WO2018221513A1 - Oily composition and analysis method using same - Google Patents

Oily composition and analysis method using same Download PDF

Info

Publication number
WO2018221513A1
WO2018221513A1 PCT/JP2018/020554 JP2018020554W WO2018221513A1 WO 2018221513 A1 WO2018221513 A1 WO 2018221513A1 JP 2018020554 W JP2018020554 W JP 2018020554W WO 2018221513 A1 WO2018221513 A1 WO 2018221513A1
Authority
WO
WIPO (PCT)
Prior art keywords
integer
carbon atoms
alkyl group
surfactant
water
Prior art date
Application number
PCT/JP2018/020554
Other languages
French (fr)
Japanese (ja)
Inventor
南 昌人
淳 ▼高▲橋
本間 務
矢野 哲哉
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018221513A1 publication Critical patent/WO2018221513A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q

Definitions

  • the present invention relates to an oily composition and an analysis method using the same.
  • dPCR digital Polymerase Chain Reaction
  • a sample containing a target nucleic acid is diluted with an amplification reagent for amplifying the target nucleic acid, a fluorescent reagent for detecting the target nucleic acid, and the like, and divided into a number of physically independent reaction fields. Then, PCR is independently generated in each of the multiple reaction fields to amplify the target nucleic acid. At this time, the sample containing the target nucleic acid is sufficiently diluted so that the number of target nucleic acids contained in each reaction field is either 1 or 0.
  • the concentration of the target nucleic acid in the sample is obtained from the number of reaction fields in which a signal was detected after amplification (number of positive reaction fields) and / or the number of reaction fields in which no signal was detected after amplification (number of negative reaction fields). can do.
  • an object of the present invention is to provide an oily composition capable of forming a water-in-oil emulsion with high fluidity and emulsion stability.
  • the oily composition as one aspect of the present invention is an oily composition containing an aliphatic hydrocarbon and / or silicone oil and a surfactant, and the kinematic viscosity of the aliphatic hydrocarbon at 25 ° C.
  • the surfactant is less than 10 mm 2 / s, and the surfactant is a polyether-modified polysiloxane having an alkyl group in a side chain.
  • 2 is a fluorescence microscope image of water-in-oil emulsions of Examples 18 to 20 of the present invention.
  • 3 is a fluorescence microscopic image of water-in-oil emulsions of Examples 21 to 22 of the present invention.
  • 3 is a fluorescence microscopic image of water-in-oil emulsions of Examples 21 to 22 of the present invention. It is a fluorescence-microscope image of the water-in-oil emulsion of Example 38 of this invention. It is a fluorescence-microscope image of the water-in-oil emulsion of Example 39 of this invention. It is a fluorescence-microscope image of the water-in-oil emulsion of Example 40 of this invention.
  • the oily composition (O) contains an aliphatic hydrocarbon and / or silicone oil (A) and a surfactant (B).
  • the kinematic viscosity at 25 ° C. of the aliphatic hydrocarbon and / or silicone oil (A) is less than 10 mm 2 / s
  • the surfactant (B) is a polyether-modified polyether having an alkyl group in the side chain. Polysiloxane.
  • the aliphatic hydrocarbon (A) and / or silicone oil is the main component of the oily composition (O), and the kinematic viscosity at 25 ° C. is less than 10 mm 2 / s as the aliphatic hydrocarbon and / or silicone oil (A).
  • Use oil Thereby, kinematic viscosity of oil-based composition (O) can be made low. That is, by using an aliphatic hydrocarbon having 7 to 30 carbon atoms as the aliphatic hydrocarbon (A), the kinematic viscosity of the oily composition (O) can be lowered.
  • the kinematic viscosity of the oil-based composition (O) can be lowered by using polysiloxane having a molecular weight of 600 or less as the silicone oil (A). Thereby, the fluidity
  • an oil formed by using a low kinematic viscosity oily composition mainly composed of a low kinematic viscosity aliphatic hydrocarbon and / or silicone oil having a kinematic viscosity at 25 ° C. of less than 10 mm 2 / s.
  • Water-in-water emulsions tend to have low emulsion stability.
  • a highly stable water-in-oil emulsion can be obtained by using a polyether-modified polysiloxane having an alkyl group in the side chain as a surfactant (B). It has been found that a formable oily composition can be realized.
  • the aliphatic hydrocarbon and / or silicone oil (A) is an oil having a kinematic viscosity at 25 ° C. of less than 10 mm 2 / s.
  • the kinematic viscosity at 25 ° C. of the aliphatic hydrocarbon and / or silicone oil (A) is preferably less than 6.5 mm 2 / s.
  • the lower limit of the kinematic viscosity at 25 ° C. of the aliphatic hydrocarbon and / or silicone oil (A) is not particularly limited, but is preferably 0.5 mm 2 / s or more, and more preferably 1 mm 2 / s or more. preferable. Thereby, when a water-in-oil emulsion is formed by the membrane emulsification method using the oily composition (O), a highly stable emulsion can be formed.
  • the aliphatic hydrocarbon and / or silicone oil (A) is liquid at 25 ° C.
  • the boiling point of the aliphatic hydrocarbon and / or silicone oil (A) is preferably 100 ° C. or higher, and more preferably 150 ° C. or higher.
  • the boiling point of the aliphatic hydrocarbon and / or silicone oil (A) is 100 ° C. or higher, even if the water-in-oil emulsion formed using the oily composition (O) is heated for PCR, it is oily. The evaporation of the composition (O) can be suppressed.
  • the content of the aliphatic hydrocarbon and / or silicone oil (A) is preferably 70% by mass or more and 99.9% by mass or less when the total amount of the oily composition (O) is 100% by mass, More preferably, it is 80 mass% or more and 99 mass% or less.
  • the specific gravity of the aliphatic hydrocarbon and / or silicone oil (A) is preferably less than 0.92 g / cm 3 , more preferably less than 0.88 g / cm 3 .
  • the lower limit of the specific gravity of the aliphatic hydrocarbon and / or silicone oil (A) is not particularly limited, but is preferably 0.3 g / cm 3 or more, and more preferably 0.5 g / cm 3 or more.
  • the specific gravity of the oily composition (O) can be less than 1 g / cm 3 .
  • the aliphatic hydrocarbon (A) is preferably a paraffinic hydrocarbon, and more preferably an isoparaffinic hydrocarbon or a cycloparaffinic hydrocarbon.
  • the aliphatic hydrocarbon (A) preferably has 7 to 30 carbon atoms, more preferably 10 to 25, and particularly preferably 10 to 20 carbon atoms. When the number of carbon atoms of the aliphatic hydrocarbon (A) is 30 or less, the molecular weight of the aliphatic hydrocarbon (A) can be reduced, and the kinematic viscosity at 25 ° C. can be reduced.
  • the aliphatic hydrocarbon (A) may be composed of a plurality of types of aliphatic hydrocarbons.
  • Examples of commercially available isoparaffinic hydrocarbons having a kinematic viscosity at 25 ° C. of less than 10 mm 2 / s that are suitable as the aliphatic hydrocarbon (A) include Isopar E (kinematic viscosity at 25 ° C. of 0.83 mm 2 / s), Isopar G (kinematic viscosity at 25 ° C. 1.49 mm 2 / s), Isopar H (kinematic viscosity at 25 ° C. 1.80 mm 2 / s), Isopar L (kinematic viscosity at 25 ° C. 1.61 mm 2 / s), Isopar M ( Kinematic viscosity at 25 ° C. (3.77 mm 2 / s) (exxon mobile, “Isopar” is a registered trademark of ExxonMobil).
  • cycloparaffinic hydrocarbon having a kinematic viscosity at 25 ° C. of less than 10 mm 2 / s
  • aliphatic hydrocarbon (A) Exol D30 (kinematic viscosity at 25 ° C. of 1.04 mm 2 / s ), Exol D40 (kinematic viscosity at 25 ° C. 1.30 mm 2 / s), Exol D 60 (dynamic viscosity at 25 ° C. 1.73 mm 2 / s), Exol D 80 (kinematic viscosity at 25 ° C.
  • Exol D95 kinematic viscosity at 25 ° C. 2.49 mm 2 / s
  • Exol D110 dynamic viscosity at 25 ° C. 3.43 mm 2 / s
  • Exol D130 kinematic viscosity at 25 ° C. 6.12 mm 2 / s
  • the silicone oil (A) is preferably polysiloxane, more preferably dimethylpolysiloxane. Further, the silicone oil (A) preferably has a molecular weight of 100 or more and 600 or less, and more preferably 200 or more and 500 or less. When the molecular weight of the silicone oil (A) is 600 or less, the kinematic viscosity at 25 ° C. can be lowered.
  • the silicone oil (A) may be composed of a plurality of types of silicone oils.
  • a commercially available silicone oil having a kinematic viscosity at 25 ° C. of less than 4 mm 2 / s and suitable as the silicone oil (A) is KF-96L-0.65cs (kinematic viscosity at 25 ° C .: 0.65 mm 2 / s), KF -96L-1cs (kinematic viscosity 1.5 mm 2 / s in kinematic viscosity 1mm 2 /s),KF-96L-1.5cs(25°C at 25 ° C.), a kinematic viscosity at KF-96L-2cs (25 °C 1.
  • DOW CORNING TORAY SH 200 FLUID 0.65 CS (kinematic viscosity at 25 ° C. 0.65 mm 2 / s)
  • DOW CORNING TORAY SH 200 FLUID 1 CS (at 25 ° C.
  • kinematic viscosity 1mm 2 / s DOW CORNING TORAY SH 200 FLUID 1.5 S (kinematic viscosity 1.5 mm 2 / s at 25 °C), DOW CORNING TORAY SH 200 FLUID 2 CS (kinematic viscosity 2 mm 2 / s at 25 °C) (Toray Dow Corning), and the like.
  • the aliphatic hydrocarbon and silicone oil may be used alone or in combination.
  • the surfactant (B) is a polyether-modified polysiloxane having an alkyl group in the side chain.
  • a surfactant is added as a method for improving the stability of the emulsion, but a suitable surfactant varies depending on the type of oil constituting the emulsion.
  • a polyether-modified polysiloxane having an alkyl group in the side chain is used as the interface. It has been found that it is preferred to use it as an activator. That is, when the oily composition (O) contains the surfactant (B), the stability of the emulsion can be improved when a water-in-oil emulsion is formed using the oily composition (O). it can.
  • the surfactant (B) has an alkyl group in the side chain, so it has a high affinity with aliphatic hydrocarbons or silicone oil (A), and it has a high-molecular polysiloxane skeleton to stabilize the emulsion.
  • the inventors presume that it is caused by the fact that it is easy to make it.
  • the surfactant (B) is a polyalkylene having 4 to 30 carbon atoms, preferably 1 to 2000 alkyl groups, preferably 1 to 100 carbon atoms in the side chain. Ether-modified polysiloxane is preferred. Further, it is more preferable that 1 to 100 alkyl groups of 6 to 30 are present in the side chain.
  • the surfactant (B) preferably has a polyethylene glycol structure and / or a polypropylene glycol structure in the side chain. Further, the surfactant (B) may be a polyether-modified polysiloxane having a branched structure.
  • the surfactant (B) is preferably at least one selected from the group consisting of compounds represented by the following formulas (1) to (4). By using these compounds, the stability of the emulsion is particularly excellent, and a stable water-in-oil emulsion can be formed even when heated to about 90 to 100 ° C.
  • the surfactant (B) is more preferably at least one selected from the group consisting of compounds represented by the following formulas (1), (2), and (4).
  • R1 to 11 and R13 to 17 are linear or branched alkyl groups having 1 to 6 carbon atoms
  • R12 is a linear or branched alkyl group having 4 to 30 carbon atoms
  • x is 1 to 9 is an integer
  • y is an integer from 1 to 9
  • n is an integer from 4 to 30
  • a is an integer from 1 to 2000
  • b is an integer from 1 to 2000
  • c is an integer from 1 to 2000
  • d is 1
  • An integer of 2000 or more and e is an integer of 1 or more and 2000 or less. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, c is an integer of 1 to 500, d is an integer of 1 to 500, and e is an integer of 1 to 500. .
  • R1 to 5 and R7 to 11 are linear or branched alkyl groups having 1 to 6 carbon atoms
  • R6 is a linear or branched alkyl group having 4 to 30 carbon atoms
  • R12 is a hydrogen atom.
  • x is an integer of 1 to 9
  • n is an integer of 1 to 30
  • m is an integer of 1 to 30
  • a is an integer of 1 to 2000
  • b is An integer from 1 to 2000
  • c is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
  • R1 to 5 and R7 to 11 are linear or branched alkyl groups having 1 to 6 carbon atoms
  • R6 is a linear or branched alkyl group having 4 to 30 carbon atoms
  • R12 is a hydrogen atom.
  • x is an integer of 1 to 9
  • n is an integer of 4 to 30
  • a is an integer of 1 to 2000
  • b is an integer of 1 to 2000
  • c Is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
  • R1-9 and R11-15 are linear or branched alkyl groups having 1 to 6 carbon atoms
  • R10 is a linear or branched alkyl group having 4 to 30 carbon atoms
  • R16 is a hydrogen atom.
  • x is an integer of 1 to 9
  • y is an integer of 1 to 9
  • n is an integer of 4 to 30
  • a is an integer of 1 to 2000
  • b is An integer from 1 to 2000
  • c is an integer from 1 to 2000
  • d is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, c is an integer of 1 to 500, and d is an integer of 1 to 500.
  • Lauryl PEG-9 polydimethylsiloxyethyl dimethicone (INCI name) is represented by Formula (5), and KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.) can be used as a commercially available product.
  • a is an integer from 1 to 2000
  • b is an integer from 1 to 2000
  • c is an integer from 1 to 2000
  • d is an integer from 1 to 2000
  • e is from 1 to 2000. It is an integer. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, c is an integer of 1 to 500, d is an integer of 1 to 500, and e is an integer of 1 to 500. .
  • Cetyl PEG / PPG-10 / 1 dimethicone (INCI name) is represented by formula (6), and commercially available products thereof include KF-6048 (manufactured by Shin-Etsu Chemical Co., Ltd.), ABIL EM90, ABIL EM180 (manufactured by Evonik, “ABIL” is a registered trademark of Evonik) and the like.
  • a is an integer of 1 to 2000
  • b is an integer of 1 to 2000
  • c is an integer of 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
  • Cetyl PEG / PPG-7 / 3 dimethicone (INCI name) is represented by formula (7), and SeraSol SC 82 (manufactured by KCC Beauty) can be used as a commercially available product.
  • a is an integer from 1 to 2000
  • b is an integer from 1 to 2000
  • c is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
  • Cetyl PEG-8 dimethicone (INCI name) is represented by formula (8), and Silive FF 108-16 (manufactured by Siltech) can be used as a commercially available product.
  • a is an integer from 1 to 2000
  • b is an integer from 1 to 2000
  • c is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
  • Lauryl PEG-8 dimethicone (INCI name) is represented by the formula (9), and as its commercial product, Silube J208-412 (manufactured by Siltech) can be used.
  • a is an integer from 1 to 2000
  • b is an integer from 1 to 2000
  • c is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
  • Lauryl PEG-10 methyl ether dimethicone (INCI name) is represented by Formula (10), and Silok 2205 (manufactured by Silok Chemical) can be used as a commercially available product.
  • a is an integer from 1 to 2000
  • b is an integer from 1 to 2000
  • c is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
  • Lauryl PEG-10 tris (trimethylsiloxy) silylethyl dimethicone (INCI name) is represented by the formula (11), and ES-5300 FORMULATION AID (manufactured by Dow Corning Toray) can be used as a commercially available product. .
  • a is an integer from 1 to 2000
  • b is an integer from 1 to 2000
  • c is an integer from 1 to 2000
  • d is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, c is an integer of 1 to 500, and d is an integer of 1 to 500.
  • Cetyl PEG / PPG-15 / 15 butyl ether dimethicone (INCI name) is represented by formula (12), and as its commercial product, Belsil DMC 3071 VP (manufactured by Wacker, “Belsil” is a registered trademark of Wacker) is used. be able to.
  • a is an integer of 1 to 2000
  • b is an integer of 1 to 2000
  • c is an integer of 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
  • Lauryl PEG / PPG-18 / 18 methicone (INCI name) is represented by formula (13), and as a commercially available product, DOW CORNING 5200 FORMULATION AID (manufactured by Toray Dow Corning) can be used.
  • a is an integer of 1 to 2000
  • b is an integer of 1 to 2000
  • c is an integer of 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
  • the content of the surfactant (B) is preferably 0.01% by mass or more and 10% by mass or less, and 0.1% by mass or more, based on 100% by mass of the entire oil-based composition (O). It is more preferable that it is 8 mass% or less. Moreover, it is more preferable that it is 0.1 to 4 mass%, and it is especially preferable that it is 1 to 4 mass%.
  • the oil-based composition (O) contains water and can be combined with an aqueous composition (W) that is incompatible with the oil-based composition (O) to form a stable water-in-oil emulsion. it can.
  • aqueous composition (W) that is incompatible with the oil-based composition (O) to form a stable water-in-oil emulsion. it can.
  • droplets of the aqueous composition (W) as the dispersed phase are dispersed in the oily composition (O) as the continuous phase. Since the water-in-oil emulsion formed using the oil-based composition (O) according to the present embodiment has high stability, each of a plurality of droplets in the water-in-oil emulsion is used as a reaction field.
  • It can be suitably used for droplet-based reactions and analyses.
  • it can be suitably used for dPCR in which analysis is performed by generating PCR using each of a plurality of droplets in a water-in-oil emulsion as a reaction field.
  • the aqueous composition (W) contains water.
  • the water content of the aqueous composition (W) is not particularly limited, but when the entire aqueous composition (W) is 100% by mass, it is preferably 60% by mass or more and 99.9% by mass or less, More preferably, it is 80 mass% or more and 99.5 mass% or less.
  • Components other than water contained in the aqueous composition (W) are not particularly limited, and can be selected according to the use of the water-in-oil emulsion.
  • the aqueous composition (W) may contain a reactant.
  • the aqueous composition (W) may contain an analyte.
  • Additives refer to substances other than PCR reagents such as template DNA, primers, DNA synthase, and fluorescent dye probes for PCR amplification detection involved in the target amplification reaction in the case of PCR.
  • the additive is used to improve the dispersibility of the PCR reagent in the emulsion and to suppress the inhibition reaction due to nonspecific adsorption.
  • Specific examples include polymer compounds and serum proteins, and bovine serum-derived albumin is particularly desirable.
  • W aqueous composition
  • the aqueous composition (W) contains at least one analyte.
  • the analyte according to the present embodiment refers to a compound or particle that is included in a sample, such as a nucleic acid to be analyzed in dPCR, and is an object of analysis such as quantitative analysis.
  • the analysis object according to the present embodiment is not particularly limited as long as it can be detected by a reaction in a droplet. Examples of the analysis target include nucleic acids, peptides, proteins, enzymes, and the like.
  • the nucleic acid is amplified by PCR, using an amplification reagent for amplifying the nucleic acid and a fluorescent reagent that emits fluorescence in response to the amplification of the nucleic acid as a drug for enabling detection of the nucleic acid. It can be made detectable using a method. Peptides and proteins can be made detectable by ELISA (Enzyme-Linked Immunosorbent Assay) method or the like.
  • the analysis target may be a substance containing the above-described nucleic acid, peptide, protein, or the like.
  • a molecule, a microparticle, a nanoparticle, a cell, or the like to which at least one of a nucleic acid, a peptide, and a protein is bonded or attached by a covalent bond or the like can be given.
  • a sample For example, if blood collected from a human or nucleic acid extracted therefrom is used as a sample, and if a nucleic acid containing a gene related to a disease such as cancer or infectious disease that can be contained in the sample is used as an analysis target, It can be expected that useful information will be obtained for the diagnosis of diseases.
  • food inspection such as evaluation of genetically modified crops (GMO) can be performed.
  • environmental monitoring can be performed by using soil and water in the environment as samples.
  • the nucleic acid when a nucleic acid is an analysis target, is not particularly limited as long as it is a template nucleic acid to be amplified, and may be DNA (Deoxyribonucleic Acid) or RNA (Ribo Nucleic Acid). May be.
  • the form of the nucleic acid is not particularly limited, and may be a linear nucleic acid or a circular nucleic acid.
  • the nucleic acid may be a single type of nucleic acid having a single base sequence, or may be a plurality of types of nucleic acids (eg, complementary DNA libraries) each having various base sequences.
  • the content of the analyte is not particularly limited, but when the water-in-oil emulsion is formed, the number of analytes contained in each of the plurality of droplets in the water-in-oil emulsion is 1 or 0.
  • the amount is such that By doing so, it is possible to improve the accuracy of quantification of the droplet-based digital analysis.
  • the analyte When the analyte is a nucleic acid, it can be detected by amplifying the nucleic acid using a nucleic acid amplification reaction using an enzyme such as a PCR method.
  • the nucleic acid amplification reaction the reaction is carried out by subjecting the reaction field to a thermal cycle, the PCR method or the LCR (Ligase Chain Reaction) method, or adjusting the temperature without subjecting the reaction field to the thermal cycle.
  • the SDA Strand Displacement Amplification
  • the ICAN Isomalized and Chimeric Primer-Initiated Nucleic Acids
  • LAMP Loop-Medium Amplified Ids method
  • an amplification reagent for amplifying the nucleic acid and a fluorescence generating reagent that emits fluorescence with the amplification of the nucleic acid are used as agents for enabling detection of the nucleic acid.
  • the amplification reagent contains a pair of primers (forward primer and reverse primer) having a base sequence complementary to a predetermined base sequence of the target nucleic acid and a polymerase that is a biocatalyst for promoting a nucleic acid synthesis reaction.
  • the amplification reagent contains ribonucleic acid such as dNTP (Deoxyribonucleotide-5'-Triphosphate) as a nucleic acid raw material.
  • the amplification reagent preferably contains a buffer solution or buffer agent for controlling the hydrogen ion concentration (pH) in the reaction solution, and a salt.
  • the amplification reagent may be a commercially available kit containing the above components.
  • the primer is not particularly limited as long as it is an oligonucleotide that can hybridize with a base sequence of a partial region of the nucleic acid to be analyzed under stringent conditions and can be used for a nucleic acid amplification reaction.
  • the stringent condition is a condition under which the primer can specifically hybridize to the template nucleic acid when the primer and the template nucleic acid have a sequence identity of at least 90% or more, preferably 95% or more. It is.
  • Primers can be appropriately designed based on the base sequence of the nucleic acid to be analyzed.
  • the primer is preferably designed according to the type of nucleic acid amplification method.
  • the length of the primer is usually 5 to 50 nucleotides, preferably 10 to 40 nucleotides.
  • the primer can be generated by a nucleic acid synthesis method generally used in the molecular biology region.
  • the buffer solution or buffering agent is preferably configured to maintain the hydrogen ion concentration (pH) of the reaction solution at or near the pH at which a desired reaction can occur efficiently.
  • pH of the reaction solution is, for example, between 6.5 and 9.0, and can be arbitrarily selected according to each component of the drug to be used.
  • Tris Tris (hydroxymethyl) aminomethane) buffer
  • HEPES 4- (2-hydroxyethyl) -1-piperazine ethanesulfonic acid
  • MES 2-morpholinoethanesulfonic acid
  • Salts for example, CaCl 2, KCl, MgCl 2 , MgSO 4, NaCl, and can be used those selected as appropriate combinations thereof.
  • the fluorescent reagent contains a fluorescent intercalator (fluorescent dye) or a probe for probe assay (fluorescently labeled probe) that is generally used for the PCR method or the like.
  • a fluorescent intercalator ethidium bromide, SYBR Green I (“SYBR” is a registered trademark of Molecular Probes), LC Green, and the like can be suitably used.
  • the fluorescently labeled probe is an oligonucleotide (probe) that specifically hybridizes to a target nucleic acid, one end (5 ′ end) is modified with a reporter, and the other end (3 ′ end) is a quencher. Those modified with can be used.
  • a fluorescent substance such as FITC (Fluorescein-5-IsoThioCyanate) or VIC
  • a fluorescent substance such as TAMARA, Eclipse, DABCYL, MGB, or the like
  • a fluorescently labeled probe a TaqMan (“TaqMan” is a registered trademark of Roche Diagnostics) probe or the like can be used.
  • a fluorescent reagent was used was demonstrated here, you may use the luminescent reagent using light emission other than fluorescence.
  • the analyte when it is a peptide or protein, it can be detected by an antigen-antibody reaction and enzyme reaction using an enzyme (or antigen) that specifically reacts with the analyte and an enzyme, such as ELISA. can do. More specifically, for example, an antibody (or antigen) labeled with an enzyme is complexed with an analyte by an antigen-antibody reaction, and a color developing or luminescent substance generated by the enzyme reaction of the enzyme is detected.
  • the antibody (or antigen) that causes an antigen-antibody reaction with the analyte may not be previously labeled with an enzyme, and may be labeled with an enzyme after the antigen-antibody reaction.
  • a reagent containing an antibody (or antigen) and an enzyme is used as a drug for enabling detection of an analyte.
  • a plurality of types of analytes can be detected simultaneously by using a plurality of types of drugs that can be detected so that the respective analytes can be distinguished, for example, the wavelengths of fluorescence to be generated are different.
  • the oil-based composition (O) according to this embodiment can form a water-in-oil emulsion by combining with the aqueous composition (W). Since the water-in-oil emulsion formed using the oil-based composition (O) according to the present embodiment has high stability, each of a plurality of droplets in the water-in-oil emulsion is used as a reaction field. It can be suitably used for droplet-based reactions and analyses.
  • the volume ratio of the oil-based composition (O) to the aqueous composition (W) in the water-in-oil emulsion is not particularly limited, but is preferably 1 or more and 300 or less, and more preferably 1 or more and 150 or less. .
  • the size of the droplets in the water-in-oil emulsion is not particularly limited, but the diameter is preferably 1 ⁇ m or more and 300 ⁇ m or less, more preferably 10 ⁇ m or more and 200 ⁇ m or less, and 20 ⁇ m or more and 150 ⁇ m or less. Further preferred.
  • the diameter of the droplets By setting the diameter of the droplets to 300 ⁇ m or less, even when the amount of specimen or sample is small when using a water-in-oil emulsion for analysis, it can be divided into a sufficient number of droplets and analyzed. Accuracy can be improved.
  • the stability of an emulsion can be improved by making the diameter of a droplet into 300 micrometers or less.
  • the method for forming the water-in-oil emulsion is not particularly limited, and a conventionally known emulsification method can be used.
  • a conventionally known emulsification method can be used.
  • the mechanical emulsification method which forms an emulsion by providing mechanical energy with a stirring apparatus, an ultrasonic crushing apparatus, etc. is mentioned.
  • a method using a microchannel device such as a microchannel emulsification method and a microchannel branching emulsification method, a membrane emulsification method using an emulsification film, and the like can be given. These methods may be used alone or in combination.
  • the mechanical emulsification method and the membrane emulsification method are preferable because the dispersion (dispersion) of the droplet size tends to be larger than the method using the microchannel device, but an emulsion can be formed with high throughput.
  • the membrane emulsification method is particularly preferable because the apparatus configuration of the apparatus for forming the emulsion can be simplified and an emulsion having a relatively small variation in droplet size can be formed.
  • the membrane emulsification method is a method of forming an emulsion by allowing a dispersed phase or a continuous phase, or a mixture of a dispersed phase and a continuous phase, to pass through an emulsion membrane having a plurality of pores and slits.
  • the number of times the dispersed phase or continuous phase, or the mixture of the dispersed phase and continuous phase is allowed to permeate through the emulsion membrane is not particularly limited, and may be one or more.
  • the membrane emulsification method a direct membrane emulsification method or a pumping emulsification method can be used.
  • the direct membrane emulsification method is a method of forming an emulsion in a continuous phase that is slowly flowing on the side to be extruded by extruding a dispersed phase at a constant pressure through the emulsion membrane.
  • the pumping emulsification method is a method of preparing an emulsion by sandwiching an emulsion film between a syringe that has collected a continuous phase and a syringe that has collected a dispersed phase, and by alternately extruding liquid from two syringes and passing through the emulsion film. is there.
  • a mixture of a continuous phase and a dispersed phase may be collected in one of two syringes, and the other syringe may be empty.
  • a pumping type emulsification device in which an emulsification film is sandwiched between a pair of connectors each connectable to a syringe can be used.
  • a porous film having a plurality of pores or a film having a slit can be used as the emulsion film used in the membrane emulsification method.
  • a porous glass film such as SPG (shirasu porous glass), a polycarbonate membrane filter, a polytetrafluoroethylene (PTFE) membrane filter, and the like can be used.
  • the surface of the emulsified film is more preferably hydrophobized.
  • the pore diameter of the emulsion film can be selected according to the size of the droplet in the water-in-oil emulsion to be formed, and is preferably 0.2 ⁇ m or more and 100 ⁇ m or less, and preferably 5 ⁇ m or more and 50 ⁇ m or less. More preferred.
  • the water-in-oil emulsion according to the present embodiment can be suitably used for a droplet-based reaction or analysis in which each of a plurality of droplets in the water-in-oil emulsion is used as a reaction field.
  • a method for analyzing an analysis object using the oil-based composition according to the present embodiment will be described.
  • the analysis method includes the following steps.
  • a water-in-oil emulsion is formed using at least an aqueous composition containing water, an analysis object, and a drug for enabling detection of the analysis object, and an oily composition.
  • Emulsion formation step (b) Reaction step in which reaction is allowed to proceed in each of the plurality of droplets in the water-in-oil emulsion and the analyte can be detected
  • This step is a step of forming a water-in-oil emulsion from the aqueous composition and the oily composition.
  • the composition and ratio of the aqueous composition, the oily composition, and the method for forming the water-in-oil emulsion are as described above.
  • This step is a step in which the reaction is allowed to proceed in each of the plurality of droplets in the water-in-oil emulsion so that the analyte can be detected.
  • the analyte is a nucleic acid, as described above, it can be detected by amplifying the nucleic acid using a nucleic acid amplification reaction using an enzymatic reaction, as typified by the PCR method.
  • a nucleic acid amplification reaction as described above, PCR method, LCR method, SDA method, ICAN method, LAMP method and the like can be preferably used.
  • amplification is performed from one molecule of nucleic acid molecule. Therefore, when PCR is performed as a nucleic acid amplification reaction, it is preferable to perform thermal cycle treatment for 20 to 70 cycles, preferably 30 to 50 cycles. It is more preferable.
  • the water-in-oil emulsion is put in a container, and the temperature of the water-in-oil emulsion in the container is adjusted using a temperature control device, so that the water-in-oil emulsion is subjected to temperature control and thermal cycle.
  • a temperature control device it is preferable.
  • the shape of the container is not particularly limited, and a microtube, a container having a thin planar space capable of arranging droplets in a water-in-oil emulsion in a planar shape, a microchannel device, or the like is used. Can do.
  • a conventionally known heater or the like can be used.
  • a Peltier heater or the like can be used.
  • this step it is preferable to adjust the temperature of the water-in-oil emulsion in a state where the droplets in the water-in-oil emulsion are arranged in a plane.
  • the reaction in each droplet can be made to proceed uniformly.
  • the water-in-oil emulsion formed by the oil-based composition according to the present embodiment has high fluidity as described above, it is possible to increase the throughput when the droplets are arranged in a plane.
  • the stability of the emulsion is high, the state of the emulsion (droplet size, etc.) can be maintained before and after the reaction step, and the accuracy of analysis can be improved.
  • the analyte is a peptide or protein
  • the analyte may be amplified by a molecular biological technique that combines an enzyme reaction and an immune reaction, such as an ELISA method, to enable detection. it can.
  • This step is a step of observing the water-in-oil emulsion and detecting the analyte and measuring the droplet size for each of the plurality of droplets.
  • a signal is detected from the droplet in which the analyte is contained before the reaction step. Therefore, by detecting this signal, the analyte in the droplet can be detected. It should be noted that (b) from the droplets that did not contain the analyte before the reaction step, usually no signal is detected or it is weak enough to be distinguished from the droplets that contained the analyte. Signal is detected.
  • the analyte is a nucleic acid and (b) the nucleic acid can be detected using an amplification reagent and a fluorescence generating reagent in the reaction step
  • fluorescence detection is performed using a fluorescence excitation means and a fluorescence detection means
  • Signal detection can be performed.
  • an image pickup device or an image pickup apparatus equipped with the device is used as fluorescence detection means, so that a plurality of liquid drops can be simultaneously used.
  • Signal detection can be performed. This method is preferable because signals can be detected with high throughput for a large number of droplets.
  • a CCD Charge Coupled Device, Charge Coupled Device
  • a CMOS Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor ImageSensor
  • the wavelength of excitation light or detection light can be adjusted using an optical filter according to the characteristics of the fluorescent reagent used. Furthermore, it is possible to simultaneously measure a plurality of types of analytes by using a plurality of types of fluorescent reagents having different fluorescence wavelengths.
  • the concentration of the analyte can be calculated by performing correction using the Poisson model.
  • the concentration of the analyte is calculated by estimating the average number C of analytes contained in each droplet before the reaction step. Specifically, if the number of droplets is n and the average number of analytes contained in each droplet is C, the following equation (10) is established from the Poisson model equation.
  • the concentration of the analyte in the aqueous composition thus obtained can be converted to the concentration of the analyte in the sample by using the dilution factor when adjusting the aqueous composition from the sample. it can.
  • Example 1 A surfactant, KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in isopar L (manufactured by ExxonMobil), an isoparaffinic aliphatic hydrocarbon, to prepare an oily composition of Example 1.
  • Surfactant KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.) used in this example is a polyether-modified polysiloxane having an alkyl group in the side chain and has a structure represented by the above formula (1).
  • the oily composition was prepared so that the concentration of the surfactant was 1% by mass when the entire oily composition was 100% by mass.
  • Isopar L is an isoparaffin-based aliphatic hydrocarbon mainly containing isoparaffin having 11 to 15 carbon atoms (containing 85% by mass or more).
  • a magnetic stirrer (rotation speed: 1000 rpm) was slowly added dropwise to 3 mL of the prepared oil phase composition, 100 ⁇ L of phosphate buffered saline (hereinafter referred to as “PBS”), which is an aqueous composition.
  • PBS phosphate buffered saline
  • the obtained water-in-oil emulsion was subjected to a thermal cycle comprising the following steps, and the stability of the emulsion against the thermal cycle was evaluated.
  • ⁇ Thermal cycle conditions > (1) 95 ° C for 10 minutes (2) 95 ° C for 30 seconds followed by 60 ° C for 60 seconds 40 cycles (3) 98 ° C for 10 minutes (4) Lower to 4 ° C
  • Example 1 Comparative Examples 1 to 17
  • Example 2 the amount and type of surfactants were changed as shown in Table 1 to prepare an oily composition and a water-in-oil emulsion, and the stability of the prepared water-in-oil emulsion (thermal cycle stability and transfer). Time stability) was evaluated. The results are summarized in Table 1.
  • the surfactant KF-6048 (manufactured by Shin-Etsu Chemical Co., Ltd.) used in Examples 4 to 6 is a polyether-modified polysiloxane having an alkyl group in the side chain and has a structure represented by the above formula (2).
  • the surfactant ABIL EM90 (manufactured by Evonik) used in Examples 7 to 9 is a polyether-modified polysiloxane having an alkyl group in the side chain and has a structure represented by the above formula (2).
  • the surfactant KF-6028 (manufactured by Shin-Etsu Chemical Co., Ltd.) used in Comparative Examples 1 to 3 is a polyether-modified polysiloxane having no alkyl group in the side chain.
  • Surfactant Span 80 (manufactured by Sigma-Aldrich) used in Comparative Examples 5 to 6 is sorbitan monooleate, which is a polyol ester-based nonionic surfactant.
  • the surfactant DKS NL-15 (manufactured by Daiichi Kogyo Seiyaku) used in Comparative Examples 7 to 9 is polyoxyethylene lauryl ether, which is an ether-based nonionic surfactant.
  • Surfactant Sorgen 30 (Daiichi Kogyo Seiyaku Co., Ltd.) used in Comparative Examples 10 to 12 is sorbitan sesquiolate, which is a sorbitan fatty acid ester nonionic surfactant.
  • Surfactant Epan U-103 (Daiichi Kogyo Seiyaku Co., Ltd.) used in Comparative Examples 13 to 15 is polyoxyethylene polyoxypropylene glycol, which is an ether-based nonionic surfactant.
  • Surfactant KF-6104 (manufactured by Shin-Etsu Chemical Co., Ltd.) used in Comparative Example 16 is a polyglycerin-modified silicone having no alkyl group in the side chain.
  • Surfactant KF-6105 (manufactured by Shin-Etsu Chemical Co., Ltd.) used in Comparative Example 17 is a polyglycerin-modified silicone having a lauryl group in the side chain.
  • the water-in-oil emulsion formed using an oil-based composition using a polyether-modified polysiloxane having an alkyl group in the side chain as a surfactant had high stability (implementation) Examples 1 to 9).
  • a polyether-modified polysiloxane having no alkyl group in the side chain is used as a surfactant (Comparative Examples 1 to 3) or when a surfactant is not used (Comparative Example 4)
  • other nonionics When a surfactant was used (Comparative Examples 5 to 15), the stability of the emulsion was low.
  • Example 10 A surfactant KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in isopar L (manufactured by ExxonMobil), an isoparaffinic aliphatic hydrocarbon, to prepare an oil phase composition of Example 10.
  • the oily composition was prepared such that the concentration of the surfactant was 4% by mass when the entire oily composition was 100% by mass.
  • SPG Shirasu porous glass
  • DC10U pore diameter 10 ⁇ m, made by SPG Techno
  • SS-05LZ syringe
  • the syringe is set in a syringe pump (SPS-1, manufactured by ASONE), the emulsion film at the tip of the syringe is immersed in 13 mL of the oil composition, and a small amount of the oil composition is sucked up, and then an emulsification flow rate of 5 mL / h (aqueous composition)
  • the aqueous composition (1 mL) was injected at a material injection rate).
  • An optical microscope image of the obtained water-in-oil emulsion is shown in FIG. FIG.
  • FIG. 2 shows the distribution of droplet diameters in a water-in-oil emulsion measured using a laser diffraction / scattering particle size distribution measuring apparatus (LA-950, manufactured by Horiba, Ltd.).
  • LA-950 laser diffraction / scattering particle size distribution measuring apparatus
  • the average diameter of the droplets in the water-in-oil emulsion was 34 ⁇ m and the coefficient of variation (CV) was 8%.
  • the resulting water-in-oil emulsion was evaluated in the same manner as in Example 1 for the stability of the emulsion against thermal cycling and the stability over time. The results are shown in Table 2. In the column of stability evaluation in Table 2, ⁇ indicates that no change was observed in the emulsion, and ⁇ indicates that the coalescence of the emulsion occurred.
  • Example 10 In Example 10, the amount and type of the surfactant were changed as shown in Table 2 to prepare an oily composition and a water-in-oil emulsion, and the stability of the prepared water-in-oil emulsion (thermal cycle stability and transfer). Time stability) was evaluated. The results are summarized in Table 2.
  • Example 17 the emulsion film was changed to a Shirasu porous glass (SPG) film (DC20U, pore diameter 20 ⁇ m, manufactured by SPG Techno), and the oil flow was changed in the same manner as in Example 10 except that the emulsification flow rate was changed to 10 mL / h.
  • SPG Shirasu porous glass
  • a water-in-water emulsion was prepared.
  • An optical microscope image of the obtained water-in-oil emulsion is shown in FIG.
  • FIG. 4 shows the droplet size distribution in the water-in-oil emulsion measured using a laser diffraction / scattering particle size distribution measuring apparatus (LA-950, manufactured by HORIBA, Ltd.).
  • the water-in-oil emulsion formed using an oil-based composition using a polyether-modified polysiloxane having an alkyl group in the side chain as a surfactant had high stability (implementation) Examples 10-17).
  • the mixture was subjected to a thermal cycle under the following thermal cycle conditions to perform PCR, and an amplified product (amplicon) of E. coli 16S rDNA was obtained. It was confirmed by agarose gel electrophoresis that a 413 bp amplicon was obtained.
  • ⁇ Thermal cycle conditions > 1) Initial denaturation (95 ° C for 2 minutes): 1 cycle 2) PCR (95 ° C for 20 seconds, 55 ° C for 20 seconds, 74 ° C for 20 seconds): 35 cycles 3) Retention (4 ° C): 1 cycle
  • a surfactant KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in isopar L (manufactured by ExxonMobil), an isoparaffinic aliphatic hydrocarbon, to prepare an oil phase composition of Example 18.
  • the oily composition was prepared such that the concentration of the surfactant was 4% by mass when the entire oily composition was 100% by mass.
  • Two syringes were prepared, 100 ⁇ L of the aqueous composition was sampled in one syringe, and 2 mL of the oily composition was sampled in the other syringe.
  • a pumping emulsion membrane (PC50U, pore diameter 50 ⁇ m, manufactured by SPG Techno) was connected to the tip of these syringes, and the emulsion membrane was sandwiched between two syringes. Thereafter, pumping was performed 8 times (the operation of pushing the two syringes alternately one by one as one pumping) to obtain a water-in-oil emulsion.
  • ⁇ Thermal cycle conditions > 1) Initial denaturation (95 ° C for 5 minutes): 1 cycle 2) PCR (95 ° C for 30 seconds, 55 ° C for 1 minute): 50 cycles 3) Signal stabilization (4 ° C for 5 minutes, 90 ° C for 5 minutes) ): 1 cycle 4) Hold (4 ° C) 1 cycle
  • Example 19 In Example 18, when forming the water-in-oil emulsion, except for changing the 10 four-fold dilutions of amplicon 10 5-fold dilutions of amplicons in the same manner as in Example 18, water-in-oil Emulsion formation and PCR using it were performed.
  • the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 5B).
  • Example 20 In Example 18, when forming the water-in-oil emulsion, except for changing the 10 four-fold dilutions of amplicon 10 6-fold dilutions of amplicons in the same manner as in Example 18, water-in-oil Emulsion formation and PCR using it were performed.
  • the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 5C).
  • Example 21 An aqueous composition and an oily composition were prepared in the same manner as in Example 18.
  • a Shirasu porous glass (SPG) film (DC20U, manufactured by SPG Techno), which is an emulsified film, was connected to the tip of a syringe (SS-05LZ, manufactured by Terumo) from which the aqueous composition was collected.
  • the syringe is set in a syringe pump (SPS-1, manufactured by ASONE), the emulsion film at the tip of the syringe is immersed in 9 mL of the oily composition, and a small amount of the oily composition is sucked up, and then an emulsification flow rate of 10 mL / h (aqueous composition)
  • the aqueous composition was injected at a material injection rate).
  • the oily composition was stirred at 300 rpm using a magnetic stirrer. This prepared a water-in-oil emulsion.
  • the obtained emulsion was subjected to a thermal cycle in the same manner as in Example 18 and subjected to PCR.
  • the droplets in the water-in-oil emulsion were stable without coalescence or aggregation.
  • a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 6A).
  • Example 22 In Example 21, when forming the water-in-oil emulsion, except for changing the 10 four-fold dilutions of amplicon 10 5-fold dilutions of amplicons in the same manner as in Example 21, water-in-oil Emulsion formation and PCR using it were performed.
  • the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Moreover, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 6B).
  • Example 23 to 37 an oily composition and a water-in-oil emulsion were prepared by changing the types of the surfactant and the aliphatic hydrocarbon as shown in Table 3, and the stability of the prepared water-in-oil emulsion ( Thermal cycle stability and stability over time) were evaluated. The results are summarized in Table 3.
  • Isopar M is an isoparaffinic aliphatic hydrocarbon mainly composed of isoparaffin having 11 to 18 carbon atoms.
  • Exol D80 is a cycloparaffinic aliphatic hydrocarbon composed mainly of cycloparaffins having 11 to 13 carbon atoms.
  • Exol D95 is a cycloparaffinic aliphatic hydrocarbon composed mainly of cycloparaffins having 12 to 14 carbon atoms.
  • Exol D110 is a cycloparaffinic aliphatic hydrocarbon composed mainly of cycloparaffin having 15 carbon atoms.
  • Exol D130 is a cycloparaffinic aliphatic hydrocarbon composed mainly of cycloparaffins having 15 to 17 carbon atoms.
  • Example 26 and Example 27 surfactants having different HLB (Hydrophilic-Lipophilic Balance) values were used, and there was a difference in droplet stability.
  • the HLB value takes a value from 0 to 20, and the closer to 0, the higher the lipophilicity, and the closer to 20, the higher the hydrophilicity.
  • the HLB value of the surfactant used in the W / O type emulsion is generally preferably 3 to 6, but from the results of Examples 25 to 27, in the case of Isopar M having a high kinematic viscosity. It was suggested that a surfactant having an HLB value of 3 to 3.5 is suitable for stabilizing the droplet.
  • the structure of the hydrophilic part and the structure of the hydrophobic part and the ratio thereof can be calculated by NMR.
  • the molecular weight of the surfactant can be calculated using GPC.
  • Example 26 and Example 27 are compared, the stability of the droplets is superior when the ratio of the lipophilic alkyl group or the like is larger than the ratio of the hydrophilic polyether. It is considered that the alkyl group contributes to the stabilization of the droplet.
  • Example 38 (Formation of water-in-oil emulsion)
  • the attached control DNA, primer and probe were mixed, and Premix Ex Taq (model RR390A, manufactured by Takara Bio Inc.) ) And sterile distilled water were mixed to prepare an aqueous composition of Example 38.
  • FAM was used as the fluorescent dye.
  • ABIL EM90 (manufactured by Evonik) as a surfactant was dissolved in Isopar L (manufactured by ExxonMobil), which is an isoparaffinic aliphatic hydrocarbon, to prepare an oil phase composition of Example 38.
  • Isopar L manufactured by ExxonMobil
  • the oily composition was prepared such that the concentration of the surfactant was 4% by mass when the entire oily composition was 100% by mass.
  • a Shirasu porous glass (SPG) film (DC20U, manufactured by SPG Techno), which is an emulsified film, was connected to the tip of a syringe (08040, manufactured by Nipro) from which the aqueous composition was collected.
  • SPG-1 syringe pump
  • immerse the emulsion film at the tip of the syringe in 9 mL of the oily composition suck up a small amount of the oily composition, and then an emulsification flow rate of 5 mL / h (aqueous composition)
  • the water-in-oil emulsion was prepared by injecting the aqueous composition at a material injection rate).
  • ⁇ Thermal cycle conditions > 1) Initial denaturation (95 ° C for 5 minutes): 1 cycle 2) PCR (95 ° C for 30 seconds, 55 ° C for 1 minute): 50 cycles 3) Signal stabilization (4 ° C for 5 minutes, 90 ° C for 5 minutes) ): 1 cycle 4) Hold (4 ° C) 1 cycle
  • Example 39 (Formation of water-in-oil emulsion)
  • the fluorescent dye of Example 38 was changed to VIC, and the same operation as in Example 38 was performed to form a water-in-oil emulsion, which was used for PCR.
  • the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 8).
  • Example 40 (Formation of water-in-oil emulsion) According to the protocol of Internal DNA extraction control kit (model number INT-DNA-FAM, Primerdesign), the attached control DNA and primer / probe are mixed, and Premix Ex Taq (model RR390A, manufactured by Takara Bio Inc.), bovine serum derived albumin
  • An aqueous composition of Example 40 was prepared by mixing (BSA: Bovine Serum Albumin) aqueous solution (manufactured by Thermo Fisher Scientific) and sterilized distilled water. Three types of aqueous compositions were prepared with final BSA concentrations of 0, 0.4, and 4 mg / mL, respectively. In this example, FAM was used as the fluorescent dye of the probe.
  • BSA Bovine Serum Albumin
  • the oily composition was prepared such that the concentration of the surfactant was 4% by mass when the entire oily composition was 100% by mass.
  • Three types of water-in-oil emulsions with different BSA concentrations are obtained by adding the oily composition to the aqueous composition to a plastic tube at a volume ratio of 1: 2, and treating with a tube mixer (manufactured by TAITEC) for 30 seconds.
  • TAITEC tube mixer
  • ⁇ Thermal cycle conditions > 1) Initial denaturation (95 ° C for 5 minutes): 1 cycle 2) PCR (95 ° C for 30 seconds, 55 ° C for 1 minute): 50 cycles 3) Signal stabilization (4 ° C for 5 minutes, 90 ° C for 5 minutes) ): 1 cycle 4) Hold (4 ° C) 1 cycle
  • an emulsion was prepared from the aqueous composition prepared in the same manner as described above except that the BSA concentration was 0.4 mg / mL, and an oil phase composition using an emulsion film.
  • a Shirasu porous glass (SPG) film (DC20U, manufactured by SPG Techno), which is an emulsified film, was connected to the tip of a syringe (08040, manufactured by Nipro) from which the aqueous composition was collected.
  • SPG-1 syringe pump
  • immerse the emulsion film at the tip of the syringe in 9 mL of the oily composition suck up a small amount of the oily composition, and then an emulsification flow rate of 5 mL / h (aqueous composition)
  • the water-in-oil emulsion was prepared by injecting the aqueous composition at a material injection rate).
  • Example 41 to 52 an oily composition and a water-in-oil emulsion were prepared by changing the types of surfactant and oil as shown in Table 4, and the stability of the prepared water-in-oil emulsion (thermal cycle stability). And stability over time). The results are summarized in Table 4.
  • Example 46 the emulsified membrane was changed to a shirasu porous glass (SPG) membrane (DC30U, pore diameter 30 ⁇ m, manufactured by SPG Techno), and the emulsification flow rate was changed to 1 mL / h, as in Example 17.
  • SPG shirasu porous glass
  • a water-in-oil emulsion was prepared and the stability was evaluated.
  • ES-5300 FORMULATION AID (manufactured by Dow Corning Toray) is abbreviated as ES-5300.
  • DOW CORNING 5200 FORMULATION AID manufactured by Dow Corning Toray) is abbreviated as DC5200.
  • Example 53 (Formation of water-in-oil emulsion)
  • the attached control DNA and primer / probe were mixed, and Premix Ex Taq (model RR390A, manufactured by Takara Bio Inc.) ) And sterile distilled water were mixed to prepare an aqueous composition of Example 53.
  • FAM was used as the fluorescent dye.
  • Surfactant KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in silicone oil KF-96L-1.5cs (manufactured by Shin-Etsu Chemical Co., Ltd.) to prepare an oil phase composition of Example 53.
  • the oily composition was prepared such that the concentration of the surfactant was 4% by mass when the entire oily composition was 100% by mass.
  • a Shirasu porous glass (SPG) film (DC20U, manufactured by SPG Techno), which is an emulsified film, was connected to the tip of a syringe (08040, manufactured by Nipro) from which the aqueous composition was collected.
  • SPG-1 syringe pump
  • immerse the emulsion film at the tip of the syringe in 9 mL of the oily composition suck up a small amount of the oily composition, and then an emulsification flow rate of 5 mL / h (aqueous composition)
  • the water-in-oil emulsion was prepared by injecting the aqueous composition at a material injection rate).
  • ⁇ Thermal cycle conditions > 1) Initial denaturation (95 ° C for 3 minutes): 1 cycle 2) PCR (95 ° C for 15 seconds, 60 ° C for 30 seconds): 30 cycles 3) Signal stabilization (4 ° C for 5 minutes, 90 ° C for 5 minutes) ): 1 cycle 4) Hold (4 ° C) 1 cycle
  • Example 54 (Formation of water-in-oil emulsion)
  • the surfactant of Example 53 was changed to KF-6048 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the same operation as in Example 53 was performed to form a water-in-oil emulsion, and PCR was performed using it.
  • the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 12).
  • Example 55 (Formation of water-in-oil emulsion)
  • the surfactant of Example 53 was changed to ES-5300 (manufactured by Dow Corning Toray), and a water-in-oil emulsion was formed in the same manner as in Example 53, and PCR was performed using it.
  • the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 13).
  • Example 56 (Formation of water-in-oil emulsion)
  • the silicone oil of Example 55 was changed to Isopar L (manufactured by ExxonMobil) and operated in the same manner as in Example 55 to form a water-in-oil emulsion, and PCR was performed using it.
  • the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 14).
  • Example 57 (Formation of water-in-oil emulsion)
  • the surfactant of Example 56 was changed to DC5200 (manufactured by ExxonMobil), and the same operation as in Example 56 was performed to form a water-in-oil emulsion, which was used for PCR.
  • the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 15).
  • an oily composition capable of forming a water-in-oil emulsion having high fluidity and stability can be provided.

