WO2019009279A1 - Simulated biological sample, endoscope evaluation system, and endoscope evaluation method - Google Patents

Simulated biological sample, endoscope evaluation system, and endoscope evaluation method Download PDF

Info

Publication number
WO2019009279A1
WO2019009279A1 PCT/JP2018/025179 JP2018025179W WO2019009279A1 WO 2019009279 A1 WO2019009279 A1 WO 2019009279A1 JP 2018025179 W JP2018025179 W JP 2018025179W WO 2019009279 A1 WO2019009279 A1 WO 2019009279A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
endoscope
image
simulation sample
irradiation
Prior art date
Application number
PCT/JP2018/025179
Other languages
French (fr)
Japanese (ja)
Inventor
裕基 庄野
成田 利治
明日香 向井
遼佑 伊藤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2019009279A1 publication Critical patent/WO2019009279A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine

Definitions

  • the present invention relates to a biological simulation sample, an endoscope evaluation system and an endoscope evaluation method, and more particularly to a biological simulation sample for fluorescence observation, an endoscope evaluation system using the same, and an endoscope evaluation method.
  • a method of injecting a fluorescent dye such as indocyanine green (ICG) into a patient and measuring the fluorescence intensity from the fluorescent dye in blood is known as a means for determining the presence or absence of blood flow in living tissue.
  • a standard sample that emits fluorescence of known intensity is used to standardize the measured intensity of fluorescence (see, for example, Patent Documents 1 and 2).
  • Patent Documents 1 and 2 are not suitable for use as simulated samples for performance evaluation and demonstration of endoscopes. That is, in the performance evaluation and demonstration of the endoscope, while using a simulated sample instead of the living tissue in the living body, the appearance of the fluorescence from the living tissue in the image acquired by the endoscope in the clinical scene is as real as possible It is required to reproduce in However, since the standard samples of Patent Documents 1 and 2 do not simulate living tissue, they can not achieve a near-visible appearance of fluorescence from living tissue in a clinical setting.
  • the present invention has been made in view of the above-described circumstances, and is a biological simulation sample, an endoscope evaluation system, and an endoscope capable of achieving a near-visible appearance of fluorescence from living tissue in a clinical scene.
  • the purpose is to provide an evaluation method.
  • One aspect of the present invention is a first member containing a fluorescent material and simulating the shape of a living tissue to be observed, and a second member covering the first member and simulating the optical characteristics of the surrounding tissue of the living tissue to be observed And is used for evaluation of imaging performance of an endoscope, and in the imaging performance evaluation, a biological simulation in which the first light containing the excitation wavelength of the fluorescent material and the second light not containing the excitation wavelength are irradiated It is a sample.
  • the shape of the living tissue to be observed is simulated by the first member, and the optical property of the peripheral tissue to be observed is simulated by the second member around the first member. Therefore, by irradiating the biological simulation sample with excitation light to cause the fluorescent material contained in the first member to emit light, it is possible to realize a near-visible appearance of fluorescence from biological tissue in a clinical situation.
  • such biological simulation samples can be used to accurately evaluate the imaging performance of the endoscope. That is, the endoscopic appearance of fluorescence from a living tissue is evaluated by observing the biological simulation sample with the endoscope while irradiating the biological simulation sample with the first light containing the excitation wavelength from the endoscope. be able to.
  • an endoscope of a living tissue in a state not emitting fluorescence by observing the living body simulation sample with the endoscope while irradiating the living body simulation sample with the second light not containing the excitation wavelength from the endoscope You can assess the appearance of In addition, by selectively irradiating the first light and the second light to the living body simulation sample, the difference in the appearance of the living tissue when generating fluorescence and the living tissue when not generating fluorescence Can be evaluated.
  • the second member has a layer structure in which two or more layers are stacked, and the two or more layers are different from each other in at least one of the light scattering property and the light absorption property. Good.
  • Such a second member more realistically simulates the optical characteristics of the surrounding tissue having a layered structure. This makes it possible to achieve a view closer to the view of the living tissue to be observed in the surrounding tissue having a layered structure.
  • the first member may simulate the shape of a vessel, for example, the running shape of a blood vessel or the shape of a lymphatic vessel. In this way, a closer view of fluorescence from vessels such as blood vessels or lymph vessels in a clinical setting can be realized by the first member simulating the shape of the vessel.
  • the fluorescent material may be indocyanine green (ICG).
  • ICG indocyanine green
  • ICG is often used for fluorescence observation of vessels in the clinic. Therefore, a closer view of the fluorescence from vessels in a clinical setting can be achieved by the first member including the ICG.
  • the first member is made of a gel material containing a fluorescent material
  • the second member is made of a cured resin material
  • the first member is embedded in the second member. It is also good.
  • a gel material that can be shaped into any shape, various biological tissue shapes can be simulated by the first member.
  • the gel material can be prevented from drying and the biological simulation sample can be stored for a long time.
  • the contrast value of the first member with respect to the second member is 1% or more
  • the second The contrast value of the first member relative to the second member may be less than 1% in the second image acquired by the endoscope under the light irradiation.
  • the biological simulation sample according to any of the above, the first light and the second light are alternatively irradiated to the biological simulation sample, and the irradiation of the first light is performed.
  • An endoscope which acquires a first image below and acquires a second image under irradiation of the second light, and a display which displays the first image and the second image so as to be mutually contrastable. It is an endoscope evaluation system provided with a device. According to this aspect, by comparing the first image and the second image displayed on the display device with each other, it is possible to perform between the irradiation of the first light and the irradiation of the second light. It is possible to evaluate the difference in the endoscopic appearance of fluorescence from living tissue.
  • the display device includes an arithmetic device that calculates a contrast value of the first member with respect to the second member in each of the first image and the second image, and the display device An evaluation value for quantitatively evaluating the difference in the appearance of fluorescence from the biological tissue by the endoscope between the time of irradiation and the time of irradiation of the second light is displayed, and the evaluation value is the contrast value It may be a value based on
  • Another aspect of the present invention is a first imaging step of imaging the biological simulation sample while irradiating the biological simulation sample according to any of the above with the first light, and acquiring a first image;
  • the method further includes an operation step of calculating a contrast value of the first member with respect to the second member in each of the first image and the second image, and in the evaluation step, based on the contrast value. A difference in the appearance of fluorescence from the living tissue by the endoscope may be evaluated.
  • ADVANTAGE OF THE INVENTION According to this invention, it is effective in the ability to implement
  • FIG. 1A It is a perspective view of a living body simulation sample concerning one embodiment of the present invention. It is a side view of the biological simulation sample of FIG. 1A. It is a top view of the living body simulation sample which shows the modification of the shape of the 1st member of Drawing 1A. It is a top view of the living body simulation sample which shows the other modification of the shape of the 1st member of Drawing 1A. It is a perspective view of the modification of a living body simulation sample of Drawing 1A. It is a side view of a living body simulation sample of Drawing 4A. It is a perspective view of the other modification of the biological simulation sample of FIG. 1A. It is the schematic of the endoscope evaluation system which concerns on one Embodiment of this invention.
  • the living body simulation sample 1 is used as a subject instead of a living tissue in a living body in the evaluation and demonstration of the imaging performance of an endoscope.
  • the biological simulation sample 1 includes the first member 2 simulating the shape of the biological tissue to be observed, and the optical characteristics of the surrounding tissue of the biological tissue to be observed covering the first member 2 And a second member 3 that simulates.
  • the first member 2 is made of a gel material containing indocyanine green (ICG).
  • ICG indocyanine green
  • a gel material for example, an agar gel, a gelatin gel, a two-component mixed gel, or the like is used.
  • the first member 2 has a shape that simulates the traveling shape of a blood vessel to be observed.
  • the first member 2 has a branch structure in which branching from one linear structure to a plurality of linear structures is repeated. In FIG. 1A, the shape of the first member 2 is simplified.
  • the second member 3 is made of a block-like or sheet-like cured resin material, and the first member 2 is embedded in the second member 3.
  • resin material silicone resin, polyurethane resin, epoxy resin or the like is used.
  • the second member 3 is the same as or similar to the surrounding tissue to be observed in at least one of the light absorption property and the light scattering property.
  • Such a biological simulation sample 1 is manufactured, for example, by the following method.
  • the gel material is uniformly mixed with ICG, the gel material is filled in a syringe, and the gel material is discharged in a thread form from the syringe, thereby forming the gel material into a shape that simulates the traveling shape of a blood vessel.
  • a liquid resin material is poured into a mold, the entire molded gel material is placed inside the resin material, and the resin material is cured. Thereby, the biological simulation sample 1 shown in FIG. 1A is manufactured.
  • the biological simulation sample 1 is disposed to face the tip of the endoscope, the excitation light (first light) is irradiated to the biological simulation sample 1 from the endoscope, and the fluorescence emitted from the ICG contained in the first member 2 (A wavelength of about 805 nm) is observed by an endoscope.
  • the excitation light is light including a wavelength near the excitation wavelength 774 nm of the ICG.
