、基板上に複数の微小なウエルが形成されたガラスや樹脂の基板を用い、それぞれのウエルに反応液を分注する方法が挙げられる。これにより、微小なウエルのそれぞれの内部が反応場となる。 As a first method, there is a method of dispensing a reaction solution to each well using a glass or resin substrate having a plurality of minute wells formed on a substrate such as a microwell plate. Thereby, the inside of each of the minute wells becomes a reaction site.
 第2の方法として、表面に所定のパターン形状で撥水処理または撥油処理が施されたガラスや樹脂の基板を用い、基板上に反応液を塗布する方法が挙げられる。例えば格子状に撥水処理が施されたガラス基板上に水性の反応液を塗布すれば、それぞれの格子の内側に液滴が形成され、この複数の液滴のそれぞれが反応場となる。 As a second method, there is a method of applying a reaction liquid on a substrate using a glass or resin substrate which has been subjected to a water repellent treatment or an oil repellent treatment in a predetermined pattern shape on the surface. For example, when an aqueous reaction solution is applied on a glass substrate water-repellently treated in the form of a grid, droplets are formed inside each grid, and each of the plurality of droplets serves as a reaction site.
 第3の方法として、反応液と、反応液と相溶しない液体(以下、「非相溶液体」と称する)とから、非相溶液体中に反応液が液滴状に分散しているエマルジョンを形成する方法が挙げられる。この方法は、換言すれば、非相溶液体が連続相であり、反応液が分散相であるエマルジョンを形成する方法である。例えば、水を含む水性液体である反応液と、油性液体(オイル)と、を混同して、油中水型エマルジョン(W/Oエマルジョン)を形成すれば、オイル中に分散している反応液からなる液滴のそれぞれが反応場となる。 As a third method, an emulsion in which a reaction liquid is dispersed in the form of droplets from a reaction liquid and a liquid incompatible with the reaction liquid (hereinafter referred to as "non-phase solution") in the non-phase solution. Methods to form This method is, in other words, a method of forming an emulsion in which the non-phase solution is a continuous phase and the reaction liquid is a dispersed phase. For example, if a reaction liquid which is an aqueous liquid containing water and an oily liquid (oil) are mixed to form a water-in-oil emulsion (W / O emulsion), the reaction liquid dispersed in the oil Each of the liquid droplets is a reaction site.
 反応場生成部102は、これらの中でも第3の方法、すなわち、反応液と非相溶液体とから、非相溶液体中に反応液が液滴状に分散したエマルジョンを形成する方法によって反応場を生成することが好ましい。すなわち、反応場生成部102は、反応液と、反応液と非相溶な非相溶液体とから、エマルジョンを生成するエマルジョン生成部であることが好ましい。 Among these, the reaction field generation unit 102 forms a reaction field by the third method, that is, a method of forming an emulsion in which the reaction liquid is dispersed in the form of droplets from the reaction liquid and the nonphase solution in the nonphase solution. It is preferred to produce That is, the reaction field generation unit 102 is preferably an emulsion generation unit that generates an emulsion from the reaction liquid and the non-phase solution body incompatible with the reaction liquid.
 (エマルジョン生成部)
 エマルジョンを生成する方法としては、特に限定はされず、従来公知の乳化方法を利用できる。例えば、撹拌装置や超音波破砕装置などにより機械的エネルギーを付与することでエマルジョンを形成する機械乳化法が挙げられる。また、マイクロ流路乳化法やマイクロ流路分岐乳化法などのマイクロ流路デバイスを用いた方法、乳化膜を用いる膜乳化法などが挙げられる。これらの方法は、単独で用いてもよいし、複数を組み合わせて用いてもよい。これらの中でも機械的乳化法や膜乳化法は、マイクロ流路デバイスを用いた方法に比べて液滴のサイズのばらつき(分散)が大きくなる傾向にあるものの、スループット良くエマルジョンを形成できるため好ましい。また、エマルジョンを形成する装置の装置構成を単純にできること、液滴のサイズのばらつきが比較的低いエマルジョンを形成できることなどから、膜乳化法が特に好ましい。すなわち、反応場生成部102は、膜乳化手段または機械的乳化手段であることがより好ましく、膜乳化手段であることが特に好ましい。
(Emulsion part)
There is no particular limitation on the method of producing the emulsion, and conventionally known emulsification methods can be used. For example, there is a mechanical emulsification method in which an emulsion is formed by applying mechanical energy with a stirring device or an ultrasonic crushing device. In addition, a method using a microchannel device such as a microchannel emulsification method or a microchannel bifurcation emulsification method, a membrane emulsification method using an emulsification film, and the like can be mentioned. These methods may be used alone or in combination of two or more. Among these, mechanical emulsifying method and membrane emulsifying method are preferable because they can form an emulsion with good throughput, although dispersion (dispersion) of droplet size tends to be larger as compared with the method using a microchannel device. In addition, the membrane emulsification method is particularly preferable because the apparatus configuration of the apparatus for forming the emulsion can be simplified and the emulsion having relatively small variation in droplet size can be formed. That is, the reaction site generation unit 102 is more preferably a membrane emulsification means or a mechanical emulsification means, and particularly preferably a membrane emulsification means.
 膜乳化法は、分散相または連続相、あるいは分散相および連続相の混合物を複数の細孔やスリットを有する乳化膜に透過させることでエマルジョンを形成する方法である。膜乳化法において分散相または連続相、あるいは分散相および連続相の混合物を乳化膜に透過させる回数は特に限定はされず、1回であってもよいし、複数回であってもよい。 The membrane emulsification method is a method of forming an emulsion by permeating a dispersed phase or a continuous phase, or a mixture of a dispersed phase and a continuous phase to an emulsion membrane having a plurality of pores and slits. The number of times the dispersed phase or the continuous phase, or the mixture of the dispersed phase and the continuous phase is allowed to permeate through the emulsion membrane in the membrane emulsification method is not particularly limited, and may be once or plural times.
 膜乳化法としては、直接膜乳化法やポンピング乳化法などを用いることができる。直接膜乳化法とは、乳化膜を介して分散相を一定圧力で押し出すことにより、押し出される側をゆっくり流れている連続相中に、エマルジョンを形成する方法である。ポンピング乳化法とは、連続相を採取したシリンジと分散相を採取したシリンジとで乳化膜を挟み、2つのシリンジから液体を交互に押し出して乳化膜を通過させることによって、エマルジョンを調製する方法である。なおポンピング乳化法においては、2つのシリンジの一方に連続相と分散相の混合物を採取しておき、もう一方のシリンジは空にしておいてもよい。ポンピング乳化法においては、それぞれシリンジと接続可能な一対のコネクターの間に乳化膜を挟み込んだポンピング式の乳化デバイスを用いることができる。 As the membrane emulsification method, a direct membrane emulsification method, a pumping emulsification method or the like can be used. The direct membrane emulsification method is a method of forming an emulsion in a continuous phase flowing slowly on the extruded side by extruding the dispersed phase at a constant pressure through the emulsification membrane. The pumping emulsification method is a method of preparing an emulsion by sandwiching the emulsification membrane with a syringe from which the continuous phase is collected and a syringe from which the dispersion phase is collected, and alternately pushing out the liquid from the two syringes to pass through the emulsification membrane. is there. In the pumping emulsification method, a mixture of the continuous phase and the dispersed phase may be collected in one of two syringes, and the other syringe may be emptied. In the pumping emulsification method, it is possible to use a pumping emulsification device in which an emulsification film is sandwiched between a pair of connectors that can be connected to a syringe.
 膜乳化法で使用する乳化膜としては、複数の細孔を有する多孔質体の膜や、スリットを有する膜を用いることができる。具体的には、SPG(シラス多孔質ガラス)などの多孔質ガラス膜、ポリカーボネート製メンブレンフィルター、ポリテトラフルオロエチレン(PTFE)製メンブレンフィルター、などを用いることができる。また、乳化膜の表面は疎水化処理されていることがより好ましい。乳化膜の孔径は、形成しようとする油中水型エマルジョン中の液滴のサイズに応じて選択することができ、0.2μm以上100μm以下であることが好ましく、5μm以上50μm以下であることがより好ましい。 As an emulsification membrane used in the membrane emulsification method, a membrane of a porous body having a plurality of pores or a membrane having a slit can be used. Specifically, a porous glass membrane such as SPG (Shirasu porous glass), a polycarbonate membrane filter, a polytetrafluoroethylene (PTFE) membrane filter, or the like can be used. Moreover, it is more preferable that the surface of the emulsion film is subjected to a hydrophobization treatment. The pore diameter of the emulsion film can be selected according to the size of droplets in the water-in-oil emulsion to be formed, and is preferably 0.2 μm to 100 μm, and is 5 μm to 50 μm. More preferable.
 (オイル)
 反応液が水を含む水性液体である場合は、反応液と相溶しない非相溶液体として、油性液体(オイル)を用いることができる。この場合、反応場生成手段102によって、W/Oエマルジョンが生成される。
(oil)
When the reaction liquid is an aqueous liquid containing water, an oily liquid (oil) can be used as a non-phase solution incompatible with the reaction liquid. In this case, the W / O emulsion is generated by the reaction field generation means 102.
 オイルとしては、炭化水素系オイル、シリコーンオイル、フッ素系オイルなどを用いることができる。炭化水素系オイルとしては、ミネラルオイル;スクワランオイル、オリーブオイルなどの動植物由来のオイル;n-ヘキサデカンなどの炭素原子数10~20のパラフィン系炭化水素;炭素原子数10~20のオレフィン系炭化水素などを用いることができる。炭化水素系オイルの市販品としては、例えば、TEGOSOFT DEC(炭酸ジエチルヘキシル)(エボニック製、「TEGOSOFT」はエボニックの登録商標)を用いることができる。フッ素系オイルとしては、HFE-7500(2-(トリフルオロメチル)-3-エトキシドデカフルオロヘキサン)などを用いることができる。フッ素系オイルの市販品としては、例えば、FLUORINERT FC-40、FLUORINERT FC-40、FLUORINERT FC-3283(スリーエム製、「FLUORINERT」はスリーエムの登録商標)などを用いることができる。また、炭化水素系オイル、シリコーンオイル、フッ素系オイルを適宜組み合わせて用いてもよい。 As the oil, hydrocarbon oil, silicone oil, fluorine oil and the like can be used. Examples of hydrocarbon oils include mineral oils; oils derived from animals and plants such as squalane oil and olive oil; paraffin hydrocarbons having 10 to 20 carbon atoms such as n-hexadecane; olefin hydrocarbons having 10 to 20 carbon atoms Etc. can be used. As a commercial item of hydrocarbon-based oil, for example, TEGOSOFT DEC (diethylhexyl carbonate) (manufactured by Evonik, "TEGOSOFT" is a registered trademark of Evonik) can be used. As the fluorine-based oil, HFE-7500 (2- (trifluoromethyl) -3-ethoxydodecafluorohexane) can be used. As commercially available products of fluorinated oils, for example, FLUORINERT FC-40, FLUORINERT FC-40, FLUORINERT FC-3283 (manufactured by 3M, “FLUORINERT” is a registered trademark of 3M) can be used. Moreover, you may use combining hydrocarbon oil, silicone oil, and fluorine oil suitably.
 (その他添加剤)
 エマルジョンを生成する際に、界面活性剤をさらに添加してもよい。界面活性剤を添加することで、エマルジョン中の液滴のサイズの制御やエマルジョンを安定に維持するなどの効果が期待できる。界面活性剤としては、乳化処理において一般的に用いられている従来公知の界面活性剤を用いることができ、例えば、非イオン性界面活性剤、フッ素系樹脂、ホスホコリン含有樹脂などを用いることが好ましい。非イオン系界面活性剤としては炭化水素系界面活性剤や、シリコーン系界面活性剤、フッ素系界面活性剤を用いることができる。
(Other additives)
A surfactant may be further added in forming the emulsion. By adding a surfactant, effects such as control of the size of droplets in the emulsion and keeping the emulsion stable can be expected. As the surfactant, conventionally known surfactants generally used in emulsification treatment can be used. For example, it is preferable to use nonionic surfactant, fluorocarbon resin, phosphocholine containing resin, etc. . As a nonionic surfactant, a hydrocarbon surfactant, a silicone surfactant, or a fluorine surfactant can be used.
 炭化水素系非イオン性界面活性剤の市販品としては、例えば、Pluronic F-68(ポリオキシエチレン-ポリオキシプロピレン ブロックコポリマー)(シグマ-アルドリッチ製、「Pluronic」はBASFの登録商標)、Span 60(ソルビタンモノステアラート)(東京化成工業製、「Span」はクローダインターナショナルの登録商標)、Span 80(ソルビタンモノオレアート)(シグマ-アルドリッチ製、「Span」はクローダインターナショナルの登録商標)、Triton-X100(ポリオキシエチレン(10)オクチルフェニルエーテル)(シグマ-アルドリッチ製、「Triton」はユニオンカーバイドの登録商標)、Tween 20(ポリオキシエチレンソルビタンモノラウラート)、Tween 80(ポリオキシエチレンソルビタンモノオレアート)(以上、シグマ-アルドリッチ製、「Tween」はクローダインターナショナルの登録商標)、などを用いることができる。シリコーン系非イオン性界面活性剤としては、ABIL EM90(セチルジメチコンコポリオール(セチルPEG/PPG10-1ジメチコン))、ABIL EM120(ビス-(グリセリル/ラウリル)グリセリルラウリルジメチコン)、ABIL EM180(セチルPEG/PPG10-1ジメチコン)、ABIL WE09(イソステアリン酸ポリグリセリル-4、セチルジメチコンコポリオール、ラウリン酸ヘキシル)(以上、エボニック製、「ABIL」はエボニックの登録商標)、などを用いることができる。フッ素系樹脂としては、Krytox-AS(「Krytox」はケマーズの登録商標)などを用いることができる。ホスホコリン含有樹脂としては、Lipidure-S(日油製、「Lipidure」は日油の登録商標)などを用いることができる。 Commercially available hydrocarbon non-ionic surfactants include, for example, Pluronic F-68 (polyoxyethylene-polyoxypropylene block copolymer) (manufactured by Sigma-Aldrich, “Pluronic” is a registered trademark of BASF), Span 60 (Sorbitan Monostearate) (manufactured by Tokyo Chemical Industry Co., Ltd., "Span" is a registered trademark of Croda International), Span 80 (Sorbitan monooleate) (manufactured by Sigma-Aldrich, "Span" is a registered trademark of Croda International), Triton- X100 (polyoxyethylene (10) octyl phenyl ether) (manufactured by Sigma-Aldrich, “Triton” is a registered trademark of Union Carbide), Tween 20 (polyoxyethylene sorbitan monolaur) ), Tween 80 (polyoxyethylene sorbitan monooleate) (or, Sigma - Aldrich, "Tween" can be used registered trademark), and the like of Croda International. As silicone type nonionic surfactant, ABIL EM90 (Cetyl dimethicone copolyol (Cetyl PEG / PPG10-1 Dimethicone)), ABIL EM 120 (Bis- (glyceryl / lauryl) glyceryl lauryl dimethicone), ABIL EM180 (Cetyl PEG / PPG10-1 dimethicone), ABIL WE09 (polyglyceryl isostearate-4, cetyl dimethicone copolyol, hexyl laurate) (manufactured by Evonik, “ABIL” is a registered trademark of Evonik), and the like can be used. As the fluorine-based resin, Krytox-AS ("Krytox" is a registered trademark of Chemers) can be used. As the phosphocholine-containing resin, Lipidure-S (manufactured by NOF Corporation, “Lipidure” is a registered trademark of NOF, etc.) can be used.
 エマルジョンにおける界面活性剤の濃度は、特に限定はされないが、0.01質量%以上10質量%以下とすることが好ましく、0.1質量%以上8質量%以下とすることがより好ましく、1質量%以上4質量%以下とすることがさらに好ましい。 The concentration of the surfactant in the emulsion is not particularly limited, but is preferably 0.01% by mass to 10% by mass and more preferably 0.1% by mass to 8% by mass, and more preferably 1% by mass. It is more preferable to set it as% or more and 4 mass% or less.
 エマルジョンにおける、反応液(分散相)に対する非相溶液体(連続相)の体積比は特に限定はされないが、1以上300以下であることが好ましく、1以上150以下であることがより好ましい。 The volume ratio of the non-phase solution (continuous phase) to the reaction liquid (dispersed phase) in the emulsion is not particularly limited, but is preferably 1 or more and 300 or less, and more preferably 1 or more and 150 or less.
 エマルジョン中の液滴のサイズは特に限定はされないが、直径で、1μm以上300μm以下であることが好ましく、1μm以上200μm以下であることがより好ましく、20μm以上150μm以下であることがさらに好ましい。液滴の直径を300μm以下とすることで、臨床検査などのように、検体量やサンプル量が数十~数百μL程度と少ない場合であっても、液滴の数(反応場の数)を多くすることができ、分析の精度が高めることができる。また、液滴の直径を300μm以下とすることで、エマルジョンの安定性を高めることができる。 The size of the droplets in the emulsion is not particularly limited, but the diameter is preferably 1 μm or more and 300 μm or less, more preferably 1 μm or more and 200 μm or less, and still more preferably 20 μm or more and 150 μm or less. By setting the droplet diameter to 300 μm or less, the number of droplets (the number of reaction sites) even when the sample amount or sample amount is as small as several tens to several hundreds of μL, as in clinical examinations and the like The accuracy of the analysis can be increased. Moreover, the stability of an emulsion can be improved by the diameter of a droplet being 300 micrometers or less.