Abstract

An oily composition containing an aliphatic hydrocarbon and a surfactant, the oily composition being characterized in that the aliphatic hydrocarbon has a kinetic viscosity at 25°C of less than 10 mm2/s and the surfactant is a polyether-modified polysiloxane having an alkyl group in a side chain.

Description

油性組成物、およびそれを用いた分析方法Oil-based composition and analysis method using the same
 本発明は、油性組成物、およびそれを用いた分析方法に関する。 The present invention relates to an oily composition and an analysis method using the same.
 特定の塩基配列を有する核酸(標的核酸)を定量分析する方法として、「デジタルPCR(dPCR:digital Polymerase Chain Reaction)」法が注目されている。 As a method for quantitative analysis of a nucleic acid having a specific base sequence (target nucleic acid), a “digital PCR (dPCR: digital Polymerase Chain Reaction)” method has attracted attention.
 dPCRでは、標的核酸を含むサンプルを、標的核酸を増幅するための増幅試薬、標的核酸を検出するための蛍光試薬などと混合して希釈し、物理的に独立した多数の反応場に分割する。そして、多数の反応場のそれぞれにおいて独立にPCRを生じさせ、標的核酸を増幅する。このとき、標的核酸を含むサンプルを十分に希釈しておき、それぞれの反応場に含まれる標的核酸の数が1個または0個のいずれかとなるようにしておく。これにより、増幅後にシグナルが検出された反応場の数(陽性反応場数)および/または増幅後にシグナルが検出されなかった反応場の数(陰性反応場数)から、サンプル中の標的核酸の濃度を取得することができる。 In dPCR, a sample containing a target nucleic acid is diluted with an amplification reagent for amplifying the target nucleic acid, a fluorescent reagent for detecting the target nucleic acid, and the like, and divided into a number of physically independent reaction fields. Then, PCR is independently generated in each of the multiple reaction fields to amplify the target nucleic acid. At this time, the sample containing the target nucleic acid is sufficiently diluted so that the number of target nucleic acids contained in each reaction field is either 1 or 0. Thus, the concentration of the target nucleic acid in the sample is obtained from the number of reaction fields in which a signal was detected after amplification (number of positive reaction fields) and / or the number of reaction fields in which no signal was detected after amplification (number of negative reaction fields). can do.
 dPCRにおいてサンプルを含む反応液を物理的に独立した多数の反応場に分割する方法として、反応液の液滴をオイル中に形成する方法、すなわち、油中水型エマルジョン(W/Oエマルジョン)中の液滴を反応場として用いる方法がある(特表2012-503773号公報、特許文献1)。油中水型エマルジョンを用いたdPCRなど、油中水型エマルジョンを用いた反応や分析においては、油中水型エマルジョンの形成から反応、分析の完了までの一連のプロセスの間に、油中水型エマルジョンを流動させる必要がある。このとき、油中水型エマルジョンの流動性が低いとスループットが低下してしまうため、油中水型エマルジョンの流動性は高いほうが好ましい。 As a method of dividing a reaction solution containing a sample into a number of physically independent reaction fields in dPCR, a method of forming droplets of reaction solution in oil, that is, in a water-in-oil emulsion (W / O emulsion) There is a method of using the droplets as a reaction field (Japanese Patent Publication No. 2012-503773, Patent Document 1). In a reaction or analysis using a water-in-oil emulsion, such as dPCR using a water-in-oil emulsion, water-in-oil is performed during a series of processes from formation of a water-in-oil emulsion to reaction and completion of analysis. The mold emulsion needs to flow. At this time, if the fluidity of the water-in-oil emulsion is low, the throughput is lowered. Therefore, the fluidity of the water-in-oil emulsion is preferably high.
 しかしながら、油中水型エマルジョンにおいては一般に、連続相であるオイルの動粘度が高いほどエマルジョンが安定であり、オイルの動粘度が低いほどエマルジョンが不安定であることが知られている。そのため、油中水型エマルジョンの流動性を高めるためにオイルの動粘度が低くすると、エマルジョンの安定性が低下してしまうという課題があった。 However, in water-in-oil emulsions, it is generally known that the higher the kinematic viscosity of the oil that is the continuous phase, the more stable the emulsion, and the lower the kinematic viscosity of the oil, the more unstable the emulsion. For this reason, when the kinematic viscosity of the oil is lowered in order to increase the fluidity of the water-in-oil emulsion, there is a problem that the stability of the emulsion is lowered.
特表2012-503773号公報Special table 2012-503773 gazette
 そこで本発明では、上述の課題に鑑み、流動性およびエマルジョンの安定性の高い油中水型エマルジョンを形成可能な油性組成物を提供することを目的とする。 Therefore, in view of the above-described problems, an object of the present invention is to provide an oily composition capable of forming a water-in-oil emulsion with high fluidity and emulsion stability.
 本発明の一側面としての油性組成物は、脂肪族炭化水素そして/またはシリコーンオイルと、界面活性剤と、を含有する油性組成物であって、前記脂肪族炭化水素の25℃における動粘度は10mm/s未満であり、前記界面活性剤が、側鎖にアルキル基を有するポリエーテル変性ポリシロキサンであることを特徴とする。 The oily composition as one aspect of the present invention is an oily composition containing an aliphatic hydrocarbon and / or silicone oil and a surfactant, and the kinematic viscosity of the aliphatic hydrocarbon at 25 ° C. The surfactant is less than 10 mm 2 / s, and the surfactant is a polyether-modified polysiloxane having an alkyl group in a side chain.
本発明の実施例10の油中水型エマルジョンの光学顕微鏡画像である。It is an optical microscope image of the water-in-oil emulsion of Example 10 of this invention. 本発明の実施例10の油中水型エマルジョンの液滴径の分布を示す図である。It is a figure which shows distribution of the droplet diameter of the water-in-oil emulsion of Example 10 of this invention. 本発明の実施例17の油中水型エマルジョンの光学顕微鏡画像である。It is an optical microscope image of the water-in-oil emulsion of Example 17 of the present invention. 本発明の実施例17の油中水型エマルジョンの液滴径の分布を示す図である。It is a figure which shows distribution of the droplet diameter of the water-in-oil emulsion of Example 17 of this invention. 本発明の実施例18~20の油中水型エマルジョンの蛍光顕微鏡画像である。2 is a fluorescence microscope image of water-in-oil emulsions of Examples 18 to 20 of the present invention. 本発明の実施例18~20の油中水型エマルジョンの蛍光顕微鏡画像である。2 is a fluorescence microscope image of water-in-oil emulsions of Examples 18 to 20 of the present invention. 本発明の実施例18~20の油中水型エマルジョンの蛍光顕微鏡画像である。2 is a fluorescence microscope image of water-in-oil emulsions of Examples 18 to 20 of the present invention. 本発明の実施例21~22の油中水型エマルジョンの蛍光顕微鏡画像である。3 is a fluorescence microscopic image of water-in-oil emulsions of Examples 21 to 22 of the present invention. 本発明の実施例21~22の油中水型エマルジョンの蛍光顕微鏡画像である。3 is a fluorescence microscopic image of water-in-oil emulsions of Examples 21 to 22 of the present invention. 本発明の実施例38の油中水型エマルジョンの蛍光顕微鏡画像である。It is a fluorescence-microscope image of the water-in-oil emulsion of Example 38 of this invention. 本発明の実施例39の油中水型エマルジョンの蛍光顕微鏡画像である。It is a fluorescence-microscope image of the water-in-oil emulsion of Example 39 of this invention. 本発明の実施例40の油中水型エマルジョンの蛍光顕微鏡画像である。It is a fluorescence-microscope image of the water-in-oil emulsion of Example 40 of this invention. 本発明の実施例40の油中水型エマルジョンの蛍光顕微鏡画像である。It is a fluorescence-microscope image of the water-in-oil emulsion of Example 40 of this invention. 本発明の実施例40の油中水型エマルジョンの蛍光顕微鏡画像である。It is a fluorescence-microscope image of the water-in-oil emulsion of Example 40 of this invention. 本発明の実施例40の油中水型エマルジョンの蛍光顕微鏡画像である。It is a fluorescence-microscope image of the water-in-oil emulsion of Example 40 of this invention. 本発明の実施例53の油中水型エマルジョンの蛍光顕微鏡画像である。It is a fluorescence-microscope image of the water-in-oil emulsion of Example 53 of this invention. 本発明の実施例54の油中水型エマルジョンの蛍光顕微鏡画像である。It is a fluorescence-microscope image of the water-in-oil emulsion of Example 54 of this invention. 本発明の実施例55の油中水型エマルジョンの蛍光顕微鏡画像である。It is a fluorescence-microscope image of the water-in-oil emulsion of Example 55 of this invention. 本発明の実施例56の油中水型エマルジョンの蛍光顕微鏡画像である。It is a fluorescence-microscope image of the water-in-oil emulsion of Example 56 of this invention. 本発明の実施例57の油中水型エマルジョンの蛍光顕微鏡画像である。It is a fluorescence-microscope image of the water-in-oil emulsion of Example 57 of this invention.
 以下、本発明の実施の形態について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対して適宜変更、改良等が加えられたものも本発明の範囲に含まれる。 Hereinafter, embodiments of the present invention will be described in detail. It should be noted that the present invention is not limited to the following embodiments, and is appropriately modified with respect to the following embodiments based on ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Those with improvements and the like are also included in the scope of the present invention.
 [油性組成物(O)]
 本実施形態に係る油性組成物(O)は、脂肪族炭化水素そして/またはシリコーンオイル(A)と、界面活性剤(B)と、を含有する。本実施形態において、脂肪族炭化水素そして/またはシリコーンオイル(A)の25℃における動粘度は10mm/s未満であり、界面活性剤(B)は、側鎖にアルキル基を有するポリエーテル変性ポリシロキサンである。
[Oil composition (O)]
The oily composition (O) according to the present embodiment contains an aliphatic hydrocarbon and / or silicone oil (A) and a surfactant (B). In this embodiment, the kinematic viscosity at 25 ° C. of the aliphatic hydrocarbon and / or silicone oil (A) is less than 10 mm 2 / s, and the surfactant (B) is a polyether-modified polyether having an alkyl group in the side chain. Polysiloxane.
 脂肪族炭化水素(A)そして/またはシリコーンオイルは油性組成物(O)の主成分であり、脂肪族炭化水素そして/またはシリコーンオイル(A)として25℃における動粘度が10mm/s未満のオイルを用いる。それにより、油性組成物(O)の動粘度を低くすることができる。すなわち、脂肪族炭化水素(A)として炭素原子数7以上30以下の脂肪族炭化水素を用いることで、油性組成物(O)の動粘度を低くすることができる。あるいは、シリコーンオイル(A)として分子量600以下のポリシロキサンを用いることで、油性組成物(O)の動粘度を低くすることができる。これにより、油性組成物(O)を用いて形成される油中水型エマルジョンの流動性を向上させることができる。また、油性組成物(O)の動粘度を10mm/s未満とすることにより、膜乳化等によって油中水型エマルジョンを形成する際にも、液滴のサイズを均一にしやすくすることができる。 The aliphatic hydrocarbon (A) and / or silicone oil is the main component of the oily composition (O), and the kinematic viscosity at 25 ° C. is less than 10 mm 2 / s as the aliphatic hydrocarbon and / or silicone oil (A). Use oil. Thereby, kinematic viscosity of oil-based composition (O) can be made low. That is, by using an aliphatic hydrocarbon having 7 to 30 carbon atoms as the aliphatic hydrocarbon (A), the kinematic viscosity of the oily composition (O) can be lowered. Alternatively, the kinematic viscosity of the oil-based composition (O) can be lowered by using polysiloxane having a molecular weight of 600 or less as the silicone oil (A). Thereby, the fluidity | liquidity of the water-in-oil emulsion formed using an oil-based composition (O) can be improved. Further, by making the kinematic viscosity of the oil-based composition (O) less than 10 mm 2 / s, it is possible to make the droplet size uniform even when forming a water-in-oil emulsion by membrane emulsification or the like. .
 一般に、25℃における動粘度が10mm/s未満といった低い動粘度の脂肪族炭化水素そして/またはシリコーンオイルを主成分とした、低動粘度の油性組成物(O)を用いて形成される油中水型エマルジョンは、エマルジョンの安定性が低い傾向にある。本発明者らが鋭意検討した結果、このような場合でも、側鎖にアルキル基を有するポリエーテル変性ポリシロキサンを界面活性剤(B)として用いることで、安定性の高い油中水型エマルジョンを形成可能な油性組成物を実現できることを見いだした。 In general, an oil formed by using a low kinematic viscosity oily composition (O) mainly composed of a low kinematic viscosity aliphatic hydrocarbon and / or silicone oil having a kinematic viscosity at 25 ° C. of less than 10 mm 2 / s. Water-in-water emulsions tend to have low emulsion stability. As a result of intensive studies by the present inventors, even in such a case, a highly stable water-in-oil emulsion can be obtained by using a polyether-modified polysiloxane having an alkyl group in the side chain as a surfactant (B). It has been found that a formable oily composition can be realized.
 以下、油性組成物(O)の各成分について、詳細に説明する。 Hereinafter, each component of the oil-based composition (O) will be described in detail.
 <脂肪族炭化水素そして/またはシリコーンオイル(A)>
 本実施形態に係る脂肪族炭化水素そして/またはシリコーンオイル(A)は、25℃における動粘度が10mm/s未満のオイルである。脂肪族炭化水素そして/またはシリコーンオイル(A)の25℃における動粘度は、6.5mm/s未満であることが好ましい。これにより、油性組成物(O)を用いて膜乳化法等によって油中水型エマルジョンを形成したときに、液滴のサイズのばらつきが低いエマルジョンを形成することができる。脂肪族炭化水素そして/またはシリコーンオイル(A)の25℃における動粘度の下限は特に限定はされないが、0.5mm/s以上であることが好ましく、1mm/s以上であることがより好ましい。これにより、油性組成物(O)を用いて膜乳化法等によって油中水型エマルジョンを形成したときに、安定性の高いエマルジョンを形成することができる。
<Aliphatic hydrocarbon and / or silicone oil (A)>
The aliphatic hydrocarbon and / or silicone oil (A) according to this embodiment is an oil having a kinematic viscosity at 25 ° C. of less than 10 mm 2 / s. The kinematic viscosity at 25 ° C. of the aliphatic hydrocarbon and / or silicone oil (A) is preferably less than 6.5 mm 2 / s. Thereby, when a water-in-oil emulsion is formed using the oil-based composition (O) by a film emulsification method or the like, it is possible to form an emulsion having a small variation in droplet size. The lower limit of the kinematic viscosity at 25 ° C. of the aliphatic hydrocarbon and / or silicone oil (A) is not particularly limited, but is preferably 0.5 mm 2 / s or more, and more preferably 1 mm 2 / s or more. preferable. Thereby, when a water-in-oil emulsion is formed by the membrane emulsification method using the oily composition (O), a highly stable emulsion can be formed.
 脂肪族炭化水素そして/またはシリコーンオイル(A)は、25℃において液体である。脂肪族炭化水素そして/またはシリコーンオイル(A)の沸点は、100℃以上であることが好ましく、150℃以上であることがより好ましい。脂肪族炭化水素そして/またはシリコーンオイル(A)の沸点が100℃以上であることにより、油性組成物(O)を用いて形成した油中水型エマルジョンをPCRのために加熱しても、油性組成物(O)の蒸発を抑制することができる。 The aliphatic hydrocarbon and / or silicone oil (A) is liquid at 25 ° C. The boiling point of the aliphatic hydrocarbon and / or silicone oil (A) is preferably 100 ° C. or higher, and more preferably 150 ° C. or higher. When the boiling point of the aliphatic hydrocarbon and / or silicone oil (A) is 100 ° C. or higher, even if the water-in-oil emulsion formed using the oily composition (O) is heated for PCR, it is oily. The evaporation of the composition (O) can be suppressed.
 脂肪族炭化水素そして/またはシリコーンオイル(A)の含有量は、油性組成物(O)の全体を100質量%としたときに、70質量%以上99.9質量%以下であることが好ましく、80質量%以上99質量%以下であることがより好ましい。 The content of the aliphatic hydrocarbon and / or silicone oil (A) is preferably 70% by mass or more and 99.9% by mass or less when the total amount of the oily composition (O) is 100% by mass, More preferably, it is 80 mass% or more and 99 mass% or less.
 脂肪族炭化水素そして/またはシリコーンオイル(A)の比重は、0.92g/cm未満であることが好ましく、0.88g/cm未満であることがより好ましい。脂肪族炭化水素そして/またはシリコーンオイル(A)の比重の下限は特に限定はされないが、0.3g/cm以上であることが好ましく、0.5g/cm以上であることがより好ましい。脂肪族炭化水素そして/またはシリコーンオイル(A)の比重が0.92g/cm未満であることにより、油性組成物(O)の比重を1g/cm未満にすることができる。このような比重とすることにより、油性組成物(O)を用いて油中水型エマルジョンを形成したときに液滴を重力方向下側に集めやすくなる。その結果、油中水型エマルジョンを用いた反応や分析を行う際に、均一に反応を進行させやすくなり、液滴の観察も容易になるため、好ましい。 The specific gravity of the aliphatic hydrocarbon and / or silicone oil (A) is preferably less than 0.92 g / cm 3 , more preferably less than 0.88 g / cm 3 . The lower limit of the specific gravity of the aliphatic hydrocarbon and / or silicone oil (A) is not particularly limited, but is preferably 0.3 g / cm 3 or more, and more preferably 0.5 g / cm 3 or more. When the specific gravity of the aliphatic hydrocarbon and / or silicone oil (A) is less than 0.92 g / cm 3 , the specific gravity of the oily composition (O) can be less than 1 g / cm 3 . By setting it as such specific gravity, when forming a water-in-oil emulsion using an oil-based composition (O), it becomes easy to collect a droplet on the lower side of a gravitational direction. As a result, when a reaction or analysis using a water-in-oil emulsion is performed, the reaction easily proceeds uniformly, and observation of droplets is also facilitated, which is preferable.
 脂肪族炭化水素(A)は、パラフィン系炭化水素であることが好ましく、イソパラフィン系炭化水素やシクロパラフィン系炭化水素であることがより好ましい。また、脂肪族炭化水素(A)は、炭素原子数が7以上30以下であることが好ましく、10以上25以下であることがより好ましく、10以上20以下であることが特に好ましい。脂肪族炭化水素(A)の炭素原子数が30以下であることで、脂肪族炭化水素(A)の分子量を小さくすることができ、25℃における動粘度を低くすることができる。なお、脂肪族炭化水素(A)は、複数種類の脂肪族炭化水素によって構成されていてもよい。 The aliphatic hydrocarbon (A) is preferably a paraffinic hydrocarbon, and more preferably an isoparaffinic hydrocarbon or a cycloparaffinic hydrocarbon. The aliphatic hydrocarbon (A) preferably has 7 to 30 carbon atoms, more preferably 10 to 25, and particularly preferably 10 to 20 carbon atoms. When the number of carbon atoms of the aliphatic hydrocarbon (A) is 30 or less, the molecular weight of the aliphatic hydrocarbon (A) can be reduced, and the kinematic viscosity at 25 ° C. can be reduced. The aliphatic hydrocarbon (A) may be composed of a plurality of types of aliphatic hydrocarbons.
 脂肪族炭化水素(A)として好適な、25℃における動粘度が10mm/s未満のイソパラフィン系炭化水素の市販品としては、アイソパーE(25℃における動粘度0.83mm/s)、アイソパーG(25℃における動粘度1.49mm/s)、アイソパーH(25℃における動粘度1.80mm/s)、アイソパーL(25℃における動粘度1.61mm/s)、アイソパーM(25℃における動粘度3.77mm/s)(以上、エクソンモービル製、「アイソパー」はエクソンモービルの登録商標)等が挙げられる。 Examples of commercially available isoparaffinic hydrocarbons having a kinematic viscosity at 25 ° C. of less than 10 mm 2 / s that are suitable as the aliphatic hydrocarbon (A) include Isopar E (kinematic viscosity at 25 ° C. of 0.83 mm 2 / s), Isopar G (kinematic viscosity at 25 ° C. 1.49 mm 2 / s), Isopar H (kinematic viscosity at 25 ° C. 1.80 mm 2 / s), Isopar L (kinematic viscosity at 25 ° C. 1.61 mm 2 / s), Isopar M ( Kinematic viscosity at 25 ° C. (3.77 mm 2 / s) (exxon mobile, “Isopar” is a registered trademark of ExxonMobil).
 また、脂肪族炭化水素(A)として好適な、25℃における動粘度が10mm/s未満のシクロパラフィン系炭化水素の市販品としては、エクソールD30(25℃における動粘度1.04mm/s)、エクソールD40(25℃における動粘度1.30mm/s)、エクソールD60(25℃における動粘度1.73mm/s)、エクソールD80(25℃における動粘度2.09mm/s)、エクソールD95(25℃における動粘度2.49mm/s)、エクソールD110(25℃における動粘度3.43mm/s)、エクソールD130(25℃における動粘度6.12mm/s)(以上、エクソンモービル製、「エクソール」はエクソンモービルの登録商標)等が挙げられる。 Further, as a commercially available product of cycloparaffinic hydrocarbon having a kinematic viscosity at 25 ° C. of less than 10 mm 2 / s, which is suitable as the aliphatic hydrocarbon (A), Exol D30 (kinematic viscosity at 25 ° C. of 1.04 mm 2 / s ), Exol D40 (kinematic viscosity at 25 ° C. 1.30 mm 2 / s), Exol D 60 (dynamic viscosity at 25 ° C. 1.73 mm 2 / s), Exol D 80 (kinematic viscosity at 25 ° C. 2.09 mm 2 / s), Exol D95 (kinematic viscosity at 25 ° C. 2.49 mm 2 / s), Exol D110 (dynamic viscosity at 25 ° C. 3.43 mm 2 / s), Exol D130 (kinematic viscosity at 25 ° C. 6.12 mm 2 / s) (above, Exxon Mobil's “Exor” is a registered trademark of Exxon Mobil).
 シリコーンオイル(A)は、ポリシロキサンであることが好ましく、ジメチルポリシロキサンであることがより好ましい。また、シリコーンオイル(A)は、分子量100以上600以下であることが好ましく、200以上500以下であることがより好ましい。シリコーンオイル(A)の分子量が600以下であることで、25℃における動粘度を低くすることができる。なお、シリコーンオイル(A)は、複数種類のシリコーンオイルによって構成されていてもよい。 The silicone oil (A) is preferably polysiloxane, more preferably dimethylpolysiloxane. Further, the silicone oil (A) preferably has a molecular weight of 100 or more and 600 or less, and more preferably 200 or more and 500 or less. When the molecular weight of the silicone oil (A) is 600 or less, the kinematic viscosity at 25 ° C. can be lowered. The silicone oil (A) may be composed of a plurality of types of silicone oils.
 シリコーンオイル(A)として好適な、25℃における動粘度が4mm/s未満のシリコーンオイルの市販品は、KF-96L-0.65cs(25℃における動粘度0.65mm/s)、KF-96L-1cs(25℃における動粘度1mm/s)、KF-96L-1.5cs(25℃における動粘度1.5mm/s)、KF-96L-2cs(25℃における動粘度1.61mm/s)(以上、信越化学工業製)、DOW CORNING TORAY SH 200 FLUID 0.65 CS(25℃における動粘度0.65mm/s)、DOW CORNING TORAY SH 200 FLUID 1 CS(25℃における動粘度1mm/s)、DOW CORNING TORAY SH 200 FLUID 1.5 CS(25℃における動粘度1.5mm/s)、DOW CORNING TORAY SH 200 FLUID 2 CS(25℃における動粘度2mm/s)(以上、東レ・ダウコーニング製)等が挙げられる。 A commercially available silicone oil having a kinematic viscosity at 25 ° C. of less than 4 mm 2 / s and suitable as the silicone oil (A) is KF-96L-0.65cs (kinematic viscosity at 25 ° C .: 0.65 mm 2 / s), KF -96L-1cs (kinematic viscosity 1.5 mm 2 / s in kinematic viscosity 1mm 2 /s),KF-96L-1.5cs(25℃ at 25 ° C.), a kinematic viscosity at KF-96L-2cs (25 1. 61 mm 2 / s) (manufactured by Shin-Etsu Chemical Co., Ltd.), DOW CORNING TORAY SH 200 FLUID 0.65 CS (kinematic viscosity at 25 ° C. 0.65 mm 2 / s), DOW CORNING TORAY SH 200 FLUID 1 CS (at 25 ° C. kinematic viscosity 1mm 2 / s), DOW CORNING TORAY SH 200 FLUID 1.5 S (kinematic viscosity 1.5 mm 2 / s at 25 ℃), DOW CORNING TORAY SH 200 FLUID 2 CS ( kinematic viscosity 2 mm 2 / s at 25 ℃) (Toray Dow Corning), and the like.
 なお、脂肪族炭化水素とシリコーンオイルは、それぞれ単独で使用しても良いし、混合して使用しても良い。 The aliphatic hydrocarbon and silicone oil may be used alone or in combination.
 <界面活性剤(B)>
 界面活性剤(B)は、側鎖にアルキル基を有するポリエーテル変性ポリシロキサンである。
<Surfactant (B)>
The surfactant (B) is a polyether-modified polysiloxane having an alkyl group in the side chain.
 エマルジョンの安定性を向上させる方法として、界面活性剤を添加することは知られているが、エマルジョンを構成するオイルなどの種類によって好適な界面活性剤は異なる。本発明者らが鋭意検討した結果、上述の脂肪族炭化水素またはシリコーンオイル(A)を主成分とする油性組成物(O)においては、側鎖にアルキル基を有するポリエーテル変性ポリシロキサンを界面活性剤として用いることが好適であることを見いだした。すなわち、油性組成物(O)が界面活性剤(B)を含有することで、油性組成物(O)を用いて油中水型エマルジョンを形成したときに、エマルジョンの安定性を向上させることができる。これは、界面活性剤(B)が側鎖にアルキル基を有するために脂肪族炭化水素またはシリコーンオイル(A)との親和性が高いこと、高分子のポリシロキサン骨格を有するためにエマルジョンを安定化させやすいこと、等に起因するものと発明者らは推測している。 It is known that a surfactant is added as a method for improving the stability of the emulsion, but a suitable surfactant varies depending on the type of oil constituting the emulsion. As a result of intensive studies by the present inventors, in the oily composition (O) mainly composed of the above-described aliphatic hydrocarbon or silicone oil (A), a polyether-modified polysiloxane having an alkyl group in the side chain is used as the interface. It has been found that it is preferred to use it as an activator. That is, when the oily composition (O) contains the surfactant (B), the stability of the emulsion can be improved when a water-in-oil emulsion is formed using the oily composition (O). it can. This is because the surfactant (B) has an alkyl group in the side chain, so it has a high affinity with aliphatic hydrocarbons or silicone oil (A), and it has a high-molecular polysiloxane skeleton to stabilize the emulsion. The inventors presume that it is caused by the fact that it is easy to make it.
 界面活性剤(B)は、炭素原子数4以上30以下、好ましくは炭素原子数6以上30以下のアルキル基を1個以上2000個以下、好ましくは1個以上100個以下で側鎖に有するポリエーテル変性ポリシロキサンであることが好ましい。また、6以上30以下のアルキル基を1個以上100個以下で側鎖に有することがさらに好ましい。また、界面活性剤(B)は、側鎖にポリエチレングリコール構造および/またはポリプロピレングリコール構造を有することが好ましい。また、界面活性剤(B)は、分岐構造を有する、ポリエーテル変性ポリシロキサンであってもよい。 The surfactant (B) is a polyalkylene having 4 to 30 carbon atoms, preferably 1 to 2000 alkyl groups, preferably 1 to 100 carbon atoms in the side chain. Ether-modified polysiloxane is preferred. Further, it is more preferable that 1 to 100 alkyl groups of 6 to 30 are present in the side chain. The surfactant (B) preferably has a polyethylene glycol structure and / or a polypropylene glycol structure in the side chain. Further, the surfactant (B) may be a polyether-modified polysiloxane having a branched structure.