  • a first simulated image (first image) simulating an image obtained by imaging fluorescence from a blood vessel in the living body to which ICG is administered in a clinical scene is acquired by the endoscope.
  • the first simulated image of the acquired biological simulation sample 1 is displayed on the display.
  • the user evaluates the imaging performance of the endoscope in clinical use based on the first simulated image displayed on the display.
  • the living body simulation sample 1 is irradiated with normal light (second light) from the endoscope 4, and reflected light of the normal light from the first member 2 and the second member 3 is observed by the endoscope.
  • the ordinary light is light which does not include the excitation wavelength of ICG, and is, for example, white light.
  • a second simulated image (second image) simulating an image of blood vessels in a living body under normal light irradiation in a clinical situation is acquired by the endoscope.
  • the first member 2 simulates the traveling shape of the blood vessel in the living body
  • fluorescence is emitted in the same shape as the traveling shape of the blood vessel.
  • the second member 3 around the first member 2 simulates the optical properties of the surrounding tissue of the blood vessel
  • the fluorescence emitted from the first member 2 is the same as in living tissue in the second member 3 Spread out.
  • the first simulated image (first image) of the biological simulation sample 1 a near-visible appearance of the fluorescence observed by the endoscope in the clinical scene is realized.
  • the user can accurately evaluate the appearance of fluorescence in the image when the endoscope is used clinically based on the first simulated image on the display.
  • the first member 2 is made of a gel material that can be formed into an arbitrary shape, the shape of any living tissue including a living tissue having a complicated shape such as a traveling shape of a blood vessel Has the advantage of being able to simulate
  • the gel material constituting the first member 2 is not suitable for long-term storage since the characteristics change due to drying etc., the cured resin material constituting the second member 3 is stable against air and moisture. Material and suitable for long-term storage. Therefore, covering the entire first member 2 with the second member 3 has an advantage of being able to provide the biological simulation sample 1 that can be stored for a long time while maintaining the quality of the fluorescent material.
  • the optical characteristics are such that the first member 2 and the second member 3 have a contrast value of 1% or more in the first simulated image and a contrast value of less than 1% in the second simulated image. It is preferable to have The contrast value is the contrast value of the first member 2 with respect to the second member 3 in each image, and is defined, for example, by the following equation (1).
  • the contrast value is controlled, for example, by adjusting the concentration of ICG in the first member 2 and the light scattering / light absorption intensity of the second member 3.
  • Contrast value (brightness of first member ⁇ brightness of second member) / (brightness of second member + brightness of first member) ⁇ 100 (1) According to this configuration, it is possible to provide the user with the first simulated image and the second simulated image capable of more accurate evaluation of the appearance of fluorescence by the endoscope.
  • the first member 2 simulates the traveling shape of the blood vessel.
  • the shape of another living tissue may be simulated.
  • the first member 2 may simulate the shape of a lymphatic vessel and may simulate the shape of another vessel such as a bile duct.
  • the first member 2 may simulate the shape of a tumor.
  • ICG is used as the fluorescent material, but the type of fluorescent material is not limited to this, and other types of fluorescent materials may be used.
  • fluorescent material quantum dots or protoporphyrin IX (ppIX) may be used as the fluorescent material.
  • ppIX protoporphyrin IX
  • ppIX protoporphyrin IX
  • the single first member 2 is disposed in the second member 3 having a single-layer structure
  • the number of first members 2 and the number of layers constituting the second member 3 can be changed as appropriate.
  • the plurality of first members 21 and 22 may be disposed at mutually different depths in the second member 3 having a single-layer structure.
  • the shapes of the plurality of first members 21 and 22 may be identical to each other, or may be different from each other as shown in FIG. 4A.
  • the second member 3 may have a layered structure in which two or more layers 3 a and 3 b are stacked.
  • the 2nd member 3 of 2 layer structure is shown by FIG. 5 as an example.
  • Surrounding tissues such as blood vessels, lymph vessels, and tumors have a layered structure composed of multiple layers having different light scattering properties and light absorption properties.
  • the layers 3a and 3b of the second member 3 are different from each other in at least one of the light scattering property and the light absorption property so as to simulate the optical property of each layer (for example, the mucous layer and muscle layer) of the surrounding tissue. . This makes it possible to achieve an appearance closer to the appearance of fluorescence from the observation target in a clinical setting.
  • the layer 3a, 3b have respectively about 0.1 mm -1 or more 5 mm -1 or less of the light scattering coefficient in the wavelength range of visible light.
  • the layers 3a and 3b have light absorption characteristics that simulate the absorption spectrum of blood, and each have a light absorption coefficient of more than about 0 mm -1 and 20 mm -1 or less in the visible light wavelength range.
  • the light scattering coefficient and the light absorption coefficient of the layer 3b simulating the layer on the deep side are preferably larger than the light scattering coefficient and the light absorption coefficient of the layer 3a simulating the layer on the front surface, respectively.
  • the first member 2 may be disposed only in one layer, and is disposed between two adjacent layers. It may be provided, or may be disposed across multiple layers. Alternatively, the first member 2 may be disposed in each of the layers 3a and 3b.
  • the endoscope evaluation system 10 is connected to the living body simulation sample 1, an optical endoscope 4 for observing the living body simulation sample 1, and the endoscope 4 as shown in FIG. 6. And a display (display device) 5.
  • Reference numeral 6 is a control device connected to the endoscope 4 to control the endoscope 4.
  • the biological simulation sample 1 may be any of the biological simulation samples 1 shown in FIGS. 1A to 5.
  • the endoscope 4 selectively irradiates the biological simulation sample 1 with the first light including the ICG excitation wavelength (around 774 nm) and the second light not including the ICG excitation wavelength.
  • the endoscope 4 includes an excitation light source that emits excitation light and a white light source that emits white normal light.
  • the endoscope 4 irradiates the biological simulation sample 1 with excitation light as a first light, and irradiates the biological simulation sample 1 with normal light as a second light. Switching between the first light and the second light is performed, for example, by turning on and off the excitation light source and the white light source.
  • the first light may be monochromatic light or may be light including wavelengths other than the excitation wavelength.
  • the second light may be monochromatic light instead of white light.
  • the image acquired by the endoscope 4 is transmitted from the endoscope 4 to the display 5 and displayed on the display 5.
  • step S1 of irradiating the first light from the endoscope 4 to the biological simulation sample 1 and the first light are irradiated.
  • irradiation of the second light Step S4 of acquiring a second image of the living body simulation sample 1 by the endoscope 4 and step S5 of evaluating the imaging performance of the endoscope 4 based on the first image and the second image.
  • the first image acquired in step S2 is an image including the fluorescence of ICG from the first member 2 as shown in FIG. 8A.
  • the second image acquired in step S4 is an image that does not contain or hardly contains ICG fluorescence, as shown in FIG. 8B.
  • step S5 the first image and the second image are displayed on the display 5 in a mutually contrastable manner. For example, the first image and the second image are displayed in parallel on the display 5.
  • the user can evaluate the endoscopic view of the fluorescence from the blood vessel based on the first image.
  • the user compares the first image and the second image with each other to find out of the fluorescence from the blood vessels between the irradiation of the first light and the irradiation of the second light.
  • the difference in the appearance by the endoscope 4 can be qualitatively evaluated.
  • Steps S1 and S2 may be performed after steps S3 and S4.
  • the endoscope evaluation system 10 may further include an arithmetic device that calculates the contrast value of each of the first image and the second image.
  • the arithmetic device is, for example, a processor such as a central processing unit (CPU) incorporated in the control device 6.
  • the arithmetic device processes the first image and the second image transmitted from the endoscope 4 to the control device 6 in accordance with a program stored in the storage device in the control device 6.
  • the computing device calculates the contrast value of the first member 2 with respect to the second member 3 in the first image.
  • the computing device also calculates the contrast value of the first member 2 with respect to the second member 3 in the second image.
  • the calculation area A for calculating the contrast value is a one-dimensional area including both the first member 2 and the second member 3 as shown in FIGS. 8A and 8B.
  • the calculation area A may be a two-dimensional area including both of the first member 2 and the second member 3.
  • 10A and 10B show the brightness in the calculation area A of FIGS. 8A and 8B.
  • the contrast value is calculated from the above equation (1) based on, for example, the brightness I1 of the first member 2 and the brightness I2 of the second member 3 in each image.
  • FIG. 9 shows an endoscope evaluation method by the endoscope evaluation system provided with a computing device.
  • the comparison of step S6 for calculating the contrast value from the first image, step S7 for calculating the contrast value from the second image, and the contrast value And S 8 of evaluating the imaging performance of the endoscope 4 based on Steps S1 and S2 may be performed after steps S3 and S4.
  • an evaluation value based on the contrast value of each of the first and second images is displayed on the display 5 in addition to or in place of the first and second images.
  • the evaluation value is a value for quantitatively evaluating the difference in the appearance of the fluorescence from the blood vessel by the endoscope 4 between the irradiation time of the first light and the irradiation time of the second light.
  • the contrast values of the first image and the second image are displayed on the display 5 as they are.
  • the user compares the two contrast values displayed on the display 5 with each other to obtain an endoscope of fluorescence from the blood vessels between the first light irradiation and the second light irradiation.
  • the difference in appearance due to 4 can be quantitatively evaluated.
  • the evaluation value may be another value, for example, the ratio of the contrast value of the first image to the contrast value of the second image.