 エマルジョン中の液滴のサイズの分布は、多分散であることが好ましい。なお、本明細書において、多分散とは、単分散ではないこと、すなわち、液滴のサイズが均一でなく、ばらついていることをいう。エマルジョン中の液滴のサイズの分布は、単分散に近い分布(例えば、液滴直径の変動係数(CV)が数%以下)であってもよく、複数のサイズの液滴が混合されていてもよい。機械的乳化法や膜乳化法により生成したエマルジョン中の液滴のサイズの分布は、一般に、液滴直径の変動係数(CV)が10~20%程度、あるいはそれ以上の分布を有する場合が多い。特に、エマルジョンの形成を高速に行った場合は、エマルジョン中の液滴のサイズは多分散になりやすい。本実施形態によれば、液滴のサイズにばらつきがある場合であっても、信頼度の高い定量分析を行うことができる。 The distribution of droplet sizes in the emulsion is preferably polydispersed. In the present specification, polydispersion means not being monodisperse, that is, the size of droplets is not uniform but is dispersed. The distribution of the sizes of droplets in the emulsion may be a distribution close to monodispersion (for example, a coefficient of variation (CV) of droplet diameter is several% or less), and droplets of a plurality of sizes are mixed. It is also good. Generally, the distribution of droplet sizes in emulsions produced by mechanical emulsification or membrane emulsification has a distribution in which the variation coefficient (CV) of droplet diameter is about 10 to 20% or more in many cases. . In particular, when the emulsion is formed at high speed, the size of droplets in the emulsion tends to be polydispersed. According to the present embodiment, even if there is variation in droplet size, highly reliable quantitative analysis can be performed.
 エマルジョン中の液滴の数は、100個以上1,000,000,000個以下であることが好ましく、100個以上20,000,000個以下であることがより好ましく、2,000個以上20,000,000個以下であることがより好ましい。後述する通り、本発明者らによる試算では、デジタル分析において分析結果の信頼度を確保するためには、少なくとも100個以上の液滴が分析対象物を含むと判定されることが好ましいため、液滴の数は100個以上であることが好ましい。例えば、臨床検査の場合、反応液の量は一般に、0.01mL~0.5mL程度で設定される場合が多く、液滴のサイズが10μm~200μm程度である場合は、液滴の数としておよそ2,000個~1,000,000,000個の間で設定されることになる。 The number of droplets in the emulsion is preferably 100 or more and 1,000,000,000 or less, more preferably 100 or more and 20,000,000 or less, and 2,000 or more and 20 or more. It is more preferable that the number is, 000,000 or less. As described later, in the estimation by the present inventors, in order to ensure the reliability of the analysis result in the digital analysis, it is preferable that it is determined that at least 100 droplets or more contain the analyte. The number of droplets is preferably 100 or more. For example, in the case of clinical examination, the volume of the reaction solution is generally set to about 0.01 mL to 0.5 mL in many cases, and when the droplet size is about 10 μm to 200 μm, the number of droplets is approximately It will be set between 2,000 and 1,000,000,000.
 (容器)
 容器103は、反応場生成部102で生成された複数の反応場を保持する容器である。反応場生成部102がエマルジョン生成部である場合は、容器103は、エマルジョン生成部によって生成されたエマルジョンを収容する容器である。また、反応場生成部102が、基板上に複数の微小なウエルが形成されたガラスや樹脂の基板を用い、それぞれのウエルに反応液を分注することで複数の反応場を生成する場合には、ウエルが形成された基板が容器103となる。
(container)
The container 103 is a container for holding a plurality of reaction fields generated by the reaction field generation unit 102. When the reaction site generation unit 102 is an emulsion generation unit, the container 103 is a container for containing the emulsion generated by the emulsion generation unit. Also, in the case where the reaction field generation unit 102 generates a plurality of reaction fields by dispensing reaction liquid in each well using a glass or resin substrate in which a plurality of minute wells are formed on the substrate. The substrate on which the well is formed is the container 103.
 容器103は複数の反応場を保持した状態で、搬送ユニット(不図示)によって反応場生成ユニットU1から反応ユニットU2へ、そして検出ユニットU3へと搬送される。なお、搬送ユニット(不図示)によって容器103をユニット間で搬送する場合について説明するが、これに限定はされず、分析システム1の操作者が容器103を搬送してもよい。 The container 103 is transported by the transport unit (not shown) from the reaction field generation unit U1 to the reaction unit U2 and to the detection unit U3 while holding a plurality of reaction sites. In addition, although the case where the container 103 is conveyed between units by a conveyance unit (not shown) is demonstrated, it is not limited to this, The operator of the analysis system 1 may convey the container 103. FIG.
 容器103は、サンプル注入部101および反応場生成部102の一部または全部とともに、反応場生成ユニットU1から着脱可能に構成されていることが好ましい。すなわち、反応場生成ユニットU1は、サンプル注入部101、反応場生成部102、容器103の各機能を備えたカートリッジが、反応場生成ユニットU1の本体から着脱可能な構成であることが好ましい。このような構成とすることで、サンプル間でのコンタミを防ぐことができる。なお、当該カートリッジは、後述する反応制御器201を備えていてもよい。 The container 103 is preferably configured to be removable from the reaction field generation unit U1 together with part or all of the sample injection unit 101 and the reaction field generation unit 102. That is, it is preferable that the reaction field production | generation unit U1 is a structure in which the cartridge provided with each function of the sample injection part 101, reaction field production | generation part 102, and the container 103 is detachable from the main body of reaction field production | generation unit U1. Such a configuration can prevent contamination between samples. The cartridge may include a reaction controller 201 described later.
 <反応ユニット>
 反応ユニットU2は、反応制御器201を有し、反応場生成ユニットU1が生成した複数の反応場のそれぞれにおいて反応を進行させるユニットである。この反応により、複数の反応場のそれぞれに含まれている分析対象物を検出可能にすることができる。
<Reaction unit>
The reaction unit U2 has a reaction controller 201, and is a unit that causes a reaction to proceed in each of the plurality of reaction fields generated by the reaction field generation unit U1. This reaction can make the analyte contained in each of the plurality of reaction sites detectable.
 (反応)
 分析対象物が核酸である場合は、上述の通り、PCR法に代表されるような、酵素を用いた核酸増幅反応を用いて核酸を増幅することで、分析対象物を検出可能にすることがでる。核酸増幅反応としては、上述の通り、PCR法やLCR法、SDA法、ICAN法、LAMP法などを好ましく用いることができる。これらの核酸増幅反応を行う場合には、反応場をサーマルサイクルに供したり、一定の温度に維持したり、所定のプロファイルで温度を与えたりするなど、反応場の温度を調節することで反応を制御することが好ましい。あるいは、所定の形状のマイクロ流路を有するマイクロ流路デバイスのマイクロ流路中に反応場を流すことで、反応を制御する方法も知られている(Science,280,1046(1998))。
(reaction)
When the analyte is a nucleic acid, as described above, it is possible to detect the analyte by amplifying the nucleic acid using a nucleic acid amplification reaction using an enzyme, as typified by the PCR method. Out. As the nucleic acid amplification reaction, as described above, PCR method, LCR method, SDA method, ICAN method, LAMP method and the like can be preferably used. When performing these nucleic acid amplification reactions, the reaction field is subjected to a thermal cycle, maintained at a constant temperature, or given a temperature with a predetermined profile, etc. to control the reaction field temperature. It is preferable to control. Alternatively, there is also known a method of controlling a reaction by flowing a reaction field in a microchannel of a microchannel device having a microchannel of a predetermined shape (Science, 280, 1046 (1998)).
 分析対象物がペプチドやタンパク質である場合は、上述の通り、ELISA法のような、酵素反応と抗原抗体反応とを組み合わせた分子生物学的手法によって、分析対象物を検出可能にすることができる。この場合は、反応場の温度を所定の温度に維持するように、反応場の温度を調節することが好ましい。 When the analyte is a peptide or a protein, as described above, the analyte can be made detectable by a molecular biological technique combining an enzyme reaction and an antigen-antibody reaction such as ELISA. . In this case, it is preferable to adjust the temperature of the reaction site so as to maintain the temperature of the reaction site at a predetermined temperature.
 (反応制御器)
 反応制御器201は、容器103中の複数の反応場のそれぞれにおける反応を制御する。反応制御器201は、容器103中の複数の反応場のそれぞれにおいて反応を進行させる反応部ということもできる。反応制御器201が複数の反応場のそれぞれにおける反応を制御する方法は特に限定はされず、例えば、反応場の温度を制御することで反応を制御してもよいし、マイクロ流路中における反応場の位置や速度を制御することで反応場を制御してもよい。すなわち、反応制御器201は、加熱器や冷却器などの温度調節器を有していてもよいし、マイクロ流路に接続されるポンプを有していてもよい。
(Reaction controller)
The reaction controller 201 controls the reaction in each of the plurality of reaction sites in the vessel 103. The reaction controller 201 can also be referred to as a reaction unit that causes a reaction to proceed in each of a plurality of reaction sites in the vessel 103. There is no particular limitation on the method for controlling the reaction in each of the plurality of reaction fields by the reaction controller 201. For example, the reaction may be controlled by controlling the temperature of the reaction field, or the reaction in the microchannel The reaction site may be controlled by controlling the position and velocity of the field. That is, the reaction controller 201 may have a temperature controller such as a heater or a cooler, or may have a pump connected to a microchannel.
 また、反応制御器201は、反応場における反応の種類に応じて、複数の反応場のそれぞれに熱、磁場、電場、電流、光、および放射線からなる群から選択される少なくとも1つを付与するものであってもよい。なお、反応ユニットU2としては、市販のサーマルサイクラーを用いることもできる。 In addition, the reaction controller 201 applies at least one selected from the group consisting of heat, magnetic field, electric field, current, light, and radiation to each of the plurality of reaction fields according to the type of reaction in the reaction field. It may be one. A commercially available thermal cycler can also be used as the reaction unit U2.
 <検出ユニット>
 検出ユニットU3は、複数の反応場のそれぞれのサイズの検出と、複数の反応場のそれぞれについて分析対象物の検出と、を行うユニットである。検出ユニットU3は、複数の反応場のそれぞれにおける分析対象物の存在に関する情報を取得する分析対象物情報取得部301と、複数の反応場のそれぞれのサイズに関する情報を取得するサイズ情報取得部302と、を有する。
<Detection unit>
The detection unit U3 is a unit that performs detection of the size of each of the plurality of reaction fields and detection of an analyte for each of the plurality of reaction fields. The detection unit U3 acquires an analysis target object information acquisition unit 301 that acquires information on the presence of the analysis target in each of the plurality of reaction fields, and a size information acquisition unit 302 that acquires information on the respective sizes of the plurality of reaction sites. And.
 なお、検出ユニットU3による検出は、容器103に保持された複数の反応場のうち、一部の反応場を取り出して実施してもよいが、計測可能なすべての反応場について実施することが好ましい。これにより、検出を行う反応場の数を増やすことができ、分析結果の信頼度を向上させることができる。 Note that although the detection by the detection unit U3 may be performed by taking out some of the reaction fields among the plurality of reaction fields held in the container 103, it is preferable to carry out the detection for all the reaction fields that can be measured. . Thereby, the number of reaction fields to be detected can be increased, and the reliability of the analysis result can be improved.
 (分析対象物情報取得部)
 分析対象物情報取得部301は、複数の反応場のそれぞれについて分析対象物の検出を行う部分である。分析対象物情報取得部301は、反応ユニットU2において反応が進行した複数の反応場のそれぞれについて、分析対象物に由来するシグナルの検出を行う。分析対象物情報取得部301は、分析対象物に由来するシグナルの検出を行い、複数の反応場のそれぞれについて、分析対象物が含まれていたか否かを判定する。これにより、分析対象物情報取得部301は複数の反応場のそれぞれにおける分析対象物の存在に関する情報(分析対象物情報)を取得する。シグナルとしては、光が好適に用いられる。
(Analysis subject information acquisition unit)
The analyte information acquisition unit 301 is a part that detects an analyte for each of a plurality of reaction fields. The analyte information acquiring unit 301 detects a signal derived from the analyte for each of a plurality of reaction fields in which the reaction has progressed in the reaction unit U2. The analyte information acquisition unit 301 detects a signal derived from the analyte, and determines whether or not the analyte is contained for each of the plurality of reaction sites. Thereby, the analyte information acquisition unit 301 acquires information (analyte information) on the presence of the analyte in each of the plurality of reaction sites. Light is preferably used as the signal.
 本明細書においては、分析対象物情報取得部301によってシグナルが検出された反応場、すなわち、分析対象物が含まれていた反応場を「陽性反応場」と称する。また、分析対象物情報取得部301によってシグナルが検出されなかった反応場、すなわち、分析対象物が含まれていなかった反応場を「陰性反応場」と称する。なお、本明細書においては、分析対象物情報取得部301によって検出されたシグナルの強度が、予め設定された閾値よりも弱い場合にはシグナルは検出されなかったものとみなす。すなわち、反応場に分析対象物が含まれていたか否かは、その反応場からのシグナルの強度を所定の閾値と比較することで行う。 In the present specification, a reaction field in which a signal is detected by the analyte information acquiring unit 301, that is, a reaction field in which an analyte is contained is referred to as a “positive reaction field”. In addition, reaction fields in which no signal is detected by the analyte information acquiring unit 301, that is, reaction fields in which no analyte is contained are referred to as "negative reaction fields". In the present specification, when the intensity of the signal detected by the analyte information acquisition unit 301 is weaker than a preset threshold value, it is considered that the signal is not detected. That is, whether or not the reaction site contains the analyte is determined by comparing the intensity of the signal from the reaction site with a predetermined threshold.
 例えば、分析対象物が核酸であり、分析対象物を検出可能にするための薬剤として増幅試薬および蛍光試薬を用いた場合は、分析対象物情報取得部301は、分析対象物に由来するシグナルとして、所定の波長の蛍光を検出することが好ましい。 For example, when the analyte is a nucleic acid, and an amplification reagent and a fluorescent reagent are used as agents for making the analyte detectable, the analyte information acquiring unit 301 uses the signal derived from the analyte as a signal. Preferably, fluorescence of a predetermined wavelength is detected.
 分析対象物情報取得部301が蛍光などの光をシグナルとして検出する場合、分析対象物情報取得部301は、光源303aと、検出器304aと、制御部(不図示)と、で構成することができる。光源303aは、検出したいシグナルに応じた波長の光を、容器103に保持された複数の反応場のそれぞれに照射する。検出器304aは、光が照射された複数の反応場のそれぞれから発せられたシグナルを検出する。すなわち、光源303aは励起手段として機能し、検出器304aは光検出手段として機能する。 When the analysis subject information acquisition unit 301 detects light such as fluorescence as a signal, the analysis subject information acquisition unit 301 may be configured of a light source 303a, a detector 304a, and a control unit (not shown). it can. The light source 303 a emits light of a wavelength according to the signal to be detected to each of the plurality of reaction fields held in the container 103. The detector 304a detects a signal emitted from each of the plurality of reaction fields irradiated with light. That is, the light source 303a functions as an excitation unit, and the detector 304a functions as a light detection unit.
 検出器304aとしては、フォトダイオードやラインセンサ、イメージセンサ(撮像素子)等を用いることができ、中でも、多数の反応場について一括してシグナルの検出ができる点で、イメージセンサを用いることが好ましい。イメージセンサとしては、CCD(電荷結合素子、Charge Coupled Device)やCMOS(相補型金属酸化膜半導体、Complementary Metal Oxide Semiconductor Image Sensor)を用いることができる。あるいは、検出器304aとしては、イメージセンサを備えたデジタルカメラを用いてもよい。また、検出器304aによって光を検出する場合は、光学フィルターを用いて反応場からの光の波長を調整してもよい。 As the detector 304a, a photodiode, a line sensor, an image sensor (image sensor) or the like can be used, and among them, it is preferable to use an image sensor in that signals can be detected collectively for a large number of reaction fields. . As the image sensor, a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor image sensor) can be used. Alternatively, as the detector 304a, a digital camera provided with an image sensor may be used. When light is detected by the detector 304a, an optical filter may be used to adjust the wavelength of light from the reaction field.
 分析対象物情報取得部301は、流路中を流れる複数の反応場について順次検出を行うフローサイトメーターであってもよい。あるいは、分析対象物情報取得部301は、複数の反応場について、二次元的に励起および検出を行うものであってもよい。すなわち、平面状に並べた複数の反応場に対して二次元的に光を照射して励起させ、反応場から発せられたシグナルをイメージセンサを用いて二次元的に検出する構成であってもよい。この構成は、多数の反応場についてスループットよくシグナルの検出を行うことができるため好ましい。 The analyte information acquisition unit 301 may be a flow cytometer that sequentially detects a plurality of reaction fields flowing in the flow path. Alternatively, the analyte information acquisition unit 301 may two-dimensionally excite and detect a plurality of reaction fields. In other words, even if a plurality of reaction fields arranged in a plane are two-dimensionally irradiated with light to be excited, signals generated from the reaction fields are detected two-dimensionally using an image sensor. Good. This configuration is preferable because signal detection can be performed with high throughput for a large number of reaction sites.
 なお、分析対象物情報取得部301の有する光源303aは、互いに異なる複数の波長の光を反応場に照射する光源であってもよい。例えば、光源303aは、波長可変光源であってもよいし、波長が互いに異なる光をそれぞれ発する光源を複数有していてもよい。これにより、発生させる蛍光の波長が異なるなど、複数の分析対象物を区別できるようにそれぞれ検出可能にする複数種類の薬剤を用いることで、複数種類の分析対象物を一度の分析でまとめて検出することができる。 Note that the light source 303a of the analysis target information acquisition unit 301 may be a light source that emits light of a plurality of different wavelengths to the reaction field. For example, the light source 303a may be a wavelength variable light source, or may have a plurality of light sources that respectively emit light having different wavelengths. As a result, by using a plurality of types of agents that allow detection so that a plurality of analytes can be distinguished, such as different wavelengths of generated fluorescence, a plurality of types of analytes are collectively detected in one analysis can do.
 (サイズ情報取得部)
 サイズ情報取得部302は、複数の反応場のそれぞれのサイズの検出を行う部分である。サイズ情報取得部302は、反応ユニットU2において反応が進行した複数の反応場のそれぞれについて、複数の反応場のそれぞれのサイズの検出を行う。
(Size information acquisition unit)
The size information acquisition unit 302 is a part that detects the size of each of a plurality of reaction fields. The size information acquisition unit 302 detects the size of each of the plurality of reaction fields for each of the plurality of reaction fields where the reaction has progressed in the reaction unit U2.
 サイズ情報取得部302は、検出器304bと、制御部(不図示)と、で構成することができる。検出器304bは、反応場からの光を検出する。検出器304bとしては、検出器304aと同様の検出器を用いることができる。また、検出器304aが検出器304bの機能を兼ね備えてもよい。サイズ検出部302は、光源303bをさらに有していてもよい。光源303bは、光源303aと波長の異なる光を発する光源であることが好ましい。なお、光源303bが波長可変光源である場合は、光源303bが光源303aの機能を兼ね備えてもよい。 The size information acquisition unit 302 can be configured by a detector 304 b and a control unit (not shown). The detector 304 b detects light from the reaction field. A detector similar to the detector 304 a can be used as the detector 304 b. Also, the detector 304a may have the function of the detector 304b. The size detection unit 302 may further include a light source 303 b. The light source 303 b is preferably a light source that emits light having a wavelength different from that of the light source 303 a. When the light source 303 b is a wavelength variable light source, the light source 303 b may have the function of the light source 303 a.
 サイズ情報取得部302は、反応場からの散乱光を検出して、反応場のサイズの検出を行うことが好ましい。また、サイズ情報取得部302が有する検出器304bとしては、多数の反応場を一括して検出できる点で、イメージセンサを用いることが好ましい。 Preferably, the size information acquisition unit 302 detects scattered light from the reaction field to detect the size of the reaction field. Further, as the detector 304 b of the size information acquisition unit 302, it is preferable to use an image sensor in that a large number of reaction fields can be detected at one time.
 サイズ情報取得部302は、視野内に多数の反応場が含まれる反応場の画像を取得し、制御部(不図示)によってその画像データから反応場のサイズを取得することが特に好ましい。この場合は、例えば、一般に使用されている画像解析ソフトウエアを用いて、取得した画像データを解析して、それぞれの反応場のサイズに関する情報を取得することができる。例えば、反応場が液滴の場合で、該液滴の形状が真球とみなせる場合は、前記画像より液滴の半径、直径、断面積、および体積からなる少なくとも1つの情報を取得することができる。 It is particularly preferable that the size information acquisition unit 302 acquires an image of a reaction field in which a large number of reaction fields are included in the field of view, and the controller (not shown) acquires the size of the reaction field from the image data. In this case, for example, generally used image analysis software can be used to analyze acquired image data to acquire information on the size of each reaction field. For example, in the case where the reaction field is a droplet, if the shape of the droplet can be regarded as a true sphere, acquiring at least one information consisting of the droplet radius, diameter, cross-sectional area, and volume from the image it can.
 <情報処理ユニット>
 情報処理ユニットU4は、検出ユニットU3の検出結果(反応場のそれぞれのサイズに関する情報および反応場のそれぞれにおける分析対象物の存在に関する情報)に基づいて、サンプル中の分析対象物の濃度を導出するユニットである。
<Information processing unit>
The information processing unit U4 derives the concentration of the analyte in the sample based on the detection results of the detection unit U3 (information on the respective sizes of the reaction fields and the information on the presence of the analytes in each of the reaction fields). It is a unit.
 図2は、情報処理ユニットU4のハードウエア構成図である。情報処理ユニットU4は、ハードウエア的には、CPU451と、ROM452と、RAM453と、ストレージ454と、入出力I/F455と、通信I/F456と、画像出力I/F457と、を有する。 FIG. 2 is a hardware block diagram of the information processing unit U4. The information processing unit U4 has the CPU 451, the ROM 452, the RAM 453, the storage 454, the input / output I / F 455, the communication I / F 456, and the image output I / F 457 in terms of hardware.
 CPU451は、ROM452に記憶されているプログラムまたはRAM453にロードされたプログラムを実行し、情報処理ユニットU4が有する各部の制御を行う。ROM452は、不揮発性のメモリであり、情報処理ユニットU4の初期動作において必要なプログラムなどを記憶する。RAM453は、揮発性のメモリであり、ROM452またはストレージ454、あるいは外部記憶装置(不図示)に格納されているプログラムの読み出しに用いられる。また、RAM453は、これらのプログラムを実行するときに、CPU451の作業領域としても利用される。 The CPU 451 executes a program stored in the ROM 452 or a program loaded to the RAM 453 and controls each part of the information processing unit U4. The ROM 452 is a non-volatile memory, and stores programs and the like necessary for the initial operation of the information processing unit U4. The RAM 453 is a volatile memory, and is used to read a program stored in the ROM 452 or storage 454 or an external storage device (not shown). The RAM 453 is also used as a work area of the CPU 451 when executing these programs.
 ストレージ454には、オペレーティングシステムおよびアプリケーションプログラムなど、CPU451に実行させるための種々のプログラムおよびプログラムの実行に用いるデータがインストールされている。ストレージ454には、検出ユニットU3から与えられた測定データを解析し、分析結果を出力するためのプログラムがインストールされている。 The storage 454 has installed therein various programs to be executed by the CPU 451 such as an operating system and application programs, and data used to execute the programs. In the storage 454 is installed a program for analyzing measurement data supplied from the detection unit U3 and outputting an analysis result.
 ストレージ454のような記憶媒体に格納されたプログラムをRAM453にロードし、RAM453にロードされたプログラムに従ってCPU451が動作することにより、図1に示す各部の機能、および後述する図4に示す各処理が実行される。 By loading a program stored in a storage medium such as the storage 454 into the RAM 453 and operating the CPU 451 according to the program loaded into the RAM 453, the functions of the units shown in FIG. 1 and the processes shown in FIG. To be executed.
 入出力インターフェース(I/F)455には、マウスやキーボード、タッチパネルなどで構成された入力部407が接続されており、ユーザが入力部407を使用することにより、情報処理ユニットU4にデータが入力される。画像出力インターフェース(I/F)457は、液晶パネル等で構成された表示部408に接続されており、画像データに応じた映像信号を、表示部408に出力する。表示部408は、入力された映像信号をもとに、画像を表示する。また、情報処理ユニットU4は、通信インターフェース(I/F)456を介して反応場生成ユニットU1、反応ユニットU2、検出ユニット、搬送ユニット(不図示)の各ユニットに接続されている。情報処理ユニットU4は、通信インターフェース456により、上述の各ユニットに対してデータの送受信が可能となる。 The input / output interface (I / F) 455 is connected to an input unit 407 including a mouse, a keyboard, a touch panel, etc., and the user uses the input unit 407 to input data to the information processing unit U4. Be done. An image output interface (I / F) 457 is connected to the display unit 408 configured of a liquid crystal panel or the like, and outputs a video signal corresponding to the image data to the display unit 408. The display unit 408 displays an image based on the input video signal. The information processing unit U4 is connected to each of the reaction field generation unit U1, the reaction unit U2, the detection unit, and the transport unit (not shown) via a communication interface (I / F) 456. The information processing unit U4 can transmit and receive data to and from each unit described above through the communication interface 456.
 情報処理ユニットU4は、その機能として、図1に示すように、記憶部401と、制御部402と、分布データ生成部403と、区間決定部404と、濃度導出部405と、を有する。 The information processing unit U4 has, as its functions, a storage unit 401, a control unit 402, a distribution data generation unit 403, a section determination unit 404, and a concentration derivation unit 405, as shown in FIG.
 記憶部401は、検出ユニットU3または入力部407から受信したデータや情報処理ユニットU4による処理によって生成されたデータを記憶する部分である。制御部402は、反応場生成ユニットU1、反応ユニットU2、検出ユニットU3、搬送ユニット(不図示)の各部の動作を制御する部分である。 The storage unit 401 is a portion that stores data received from the detection unit U3 or the input unit 407 or data generated by processing by the information processing unit U4. The control unit 402 is a part that controls the operation of each of the reaction field generation unit U1, the reaction unit U2, the detection unit U3, and the transport unit (not shown).
 (分布データ生成部)
 分布データ生成部403は、反応場のそれぞれのサイズに関する情報と、反応場のそれぞれにおける分析対象物の存在に関する情報と、を検出ユニットU3から取得し、これらの情報を統合して、分布データを生成する。なお、以下の説明においては、検出ユニットU3から取得される、反応場のそれぞれのサイズに関する情報と、反応場のそれぞれにおける分析対象物の存在に関する情報と、を含むデータを検出データと称することもある。より具体的には、分布データ生成部403は、反応場のサイズの分布を複数の区間(階級)に分け、区間ごとに、陽性反応場の数に関する情報、および、陰性反応場の数に関する情報、からなる群から選択される少なくとも1つの情報を含む分布データを生成する。なお、ここでいう「数に関する情報」とは、例えば、数そのもの、または割合などが挙げられる。
(Distribution data generation unit)
The distribution data generation unit 403 acquires, from the detection unit U3, information on the size of each reaction field and information on the presence of the analyte in each of the reaction fields, integrates these pieces of information, and obtains distribution data. Generate In the following description, data including information on the size of each of the reaction fields and information on the presence of the analyte in each of the reaction fields obtained from the detection unit U3 may also be referred to as detection data. is there. More specifically, the distribution data generation unit 403 divides the distribution of the size of the reaction field into a plurality of sections (classes), and for each section, information on the number of positive reaction sites and information on the number of negative reaction sites Generating distribution data including at least one information selected from the group consisting of In addition, with "the information regarding a number" here, a number itself, a ratio, etc. are mentioned, for example.
 例えば、複数の反応場のそれぞれの形状がほぼ球形である場合において、反応場のサイズが球相当径で最小10μm、最大210μmであったとする。この場合、分布データ生成部403は、例えば、反応場のサイズの分布を20μm刻みで10個の区間に分ける。そして、各区間に含まれるサイズを有する複数の反応場について、陽性反応場の数および陰性反応場の数を集計する。またこのとき、区間ごとに、陽性反応場の数と陰性反応場の数の合計、すなわちその区間に含まれる反応場の総数を集計したり、その区間に含まれる全反応場に対する陽性反応場の割合や陰性反応場の割合を集計したりしてもよい。なお、分布データ生成部403が分布データを生成する際の区間の数や区間の幅については特に限定はされず、サイズ情報取得部302の分解能に応じて決定してもよいし、統計処理における一般的な方法によって決定してもよい。 For example, it is assumed that the size of the reaction field is a minimum of 10 μm and a maximum of 210 μm as a sphere equivalent diameter in the case where the respective shapes of the plurality of reaction fields are substantially spherical. In this case, the distribution data generation unit 403 divides, for example, the distribution of the size of the reaction field into 10 sections in 20 μm steps. Then, the number of positive reaction fields and the number of negative reaction fields are totaled for a plurality of reaction fields having a size included in each section. At this time, the sum of the number of positive reaction fields and the number of negative reaction fields in each section, ie, the total number of reaction fields included in that section, or the total number of positive reaction fields for all reaction fields included in that section The ratio or the ratio of negative reaction sites may be counted. The number of sections and the width of the sections when the distribution data generation section 403 generates distribution data is not particularly limited, and may be determined according to the resolution of the size information acquisition section 302, or in statistical processing. It may be determined by a general method.
 なお、検出ユニットU3から取得される反応場のサイズに関する情報は、当該反応場が分析対象物を含んでいたか否か(陽性反応場または陰性反応場のいずれであるか)の情報と紐付けられて取得される。分析対象物情報取得部301およびサイズ情報取得部302がいずれもイメージセンサを用いて画像データを取得する手段を含む場合には、それぞれから取得される画像データを重ねあわせることで、上述の情報の紐付けを行うことができる。 Note that the information on the size of the reaction field obtained from the detection unit U3 is linked to the information on whether the reaction field contained an analyte (whether it is a positive reaction field or a negative reaction field). Be acquired. In the case where the analysis object information acquisition unit 301 and the size information acquisition unit 302 both include means for acquiring image data using an image sensor, the image data acquired from the respective units are superimposed to obtain the above information. Can be tied.
 (区間決定部)
 区間決定部404は、分布データ生成部403が生成した分布データのうち、後述する濃度導出部405における濃度の導出に用いるデータを決定する。より具体的には、区間決定部404は、陽性反応場の数に関する情報、および、陰性反応場の数に関する情報からなる群から選択される少なくとも1つの情報に基づいて、分布データを構成する複数の区間の中から、濃度の導出に用いる区間を決定する。
(Section determination unit)
The section determination unit 404 determines, of the distribution data generated by the distribution data generation unit 403, data to be used for deriving the concentration in the concentration derivation unit 405 described later. More specifically, the section determining unit 404 configures distribution data based on at least one piece of information selected from the group consisting of information on the number of positive reaction sites and information on the number of negative reaction sites. From among the sections of, the section used to derive the concentration is determined.
 本実施形態において、区間決定部404は、分布データを構成する複数の区間のそれぞれについて、陽性反応場の数もしくは割合、または、陰性反応場の数もしくは割合が、予め設定された数値範囲に含まれる否かを判定する。そして区間決定部404は、予め設定された数値範囲に含まれると判定された区間を、濃度の導出に用いる区間として決定する。 In the present embodiment, the section determination unit 404 determines that the number or ratio of positive reaction fields or the number or ratio of negative reaction fields is included in a preset numerical range for each of a plurality of sections constituting the distribution data. It is determined whether or not Then, the section determining unit 404 determines a section determined to be included in a preset numerical range as a section to be used for deriving the concentration.
 デジタルPCRに代表されるデジタル分析では、分析対象物を含む液体を非常に多くの反応場に分割することで、各反応場に含まれる分析対象物の数が1個または0個のいずれかとなるようにする。これにより、各反応場における反応の後、分析対象物が検出された反応場の数をカウントすることで、分割前の液体中に含まれていた分析対象物の数を計測することができる。しかしながら、限界希釈してから複数の反応場に分割した場合であっても、実際には1つの反応場に2つ以上の分析対象物が含まれる場合も確率的に生じてしまう。そこでそのような場合にはポアソンモデルに基づいて確率論的に計算することで、計算結果を真の値に近づけ、分析結果の信頼度を向上させることができる。このような従来の計算方法については、詳しくは後述する。 In digital analysis represented by digital PCR, the liquid containing an analyte is divided into a large number of reaction fields so that the number of analytes contained in each reaction field is either 1 or 0. Do. Thus, by counting the number of reaction fields in which the analyte is detected after the reaction in each reaction field, it is possible to measure the number of analytes contained in the liquid before division. However, even when limiting dilution is performed and then divided into a plurality of reaction sites, in fact, a case where two or more analytes are contained in one reaction site will also occur stochastically. Therefore, in such a case, the calculation result can be brought close to the true value and the reliability of the analysis result can be improved by calculating probabilistically based on the Poisson model. Details of such a conventional calculation method will be described later.
 しかしながら、反応場のサイズのばらつきが大きい場合には、例えば、反応場のサイズが小さい領域では限界希釈状態に近くても、反応場のサイズが大きい領域ではほとんどの反応場のそれぞれが2つ以上の分析対象物を含んでしまうような場合もある。本発明者らの検討の結果、このような場合は、反応場のサイズが小さい領域ではポアソンモデルに基づく計算によって計算結果を真の値に近づける効果が得られるが、反応場のサイズが大きい領域ではその効果が十分に得られない場合もあることがわかった。 However, if there is a large variation in reaction field size, for example, each reaction field will have two or more of each reaction field in the large reaction field size even if the reaction area is close to the limiting dilution state in the small area. In some cases, it may contain an analyte of As a result of studies by the present inventors, in such a case, in the region where the size of the reaction field is small, the calculation based on the Poisson model has the effect of bringing the calculation result closer to the true value. Then, it turned out that the effect may not be obtained enough.
 そこで本実施形態では、区間決定部404が、陽性反応場の数もしくは割合、または、陰性反応場の数もしくは割合が、予め設定された数値範囲に含まれる区間を選択し、それを濃度の導出に用いる区間として決定する。そして濃度導出部405は、区間決定部404によって選択された、全区間のうちの少なくとも一部の区間のデータ(各反応場のサイズに関する情報および各反応場における分析対象物の存在に関する情報)を用いて、サンプル中の分析対象物の濃度を導出する。 Therefore, in the present embodiment, the section determining unit 404 selects a section in which the number or ratio of positive reaction sites or the number or ratio of negative reaction sites is included in a preset numerical range, and the concentration is derived therefrom. Determined as the interval used for Then, the concentration deriving unit 405 selects data of at least a part of all the sections selected by the section determining unit 404 (information on the size of each reaction field and information on the presence of the analyte in each reaction field) Used to derive the concentration of analyte in the sample.
 区間決定部404は、ポアソンモデルに基づく計算結果の信頼度を確保できる区間を選択することが好ましい。区間決定部404は、陽性反応場の割合が高すぎる区間または陰性反応場の割合が低すぎる区間以外の区間を選択することが好ましい。陽性反応場の割合が高すぎる区間または陰性反応場の割合が低すぎる区間においては、1つの反応場に2つ以上の分析対象物が含まれている確率が高くなりすぎ、ポアソンモデルに基づく計算を行っても、真の値に十分に近づけることができない可能性がある。 The section determining unit 404 preferably selects a section that can ensure the reliability of the calculation result based on the Poisson model. It is preferable that the interval determination unit 404 select an interval other than an interval in which the proportion of positive reaction fields is too high or an interval in which the proportion of negative reaction fields is too low. In a section where the proportion of positive reaction fields is too high or in a section where the proportion of negative reaction fields is too low, the probability that two or more analytes are included in one reaction field is too high, and calculation based on Poisson model There is a possibility that even if you do not get close to the true value.
 この場合、区間決定部404は、陽性反応場の割合が100%未満の区間を選択することが好ましく、90%未満の区間を選択することがより好ましく、80%未満の区間を選択することがさらに好ましい。また、区間決定部404が陽性反応場の割合が10%未満の区間を選択することで、濃度導出部405においてポアソンモデルに基づくことなく計算を行うこともできる。このように、選択される区間の陽性反応場の割合の上限を低下させていく、あるいは、陰性反応場の割合の下限を上昇させていくことで、ポアソンモデルに基づく計算結果の信頼度を高めることができる。ただし、区間を狭めすぎると区間に含まれる反応場の数が減少し、濃度の導出に用いる反応場の数が減少しすぎるとそれによる計算結果の信頼度の低下の影響が出るため、注意が必要である。なお、区間決定部404が選択する区間の陽性反応場の割合の数値範囲の下限は特に限定はされず、0%以上であってもよいし、5%以上であってもよい。または、区間決定部404は、陰性反応場の割合が0%より大きい区間を選択することが好ましく、10%より大きい区間を選択することがより好ましく、20%より大きい区間を選択することがさらに好ましい。なお、区間決定部404が選択する区間の陰性反応場の割合の数値範囲の上限は特に限定はされず、100%以下であってもよいし、95%以下であってもよい。陽性反応場の割合や陰性反応場の割合に関するこれらの数値範囲は、分析に求められる精度に応じて適宜決定される。 In this case, the section determining unit 404 preferably selects a section where the percentage of positive reaction fields is less than 100%, more preferably selecting a section less than 90%, and selecting a section less than 80% More preferable. In addition, when the interval determination unit 404 selects an interval in which the proportion of positive reaction fields is less than 10%, the concentration derivation unit 405 can perform calculation without being based on the Poisson model. Thus, the reliability of the calculation result based on the Poisson model is improved by decreasing the upper limit of the proportion of positive reaction fields in the selected section or increasing the lower limit of the proportion of negative reaction fields. be able to. However, if the interval is narrowed too much, the number of reaction fields included in the interval decreases, and if the number of reaction fields used to derive the concentration decreases too much, the reliability of the calculation result is affected by the decrease. is necessary. The lower limit of the numerical range of the ratio of positive reaction fields in the section selected by the section determining unit 404 is not particularly limited, and may be 0% or more, or 5% or more. Alternatively, the interval determination unit 404 preferably selects an interval in which the proportion of negative reaction fields is greater than 0%, more preferably selects an interval larger than 10%, and further selects an interval larger than 20%. preferable. The upper limit of the numerical range of the ratio of negative reaction sites in the section selected by the section determining unit 404 is not particularly limited, and may be 100% or less or 95% or less. These numerical ranges regarding the proportion of positive reaction fields and the proportion of negative reaction fields are appropriately determined according to the accuracy required for analysis.
 あるいは、区間決定部404は、陽性反応場の数が少なすぎる区間以外の区間を選択することが好ましい。陽性反応場の数が少なすぎると、分析結果の信頼度が低下する傾向にあるため、陽性反応場の数が少なすぎる区間以外の区間のデータを用いて濃度を導出することで、分析結果の信頼度を高めることができる。本発明者らは、陽性反応場の数と分析結果のばらつきとの関係を知るために、陽性反応場の数を変えた場合の「測定の不確かさ(relative uncertainty)」を、技術文献Lab Chip,14,1176(2014)の記載に基づき試算した。試算した結果を図3に示す。図3によれば、「測定の不確かさ」を10%以下とするためには、反応場のサイズによらず、分析対象物が検出された陽性反応場の数がおよそ100個以上必要であることがわかる。そのため、区間決定部404が、陽性反応場の数が100個以上の区間を選択することで、「測定の不確かさ」が10%以下となる程度に分析結果の信頼度を高めることができる。なお、要求される「測定の不確かさ」の許容範囲は分析の目的により変わり得るものであり、上記数値に限定されるものではない。例えば、要求される「測定の不確かさ」を20%以下であれば、区間決定部404は陽性反応場の数が30個以上の区間を選択すればよい。 Alternatively, it is preferable that the interval determination unit 404 select an interval other than an interval in which the number of positive reaction fields is too small. If the number of positive reaction sites is too small, the reliability of the analysis results tends to decrease. Therefore, the concentration of the analysis results can be derived by using the data of the sections other than the section where the number of positive reaction sites is too small. Confidence can be increased. In order to know the relationship between the number of positive reaction fields and the dispersion of the analysis results, the present inventors have described “relative uncertainty” when the number of positive reaction fields is changed, as described in the technical literature Lab Chip , 14, 1176 (2014). The calculated results are shown in FIG. According to FIG. 3, in order to make the “measurement uncertainty” 10% or less, about 100 or more of the positive reaction fields in which the analyte is detected are required regardless of the size of the reaction fields. I understand that. Therefore, the interval determination unit 404 can increase the reliability of the analysis result to such an extent that “the uncertainty of measurement” becomes 10% or less by selecting the interval in which the number of positive reaction sites is 100 or more. In addition, the tolerance | permissible_range of the required "measurement uncertainty" may change with the objective of analysis, and is not limited to said numerical value. For example, if the required “measurement uncertainty” is 20% or less, the section determination unit 404 may select a section having 30 or more positive reaction fields.
 上述のように、本実施形態に係る区間決定部404は、陽性反応場の数もしくは割合、または、陰性反応場の数もしくは割合が所定の範囲に含まれる少なくとも1つの区間を選択して、濃度の導出に用いる区間として決定する。しかし、本発明に係る区間決定部404はこれに限定はされず、濃度の導出に用いない区間を棄却して、濃度の導出に用いる区間として決定してもよい。すなわち、区間決定部404は、分布データ生成部403によって生成された分布データの一部を選択するデータ選択部であってもよいし、前記分布データの一部を棄却するデータ棄却部であってもよい。 As described above, the section determining unit 404 according to the present embodiment selects at least one section in which the number or ratio of positive reaction fields or the number or ratio of negative reaction fields is included in a predetermined range, and Determined as the interval to be used for the derivation of However, the section determination unit 404 according to the present invention is not limited to this, and the section not used for deriving the concentration may be discarded and determined as a section for use for deriving the concentration. That is, the section determination unit 404 may be a data selection unit that selects a part of the distribution data generated by the distribution data generation unit 403, or a data rejection unit that discards a part of the distribution data. It is also good.
 区間決定部404が、濃度の導出に用いない区間を棄却して、濃度の導出に用いる区間として決定する場合、棄却する区間は、上述の区間を選択する方法と同様の方法で決定することができる。より具体的には、区間決定部404は、分布データを構成する複数の区間のそれぞれについて、陽性反応場の数もしくは割合、または、陰性反応場の数もしくは割合が、所定の範囲に含まれない区間のデータを棄却してもよい。 When the section determining unit 404 discards a section not used for concentration derivation and determines it as a section used for concentration derivation, the section to be rejected may be determined by the same method as the method for selecting the above section. it can. More specifically, the section determining unit 404 does not include the number or proportion of positive reaction fields or the number or proportion of negative reaction fields in a predetermined range for each of a plurality of sections constituting distribution data. You may reject the data of the section.
 例えば、この場合、区間決定部404は、陽性反応場の割合が100%の区間を棄却することが好ましく、90%以上の区間を棄却することがより好ましく、80%以上の区間を棄却することがさらに好ましい。また、区間決定部404は、陽性反応場の割合が10%以上の区間を棄却してもよい。 For example, in this case, the section determining unit 404 preferably discards sections with a percentage of positive reaction fields of 100%, more preferably discards sections with 90% or more, and discards sections with 80% or more. Is more preferred. In addition, the section determining unit 404 may discard a section in which the proportion of positive reaction sites is 10% or more.
 なお、区間決定部404は濃度の導出に用いる区間を決定して、分布データ生成部403が生成した分布データからその区間のデータを抽出してもよい。この場合、区間決定物404は、分布データ生成部403が生成した分布データを加工するデータ加工部ということもできる。すなわち、データ加工部は、陽性反応場の数に関する情報、および、陰性反応場の数に関する情報からなる群から選択される少なくとも1つの情報に基づいて、分布データ生成部403が生成した分布データを加工する。 The section determination unit 404 may determine a section to be used for deriving the concentration, and extract data of the section from the distribution data generated by the distribution data generation unit 403. In this case, the section determined object 404 can also be referred to as a data processing unit that processes the distribution data generated by the distribution data generation unit 403. That is, the data processing unit generates the distribution data generated by the distribution data generation unit 403 based on at least one piece of information selected from the group consisting of information on the number of positive reaction sites and information on the number of negative reaction sites. Process
 なお、データ加工部は、区間決定部404によって濃度の導出に用いる区間を決定する代わりに、陽性反応場の数に関する情報、および、陰性反応場の数に関する情報からなる群から選択される少なくとも1つの情報に基づいて、各区間の重みづけを変えてもよい。例えば、データ加工部は、複数の区間のそれぞれに含まれるデータに、陽性反応場の数に関する情報、および、陰性反応場の数に関する情報からなる群から選択される少なくとも1つの情報に基づく補正係数を掛ける処理を行ってもよい。 Note that the data processing unit selects at least one selected from the group consisting of information on the number of positive reaction fields and information on the number of negative reaction fields instead of determining the section used for deriving the concentration by the section determining unit 404. The weighting of each section may be changed based on one piece of information. For example, the data processing unit is a data correction factor based on at least one piece of information selected from the group consisting of information on the number of positive reaction fields and information on the number of negative reaction fields in the data included in each of the plurality of sections. Processing may be performed.
 (濃度導出部)
 濃度導出部405は、分布データ生成部403が生成した分布データのうち、区間決定部404によって決定された区間のデータに基づいて、サンプル中の分析対象物の濃度を導出する。すなわち、濃度導出部405は、分布データ生成部403が生成した分布データのうちの少なくとも一部のデータを用いて、サンプル中の分析対象物の濃度を導出する。
(Concentration deriving unit)
The concentration deriving unit 405 derives the concentration of the analyte in the sample based on the data of the section determined by the section determining unit 404 among the distribution data generated by the distribution data generating unit 403. That is, the concentration deriving unit 405 derives the concentration of the analyte in the sample using at least a part of the distribution data generated by the distribution data generating unit 403.
 濃度導出部405は、分布データの区間ごとに下記の計算処理の一部または全部を行ってもよい。濃度導出部405は、分布データの区間のそれぞれについて、当該区間に含まれる分析対象物をポアソンモデルに基づいて導出することが好ましい。そして、濃度導出部405は、導出された区間ごとの分析対象物の数を合計し、それを計算に用いた反応場の総体積で割ることで濃度を導出することが好ましい。あるいは、濃度導出部405は、区間ごとに分析対象物の濃度を導出し、それを加重平均して、反応液またはサンプル中の分析対象物の濃度を導出することが好ましい。このように、区間ごとにポアソンモデルに基づいて分析対象物の数または濃度を導出することで、分析結果の信頼性を高めることができる。 The concentration deriving unit 405 may perform part or all of the following calculation processing for each section of the distribution data. The concentration deriving unit 405 preferably derives, for each of the sections of the distribution data, the analyte included in the section based on the Poisson model. Then, it is preferable that the concentration deriving unit 405 derives the concentration by totaling the number of analytes in each of the derived sections and dividing it by the total volume of the reaction field used for the calculation. Alternatively, it is preferable that the concentration deriving unit 405 derives the concentration of the analyte for each section, weighted averages it, and derives the concentration of the analyte in the reaction liquid or the sample. Thus, the reliability of the analysis result can be enhanced by deriving the number or concentration of the analyte based on the Poisson model for each section.
 以下、濃度導出部405がサンプル中の分析対象物の濃度を導出する際の計算処理について説明する。 Hereinafter, calculation processing when the concentration deriving unit 405 derives the concentration of the analyte in the sample will be described.
 (分析対象物の濃度の計算)
 分析対象物の濃度の計算は、従来行われているデジタル分析における濃度計算方法を採用して実施することができる。反応ユニットU2における反応の前に、それぞれの反応場が含む分析対象物が1個または0個のいずれかであるとみなせる場合について説明する。この場合は、分析対象物が検出された反応場(陽性反応場)の数xを、検出ユニットU3が分析対象物の検出の対象とした体積Vsの反応液中に含まれていた分析対象物の数とみなすことができる。よって、下記式(1)により、反応液中の分析対象物の濃度λを計算することができる。なお、検出ユニットU3が分析対象物の検出の対象とした体積Vsは、検出ユニットU3から取得される反応場のサイズに関する情報に基づいて算出することができる。
 λ=x/Vs・・・式(1)
(Calculating the concentration of the analyte)
The calculation of the concentration of the analyte can be carried out using a conventional method of calculating the concentration in digital analysis. Before the reaction in the reaction unit U2, the case where each reaction field can be regarded as either one or zero analytes will be described. In this case, the number x of reaction fields (positive reaction fields) in which the analyte is detected is the number of analytes contained in the reaction solution of the volume Vs in which the detection unit U3 is the target of detection of the analyte. It can be regarded as Therefore, the concentration λ r of the analyte in the reaction liquid can be calculated by the following formula (1). In addition, the volume Vs which the detection unit U3 made the detection object of the analysis object can be calculated based on the information regarding the size of the reaction field acquired from the detection unit U3.
λ r = x / Vs (1)
 また、例えば、反応ユニットU2における反応の前に、1つの反応場に複数個の分析対象物が入り得るとみなせる場合は、ポアソンモデルによる補正を行うことで、分析対象物の濃度を計算することができる。この場合は、反応ユニットU2における反応の前にそれぞれの反応場に含まれていた分析対象物の平均個数Cを推定することにより、分析対象物の濃度算出を行う。具体的には、検出ユニットU3が分析対象物の検出の対象とした反応場について、1つの反応場に含まれる分析対象物の平均個数をCとすると、1つの反応場にn個の分析対象物が含まれる確率は、ポアソンモデルの式から、下記式(2)のように表される。 Also, for example, if it can be considered that a plurality of analytes can enter one reaction site before the reaction in the reaction unit U2, calculate the concentration of the analyte by performing correction using a Poisson model. Can. In this case, the concentration of the analyte is calculated by estimating the average number C of the analytes contained in each reaction site before the reaction in the reaction unit U2. Specifically, assuming that the average number of analytes contained in one reaction field is C for the reaction fields for which the detection unit U3 is the target of detection of the analytes, n analysis targets in one reaction field The probability that an object is included is expressed as the following equation (2) from the Poisson model equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、1つの反応場が分析対象物を1つも含まない確率は、式(2)においてn=0として、下記式(3)で表される。
 P(0,C)=e-C ・・・式(3)
Here, the probability that one reaction field does not contain any one analyte is represented by the following formula (3) with n = 0 in formula (2).
P (0, C) = e- C equation (3)
 反応ユニットU2における反応の前に1つの反応場中に少なくとも1つの分析対象物が含まれていれば、その反応場からはシグナルを検出することができるが、反応の前にその反応場に含まれていた分析対象物の数の情報までは分からない。そこで、検出ユニットU3が検出対象とした反応場の総数に対する、分析対象物が検出されなかった反応場の割合(シグナルが検出されなかった反応場の割合)に基づいて、式(3)を用いて、検出対象とした反応液中に含まれていた分析対象物の個数を推定する。 If at least one analyte is contained in one reaction field before the reaction in reaction unit U2, a signal can be detected from the reaction field, but it is included in the reaction field before the reaction. Information on the number of analytes that have been stored is unknown. Therefore, equation (3) is used based on the ratio of reaction fields in which no analyte is detected (the ratio of reaction fields in which a signal is not detected) to the total number of reaction fields targeted by detection unit U3. The number of analytes contained in the reaction solution to be detected is estimated.
 具体的には、シグナルが検出された反応場の個数またはシグナルが検出されなかった反応場の個数と、検出対象とした反応場の総数とから、シグナルが検出されなかった反応場の割合Fを算出する。そして、下記式(4)から、検出対象とした反応場に、反応ユニットU2における反応の前に1つの反応場に含まれていた分析対象物の平均個数Cを推定する。
 C=-ln(F) ・・・式(4)
Specifically, the ratio F 0 of reaction fields in which no signal was detected from the number of reaction fields in which a signal was detected or the number of reaction fields in which a signal was not detected, and the total number of reaction fields to be detected. Calculate Then, from the following formula (4), the average number C of the analytes contained in one reaction field before the reaction in the reaction unit U2 is estimated as the reaction field to be detected.
C = −ln (F 0 ) formula (4)
 ここで、検出ユニットU3が分析対象物の検出対象とした反応場の平均体積をvとすると、下記式(5)により、反応液中の分析対象物の濃度λを計算することができる。なお、検出ユニットU3が分析対象物の検出の対象とした平均体積vは、検出ユニットU3から取得される反応場のサイズに関する情報に基づいて算出することができる。
 λ=C/v ・・・式(5)
Here, assuming that the average volume of the reaction field to be detected by the detection unit U3 is v, the concentration λ r of the analyte in the reaction liquid can be calculated by the following equation (5). In addition, the average volume v which the detection unit U3 made the detection object of the analysis object can be calculated based on the information regarding the size of the reaction field acquired from the detection unit U3.
λ r = C / v formula (5)
 なお、反応液中の分析対象物の濃度λは、分析対象物の平均個数Cと反応場の数を乗じて得られる分析対象物の総数と、反応場の平均体積vと反応場の数を乗じて得られる反応場の総体積と、に基づいて算出してもよい。 The concentration λ r of the analyte in the reaction solution is the total number of analytes obtained by multiplying the average number C of analytes by the number of reaction sites, the average volume v of reaction sites and the number of reaction sites It may be calculated based on the total volume of the reaction site obtained by multiplying
 このようにして得られた、反応液中の分析対象物の濃度は、検体またはサンプルから反応液を調整した際の希釈倍率を用いることによって、検体またはサンプル中の分析対象物の濃度に換算することができる。 The concentration of the analyte in the reaction solution thus obtained is converted to the concentration of the analyte in the specimen or sample by using the dilution factor when adjusting the reaction solution from the specimen or sample. be able to.
 [分析方法]
 次に、本実施形態に係る分析システム1を用いた分析方法について、図4を用いて説明する。図4は、分析システムによる分析処理の手順を示すフローチャートである。
[Analytical method]
Next, an analysis method using the analysis system 1 according to the present embodiment will be described with reference to FIG. FIG. 4 is a flow chart showing the procedure of analysis processing by the analysis system.
 S401にて、分析対象物の定量分析を行うサンプルが準備される。ここでは、検体を希釈、前処理するなどして、サンプルを準備する。なお、サンプルの準備は、分析システム1内で行ってもよいし、分析システム1外の装置、例えば、市販の検体前処理装置を用いて行ってもよい。 At S401, a sample for performing quantitative analysis of an analyte is prepared. Here, the sample is prepared by diluting and pretreating the sample. The preparation of the sample may be performed in the analysis system 1, or may be performed using an apparatus outside the analysis system 1, for example, a commercially available sample pretreatment apparatus.
 S402にて、反応場生成ユニットU1は、サンプルを含む反応液を分割して、互いに独立した、複数の反応場を生成する。 At S402, the reaction field generation unit U1 divides the reaction solution containing the sample to generate a plurality of reaction fields independent of each other.
 S403にて、反応ユニットU2は、複数の反応場のそれぞれにおいて反応を進行させ、分析対象物を検出可能にする。 At S403, the reaction unit U2 causes the reaction to proceed in each of the plurality of reaction sites, making the analyte detectable.
 S404にて、検出ユニットU3は、複数の反応場のそれぞれについて、分析対象物の検出と、複数の反応場のそれぞれのサイズの検出と、を行う。これにより、複数の反応場のそれぞれについて、サイズに関する情報と分析対象物の存在に関する情報とを取得する。 At S404, the detection unit U3 performs detection of the analyte and detection of the size of each of the plurality of reaction fields for each of the plurality of reaction fields. Thereby, information on the size and information on the presence of the analyte are obtained for each of the plurality of reaction sites.
 S405にて、情報処理ユニットU4は、反応場のそれぞれのサイズに関する情報と、反応場のそれぞれにおける分析対象物の存在に関する情報と、を検出ユニットU3から取得し、これらの情報を統合して、分布データを生成する。 At S405, the information processing unit U4 acquires information on the size of each of the reaction fields and information on the presence of the analyte in each of the reaction fields from the detection unit U3 and integrates these pieces of information, Generate distribution data.
 S406にて、情報処理ユニットU4は、陽性反応場の数もしくは割合、または、陰性反応場の数もしくは割合に基づいて、分析対象物の濃度の導出に用いる区間を決定する。このとき、情報処理ユニットU4は、陽性反応場の数もしくは割合、または、陰性反応場の数もしくは割合と、予め設定された数値範囲と、を比較して、分析対象物の濃度の導出に用いる区間を決定する。 At S406, the information processing unit U4 determines a section to be used for deriving the concentration of the analyte based on the number or proportion of positive reaction fields, or the number or proportion of negative reaction fields. At this time, the information processing unit U4 compares the number or ratio of positive reaction fields or the number or ratio of negative reaction fields with a preset numerical range and uses it for deriving the concentration of the analyte Determine the interval.
 S407にて、情報処理ユニットU4は、S406で決定された区間のデータを用いて、分析対象物の濃度を導出する。 At S407, the information processing unit U4 derives the concentration of the analyte using the data of the section determined at S406.
 [その他の実施形態]
 本発明の実施形態として分析システム1について説明したが、本発明はこれに限定はされず、本発明は分析システム1を構成する各部の一部からなる分析システムによっても実現可能である。
Other Embodiments
Although analysis system 1 was explained as an embodiment of the present invention, the present invention is not limited to this, and the present invention can also be realized by an analysis system which consists of a part of each part which constitutes analysis system 1.
 また、本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又はコンピュータ読み取り可能な記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。 Furthermore, the present invention provides a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or computer readable storage medium, and one or more of the computer of the system or apparatus are provided. It can also be realized by a process in which a processor reads and executes a program. It can also be implemented by a circuit (eg, an ASIC) that implements one or more functions.
 以下、実施例により本発明を更に詳細に説明するが、本発明は以下に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following.
 (準備例1)
 <エマルジョン1の生成>
 QuickPrimer Control DNA 5(5ng/μL、型番MR405、タカラバイオ社製)の10倍希釈液を2μL、QuickPrimer Escherichia / Shigella group(16S rDNA)(フォワードプライマー、リバースプライマーそれぞれ2.0μM、型番MR201、タカラバイオ社製)を4μL、SYBR Premix Ex Taq(Tli RNaseH Plus)(型番RR420、タカラバイオ社製)を10μL、滅菌蒸留水を4μL、用意して混合した。
(Preparation example 1)
<Formation of Emulsion 1>
2 μL of a 10-fold diluted solution of QuickPrimer Control DNA 5 (5 ng / μL, model number MR405, manufactured by Takara Bio Inc.), QuickPrimer Escherichia / Shigella group (16S rDNA) (forward primer, reverse primer 2.0 μM, model number MR201, Takara Bio ) And 10 μL of SYBR Premix Ex Taq (Tli RNase H Plus) (Model No. RR420, manufactured by Takara Bio Inc.) and 4 μL of sterile distilled water were prepared and mixed.
 この混合液に下記のサーマルサイクル条件でサーマルサイクルを施してPCRを行い、大腸菌16S rDNAのアンプリコンを取得した。アガロースゲル電気泳動により413bpの増幅産物が得られたことを確認した。アンプリコンの濃度がおおよそ5×10コピー/μL程度となるよう溶液を希釈して、テンプレート1とした。 The mixture was subjected to thermal cycling under the following thermal cycling conditions to perform PCR to obtain an amplicon of E. coli 16S rDNA. Agarose gel electrophoresis confirmed that a 413 bp amplification product was obtained. The solution was diluted so that the concentration of amplicon was approximately 5 × 10 4 copies / μL, and this was used as template 1.
 [サーマルサイクル条件]
 1)初期変性(95℃2分間) 1サイクル
 2)PCR(95℃20秒間、55℃20秒間、74℃20秒間)35サイクル
 3)保持(4℃)1サイクル
[Thermal cycle conditions]
1) Initial denaturation (95 ° C for 2 minutes) 1 cycle 2) PCR (95 ° C for 20 seconds, 55 ° C for 20 seconds, 74 ° C for 20 seconds) 35 cycles 3) Holding (4 ° C) for 1 cycle
 市販のインターカレーター法のPCR試薬(ddPCR EvaGreen Supermix、バイオ・ラッドラボラトリーズ社製)10μLに、上述のテンプレート1を2μL、QuickPrimer Escherichia / Shigella group(16S rDNA)(フォワードプライマー、リバースプライマーそれぞれ2.0 μM、型番MR201、タカラバイオ社製)を1μL、滅菌蒸留水を7μL、それぞれ添加し混合し、分散相とした。 2 μL of the template 1 described above in 10 μL of a commercially available intercalator PCR reagent (ddPCR EvaGreen Supermix, manufactured by Bio-Rad Laboratories) 2 μL of QuickPrimer Escherichia / Shigella group (16S rDNA) (forward primer, reverse primer 2.0 μM each) Model No. MR201, manufactured by Takara Bio Inc.) and 1 μl of sterile distilled water were respectively added and mixed to obtain a dispersed phase.
 上述の分散相に、連続相として、市販のデジタルPCR用のオイル(Droplet Generator Oil for Evagreen、バイオ・ラッドラボラトリーズ社製)を50μL添加した。この混合液をボルテックスミキサーで撹拌して、油中水型エマルジョンであるエマルジョン1を生成した。 50 μL of a commercially available oil for digital PCR (Droplet Generator Oil for Evagreen, manufactured by Bio-Rad Laboratories) was added as a continuous phase to the dispersed phase described above. The mixture was vortexed to produce Emulsion 1, a water-in-oil emulsion.
 <エマルジョンを用いたPCR>
 得られたエマルジョン1に下記のサーマルサイクル条件でサーマルサイクルを施してPCRを行った。
<PCR using emulsion>
The resulting emulsion 1 was subjected to thermal cycling under the following thermal cycling conditions to perform PCR.
 [サーマルサイクル条件]
 1)酵素活性化(95℃5分間) 1サイクル
 2)PCR(95℃30秒間、55℃1分間) 50サイクル
 3)信号安定化(4℃5分間、90℃5分間) 1サイクル
 4)保持(4℃) 1サイクル
[Thermal cycle conditions]
1) Enzyme activation (95 ° C. for 5 minutes) 1 cycle 2) PCR (95 ° C. for 30 seconds, 55 ° C. for 1 minute) 50 cycles 3) Signal stabilization (4 ° C. for 5 minutes, 90 ° C. for 5 minutes) 1 cycle holding (4 ° C) 1 cycle
 <サーマルサイクル後の液滴の計測>
 サーマルサイクル後のエマルジョン1を、ガラス製沈査用プレート(MUR-300、松浪硝子工業株式会社)に20μL採取し、蛍光顕微鏡(BZ-8000、株式会社キーエンス)を用いて観察した。観察は、1つの視野につき、同一視野において可視光像と蛍光像(励起波長480/30nm、吸収波長510nm)を内蔵のカメラ(撮像素子:150万画素CCDイメージセンサ)で撮影し、これを5つの視野において行った。撮影した画像の一例を図5Aに示す。
<Measurement of droplet after thermal cycle>
20 μL of the emulsion 1 after thermal cycling was collected on a glass settling plate (MUR-300, Matsunami Glass Industrial Co., Ltd.) and observed using a fluorescence microscope (BZ-8000, Keyence Corporation). For observation, a visible light image and a fluorescence image (excitation wavelength 480/30 nm, absorption wavelength 510 nm) are taken with a built-in camera (imaging element: 1.5 million pixel CCD image sensor) in one field of view in the same field of view. I did in one of the visions. An example of the image | photographed image is shown to FIG. 5A.
 得られた可視光像より、画像処理ソフトウエアを用いて、それぞれの液滴の直径を計測した。このとき、計測の分解能は10μmであり、直径10μm以下の液滴は計測対象外とした。また、得られた蛍光像より、目視による判定によって、それぞれの液滴について遺伝子増殖による蛍光増強の有無を判定し、分析対象物が検出されたか否かを判定した。可視光像と蛍光像とを重ね合わせることで、それぞれの液滴のサイズの情報と分析対象物が検出されたか否かの情報とを対応付けたデータを作成した。 The diameter of each droplet was measured from the obtained visible light image using image processing software. At this time, the resolution of measurement was 10 μm, and droplets having a diameter of 10 μm or less were excluded from measurement. Moreover, the presence or absence of fluorescence enhancement due to gene proliferation was determined for each droplet by visual determination based on the obtained fluorescence image, and it was determined whether or not an analyte was detected. By superimposing the visible light image and the fluorescence image, data in which the information on the size of each droplet was associated with the information on whether or not the analyte was detected was created.
 得られたデータについて、液滴のサイズを複数の区間に分け、度数分布データを作成した。具体的には、液滴径が20μm以上30μm未満を1つの区間として、以降同様にして、計測の分解能である10μmを区間の幅として、液滴径を18個の区間に分けた。そして、区間ごとに液滴の数、陽性液滴の数、陰性液滴の数、をそれぞれ集計した。この結果を表1にまとめて示す。 For the obtained data, the droplet size was divided into a plurality of sections to create frequency distribution data. Specifically, the droplet diameter was divided into 18 segments, with the droplet diameter of 20 μm or more and less than 30 μm as one segment, and the measurement resolution of 10 μm as the segment width. Then, the number of droplets, the number of positive droplets, and the number of negative droplets were counted for each section. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表中、液滴径は液滴の平均直径、Totalは液滴の総数、Positiveは蛍光増強があった液滴(陽性液滴)の数、Negativeは蛍光増強がなかった液滴(陰性液滴)の数、をそれぞれ示す(以降、同様である)。 In the table, the droplet diameter is the average diameter of droplets, Total is the total number of droplets, Positive is the number of droplets with fluorescence enhancement (positive droplets), Negative is the droplet without fluorescence enhancement (negative droplets The number of) is shown, respectively (following, it is the same).
 (準備例2)
 準備例1において、テンプレート1を10倍に希釈して、テンプレート2とした。すなわち、テンプレート2では、アンプリコンの濃度がおおよそ5×10コピー/μL程度となっている。テンプレート1の代わりにテンプレート2を用いて分散相を形成したこと以外は準備例1と同様にして、エマルジョン2を生成した。
(Preparation example 2)
In Preparation Example 1, template 1 was diluted 10 times to form template 2. That is, in the template 2, the concentration of the amplicon is approximately 5 × 10 3 copies / μL. Emulsion 2 was produced in the same manner as in Preparation Example 1 except that template 2 was used instead of template 1 to form a dispersed phase.
 このエマルジョン2について、準備例1と同様にサーマルサイクルを施してPCRを行い、準備例1と同様にサーマルサイクル後の液滴を計測した。撮影した画像の一例を図5Bに示す。計測結果を表1にまとめて示す。 The emulsion 2 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 1, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 1. An example of the image | photographed image is shown to FIG. 5B. The measurement results are summarized in Table 1 below.
 (準備例3)
 準備例1において、テンプレート1を100倍に希釈して、テンプレート3とした。すなわち、テンプレート3では、アンプリコンの濃度がおおよそ5×10コピー/μL程度となっている。テンプレート1の代わりにテンプレート3を用いて分散相を形成したこと以外は準備例1と同様にして、エマルジョン3を生成した。
(Preparation example 3)
In Preparation Example 1, template 1 was diluted 100 times to form template 3. That is, in the template 3, the concentration of the amplicon is approximately 5 × 10 2 copies / μL. Emulsion 3 was produced in the same manner as in Preparation Example 1 except that template 3 was used instead of template 1 to form a dispersed phase.
 このエマルジョン3について、準備例1と同様にサーマルサイクルを施してPCRを行い、準備例1と同様にサーマルサイクル後の液滴を計測した。撮影した画像の一例を図5Cに示す。計測結果を表1にまとめて示す。 The emulsion 3 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 1, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 1. An example of the image | photographed image is shown to FIG. 5C. The measurement results are summarized in Table 1 below.
 (準備例4)
 準備例1において、テンプレート1を1000倍に希釈して、テンプレート4とした。すなわち、テンプレート4では、アンプリコンの濃度がおおよそ5×10コピー/μL程度となっている。テンプレート1の代わりにテンプレート4を用いて分散相を形成したこと以外は準備例1と同様にして、エマルジョン4を生成した。
(Preparation example 4)
In Preparation Example 1, template 1 was diluted 1000 times to form template 4. That is, in the template 4, the concentration of the amplicon is approximately 5 × 10 copies / μL. Emulsion 4 was produced in the same manner as in Preparation Example 1 except that template 4 was used instead of template 1 to form a dispersed phase.
 このエマルジョン4について、準備例1と同様にサーマルサイクルを施してPCRを行い、準備例1と同様にサーマルサイクル後の液滴を計測した。撮影した画像の一例を図5Dに示す。計測結果を表1にまとめて示す。 The emulsion 4 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 1, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 1. An example of the image | photographed image is shown to FIG. 5D. The measurement results are summarized in Table 1 below.
 (準備例5)
 準備例1において、16S rDNA(QuickPrimer Escherichia / Shigella group)の代わりにHuman β-Actin(Human ACTB Endogenous Control、サーモフィッシャーサイエンティフィック株式会社)を用いたこと以外は準備例1と同様にして、PCRを行った。Human β-Actinのアンプリコンの濃度がおおよそ5×10コピー/μL程度となるよう溶液を希釈して、テンプレート5とした。テンプレート1の代わりにテンプレート5を用いて分散相を形成したこと以外は準備例1と同様にして、エマルジョン5を生成した。
(Preparation example 5)
In Preparation Example 1, PCR was carried out in the same manner as in Preparation Example 1 except that Human β-Actin (Human ACTB Endogenous Control, Thermo Fisher Scientific Co., Ltd.) was used instead of 16S rDNA (QuickPrimer Escherichia / Shigella group). Did. The solution was diluted so that the concentration of human β-Actin amplicon was approximately 5 × 10 4 copies / μL, and used as template 5. An emulsion 5 was produced in the same manner as in Preparation Example 1 except that template 5 was used instead of template 1 to form a dispersed phase.
 このエマルジョン5について、準備例1と同様にサーマルサイクルを施してPCRを行い、準備例1と同様にサーマルサイクル後の液滴を計測した。撮影した画像の一例を図6Aに示す。計測結果を表2にまとめて示す。 The emulsion 5 was subjected to a thermal cycle in the same manner as in Preparation Example 1 to perform PCR, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 1. An example of the image | photographed image is shown to FIG. 6A. The measurement results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (準備例6)
 準備例5において、テンプレート5を10倍に希釈して、テンプレート6とした。すなわち、テンプレート6では、アンプリコンの濃度がおおよそ5×10コピー/μL程度となっている。テンプレート5の代わりにテンプレート6を用いて分散相を形成したこと以外は準備例5と同様にして、エマルジョン6を生成した。
(Preparation example 6)
In Preparation Example 5, template 5 was diluted 10 times to form template 6. That is, in the template 6, the concentration of the amplicon is approximately 5 × 10 3 copies / μL. Emulsion 6 was produced in the same manner as in Preparation Example 5, except that template 6 was used instead of template 5 to form a dispersed phase.
 このエマルジョン6について、準備例5と同様にサーマルサイクルを施してPCRを行い、準備例5と同様にサーマルサイクル後の液滴を計測した。撮影した画像の一例を図6Bに示す。計測結果を表2にまとめて示す。 The emulsion 6 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 5, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 5. An example of the image | photographed image is shown to FIG. 6B. The measurement results are summarized in Table 2.
 (準備例7)
 準備例5において、テンプレート5を100倍に希釈して、テンプレート7とした。すなわち、テンプレート7では、アンプリコンの濃度がおおよそ5×10コピー/μL程度となっている。テンプレート5の代わりにテンプレート7を用いて分散相を形成したこと以外は準備例5と同様にして、エマルジョン7を生成した。
(Preparation example 7)
In Preparation Example 5, the template 5 was diluted 100 times to be a template 7. That is, in the template 7, the concentration of the amplicon is approximately 5 × 10 2 copies / μL. Emulsion 7 was produced in the same manner as in Preparation Example 5 except that template 7 was used instead of template 5 to form a dispersed phase.
 このエマルジョン7について、準備例5と同様にサーマルサイクルを施してPCRを行い、準備例5と同様にサーマルサイクル後の液滴を計測した。撮影した画像の一例を図6Cに示す。計測結果を表2にまとめて示す。 The emulsion 7 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 5, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 5. An example of the image | photographed image is shown to FIG. 6C. The measurement results are summarized in Table 2.
 (準備例8)
 準備例5において、テンプレート5を1000倍に希釈して、テンプレート8とした。すなわち、テンプレート8では、アンプリコンの濃度がおおよそ5×10コピー/μL程度となっている。テンプレート5の代わりにテンプレート8を用いて分散相を形成したこと以外は準備例5と同様にして、エマルジョン8を生成した。
(Preparation example 8)
In Preparation Example 5, template 5 was diluted 1000 times to form template 8. That is, in the template 8, the concentration of the amplicon is approximately 5 × 10 copies / μL. An emulsion 8 was produced in the same manner as in Preparation Example 5 except that the dispersed phase was formed using template 8 instead of template 5.
 このエマルジョン8について、準備例5と同様にサーマルサイクルを施してPCRを行い、準備例5と同様にサーマルサイクル後の液滴を計測した。撮影した画像の一例を図6Dに示す。計測結果を表2にまとめて示す。 The emulsion 8 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 5, and the droplets after the thermal cycle were measured in the same manner as in Preparation Example 5. An example of the image | photographed image is shown to FIG. 6D. The measurement results are summarized in Table 2.
 (比較例1)
 準備例1~4のエマルジョン1~4について、液滴を用いるデジタルPCRで一般に行われている方法で、サンプル中の分析対象物(標的核酸)の濃度を計算した。具体的には、全区間の液滴の総数の合計、全区間の陰性液滴の数の合計を用いて陰性液滴の割合を計算し、式(4)を用いて1つの反応場に含まれていた分析対象物の平均個数Cを算出した。そして、平均個数Cと全区間の液滴の総数の合計とを掛け合わせて、検出対象とした全液滴に含まれていた分析対象物の総数を算出した。その後、各区間の液滴の総数とその区間の液滴の液滴径とから、各区間に含まれる液滴の体積を計算し、検出対象とした液滴の総体積を計算した。そして、検出対象とした全液滴に含まれていた分析対象物の総数を検出対象とした全液滴の総体積で割ることで反応液における濃度を算出し、それに希釈倍率10倍を掛けることで、サンプル中の分析対象物の濃度に換算した。結果を表3に示す。
(Comparative example 1)
With respect to emulsions 1 to 4 of Preparation Examples 1 to 4, the concentration of the analyte (target nucleic acid) in the sample was calculated by a method commonly performed in digital PCR using droplets. Specifically, the percentage of negative droplets is calculated using the sum of the total number of droplets in all sections and the total number of negative droplets in all sections, and is included in one reaction field using equation (4) The average number C of analyzed analytes was calculated. Then, the total number of analytes contained in all droplets to be detected was calculated by multiplying the average number C and the sum of the total number of droplets in all sections. Thereafter, the volume of droplets contained in each section was calculated from the total number of droplets in each section and the droplet diameter of the droplet in that section, and the total volume of droplets to be detected was calculated. Then, the concentration in the reaction solution is calculated by dividing the total number of analytes contained in all droplets to be detected by the total volume of all droplets to be detected, and multiplying this by 10 times the dilution ratio Were converted to the concentration of the analyte in the sample. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (実施例1)
 エマルジョン1について、分布データのうち、陽性液滴の割合が0%以上100%未満の区間のデータのみを用いてサンプル中の分析対象物の濃度を計算した。具体的には表4に示すように、陽性液滴の割合が100%であった区間10,14,15,17についてはデータを棄却して、それ以外の区間のデータを用いて計算を行った。棄却されなかった区間のそれぞれについて、区間ごとに比較例1~4と同様の計算によって分析対象物の数を計算した。また、棄却されなかった区間のそれぞれについて、区間ごとに区間内の液滴の総体積を計算した。そして、得られた各区間の分析対象物の数を合計したものを、各区間の液滴の総体積を合計したもので割ることで反応液における濃度を算出し、それにサンプルの希釈率10倍を掛けることで、サンプル中の分析対象物の濃度に換算した。
Example 1
For the emulsion 1, the concentration of the analyte in the sample was calculated using only the data in the interval of 0% or more and less than 100% of the distribution data among the distribution data. Specifically, as shown in Table 4, the data is rejected for the sections 10, 14, 15 and 17 in which the percentage of positive droplets is 100%, and the calculation is performed using data of other sections. The For each of the sections that were not rejected, the number of analytes was calculated for each section by the same calculation as in Comparative Examples 1 to 4. Also, for each of the sections that were not rejected, the total volume of droplets in the section was calculated for each section. Then, the concentration in the reaction solution is calculated by dividing the sum of the number of analytes in each section obtained by the total volume of droplets in each section, and multiplying this by 10 times the dilution rate of the sample Thus, it was converted to the concentration of the analyte in the sample.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 エマルジョン2~3についてもエマルジョン1と同様にして計算を行い、サンプル中の分析対象物の濃度を計算した。計算結果をまとめて表5に示す。 Calculations were performed on emulsions 2 to 3 in the same manner as in emulsion 1 to calculate the concentration of the analyte in the sample. The calculation results are summarized in Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (実施例2)
 実施例1において、液滴径の区間の幅を10μmから20μmに変更した以外は実施例1と同様にして、サンプル中の分析対象物の濃度を計算した。エマルジョン1について液滴径の区間の幅を10μmから20μmに変更した場合の度数分布データと計算結果を表6に示す。
(Example 2)
The concentration of the analyte in the sample was calculated in the same manner as in Example 1 except that the width of the droplet diameter section was changed from 10 μm to 20 μm in Example 1. Table 6 shows frequency distribution data and calculation results in the case where the width of the droplet diameter section of the emulsion 1 is changed from 10 μm to 20 μm.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 エマルジョン2~4についてもエマルジョン1と同様にして計算を行い、サンプル中の分析対象物の濃度を計算した。計算結果をまとめて表7に示す。 Calculations were performed on emulsions 2 to 4 in the same manner as in emulsion 1 to calculate the concentration of the analyte in the sample. The calculation results are summarized in Table 7.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 <比較例1と実施例1,2の比較>
 表3,5,7に示されるように、比較例1、実施例1,2のそれぞれにおいて、エマルジョン1,2,3,4は、それぞれ、エマルジョン1に対する相対希釈倍率が1倍、10倍、100倍、1000倍に相当する。したがって、エマルジョン1,2,3,4においてサンプル中の分析対象物の濃度は、それぞれ、エマルジョン1に対して1倍、0.1倍、0.01倍、0.001倍となるはずである。
Comparison of Comparative Example 1 and Examples 1 and 2
As shown in Tables 3, 5, and 7, in each of Comparative Example 1 and Examples 1 and 2, the emulsions 1, 2, 3 and 4 had a relative dilution ratio to the emulsion 1 of 1, 10, respectively. It corresponds to 100 times and 1000 times. Therefore, the concentrations of analyte in the sample in emulsions 1, 2, 3 and 4 should be 1 times, 0.1 times, 0.01 times and 0.001 times that of emulsion 1, respectively. .
 図7は、比較例1、実施例1,2のそれぞれにおける、相対希釈倍率とサンプル中の分析対象物の濃度の計算結果との関係を示すグラフである。図7Aは比較例1の結果、図7Bは実施例1の結果、図7Cは実施例2の結果を、横軸を相対希釈倍率、縦軸を濃度の計算結果とした両対数グラフでそれぞれ示している。 FIG. 7 is a graph showing the relationship between the relative dilution ratio and the calculation result of the concentration of the analyte in the sample in each of Comparative Example 1 and Examples 1 and 2. FIG. 7A shows the result of Comparative Example 1, FIG. 7B shows the result of Example 1, FIG. 7C shows the result of Example 2 by a double logarithm graph in which the horizontal axis represents relative dilution ratio and the vertical axis is calculation result of concentration. ing.
 上述のように、相対希釈倍率と濃度は、相対希釈倍率をy、濃度をxとすると、y=ax-1が成り立つ。したがって、両対数グラフにおいては両者の関係は傾きが-1の直線で表されるはずである。図7A~Cにおいて、エマルジョン1においてサンプル中の分析対象物の濃度が5×10コピー/μLであったと仮定したときの相対希釈倍率と濃度の関係を、点線で示した。また、図7A~Cにおいて、実線は両対数グラフにおいて比較例1、実施例1,2の結果を累乗近似したときの近似曲線を示している。図7A~Cを比較すると、図7B,Cでは、図7Aよりも、実線の傾きが点線の傾きに近いことがわかった。具体的には、近似曲線の傾きは、比較例1では-0.78、実施例1では-0.86、実施例2では-0.86となった。このことから、実施例1,2では、比較例1よりも真の値に近い結果が得られたこと、すなわち、定量分析の信頼度が高いことがわかった。実施例1,2では、特に希釈倍率の低い部分、すなわち、サンプル中の分析対象物の濃度が高い部分において、真の値に近い結果が得られることがわかった。以上から、本発明によれば、液滴のサイズにばらつきがある場合であっても、信頼度の高い分析結果が得られることがわかった。 As described above, relative dilution factor and concentration are y = ax −1, where y is a relative dilution factor and x is a concentration. Therefore, in the double logarithm graph, the relationship between the two should be represented by a straight line with a slope of -1. In FIGS. 7A to 7C, the relationship between the relative dilution ratio and the concentration is shown by a dotted line on the assumption that the concentration of the analyte in the sample in Emulsion 1 is 5 × 10 4 copies / μL. Further, in FIGS. 7A to 7C, solid lines indicate approximate curves when the results of Comparative Example 1 and Examples 1 and 2 are power-approximated in a double logarithm graph. When FIGS. 7A to 7C are compared, it is found that in FIGS. 7B and 7C, the slope of the solid line is closer to the slope of the dotted line than in FIG. 7A. Specifically, the slope of the approximate curve was −0.78 in Comparative Example 1, −0.86 in Example 1, and −0.86 in Example 2. From this, it was found that in Examples 1 and 2, the result closer to the true value was obtained than Comparative Example 1, that is, the reliability of the quantitative analysis was high. In Examples 1 and 2, it was found that the result close to the true value was obtained particularly in the low dilution ratio part, that is, in the high concentration part of the analyte in the sample. From the above, it has been found that according to the present invention, highly reliable analysis results can be obtained even when the droplet size varies.
 (比較例2)
 準備例5~8のエマルジョン5~8について、比較例1と同様の手順で、サンプル中の分析対象物の濃度を計算した。結果を表8に示す。
(Comparative example 2)
The concentrations of the analytes in the samples of the emulsions 5 to 8 of Preparation Examples 5 to 8 were calculated in the same manner as in Comparative Example 1. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 (実施例3)
 準備例5~8のエマルジョン5~8について、実施例1と同様の手順で、サンプル中の分析対象物の濃度を計算した。結果を表9に示す。
(Example 3)
The concentrations of the analytes in the samples were calculated in the same manner as in Example 1 with respect to emulsions 5 to 8 of Preparation Examples 5 to 8. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (実施例4)
 準備例5~8のエマルジョン5~8について、実施例2と同様の手順で、サンプル中の分析対象物の濃度を計算した。結果を表10に示す。
(Example 4)
The concentrations of the analyte in the samples were calculated in the same manner as in Example 2 for emulsions 5 to 8 in Preparation Examples 5 to 8. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 <比較例2と実施例3,4の比較>
 表8,9,10に示されるように、比較例2、実施例3,4のそれぞれにおいて、エマルジョン5,6,7,8は、それぞれ、エマルジョン5に対する相対希釈倍率が1倍、10倍、100倍、1000倍に相当する。したがって、エマルジョン5,6,7,8においてサンプル中の分析対象物の濃度は、それぞれ、エマルジョン5に対して1倍、0.1倍、0.01倍、0.001倍となるはずである。
Comparison of Comparative Example 2 and Examples 3 and 4
As shown in Tables 8, 9 and 10, in each of Comparative Example 2 and Examples 3 and 4, the emulsions 5, 6, 7 and 8 have a relative dilution ratio to the emulsion 5 of 1, 10, respectively. It corresponds to 100 times and 1000 times. Thus, the concentrations of analyte in the sample in emulsions 5, 6, 7 and 8 should be 1 times, 0.1 times, 0.01 times and 0.001 times that of emulsion 5, respectively. .
 図8は、比較例2、実施例3,4のそれぞれにおける、相対希釈倍率とサンプル中の分析対象物の濃度の計算結果との関係を示すグラフである。図8Aは比較例2の結果、図8Bは実施例3の結果、図8Cは実施例4の結果を、横軸を相対希釈倍率、縦軸を濃度の計算結果とした両対数グラフでそれぞれ示している。 FIG. 8 is a graph showing the relationship between the relative dilution ratio and the calculation result of the concentration of the analyte in the sample in each of Comparative Example 2 and Examples 3 and 4. FIG. 8A shows the result of Comparative Example 2, FIG. 8B shows the result of Example 3, FIG. 8C shows the result of Example 4 by a double logarithm graph in which the horizontal axis represents relative dilution factor and the vertical axis is calculation result of concentration. ing.
 上述のように、相対希釈倍率と濃度は、相対希釈倍率をy、濃度をxとすると、y=ax-1が成り立つ。したがって、両対数グラフにおいては両者の関係は傾きが-1の直線で表されるはずである。図8A~Cにおいて、エマルジョン5においてサンプル中の分析対象物の濃度が5×10コピー/μLであったと仮定したときの相対希釈倍率と濃度の関係を、点線で示した。また、図8A~Cにおいて、実線は両対数グラフにおいて比較例2、実施例3,4の結果を累乗近似したときの近似曲線を示している。図8A~Cを比較すると、図8B,Cでは、図8Aよりも、実線の傾きが点線の傾きに近いことがわかった。具体的には、近似曲線の傾きは、比較例2では-0.73、実施例3では-0.88、実施例4では-0.89となった。このことから、実施例3,4では、比較例2よりも真の値に近い結果が得られたこと、すなわち、定量分析の信頼度が高いことがわかった。実施例3,4では、特に希釈倍率の低い部分、すなわち、サンプル中の分析対象物の濃度が高い部分において、真の値に近い結果が得られることがわかった。以上から、本発明によれば、液滴のサイズにばらつきがある場合であっても、信頼度の高い分析結果が得られることがわかった。 As described above, relative dilution factor and concentration are y = ax −1, where y is a relative dilution factor and x is a concentration. Therefore, in the double logarithm graph, the relationship between the two should be represented by a straight line with a slope of -1. In FIG. 8A to FIG. 8C, the relationship between relative dilution ratio and concentration is shown by a dotted line assuming that the concentration of the analyte in the sample in emulsion 5 is 5 × 10 4 copies / μL. Further, in FIGS. 8A to 8C, a solid line indicates an approximate curve when the results of Comparative Example 2 and Examples 3 and 4 are power-approximated in a double logarithm graph. Comparing FIGS. 8A to 8C, it was found that in FIGS. 8B and 8C, the slope of the solid line is closer to the slope of the dotted line than in FIG. 8A. Specifically, the slope of the approximate curve was −0.73 in Comparative Example 2, −0.88 in Example 3, and −0.89 in Example 4. From this, it was found that in Examples 3 and 4, the result closer to the true value was obtained than Comparative Example 2, that is, the reliability of the quantitative analysis was high. In Examples 3 and 4, it was found that results close to the true value were obtained, particularly in the low dilution ratio part, that is, in the part where the concentration of the analyte in the sample is high. From the above, it has been found that according to the present invention, highly reliable analysis results can be obtained even when the droplet size varies.
 (準備例9)
 <エマルジョン9の生成>
 定量用デオキシリボ核酸(DNA)水溶液(型番6205-a 産業技術総合研究所 計量標準総合センター製)を分散相最終濃度として25コピー/μL、前記DNAに対応するように設計したプライマー(フォワードプライマー、リバースプライマーそれぞれ)を分散相最終濃度として0.5μM、DNA増幅を検出するための蛍光色素としてFAMを標識したプローブを分散相最終濃度として0.25μMとなるように加え、Premix Ex Taq(型番 RR390A、タカラバイオ社製)、滅菌蒸留水をさらに混合して、エマルジョン9の分散相を調製した。
(Preparation example 9)
<Formation of Emulsion 9>
25 copies / μL of deoxyribonucleic acid (DNA) aqueous solution for quantification (Model No. 6205-a, manufactured by National Institute of Advanced Industrial Science and Technology, Metric Standard Center) as the dispersed phase final concentration, primers designed to correspond to the DNA (forward primer, reverse Add 0.5 μM of each primer as the final concentration of the dispersed phase, and a probe labeled with FAM as a fluorescent dye for detecting DNA amplification to a final concentration of the dispersed phase of 0.25 μM, and add Premix Ex Taq (Model No. RR390A, The dispersed phase of emulsion 9 was prepared by further mixing with Takara Bio Inc. and sterile distilled water.
 界面活性剤であるKF-6038(信越化学工業製)をイソパラフィン系脂肪族炭化水素であるアイソパーL(エクソンモービル製)に溶解させ、エマルジョン9を調製した。本実施例では、油性組成物全体を100質量%としたときに界面活性剤の濃度が4質量%となるように油性組成物を調製した。 A surfactant, KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.), was dissolved in Isopar L (manufactured by Exxon Mobil), which is an isoparaffin aliphatic hydrocarbon, to prepare Emulsion 9. In this example, the oil-based composition was prepared such that the concentration of the surfactant was 4% by mass when the entire oil-based composition was 100% by mass.
 前記水性組成物を採取したシリンジ(08040、ニプロ製)の先端に、乳化膜であるシラス多孔質ガラス(SPG)膜(DC20U、SPGテクノ製)を接続した。シリンジをシリンジポンプ(SPS-1、アズワン製)にセットし、シリンジの先端の乳化膜を上記油性組成物9mL中に浸し、油性組成物を少量吸い上げてから、5mL/hの乳化流速(水性組成物注入速度)で分散相を注入して、油中水型エマルジョンであるエマルジョン9を生成した。 A shirasu porous glass (SPG) film (DC 20 U, manufactured by SPG Techno), which is an emulsified film, was connected to the tip of a syringe (08040, manufactured by Nipro) from which the aqueous composition was collected. Set the syringe to a syringe pump (SPS-1, manufactured by As One), immerse the emulsified film at the tip of the syringe in 9 mL of the above-mentioned oily composition, and after sucking up a small amount of the oily composition, emulsifying flow rate of 5 mL / h (aqueous composition The dispersed phase was injected at a substance injection rate to produce Emulsion 9, which is a water-in-oil emulsion.
 <エマルジョンを用いたPCR>
 得られたエマルジョン9に下記のサーマルサイクル条件でサーマルサイクルを施してPCRを行った。
<PCR using emulsion>
The obtained emulsion 9 was subjected to thermal cycling under the following thermal cycling conditions to perform PCR.
 [サーマルサイクル条件]
 1)酵素活性化(95℃30秒間) 1サイクル
 2)PCR(95℃5秒間、60℃30秒間) 40サイクル
 3)保持(4℃) 1サイクル
[Thermal cycle conditions]
1) Enzyme activation (95 ° C for 30 seconds) 1 cycle 2) PCR (95 ° C for 5 seconds, 60 ° C for 30 seconds) 40 cycles 3) Holding (4 ° C) 1 cycle
 <サーマルサイクル後の液滴の計測>
 サーマルサイクル後のエマルジョン9を、ガラス製沈査用プレート(MUR-300、松浪硝子工業株式会社)に20μL採取し、蛍光顕微鏡(BZ-8000、株式会社キーエンス)を用いて観察した。観察は、1つの視野につき、同一視野において可視像と蛍光像(励起波長480/30nm、吸収波長510nm)を内蔵のカメラ(撮像素子:150万画素CCDイメージセンサ)で撮影し、これを10視野以上で行った。撮影した画像の一例を図9Aに示す。
<Measurement of droplet after thermal cycle>
After thermal cycling, 20 μL of the emulsion 9 was collected on a glass settling plate (MUR-300, Matsunami Glass Industrial Co., Ltd.) and observed using a fluorescence microscope (BZ-8000, Keyence Corporation). For observation, a visible image and a fluorescence image (excitation wavelength 480/30 nm, absorption wavelength 510 nm) are taken with a built-in camera (imaging element: 1.5 million pixel CCD image sensor) in one field of view in the same field of view. I went over the field of view. An example of the image | photographed image is shown to FIG. 9A.
 得られたエマルジョンの顕微鏡像より、画像処理ソフトウエア(ImageJ)を用いて、それぞれの液滴の直径を計測した。このとき、直径40μm以下の液滴はノイズとの分離が困難であったために計測対象外とした。さらに、前記の画像処理ソフトウエアを用いて、それぞれの液滴について遺伝子増殖による蛍光増強の有無を判定し、それぞれの液滴のサイズの情報と分析対象物が検出されたか否かの情報とを対応付けたデータを作成した。 From the microscopic image of the obtained emulsion, the diameter of each droplet was measured using image processing software (ImageJ). At this time, since a droplet with a diameter of 40 μm or less was difficult to separate from noise, it was excluded from measurement. Furthermore, using the above-mentioned image processing software, the presence or absence of fluorescence enhancement by gene proliferation is determined for each droplet, and information on the size of each droplet and information on whether or not an analyte is detected I created the data that I matched.
 得られたデータについて、液滴のサイズを複数の区間に分け、度数分布データを作成した。具体的には、液滴径が40μm以上50μm未満を1つの区間として、以降同様にして、計測の分解能である10μmを区間の幅として、液滴径を19個の区間に分けた。そして、区間ごとに液滴の数、陽性液滴の数、陰性液滴の数、をそれぞれ集計した。この結果を表11にまとめて示す。 For the obtained data, the droplet size was divided into a plurality of sections to create frequency distribution data. Specifically, the droplet diameter was divided into 19 segments, with the droplet diameter being 40 μm or more and less than 50 μm as one segment, and the measurement resolution of 10 μm as the segment width. Then, the number of droplets, the number of positive droplets, and the number of negative droplets were counted for each section. The results are summarized in Table 11.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 上記表11中、液滴径は液滴の平均直径、Totalは液滴の総数、Positiveは蛍光増強があった液滴(陽性液滴)の数、Negativeは蛍光増強がなかった液滴(陰性液滴)の数、をそれぞれ示す(以降、同様である)。 In Table 11, the droplet diameter is the average diameter of droplets, Total is the total number of droplets, Positive is the number of droplets with fluorescence enhancement (positive droplets), and Negative is the droplet without fluorescence enhancement (negative Each indicates the number of droplets) (the same applies hereinafter).
 (準備例10)
 <エマルジョン10の生成>
 DNA濃度を250コピー/μLとした以外は準備例9と同様にして、エマルジョン10を生成した。
(Preparation example 10)
<Formation of Emulsion 10>
An emulsion 10 was produced in the same manner as in Preparation Example 9 except that the DNA concentration was changed to 250 copies / μL.
 このエマルジョン10について、準備例9と同様にサーマルサイクルを施してPCRを行い、準備例9と同様にサーマルサイクル後の液滴の総数(Total)、陽性液滴数(Positive)、および陰性液滴数(Negative)を計測した。撮影した画像の一例を図9Bに示す。計測結果を表11にまとめて示す。 The emulsion 10 was subjected to a thermal cycle and subjected to PCR in the same manner as in Preparation Example 9, and in the same manner as in Preparation Example 9, the total number of droplets after thermal cycling (Total), the number of positive droplets (Positive), and the negative droplets. The number (Negative) was measured. An example of the image | photographed image is shown to FIG. 9B. The measurement results are summarized in Table 11.
 (準備例11)
 <エマルジョン11の生成>
 DNA濃度を2500コピー/μLとした以外は準備例9と同様にして、エマルジョン11を生成した。
(Preparation example 11)
<Formation of Emulsion 11>
Emulsion 11 was produced in the same manner as in Preparation Example 9 except that the DNA concentration was changed to 2500 copies / μL.
 このエマルジョン11について、準備例9と同様にサーマルサイクルを施してPCRを行い、準備例9と同様にサーマルサイクル後の液滴の総数、陽性液滴数、および陰性液滴数を計測した。撮影した画像の一例を図9Cに示す。計測結果を表11にまとめて示す。 The emulsion 11 was subjected to thermal cycling in the same manner as in Preparation Example 9 to conduct PCR, and the total number of droplets after thermal cycling, the number of positive droplets, and the number of negative droplets were measured in the same manner as in Preparation Example 9. An example of the image | photographed image is shown to FIG. 9C. The measurement results are summarized in Table 11.
 (準備例12)
 <エマルジョン12の生成>
 DNA濃度を6250コピー/μLとした以外は準備例9と同様にして、エマルジョン12を生成した。
(Preparation example 12)
<Formation of Emulsion 12>
Emulsion 12 was produced in the same manner as in Preparation Example 9 except that the DNA concentration was changed to 6250 copies / μL.
 このエマルジョン12について、準備例9と同様にサーマルサイクルを施してPCRを行い、準備例9と同様にサーマルサイクル後の液滴の総数、陽性液滴数、および陰性液滴数を計測した。撮影した画像の一例を図9Dに示す。計測結果を表11にまとめて示す。 The emulsion 12 was subjected to thermal cycling in the same manner as in Preparation Example 9 to perform PCR, and the total number of droplets after thermal cycling, the number of positive droplets, and the number of negative droplets were measured in the same manner as in Preparation Example 9. An example of the photographed image is shown in FIG. 9D. The measurement results are summarized in Table 11.
 (準備例13)
 <エマルジョン13の生成>
 DNA濃度を20000コピー/μLとした以外は準備例9と同様にして、エマルジョン13を生成した。
(Preparation example 13)
<Formation of Emulsion 13>
An emulsion 13 was produced in the same manner as in Preparation Example 9 except that the DNA concentration was changed to 20000 copies / μL.
 このエマルジョン13について、準備例9と同様にサーマルサイクルを施してPCRを行い、準備例9と同様にサーマルサイクル後の液滴の総数、陽性液滴数、および陰性液滴数を計測した。撮影した画像の一例を図9Eに示す。計測結果を表11にまとめて示す。 The emulsion 13 was subjected to thermal cycling in the same manner as in Preparation Example 9 to conduct PCR, and the total number of droplets after thermal cycling, the number of positive droplets, and the number of negative droplets were measured in the same manner as in Preparation Example 9. An example of the image | photographed image is shown to FIG. 9E. The measurement results are summarized in Table 11.
 (比較例3)
 準備例9~13のエマルジョン9~13について、比較例1と同様に検出対象とした全液滴に含まれていた分析対象物の総数、および、各サンプル中の分析対象物濃度を算出した。さらに、各サンプルで算出した分析対象物濃度と各サンプルの分散相濃度との乖離率を算出した。これらの結果を表12に示す。
(Comparative example 3)
With respect to the emulsions 9 to 13 of Preparation Examples 9 to 13, the total number of analytes contained in all droplets to be detected as in Comparative Example 1 and the concentration of the analyte in each sample were calculated. Furthermore, the divergence rate between the analyte concentration calculated for each sample and the dispersed phase concentration for each sample was calculated. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 (実施例5)
 エマルジョン9~12について、実施例1と同様の手順で、サンプル中の分析対象物の濃度を計算した。結果をまとめたものを表13に示す。
(Example 5)
The concentration of the analyte in the sample was calculated in the same manner as in Example 1 for emulsions 9-12. The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 <比較例3と実施例5の比較>
 図10は、比較例3、実施例5におけるエマルジョン9~13の各エマルジョンに対する調製濃度とサンプル中の分析対象物の濃度の計算結果との関係を表すグラフである。図10と表12、13との結果から、液滴サイズを考慮した実施例ではサンプル濃度との乖離率が9%を下回っており、比較例と比べても値の振れが小さいことがわかった。さらに今回用いたDNA試料は真の値に対して95%信頼区間で9.2%の誤差を許容されるものである。以上から、本発明によれば、液滴のサイズにばらつきがある場合であっても、真の値に近い計算結果が得られることがわかった。
Comparison of Comparative Example 3 and Example 5
FIG. 10 is a graph showing the relationship between the prepared concentration for each of the emulsions 9 to 13 in Comparative Example 3 and Example 5 and the calculation result of the concentration of the analyte in the sample. From the results of FIG. 10 and Tables 12 and 13, it is found that the deviation ratio with the sample concentration is less than 9% in the embodiment in which the droplet size is considered, and the fluctuation of the value is smaller even in comparison with the comparative example. . Furthermore, the DNA sample used this time allows an error of 9.2% in the 95% confidence interval to the true value. From the above, it was found that according to the present invention, even when the droplet size varies, calculation results close to the true value can be obtained.
 (比較例4)
 エマルジョン9~11に対応する25、250、2500コピー/μLのDNA濃度に関して、市販の液滴型デジタルPCR装置(型式:QX200 Droplet Digital PCRシステム、バイオラッド・ラボラトリー社製)で両者の比較を行った。
(Comparative example 4)
A comparison of the two was performed using a commercially available drop-type digital PCR device (model: QX200 Droplet Digital PCR System, Bio-Rad Laboratories) for a DNA concentration of 25, 250, 2500 copies / μL corresponding to emulsions 9-11. The
 液滴の分散相は、実施例5と同様にプライマー(フォワードプライマー、リバースプライマーそれぞれ)を分散相最終濃度として0.5μM、FAM標識プローブを分散相最終濃度0.25μMとなるように加え、PCRミックス(型番 186-3023、バイオラッド・ラボラトリー社製)、滅菌蒸留水をさらに混合して、エマルジョン9~11に対応する分散相を調製した。 The dispersed phase of the droplet was prepared by adding the primers (forward primer and reverse primer respectively) as the dispersed phase final concentration to 0.5 μM and the FAM labeled probe as the dispersed phase final concentration to 0.25 μM in the same manner as in Example 5. The mix (Model No. 186-3023, manufactured by Bio-Rad Laboratory) and sterile distilled water were further mixed to prepare a dispersed phase corresponding to emulsions 9-11.
 調製した分散相を液滴生成装置(Automated Droplet Generatorシステム、バイオラッド・ラボラトリー社製)で液滴を生成し、下記のサーマルサイクル条件でサーマルサイクルを施してPCRを行った。 The prepared dispersed phase was used to generate droplets in a droplet generator (Automated Droplet Generator system, manufactured by Bio-Rad Laboratory), and subjected to thermal cycling under the following thermal cycle conditions to conduct PCR.
 [サーマルサイクル条件]
 1)酵素活性化(95℃10分間) 1サイクル
 2)PCR(95℃30秒間、60℃1分間) 50サイクル
 3)保持(4℃) 1サイクル
 上記以外の濃度計測までの操作はシステムのプロトコルに従った。
[Thermal cycle conditions]
1) Enzyme activation (95 ° C. for 10 minutes) 1 cycle 2) PCR (95 ° C. for 30 seconds, 60 ° C. for 1 minute) 50 cycles 3) Holding (4 ° C.) 1 cycle Procedures for concentration measurement other than the above are system protocols I obeyed.
 表14に市販装置の分析結果を示す。表に示す相対希釈倍率とは、エマルジョン11に相当するDNA濃度である2500コピー/μLを1としたものであり、エマルジョン10に相当する250コピー/μLは10、エマルジョン9に相当する25コピー/μLは100となる。表4から、市販装置において得られた値は、サンプル濃度との乖離率が9.2%を下回っており、真の値と近いことがわかった。 Table 14 shows the analysis results of the commercially available device. The relative dilution ratio shown in the table is 1 where 2500 copies / μL, which is the DNA concentration corresponding to emulsion 11, is 1, 250 copies / μL corresponding to emulsion 10 is 10, and 25 copies corresponding to emulsion 9 / μL is 100. From Table 4, it was found that the value obtained in the commercial apparatus was close to the true value, with the rate of deviation from the sample concentration being less than 9.2%.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 <比較例4と本実施例のエマルジョン9~11の比較>
 図11は、エマルジョン9~11の実施例の結果と比較例4で実施した結果を、横軸に相対希釈倍率、縦軸は濃度の計算結果とした両対数グラフで示している。
Comparison of Emulsions 9 to 11 of Comparative Example 4 and this Example
FIG. 11 shows the results of the examples of the emulsions 9 to 11 and the results carried out in the comparative example 4, with the relative dilution factor on the horizontal axis and the double logarithm graph on the vertical axis as the calculation result of the concentration.
 図において、黒点線は本実施例、の灰点線は市販装置における比較例の結果を累乗近似した時の近似曲線をそれぞれ示している。両者を比較すると近似曲線の傾きはそれぞれ-1.002と-0.966であり、理想的な-1に近い値が得られていることがわかった。さらに、両者のプロットは検討した濃度範囲においていずれも真の値から9%以内の乖離率であったことから、両者では真の値に近い結果と高い定量性が得られていることがわかった。以上から、本発明の実施例によれば、液滴のサイズにばらつきがある場合であっても、信頼度の高い分析結果が得られることがわかった。 In the figure, the black dotted line indicates the approximate curve when the result of the comparative example in the commercial apparatus is approximated by a power approximation. Comparing the two, it was found that the slopes of the approximate curves were -1.002 and -0.966, respectively, and values close to the ideal -1 were obtained. Furthermore, since both plots were within 9% of the true value in the concentration range studied, it was found that both results close to the true value and high quantitativity were obtained for both. . From the above, it was found that according to the embodiment of the present invention, highly reliable analysis results can be obtained even when the droplet size varies.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Accordingly, the following claims are attached to disclose the scope of the present invention.
 本願は、2017年7月6日提出の日本国特許出願特願2017-132911と2018年6月29日提出の日本国特許出願特願2018-125187を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 The present application claims priority based on Japanese Patent Application No. 2017-132911 filed on July 6, 2017 and Japanese Patent Application No. 2018-125187 submitted on June 29, 2018, The entire contents of the description are incorporated herein.

Claims (20)

  1.  サンプル中の分析対象物の濃度を分析する分析システムであって、
     前記サンプルを含む液体を分割して生成された複数の反応場について、前記複数の反応場のそれぞれのサイズに関する情報を取得するサイズ情報取得部と、
     前記複数の反応場のそれぞれにおける前記分析対象物の存在に関する情報を取得する分析対象物情報取得部と、
     前記反応場のサイズの分布を複数の区間に分け、前記区間ごとに、前記分析対象物が検出された反応場である陽性反応場の数に関する情報、および、前記分析対象物が検出されなかった反応場である陰性反応場の数に関する情報、からなる群から選択される少なくとも1つの情報を含む分布データを、前記サイズ情報取得部および前記分析対象物情報取得部で取得された情報に基づいて生成する分布データ生成部と、
     前記陽性反応場の数に関する情報、および、前記陰性反応場の数に関する情報、からなる群から選択される少なくとも1つの情報に基づいて、濃度の導出に用いる区間を決定する区間決定部と、
     前記分布データのうち、前記区間決定部で決定された区間のデータに基づいて、前記サンプル中の前記分析対象物の濃度を導出する濃度導出部と、を有することを特徴とする分析システム。
    An analysis system for analyzing the concentration of an analyte in a sample, comprising:
    A size information acquisition unit for acquiring information on the size of each of the plurality of reaction fields, for a plurality of reaction fields generated by dividing the liquid containing the sample;
    An analyte information acquisition unit that acquires information on the presence of the analyte in each of the plurality of reaction sites;
    The distribution of the size of the reaction field was divided into a plurality of sections, and for each section, information on the number of positive reaction sites which were reaction sites where the analyte was detected, and the analyte were not detected Distribution data including at least one piece of information selected from the group consisting of information on the number of negative reaction sites that are reaction sites, based on the information acquired by the size information acquiring unit and the analyte information acquiring unit A distribution data generation unit to generate
    A section determination unit that determines a section to be used for concentration derivation based on at least one piece of information selected from the group consisting of information on the number of positive reaction sites and information on the number of negative reaction sites;
    An analysis system comprising: a concentration deriving unit that derives the concentration of the analyte in the sample based on the data of the section determined by the section determining unit among the distribution data.
  2.  前記区間決定部は、前記陽性反応場の数もしくは割合、または、前記陰性反応場の数もしくは割合が所定の範囲に含まれる少なくとも1つの前記区間を、濃度の導出に用いる区間と決定することを特徴とする請求項1に記載の分析システム。 The section determining unit determines that the number or ratio of the positive reaction fields or at least one section in which the number or ratio of the negative reaction fields is included in a predetermined range is a section used for deriving the concentration. The analysis system according to claim 1, characterized in that
  3.  前記区間決定部は、前記陽性反応場の数もしくは割合、または、前記陰性反応場の数もしくは割合が前記所定の範囲に含まれない少なくとも1つの前記区間を棄却し、棄却されなかった区間を濃度の導出に用いる区間と決定する請求項1に記載の分析システム。 The section determining unit discards at least one section where the number or proportion of the positive reaction sites or the number or proportion of the negative reaction sites is not included in the predetermined range, and the section not rejected is concentration The analysis system according to claim 1, wherein the interval is determined to be used for the derivation of.
  4.  前記濃度導出部が、前記区間のそれぞれについて、当該区間に含まれる前記分析対象物の数をポアソンモデルに基づいて導出することを特徴とする請求項1乃至請求項3のいずれか一項に記載の分析システム。 The analysis according to any one of claims 1 to 3, wherein the concentration deriving unit derives, for each of the sections, the number of the analytes included in the section based on a Poisson model. system.
  5.  前記サイズ情報取得部および前記分析対象物情報取得部が、前記複数の反応場の少なくとも一部を撮像する撮像手段を含むことを特徴とする請求項1乃至請求項4のいずれか一項に記載の分析システム。 The said size information acquisition part and the said analysis object information acquisition part contain the imaging means which images at least one part of these reaction fields, The any one of Claim 1 to 4 characterized by the above-mentioned. Analysis system.
  6.  前記液体を分割して前記複数の反応場を生成する反応場生成部をさらに有することを特徴とする請求項1乃至請求項5のいずれか一項に記載の分析システム。 The analysis system according to any one of claims 1 to 5, further comprising a reaction field generation unit that divides the liquid to generate the plurality of reaction fields.
  7.  前記反応場生成部が、前記液体が、前記液体と非相溶な第2の液体中に液滴状に分散されたエマルジョンを生成する手段であることを特徴とする請求項6に記載の分析システム。 7. The analysis according to claim 6, wherein the reaction field generating unit is a means for generating an emulsion in which the liquid is dispersed in the form of droplets in a second liquid incompatible with the liquid. system.
  8.  前記反応場生成部が、膜乳化法または機械乳化法によって前記エマルジョンを生成する手段であることを特徴とする請求項7に記載の分析システム。 The analysis system according to claim 7, wherein the reaction field generation unit is a means for generating the emulsion by a membrane emulsification method or a mechanical emulsification method.
  9.  前記液体は前記分析対象物を検出可能にするための薬剤を含有しており、
     前記複数の反応場のそれぞれにおいて前記薬剤による反応を進行させ、前記分析対象物を検出可能にする反応部をさらに有することを特徴とする請求項1乃至請求項8のいずれか一項に記載の分析システム。
    The liquid contains an agent for making the analyte detectable.
    The reaction according to any one of claims 1 to 8, further comprising a reaction part which causes the reaction by the drug to proceed in each of the plurality of reaction fields and makes the analyte detectable. Analysis system.
  10.  前記分析対象物が、核酸であることを特徴とする請求項1乃至請求項9のいずれか一項に記載の分析システム。 The analysis system according to any one of claims 1 to 9, wherein the analyte is a nucleic acid.
  11.  前記薬剤が、前記核酸を増幅させるための増幅試薬と、前記核酸と相互作用して蛍光を発する蛍光試薬と、を含むことを特徴とする請求項10に記載の分析システム。 The analysis system according to claim 10, wherein the agent comprises an amplification reagent for amplifying the nucleic acid, and a fluorescent reagent that interacts with the nucleic acid to emit fluorescence.
  12.  前記反応が、PCRを含むことを特徴とする請求項10または請求項11に記載の分析システム。 The analysis system according to claim 10 or 11, wherein the reaction comprises PCR.
  13.  前記反応部が、前記複数の反応場のそれぞれの温度を調節する温度調節器を有することを特徴とする請求項9乃至請求項12のいずれか一項に記載の分析システム。 The analysis system according to any one of claims 9 to 12, wherein the reaction unit includes a temperature controller that adjusts the temperature of each of the plurality of reaction sites.
  14.  前記複数の反応場のサイズの分布が、多分散であることを特徴とする請求項1乃至請求項13のいずれか一項に記載の分析システム。 The analysis system according to any one of claims 1 to 13, wherein the distribution of sizes of the plurality of reaction fields is polydispersion.
  15.  前記区間決定部が、前記陽性反応場の割合が、0%以上100%未満である少なくとも1つの前記区間を濃度の導出に用いる区間と決定することを特徴とする請求項1乃至請求項14のいずれか一項に記載の分析システム。 The section determining unit determines at least one section having a ratio of the positive reaction field of 0% or more and less than 100% as a section used for deriving a concentration. The analysis system according to any one of the preceding claims.
  16.  前記区間決定部が、前記陽性反応場の割合が、0%以上90%未満である少なくとも1つの前記区間を濃度の導出に用いる区間と決定することを特徴とする請求項1乃至請求項14のいずれか一項に記載の分析システム。 The section determining unit determines at least one section having a ratio of the positive reaction field of 0% or more and less than 90% as a section to be used for deriving a concentration. The analysis system according to any one of the preceding claims.
  17.  サンプル中の分析対象物の濃度を分析する分析方法であって、
     前記サンプルを含む液体を分割して生成された複数の反応場について、前記複数の反応場のそれぞれのサイズに関する情報を取得するサイズ情報取得工程と、
     前記複数の反応場のそれぞれにおける前記分析対象物の存在に関する情報を取得する分析対象物情報取得工程と、
     前記反応場のサイズの分布を複数の区間に分け、前記区間ごとに、前記分析対象物が検出された反応場である陽性反応場の数に関する情報、ならびに、前記分析対象物が検出されなかった反応場である陰性反応場の数に関する情報、からなる群から選択される少なくとも1つの情報を含む分布データを、前記サイズ情報取得工程および前記分析対象物情報取得工程で取得された情報に基づいて生成する分布データ生成工程と、
     前記分布データのうち、前記陽性反応場の数もしくは割合、または、前記陰性反応場の数もしくは割合が、所定の範囲に含まれる前記複数の区間のうちの一部の区間のデータに基づいて、前記サンプル中の前記分析対象物の濃度を導出する濃度導出工程と、を有することを特徴とする分析方法。
    An analytical method for analyzing the concentration of an analyte in a sample, comprising:
    A size information acquisition step of acquiring information on the size of each of the plurality of reaction fields, for the plurality of reaction fields generated by dividing the liquid containing the sample;
    An analyte information acquisition step of acquiring information on the presence of the analyte in each of the plurality of reaction sites;
    The distribution of the size of the reaction field was divided into a plurality of sections, and for each section, information on the number of positive reaction fields which were reaction sites where the analyte was detected, and the analyte were not detected. Distribution data including at least one piece of information selected from the group consisting of information on the number of negative reaction sites that are reaction sites, based on the information acquired in the size information acquiring step and the analyte information acquiring step Distribution data generation process to be generated;
    Of the distribution data, the number or proportion of the positive reaction field or the number or proportion of the negative reaction field is based on data of a part of the plurality of sections included in a predetermined range, And D. a concentration deriving step of deriving the concentration of the analyte in the sample.
  18.  コンピュータに、分析対象物を含むサンプルを含む液体を分割して生成された複数の反応場に関する、前記複数の反応場のそれぞれのサイズに関する情報と、前記複数の反応場のそれぞれにおける前記分析対象物の存在に関する情報と、を含む検出データの処理を実行させるプログラムであって、
     前記処理が、
     前記反応場のサイズの分布を複数の区間に分け、前記区間ごとに、前記分析対象物が検出された反応場である陽性反応場の数に関する情報、ならびに、前記分析対象物が検出されなかった反応場である陰性反応場の数に関する情報、からなる群から選択される少なくとも1つの情報を含む分布データを、前記検出データから生成する分布データ生成ステップと、
     前記分布データのうち、前記陽性反応場の数もしくは割合、または、前記陰性反応場の数もしくは割合が、所定の範囲に含まれる前記複数の区間のうちの一部の区間のデータに基づいて、前記サンプル中の前記分析対象物の濃度を導出する濃度導出ステップと、を有することを特徴とするプログラム。
    Information on the size of each of the plurality of reaction fields related to the plurality of reaction fields generated by dividing the liquid containing the sample containing the analyte on a computer, and the analyte in each of the plurality of reaction fields A program for executing processing of detection data including information on the existence of
    The process is
    The distribution of the size of the reaction field was divided into a plurality of sections, and for each section, information on the number of positive reaction fields which were reaction sites where the analyte was detected, and the analyte were not detected. A distribution data generation step of generating from the detection data distribution data including at least one information selected from the group consisting of information on the number of negative reaction sites that are reaction sites;
    Of the distribution data, the number or proportion of the positive reaction field or the number or proportion of the negative reaction field is based on data of a part of the plurality of sections included in a predetermined range, And D. a concentration deriving step of deriving the concentration of the analyte in the sample.
  19.  請求項18に記載のプログラムを格納した、コンピュータが読み取り可能な記憶媒体。 A computer readable storage medium storing the program according to claim 18.
  20.  サンプル中の分析対象物の濃度を分析する分析システムであって、
     前記サンプルを含む液体を分割して生成された複数の反応場について、前記複数の反応場のそれぞれのサイズに関する情報を取得するサイズ情報取得部と、
     前記複数の反応場のそれぞれにおける前記分析対象物の存在に関する情報を取得する分析対象物情報取得部と、
     前記反応場のサイズの分布を複数の区間に分け、前記区間ごとに、前記分析対象物が検出された反応場である陽性反応場の数に関する情報、および、前記分析対象物が検出されなかった反応場である陰性反応場の数に関する情報、からなる群から選択される少なくとも1つの情報を含む分布データを、前記サイズ情報取得部および前記分析対象物情報取得部で取得された情報に基づいて生成する分布データ生成部と、
     前記陽性反応場の数に関する情報、および、前記陰性反応場の数に関する情報、からなる群から選択される少なくとも1つの情報に基づいて、前記分布データを加工するデータ加工部と、
     前記データ加工部で加工された前記分布データに基づいて、前記サンプル中の前記分析対象物の濃度を導出する濃度導出部と、を有することを特徴とする分析システム。
    An analysis system for analyzing the concentration of an analyte in a sample, comprising:
    A size information acquisition unit for acquiring information on the size of each of the plurality of reaction fields, for a plurality of reaction fields generated by dividing the liquid containing the sample;
    An analyte information acquisition unit that acquires information on the presence of the analyte in each of the plurality of reaction sites;
    The distribution of the size of the reaction field was divided into a plurality of sections, and for each section, information on the number of positive reaction sites which were reaction sites where the analyte was detected, and the analyte were not detected Distribution data including at least one piece of information selected from the group consisting of information on the number of negative reaction sites that are reaction sites, based on the information acquired by the size information acquiring unit and the analyte information acquiring unit A distribution data generation unit to generate
    A data processing unit for processing the distribution data based on at least one piece of information selected from the group consisting of information on the number of positive reaction sites and information on the number of negative reaction sites;
    An analysis system, comprising: a concentration deriving unit that derives the concentration of the analyte in the sample based on the distribution data processed by the data processing unit.
PCT/JP2018/025232 2017-07-06 2018-07-03 Analysis system, analysis method, program, and storage medium WO2019009297A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/733,112 US20200150135A1 (en) 2017-07-06 2020-01-02 Analysis system, analysis method, and storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017132911 2017-07-06
JP2017-132911 2017-07-06
JP2018125187A JP2019013218A (en) 2017-07-06 2018-06-29 Analysis system, analysis method, program, and storage medium
JP2018-125187 2018-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/733,112 Continuation US20200150135A1 (en) 2017-07-06 2020-01-02 Analysis system, analysis method, and storage medium

Publications (1)

Publication Number Publication Date
WO2019009297A1 true WO2019009297A1 (en) 2019-01-10

Family

ID=64950079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025232 WO2019009297A1 (en) 2017-07-06 2018-07-03 Analysis system, analysis method, program, and storage medium

Country Status (1)

Country Link
WO (1) WO2019009297A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504305A (en) * 2011-11-17 2015-02-12 キュリオシティ ダイアグノスティックス エスピー.ゼット オー.オー. Methods for performing quantitative assays
US20160312274A1 (en) * 2015-04-24 2016-10-27 Life Technologies Corporation Methods and systems for volume variation modeling in digital pcr

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504305A (en) * 2011-11-17 2015-02-12 キュリオシティ ダイアグノスティックス エスピー.ゼット オー.オー. Methods for performing quantitative assays
US20160312274A1 (en) * 2015-04-24 2016-10-27 Life Technologies Corporation Methods and systems for volume variation modeling in digital pcr

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BASU. A. S.: "Digital Assays Part I: Partitioning Statistics and Digital PCR", SLAS TECHNOLOGY, vol. 22, no. 4, 27 April 2017 (2017-04-27), pages 369 - 386 *
SHEN F. ET AL.: "Digital PCR on a SlipChip", LAB ON A CHIP, vol. 10, no. 20, 2010, pages 2666 - 2672 *

Similar Documents

Publication Publication Date Title
US10240187B2 (en) Stabilized droplets for calibration and testing
JP6673938B2 (en) Digital PCR system and method using digital microfluidic technology
JP6155418B2 (en) System for mixing fluids by combining multiple emulsions
US9417190B2 (en) Calibrations and controls for droplet-based assays
JP6188844B2 (en) Emulsion chemistry and assay for encapsulated droplets
US9427737B2 (en) Methods and compositions for using oils for analysis and detection of molecules
Tan et al. Current commercial dPCR platforms: Technology and market review
US20140179544A1 (en) Compositions, systems and methods for droplet formation, spacing and detection
Lim et al. PCR-activated cell sorting for cultivation-free enrichment and sequencing of rare microbes
US20130084572A1 (en) Calibrations and controls for droplet-based assays
JP2012503773A (en) Droplet-based analysis system
Li et al. Picoliter well array chip-based digital recombinase polymerase amplification for absolute quantification of nucleic acids
US11965809B2 (en) Flat-field imaging system and methods of use
WO2019031287A1 (en) Analysis system, analysis method, program, and storage medium
WO2019131601A1 (en) Oil composition, sample analysis method, and droplet generation device
WO2019009297A1 (en) Analysis system, analysis method, program, and storage medium
US20200157605A1 (en) Analysis system, analysis method, and storage medium
JP2019013218A (en) Analysis system, analysis method, program, and storage medium
Wang et al. An integrated digital PCR system with high universality and low cost for nucleic acid detection
WO2018221513A1 (en) Oily composition and analysis method using same
JP2020000190A (en) Oily composition and analytical method using the same
JP2019208497A (en) Generating device, system, and analytical method
Ganguly et al. A Poisson-Independent Approach to Precision Nucleic Acid Quantification in Microdroplets
Generated Genomic Analysis of Plasma Cell-Free DNA in Patients With Cancer
Amy Makarewicz, Jr. et al.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828434

Country of ref document: EP

Kind code of ref document: A1