 界面活性剤(B)は、下記式(1)~(4)で表される化合物からなる群から選択される少なくとも1つであることが好ましい。これらの化合物を用いることで、エマルジョンの安定性が特に優れ、90~100℃程度に加熱しても安定な油中水型エマルジョンを形成することができる。界面活性剤(B)は、下記式(1)、(2)、(4)で表される化合物からなる群から選択される少なくとも1つであることがより好ましい。 The surfactant (B) is preferably at least one selected from the group consisting of compounds represented by the following formulas (1) to (4). By using these compounds, the stability of the emulsion is particularly excellent, and a stable water-in-oil emulsion can be formed even when heated to about 90 to 100 ° C. The surfactant (B) is more preferably at least one selected from the group consisting of compounds represented by the following formulas (1), (2), and (4).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 上記式(1)中、R1~11、及びR13~17は炭素数1から6の直鎖または分岐のアルキル基、R12は炭素数4から30の直鎖または分岐のアルキル基、xは1から9の整数、yは1から9の整数、nは4から30の整数、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数、dは1以上2000以下の整数、eは1以上2000以下の整数である。さらに好ましくは、aは10以上500以下の整数、bは1以上500以下の整数、cは1以上500以下の整数、dは1以上500以下の整数、eは1以上500以下の整数である。 In the above formula (1), R1 to 11 and R13 to 17 are linear or branched alkyl groups having 1 to 6 carbon atoms, R12 is a linear or branched alkyl group having 4 to 30 carbon atoms, x is 1 to 9 is an integer, y is an integer from 1 to 9, n is an integer from 4 to 30, a is an integer from 1 to 2000, b is an integer from 1 to 2000, c is an integer from 1 to 2000, d is 1 An integer of 2000 or more and e is an integer of 1 or more and 2000 or less. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, c is an integer of 1 to 500, d is an integer of 1 to 500, and e is an integer of 1 to 500. .
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 上記式(2)中、R1~5、及びR7~11は炭素数1から6の直鎖または分岐のアルキル基、R6は炭素数4から30の直鎖または分岐のアルキル基、R12は水素原子または炭素数1から6の直鎖または分岐のアルキル基、xは1から9の整数、nは1から30の整数、mは1から30の整数、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。さらに好ましくは、aは10以上500以下の整数、bは1以上500以下の整数、cは1以上500以下の整数である。 In the above formula (2), R1 to 5 and R7 to 11 are linear or branched alkyl groups having 1 to 6 carbon atoms, R6 is a linear or branched alkyl group having 4 to 30 carbon atoms, and R12 is a hydrogen atom. Or a linear or branched alkyl group having 1 to 6 carbon atoms, x is an integer of 1 to 9, n is an integer of 1 to 30, m is an integer of 1 to 30, a is an integer of 1 to 2000, b is An integer from 1 to 2000, and c is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 上記式(3)中、R1~5、及びR7~11は炭素数1から6の直鎖または分岐のアルキル基、R6は炭素数4から30の直鎖または分岐のアルキル基、R12は水素原子または炭素数1から6の直鎖または分岐のアルキル基、xは1から9の整数、nは4から30の整数、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。さらに好ましくは、aは10以上500以下の整数、bは1以上500以下の整数、cは1以上500以下の整数である。 In the above formula (3), R1 to 5 and R7 to 11 are linear or branched alkyl groups having 1 to 6 carbon atoms, R6 is a linear or branched alkyl group having 4 to 30 carbon atoms, and R12 is a hydrogen atom. Or a linear or branched alkyl group having 1 to 6 carbon atoms, x is an integer of 1 to 9, n is an integer of 4 to 30, a is an integer of 1 to 2000, b is an integer of 1 to 2000, c Is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 上記式(4)中、R1~9、及びR11~15は炭素数1から6の直鎖または分岐のアルキル基、R10は炭素数4から30の直鎖または分岐のアルキル基、R16は水素原子または炭素数1から6の直鎖または分岐のアルキル基、xは1から9の整数、yは1から9の整数、nは4から30の整数、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数、dは1以上2000以下の整数である。さらに好ましくは、aは10以上500以下の整数、bは1以上500以下の整数、cは1以上500以下の整数、dは1以上500以下の整数である。 In the above formula (4), R1-9 and R11-15 are linear or branched alkyl groups having 1 to 6 carbon atoms, R10 is a linear or branched alkyl group having 4 to 30 carbon atoms, and R16 is a hydrogen atom. Or a linear or branched alkyl group having 1 to 6 carbon atoms, x is an integer of 1 to 9, y is an integer of 1 to 9, n is an integer of 4 to 30, a is an integer of 1 to 2000, b is An integer from 1 to 2000, c is an integer from 1 to 2000, and d is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, c is an integer of 1 to 500, and d is an integer of 1 to 500.
 界面活性剤(B)は、具体的には、式(1)において、R1~11=R13~17=メチル基、R12=ラウリル基、R18=水素原子、x=3、y=2、n=9で表されるラウリルPEG-9ポリジメチルシロキシエチルジメチコン(INCI名)、式(2)において、R1~5=R7~11=メチル基、R6=セチル基、R12=水素原子、x=3、n=10、m=1で表されるセチルPEG/PPG-10/1ジメチコン(INCI名)、式(2)において、R1~5=R7~11=メチル基、R6=セチル基、R12=水素原子、x=3、n=7、m=3で表されるセチルPEG/PPG-7/3ジメチコン(INCI名)、式(2)において、R1~5=R7~11=メチル基、R6=セチル基、R12=n-ブチル基、x=3、n=15、m=15で表されるセチルPEG/PPG-15/15ブチルエーテルジメチコン(INCI名)、式(2)において、R1~5=R7~11=メチル基、R6=ラウリル基、R12=水素原子、x=3、n=18、m=18で表されるラウリルPEG/PPG-18/18メチコン(INCI名)、式(3)において、R1~5=R7~11=メチル基、R6=セチル基、R12=水素原子、x=3、n=8で表されるセチルPEG-8ジメチコン(INCI名)、式(3)において、R1~5=R7~11=メチル基、R6=ラウリル基、R12=水素原子、x=3、n=8で表されるラウリルPEG-8ジメチコン(INCI名)、式(3)において、R1~5=R7~11=R12=メチル基、R6=ラウリル基、x=3、n=10で表されるラウリルPEG-10メチルエーテルジメチコン(INCI名)、式(4)において、R1~9=R11~15=メチル基、R10=ラウリル基、R16=水素原子、x=3、y=2、n=10で表されるラウリルPEG-10トリス(トリメチルシロキシ)シリルエチルジメチコン(INCI名)等を挙げることができる。 Specifically, the surfactant (B) is represented by the following formula (1): R1-11 = R13-17 = methyl group, R12 = lauryl group, R18 = hydrogen atom, x = 3, y = 2, n = In formula (2), R1-5 = R7-11 = methyl group, R6 = cetyl group, R12 = hydrogen atom, x = 3, laurylPEG-9 polydimethylsiloxyethyl dimethicone (INCI name) represented by 9 Cetyl PEG / PPG-10 / 1 dimethicone (INCI name) represented by n = 10, m = 1, in formula (2), R1-5 = R7-11 = methyl group, R6 = cetyl group, R12 = hydrogen Acetyl PEG / PPG-7 / 3 dimethicone (INCI name) represented by atom, x = 3, n = 7, m = 3, in formula (2), R1-5 = R7-11 = methyl group, R6 = Cetyl group, R12 = n-butyl group, x = 3 Cetyl PEG / PPG-15 / 15 butyl ether dimethicone represented by n = 15 and m = 15 (INCI name), in formula (2), R1-5 = R7-11 = methyl group, R6 = lauryl group, R12 = Lauryl PEG / PPG-18 / 18 methicone (INCI name) represented by hydrogen atom, x = 3, n = 18, m = 18, in formula (3), R1-5 = R7-11 = methyl group, R6 = Cetyl group, R12 = hydrogen atom, x = 3, cetyl PEG-8 dimethicone represented by n = 8 (INCI name), in formula (3), R1-5 = R7-11 = methyl group, R6 = lauryl Group, R12 = hydrogen atom, x = 3, lauryl PEG-8 dimethicone represented by n = 8 (INCI name), in formula (3), R1-5 = R7-11 = R12 = methyl group, R6 = lauryl Group, x = , Lauryl PEG-10 methyl ether dimethicone represented by n = 10 (INCI name), in formula (4), R1-9 = R11-15 = methyl group, R10 = lauryl group, R16 = hydrogen atom, x = 3 Lauryl PEG-10 tris (trimethylsiloxy) silylethyl dimethicone (INCI name) represented by y = 2 and n = 10.
 ラウリルPEG-9ポリジメチルシロキシエチルジメチコン(INCI名)は、式(5)で表され、その市販品としては、KF-6038(信越化学工業製)を使用することができる。 Lauryl PEG-9 polydimethylsiloxyethyl dimethicone (INCI name) is represented by Formula (5), and KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.) can be used as a commercially available product.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記式(5)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数、dは1以上2000以下の整数、eは1以上2000以下の整数である。さらに好ましくは、aは10以上500以下の整数、bは1以上500以下の整数、cは1以上500以下の整数、dは1以上500以下の整数、eは1以上500以下の整数である。 In the above formula (5), a is an integer from 1 to 2000, b is an integer from 1 to 2000, c is an integer from 1 to 2000, d is an integer from 1 to 2000, and e is from 1 to 2000. It is an integer. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, c is an integer of 1 to 500, d is an integer of 1 to 500, and e is an integer of 1 to 500. .
 セチルPEG/PPG-10/1ジメチコン(INCI名)は、式(6)で表され、その市販品としては、KF-6048(信越化学工業製)、ABIL EM90、ABIL EM180(以上、Evonik製、「ABIL」はEvonikの登録商標)等を使用することができる。 Cetyl PEG / PPG-10 / 1 dimethicone (INCI name) is represented by formula (6), and commercially available products thereof include KF-6048 (manufactured by Shin-Etsu Chemical Co., Ltd.), ABIL EM90, ABIL EM180 (manufactured by Evonik, “ABIL” is a registered trademark of Evonik) and the like.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 式(6)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。さらに好ましくは、aは10以上500以下の整数、bは1以上500以下の整数、cは1以上500以下の整数である。 In the formula (6), a is an integer of 1 to 2000, b is an integer of 1 to 2000, and c is an integer of 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
 セチルPEG/PPG-7/3ジメチコン(INCI名)は、式(7)で表され、その市販品としては、SeraSol SC 82(KCC Beauty製)を使用することができる。 Cetyl PEG / PPG-7 / 3 dimethicone (INCI name) is represented by formula (7), and SeraSol SC 82 (manufactured by KCC Beauty) can be used as a commercially available product.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 式(7)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。さらに好ましくは、aは10以上500以下の整数、bは1以上500以下の整数、cは1以上500以下の整数である。 In formula (7), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
 セチルPEG-8ジメチコン(INCI名)は、式(8)で表され、その市販品としては、Silube FF 108-16(Siltech製)を使用することができる。 Cetyl PEG-8 dimethicone (INCI name) is represented by formula (8), and Silive FF 108-16 (manufactured by Siltech) can be used as a commercially available product.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式(8)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。さらに好ましくは、aは10以上500以下の整数、bは1以上500以下の整数、cは1以上500以下の整数である。 In formula (8), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
 ラウリルPEG-8ジメチコン(INCI名)は、式(9)で表され、その市販品としては、Silube J208-412(Siltech製)を使用することができる。 Lauryl PEG-8 dimethicone (INCI name) is represented by the formula (9), and as its commercial product, Silube J208-412 (manufactured by Siltech) can be used.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 式(9)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。さらに好ましくは、aは10以上500以下の整数、bは1以上500以下の整数、cは1以上500以下の整数である。 In formula (9), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
 ラウリルPEG-10メチルエーテルジメチコン(INCI名)は、式(10)で表され、その市販品としては、Silok 2205(Silok Chemical製)を使用することができる。 Lauryl PEG-10 methyl ether dimethicone (INCI name) is represented by Formula (10), and Silok 2205 (manufactured by Silok Chemical) can be used as a commercially available product.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 式(10)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。さらに好ましくは、aは10以上500以下の整数、bは1以上500以下の整数、cは1以上500以下の整数である。 In formula (10), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
 ラウリルPEG-10トリス(トリメチルシロキシ)シリルエチルジメチコン(INCI名)は、式(11)で表され、その市販品としては、ES-5300 FORMULATION AID(東レ・ダウコーニング製)を使用することができる。 Lauryl PEG-10 tris (trimethylsiloxy) silylethyl dimethicone (INCI name) is represented by the formula (11), and ES-5300 FORMULATION AID (manufactured by Dow Corning Toray) can be used as a commercially available product. .
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 式(11)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数、dは1以上2000以下の整数である。さらに好ましくは、aは10以上500以下の整数、bは1以上500以下の整数、cは1以上500以下の整数、dは1以上500以下の整数である。 In formula (11), a is an integer from 1 to 2000, b is an integer from 1 to 2000, c is an integer from 1 to 2000, and d is an integer from 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, c is an integer of 1 to 500, and d is an integer of 1 to 500.
 セチルPEG/PPG-15/15ブチルエーテルジメチコン(INCI名)は、式(12)で表され、その市販品としては、Belsil DMC 3071 VP(Wacker製、「Belsil」はWackerの登録商標)を使用することができる。 Cetyl PEG / PPG-15 / 15 butyl ether dimethicone (INCI name) is represented by formula (12), and as its commercial product, Belsil DMC 3071 VP (manufactured by Wacker, “Belsil” is a registered trademark of Wacker) is used. be able to.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 式(12)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。さらに好ましくは、aは10以上500以下の整数、bは1以上500以下の整数、cは1以上500以下の整数である。 In the formula (12), a is an integer of 1 to 2000, b is an integer of 1 to 2000, and c is an integer of 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
 ラウリルPEG/PPG-18/18メチコン(INCI名)は、式(13)で表され、その市販品としては、DOW CORNING 5200 FORMULATION AID(東レ・ダウコーニング製)を使用することができる。 Lauryl PEG / PPG-18 / 18 methicone (INCI name) is represented by formula (13), and as a commercially available product, DOW CORNING 5200 FORMULATION AID (manufactured by Toray Dow Corning) can be used.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式(13)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。さらに好ましくは、aは10以上500以下の整数、bは1以上500以下の整数、cは1以上500以下の整数である。 In the formula (13), a is an integer of 1 to 2000, b is an integer of 1 to 2000, and c is an integer of 1 to 2000. More preferably, a is an integer of 10 to 500, b is an integer of 1 to 500, and c is an integer of 1 to 500.
 界面活性剤(B)の含有量は、油性組成物(O)の全体を100質量%としたときに、0.01質量%以上10質量%以下であることが好ましく、0.1質量%以上8質量%以下であることがより好ましい。また、0.1質量%以上4質量%以下であることがさらに好ましく、1質量%以上4質量%以下であることが特に好ましい。 The content of the surfactant (B) is preferably 0.01% by mass or more and 10% by mass or less, and 0.1% by mass or more, based on 100% by mass of the entire oil-based composition (O). It is more preferable that it is 8 mass% or less. Moreover, it is more preferable that it is 0.1 to 4 mass%, and it is especially preferable that it is 1 to 4 mass%.
 [水性組成物(W)]
 本実施形態に係る油性組成物(O)は、水を含み、油性組成物(O)と相溶しない水性組成物(W)と組み合わせることで、安定な油中水型エマルジョンを形成することができる。油中水型エマルジョンでは、連続相である油性組成物(O)中に、分散相である水性組成物(W)の液滴が分散している。本実施形態に係る油性組成物(O)を用いて形成される油中水型エマルジョンは高い安定性を有するため、油中水型エマルジョン中の複数の液滴のそれぞれを反応場として利用する、液滴ベースの反応や分析に好適に用いることができる。例えば、油中水型エマルジョン中の複数の液滴のそれぞれを反応場としてPCRを生じさせて分析を行う、dPCRに好適に用いることができる。
[Aqueous composition (W)]
The oil-based composition (O) according to the present embodiment contains water and can be combined with an aqueous composition (W) that is incompatible with the oil-based composition (O) to form a stable water-in-oil emulsion. it can. In the water-in-oil emulsion, droplets of the aqueous composition (W) as the dispersed phase are dispersed in the oily composition (O) as the continuous phase. Since the water-in-oil emulsion formed using the oil-based composition (O) according to the present embodiment has high stability, each of a plurality of droplets in the water-in-oil emulsion is used as a reaction field. It can be suitably used for droplet-based reactions and analyses. For example, it can be suitably used for dPCR in which analysis is performed by generating PCR using each of a plurality of droplets in a water-in-oil emulsion as a reaction field.
 以下、本実施形態に係る油性組成物(O)と組み合わせて用いることのできる、水性組成物(W)の各成分について、詳細に説明する。 Hereinafter, each component of the aqueous composition (W) that can be used in combination with the oil-based composition (O) according to the present embodiment will be described in detail.
 <水>
 水性組成物(W)は、水を含有する。水性組成物(W)の水の含有量は特に限定はされないが、水性組成物(W)全体を100質量%としたときに、60質量%以上99.9質量%以下であることが好ましく、80質量%以上99.5質量%以下であることがより好ましい。
<Water>
The aqueous composition (W) contains water. The water content of the aqueous composition (W) is not particularly limited, but when the entire aqueous composition (W) is 100% by mass, it is preferably 60% by mass or more and 99.9% by mass or less, More preferably, it is 80 mass% or more and 99.5 mass% or less.
 <その他成分>
 水性組成物(W)が含有する水以外の成分については特に限定はされず、油中水型エマルジョンの用途に応じて選択することができる。例えば、油中水型エマルジョンを液滴ベースの反応に用いる場合には、水性組成物(W)は反応物を含有してもよい。また、油中水型エマルジョンを液滴ベースの分析に用いる場合には、水性組成物(W)は分析対象物を含有してもよい。さらに、PCR等の目的の反応を補助する為の添加物を含有してもよい。添加物とはPCRであれば目的の増幅反応に関与する鋳型DNA、プライマー、DNA合成酵素、および、PCRのDNA増幅検出用の蛍光色素プローブ等のPCR試薬以外の物質のことである。添加物はエマルジョン内でのPCR試薬の分散性向上や非特異的な吸着による阻害反応の抑制のために用いられる。具体的に高分子化合物や血清タンパク質等をあげることができ、ウシ血清由来アルブミンが特に望ましい。以下、油中水型エマルジョンを液滴ベースの分析に用いる場合の水性組成物(W)が含有する成分について説明する。
<Other ingredients>
Components other than water contained in the aqueous composition (W) are not particularly limited, and can be selected according to the use of the water-in-oil emulsion. For example, when a water-in-oil emulsion is used for a droplet-based reaction, the aqueous composition (W) may contain a reactant. Further, when a water-in-oil emulsion is used for droplet-based analysis, the aqueous composition (W) may contain an analyte. Furthermore, you may contain the additive for assisting target reactions, such as PCR. Additives refer to substances other than PCR reagents such as template DNA, primers, DNA synthase, and fluorescent dye probes for PCR amplification detection involved in the target amplification reaction in the case of PCR. The additive is used to improve the dispersibility of the PCR reagent in the emulsion and to suppress the inhibition reaction due to nonspecific adsorption. Specific examples include polymer compounds and serum proteins, and bovine serum-derived albumin is particularly desirable. Hereinafter, components contained in the aqueous composition (W) when a water-in-oil emulsion is used for droplet-based analysis will be described.
 (分析対象物)
 水性組成物(W)は、少なくとも1つの分析対象物を含有する。本実施形態に係る分析対象物とは、例えばdPCRにおける分析対象核酸など、サンプル中に含まれ、定量分析などの分析の対象になる化合物や粒子をいう。本実施形態に係る分析対象物は、液滴中での反応によって検出可能にすることができるものであれば、特に限定はされない。分析対象物としては、例えば、核酸、ペプチド、タンパク質、酵素などが挙げられる。
(Analytical object)
The aqueous composition (W) contains at least one analyte. The analyte according to the present embodiment refers to a compound or particle that is included in a sample, such as a nucleic acid to be analyzed in dPCR, and is an object of analysis such as quantitative analysis. The analysis object according to the present embodiment is not particularly limited as long as it can be detected by a reaction in a droplet. Examples of the analysis target include nucleic acids, peptides, proteins, enzymes, and the like.
 核酸は、詳しくは後述するが、核酸を増幅させるための増幅試薬と、核酸の増幅に応じて蛍光を発する蛍光試薬とを、核酸を検出可能にするための薬剤として用い、PCRなどの核酸増幅法を用いて検出可能にすることができる。また、ペプチドやタンパク質は、ELISA(Enzyme-Linked ImmunoSorbent Assay)法などによって検出可能にすることができる。なお、分析対象物は上記の核酸、ペプチド、タンパク質などを含む物質であってもよい。例えば、核酸、ペプチド、およびタンパク質の少なくともいずれかが共有結合等で結合または付着した分子、マイクロ粒子、ナノ粒子、細胞などが挙げられる。 As will be described in detail later, the nucleic acid is amplified by PCR, using an amplification reagent for amplifying the nucleic acid and a fluorescent reagent that emits fluorescence in response to the amplification of the nucleic acid as a drug for enabling detection of the nucleic acid. It can be made detectable using a method. Peptides and proteins can be made detectable by ELISA (Enzyme-Linked Immunosorbent Assay) method or the like. The analysis target may be a substance containing the above-described nucleic acid, peptide, protein, or the like. For example, a molecule, a microparticle, a nanoparticle, a cell, or the like to which at least one of a nucleic acid, a peptide, and a protein is bonded or attached by a covalent bond or the like can be given.
 例えば、ヒトから採取した血液や、そこから抽出された核酸などを検体とし、該検体に含まれ得る、がんや感染症などの疾病に関わる遺伝子を含む核酸を分析対象物とすれば、当該疾病の診断などに有用な情報が得られると期待できる。また、食品を検体とすれば、遺伝子組換え作物(GMO)の評価などの食品検査を行うことができる。あるいは、環境中の土壌や水を検体とすれば、環境モニタリングを行うことができる。 For example, if blood collected from a human or nucleic acid extracted therefrom is used as a sample, and if a nucleic acid containing a gene related to a disease such as cancer or infectious disease that can be contained in the sample is used as an analysis target, It can be expected that useful information will be obtained for the diagnosis of diseases. Moreover, if food is used as a sample, food inspection such as evaluation of genetically modified crops (GMO) can be performed. Alternatively, environmental monitoring can be performed by using soil and water in the environment as samples.
 本実施形態において核酸を分析対象物とする場合、核酸は、増幅の対象になる鋳型核酸であれば特に限定されず、DNA(DeoxyriboNucleic Acid)であってもよいし、RNA(RiboNucleic Acid)であってもよい。核酸の形態も特に限定されず、直鎖状の核酸であってもよく、また環状の核酸であってもよい。また、核酸は単一の塩基配列を有する1種類の核酸であってもよく、また、種々の塩基配列をそれぞれ有する複数種類の核酸(例えば相補的DNAライブラリーなど)であってもよい。 In the present embodiment, when a nucleic acid is an analysis target, the nucleic acid is not particularly limited as long as it is a template nucleic acid to be amplified, and may be DNA (Deoxyribonucleic Acid) or RNA (Ribo Nucleic Acid). May be. The form of the nucleic acid is not particularly limited, and may be a linear nucleic acid or a circular nucleic acid. The nucleic acid may be a single type of nucleic acid having a single base sequence, or may be a plurality of types of nucleic acids (eg, complementary DNA libraries) each having various base sequences.
 分析対象物の含有量は特に限定はされないが、油中水型エマルジョンを形成したときに、油中水型エマルジョン中の複数の液滴のそれぞれに含まれる分析対象物の数が1個または0個となるような量であることが好ましい。このようにすることで、液滴ベースのデジタル分析の定量の精度を向上させることができる。 The content of the analyte is not particularly limited, but when the water-in-oil emulsion is formed, the number of analytes contained in each of the plurality of droplets in the water-in-oil emulsion is 1 or 0. Preferably, the amount is such that By doing so, it is possible to improve the accuracy of quantification of the droplet-based digital analysis.
 (分析対象物を検出可能にするための薬剤)
 分析対象物が核酸である場合は、PCR法に代表されるような、酵素を用いた核酸増幅反応を用いて核酸を増幅することで、検出可能にすることができる。ここで、核酸増幅反応としては、反応場をサーマルサイクルに供することで反応を進行させるPCR法やLCR(Ligase Chain Reaction)法や、反応場をサーマルサイクルに供さずに温度調整することで反応を進行させるSDA(Strand Displacement Amplification)法、ICAN(Isothermal andChimeric primer-initiated Amplificationof Nucleic acids)法、LAMP(Loop-Mediated Isothermal Amplification)法などを好ましく使用することができる。
(Drugs that enable detection of analytes)
When the analyte is a nucleic acid, it can be detected by amplifying the nucleic acid using a nucleic acid amplification reaction using an enzyme such as a PCR method. Here, as the nucleic acid amplification reaction, the reaction is carried out by subjecting the reaction field to a thermal cycle, the PCR method or the LCR (Ligase Chain Reaction) method, or adjusting the temperature without subjecting the reaction field to the thermal cycle. The SDA (Strand Displacement Amplification) method, the ICAN (Isomalized and Chimeric Primer-Initiated Nucleic Acids) method, and the LAMP (Loop-Medium Amplified Ids method).
 核酸増幅反応を用いる場合は、核酸を増幅させるための増幅試薬と、核酸の増幅に伴って蛍光を発する蛍光発生試薬とを、核酸を検出可能にするための薬剤として用いる。 When a nucleic acid amplification reaction is used, an amplification reagent for amplifying the nucleic acid and a fluorescence generating reagent that emits fluorescence with the amplification of the nucleic acid are used as agents for enabling detection of the nucleic acid.