Abstract

A simulated biological sample (1) comprises: a first member (2) that includes a fluorescent material and simulates the shape of biological tissue to be observed; and a second member (3) that covers the first member (2) and simulates the optical properties of tissue surrounding the biological tissue to be observed. The simulated biological sample (1) is for use in imaging performance evaluations of endoscopes. During such an imaging performance evaluation, first light and second light are shined, the first light including a wavelength that excites the fluorescent material and the second light not including an excitation wavelength.

Description

生体模擬試料、内視鏡評価システムおよび内視鏡評価方法Living body simulation sample, endoscope evaluation system and endoscope evaluation method
 本発明は、生体模擬試料、内視鏡評価システムおよび内視鏡評価方法に関し、特に蛍光観察用の生体模擬試料およびこれを使用した内視鏡評価システムおよび内視鏡評価方法に関するものである。 The present invention relates to a biological simulation sample, an endoscope evaluation system and an endoscope evaluation method, and more particularly to a biological simulation sample for fluorescence observation, an endoscope evaluation system using the same, and an endoscope evaluation method.
 従来、生体組織内の血流の有無を判定する手段として、インドシアニングリーン(ICG)のような蛍光色素を患者に注射し、血液内の蛍光色素からの蛍光強度を測定する方法が知られている。この方法において、蛍光の測定強度を基準化するために、既知の強度の蛍光を発する標準試料が用いられている(例えば、特許文献1,2参照。)。 Conventionally, a method of injecting a fluorescent dye such as indocyanine green (ICG) into a patient and measuring the fluorescence intensity from the fluorescent dye in blood is known as a means for determining the presence or absence of blood flow in living tissue. There is. In this method, a standard sample that emits fluorescence of known intensity is used to standardize the measured intensity of fluorescence (see, for example, Patent Documents 1 and 2).
特開2005-300540号公報JP 2005-300540 A 特開2013-96920号公報JP, 2013-96920, A
 しかしながら、特許文献1,2に開示されている標準試料は、内視鏡の性能評価やデモンストレーション用の模擬試料としての用途には適さない。すなわち、内視鏡の性能評価やデモンストレーションでは、生体内の生体組織の代わりに模擬試料を使用しつつ、臨床場面で内視鏡によって取得される画像内の生体組織からの蛍光の見えをできるだけリアルに再現することが求められる。しかしながら、特許文献1,2の標準試料は、生体組織を模擬したものではないため、臨床場面での生体組織からの蛍光の見えに近い見えを実現することができない。 However, the standard samples disclosed in Patent Documents 1 and 2 are not suitable for use as simulated samples for performance evaluation and demonstration of endoscopes. That is, in the performance evaluation and demonstration of the endoscope, while using a simulated sample instead of the living tissue in the living body, the appearance of the fluorescence from the living tissue in the image acquired by the endoscope in the clinical scene is as real as possible It is required to reproduce in However, since the standard samples of Patent Documents 1 and 2 do not simulate living tissue, they can not achieve a near-visible appearance of fluorescence from living tissue in a clinical setting.
 本発明は、上述した事情に鑑みてなされたものであって、臨床場面での生体組織からの蛍光の見えに近い見えを実現することができる生体模擬試料、内視鏡評価システムおよび内視鏡評価方法を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and is a biological simulation sample, an endoscope evaluation system, and an endoscope capable of achieving a near-visible appearance of fluorescence from living tissue in a clinical scene. The purpose is to provide an evaluation method.
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、蛍光材料を含み観察対象の生体組織の形状を模擬した第1部材と、該第1部材を覆い前記観察対象の生体組織の周辺組織の光学特性を模擬した第2部材とを備え、内視鏡の撮像性能評価に用いられ、該撮像性能評価において、前記蛍光材料の励起波長を含む第1の光および前記励起波長を含まない第2の光が照射される生体模擬試料である。
In order to achieve the above object, the present invention provides the following means.
One aspect of the present invention is a first member containing a fluorescent material and simulating the shape of a living tissue to be observed, and a second member covering the first member and simulating the optical characteristics of the surrounding tissue of the living tissue to be observed And is used for evaluation of imaging performance of an endoscope, and in the imaging performance evaluation, a biological simulation in which the first light containing the excitation wavelength of the fluorescent material and the second light not containing the excitation wavelength are irradiated It is a sample.
 本態様によれば、観察対象の生体組織の形状が第1部材によって模擬され、観察対象の周辺組織の光学特性が第1部材の周囲の第2部材によって模擬される。したがって、生体模擬試料に励起光を照射して第1部材に含まれる蛍光材料を発光させることで、臨床場面での生体組織からの蛍光の見えに近い見えを実現することができる。 According to this aspect, the shape of the living tissue to be observed is simulated by the first member, and the optical property of the peripheral tissue to be observed is simulated by the second member around the first member. Therefore, by irradiating the biological simulation sample with excitation light to cause the fluorescent material contained in the first member to emit light, it is possible to realize a near-visible appearance of fluorescence from biological tissue in a clinical situation.
 また、このような生体模擬試料を使用して内視鏡の撮像性能を正確に評価することができる。すなわち、励起波長を含む第1の光を内視鏡から生体模擬試料に照射しながら該生体模擬試料を内視鏡で観察することによって、生体組織からの蛍光の内視鏡による見えを評価することができる。一方、励起波長を含まない第2の光を内視鏡から生体模擬試料に照射しながら該生体模擬試料を内視鏡で観察することによって、蛍光を発していない状態の生体組織の内視鏡による見えを評価することができる。また、第1の光と第2の光を択一的に生体模擬試料に照射することによって、蛍光を発生しているときの生体組織と蛍光を発生していないときの生体組織の見えの違いを評価することができる。 In addition, such biological simulation samples can be used to accurately evaluate the imaging performance of the endoscope. That is, the endoscopic appearance of fluorescence from a living tissue is evaluated by observing the biological simulation sample with the endoscope while irradiating the biological simulation sample with the first light containing the excitation wavelength from the endoscope. be able to. On the other hand, an endoscope of a living tissue in a state not emitting fluorescence by observing the living body simulation sample with the endoscope while irradiating the living body simulation sample with the second light not containing the excitation wavelength from the endoscope You can assess the appearance of In addition, by selectively irradiating the first light and the second light to the living body simulation sample, the difference in the appearance of the living tissue when generating fluorescence and the living tissue when not generating fluorescence Can be evaluated.
 上記態様においては、前記第2部材は、2以上の層が積層された層構造を有し、前記2以上の層が、光散乱特性および光吸収特性のうち少なくとも一方において相互に異なっていてもよい。
 このような第2部材によって、層構造を有する周辺組織の光学特性がよりリアルに模擬される。これにより、層構造を有する周辺組織内の観察対象の生体組織の見えにさらに近い見えを実現することができる。
In the above aspect, the second member has a layer structure in which two or more layers are stacked, and the two or more layers are different from each other in at least one of the light scattering property and the light absorption property. Good.
Such a second member more realistically simulates the optical characteristics of the surrounding tissue having a layered structure. This makes it possible to achieve a view closer to the view of the living tissue to be observed in the surrounding tissue having a layered structure.
 上記態様においては、前記第1部材が、脈管の形状、例えば、血管の走行形状またはリンパ管の形状を模擬していてもよい。
 このようにすることで、臨床場面での血管またはリンパ管のような脈管からの蛍光の見えにより近い見えを、脈管の形状を模擬した第1部材によって実現することができる。
In the above aspect, the first member may simulate the shape of a vessel, for example, the running shape of a blood vessel or the shape of a lymphatic vessel.
In this way, a closer view of fluorescence from vessels such as blood vessels or lymph vessels in a clinical setting can be realized by the first member simulating the shape of the vessel.
 上記態様においては、前記蛍光材料が、インドシアニングリーン(ICG)であってもよい。
 臨床において脈管の蛍光観察にICGが使用されることが多い。したがって、臨床場面での脈管からの蛍光の見えにより近い見えを、ICGを含む第1部材によって実現することができる。
In the above aspect, the fluorescent material may be indocyanine green (ICG).
ICG is often used for fluorescence observation of vessels in the clinic. Therefore, a closer view of the fluorescence from vessels in a clinical setting can be achieved by the first member including the ICG.
 上記態様においては、前記第1部材が、蛍光材料を含むゲル材料からなり、前記第2部材が、硬化した樹脂材料からなり、前記第1部材が、前記第2部材内に包埋されていてもよい。
 任意の形状に成形可能なゲル材料を使用することで、様々な生体組織の形状を第1部材によって模擬することができる。また、空気および湿気に対して安定である硬化した樹脂材料内にゲル材料を包埋することで、ゲル材料の乾燥を防ぎ、生体模擬試料の長期保存が可能となる。
In the above aspect, the first member is made of a gel material containing a fluorescent material, the second member is made of a cured resin material, and the first member is embedded in the second member. It is also good.
By using a gel material that can be shaped into any shape, various biological tissue shapes can be simulated by the first member. In addition, by embedding the gel material in a cured resin material that is stable against air and moisture, the gel material can be prevented from drying and the biological simulation sample can be stored for a long time.
 上記態様においては、前記第1の光の照射下で前記内視鏡によって取得された第1の画像において、前記第2部材に対する前記第1部材のコントラスト値が1%以上であり、前記第2の光の照射下で前記内視鏡によって取得された第2の画像において、前記第2部材に対する前記第1部材のコントラスト値が1%未満であってもよい。
 第1の画像のコントラスト値が上記条件を満たすことによって、臨床場面での生体組織からの蛍光の見えにより近い見えを実現することができる。第2の画像のコントラスト値が上記条件を満たすことによって、臨床場面での生体組織の見えにより近い見えを実現することができる。
In the above aspect, in the first image acquired by the endoscope under the irradiation of the first light, the contrast value of the first member with respect to the second member is 1% or more, and the second The contrast value of the first member relative to the second member may be less than 1% in the second image acquired by the endoscope under the light irradiation.
When the contrast value of the first image satisfies the above condition, it is possible to realize a closer appearance to the appearance of the fluorescence from the living tissue in the clinical scene. When the contrast value of the second image satisfies the above condition, it is possible to achieve a closer appearance to the appearance of a living tissue in a clinical scene.
 本発明の他の態様は、上記いずれかに記載の生体模擬試料と、前記第1の光および前記第2の光を択一的に前記生体模擬試料に照射し、前記第1の光の照射下で第1の画像を取得し前記第2の光の照射下で第2の画像を取得する内視鏡と、前記第1の画像および前記第2の画像を相互に対比可能に表示する表示装置とを備える内視鏡評価システムである。
 本態様によれば、表示装置に表示された第1の画像と第2の画像とを相互に比較することによって、第1の光の照射時と第2の光の照射時との間での生体組織から蛍光の内視鏡による見えの違いを評価することができる。
In another aspect of the present invention, the biological simulation sample according to any of the above, the first light and the second light are alternatively irradiated to the biological simulation sample, and the irradiation of the first light is performed. An endoscope which acquires a first image below and acquires a second image under irradiation of the second light, and a display which displays the first image and the second image so as to be mutually contrastable. It is an endoscope evaluation system provided with a device.
According to this aspect, by comparing the first image and the second image displayed on the display device with each other, it is possible to perform between the irradiation of the first light and the irradiation of the second light. It is possible to evaluate the difference in the endoscopic appearance of fluorescence from living tissue.
 上記態様においては、前記第1の画像および前記第2の画像の各々における前記第2部材に対する前記第1部材のコントラスト値を算出する演算装置を備え、前記表示装置が、前記第1の光の照射時と前記第2の光の照射時との間での前記内視鏡による前記生体組織からの蛍光の見えの違いを定量的に評価する評価値を表示し、該評価値が前記コントラスト値に基づく値であってもよい。 In the above aspect, the display device includes an arithmetic device that calculates a contrast value of the first member with respect to the second member in each of the first image and the second image, and the display device An evaluation value for quantitatively evaluating the difference in the appearance of fluorescence from the biological tissue by the endoscope between the time of irradiation and the time of irradiation of the second light is displayed, and the evaluation value is the contrast value It may be a value based on
 本発明の他の態様は、上記いずれかに記載の生体模擬試料に前記第1の光を照射しながら該生体模擬試料を撮像し、第1の画像を取得する第1の撮像ステップと、前記生体模擬試料に前記第2の光を照射しながら該生体模擬試料を撮像し、第2の画像を取得する第2の撮像ステップと、前記第1の画像および前記第2の画像に基づいて、前記第1の光の照射時と前記第2の光の照射時との間での前記内視鏡による前記観察対象の生体組織からの蛍光の見えの違いを評価する評価ステップとを含む内視鏡評価方法である。 Another aspect of the present invention is a first imaging step of imaging the biological simulation sample while irradiating the biological simulation sample according to any of the above with the first light, and acquiring a first image; A second imaging step of imaging the biological simulation sample while irradiating the biological simulation sample with the second light and acquiring a second image; and based on the first image and the second image, An evaluation step of evaluating the difference in the appearance of the fluorescence from the living tissue of the observation object by the endoscope between the irradiation of the first light and the irradiation of the second light It is a mirror evaluation method.
 上記態様においては、前記第1の画像および前記第2の画像の各々における前記第2部材に対する前記第1部材のコントラスト値を算出する演算ステップを含み、前記評価ステップにおいて、前記コントラスト値に基づいて前記内視鏡による前記生体組織からの蛍光の見えの違いを評価してもよい。 In the above aspect, the method further includes an operation step of calculating a contrast value of the first member with respect to the second member in each of the first image and the second image, and in the evaluation step, based on the contrast value. A difference in the appearance of fluorescence from the living tissue by the endoscope may be evaluated.
 本発明によれば、臨床場面での生体組織からの蛍光の見えに近い見えを実現することができるという効果を奏する。 ADVANTAGE OF THE INVENTION According to this invention, it is effective in the ability to implement | achieve the appearance close | similar to the appearance of the fluorescence from the biological tissue in a clinical scene.
本発明の一実施形態に係る生体模擬試料の斜視図である。It is a perspective view of a living body simulation sample concerning one embodiment of the present invention. 図1Aの生体模擬試料の側面図である。It is a side view of the biological simulation sample of FIG. 1A. 図1Aの第1部材の形状の変形例を示す生体模擬試料の平面図である。It is a top view of the living body simulation sample which shows the modification of the shape of the 1st member of Drawing 1A. 図1Aの第1部材の形状の他の変形例を示す生体模擬試料の平面図である。It is a top view of the living body simulation sample which shows the other modification of the shape of the 1st member of Drawing 1A. 図1Aの生体模擬試料の変形例の斜視図である。It is a perspective view of the modification of a living body simulation sample of Drawing 1A. 図4Aの生体模擬試料の側面図である。It is a side view of a living body simulation sample of Drawing 4A. 図1Aの生体模擬試料の他の変形例の斜視図である。It is a perspective view of the other modification of the biological simulation sample of FIG. 1A. 本発明の一実施形態に係る内視鏡評価システムの概略図である。It is the schematic of the endoscope evaluation system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内視鏡評価方法を示すフローチャートである。It is a flowchart which shows the endoscope evaluation method which concerns on one Embodiment of this invention. 図7の内視鏡評価方法において取得される第1の画像を示す図である。It is a figure which shows the 1st image acquired in the endoscope evaluation method of FIG. 図7の内視鏡評価方法において取得される第2の画像を示す図である。It is a figure which shows the 2nd image acquired in the endoscope evaluation method of FIG. 本発明の他の実施形態に係る内視鏡評価方法を示すフローチャートである。It is a flowchart which shows the endoscope evaluation method which concerns on other embodiment of this invention. 図9の内視鏡評価方法において算出される第1の画像のコントラスト値を説明する図である。It is a figure explaining the contrast value of the 1st image computed in the endoscope evaluation method of FIG. 図9の内視鏡評価方法において算出される第2の画像のコントラスト値を説明する図である。It is a figure explaining the contrast value of the 2nd image computed in the endoscope evaluation method of FIG.
 以下に、本発明の一実施形態に係る生体模擬試料1について図面を参照して説明する。
 本実施形態に係る生体模擬試料1は、内視鏡の撮像性能の評価やデモンストレーションにおいて、生体内の生体組織の代わりに被写体として使用されるものである。生体模擬試料1は、図1Aおよび図1Bに示されるように、観察対象の生体組織の形状を模擬した第1部材2と、第1部材2を覆い観察対象の生体組織の周辺組織の光学特性を模擬した第2部材3とを備えている。
Hereinafter, a biological simulation sample 1 according to an embodiment of the present invention will be described with reference to the drawings.
The living body simulation sample 1 according to the present embodiment is used as a subject instead of a living tissue in a living body in the evaluation and demonstration of the imaging performance of an endoscope. As shown in FIGS. 1A and 1B, the biological simulation sample 1 includes the first member 2 simulating the shape of the biological tissue to be observed, and the optical characteristics of the surrounding tissue of the biological tissue to be observed covering the first member 2 And a second member 3 that simulates.
 第1部材2は、インドシアニングリーン(ICG)を含むゲル材料からなる。ゲル材料としては、例えば、寒天ゲル、ゼラチンゲル、または2液混合型ゲル等が用いられる。第1部材2は、観察対象である血管の走行形状を模擬した形状を有している。例えば、第1部材2は、1本の線状構造から複数本の線状構造への分岐を繰り返す分岐構造を有している。図1Aにおいて、第1部材2の形状は簡略化されている。 The first member 2 is made of a gel material containing indocyanine green (ICG). As a gel material, for example, an agar gel, a gelatin gel, a two-component mixed gel, or the like is used. The first member 2 has a shape that simulates the traveling shape of a blood vessel to be observed. For example, the first member 2 has a branch structure in which branching from one linear structure to a plurality of linear structures is repeated. In FIG. 1A, the shape of the first member 2 is simplified.
 第2部材3は、ブロック状またはシート状の硬化した樹脂材料からなり、第2部材3内に第1部材2が包埋されている。樹脂材料としては、シリコーン樹脂、ポリウレタン樹脂、またはエポキシ樹脂等が用いられる。第2部材3は、光吸収特性および光散乱特性のうち少なくとも一方において、観察対象の周辺組織と同一または類似している。 The second member 3 is made of a block-like or sheet-like cured resin material, and the first member 2 is embedded in the second member 3. As the resin material, silicone resin, polyurethane resin, epoxy resin or the like is used. The second member 3 is the same as or similar to the surrounding tissue to be observed in at least one of the light absorption property and the light scattering property.
 このような生体模擬試料1は、例えば、以下の方法によって製造される。
 ゲル材料にICGを均一に混合し、ゲル材料をシリンジに充填し、シリンジからゲル材料を糸状に吐出することによって、ゲル材料を血管の走行形状を模擬した形状に成形する。次に、液状の樹脂材料を鋳型内に注入し、成形されたゲル材料全体を樹脂材料の内部に配置し、樹脂材料を硬化させる。これにより、図1Aに示される生体模擬試料1が製造される。
Such a biological simulation sample 1 is manufactured, for example, by the following method.
The gel material is uniformly mixed with ICG, the gel material is filled in a syringe, and the gel material is discharged in a thread form from the syringe, thereby forming the gel material into a shape that simulates the traveling shape of a blood vessel. Next, a liquid resin material is poured into a mold, the entire molded gel material is placed inside the resin material, and the resin material is cured. Thereby, the biological simulation sample 1 shown in FIG. 1A is manufactured.
 次に、このように構成された生体模擬試料1の使用方法について説明する。
 内視鏡の先端に対向するように生体模擬試料1を配置し、内視鏡から生体模擬試料1に励起光(第1の光)を照射し、第1部材2に含まれるICGが発する蛍光(波長805nm付近)を内視鏡によって観察する。励起光は、ICGの励起波長774nm付近の波長を含む光である。これにより、臨床場面でICGを投与された生体内の血管からの蛍光を撮影した画像を模擬した第1の模擬画像(第1の画像)が、内視鏡によって取得される。取得された生体模擬試料1の第1の模擬画像は、ディスプレイに表示される。ユーザは、ディスプレイに表示された第1の模擬画像に基づいて、臨床での使用時の内視鏡の撮像性能を評価する。
Next, a method of using the biological simulation sample 1 configured as described above will be described.