 増幅試薬は、標的核酸の有する所定の塩基配列に相補的な塩基配列を有する一対のプライマー(フォワードプライマーおよびリバースプライマー)および核酸合成反応を促進する生体触媒であるポリメラーゼを含有する。また、増幅試薬は、核酸の原料としてのdNTP(DeoxyriboNucleotide-5’-TriPhosphate)などのリボ核酸を含有する。さらに、増幅試薬は、反応液中の水素イオン濃度(pH)をコントロールするための緩衝液または緩衝剤や、塩を含むことが好ましい。なお、増幅試薬は、上記各成分を含む市販のキットを用いてもよい。 The amplification reagent contains a pair of primers (forward primer and reverse primer) having a base sequence complementary to a predetermined base sequence of the target nucleic acid and a polymerase that is a biocatalyst for promoting a nucleic acid synthesis reaction. The amplification reagent contains ribonucleic acid such as dNTP (Deoxyribonucleotide-5'-Triphosphate) as a nucleic acid raw material. Furthermore, the amplification reagent preferably contains a buffer solution or buffer agent for controlling the hydrogen ion concentration (pH) in the reaction solution, and a salt. The amplification reagent may be a commercially available kit containing the above components.
 プライマーとしては、分析対象核酸の一部の領域の塩基配列とストリンジェントな条件でハイブリダイズし、核酸増幅反応に用いることができるオリゴヌクレオチドであれば特に限定されない。ここで、ストリンジェントな条件とは、プライマーと鋳型核酸との間に少なくとも90%以上、好ましくは95%以上の配列同一性があるときに、該プライマーが鋳型核酸に特異的にハイブリダイズできる条件である。プライマーは、分析対象核酸の塩基配列に基づいて適宜設計できる。また、プライマーは、核酸増幅法の種類に応じて設計されることが望ましい。プライマーの長さは、通常、5~50ヌクレオチド、好ましくは、10~40ヌクレオチドである。なお、プライマーは、分子生物学領域において一般に用いられる核酸合成方法により生成することができる。 The primer is not particularly limited as long as it is an oligonucleotide that can hybridize with a base sequence of a partial region of the nucleic acid to be analyzed under stringent conditions and can be used for a nucleic acid amplification reaction. Here, the stringent condition is a condition under which the primer can specifically hybridize to the template nucleic acid when the primer and the template nucleic acid have a sequence identity of at least 90% or more, preferably 95% or more. It is. Primers can be appropriately designed based on the base sequence of the nucleic acid to be analyzed. In addition, the primer is preferably designed according to the type of nucleic acid amplification method. The length of the primer is usually 5 to 50 nucleotides, preferably 10 to 40 nucleotides. The primer can be generated by a nucleic acid synthesis method generally used in the molecular biology region.
 緩衝液または緩衝剤としては、任意の適切な緩衝液または緩衝剤を用いることができる。緩衝液または緩衝剤は、反応液の水素イオン濃度(pH)を、所望の反応が効率的に起こり得るpH、または、その近傍に維持するよう構成することが好ましい。反応工程においてPCRを実施する場合、反応液のpHは、例えば6.5~9.0の間で、使用する薬剤の各成分にあわせて任意に選択することができる。緩衝液または緩衝剤の種類は、分子生物学領域で一般に使用されるものを使用することができ、例えば、Tris(トリス(ヒドロキシメチル)アミノメタン)バッファー、HEPES(4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルフォン酸)バッファー、MES(2-モルホリノエタンスルホン酸)バッファーなどを使用することができる。 Any appropriate buffer or buffer can be used as the buffer or buffer. The buffer solution or buffering agent is preferably configured to maintain the hydrogen ion concentration (pH) of the reaction solution at or near the pH at which a desired reaction can occur efficiently. When PCR is carried out in the reaction step, the pH of the reaction solution is, for example, between 6.5 and 9.0, and can be arbitrarily selected according to each component of the drug to be used. As the type of buffer or buffering agent, those commonly used in the molecular biology field can be used, for example, Tris (Tris (hydroxymethyl) aminomethane) buffer, HEPES (4- (2-hydroxyethyl) -1-piperazine ethanesulfonic acid) buffer, MES (2-morpholinoethanesulfonic acid) buffer, and the like can be used.
 塩としては、例えば、CaCl、KCl、MgCl、MgSO、NaCl、およびこれらの組み合わせから適宜選択されたものを用いることができる。 Salts, for example, CaCl 2, KCl, MgCl 2 , MgSO 4, NaCl, and can be used those selected as appropriate combinations thereof.
 蛍光試薬は、一般的にPCR法等に用いられる、蛍光インターカレーター(蛍光色素)またはプローブアッセイ用のプローブ(蛍光標識プローブ)を含有する。蛍光インターカレーターとしては、エチジウムブロマイド、SYBR Green I(「SYBR」はモレキュラープローブスの登録商標)、LC Greenなどを好適に用いることができる。蛍光標識プローブとしては、標的核酸に特異的にハイブリダイズするオリゴヌクレオチド(プローブ)であって、一方の末端(5´末端)がレポーターで修飾され、もう一方の末端(3´末端)がクエンチャーで修飾されたものを用いることができる。レポーターとしてはFITC(Fluorescein-5-IsoThioCyanate)やVICなどの蛍光物質を、クエンチャーとしてはTAMARAなどの蛍光物質や、Eclipse、DABCYL、MGBなどを用いることができる。蛍光標識プローブとしては、TaqMan(「TaqMan」はロシュダイアグノスティックスの登録商標)プローブなどを用いることができる。なお、ここでは蛍光試薬を用いる場合について説明したが、蛍光以外の発光を利用する発光試薬を使用してもよい。 The fluorescent reagent contains a fluorescent intercalator (fluorescent dye) or a probe for probe assay (fluorescently labeled probe) that is generally used for the PCR method or the like. As the fluorescent intercalator, ethidium bromide, SYBR Green I (“SYBR” is a registered trademark of Molecular Probes), LC Green, and the like can be suitably used. The fluorescently labeled probe is an oligonucleotide (probe) that specifically hybridizes to a target nucleic acid, one end (5 ′ end) is modified with a reporter, and the other end (3 ′ end) is a quencher. Those modified with can be used. As a reporter, a fluorescent substance such as FITC (Fluorescein-5-IsoThioCyanate) or VIC can be used, and as a quencher, a fluorescent substance such as TAMARA, Eclipse, DABCYL, MGB, or the like can be used. As a fluorescently labeled probe, a TaqMan (“TaqMan” is a registered trademark of Roche Diagnostics) probe or the like can be used. In addition, although the case where a fluorescent reagent was used was demonstrated here, you may use the luminescent reagent using light emission other than fluorescence.
 一方、分析対象物がペプチドやタンパク質である場合は、ELISA法のような、分析対象物を特異的に反応する抗体(または抗原)と酵素を用いた抗原抗体反応および酵素反応により、検出可能にすることができる。より具体的には、例えば、分析対象物に酵素で標識された抗体(または抗原)を抗原抗体反応によって複合化させ、この酵素の酵素反応によって生じる発色または発光物質を検出する。なお、分析対象物と抗原抗体反応を生じさせる抗体(または抗原)は予め酵素標識されていなくてもよく、抗原抗体反応後に酵素によって標識されてもよい。 On the other hand, when the analyte is a peptide or protein, it can be detected by an antigen-antibody reaction and enzyme reaction using an enzyme (or antigen) that specifically reacts with the analyte and an enzyme, such as ELISA. can do. More specifically, for example, an antibody (or antigen) labeled with an enzyme is complexed with an analyte by an antigen-antibody reaction, and a color developing or luminescent substance generated by the enzyme reaction of the enzyme is detected. The antibody (or antigen) that causes an antigen-antibody reaction with the analyte may not be previously labeled with an enzyme, and may be labeled with an enzyme after the antigen-antibody reaction.
 ELISA法を用いる場合は、抗体(または抗原)と酵素を含む試薬を、分析対象物を検出可能にするための薬剤として用いる。ELISA法に用いる試薬として市販されている市販のキットを用いてもよい。 When using the ELISA method, a reagent containing an antibody (or antigen) and an enzyme is used as a drug for enabling detection of an analyte. You may use the commercially available kit marketed as a reagent used for ELISA method.
 なお、発生させる蛍光の波長が異なるなど、それぞれの分析対象物を区別できるように検出可能にする複数種類の薬剤を用いれば、複数種類の分析対象物を同時に検出することもできる。 It should be noted that a plurality of types of analytes can be detected simultaneously by using a plurality of types of drugs that can be detected so that the respective analytes can be distinguished, for example, the wavelengths of fluorescence to be generated are different.
 [油中水型エマルジョン]
 上述のように、本実施形態に係る油性組成物(O)は、水性組成物(W)と組み合わせることで、油中水型エマルジョンを形成することができる。本実施形態に係る油性組成物(O)を用いて形成される油中水型エマルジョンは高い安定性を有するため、油中水型エマルジョン中の複数の液滴のそれぞれを反応場として利用する、液滴ベースの反応や分析に好適に用いることができる。
[Water-in-oil emulsion]
As described above, the oil-based composition (O) according to this embodiment can form a water-in-oil emulsion by combining with the aqueous composition (W). Since the water-in-oil emulsion formed using the oil-based composition (O) according to the present embodiment has high stability, each of a plurality of droplets in the water-in-oil emulsion is used as a reaction field. It can be suitably used for droplet-based reactions and analyses.
 油中水型エマルジョンにおける、水性組成物(W)に対する油性組成物(O)の体積比は特に限定はされないが、1以上300以下であることが好ましく、1以上150以下であることがより好ましい。 The volume ratio of the oil-based composition (O) to the aqueous composition (W) in the water-in-oil emulsion is not particularly limited, but is preferably 1 or more and 300 or less, and more preferably 1 or more and 150 or less. .
 油中水型エマルジョン中の液滴のサイズは特に限定はされないが、直径で、1μm以上300μm以下であることが好ましく、10μm以上200μm以下であることがより好ましく、20μm以上150μm以下であることがさらに好ましい。液滴の直径を300μm以下とすることで、油中水型エマルジョンを分析に用いる際の検体量やサンプル量が少ない場合であっても、十分な数の液滴に分割することができ、分析の精度を向上させることができる。また、液滴の直径を300μm以下とすることで、エマルジョンの安定性を向上させることができる。 The size of the droplets in the water-in-oil emulsion is not particularly limited, but the diameter is preferably 1 μm or more and 300 μm or less, more preferably 10 μm or more and 200 μm or less, and 20 μm or more and 150 μm or less. Further preferred. By setting the diameter of the droplets to 300 μm or less, even when the amount of specimen or sample is small when using a water-in-oil emulsion for analysis, it can be divided into a sufficient number of droplets and analyzed. Accuracy can be improved. Moreover, the stability of an emulsion can be improved by making the diameter of a droplet into 300 micrometers or less.
 油中水型エマルジョンの形成方法は特に限定はされず、従来公知の乳化方法を利用できる。例えば、撹拌装置や超音波破砕装置などにより機械的エネルギーを付与することでエマルジョンを形成する機械的乳化法が挙げられる。また、マイクロチャネル乳化法やマイクロ流路分岐乳化法などのマイクロ流路デバイスを用いた方法、乳化膜を用いる膜乳化法などが挙げられる。これらの方法は、単独で用いてもよいし、複数を組み合わせて用いてもよい。これらの中でも機械的乳化法や膜乳化法は、マイクロ流路デバイスを用いた方法に比べて液滴のサイズのばらつき(分散)が大きくなる傾向にあるものの、スループット良くエマルジョンを形成できるため好ましい。また、エマルジョンを形成する装置の装置構成を単純にできること、液滴のサイズのばらつきが比較的低いエマルジョンを形成できることなどから、膜乳化法が特に好ましい。 The method for forming the water-in-oil emulsion is not particularly limited, and a conventionally known emulsification method can be used. For example, the mechanical emulsification method which forms an emulsion by providing mechanical energy with a stirring apparatus, an ultrasonic crushing apparatus, etc. is mentioned. Moreover, a method using a microchannel device such as a microchannel emulsification method and a microchannel branching emulsification method, a membrane emulsification method using an emulsification film, and the like can be given. These methods may be used alone or in combination. Among these, the mechanical emulsification method and the membrane emulsification method are preferable because the dispersion (dispersion) of the droplet size tends to be larger than the method using the microchannel device, but an emulsion can be formed with high throughput. Further, the membrane emulsification method is particularly preferable because the apparatus configuration of the apparatus for forming the emulsion can be simplified and an emulsion having a relatively small variation in droplet size can be formed.
 膜乳化法は、分散相または連続相、あるいは分散相および連続相の混合物を複数の細孔やスリットを有する乳化膜に透過させることでエマルジョンを形成する方法である。膜乳化法において分散相または連続相、あるいは分散相および連続相の混合物を乳化膜に透過させる回数は特に限定はされず、1回であってもよいし、複数回であってもよい。 The membrane emulsification method is a method of forming an emulsion by allowing a dispersed phase or a continuous phase, or a mixture of a dispersed phase and a continuous phase, to pass through an emulsion membrane having a plurality of pores and slits. In the membrane emulsification method, the number of times the dispersed phase or continuous phase, or the mixture of the dispersed phase and continuous phase is allowed to permeate through the emulsion membrane is not particularly limited, and may be one or more.
 膜乳化法としては、直接膜乳化法やポンピング乳化法などを用いることができる。直接膜乳化法とは、乳化膜を介して分散相を一定圧力で押し出すことにより、押し出される側をゆっくり流れている連続相中に、エマルジョンを形成する方法である。ポンピング乳化法とは、連続相を採取したシリンジと分散相を採取したシリンジとで乳化膜を挟み、2つのシリンジから液体を交互に押し出して乳化膜を通過させることによって、エマルジョンを調製する方法である。なおポンピング乳化法においては、2つのシリンジの一方に連続相と分散相の混合物を採取しておき、もう一方のシリンジは空にしておいてもよい。ポンピング乳化法においては、それぞれシリンジと接続可能な一対のコネクターの間に乳化膜を挟み込んだポンピング式の乳化デバイスを用いることができる。 As the membrane emulsification method, a direct membrane emulsification method or a pumping emulsification method can be used. The direct membrane emulsification method is a method of forming an emulsion in a continuous phase that is slowly flowing on the side to be extruded by extruding a dispersed phase at a constant pressure through the emulsion membrane. The pumping emulsification method is a method of preparing an emulsion by sandwiching an emulsion film between a syringe that has collected a continuous phase and a syringe that has collected a dispersed phase, and by alternately extruding liquid from two syringes and passing through the emulsion film. is there. In the pumping emulsification method, a mixture of a continuous phase and a dispersed phase may be collected in one of two syringes, and the other syringe may be empty. In the pumping emulsification method, a pumping type emulsification device in which an emulsification film is sandwiched between a pair of connectors each connectable to a syringe can be used.
 膜乳化法で使用する乳化膜としては、複数の細孔を有する多孔質体の膜や、スリットを有する膜を用いることができる。具体的には、SPG(シラス多孔質ガラス)などの多孔質ガラス膜、ポリカーボネート製メンブレンフィルター、ポリテトラフルオロエチレン(PTFE)製メンブレンフィルター、などを用いることができる。また、乳化膜の表面は疎水化処理されていることがより好ましい。乳化膜の孔径は、形成しようとする油中水型エマルジョン中の液滴のサイズに応じて選択することができ、0.2μm以上100μm以下であることが好ましく、5μm以上50μm以下であることがより好ましい。 As the emulsion film used in the membrane emulsification method, a porous film having a plurality of pores or a film having a slit can be used. Specifically, a porous glass film such as SPG (shirasu porous glass), a polycarbonate membrane filter, a polytetrafluoroethylene (PTFE) membrane filter, and the like can be used. Further, the surface of the emulsified film is more preferably hydrophobized. The pore diameter of the emulsion film can be selected according to the size of the droplet in the water-in-oil emulsion to be formed, and is preferably 0.2 μm or more and 100 μm or less, and preferably 5 μm or more and 50 μm or less. More preferred.
 [油中水型エマルジョンを用いた分析方法]
 上述の通り、本実施形態に係る油中水型エマルジョンは、油中水型エマルジョン中の複数の液滴のそれぞれを反応場として利用する、液滴ベースの反応や分析に好適に用いることができる。以下、本実施形態に係る油性組成物を用いた分析対象物の分析方法について説明する。
[Analytical method using water-in-oil emulsion]
As described above, the water-in-oil emulsion according to the present embodiment can be suitably used for a droplet-based reaction or analysis in which each of a plurality of droplets in the water-in-oil emulsion is used as a reaction field. . Hereinafter, a method for analyzing an analysis object using the oil-based composition according to the present embodiment will be described.
 本実施形態に係る分析方法は、下記の工程を有する。
(a)水と、分析対象物と、分析対象物を検出可能にするための薬剤と、を含有する水性組成物と、油性組成物と、を少なくとも用いて、油中水型エマルジョンを形成するエマルジョン形成工程
(b)油中水型エマルジョン中の複数の液滴のそれぞれにおいて反応を進行させ、分析対象物を検出可能にする反応工程
(c)油中水型エマルジョン中の複数の液滴のそれぞれについて、分析対象物の検出と、液滴のサイズの計測と、を行う観察工程
(d)液滴のサイズと、分析対象物が検出された液滴の数と、に基づいて、水性組成物中に含まれていた分析対象物の濃度を取得する濃度取得工程
The analysis method according to this embodiment includes the following steps.
(A) A water-in-oil emulsion is formed using at least an aqueous composition containing water, an analysis object, and a drug for enabling detection of the analysis object, and an oily composition. Emulsion formation step (b) Reaction step in which reaction is allowed to proceed in each of the plurality of droplets in the water-in-oil emulsion and the analyte can be detected (c) The plurality of droplets in the water-in-oil emulsion For each, an observation step for detecting the analyte and measuring the size of the droplet (d) based on the size of the droplet and the number of droplets in which the analyte was detected. Concentration acquisition process for acquiring the concentration of the analyte contained in the object
 以下、各工程について、詳細に説明する。 Hereinafter, each process will be described in detail.
 <(a)エマルジョン形成工程>
 本工程は、水性組成物と、油性組成物と、から、油中水型エマルジョンを形成する工程である。水性組成物、油性組成物の組成や比率、油中水型エマルジョンの形成方法については上述の通りである。
<(A) Emulsion formation process>
This step is a step of forming a water-in-oil emulsion from the aqueous composition and the oily composition. The composition and ratio of the aqueous composition, the oily composition, and the method for forming the water-in-oil emulsion are as described above.
 <(b)反応工程>
 本工程は、油中水型エマルジョン中の複数の液滴のそれぞれにおいて反応を進行させ、分析対象物を検出可能にする工程である。
<(B) Reaction process>
This step is a step in which the reaction is allowed to proceed in each of the plurality of droplets in the water-in-oil emulsion so that the analyte can be detected.
 分析対象物が核酸である場合は、上述の通り、PCR法に代表されるような、酵素反応を用いた核酸増幅反応を用いて核酸を増幅することで、検出可能にすることができる。核酸増幅反応としては、上述の通り、PCR法やLCR法、SDA法、ICAN法、LAMP法などを好ましく使用することができる。本実施形態では、核酸分子1分子からの増幅を行うことを想定しているため、核酸増幅反応としてPCRを行う場合は、サーマルサイクル処理を20~70サイクル行うことが好ましく、30~50サイクル行うことがより好ましい。 When the analyte is a nucleic acid, as described above, it can be detected by amplifying the nucleic acid using a nucleic acid amplification reaction using an enzymatic reaction, as typified by the PCR method. As the nucleic acid amplification reaction, as described above, PCR method, LCR method, SDA method, ICAN method, LAMP method and the like can be preferably used. In this embodiment, it is assumed that amplification is performed from one molecule of nucleic acid molecule. Therefore, when PCR is performed as a nucleic acid amplification reaction, it is preferable to perform thermal cycle treatment for 20 to 70 cycles, preferably 30 to 50 cycles. It is more preferable.
 本工程では、油中水型エマルジョンを容器に入れ、温度調整装置を使用して容器中の油中水型エマルジョンの温度を調整することで、油中水型エマルジョンを温度制御やサーマルサイクルに供することが好ましい。容器の形状は特に限定はされず、マイクロチューブや、油中水型エマルジョン中の液滴を平面状に並べることが可能な、薄い平面状の空間を有する容器、マイクロ流路デバイス等を用いることができる。温度調整装置としては、従来公知のヒーター等を用いることができ、例えばペルチェヒーター等を用いることができる。 In this process, the water-in-oil emulsion is put in a container, and the temperature of the water-in-oil emulsion in the container is adjusted using a temperature control device, so that the water-in-oil emulsion is subjected to temperature control and thermal cycle. It is preferable. The shape of the container is not particularly limited, and a microtube, a container having a thin planar space capable of arranging droplets in a water-in-oil emulsion in a planar shape, a microchannel device, or the like is used. Can do. As the temperature adjusting device, a conventionally known heater or the like can be used. For example, a Peltier heater or the like can be used.
 本工程では、油中水型エマルジョン中の液滴を平面状に並べた状態で、油中水型エマルジョンの温度を調整することが好ましい。これにより、それぞれの液滴における反応を均一に進行させることができる。また、後述する観察工程におけるシグナルの検出や、液滴サイズの計測を容易にすることができる。本実施形態に係る油性組成物によって形成される油中水型エマルジョンは上述の通り流動性が高いため、液滴を平面状に並べる際のスループットを高くすることができる。また、エマルジョンの安定性も高いため、反応工程の前後でエマルジョンの状態(液滴のサイズ等)を保持することができ、分析の精度を向上させることができる。 In this step, it is preferable to adjust the temperature of the water-in-oil emulsion in a state where the droplets in the water-in-oil emulsion are arranged in a plane. Thereby, the reaction in each droplet can be made to proceed uniformly. In addition, it is possible to facilitate the detection of a signal and the measurement of the droplet size in an observation process described later. Since the water-in-oil emulsion formed by the oil-based composition according to the present embodiment has high fluidity as described above, it is possible to increase the throughput when the droplets are arranged in a plane. In addition, since the stability of the emulsion is high, the state of the emulsion (droplet size, etc.) can be maintained before and after the reaction step, and the accuracy of analysis can be improved.
 一方、分析対象物がペプチドやタンパク質である場合は、例えばELISA法のような、酵素反応と免疫反応とを組み合わせた分子生物学的手法で分析対象物の増幅を行い、検出可能にすることができる。 On the other hand, if the analyte is a peptide or protein, the analyte may be amplified by a molecular biological technique that combines an enzyme reaction and an immune reaction, such as an ELISA method, to enable detection. it can.
 <(c)観察工程>
 本工程は、油中水型エマルジョンを観察し、複数の液滴のそれぞれについて、分析対象物の検出と、液滴のサイズの計測と、を行う工程である。
<(C) Observation process>
This step is a step of observing the water-in-oil emulsion and detecting the analyte and measuring the droplet size for each of the plurality of droplets.
 油中水型エマルジョン中の複数の液滴のうち、(b)反応工程の前に分析対象物が含まれていた液滴からはシグナルが検出される。そのため、このシグナルを検出することで、液滴中の分析対象物を検出することができる。なお、(b)反応工程の前に分析対象物が含まれていなかった液滴からは、通常、シグナルが検出されないか、または分析対象物が含まれていた液滴と区別可能な程度に微弱なシグナルが検出される。 Among the plurality of droplets in the water-in-oil emulsion, (b) a signal is detected from the droplet in which the analyte is contained before the reaction step. Therefore, by detecting this signal, the analyte in the droplet can be detected. It should be noted that (b) from the droplets that did not contain the analyte before the reaction step, usually no signal is detected or it is weak enough to be distinguished from the droplets that contained the analyte. Signal is detected.
 分析対象物が核酸であり、(b)反応工程において増幅試薬と蛍光発生試薬を用いて核酸を検出可能にした場合は、蛍光励起手段と蛍光検出手段とを用いて蛍光検出を行うことで、シグナルの検出を行うことができる。例えば、一般的に利用されている蛍光励起手段と蛍光検出手段を備えたフローサイトメーター、またはこれと同様の機能を備えたマイクロ流体デバイスなどを使用して、蛍光検出することができる。また、上述のように油中水型エマルジョン中の複数の液滴を平面状に並べておけば、蛍光検出手段として撮像素子や該素子を備えた撮像装置を用いることで、複数の液滴について同時にシグナルの検出を行うことができる。この方法によれば多数の液滴についてスループット良くシグナルの検出を行うことができるので好ましい。撮像素子としてはCCD(電荷結合素子、Charge Coupled Device)やCMOS(相補型金属酸化膜半導体、Complementary Metal Oxide Semiconductor ImageSensor)等を用いることができる。蛍光励起および蛍光検出においては、使用する蛍光試薬の特性に応じて、光学フィルターを用いて励起光または検出光の波長を調整することができる。さらに、蛍光波長が異なる、複数の種類の蛍光試薬を用いることによって、複数の種類の分析対象物を同時に計測することも可能である。 When the analyte is a nucleic acid and (b) the nucleic acid can be detected using an amplification reagent and a fluorescence generating reagent in the reaction step, fluorescence detection is performed using a fluorescence excitation means and a fluorescence detection means, Signal detection can be performed. For example, it is possible to detect fluorescence using a flow cytometer having a fluorescence excitation means and a fluorescence detection means that are generally used, or a microfluidic device having the same function. In addition, if a plurality of liquid droplets in a water-in-oil emulsion are arranged in a plane as described above, an image pickup device or an image pickup apparatus equipped with the device is used as fluorescence detection means, so that a plurality of liquid drops can be simultaneously used. Signal detection can be performed. This method is preferable because signals can be detected with high throughput for a large number of droplets. A CCD (Charge Coupled Device, Charge Coupled Device), a CMOS (Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor ImageSensor), or the like can be used as the imaging device. In fluorescence excitation and fluorescence detection, the wavelength of excitation light or detection light can be adjusted using an optical filter according to the characteristics of the fluorescent reagent used. Furthermore, it is possible to simultaneously measure a plurality of types of analytes by using a plurality of types of fluorescent reagents having different fluorescence wavelengths.