The biological simulation sample 1 is disposed to face the tip of the endoscope, the excitation light (first light) is irradiated to the biological simulation sample 1 from the endoscope, and the fluorescence emitted from the ICG contained in the first member 2 (A wavelength of about 805 nm) is observed by an endoscope. The excitation light is light including a wavelength near the excitation wavelength 774 nm of the ICG. As a result, a first simulated image (first image) simulating an image obtained by imaging fluorescence from a blood vessel in the living body to which ICG is administered in a clinical scene is acquired by the endoscope. The first simulated image of the acquired biological simulation sample 1 is displayed on the display. The user evaluates the imaging performance of the endoscope in clinical use based on the first simulated image displayed on the display.
 また、内視鏡4から生体模擬試料1に通常光(第2の光)を照射し、第1部材2および第2部材3からの通常光の反射光を内視鏡によって観察する。通常光は、ICGの励起波長を含まない光であり、例えば白色光である。これにより、臨床場面で生体内の血管を通常光の照射下で撮影した画像を模擬した第2の模擬画像(第2の画像)が、内視鏡によって取得される。 Further, the living body simulation sample 1 is irradiated with normal light (second light) from the endoscope 4, and reflected light of the normal light from the first member 2 and the second member 3 is observed by the endoscope. The ordinary light is light which does not include the excitation wavelength of ICG, and is, for example, white light. As a result, a second simulated image (second image) simulating an image of blood vessels in a living body under normal light irradiation in a clinical situation is acquired by the endoscope.
 この場合に、本実施形態によれば、第1部材2が生体内の血管の走行形状を模擬しているので、生体模擬試料1内では、血管の走行形状と同様の形状に蛍光が光る。さらに、第1部材2の周囲の第2部材3が血管の周辺組織の光学特性を模擬しているので、第1部材2から発せられた蛍光は、第2部材3内において生体組織内と同様に広がる。これにより、生体模擬試料1の第1の模擬画像(第1の画像)において、臨床場面で内視鏡によって観察される蛍光の見えに近い見えが実現される。したがって、ユーザは、ディスプレイ上の第1の模擬画像に基づいて、内視鏡を臨床で使用したときの画像内の蛍光の見えを正確に評価することができる。
 また、励起光の照射下での第1の模擬画像と通常光の照射下での第2の模擬画像とを比較することによって、蛍光観察時と通常観察時の血管の走行形状の内視鏡による見えの違いを評価することができる。
In this case, according to the present embodiment, since the first member 2 simulates the traveling shape of the blood vessel in the living body, in the living body simulation sample 1, fluorescence is emitted in the same shape as the traveling shape of the blood vessel. Furthermore, since the second member 3 around the first member 2 simulates the optical properties of the surrounding tissue of the blood vessel, the fluorescence emitted from the first member 2 is the same as in living tissue in the second member 3 Spread out. As a result, in the first simulated image (first image) of the biological simulation sample 1, a near-visible appearance of the fluorescence observed by the endoscope in the clinical scene is realized. Thus, the user can accurately evaluate the appearance of fluorescence in the image when the endoscope is used clinically based on the first simulated image on the display.
In addition, by comparing the first simulated image under the irradiation of the excitation light and the second simulated image under the irradiation of the normal light, an endoscope of the traveling shape of the blood vessel at the time of fluorescence observation and at the time of normal observation It is possible to evaluate the difference in appearance due to
 また、第1部材2は、任意の形状に成形可能であるゲル材料からなるので、血管の走行形状のような複雑な形状の生体組織をはじめとする任意の生体組織の形状を第1部材2によって模擬することができるという利点がある。
 また、第1部材2を構成するゲル材料は、乾燥等によって特性が変化するため長期保存には不向きであるが、第2部材3を構成する硬化した樹脂材料は、空気および湿気に対して安定な材料であり長期保存に適している。したがって、第1部材2全体を第2部材3によって覆い固めることで、蛍光材料の品質を維持しながら長期保存が可能な生体模擬試料1を提供することができるという利点がある。
In addition, since the first member 2 is made of a gel material that can be formed into an arbitrary shape, the shape of any living tissue including a living tissue having a complicated shape such as a traveling shape of a blood vessel Has the advantage of being able to simulate
In addition, although the gel material constituting the first member 2 is not suitable for long-term storage since the characteristics change due to drying etc., the cured resin material constituting the second member 3 is stable against air and moisture. Material and suitable for long-term storage. Therefore, covering the entire first member 2 with the second member 3 has an advantage of being able to provide the biological simulation sample 1 that can be stored for a long time while maintaining the quality of the fluorescent material.
 本実施形態においては、第1部材2および第2部材3が、第1の模擬画像におけるコントラスト値が1%以上であり、第2の模擬画像におけるコントラスト値が1%未満であるような光学特性を有することが好ましい。コントラスト値とは、各画像における第2部材3に対する第1部材2のコントラスト値であり、例えば、下式(1)によって定義される。コントラスト値は、例えば、第1部材2におけるICGの濃度や、第2部材3の光散乱/光吸収強度の調整によって制御される。
 コントラスト値=(第1部材の明るさ-第2部材の明るさ)/(第2部材の明るさ+第1部材の明るさ)×100 …(1)
 この構成によれば、内視鏡による蛍光の見えのより正確な評価が可能な第1の模擬画像および第2の模擬画像をユーザに提供することができる。
In the present embodiment, the optical characteristics are such that the first member 2 and the second member 3 have a contrast value of 1% or more in the first simulated image and a contrast value of less than 1% in the second simulated image. It is preferable to have The contrast value is the contrast value of the first member 2 with respect to the second member 3 in each image, and is defined, for example, by the following equation (1). The contrast value is controlled, for example, by adjusting the concentration of ICG in the first member 2 and the light scattering / light absorption intensity of the second member 3.
Contrast value = (brightness of first member−brightness of second member) / (brightness of second member + brightness of first member) × 100 (1)
According to this configuration, it is possible to provide the user with the first simulated image and the second simulated image capable of more accurate evaluation of the appearance of fluorescence by the endoscope.
 本実施形態においては、第1部材2が血管の走行形状を模擬することとしたが、これに代えて、他の生体組織の形状を模擬してもよい。
 例えば、図2に示されるように、第1部材2がリンパ管の形状を模擬していてもよく、胆管のような他の脈管の形状を模擬していてもよい。あるいは、図3に示されるように、第1部材2が腫瘍の形状を模擬していてもよい。
In the present embodiment, the first member 2 simulates the traveling shape of the blood vessel. However, instead of this, the shape of another living tissue may be simulated.
For example, as shown in FIG. 2, the first member 2 may simulate the shape of a lymphatic vessel and may simulate the shape of another vessel such as a bile duct. Alternatively, as shown in FIG. 3, the first member 2 may simulate the shape of a tumor.
 本実施形態においては、蛍光材料としてICGを用いることとしたが、蛍光材料の種類はこれに限定されるものではなく、他の種類の蛍光材料を用いてもよい。例えば、蛍光材料として、量子ドットまたはプロトポルフィリンIX(ppIX)を用いてもよい。
 臨床において、癌のような腫瘍組織の蛍光標識には、プロトポルフィリンIX(ppIX)が使用されることが多い。したがって、図3の腫瘍の形状を模擬した第1部材2には、臨床場面での腫瘍からの蛍光の見えにより近い見えを実現することができるように、ppIXを用いることが好ましい。
In the present embodiment, ICG is used as the fluorescent material, but the type of fluorescent material is not limited to this, and other types of fluorescent materials may be used. For example, quantum dots or protoporphyrin IX (ppIX) may be used as the fluorescent material.
In the clinic, protoporphyrin IX (ppIX) is often used for fluorescent labeling of tumor tissue such as cancer. Therefore, it is preferable to use ppIX for the first member 2 that simulates the shape of the tumor in FIG. 3 so as to achieve a closer look to the fluorescence from the tumor in the clinical setting.
 本実施形態においては、一層構造からなる第2部材3内に単一の第1部材2が配置されていることとしたが、第1部材2の数および第2部材3を構成する層の数は適宜変更することができる。
 例えば、図4Aおよび図4Bに示されるように、一層構造からなる第2部材3内の相互に異なる深さに、複数の第1部材21,22が配置されていてもよい。複数の第1部材21,22の形状は、相互に同一であってもよく、図4Aに示されるように、相互に異なっていてもよい。
In the present embodiment, although the single first member 2 is disposed in the second member 3 having a single-layer structure, the number of first members 2 and the number of layers constituting the second member 3 Can be changed as appropriate.
For example, as shown in FIGS. 4A and 4B, the plurality of first members 21 and 22 may be disposed at mutually different depths in the second member 3 having a single-layer structure. The shapes of the plurality of first members 21 and 22 may be identical to each other, or may be different from each other as shown in FIG. 4A.
 また、図5に示されるように、第2部材3が、2以上の層3a,3bが積層された層構造を有していてもよい。図5には、一例として、2層構造の第2部材3が示されている。
 血管やリンパ管、腫瘍等の周辺組織は、相互に異なる光散乱特性および光吸収特性を有する複数層からなる層構造を有する。第2部材3の層3a,3bは、周辺組織の各層(例えば、粘膜層や筋層)の光学特性を模擬するように、光散乱特性および光吸収特性のうち少なくとも一方において相互に異なっている。これにより、臨床場面での観察対象からの蛍光の見えにさらに近い見えを実現することができる。
Further, as shown in FIG. 5, the second member 3 may have a layered structure in which two or more layers 3 a and 3 b are stacked. The 2nd member 3 of 2 layer structure is shown by FIG. 5 as an example.
Surrounding tissues such as blood vessels, lymph vessels, and tumors have a layered structure composed of multiple layers having different light scattering properties and light absorption properties. The layers 3a and 3b of the second member 3 are different from each other in at least one of the light scattering property and the light absorption property so as to simulate the optical property of each layer (for example, the mucous layer and muscle layer) of the surrounding tissue. . This makes it possible to achieve an appearance closer to the appearance of fluorescence from the observation target in a clinical setting.
 具体的には、層3a,3bは、可視光の波長範囲において約0.1mm-1以上5mm-1以下の光散乱係数をそれぞれ有する。層3a,3bは、血液の吸収スペクトルを模擬した光吸収特性を有し、可視光の波長範囲において約0mm-1を超え20mm-1以下の光吸収係数をそれぞれ有する。深層側の層を模擬する層3bの光散乱係数および光吸収係数はそれぞれ、表面側の層を模擬する層3aの光散乱係数および光吸収係数よりも大きいことが好ましい。 Specifically, the layer 3a, 3b have respectively about 0.1 mm -1 or more 5 mm -1 or less of the light scattering coefficient in the wavelength range of visible light. The layers 3a and 3b have light absorption characteristics that simulate the absorption spectrum of blood, and each have a light absorption coefficient of more than about 0 mm -1 and 20 mm -1 or less in the visible light wavelength range. The light scattering coefficient and the light absorption coefficient of the layer 3b simulating the layer on the deep side are preferably larger than the light scattering coefficient and the light absorption coefficient of the layer 3a simulating the layer on the front surface, respectively.
 図5に示されるように第2部材3が複数の層3a,3bを有する場合、第1部材2は、一の層内にのみ配置されていてもよく、隣接する2つの層の間に配置されていてもよく、複数の層にまたがって配置されていてもよい。あるいは、各層3a,3b内に第1部材2が配置されていてもよい。 When the second member 3 has a plurality of layers 3a and 3b as shown in FIG. 5, the first member 2 may be disposed only in one layer, and is disposed between two adjacent layers. It may be provided, or may be disposed across multiple layers. Alternatively, the first member 2 may be disposed in each of the layers 3a and 3b.
 次に、本発明の一実施形態に係る内視鏡評価システム10および内視鏡評価方法について説明する。
 本実施形態に係る内視鏡評価システム10は、図6に示されるように、生体模擬試料1と、生体模擬試料1を観察する光学式の内視鏡4と、内視鏡4に接続されたディスプレイ(表示装置)5とを備えている。符号6は、内視鏡4に接続され、内視鏡4を制御する制御装置である。
 生体模擬試料1は、図1Aから図5に示される生体模擬試料1のいずれであってもよい。
Next, an endoscope evaluation system 10 and an endoscope evaluation method according to an embodiment of the present invention will be described.
The endoscope evaluation system 10 according to the present embodiment is connected to the living body simulation sample 1, an optical endoscope 4 for observing the living body simulation sample 1, and the endoscope 4 as shown in FIG. 6. And a display (display device) 5. Reference numeral 6 is a control device connected to the endoscope 4 to control the endoscope 4.
The biological simulation sample 1 may be any of the biological simulation samples 1 shown in FIGS. 1A to 5.
 内視鏡4は、ICGの励起波長(774nm付近)を含む第1の光と、ICGの励起波長を含まない第2の光とを択一的に生体模擬試料1に照射する。例えば、内視鏡4は、励起光を発する励起光源と、白色の通常光を発する白色光源とを備える。内視鏡4は、励起光を第1の光として生体模擬試料1に照射し、通常光を第2の光として生体模擬試料1に照射する。第1の光と第2の光との間の切り替えは、例えば、励起光源および白色光源のオンオフによって行われる。第1の光は、単色光であってもよく、励起波長以外の波長も含む光であってもよい。第2の光は、白色光に代えて単色光であってもよい。内視鏡4によって取得された画像は、内視鏡4からディスプレイ5に送信され、ディスプレイ5に表示される。 The endoscope 4 selectively irradiates the biological simulation sample 1 with the first light including the ICG excitation wavelength (around 774 nm) and the second light not including the ICG excitation wavelength. For example, the endoscope 4 includes an excitation light source that emits excitation light and a white light source that emits white normal light. The endoscope 4 irradiates the biological simulation sample 1 with excitation light as a first light, and irradiates the biological simulation sample 1 with normal light as a second light. Switching between the first light and the second light is performed, for example, by turning on and off the excitation light source and the white light source. The first light may be monochromatic light or may be light including wavelengths other than the excitation wavelength. The second light may be monochromatic light instead of white light. The image acquired by the endoscope 4 is transmitted from the endoscope 4 to the display 5 and displayed on the display 5.
 次に、内視鏡評価システム10による内視鏡評価方法について説明する。
 本実施形態に係る内視鏡評価方法は、図7に示されるように、内視鏡4から生体模擬試料1に第1の光を照射するステップS1と、第1の光が照射されている生体模擬試料1の第1の画像を内視鏡4によって取得するステップS2と、内視鏡4から生体模擬試料1に第2の光を照射するステップS3と、第2の光が照射されている生体模擬試料1の第2の画像を内視鏡4によって取得するステップS4と、第1の画像および第2の画像に基づいて内視鏡4の撮像性能を評価するステップS5とを含む。
Next, an endoscope evaluation method by the endoscope evaluation system 10 will be described.
In the endoscope evaluation method according to the present embodiment, as shown in FIG. 7, step S1 of irradiating the first light from the endoscope 4 to the biological simulation sample 1 and the first light are irradiated. Step S2 of acquiring a first image of the biological simulation sample 1 by the endoscope 4, step S3 of irradiating the biological simulation sample 1 with the second light from the endoscope 4, and irradiation of the second light Step S4 of acquiring a second image of the living body simulation sample 1 by the endoscope 4 and step S5 of evaluating the imaging performance of the endoscope 4 based on the first image and the second image.
 ステップS2において取得された第1の画像は、図8Aに示されるように、第1部材2からのICGの蛍光を含む画像である。ステップS4において取得された第2の画像は、図8Bに示されるように、ICGの蛍光を含まない、またはほとんど含まない画像である。
 ステップS5において、第1の画像および第2の画像は、相互に対比可能にディスプレイ5に表示される。例えば、第1の画像および第2の画像は、ディスプレイ5に並列表示される。ユーザは、第1の画像に基づいて、血管からの蛍光の内視鏡4による見えを評価することができる。また、ユーザは、第1の画像と第2の画像とを相互に比較することによって、第1の光の照射時と第2の光の照射時との間での、血管からの蛍光の内視鏡4による見えの違いを定性的に評価することができる。
 ステップS1,S2は、ステップS3,S4の後に実行されてもよい。
The first image acquired in step S2 is an image including the fluorescence of ICG from the first member 2 as shown in FIG. 8A. The second image acquired in step S4 is an image that does not contain or hardly contains ICG fluorescence, as shown in FIG. 8B.
In step S5, the first image and the second image are displayed on the display 5 in a mutually contrastable manner. For example, the first image and the second image are displayed in parallel on the display 5. The user can evaluate the endoscopic view of the fluorescence from the blood vessel based on the first image. In addition, the user compares the first image and the second image with each other to find out of the fluorescence from the blood vessels between the irradiation of the first light and the irradiation of the second light. The difference in the appearance by the endoscope 4 can be qualitatively evaluated.
Steps S1 and S2 may be performed after steps S3 and S4.
 内視鏡評価システム10は、第1の画像および第2の画像の各々のコントラスト値を算出する演算装置をさらに備えていてもよい。演算装置は、例えば、制御装置6に内蔵される中央演算処理装置(CPU)のようなプロセッサである。演算装置は、制御装置6内の記憶装置に記憶されたプログラムに従って、内視鏡4から制御装置6に送信される第1の画像および第2の画像を処理する。 The endoscope evaluation system 10 may further include an arithmetic device that calculates the contrast value of each of the first image and the second image. The arithmetic device is, for example, a processor such as a central processing unit (CPU) incorporated in the control device 6. The arithmetic device processes the first image and the second image transmitted from the endoscope 4 to the control device 6 in accordance with a program stored in the storage device in the control device 6.
 演算装置は、第1の画像における第2部材3に対する第1部材2のコントラスト値を算出する。また、演算装置は、第2の画像における第2部材3に対する第1部材2のコントラスト値を算出する。
 コントラスト値を算出する計算領域Aは、図8Aおよび図8Bに示されるように、第1部材2および第2部材3の両方を含む1次元領域である。計算領域Aは、第1部材2および第2部材3の両方を含む2次元領域であってもよい。図10Aおよび図10Bは、図8Aおよび図8Bの計算領域Aにおける明るさを示している。コントラスト値は、例えば、各画像内の第1部材2の明るさI1および第2部材3の明るさI2に基づいて、上述の式(1)から算出される。
The computing device calculates the contrast value of the first member 2 with respect to the second member 3 in the first image. The computing device also calculates the contrast value of the first member 2 with respect to the second member 3 in the second image.
The calculation area A for calculating the contrast value is a one-dimensional area including both the first member 2 and the second member 3 as shown in FIGS. 8A and 8B. The calculation area A may be a two-dimensional area including both of the first member 2 and the second member 3. 10A and 10B show the brightness in the calculation area A of FIGS. 8A and 8B. The contrast value is calculated from the above equation (1) based on, for example, the brightness I1 of the first member 2 and the brightness I2 of the second member 3 in each image.
 図9は、演算装置を備える内視鏡評価システムによる内視鏡評価方法を示している。図9の内視鏡評価方法は、ステップS1~S4に加えて、第1の画像からコントラスト値を算出するステップS6と、第2の画像からコントラスト値を算出するステップS7と、コントラスト値の比較に基づいて内視鏡4の撮像性能を評価するステップS8とを含む。ステップS1,S2は、ステップS3,S4の後に実行されてもよい。 FIG. 9 shows an endoscope evaluation method by the endoscope evaluation system provided with a computing device. In the endoscope evaluation method of FIG. 9, in addition to steps S1 to S4, the comparison of step S6 for calculating the contrast value from the first image, step S7 for calculating the contrast value from the second image, and the contrast value And S 8 of evaluating the imaging performance of the endoscope 4 based on Steps S1 and S2 may be performed after steps S3 and S4.
 ステップS8において、第1および第2の画像に加えて、またはこれに代えて、第1および第2の画像の各々のコントラスト値に基づく評価値がディスプレイ5に表示される。評価値は、第1の光の照射時と第2の光の照射時との間での内視鏡4による血管からの蛍光の見えの違いを定量的に評価するための値である。例えば、第1の画像および第2の画像のコントラスト値がそのままディスプレイ5に表示される。ユーザは、ディスプレイ5に表示された2つのコントラスト値を相互に比較することによって、第1の光の照射時と第2の光の照射時との間での、血管からの蛍光の内視鏡4による見えの違いを定量的に評価することができる。評価値は、他の値、例えば、第1の画像のコントラスト値と第2の画像のコントラスト値との比であってもよい。 In step S8, an evaluation value based on the contrast value of each of the first and second images is displayed on the display 5 in addition to or in place of the first and second images. The evaluation value is a value for quantitatively evaluating the difference in the appearance of the fluorescence from the blood vessel by the endoscope 4 between the irradiation time of the first light and the irradiation time of the second light. For example, the contrast values of the first image and the second image are displayed on the display 5 as they are. The user compares the two contrast values displayed on the display 5 with each other to obtain an endoscope of fluorescence from the blood vessels between the first light irradiation and the second light irradiation. The difference in appearance due to 4 can be quantitatively evaluated. The evaluation value may be another value, for example, the ratio of the contrast value of the first image to the contrast value of the second image.
1 生体模擬試料
2,21,22 第1部材
3 第2部材
3a,3b 層
4 内視鏡
5 ディスプレイ(表示装置)
6 制御装置
S1,S2 第1の撮像ステップ
S3,S4 第2の撮像ステップ
S5,S8 評価ステップ
S6,S7 演算ステップ
DESCRIPTION OF SYMBOLS 1 Living body simulation sample 2, 21, 22 1st member 3 2nd member 3a, 3b Layer 4 Endoscope 5 Display (display apparatus)
6 control device S1, S2 first imaging step S3, S4 second imaging step S5, S8 evaluation step S6, S7 operation step