 <(d)濃度取得工程>
 分析対象物の濃度の計算は、従来行われているデジタル分析における濃度計算方法を採用して実施することができる。例えば、反応工程の前に1つの液滴に複数個の分析対象物が含まれていなかったとみなせば、分析対象物が検出された液滴の数xを、観察工程において分析対象物の検出の対象とした体積Vsの水性組成物中に含まれていた分析対象物の数とみなすことができる。よって、下記式(9)により、水性組成物中の分析対象物の濃度λを計算することができる。なお、観察工程において分析対象物の検出の対象とした水性組成物の体積Vsは、観察工程において取得した液滴のサイズに基づいて算出することができる。
λ=x/Vs ・・・式(9)
<(D) Concentration acquisition process>
The calculation of the concentration of the analysis object can be performed by employing a concentration calculation method in digital analysis that is conventionally performed. For example, if it is assumed that a plurality of analytes are not contained in one droplet before the reaction step, the number x of the droplets in which the analyte is detected is used to detect the analyte in the observation step. It can be regarded as the number of analytes contained in the target volume Vs aqueous composition. Therefore, the concentration λ of the analyte in the aqueous composition can be calculated by the following formula (9). Note that the volume Vs of the aqueous composition that is the target of detection of the analysis object in the observation step can be calculated based on the droplet size acquired in the observation step.
λ = x / Vs (9)
 また、例えば、反応工程の前に、1つの液滴に複数個の分析対象物が入り得るとみなせる場合は、Poissonモデルによる補正を行うことで、分析対象物の濃度を計算することができる。この場合は、反応工程の前にそれぞれの液滴に含まれていた分析対象物の平均個数Cを推定することにより、分析対象物の濃度算出を行う。具体的には、液滴の個数をn、それぞれの液滴に含まれる分析対象物の平均個数をC、とすると、Poissonモデルの式から、下記式(10)が成り立つ。 Also, for example, when it can be considered that a plurality of analytes can enter one droplet before the reaction step, the concentration of the analyte can be calculated by performing correction using the Poisson model. In this case, the concentration of the analyte is calculated by estimating the average number C of analytes contained in each droplet before the reaction step. Specifically, if the number of droplets is n and the average number of analytes contained in each droplet is C, the following equation (10) is established from the Poisson model equation.
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
 分析対象物を1つも含まない液滴を得る確率は、式(10)においてn=0として、下記式(11)で表される。
P(n=0,C)=e-C ・・・式(11)
The probability of obtaining a droplet that does not contain any analysis object is expressed by the following equation (11), where n = 0 in equation (10).
P (n = 0, C) = e −C (11)
 反応工程の前に1つの液滴中に少なくとも1つの分析対象物が含まれていれば、その液滴からはシグナルを検出することができるが、反応工程の前にその液滴に含まれていた分析対象物の数の情報までは分からない。そこで、検出対象とした液滴の総数に対する分析対象物が検出されなかった液滴の割合(=シグナルが検出されなかった液滴の割合)に基づいて、式(11)を用いて、検出対象とした水性組成物中に含まれていた分析対象物の個数を推定する。具体的には、シグナルが検出された反応場の個数と、検出対象とした液滴の総数とから、シグナルが検出されなかった液滴の割合Fを算出する。そして、下記式(12)から、検出対象とした液滴に反応工程の前に含まれていた分析対象物の平均個数Cを推定する。
C=-1n(F) ・・・式(12)
If at least one analyte is contained in one droplet before the reaction step, a signal can be detected from the droplet, but it is contained in the droplet before the reaction step. I don't know the information on the number of analytes. Therefore, based on the ratio of droplets in which the analyte was not detected with respect to the total number of droplets to be detected (= the ratio of droplets in which no signal was detected), the detection target was calculated using Equation (11). The number of analytes contained in the aqueous composition was estimated. Specifically, the ratio F 0 of droplets in which no signal is detected is calculated from the number of reaction fields in which signals are detected and the total number of droplets to be detected. Then, from the following formula (12), the average number C of the analytes contained in the droplets to be detected before the reaction step is estimated.
C = −1n (F 0 ) (12)
 ここで、観察工程において分析対象物の検出の対象とした液滴の総体積をvとすると、下記式(13)により、水性組成物中の分析対象物の濃度λを計算することができる。なお、観察工程において分析対象物の検出の対象とした液滴の総体積vは、観察工程において取得した液滴のサイズに基づいて算出することができる。
λ=C/v ・・・式(13)
Here, when the total volume of the droplets to be detected in the observation process is v, the concentration λ of the analysis object in the aqueous composition can be calculated by the following equation (13). It should be noted that the total volume v of the droplets targeted for detection of the analysis object in the observation step can be calculated based on the droplet size acquired in the observation step.
λ = C / v (13)
 このようにして得られた、水性組成物中の分析対象物の濃度は、検体から水性組成物を調整する際の希釈倍率を用いることによって、検体中の分析対象物の濃度に換算することもできる。 The concentration of the analyte in the aqueous composition thus obtained can be converted to the concentration of the analyte in the sample by using the dilution factor when adjusting the aqueous composition from the sample. it can.
 以下、実施例により本発明をさらに詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。なお、以下に使用される「%」は、特に示さない限りすべて質量基準である。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the technical scope of the present invention is not limited to the following examples. Note that “%” used below is based on mass unless otherwise specified.
 (実施例1)
 界面活性剤であるKF-6038(信越化学工業製)をイソパラフィン系脂肪族炭化水素であるアイソパーL(エクソンモービル製)に溶解させ、実施例1の油性組成物を調製した。本実施例で用いた界面活性剤KF-6038(信越化学工業製)は側鎖にアルキル基を有するポリエーテル変性ポリシロキサンであり、上記式(1)に示される構造を有する。本実施例では、油性組成物全体を100質量%としたときに界面活性剤の濃度が1質量%となるように油性組成物を調製した。アイソパーLの25℃における動粘度は1.61mm/sである。また、アイソパーLは炭素原子数11~15のイソパラフィンを主成分とする(85質量%以上含有する)イソパラフィン系脂肪族炭化水素である。
Example 1
A surfactant, KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in isopar L (manufactured by ExxonMobil), an isoparaffinic aliphatic hydrocarbon, to prepare an oily composition of Example 1. Surfactant KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.) used in this example is a polyether-modified polysiloxane having an alkyl group in the side chain and has a structure represented by the above formula (1). In this example, the oily composition was prepared so that the concentration of the surfactant was 1% by mass when the entire oily composition was 100% by mass. The kinematic viscosity of Isopar L at 25 ° C. is 1.61 mm 2 / s. Isopar L is an isoparaffin-based aliphatic hydrocarbon mainly containing isoparaffin having 11 to 15 carbon atoms (containing 85% by mass or more).
 次に、調製した油相組成物3mLに対して、水性組成物であるリン酸緩衝生理食塩水(以下、「PBS」と称する。)100μLをゆっくりと滴下しながら、マグネチックスターラー(回転数1000rpm)で撹拌して、油中水型エマルジョンを調製した。 Next, a magnetic stirrer (rotation speed: 1000 rpm) was slowly added dropwise to 3 mL of the prepared oil phase composition, 100 μL of phosphate buffered saline (hereinafter referred to as “PBS”), which is an aqueous composition. ) To prepare a water-in-oil emulsion.
 得られた油中水型エマルジョンに下記のステップからなるサーマルサイクルを施し、サーマルサイクルに対するエマルジョンの安定性を評価した。 The obtained water-in-oil emulsion was subjected to a thermal cycle comprising the following steps, and the stability of the emulsion against the thermal cycle was evaluated.
 <サーマルサイクル条件>
(1)95℃で10分間
(2)95℃で30秒間の後60℃で60秒間のサイクルを40サイクル
(3)98℃で10分間
(4)4℃に下げる
<Thermal cycle conditions>
(1) 95 ° C for 10 minutes (2) 95 ° C for 30 seconds followed by 60 ° C for 60 seconds 40 cycles (3) 98 ° C for 10 minutes (4) Lower to 4 ° C
 また、得られた油中水型エマルジョンを室温で一晩放置して、経時安定性を評価した。これらの結果を表1に示す。なお、表1の安定性評価の欄において、○はエマルジョンに変化が見られなかったことを示し、×はエマルジョンの合一が生じたことを示す。 Further, the obtained water-in-oil emulsion was allowed to stand overnight at room temperature to evaluate the stability over time. These results are shown in Table 1. In the column of stability evaluation in Table 1, “◯” indicates that no change was observed in the emulsion, and “×” indicates that the coalescence of the emulsion occurred.
 (実施例2~9、比較例1~17)
 実施例1において界面活性剤の量や種類を表1に示すように変えて油性組成物および油中水型エマルジョンを調製し、調製した油中水型エマルジョンの安定性(サーマルサイクル安定性および継時安定性)を評価した。結果をまとめて表1に示す。
(Examples 2 to 9, Comparative Examples 1 to 17)
In Example 1, the amount and type of surfactants were changed as shown in Table 1 to prepare an oily composition and a water-in-oil emulsion, and the stability of the prepared water-in-oil emulsion (thermal cycle stability and transfer). Time stability) was evaluated. The results are summarized in Table 1.
 実施例4~6で用いた界面活性剤KF-6048(信越化学工業製)は側鎖にアルキル基を有するポリエーテル変性ポリシロキサンであり、上記式(2)に示される構造を有する。実施例7~9で用いた界面活性剤ABIL EM90(Evonik製)は側鎖にアルキル基を有するポリエーテル変性ポリシロキサンであり、上記式(2)に示される構造を有する。 The surfactant KF-6048 (manufactured by Shin-Etsu Chemical Co., Ltd.) used in Examples 4 to 6 is a polyether-modified polysiloxane having an alkyl group in the side chain and has a structure represented by the above formula (2). The surfactant ABIL EM90 (manufactured by Evonik) used in Examples 7 to 9 is a polyether-modified polysiloxane having an alkyl group in the side chain and has a structure represented by the above formula (2).
 比較例1~3で用いた界面活性剤KF-6028(信越化学工業製)は側鎖にアルキル基を有さないポリエーテル変性ポリシロキサンである。比較例5~6で用いた界面活性剤Span 80(Sigma-Aldrich製)はソルビタンモノオレエートであり、ポリオールエステル系非イオン界面活性剤である。比較例7~9で用いた界面活性剤DKS NL-15(第一工業製薬製)はポリオキシエチレンラウリルエーテルであり、エーテル系非イオン界面活性剤である。比較例10~12で用いた界面活性剤ソルゲン 30(第一工業製薬製)はソルビタンセスキオレートであり、ソルビタン脂肪酸エステル系非イオン界面活性剤である。比較例13~15で用いた界面活性剤エパン U-103(第一工業製薬製)はポリオキシエチレンポリオキシプロピレングリコールであり、エーテル系非イオン界面活性剤である。比較例16で用いた界面活性剤KF-6104(信越化学工業製)は側鎖にアルキル基を有さないポリグリセリン変性シリコーンである。比較例17で用いた界面活性剤KF-6105(信越化学工業製)は側鎖にラウリル基を有するポリグリセリン変性シリコーンである。 The surfactant KF-6028 (manufactured by Shin-Etsu Chemical Co., Ltd.) used in Comparative Examples 1 to 3 is a polyether-modified polysiloxane having no alkyl group in the side chain. Surfactant Span 80 (manufactured by Sigma-Aldrich) used in Comparative Examples 5 to 6 is sorbitan monooleate, which is a polyol ester-based nonionic surfactant. The surfactant DKS NL-15 (manufactured by Daiichi Kogyo Seiyaku) used in Comparative Examples 7 to 9 is polyoxyethylene lauryl ether, which is an ether-based nonionic surfactant. Surfactant Sorgen 30 (Daiichi Kogyo Seiyaku Co., Ltd.) used in Comparative Examples 10 to 12 is sorbitan sesquiolate, which is a sorbitan fatty acid ester nonionic surfactant. Surfactant Epan U-103 (Daiichi Kogyo Seiyaku Co., Ltd.) used in Comparative Examples 13 to 15 is polyoxyethylene polyoxypropylene glycol, which is an ether-based nonionic surfactant. Surfactant KF-6104 (manufactured by Shin-Etsu Chemical Co., Ltd.) used in Comparative Example 16 is a polyglycerin-modified silicone having no alkyl group in the side chain. Surfactant KF-6105 (manufactured by Shin-Etsu Chemical Co., Ltd.) used in Comparative Example 17 is a polyglycerin-modified silicone having a lauryl group in the side chain.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 表1に示すように、界面活性剤として側鎖にアルキル基を有するポリエーテル変性ポリシロキサンを用いた油性組成物を用いて形成した油中水型エマルジョンは高い安定性を有していた(実施例1~9)。一方、界面活性剤として側鎖にアルキル基を有さないポリエーテル変性ポリシロキサンを用いた場合(比較例1~3)や界面活性剤を用いなかった場合(比較例4)、他の非イオン界面活性剤を用いた場合(比較例5~15)はエマルジョンの安定性が低かった。また、側鎖にアルキル基を有さないポリグリセリン変性ポリシロキサンを用いた場合(比較例16)、側鎖にラウリル基を有するポリグリセリン変性シリコーンを用いた場合(比較例17)はエマルジョンの安定性が低かった。 As shown in Table 1, the water-in-oil emulsion formed using an oil-based composition using a polyether-modified polysiloxane having an alkyl group in the side chain as a surfactant had high stability (implementation) Examples 1 to 9). On the other hand, when a polyether-modified polysiloxane having no alkyl group in the side chain is used as a surfactant (Comparative Examples 1 to 3) or when a surfactant is not used (Comparative Example 4), other nonionics When a surfactant was used (Comparative Examples 5 to 15), the stability of the emulsion was low. In addition, when a polyglycerin-modified polysiloxane having no alkyl group in the side chain is used (Comparative Example 16), a polyglycerin-modified silicone having a lauryl group in the side chain is used (Comparative Example 17). The sex was low.
 (実施例10)
 界面活性剤であるKF-6038(信越化学工業製)をイソパラフィン系脂肪族炭化水素であるアイソパーL(エクソンモービル製)に溶解させ、実施例10の油相組成物を調製した。本実施例では、油性組成物全体を100質量%としたときに界面活性剤の濃度が4質量%となるように油性組成物を調製した。
(Example 10)
A surfactant KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in isopar L (manufactured by ExxonMobil), an isoparaffinic aliphatic hydrocarbon, to prepare an oil phase composition of Example 10. In this example, the oily composition was prepared such that the concentration of the surfactant was 4% by mass when the entire oily composition was 100% by mass.
 次に、水性組成物であるPBSを採取したシリンジ(SS-05LZ、テルモ製)の先端に、乳化膜であるシラス多孔質ガラス(SPG)膜(DC10U、細孔径10μm、SPGテクノ製)を接続した。シリンジをシリンジポンプ(SPS-1、アズワン製)にセットし、シリンジの先端の乳化膜を上記油性組成物13mL中に浸し、油性組成物を少量吸い上げてから、5mL/hの乳化流速(水性組成物注入速度)で水性組成物(1mL)を注入した。これにより、油中水型エマルジョンを調製した。得られた油中水型エマルジョンの光学顕微鏡画像を図1に示す。また、レーザ回折/散乱式粒子径分布測定装置(LA-950、堀場製作所製)を用いて測定した油中水型エマルジョン中の液滴径の分布を図2に示す。油中水型エマルジョン中の液滴の平均直径は34μmであり、変動係数(CV)は8%であった。 Next, a Shirasu porous glass (SPG) membrane (DC10U, pore diameter 10 μm, made by SPG Techno), which is an emulsified membrane, is connected to the tip of a syringe (SS-05LZ, made by Terumo) from which an aqueous composition PBS has been collected. did. The syringe is set in a syringe pump (SPS-1, manufactured by ASONE), the emulsion film at the tip of the syringe is immersed in 13 mL of the oil composition, and a small amount of the oil composition is sucked up, and then an emulsification flow rate of 5 mL / h (aqueous composition) The aqueous composition (1 mL) was injected at a material injection rate). This prepared a water-in-oil emulsion. An optical microscope image of the obtained water-in-oil emulsion is shown in FIG. FIG. 2 shows the distribution of droplet diameters in a water-in-oil emulsion measured using a laser diffraction / scattering particle size distribution measuring apparatus (LA-950, manufactured by Horiba, Ltd.). The average diameter of the droplets in the water-in-oil emulsion was 34 μm and the coefficient of variation (CV) was 8%.
 得られた油中水型エマルジョンについて、実施例1と同様にしてサーマルサイクルに対するエマルジョンの安定性および継時安定性を評価した。結果を表2に示す。なお、表2の安定性評価の欄において、○はエマルジョンに変化が見られなかったことを示し、×はエマルジョンの合一が生じたことを示す。 The resulting water-in-oil emulsion was evaluated in the same manner as in Example 1 for the stability of the emulsion against thermal cycling and the stability over time. The results are shown in Table 2. In the column of stability evaluation in Table 2, ◯ indicates that no change was observed in the emulsion, and × indicates that the coalescence of the emulsion occurred.
 (実施例11~17)
 実施例10において界面活性剤の量や種類を表2に示すように変えて油性組成物および油中水型エマルジョンを調製し、調製した油中水型エマルジョンの安定性(サーマルサイクル安定性および継時安定性)を評価した。結果をまとめて表2に示す。
(Examples 11 to 17)
In Example 10, the amount and type of the surfactant were changed as shown in Table 2 to prepare an oily composition and a water-in-oil emulsion, and the stability of the prepared water-in-oil emulsion (thermal cycle stability and transfer). Time stability) was evaluated. The results are summarized in Table 2.
 実施例17では、乳化膜をシラス多孔質ガラス(SPG)膜(DC20U、細孔径20μm、SPGテクノ製)に変え、乳化流速を10mL/hに変えた以外は、実施例10と同様にして油中水型エマルジョンを調製した。得られた油中水型エマルジョンの光学顕微鏡画像を図3に示す。また、レーザ回折/散乱式粒子径分布測定装置(LA-950、堀場製作所製)を用いて測定した油中水型エマルジョン中の液滴径の分布を図4に示す。 In Example 17, the emulsion film was changed to a Shirasu porous glass (SPG) film (DC20U, pore diameter 20 μm, manufactured by SPG Techno), and the oil flow was changed in the same manner as in Example 10 except that the emulsification flow rate was changed to 10 mL / h. A water-in-water emulsion was prepared. An optical microscope image of the obtained water-in-oil emulsion is shown in FIG. FIG. 4 shows the droplet size distribution in the water-in-oil emulsion measured using a laser diffraction / scattering particle size distribution measuring apparatus (LA-950, manufactured by HORIBA, Ltd.).
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 表2に示すように、界面活性剤として側鎖にアルキル基を有するポリエーテル変性ポリシロキサンを用いた油性組成物を用いて形成した油中水型エマルジョンは高い安定性を有していた(実施例10~17)。 As shown in Table 2, the water-in-oil emulsion formed using an oil-based composition using a polyether-modified polysiloxane having an alkyl group in the side chain as a surfactant had high stability (implementation) Examples 10-17).
 (実施例18)
 (アンプリコンの取得)
 QuickPrimer Control DNA 5(5ng/μL、型番 MR405、タカラバイオ社製)の10倍希釈溶液(0.5ng/μl)を2μL、QuickPrimer Escherichia/Shigella group(16S rDNA)(フォワードプライマー、リバースプライマーそれぞれ2.0μM、型番 MR201、タカラバイオ社製)を4μL、SYBR Premix Ex Taq(Tli RNaseH Plus)(型番 RR420、タカラバイオ社製)を10μL、滅菌蒸留水を4μL、用意して混合した。
(Example 18)
(Amplicon acquisition)
QuickPrimer Control DNA 5 (5 ng / μL, Model No. MR405, manufactured by Takara Bio Inc.) 10-fold diluted solution (0.5 ng / μl), 2 μL, QuickPrimer Escherichia / Shigella group (16S rDNA, forward primer, 2S primer, respectively) 4 μL of 0 μM, model number MR201, manufactured by Takara Bio Inc., 10 μL of SYBR Premix Ex Taq (Tli RNase H Plus) (model RR420, manufactured by Takara Bio Inc.), and 4 μL of sterile distilled water were prepared and mixed.
 この混合液に下記のサーマルサイクル条件でサーマルサイクルを施してPCRを行い、大腸菌16S rDNAの増幅産物(アンプリコン)を取得した。アガロースゲル電気泳動により、413bpのアンプリコンが得られたことを確認した。 The mixture was subjected to a thermal cycle under the following thermal cycle conditions to perform PCR, and an amplified product (amplicon) of E. coli 16S rDNA was obtained. It was confirmed by agarose gel electrophoresis that a 413 bp amplicon was obtained.
 <サーマルサイクル条件>
1)初期変性(95℃で2分間):1サイクル
2)PCR(95℃で20秒間、55℃で20秒間、74℃で20秒間):35サイクル
3)保持(4℃):1サイクル
<Thermal cycle conditions>
1) Initial denaturation (95 ° C for 2 minutes): 1 cycle 2) PCR (95 ° C for 20 seconds, 55 ° C for 20 seconds, 74 ° C for 20 seconds): 35 cycles 3) Retention (4 ° C): 1 cycle
 (油中水型エマルジョンの形成)
 次に、QuickPrimer Escherichia/Shigella group(16S rDNA)(フォワードプライマー、リバースプライマーそれぞれ2.0μM、型番 MR201、タカラバイオ社製)を1μL、QX200TMddPCRTMEvaGreen Supermix(型番 186-4033、バイオラッド社製)を10μL、滅菌蒸留水を7μL、用意して混合した。ここに、上記アンプリコンの10倍希釈液2μLを加え、水性組成物を調製した。
(Formation of water-in-oil emulsion)
Next, 1 μL of QuickPrimer Escherichia / Shigella group (16S rDNA) (forward primer and reverse primer each 2.0 μM, model number MR201, manufactured by Takara Bio Inc.), QX200 ddPCR EvaGreen Supermix (model 186-Radio 40, model 186-Ra40) ) And 7 μL of sterilized distilled water were prepared and mixed. Here, a 10 4 fold dilution 2μL of the amplicon was added thereto to prepare an aqueous composition.
 界面活性剤であるKF-6038(信越化学工業製)をイソパラフィン系脂肪族炭化水素であるアイソパーL(エクソンモービル製)に溶解させ、実施例18の油相組成物を調製した。本実施例では、油性組成物全体を100質量%としたときに界面活性剤の濃度が4質量%となるように油性組成物を調製した。 A surfactant KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in isopar L (manufactured by ExxonMobil), an isoparaffinic aliphatic hydrocarbon, to prepare an oil phase composition of Example 18. In this example, the oily composition was prepared such that the concentration of the surfactant was 4% by mass when the entire oily composition was 100% by mass.
 2つのシリンジを用意し、一方のシリンジには前記水性組成物を100μL採取し、もう一方のシリンジには前記油性組成物を2mL採取した。これらのシリンジの先端にポンピング乳化膜(PC50U、細孔径50μm、SPGテクノ製)を接続し、2つのシリンジで乳化膜を挟み込んだ。その後、8回のポンピング(2つのシリンジを交互に1回ずつ押し込む動作を1回のポンピングとする)を実施して、油中水型エマルジョンを得た。 Two syringes were prepared, 100 μL of the aqueous composition was sampled in one syringe, and 2 mL of the oily composition was sampled in the other syringe. A pumping emulsion membrane (PC50U, pore diameter 50 μm, manufactured by SPG Techno) was connected to the tip of these syringes, and the emulsion membrane was sandwiched between two syringes. Thereafter, pumping was performed 8 times (the operation of pushing the two syringes alternately one by one as one pumping) to obtain a water-in-oil emulsion.
 (油中水型エマルジョンを用いたPCR)
 得られたエマルジョンに下記のサーマルサイクル条件でサーマルサイクルを施してPCRを行ったところ、油中水型エマルジョン中の液滴は合一や凝集することなく、安定であった。また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、蛍光が検出される液滴と蛍光が検出されない液滴とが確認できた(図5A)。
(PCR using water-in-oil emulsion)
When the obtained emulsion was subjected to thermal cycling under the following thermal cycle conditions and subjected to PCR, the droplets in the water-in-oil emulsion were stable without coalescence or aggregation. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 5A).
 <サーマルサイクル条件>
1)初期変性(95℃で5分間):1サイクル
2)PCR(95℃で30秒間、55℃で1分間):50サイクル
3)信号安定化(4℃で5分間、90℃で5分間):1サイクル
4)保持(4℃)1サイクル
<Thermal cycle conditions>
1) Initial denaturation (95 ° C for 5 minutes): 1 cycle 2) PCR (95 ° C for 30 seconds, 55 ° C for 1 minute): 50 cycles 3) Signal stabilization (4 ° C for 5 minutes, 90 ° C for 5 minutes) ): 1 cycle 4) Hold (4 ° C) 1 cycle
 (実施例19)
 実施例18において、油中水型エマルジョンの形成の際に、アンプリコンの10倍希釈液をアンプリコンの10倍希釈液に変えた以外は実施例18と同様にして、油中水型エマルジョンの形成とそれを用いたPCRを行った。
(Example 19)
In Example 18, when forming the water-in-oil emulsion, except for changing the 10 four-fold dilutions of amplicon 10 5-fold dilutions of amplicons in the same manner as in Example 18, water-in-oil Emulsion formation and PCR using it were performed.
 本実施例においても、サーマルサイクル後に油中水型エマルジョン中の液滴は合一や凝集することなく、安定であった。また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、蛍光が検出される液滴と蛍光が検出されない液滴とが確認できた(図5B)。 Also in this example, the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 5B).
 (実施例20)
 実施例18において、油中水型エマルジョンの形成の際に、アンプリコンの10倍希釈液をアンプリコンの10倍希釈液に変えた以外は実施例18と同様にして、油中水型エマルジョンの形成とそれを用いたPCRを行った。
(Example 20)
In Example 18, when forming the water-in-oil emulsion, except for changing the 10 four-fold dilutions of amplicon 10 6-fold dilutions of amplicons in the same manner as in Example 18, water-in-oil Emulsion formation and PCR using it were performed.
 本実施例においても、サーマルサイクル後に油中水型エマルジョン中の液滴は合一や凝集することなく、安定であった。また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、蛍光が検出される液滴と蛍光が検出されない液滴とが確認できた(図5C)。 Also in this example, the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 5C).
 (実施例21)
 実施例18と同様にして水性組成物および油性組成物を調製した。
(Example 21)
An aqueous composition and an oily composition were prepared in the same manner as in Example 18.
 前記水性組成物を採取したシリンジ(SS-05LZ、テルモ製)の先端に乳化膜であるシラス多孔質ガラス(SPG)膜(DC20U、SPGテクノ製)を接続した。シリンジをシリンジポンプ(SPS-1、アズワン製)にセットし、シリンジの先端の乳化膜を上記油性組成物9mL中に浸し、油性組成物を少量吸い上げてから、10mL/hの乳化流速(水性組成物注入速度)で水性組成物を注入した。このとき、油性組成物はマグネチックスターラーを用いて、300rpmで撹拌しておいた。これにより、油中水型エマルジョンを調製した。 A Shirasu porous glass (SPG) film (DC20U, manufactured by SPG Techno), which is an emulsified film, was connected to the tip of a syringe (SS-05LZ, manufactured by Terumo) from which the aqueous composition was collected. The syringe is set in a syringe pump (SPS-1, manufactured by ASONE), the emulsion film at the tip of the syringe is immersed in 9 mL of the oily composition, and a small amount of the oily composition is sucked up, and then an emulsification flow rate of 10 mL / h (aqueous composition) The aqueous composition was injected at a material injection rate). At this time, the oily composition was stirred at 300 rpm using a magnetic stirrer. This prepared a water-in-oil emulsion.
 得られたエマルジョンについて、実施例18と同様にサーマルサイクルを施してPCRを行ったところ、油中水型エマルジョン中の液滴は合一や凝集することなく、安定であった。また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、蛍光が検出される液滴と蛍光が検出されない液滴とが確認できた(図6A)。 The obtained emulsion was subjected to a thermal cycle in the same manner as in Example 18 and subjected to PCR. As a result, the droplets in the water-in-oil emulsion were stable without coalescence or aggregation. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 6A).
 (実施例22)
 実施例21において、油中水型エマルジョンの形成の際に、アンプリコンの10倍希釈液をアンプリコンの10倍希釈液に変えた以外は実施例21と同様にして、油中水型エマルジョンの形成とそれを用いたPCRを行った。
(Example 22)
In Example 21, when forming the water-in-oil emulsion, except for changing the 10 four-fold dilutions of amplicon 10 5-fold dilutions of amplicons in the same manner as in Example 21, water-in-oil Emulsion formation and PCR using it were performed.
 本実施例においても、サーマルサイクル後に油中水型エマルジョン中の液滴は合一や凝集することなく、安定であった。また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、蛍光が検出される液滴と蛍光が検出されない液滴とが確認できた(図6B)。 Also in this example, the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Moreover, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 6B).
 (実施例23~37)
 実施例23~37では、界面活性剤と脂肪族炭化水素の種類を表3に示すように変えて油性組成物および油中水型エマルジョンを調製し、調製した油中水型エマルジョンの安定性(サーマルサイクル安定性および継時安定性)を評価した。結果をまとめて表3に示す。
(Examples 23 to 37)
In Examples 23 to 37, an oily composition and a water-in-oil emulsion were prepared by changing the types of the surfactant and the aliphatic hydrocarbon as shown in Table 3, and the stability of the prepared water-in-oil emulsion ( Thermal cycle stability and stability over time) were evaluated. The results are summarized in Table 3.
 油中水型エマルジョンを調製とその安定性の評価は、実施例17と同様にして実施した。
アイソパーMは炭素原子11~18のイソパラフィンを主成分とするイソパラフィン系脂肪族炭化水素である。
エクソールD80は炭素原子11~13のシクロパラフィンを主成分とするシクロパラフィン系脂肪族炭化水素である。
エクソールD95は炭素原子12~14のシクロパラフィンを主成分とするシクロパラフィン系脂肪族炭化水素である。
エクソールD110は炭素原子15のシクロパラフィンを主成分とするシクロパラフィン系脂肪族炭化水素である。
エクソールD130は炭素原子15~17のシクロパラフィンを主成分とするシクロパラフィン系脂肪族炭化水素である。
Preparation of water-in-oil emulsion and evaluation of its stability were carried out in the same manner as in Example 17.
Isopar M is an isoparaffinic aliphatic hydrocarbon mainly composed of isoparaffin having 11 to 18 carbon atoms.
Exol D80 is a cycloparaffinic aliphatic hydrocarbon composed mainly of cycloparaffins having 11 to 13 carbon atoms.
Exol D95 is a cycloparaffinic aliphatic hydrocarbon composed mainly of cycloparaffins having 12 to 14 carbon atoms.
Exol D110 is a cycloparaffinic aliphatic hydrocarbon composed mainly of cycloparaffin having 15 carbon atoms.
Exol D130 is a cycloparaffinic aliphatic hydrocarbon composed mainly of cycloparaffins having 15 to 17 carbon atoms.
 実施例26と実施例27では、HLB(Hydrophilic-Lipophilic Balance)値の異なる界面活性剤を使用しており、液滴の安定性に差が見られた。実施例26の界面活性剤であるKF-6048のHLB値は3.5であり、実施例27の界面活性剤であるABIL EM90のHLB値は5である。因みに、実施例25の界面活性剤であるKF-6038のHLB値は3である。HLB値は0から20までの値を取り、0に近いほど親油性が高く、20に近いほど親水性が高くなる。W/O型エマルジョンに使用される界面活性剤のHLB値は、一般的に3~6が好適であると知られているが、実施例25~27の結果から、動粘度の大きいアイソパーMにおいて液滴を安定化するには、HLB値3~3.5の界面活性剤が好適であることが示唆された。
 なお、HLB値の算出方法として、グリフィン法を用いることができる。グリフィン法は、親水部の式量と分子量を元に、HLB値=20×(親水部の式量の総和/分子量)を計算して求めることができる。なお、親水部の構造と疎水部の構造とその割合はNMRによって算出できる。そして、GPCを用いて界面活性剤の分子量を算出できる。
In Example 26 and Example 27, surfactants having different HLB (Hydrophilic-Lipophilic Balance) values were used, and there was a difference in droplet stability. The surfactant of Example 26, KF-6048, has an HLB value of 3.5, and ABIL EM90, the surfactant of Example 27, has an HLB value of 5. Incidentally, KF-6038, which is the surfactant of Example 25, has an HLB value of 3. The HLB value takes a value from 0 to 20, and the closer to 0, the higher the lipophilicity, and the closer to 20, the higher the hydrophilicity. It is known that the HLB value of the surfactant used in the W / O type emulsion is generally preferably 3 to 6, but from the results of Examples 25 to 27, in the case of Isopar M having a high kinematic viscosity. It was suggested that a surfactant having an HLB value of 3 to 3.5 is suitable for stabilizing the droplet.
The Griffin method can be used as a method for calculating the HLB value. The Griffin method can be obtained by calculating an HLB value = 20 × (sum of formula weights of the hydrophilic portion / molecular weight) based on the formula weight and molecular weight of the hydrophilic portion. The structure of the hydrophilic part and the structure of the hydrophobic part and the ratio thereof can be calculated by NMR. The molecular weight of the surfactant can be calculated using GPC.
 実施例26と実施例27を比較すると、親油性のアルキル基などの割合が親水性のポリエーテルの割合よりも大きい方が、液滴の安定性に優れており、界面活性剤の側鎖のアルキル基が液滴の安定化に寄与しているものと考えられる。 When Example 26 and Example 27 are compared, the stability of the droplets is superior when the ratio of the lipophilic alkyl group or the like is larger than the ratio of the hydrophilic polyether. It is considered that the alkyl group contributes to the stabilization of the droplet.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 (実施例38)
 (油中水型エマルジョンの形成)
 Internal DNA extraction control kit( 型番 INT-DNA-FAMおよびINT-DNA-YY、Primerdesign社製)のプロトコルに従い、添付のコントロールDNA、プライマー・プローブを混合し、Premix Ex Taq(型番 RR390A、タカラバイオ社製)、滅菌蒸留水を混合して、実施例38の水性組成物を調製した。本実施例では、蛍光色素としてFAMを使用した。
(Example 38)
(Formation of water-in-oil emulsion)
In accordance with the protocol of Internal DNA extraction control kit (model numbers INT-DNA-FAM and INT-DNA-YY, manufactured by Primedesign), the attached control DNA, primer and probe were mixed, and Premix Ex Taq (model RR390A, manufactured by Takara Bio Inc.) ) And sterile distilled water were mixed to prepare an aqueous composition of Example 38. In this example, FAM was used as the fluorescent dye.
 界面活性剤であるABIL EM90(Evonik製)をイソパラフィン系脂肪族炭化水素であるアイソパーL(エクソンモービル製)に溶解させ、実施例38の油相組成物を調製した。本実施例では、油性組成物全体を100質量%としたときに界面活性剤の濃度が4質量%となるように油性組成物を調製した。 ABIL EM90 (manufactured by Evonik) as a surfactant was dissolved in Isopar L (manufactured by ExxonMobil), which is an isoparaffinic aliphatic hydrocarbon, to prepare an oil phase composition of Example 38. In this example, the oily composition was prepared such that the concentration of the surfactant was 4% by mass when the entire oily composition was 100% by mass.
 前記水性組成物を採取したシリンジ(08040、ニプロ製)の先端に乳化膜であるシラス多孔質ガラス(SPG)膜(DC20U、SPGテクノ製)を接続した。シリンジをシリンジポンプ(SPS-1、アズワン製)にセットし、シリンジの先端の乳化膜を上記油性組成物9mL中に浸し、油性組成物を少量吸い上げてから、5mL/hの乳化流速(水性組成物注入速度)で水性組成物を注入して、油中水型エマルジョンを調製した。 A Shirasu porous glass (SPG) film (DC20U, manufactured by SPG Techno), which is an emulsified film, was connected to the tip of a syringe (08040, manufactured by Nipro) from which the aqueous composition was collected. Set the syringe on a syringe pump (SPS-1, manufactured by ASONE), immerse the emulsion film at the tip of the syringe in 9 mL of the oily composition, suck up a small amount of the oily composition, and then an emulsification flow rate of 5 mL / h (aqueous composition) The water-in-oil emulsion was prepared by injecting the aqueous composition at a material injection rate).
 (油中水型エマルジョンを用いたPCR)
 得られたエマルジョンに下記のサーマルサイクル条件でサーマルサイクルを施してPCRを行ったところ、油中水型エマルジョン中の液滴は合一や凝集することなく、安定であった。また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、蛍光が検出される液滴と蛍光が検出されない液滴とが確認できた(図7)。
(PCR using water-in-oil emulsion)
When the obtained emulsion was subjected to thermal cycling under the following thermal cycle conditions and subjected to PCR, the droplets in the water-in-oil emulsion were stable without coalescence or aggregation. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 7).
 <サーマルサイクル条件>
1)初期変性(95℃で5分間):1サイクル
2)PCR(95℃で30秒間、55℃で1分間):50サイクル
3)信号安定化(4℃で5分間、90℃で5分間):1サイクル
4)保持(4℃)1サイクル
<Thermal cycle conditions>
1) Initial denaturation (95 ° C for 5 minutes): 1 cycle 2) PCR (95 ° C for 30 seconds, 55 ° C for 1 minute): 50 cycles 3) Signal stabilization (4 ° C for 5 minutes, 90 ° C for 5 minutes) ): 1 cycle 4) Hold (4 ° C) 1 cycle
 (実施例39)
 (油中水型エマルジョンの形成)
 実施例38の蛍光色素をVICに変え、実施例38と同様に操作して油中水型エマルジョンを形成し、それを用いてPCRを行った。
(Example 39)
(Formation of water-in-oil emulsion)
The fluorescent dye of Example 38 was changed to VIC, and the same operation as in Example 38 was performed to form a water-in-oil emulsion, which was used for PCR.
 本実施例においても、サーマルサイクル後に油中水型エマルジョン中の液滴は合一や凝集することなく、安定であった。また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、蛍光が検出される液滴と蛍光が検出されない液滴とが確認できた(図8)。 Also in this example, the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 8).
 (実施例40)
 (油中水型エマルジョンの形成)
 Internal DNA extraction control kit(型番 INT-DNA-FAM、Primerdesign社製)のプロトコルに従い、添付のコントロールDNA、プライマー・プローブを混合し、Premix Ex Taq(型番 RR390A、タカラバイオ社製)、牛血清由来アルブミン(BSA:Bovine Serum Albumin)水溶液(Thermo Fisher Scientific製)、滅菌蒸留水を混合して、実施例40の水性組成物を調製した。前記水性組成物でBSAの最終濃度がそれぞれ0、0.4、4mg/mLとなる3種類の水性組成物を調製した。本実施例では、プローブの蛍光色素としてFAMを使用した。
(Example 40)
(Formation of water-in-oil emulsion)
According to the protocol of Internal DNA extraction control kit (model number INT-DNA-FAM, Primerdesign), the attached control DNA and primer / probe are mixed, and Premix Ex Taq (model RR390A, manufactured by Takara Bio Inc.), bovine serum derived albumin An aqueous composition of Example 40 was prepared by mixing (BSA: Bovine Serum Albumin) aqueous solution (manufactured by Thermo Fisher Scientific) and sterilized distilled water. Three types of aqueous compositions were prepared with final BSA concentrations of 0, 0.4, and 4 mg / mL, respectively. In this example, FAM was used as the fluorescent dye of the probe.
 界面活性剤であるKF-6048(信越化学工業製)をイソパラフィン系脂肪族炭化水素であるアイソパーL(エクソンモービル製)に溶解させ、実施例40の油相組成物を調製した。本実施例では、油性組成物全体を100質量%としたときに界面活性剤の濃度が4質量%となるように油性組成物を調製した。 A surfactant, KF-6048 (manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in isopara L (manufactured by ExxonMobil), an isoparaffinic aliphatic hydrocarbon, to prepare an oil phase composition of Example 40. In this example, the oily composition was prepared such that the concentration of the surfactant was 4% by mass when the entire oily composition was 100% by mass.
 前記水性組成物に上記油性組成物を体積比1:2となるようにプラスチックチューブに添加し、チューブミキサー(TAITEC製)で30秒処理することでBSA濃度の異なる3種類の油中水型エマルジョンを調製した。 Three types of water-in-oil emulsions with different BSA concentrations are obtained by adding the oily composition to the aqueous composition to a plastic tube at a volume ratio of 1: 2, and treating with a tube mixer (manufactured by TAITEC) for 30 seconds. Was prepared.
 (油中水型エマルジョンを用いたPCR)
 得られたエマルジョンに下記のサーマルサイクル条件でサーマルサイクルを施してPCRを行ったところ、油中水型エマルジョン中の液滴は相分離することなく、安定であった。
(PCR using water-in-oil emulsion)
When the obtained emulsion was subjected to a thermal cycle under the following thermal cycle conditions and subjected to PCR, the droplets in the water-in-oil emulsion were stable without phase separation.
 また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、BSAを添加しないエマルジョン(図9A)では蛍光がほとんど確認できなかったのに比べ、BSAを添加したエマルジョンで蛍光輝度が増加し、DNA増幅に伴う蛍光発光を確認した(図9B、図9C)。上記の水性組成物と油性組成で作製したエマルジョンにおいて、水性組成物にBSAを添加剤として加えることで発光を確認することが可能となった。 In addition, when the emulsion after the thermal cycle was observed with a fluorescence microscope, the fluorescence with the addition of BSA increased compared to the case where almost no fluorescence was observed in the emulsion without addition of BSA (FIG. 9A). The accompanying fluorescence emission was confirmed (FIG. 9B, FIG. 9C). In the emulsion prepared with the above-mentioned aqueous composition and oily composition, it was possible to confirm luminescence by adding BSA as an additive to the aqueous composition.
 <サーマルサイクル条件>
1)初期変性(95℃で5分間):1サイクル
2)PCR(95℃で30秒間、55℃で1分間):50サイクル
3)信号安定化(4℃で5分間、90℃で5分間):1サイクル
4)保持(4℃)1サイクル
<Thermal cycle conditions>
1) Initial denaturation (95 ° C for 5 minutes): 1 cycle 2) PCR (95 ° C for 30 seconds, 55 ° C for 1 minute): 50 cycles 3) Signal stabilization (4 ° C for 5 minutes, 90 ° C for 5 minutes) ): 1 cycle 4) Hold (4 ° C) 1 cycle
 さらに、BSA濃度を0.4mg/mLとした以外は上記と同様に調製した水性組成物と、油相組成物から乳化膜を用いてエマルジョンを作製した。 Furthermore, an emulsion was prepared from the aqueous composition prepared in the same manner as described above except that the BSA concentration was 0.4 mg / mL, and an oil phase composition using an emulsion film.
 前記水性組成物を採取したシリンジ(08040、ニプロ製)の先端に乳化膜であるシラス多孔質ガラス(SPG)膜(DC20U、SPGテクノ製)を接続した。シリンジをシリンジポンプ(SPS-1、アズワン製)にセットし、シリンジの先端の乳化膜を上記油性組成物9mL中に浸し、油性組成物を少量吸い上げてから、5mL/hの乳化流速(水性組成物注入速度)で水性組成物を注入して、油中水型エマルジョンを調製した。 A Shirasu porous glass (SPG) film (DC20U, manufactured by SPG Techno), which is an emulsified film, was connected to the tip of a syringe (08040, manufactured by Nipro) from which the aqueous composition was collected. Set the syringe on a syringe pump (SPS-1, manufactured by ASONE), immerse the emulsion film at the tip of the syringe in 9 mL of the oily composition, suck up a small amount of the oily composition, and then an emulsification flow rate of 5 mL / h (aqueous composition) The water-in-oil emulsion was prepared by injecting the aqueous composition at a material injection rate).
 先ほどと同様のサーマルサイクル条件でPCRを行ったところ、油中水型エマルジョン中の液滴は合一や凝集することなく、安定であった。また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、蛍光が検出される液滴と蛍光が検出されない液滴とが確認できた(図10)。 When PCR was performed under the same thermal cycle conditions as before, the droplets in the water-in-oil emulsion were stable without coalescence or aggregation. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 10).
 (実施例41~52)
 実施例41~52では、界面活性剤とオイルの種類を表4に示すように変えて油性組成物および油中水型エマルジョンを調製し、調製した油中水型エマルジョンの安定性(サーマルサイクル安定性および継時安定性)を評価した。結果をまとめて表4に示す。
(Examples 41 to 52)
In Examples 41 to 52, an oily composition and a water-in-oil emulsion were prepared by changing the types of surfactant and oil as shown in Table 4, and the stability of the prepared water-in-oil emulsion (thermal cycle stability). And stability over time). The results are summarized in Table 4.
 実施例41から45の油中水型エマルジョンを調製とその安定性の評価は、乳化流速を5mL/hに変えた以外は、実施例17と同様にして実施した。 Preparation of water-in-oil emulsions of Examples 41 to 45 and evaluation of the stability thereof were carried out in the same manner as in Example 17 except that the emulsification flow rate was changed to 5 mL / h.
 実施例46~52では、乳化膜をシラス多孔質ガラス(SPG)膜(DC30U、細孔径30μm、SPGテクノ製)に変え、乳化流速を1mL/hに変えた以外は、実施例17と同様にして油中水型エマルジョンを調製し、安定性を評価した。
ES-5300 FORMULATION AID(東レ・ダウコーニング製)をES-5300と略す。
DOW CORNING 5200 FORMULATION AID(東レ・ダウコーニング製)をDC5200と略す。
In Examples 46 to 52, the emulsified membrane was changed to a shirasu porous glass (SPG) membrane (DC30U, pore diameter 30 μm, manufactured by SPG Techno), and the emulsification flow rate was changed to 1 mL / h, as in Example 17. A water-in-oil emulsion was prepared and the stability was evaluated.
ES-5300 FORMULATION AID (manufactured by Dow Corning Toray) is abbreviated as ES-5300.
DOW CORNING 5200 FORMULATION AID (manufactured by Dow Corning Toray) is abbreviated as DC5200.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 (実施例53)
 (油中水型エマルジョンの形成)
 Internal DNA extraction control kit(型番 INT-DNA-FAMおよびINT-DNA-YY、Primerdesign社製)のプロトコルに従い、添付のコントロールDNA、プライマー・プローブを混合し、Premix Ex Taq(型番 RR390A、タカラバイオ社製)、滅菌蒸留水を混合して、実施例53の水性組成物を調製した。本実施例では、蛍光色素としてFAMを使用した。
(Example 53)
(Formation of water-in-oil emulsion)
In accordance with the protocol of Internal DNA extraction control kit (model numbers INT-DNA-FAM and INT-DNA-YY, manufactured by Primedesign), the attached control DNA and primer / probe were mixed, and Premix Ex Taq (model RR390A, manufactured by Takara Bio Inc.) ) And sterile distilled water were mixed to prepare an aqueous composition of Example 53. In this example, FAM was used as the fluorescent dye.
 界面活性剤であるKF-6038(信越化学工業製)をシリコーンオイルであるKF-96L-1.5cs(信越化学工業製)に溶解させ、実施例53の油相組成物を調製した。本実施例では、油性組成物全体を100質量%としたときに界面活性剤の濃度が4質量%となるように油性組成物を調製した。 Surfactant KF-6038 (manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in silicone oil KF-96L-1.5cs (manufactured by Shin-Etsu Chemical Co., Ltd.) to prepare an oil phase composition of Example 53. In this example, the oily composition was prepared such that the concentration of the surfactant was 4% by mass when the entire oily composition was 100% by mass.
 前記水性組成物を採取したシリンジ(08040、ニプロ製)の先端に乳化膜であるシラス多孔質ガラス(SPG)膜(DC20U、SPGテクノ製)を接続した。シリンジをシリンジポンプ(SPS-1、アズワン製)にセットし、シリンジの先端の乳化膜を上記油性組成物9mL中に浸し、油性組成物を少量吸い上げてから、5mL/hの乳化流速(水性組成物注入速度)で水性組成物を注入して、油中水型エマルジョンを調製した。 A Shirasu porous glass (SPG) film (DC20U, manufactured by SPG Techno), which is an emulsified film, was connected to the tip of a syringe (08040, manufactured by Nipro) from which the aqueous composition was collected. Set the syringe on a syringe pump (SPS-1, manufactured by ASONE), immerse the emulsion film at the tip of the syringe in 9 mL of the oily composition, suck up a small amount of the oily composition, and then an emulsification flow rate of 5 mL / h (aqueous composition) The water-in-oil emulsion was prepared by injecting the aqueous composition at a material injection rate).
 (油中水型エマルジョンを用いたPCR)
 得られたエマルジョンに下記のサーマルサイクル条件でサーマルサイクルを施してPCRを行ったところ、油中水型エマルジョン中の液滴は合一や凝集することなく、安定であった。また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、蛍光が検出される液滴と蛍光が検出されない液滴とが確認できた(図11)。
(PCR using water-in-oil emulsion)
When the obtained emulsion was subjected to thermal cycling under the following thermal cycle conditions and subjected to PCR, the droplets in the water-in-oil emulsion were stable without coalescence or aggregation. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 11).
 <サーマルサイクル条件>
1)初期変性(95℃で3分間):1サイクル
2)PCR(95℃で15秒間、60℃で30秒間):30サイクル
3)信号安定化(4℃で5分間、90℃で5分間):1サイクル
4)保持(4℃)1サイクル
<Thermal cycle conditions>
1) Initial denaturation (95 ° C for 3 minutes): 1 cycle 2) PCR (95 ° C for 15 seconds, 60 ° C for 30 seconds): 30 cycles 3) Signal stabilization (4 ° C for 5 minutes, 90 ° C for 5 minutes) ): 1 cycle 4) Hold (4 ° C) 1 cycle
 (実施例54)
 (油中水型エマルジョンの形成)
 実施例53の界面活性剤をKF-6048(信越化学工業製)に変え、実施例53と同様に操作して油中水型エマルジョンを形成し、それを用いてPCRを行った。
(Example 54)
(Formation of water-in-oil emulsion)
The surfactant of Example 53 was changed to KF-6048 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the same operation as in Example 53 was performed to form a water-in-oil emulsion, and PCR was performed using it.
 本実施例においても、サーマルサイクル後に油中水型エマルジョン中の液滴は合一や凝集することなく、安定であった。また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、蛍光が検出される液滴と蛍光が検出されない液滴とが確認できた(図12)。 Also in this example, the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 12).
 (実施例55)
 (油中水型エマルジョンの形成)
 実施例53の界面活性剤をES-5300(東レ・ダウコーニング製)に変え、実施例53と同様に操作して油中水型エマルジョンを形成し、それを用いてPCRを行った。
(Example 55)
(Formation of water-in-oil emulsion)
The surfactant of Example 53 was changed to ES-5300 (manufactured by Dow Corning Toray), and a water-in-oil emulsion was formed in the same manner as in Example 53, and PCR was performed using it.
 本実施例においても、サーマルサイクル後に油中水型エマルジョン中の液滴は合一や凝集することなく、安定であった。また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、蛍光が検出される液滴と蛍光が検出されない液滴とが確認できた(図13)。 Also in this example, the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 13).
 (実施例56)
 (油中水型エマルジョンの形成)
 実施例55のシリコーンオイルをアイソパーL(エクソンモービル製)に変え、実施例55と同様に操作して油中水型エマルジョンを形成し、それを用いてPCRを行った。
(Example 56)
(Formation of water-in-oil emulsion)
The silicone oil of Example 55 was changed to Isopar L (manufactured by ExxonMobil) and operated in the same manner as in Example 55 to form a water-in-oil emulsion, and PCR was performed using it.
 本実施例においても、サーマルサイクル後に油中水型エマルジョン中の液滴は合一や凝集することなく、安定であった。また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、蛍光が検出される液滴と蛍光が検出されない液滴とが確認できた(図14)。 Also in this example, the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 14).
 (実施例57)
 (油中水型エマルジョンの形成)
 実施例56の界面活性剤をDC5200(エクソンモービル製)に変え、実施例56と同様に操作して油中水型エマルジョンを形成し、それを用いてPCRを行った。
(Example 57)
(Formation of water-in-oil emulsion)
The surfactant of Example 56 was changed to DC5200 (manufactured by ExxonMobil), and the same operation as in Example 56 was performed to form a water-in-oil emulsion, which was used for PCR.
 本実施例においても、サーマルサイクル後に油中水型エマルジョン中の液滴は合一や凝集することなく、安定であった。また、サーマルサイクル後のエマルジョンを蛍光顕微鏡観察したところ、蛍光が検出される液滴と蛍光が検出されない液滴とが確認できた(図15)。 Also in this example, the droplets in the water-in-oil emulsion were stable without coalescence or aggregation after the thermal cycle. Further, when the emulsion after the thermal cycle was observed with a fluorescence microscope, a droplet in which fluorescence was detected and a droplet in which fluorescence was not detected were confirmed (FIG. 15).
 上記の通り、本発明によれば、流動性および安定性の高い油中水型エマルジョンを形成可能な油性組成物を提供することができる。 As described above, according to the present invention, an oily composition capable of forming a water-in-oil emulsion having high fluidity and stability can be provided.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2017年5月31日提出の日本国特許出願特願2017-108242を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2017-108242 filed on May 31, 2017, the entire contents of which are incorporated herein by reference.

Claims (25)

  1.  脂肪族炭化水素そして/またはシリコーンオイルと、界面活性剤と、を含有する油性組成物であって、前記脂肪族炭化水素と前記シリコーンオイルの25℃における動粘度はそれぞれ10mm/s未満であり、前記界面活性剤が、側鎖にアルキル基を有するポリエーテル変性ポリシロキサンであることを特徴とする油性組成物。 An oily composition containing an aliphatic hydrocarbon and / or silicone oil and a surfactant, wherein the kinematic viscosity at 25 ° C. of the aliphatic hydrocarbon and the silicone oil is less than 10 mm 2 / s, respectively. The oil-based composition is characterized in that the surfactant is a polyether-modified polysiloxane having an alkyl group in a side chain.
  2.  前記脂肪族炭化水素が、イソパラフィンであることを特徴とする請求項1に記載の油性組成物。 The oily composition according to claim 1, wherein the aliphatic hydrocarbon is isoparaffin.
  3.  前記脂肪族炭化水素が、シクロパラフィンであることを特徴とする請求項1に記載の油性組成物。 The oily composition according to claim 1, wherein the aliphatic hydrocarbon is cycloparaffin.
  4.  前記シリコーンオイルが、分子量100以上600以下のポリシロキサンであることを特徴とする請求項1に記載の油性組成物。 2. The oily composition according to claim 1, wherein the silicone oil is a polysiloxane having a molecular weight of 100 or more and 600 or less.
  5.  前記イソパラフィンが、炭素原子数7以上30以下のイソパラフィンであることを特徴とする請求項2に記載の油性組成物。 The oily composition according to claim 2, wherein the isoparaffin is an isoparaffin having 7 to 30 carbon atoms.
  6.  前記シクロパラフィンが、炭素原子数7以上30以下のシクロパラフィンであることを特徴とする請求項3に記載の油性組成物。 The oily composition according to claim 3, wherein the cycloparaffin is a cycloparaffin having 7 to 30 carbon atoms.
  7.  前記脂肪族炭化水素そして/または前記シリコーンオイルの含有量が、前記油性組成物全体を100質量%としたときに、70質量%以上99.9質量%以下であることを特徴とする請求項1乃至請求項6のいずれか一項に記載の油性組成物。 2. The content of the aliphatic hydrocarbon and / or the silicone oil is 70% by mass or more and 99.9% by mass or less when the entire oily composition is 100% by mass. The oil-based composition as described in any one of thru | or 6.
  8.  前記界面活性剤が、炭素原子数4以上30以下のアルキル基を1個以上2000個以下で側鎖に有する、ポリエーテル変性ポリシロキサンであることを特徴とする請求項1乃至請求項7のいずれか一項に記載の油性組成物。 The surfactant is a polyether-modified polysiloxane having 1 to 2000 alkyl groups having 4 to 30 carbon atoms in the side chain. The oil-based composition as described in any one.
  9.  前記界面活性剤が、下記式(1)~(4)で表される化合物からなる群から選択される少なくとも1つであることを特徴とする請求項1乃至請求項8のいずれか一項に記載の油性組成物。
    Figure JPOXMLDOC01-appb-C000001

     上記式(1)中、R1~11、及びR13~17は、各々独立に、炭素数1から6の、直鎖または分岐のアルキル基、R12は炭素数4から30の直鎖または分岐のアルキル基、xは1から9の整数、yは1から9の整数、nは4から30の整数、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数、dは1以上2000以下の整数、eは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000002

     上記式(2)中、R1~5、及びR7~11は、各々独立に、炭素数1から6の直鎖または分岐のアルキル基、R6は炭素数4から30の直鎖または分岐のアルキル基、R12は水素原子または炭素数1から6の直鎖または分岐のアルキル基、xは1から9の整数、nは1から30の整数、mは1から30の整数、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000003

     上記式(3)中、R1~5、及びR7~11は、各々独立に、炭素数1から6の直鎖または分岐のアルキル基、R6は炭素数4から30の直鎖または分岐のアルキル基、R12は水素原子または炭素数1から6の直鎖または分岐のアルキル基、xは1から9の整数、nは4から30の整数、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000004

     上記式(4)中、R1~9、及びR11~15は、各々独立に、炭素数1から6の直鎖または分岐のアルキル基、R10は炭素数4から30の直鎖または分岐のアルキル基、R16は水素原子または炭素数1から6の直鎖または分岐のアルキル基、xは1から9の整数、yは1から9の整数、nは4から30の整数、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数、dは1以上2000以下の整数である。
    9. The surfactant according to any one of claims 1 to 8, wherein the surfactant is at least one selected from the group consisting of compounds represented by the following formulas (1) to (4). The oily composition as described.
    Figure JPOXMLDOC01-appb-C000001

    In the above formula (1), R1 to 11 and R13 to 17 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, and R12 is a linear or branched alkyl group having 4 to 30 carbon atoms. Group, x is an integer from 1 to 9, y is an integer from 1 to 9, n is an integer from 4 to 30, a is an integer from 1 to 2000, b is an integer from 1 to 2000, c is from 1 to 2000 , D is an integer from 1 to 2000, and e is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000002

    In the above formula (2), R1 to 5 and R7 to 11 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, and R6 is a linear or branched alkyl group having 4 to 30 carbon atoms. , R12 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, x is an integer of 1 to 9, n is an integer of 1 to 30, m is an integer of 1 to 30, and a is 1 or more and 2000 or less , B is an integer from 1 to 2000, and c is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000003

    In the above formula (3), R1 to 5 and R7 to 11 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, and R6 is a linear or branched alkyl group having 4 to 30 carbon atoms. , R12 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, x is an integer of 1 to 9, n is an integer of 4 to 30, a is an integer of 1 to 2000, and b is 1 to 2000 The following integers and c are integers of 1 or more and 2000 or less.
    Figure JPOXMLDOC01-appb-C000004

    In the above formula (4), R1-9 and R11-15 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, and R10 is a linear or branched alkyl group having 4 to 30 carbon atoms. , R16 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, x is an integer of 1 to 9, y is an integer of 1 to 9, n is an integer of 4 to 30, and a is 1 or more and 2000 or less , B is an integer from 1 to 2000, c is an integer from 1 to 2000, and d is an integer from 1 to 2000.
  10.  前記界面活性剤が、下記式(5)~(13)で表される化合物からなる群から選択される少なくとも1つであることを特徴とする請求項1乃至請求項9のいずれか一項に記載の油性組成物。
    Figure JPOXMLDOC01-appb-C000005

     上記式(5)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数、dは1以上2000以下の整数、eは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000006

     上記式(6)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000007

     上記式(7)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000008

     上記式(8)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000009

     上記式(9)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000010

     上記式(10)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000011

     上記式(11)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数、dは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000012

     上記式(12)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000013

     上記式(13)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    10. The surfactant according to any one of claims 1 to 9, wherein the surfactant is at least one selected from the group consisting of compounds represented by the following formulas (5) to (13). The oily composition as described.
    Figure JPOXMLDOC01-appb-C000005

    In the above formula (5), a is an integer from 1 to 2000, b is an integer from 1 to 2000, c is an integer from 1 to 2000, d is an integer from 1 to 2000, and e is from 1 to 2000. It is an integer.
    Figure JPOXMLDOC01-appb-C000006

    In the above formula (6), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000007

    In the formula (7), a is an integer of 1 to 2000, b is an integer of 1 to 2000, and c is an integer of 1 to 2000.
    Figure JPOXMLDOC01-appb-C000008

    In the above formula (8), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000009

    In the above formula (9), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000010

    In the above formula (10), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000011

    In the above formula (11), a is an integer from 1 to 2000, b is an integer from 1 to 2000, c is an integer from 1 to 2000, and d is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000012

    In the above formula (12), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000013

    In the above formula (13), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000.
  11.  前記界面活性剤の含有量が、前記油性組成物全体を100質量%としたときに、0.01質量%以上10質量%以下であることを特徴とする請求項1乃至請求項10のいずれか一項に記載の油性組成物。 The content of the surfactant is 0.01% by mass or more and 10% by mass or less when the entire oily composition is 100% by mass. The oily composition according to one item.
  12.  脂肪族炭化水素と、界面活性剤と、を含有する油性組成物であって、
     前記脂肪族炭化水素は炭素原子数が7以上30以下であり、
     前記脂肪族炭化水素の含有量は、前記油性組成物の全体を100質量%としたときに、70質量%以上99.9質量%以下であり、
     前記界面活性剤が、側鎖にアルキル基を有するポリエーテル変性ポリシロキサンであることを特徴とする油性組成物。
    An oily composition containing an aliphatic hydrocarbon and a surfactant,
    The aliphatic hydrocarbon has 7 to 30 carbon atoms,
    The content of the aliphatic hydrocarbon is 70% by mass or more and 99.9% by mass or less when the entire oily composition is 100% by mass.
    The oil-based composition, wherein the surfactant is a polyether-modified polysiloxane having an alkyl group in a side chain.
  13.  シリコーンオイルと、界面活性剤と、を含有する油性組成物であって、
     前記シリコーンオイルは分子量100以上600以下のポリシロキサンであり、
     前記シリコーンオイルの含有量は、前記油性組成物の全体を100質量%としたときに、70質量%以上99.9質量%以下であり、
     前記界面活性剤が、側鎖にアルキル基を有するポリエーテル変性ポリシロキサンであることを特徴とする油性組成物。
    An oily composition containing silicone oil and a surfactant,
    The silicone oil is a polysiloxane having a molecular weight of 100 to 600,
    The content of the silicone oil is 70% by mass or more and 99.9% by mass or less when the entire oily composition is 100% by mass.
    The oil-based composition, wherein the surfactant is a polyether-modified polysiloxane having an alkyl group in a side chain.
  14.  前記脂肪族炭化水素が、イソパラフィンであることを特徴とする請求項12に記載の油性組成物。 The oily composition according to claim 12, wherein the aliphatic hydrocarbon is isoparaffin.
  15.  前記脂肪族炭化水素が、シクロパラフィンであることを特徴とする請求項12に記載の油性組成物。 The oily composition according to claim 12, wherein the aliphatic hydrocarbon is cycloparaffin.
  16.  前記界面活性剤が、下記式(1)~(4)で表される化合物からなる群から選択される少なくとも1つであることを特徴とする請求項11乃至請求項15のいずれか一項に記載の油性組成物。
    Figure JPOXMLDOC01-appb-C000014

     上記式(1)中、R1~11、及びR13~17は、各々独立に、炭素数1から6の直鎖または分岐のアルキル基、R12は炭素数4から30の直鎖または分岐のアルキル基、xは1から9の整数、yは1から9の整数、nは4から30の整数、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数、dは1以上2000以下の整数、eは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000015

     上記式(2)中、R1~5、及びR7~11は、各々独立に、炭素数1から6の直鎖または分岐のアルキル基、R6は炭素数4から30の直鎖または分岐のアルキル基、R12は水素原子または炭素数1から6の直鎖または分岐のアルキル基、xは1から9の整数、nは1から30の整数、mは1から30の整数、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000016

     上記式(3)中、R1~5、及びR7~11は、各々独立に、炭素数1から6の直鎖または分岐のアルキル基、R6は炭素数4から30の直鎖または分岐のアルキル基、R12は水素原子または炭素数1から6の直鎖または分岐のアルキル基、xは1から9の整数、nは4から30の整数、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000017

     上記式(4)中、R1~9、及びR11~15は、各々独立に、炭素数1から6の直鎖または分岐のアルキル基、R10は炭素数4から30の直鎖または分岐のアルキル基、R16は水素原子または炭素数1から6の直鎖または分岐のアルキル基、xは1から9の整数、yは1から9の整数、nは4から30の整数、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数、dは1以上2000以下の整数である。
    16. The surfactant according to any one of claims 11 to 15, wherein the surfactant is at least one selected from the group consisting of compounds represented by the following formulas (1) to (4). The oily composition as described.
    Figure JPOXMLDOC01-appb-C000014

    In the above formula (1), R1 to 11 and R13 to 17 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, and R12 is a linear or branched alkyl group having 4 to 30 carbon atoms. , X is an integer from 1 to 9, y is an integer from 1 to 9, n is an integer from 4 to 30, a is an integer from 1 to 2000, b is an integer from 1 to 2000, c is from 1 to 2000 An integer, d is an integer from 1 to 2000, and e is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000015

    In the above formula (2), R1 to 5 and R7 to 11 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, and R6 is a linear or branched alkyl group having 4 to 30 carbon atoms. , R12 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, x is an integer of 1 to 9, n is an integer of 1 to 30, m is an integer of 1 to 30, and a is 1 or more and 2000 or less , B is an integer from 1 to 2000, and c is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000016

    In the above formula (3), R1 to 5 and R7 to 11 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, and R6 is a linear or branched alkyl group having 4 to 30 carbon atoms. , R12 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, x is an integer of 1 to 9, n is an integer of 4 to 30, a is an integer of 1 to 2000, and b is 1 to 2000 The following integers and c are integers of 1 or more and 2000 or less.
    Figure JPOXMLDOC01-appb-C000017

    In the above formula (4), R1-9 and R11-15 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, and R10 is a linear or branched alkyl group having 4 to 30 carbon atoms. , R16 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, x is an integer of 1 to 9, y is an integer of 1 to 9, n is an integer of 4 to 30, and a is 1 or more and 2000 or less , B is an integer from 1 to 2000, c is an integer from 1 to 2000, and d is an integer from 1 to 2000.
  17.  前記界面活性剤が、下記式(5)~(13)で表される化合物からなる群から選択される少なくとも1つであることを特徴とする請求項11乃至請求項16のいずれか一項に記載の油性組成物。
    Figure JPOXMLDOC01-appb-C000018

     上記式(5)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数、dは1以上2000以下の整数、eは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000019

     上記式(6)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000020

     上記式(7)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000021

     上記式(8)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000022

     上記式(9)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000023

     上記式(10)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000024

     上記式(11)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数、dは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000025

     上記式(12)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    Figure JPOXMLDOC01-appb-C000026

     上記式(13)中、aは1以上2000以下の整数、bは1以上2000以下の整数、cは1以上2000以下の整数である。
    17. The surfactant according to claim 11, wherein the surfactant is at least one selected from the group consisting of compounds represented by the following formulas (5) to (13). The oily composition as described.
    Figure JPOXMLDOC01-appb-C000018

    In the above formula (5), a is an integer from 1 to 2000, b is an integer from 1 to 2000, c is an integer from 1 to 2000, d is an integer from 1 to 2000, and e is from 1 to 2000. It is an integer.
    Figure JPOXMLDOC01-appb-C000019

    In the above formula (6), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000020

    In the formula (7), a is an integer of 1 to 2000, b is an integer of 1 to 2000, and c is an integer of 1 to 2000.
    Figure JPOXMLDOC01-appb-C000021

    In the above formula (8), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000022

    In the above formula (9), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000023

    In the above formula (10), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000024

    In the above formula (11), a is an integer from 1 to 2000, b is an integer from 1 to 2000, c is an integer from 1 to 2000, and d is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000025

    In the above formula (12), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000.
    Figure JPOXMLDOC01-appb-C000026

    In the above formula (13), a is an integer from 1 to 2000, b is an integer from 1 to 2000, and c is an integer from 1 to 2000.
  18.  水と、分析対象物と、前記分析対象物を検出可能にするための薬剤と、を含有する水性組成物と、請求項1乃至請求項17のいずれか一項に記載の油性組成物と、を少なくとも用いて、油中水型エマルジョンを形成するエマルジョン形成工程と、
     前記薬剤によって、前記油中水型エマルジョン中の複数の液滴のそれぞれにおいて反応を進行させ、前記分析対象物を検出可能にする反応工程と、
     前記油中水型エマルジョン中の前記複数の液滴のそれぞれについて前記分析対象物を検出する観察工程と、を有することを特徴とする分析方法。
    An aqueous composition containing water, an analyte, and a drug for enabling detection of the analyte, and the oily composition according to any one of claims 1 to 17, An emulsion forming step of forming a water-in-oil emulsion using at least
    A reaction step in which a reaction is allowed to proceed in each of a plurality of droplets in the water-in-oil emulsion by the drug, and the analyte can be detected; and
    An observation step of detecting the analysis object for each of the plurality of droplets in the water-in-oil emulsion.
  19.  前記エマルジョン形成工程が、膜乳化法によって前記油中水型エマルジョンを形成する工程であることを特徴とする請求項18に記載の分析方法。 The analysis method according to claim 18, wherein the emulsion forming step is a step of forming the water-in-oil emulsion by a membrane emulsification method.
  20.  前記分析対象物が、核酸であることを特徴とする請求項18または請求項19に記載の分析方法。 The analysis method according to claim 18 or 19, wherein the analysis object is a nucleic acid.
  21.  前記薬剤が、PCRによって前記核酸を増幅させるための増幅試薬と、前記核酸の増幅に応じて蛍光を発する蛍光試薬と、を含み、
     前記反応工程が、前記油中水型エマルジョンをサーマルサイクルに供し、前記核酸を増幅させる工程であることを特徴とする請求項20に記載の分析方法。
    The agent includes an amplification reagent for amplifying the nucleic acid by PCR, and a fluorescent reagent that emits fluorescence in response to amplification of the nucleic acid,
    21. The analysis method according to claim 20, wherein the reaction step is a step of subjecting the water-in-oil emulsion to a thermal cycle to amplify the nucleic acid.
  22.  前記観察工程が、油中水型エマルジョン中の前記複数の液滴のそれぞれについて、シグナルの検出と、前記液滴のサイズの計測と、を行う工程であることを特徴とする請求項18乃至請求項21のいずれか一項に記載の分析方法。 19. The observation step is a step of performing signal detection and measurement of the droplet size for each of the plurality of droplets in the water-in-oil emulsion. Item 22. The analysis method according to any one of Items 21.
  23.  前記複数の液滴のそれぞれのサイズと、前記シグナルが検出された液滴の数と、に基づいて、前記水性組成物中に含まれていた前記分析対象物の濃度を取得する濃度取得工程をさらに有することを特徴とする請求項22に記載の分析方法。 A concentration acquisition step of acquiring the concentration of the analyte contained in the aqueous composition based on the size of each of the plurality of droplets and the number of droplets in which the signal is detected; The analysis method according to claim 22, further comprising:
  24.  前記薬剤が添加物をさらに含むことを特徴とする請求項18乃至請求項21の何れか一項に記載の分析方法。 The analysis method according to any one of claims 18 to 21, wherein the drug further contains an additive.
  25.  前記添加物がウシ血清由来アルブミン(BSA)であることを特徴とする請求項24に記載の分析方法。 The analysis method according to claim 24, wherein the additive is bovine serum-derived albumin (BSA).
PCT/JP2018/020554 2017-05-31 2018-05-29 Oily composition and analysis method using same WO2018221513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-108242 2017-05-31
JP2017108242 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221513A1 true WO2018221513A1 (en) 2018-12-06

Family

ID=64454797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020554 WO2018221513A1 (en) 2017-05-31 2018-05-29 Oily composition and analysis method using same

Country Status (2)

Country Link
JP (1) JP2018203724A (en)
WO (1) WO2018221513A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019115300A (en) * 2017-12-27 2019-07-18 キヤノン株式会社 Oily composition, method using oily composition, sample analyzing method and droplets production device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005509436A (en) * 2001-11-16 2005-04-14 メディカル リサーチ カウンシル Emulsion composition
JP2009540829A (en) * 2006-06-19 2009-11-26 ザ ジョンズ ホプキンス ユニバーシティー Single molecule PCR on microparticles in water-in-oil emulsion
JP2014128217A (en) * 2012-12-28 2014-07-10 Sysmex Corp Nucleic acid amplification method and kit for nucleic acid amplification reaction
WO2016207379A1 (en) * 2015-06-26 2016-12-29 Samplix S.A.R.L. Targeted enrichment of long nucleotide sequences using microfluidic partitioning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005509436A (en) * 2001-11-16 2005-04-14 メディカル リサーチ カウンシル Emulsion composition
JP2009540829A (en) * 2006-06-19 2009-11-26 ザ ジョンズ ホプキンス ユニバーシティー Single molecule PCR on microparticles in water-in-oil emulsion
JP2014128217A (en) * 2012-12-28 2014-07-10 Sysmex Corp Nucleic acid amplification method and kit for nucleic acid amplification reaction
WO2016207379A1 (en) * 2015-06-26 2016-12-29 Samplix S.A.R.L. Targeted enrichment of long nucleotide sequences using microfluidic partitioning

Also Published As

Publication number Publication date
JP2018203724A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6188844B2 (en) Emulsion chemistry and assay for encapsulated droplets
Wagner et al. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants
US10240187B2 (en) Stabilized droplets for calibration and testing
JP6673938B2 (en) Digital PCR system and method using digital microfluidic technology
US20200171501A1 (en) Biological Process Systems and Methods Using Microfluidic Apparatus Having an Optimized Electrowetting Surface
US10150786B2 (en) Silicone surfactants for emulsion assays
US11162136B1 (en) Systems and methods for generation of emulsions with suitable clarity with applications of use
WO2015103320A1 (en) Methods, devices and systems for emulsion/droplet pcr
WO2020078466A1 (en) Phase-isolated water-in-oil transparent macroemulsion and application thereof
WO2018221513A1 (en) Oily composition and analysis method using same
WO2019131601A1 (en) Oil composition, sample analysis method, and droplet generation device
JP2020000190A (en) Oily composition and analytical method using the same
CA3167722A1 (en) Reverse transcription during template emulsification
JP2019208497A (en) Generating device, system, and analytical method
KR20220027889A (en) Systems and methods for stabilizing emulsions
WO2019031287A1 (en) Analysis system, analysis method, program, and storage medium
EP3697531A1 (en) Emulsions with improved stability
US20200157605A1 (en) Analysis system, analysis method, and storage medium
WO2019009297A1 (en) Analysis system, analysis method, program, and storage medium
US20200150135A1 (en) Analysis system, analysis method, and storage medium
JP2019170363A (en) Reaction apparatus and reaction method of target molecule
JP5878113B2 (en) Nucleic acid amplification method and kit for nucleic acid amplification reaction
US20230045126A1 (en) Devices and methods for determining nucleic acids using digital droplet pcr and related techniques
Ganguly et al. A Poisson-Independent Approach to Precision Nucleic Acid Quantification in Microdroplets
EP3959015A1 (en) Assembly for pressure controlled fluid release and its method therefore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809164

Country of ref document: EP

Kind code of ref document: A1