Claims (11)

  1.  蛍光材料を含み観察対象の生体組織の形状を模擬した第1部材と、
     該第1部材を覆い前記観察対象の生体組織の周辺組織の光学特性を模擬した第2部材とを備え、
     内視鏡の撮像性能評価に用いられ、該撮像性能評価において、前記蛍光材料の励起波長を含む第1の光および前記励起波長を含まない第2の光が照射される生体模擬試料。
    A first member containing a fluorescent material and simulating the shape of a living tissue to be observed;
    And a second member that covers the first member and simulates the optical characteristics of the surrounding tissue of the living tissue to be observed.
    A biological simulation sample which is used for evaluation of imaging performance of an endoscope and in which the first light including the excitation wavelength of the fluorescent material and the second light not including the excitation wavelength are irradiated in the imaging performance evaluation.
  2.  前記第2部材は、2以上の層が積層された層構造を有し、
     前記2以上の層が、光散乱特性および光吸収特性のうち少なくとも一方において相互に異なる請求項1に記載の生体模擬試料。
    The second member has a layer structure in which two or more layers are stacked,
    The biological simulation sample according to claim 1, wherein the two or more layers differ from each other in at least one of light scattering properties and light absorption properties.
  3.  前記第1部材が、脈管の形状を模擬している請求項1または請求項2に記載の生体模擬試料。 The biological simulation sample according to claim 1 or 2, wherein the first member simulates the shape of a vessel.
  4.  前記第1部材が、血管の走行形状またはリンパ管の形状を模擬している請求項3に記載の生体模擬試料。 The biological simulation sample according to claim 3, wherein the first member simulates a traveling shape of a blood vessel or a shape of a lymphatic vessel.
  5.  前記蛍光材料が、インドシアニングリーンである請求項1から請求項4のいずれかに記載の生体模擬試料。 The biological simulation sample according to any one of claims 1 to 4, wherein the fluorescent material is indocyanine green.
  6.  前記第1部材が、蛍光材料を含むゲル材料からなり、
     前記第2部材が、硬化した樹脂材料からなり、
     前記第1部材が、前記第2部材内に包埋されている請求項1から請求項5のいずれかに記載の生体模擬試料。
    The first member is made of a gel material containing a fluorescent material,
    The second member is made of a cured resin material,
    The biological simulation sample according to any one of claims 1 to 5, wherein the first member is embedded in the second member.
  7.  前記第1の光の照射下で前記内視鏡によって取得された第1の画像において、前記第2部材に対する前記第1部材のコントラスト値が1%以上であり、
     前記第2の光の照射下で前記内視鏡によって取得された第2の画像において、前記第2部材に対する前記第1部材のコントラスト値が1%未満である請求項1から請求項6のいずれかに記載の生体模擬試料。
    In the first image acquired by the endoscope under the irradiation of the first light, the contrast value of the first member with respect to the second member is 1% or more.
    The contrast value of the said 1st member with respect to the said 2nd member is less than 1% in the 2nd image acquired by the said endoscope under irradiation of the said 2nd light, The 1st item is either of 1 to 6 The biological simulation sample according to the above.
  8.  請求項1から請求項7のいずれかに記載の生体模擬試料と、
     前記第1の光および前記第2の光を択一的に前記生体模擬試料に照射し、前記第1の光の照射下で第1の画像を取得し前記第2の光の照射下で第2の画像を取得する内視鏡と、
     前記第1の画像および前記第2の画像を相互に対比可能に表示する表示装置とを備える内視鏡評価システム。
    A biological simulation sample according to any one of claims 1 to 7;
    The first light and the second light are alternatively irradiated to the biological simulation sample, a first image is obtained under the irradiation of the first light, and a second image is obtained under the irradiation of the second light. The endoscope which acquires 2 images,
    A display device for displaying the first image and the second image so as to be contrastable with each other.
  9.  前記第1の画像および前記第2の画像の各々における前記第2部材に対する前記第1部材のコントラスト値を算出する演算装置を備え、
     前記表示装置が、前記第1の光の照射時と前記第2の光の照射時との間での前記内視鏡による前記生体組織からの蛍光の見えの違いを定量的に評価する評価値を表示し、該評価値が前記コントラスト値に基づく値である、請求項8に記載の内視鏡評価システム。
    The arithmetic device for calculating the contrast value of the first member with respect to the second member in each of the first image and the second image,
    An evaluation value for quantitatively evaluating the difference in the appearance of fluorescence from the living tissue by the endoscope between the time of the first light irradiation and the time of the second light irradiation by the display device The endoscope evaluation system according to claim 8, wherein the evaluation value is a value based on the contrast value.
  10.  請求項1から請求項7のいずれかに記載の生体模擬試料に前記内視鏡から前記第1の光を照射しながら該生体模擬試料を前記内視鏡によって撮像し、第1の画像を取得する第1の撮像ステップと、
     前記生体模擬試料に前記内視鏡から前記第2の光を照射しながら該生体模擬試料を前記内視鏡によって撮像し、第2の画像を取得する第2の撮像ステップと、
     前記第1の画像および前記第2の画像に基づいて、前記第1の光の照射時と前記第2の光の照射時との間での前記内視鏡による前記観察対象の生体組織からの蛍光の見えの違いを評価する評価ステップとを含む内視鏡評価方法。
    The living body simulation sample according to any one of claims 1 to 7 is imaged by the endoscope while the living body simulation sample is irradiated with the first light from the endoscope, and a first image is obtained. A first imaging step to
    A second imaging step of capturing an image of the biological simulation sample with the endoscope while irradiating the biological simulation sample with the second light from the endoscope; and acquiring a second image;
    Based on the first image and the second image, from the biological tissue to be observed by the endoscope between the time of the irradiation of the first light and the time of the irradiation of the second light And an evaluation step for evaluating differences in the appearance of fluorescence.
  11.  前記第1の画像および前記第2の画像の各々における前記第2部材に対する前記第1部材のコントラスト値を算出する演算ステップを含み、
     前記評価ステップにおいて、前記コントラスト値に基づいて前記内視鏡による前記生体組織からの蛍光の見えの違いを評価する請求項10に記載の内視鏡評価方法。
    Calculating the contrast value of the first member relative to the second member in each of the first image and the second image,
    The endoscope evaluation method according to claim 10, wherein in the evaluation step, a difference in the appearance of fluorescence from the living tissue by the endoscope is evaluated based on the contrast value.
PCT/JP2018/025179 2017-07-04 2018-07-03 Simulated biological sample, endoscope evaluation system, and endoscope evaluation method WO2019009279A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/024533 2017-07-04
PCT/JP2017/024533 WO2019008679A1 (en) 2017-07-04 2017-07-04 Simulate biological sample

Publications (1)

Publication Number Publication Date
WO2019009279A1 true WO2019009279A1 (en) 2019-01-10

Family

ID=64949999

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/024533 WO2019008679A1 (en) 2017-07-04 2017-07-04 Simulate biological sample
PCT/JP2018/025179 WO2019009279A1 (en) 2017-07-04 2018-07-03 Simulated biological sample, endoscope evaluation system, and endoscope evaluation method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024533 WO2019008679A1 (en) 2017-07-04 2017-07-04 Simulate biological sample

Country Status (1)

Country Link
WO (2) WO2019008679A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7197408B2 (en) * 2019-03-12 2022-12-27 太平洋セメント株式会社 Evaluation method of unburned carbon in coal ash

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090726A (en) * 2010-10-26 2012-05-17 Fujifilm Corp Electronic endoscope system, processor device of electronic endoscope system, and method for controlling illumination light
US20160370285A1 (en) * 2015-06-19 2016-12-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Serv Solid hemoglobin-polymer biophotonic phantoms and their use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087049B2 (en) * 2011-11-02 2017-03-01 浜松ホトニクス株式会社 Fluorescence phantom device and fluorescence imaging method
JPWO2015037055A1 (en) * 2013-09-10 2017-03-02 株式会社島津製作所 Fluorescence image acquisition device
EP3076860B1 (en) * 2013-12-06 2019-04-24 Agency for Science, Technology And Research Method of imaging living tissue

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090726A (en) * 2010-10-26 2012-05-17 Fujifilm Corp Electronic endoscope system, processor device of electronic endoscope system, and method for controlling illumination light
US20160370285A1 (en) * 2015-06-19 2016-12-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Serv Solid hemoglobin-polymer biophotonic phantoms and their use

Also Published As

Publication number Publication date
WO2019008679A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
US10024785B2 (en) Solid hemoglobin-polymer biophotonic phantoms and their use
Linming et al. Comparison of two skin imaging analysis instruments: The VISIA® from Canfield vs the ANTERA 3D® CS from Miravex
US10041831B2 (en) Fluorescent light phantom device and fluorescent light imaging method
US20140378843A1 (en) Method And Apparatus For Quantitative Hyperspectral Fluorescence And Reflectance Imaging For Surgical Guidance
US20160166150A1 (en) Image capturing device and sensing protection device
Zavattini et al. A hyperspectral fluorescence system for 3D in vivo optical imaging
JP6319449B2 (en) Imaging device
Esmonde-White et al. Biomedical tissue phantoms with controlled geometric and optical properties for Raman spectroscopy and tomography
Guo et al. Optical imaging of breast tumor through temporal log-slope difference mappings
CN110505838A (en) Use the skin gloss measurement of Brewster angle
WO2019009279A1 (en) Simulated biological sample, endoscope evaluation system, and endoscope evaluation method
US20080052052A1 (en) Apparatus and methods for determining optical tissue properties
Beck et al. Clinical determination of tissue optical properties in vivo by spatially resolved reflectance measurements
Campbell et al. Monte Carlo modelling of photodynamic therapy treatments comparing clustered three dimensional tumour structures with homogeneous tissue structures
Sterkenburg et al. Standardization and implementation of fluorescence molecular endoscopy in the clinic
Bentz et al. 3D printed optical phantoms and deep tissue imaging for in vivo applications including oral surgery
Yamaguchi et al. Quantitative study on appearance of microvessels in spectral endoscopic imaging
JP6890348B2 (en) Scale and kit with it
Pérez Gómez et al. Color science and its application in dentistry
Gibson et al. Customizable optical tissue phantom platform for characterization of fluorescence imaging device sensitivity
US20210177268A1 (en) Image processing apparatus, image processing method, and non-transitory computer-readable medium
Cruz Junior Optical characterization of highly turbid samples in the visible and near infrared spectra
Lemaillet et al. Conference 9325: Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue VII
Liu Techniques and Applications of Mesoscopic Fluorescence Imaging
EA030773B1 (en) Method for computer processing of trichromatic endoscopic images of human tissues

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP