WO2019009118A1 - 載置台構造及び処理装置 - Google Patents

載置台構造及び処理装置 Download PDF

Info

Publication number
WO2019009118A1
WO2019009118A1 PCT/JP2018/023967 JP2018023967W WO2019009118A1 WO 2019009118 A1 WO2019009118 A1 WO 2019009118A1 JP 2018023967 W JP2018023967 W JP 2018023967W WO 2019009118 A1 WO2019009118 A1 WO 2019009118A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting table
heat transfer
table structure
structure according
transfer body
Prior art date
Application number
PCT/JP2018/023967
Other languages
English (en)
French (fr)
Inventor
伸二 居本
学 中川西
前田 幸治
洋 三木
鈴木 直行
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018039397A external-priority patent/JP6605061B2/ja
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US16/624,492 priority Critical patent/US20200381272A1/en
Priority to KR1020197038252A priority patent/KR102632158B1/ko
Publication of WO2019009118A1 publication Critical patent/WO2019009118A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the present invention relates to a mounting table structure and a processing apparatus.
  • a magnetoresistive element having a high magnetoresistive ratio can be manufactured by using a magnetic film formed in an ultra-high vacuum and cryogenic environment.
  • a magnetic film is formed by a film forming apparatus different from the cooling processing apparatus for the object cooled to the cryogenic temperature in the cooling processing apparatus. There is a way to membrane.
  • This invention is made in view of the above, Comprising: It aims at providing the mounting base structure which can be rotated in the state which maintained the to-be-processed object at cryogenic temperature.
  • a mounting table structure includes: a fixed frozen heat transfer body; a rotatable outer cylinder disposed around the frozen heat transfer body; and the outer cylinder And a mounting table connected to and disposed with a gap with respect to the upper surface of the refrigeration heat transfer body.
  • the object to be processed can be rotated in a state of being maintained at a very low temperature.
  • FIG. 1 is a schematic cross-sectional view showing an example of a processing apparatus according to the first embodiment of the present invention.
  • the processing apparatus 1 forms a magnetic film on a semiconductor wafer W, which is an object to be processed, in a vacuum vessel 10 configured to be capable of processing in an ultra-high vacuum and cryogenic environment.
  • Film deposition apparatus capable of The magnetic film is used, for example, in a tunneling magnetoresistive (TMR) element.
  • TMR tunneling magnetoresistive
  • the processing apparatus 1 includes a vacuum vessel 10, a target 30, and a mounting table structure 50.
  • the vacuum vessel 10 is configured to be capable of depressurizing the inside thereof to ultra-high vacuum (for example, 10 -5 Pa or less).
  • a gas supply pipe (not shown) is connected from the outside to the vacuum vessel 10, and a gas (for example, a rare gas such as argon, krypton, neon, etc. or nitrogen gas) required for sputter deposition is supplied from the gas supply pipe. Be done.
  • the vacuum vessel 10 is connected to an exhaust means (not shown) such as a vacuum pump capable of evacuating gas and the like supplied from the gas supply pipe and reducing the pressure in the vacuum vessel 10 to an ultrahigh vacuum.
  • the target 30 is provided in the vacuum vessel 10 above the mounting table structure 50.
  • An alternating voltage from a plasma generation power supply (not shown) is applied to the target 30.
  • a plasma is generated in the vacuum vessel 10 to ionize a rare gas or the like in the vacuum vessel 10 and the target 30 is sputtered by the ionized rare gas element or the like. Be done.
  • the atoms or molecules of the sputtered target material face the target 30 and are deposited on the surface of the semiconductor wafer W held by the mounting table structure 50.
  • the number of targets 30 is not particularly limited, but is preferably plural from the viewpoint that different materials can be deposited by one processing apparatus 1.
  • a magnetic film a film containing a ferromagnetic substance such as Ni, Fe, or Co
  • CoFe, FeNi, NiFeCo for example, can be used as the material of the target 30.
  • another material can be mixed into these materials.
  • the mounting table structure 50 includes a refrigerator 52, a refrigeration heat transfer body 54, a mounting table 56, and an outer cylinder 58.
  • the refrigerator 52 holds the refrigeration heat transfer body 54 and cools the upper surface of the refrigeration heat transfer body 54 to a cryogenic temperature (for example, -30 ° C. or less).
  • the refrigerator 52 is preferably of a type using a GM (Gifford-McMahon) cycle from the viewpoint of cooling capacity.
  • the refrigeration heat transfer body 54 is fixedly disposed on the refrigerator 52, and the upper portion thereof is disposed in the vacuum vessel 10.
  • the refrigeration heat transfer body 54 is made of, for example, a material having high thermal conductivity such as pure copper (Cu), and has a substantially cylindrical shape.
  • the refrigeration heat transfer body 54 is disposed such that the center thereof coincides with the central axis C of the mounting table 56.
  • a first cooling gas supply portion 54a which is in communication with a gap G described later and through which the first cooling gas can flow. Thereby, the first cooling gas can be supplied to the gap G.
  • Helium (He) is preferably used as the first cooling gas from the viewpoint of having high thermal conductivity.
  • the mounting table 56 is disposed with a gap G (for example, 2 mm or less) between the mounting table 56 and the upper surface of the refrigeration heat transfer body 54.
  • the mounting table 56 is formed of, for example, a material with high thermal conductivity such as pure copper (Cu).
  • the gap G is in communication with the first cooling gas supply portion 54 a formed inside the refrigeration heat transfer body 54. Therefore, the first cooling gas is supplied to the gap G from the first cooling gas supply unit 54a.
  • the mounting table 56 is cooled to a cryogenic temperature (eg, -30 ° C. or less) by the refrigerator 52, the refrigeration heat transfer body 54, and the first cooling gas supplied to the gap G.
  • a heat conductive grease having a good thermal conductivity may be filled in the gap G in place of the first cooling gas.
  • the mounting table 56 is formed with a through hole 56 a penetrating vertically.
  • the through hole 56 a communicates with the first cooling gas supply unit 54 a via the gap G.
  • a part of the first cooling gas supplied from the first cooling gas supply unit 54a to the gap G passes through the through hole 56a to contact the upper surface of the mounting table 56 (electrostatic chuck) and the lower surface of the semiconductor wafer W. Supplied between. Therefore, the cold heat of the freezing heat transfer body 54 is efficiently transmitted to the semiconductor wafer W.
  • the number of through holes 56a may be one or more.
  • the mounting table 56 includes an electrostatic chuck.
  • the electrostatic chuck has a chuck electrode 56b embedded in a dielectric film. A predetermined potential is applied to the chuck electrode 56 b through the wiring L. Thereby, the semiconductor wafer W can be adsorbed and fixed by the electrostatic chuck.
  • the convex portion 56c On the lower surface of the mounting table 56, a convex portion 56c that protrudes toward the side of the frozen heat transfer body 54 is formed.
  • the convex portion 56 c has a substantially annular shape surrounding the central axis C of the mounting table 56.
  • the height of the convex portion 56c can be, for example, 40 to 50 mm.
  • the width of the projection 56c can be, for example, 6 to 7 mm.
  • the shape and the number of the convex portions 56c are not particularly limited, but from the viewpoint of enhancing the heat transfer efficiency with the frozen heat transfer body 54, the shape and the number such that the surface area is increased are preferable.
  • the convex portion 56c may have a corrugated outer surface.
  • the outer surface of the convex part 56c is unevenly processed by the blast etc. This is because the surface area is increased, and the heat transfer efficiency with the refrigeration heat transfer body 54 can be enhanced. Further, a plurality of convex portions 56c may be formed.
  • portion including the electrostatic chuck and the portion where the convex portion 56c is formed in the mounting table 56 may be integrally molded or may be separately molded and joined.
  • the recess 54 c On the upper surface of the frozen heat transfer body 54, that is, on the surface opposed to the convex portion 56c, a concave portion 54c fitted with a gap G to the convex portion 56c is formed.
  • the recess 54 c has a substantially annular shape surrounding the central axis C of the mounting table 56.
  • the height of the recess 54c may be the same as the height of the protrusion 56c, and may be, for example, 40 to 50 mm.
  • the width of the recess 54c may be, for example, slightly wider than the width of the protrusion 56c, and is preferably 7 to 9 mm, for example.
  • the shape and the number of the recesses 54c are determined to correspond to the shape and the number of the protrusions 56c.
  • the inner surface of the concave portion 54c can also be correspondingly corrugated.
  • the inner surface of the recessed part 54c is unevenly processed by the blast etc. This is because the surface area is increased, and the heat transfer efficiency with the mounting table 56 can be enhanced.
  • the recessed part 54c may be formed in multiple numbers.
  • the outer cylinder 58 is disposed around the refrigeration heat transfer body 54.
  • the outer cylinder 58 is disposed to cover the outer peripheral surface of the upper portion of the refrigeration heat transfer body 54.
  • the outer cylinder 58 has a cylindrical portion 58a having an inner diameter slightly larger than the outer diameter of the refrigeration heat transfer body 54, and a flange portion 58b extending in the outer diameter direction on the lower surface of the cylindrical portion 58a.
  • the cylindrical portion 58a and the flange portion 58b are made of, for example, a metal such as stainless steel.
  • the heat insulating member 60 is connected to the lower surface of the flange portion 58b.
  • the heat insulating member 60 has a substantially cylindrical shape extending coaxially with the flange portion 58b, and is fixed to the flange portion 58b.
  • the heat insulating member 60 is formed of a ceramic such as alumina.
  • a magnetic fluid seal portion 62 is provided on the lower surface of the heat insulating member 60.
  • the magnetic fluid seal portion 62 has a rotating portion 62a, an inner fixing portion 62b, an outer fixing portion 62c, and a heating means 62d.
  • the rotating portion 62 a has a substantially cylindrical shape extending coaxially with the heat insulating member 60, and is fixed to the heat insulating member 60. In other words, the rotating portion 62 a is connected to the outer cylinder 58 via the heat insulating member 60. Thereby, the transmission of the cold of the outer cylinder 58 to the rotating portion 62a is blocked by the heat insulating member 60, so that the temperature of the magnetic fluid in the magnetic fluid sealing portion 62 is lowered, the sealing performance is lowered, or condensation occurs. Can be suppressed.
  • the inner fixed portion 62b is provided between the refrigeration heat transfer body 54 and the rotating portion 62a via a magnetic fluid.
  • the inner fixing portion 62 b has a substantially cylindrical shape having an inner diameter larger than the outer diameter of the frozen heat transfer body 54 and smaller than the inner diameter of the rotating portion 62 a.
  • the outer fixed portion 62c is provided on the outer side of the rotating portion 62a via a magnetic fluid.
  • the outer fixing portion 62c has a substantially cylindrical shape whose inner diameter is larger than the outer diameter of the rotating portion 62a.
  • the heating means 62d is embedded inside the inner fixed portion 62b, and heats the entire magnetic fluid seal portion 62.
  • the rotating portion 62a can rotate in an airtight manner with respect to the inner fixing portion 62b and the outer fixing portion 62c. That is, the outer cylinder 58 is rotatably supported via the magnetic fluid seal portion 62.
  • a bellows 64 is provided between the upper surface of the outer fixing portion 62 c and the lower surface of the vacuum vessel 10.
  • the bellows 64 is a metal bellows structure that can expand and contract in the vertical direction.
  • the bellows 64 surrounds the refrigeration heat transfer body 54, the outer cylinder 58, and the heat insulating member 60, and separates the depressurizable space in the vacuum vessel 10 from the space outside the vacuum vessel 10.
  • the slip ring 66 is provided below the magnetic fluid seal portion 62.
  • the slip ring 66 has a rotating body 66a including a metal ring and a fixed body 66b including a brush.
  • the rotating body 66a has a substantially cylindrical shape extending coaxially with the rotating portion 62a of the magnetic fluid seal portion 62, and is fixed to the rotating portion 62a.
  • the fixed body 66b has a substantially cylindrical shape whose inner diameter is slightly larger than the outer diameter of the rotating body 66a.
  • the slip ring 66 is electrically connected to a DC power supply (not shown), and transmits the power supplied from the DC power supply to the wiring L through the brush of the fixed body 66b and the metal ring of the rotating body 66a. Do. With this configuration, it is possible to apply a potential to the chuck electrode from the DC power supply without generating a twist or the like in the wiring L.
  • the rotating body 66 a of the slip ring 66 is attached to the drive mechanism 68.
  • the drive mechanism 68 is a direct drive motor having a rotor 68a and a stator 68b.
  • the rotor 68a has a substantially cylindrical shape extending coaxially with the rotating body 66a of the slip ring 66, and is fixed to the rotating body 66a.
  • the stator 68 b has a substantially cylindrical shape whose inner diameter is larger than the outer diameter of the rotor 68 a.
  • a heat insulating body 70 formed in a vacuum heat insulation double structure is provided around the refrigerator 52 and the freezing heat transfer body 54.
  • the heat insulator 70 is provided between the refrigerator 52 and the rotor 68a, and between the lower portion of the freezer heat conductor 54 and the rotor 68a. Thereby, it can suppress that the cold heat of the refrigerator 52 and the freezing heat transfer body 54 is transmitted to the rotor 68a.
  • a second cooling gas supply unit 72 is formed around the refrigerator 52 and the refrigeration heat transfer body 54.
  • the second cooling gas supply unit 72 supplies the second cooling gas to the space S between the refrigeration heat transfer body 54 and the outer cylinder 58.
  • the second cooling gas is, for example, a gas having a thermal conductivity different from that of the first cooling gas, preferably a gas having a thermal conductivity lower than that of the first cooling gas, so the temperature of the second cooling gas is the first cooling gas. Relatively higher than the temperature of This can prevent the first cooling gas that leaks from the gap G into the space S from entering the magnetic fluid seal portion 62.
  • the second cooling gas functions as a counterflow to the first cooling gas that leaks from the gap G.
  • the supply pressure of the second cooling gas is preferably substantially the same as or slightly higher than the supply pressure of the first cooling gas.
  • low boiling point gas such as argon and neon, can be used as a 2nd cooling gas.
  • a temperature sensor may be provided to detect the temperature of the refrigeration heat transfer body 54, the gap G, and the like.
  • a temperature sensor for example, a low temperature temperature sensor such as a silicon diode temperature sensor or a platinum resistance temperature sensor can be used.
  • the processing apparatus 1 includes an elevating mechanism 74 that raises and lowers the entire mounting table structure 50 with respect to the vacuum vessel 10. Thereby, the distance between the target 30 and the semiconductor wafer W can be controlled. Specifically, by raising and lowering the mounting table structure 50 by the raising and lowering mechanism 74, film formation is performed on the position when the semiconductor wafer W is mounted on the mounting table 56 and the semiconductor wafer W mounted on the mounting table 56. You can change the position and when you do it.
  • the mounting table structure 50 of the first embodiment includes the fixedly disposed refrigeration heat transfer body 54 and the rotatable outer cylinder 58 disposed around the refrigeration heat transfer body 54, and the outside And a mounting table 56 connected to the cylinder 58 and disposed with a gap G with respect to the upper surface of the refrigeration heat transfer body 54.
  • the semiconductor wafer W can be rotated in a state of being maintained at a very low temperature.
  • the processing apparatus 1 including the mounting table structure 50 a magnetoresistive element having excellent in-plane uniformity and high magnetoresistive ratio can be manufactured.
  • the mounting table structure 50 according to the first embodiment of the present invention in which the mounting table 56 rotates.
  • good in-plane uniformity can be realized.
  • the mounting table 56 does not rotate, it is difficult to realize good in-plane uniformity, for example, the film thickness and the film quality differ due to the difference in the distance from the target 30 on the surface of the semiconductor wafer W is there.
  • FIG. 3 is a schematic sectional drawing which shows an example of the processing apparatus which concerns on the 2nd Embodiment of this invention.
  • the third cooling gas supply unit 76 supplies the third cooling gas between the upper surface of the mounting table 56 and the lower surface of the semiconductor wafer W.
  • the third cooling gas for example, He, which is a gas similar to the first cooling gas, can be used.
  • the third cooling gas supply unit 76 is introduced to the mounting table structure 50A via, for example, the magnetic fluid seal unit 76a.
  • a cover 76 b is provided on the outer peripheral side of the magnetic fluid seal portion 76 a.
  • the processing apparatus 1 provided with the mounting table structure 50 according to the first embodiment described above, when the mounting table 56 is cooled in a state where the semiconductor wafer W is not mounted, the first inside of the vacuum vessel 10 maintained in the high vacuum atmosphere is The cooling gas may be vigorously released, and heat transfer in the gap G and pressure control in the vacuum vessel 10 may be difficult. Therefore, in the processing apparatus 1 described above, the amount of the first cooling gas supplied between the upper surface of the mounting table 56 and the lower surface of the dummy wafer from the through hole 56a is adjusted by mounting the dummy wafer on the mounting table 56. . As a result, an operation of loading or unloading a dummy wafer into the vacuum vessel 10 is required, which causes a problem that throughput is deteriorated.
  • the mounting table 56 is provided separately from the first cooling gas supply unit 54 a that supplies the cooling gas to the gap between the upper surface of the refrigeration heat transfer body 54 and the lower surface of the mounting table 56.
  • a third cooling gas supply unit 76 capable of supplying a cooling gas is provided between the upper surface of the semiconductor wafer W and the lower surface of the semiconductor wafer W.
  • FIG. 4 is a schematic cross-sectional view showing an example of a processing apparatus according to the third embodiment.
  • the first sliding seal member 78 is provided in the upper part of the space S between the refrigeration heat transfer body 54 and the outer cylinder 58. In other words, the first sliding seal member 78 is provided around the recess 54 c of the refrigeration heat transfer body 54 (the protrusion 56 c of the mounting table 56). Thereby, the first sliding seal member 78 prevents the first cooling gas leaking from the gap G into the space S from entering the magnetic fluid seal portion 62.
  • the first sliding seal member 78 may be, for example, Omniseal (registered trademark).
  • the first sliding seal member 78 may have a gas separation structure using, for example, a magnetic fluid seal or the like.
  • the second sliding seal member 80 is provided in the lower part of the space S between the refrigeration heat transfer body 54 and the outer cylinder 58. In other words, the second sliding seal member 80 is provided in the vicinity of the magnetic fluid seal portion 62. Thus, the cooling function of the second cooling gas can be separated, and the heat insulating function of the magnetic fluid seal portion 62 and the refrigeration heat transfer body 54 can be specialized.
  • the sliding seal members (the first sliding seal member 78 and the second sliding seal member 80) are provided in the space S between the refrigeration heat transfer body 54 and the outer cylinder 58. There is. This can prevent the first cooling gas that leaks from the gap G into the space S from entering the magnetic fluid seal portion 62.
  • the processing apparatus 1 is a film forming apparatus as an example
  • the present invention is not limited to this, and may be, for example, an etching apparatus or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

一実施形態の載置台構造は、固定配置された冷凍伝熱体と、前記冷凍伝熱体の周囲に配置され、回転可能な外筒と、前記外筒に接続され、前記冷凍伝熱体の上面に対して隙間を有して配置された載置台と、を有する。

Description

載置台構造及び処理装置
 本発明は、載置台構造及び処理装置に関する。
 従来、超高真空かつ極低温の環境下において成膜した磁性膜を用いることで、高い磁気抵抗比を有する磁気抵抗素子を製造できることが知られている。超高真空かつ極低温の環境下において磁性膜を成膜する方法としては、冷却処理装置において極低温に冷却した被処理体に対し、冷却処理装置とは別の成膜装置で磁性膜を成膜する方法がある。
 冷却処理装置としては、極低温の環境下において使用可能な静電吸着装置を有する構成が知られている(例えば、特許文献1参照)。
特開2015-226010号公報
 ところで、冷却と成膜とを別の装置で行う場合、磁性膜を成膜する際の被処理体の温度を極低温に維持することが難しく、高い磁気抵抗比を有する磁気抵抗素子を製造することが困難である。
 また、上記の冷却処理装置に新たに成膜機構を設けることで、同一装置内で超高真空かつ極低温の環境下において被処理体に磁性膜を成膜する方法も考えられる。しかし、上記の冷却処理装置では、静電チャックが回転可能な構成となっていないため、良好な面内均一性を得ることが困難である。
 本発明は上記に鑑みてなされたものであって、被処理体を極低温に維持した状態で回転させることが可能な載置台構造を提供することを目的とする。
 上記目的を達成するため、本発明の一態様に係る載置台構造は、固定配置された冷凍伝熱体と、前記冷凍伝熱体の周囲に配置され、回転可能な外筒と、前記外筒に接続され、前記冷凍伝熱体の上面に対して隙間を有して配置された載置台と、を有する。
 開示の載置台構造によれば、被処理体を極低温に維持した状態で回転させることができる。
本発明の第1の実施形態に係る処理装置の一例を示す概略断面図 図1の処理装置の載置台構造における隙間の一例の説明図 本発明の第2の実施形態に係る処理装置の一例を示す概略断面図 本発明の第3の実施形態に係る処理装置の一例を示す概略断面図
 以下、本発明を実施するための形態について図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の構成については、同一の符号を付することにより重複した説明を省く。
 [第1の実施形態]
 本発明の第1の実施形態に係る載置台構造を備える処理装置について説明する。図1は、本発明の第1の実施形態に係る処理装置の一例を示す概略断面図である。
 図1に示されるように、処理装置1は、超高真空かつ極低温の環境下において処理が可能に構成された真空容器10内において、被処理体である半導体ウエハWに磁性膜を形成することが可能な成膜装置である。磁性膜は、例えばトンネル磁気抵抗(Tunneling Magneto Resistance;TMR)素子に用いられる。処理装置1は、真空容器10と、ターゲット30と、載置台構造50と、を備える。
 真空容器10は、その内部を超高真空(例えば10-5Pa以下)に減圧可能に構成されている。真空容器10には、外部からガス供給管(図示せず)が接続されており、ガス供給管からスパッタ成膜に必要なガス(例えばアルゴン、クリプトン、ネオン等の希ガスや窒素ガス)が供給される。また、真空容器10には、ガス供給管から供給されるガス等を排気し、真空容器10内を超高真空に減圧可能な真空ポンプ等の排気手段(図示せず)が接続されている。
 ターゲット30は、載置台構造50の上方であって、真空容器10内に設けられている。ターゲット30には、プラズマ発生用電源(図示せず)からの交流電圧が印加される。プラズマ発生用電源からターゲット30に交流電圧が印加されると、真空容器10内にプラズマが発生し、真空容器10内の希ガス等をイオン化し、イオン化した希ガス元素等によって、ターゲット30がスパッタリングされる。スパッタリングされたターゲット材料の原子又は分子は、ターゲット30に対向し、載置台構造50に保持された半導体ウエハWの表面に堆積する。ターゲット30の数は特に限定されないが、1つの処理装置1で異なる材料を成膜できるという観点から、複数であることが好ましい。例えば、磁性膜(Ni,Fe,Co等の強磁性体を含む膜)を堆積する場合、ターゲット30の材料としては、例えばCoFe、FeNi、NiFeCoを用いることができる。また、ターゲット30の材料として、これらの材料に、別の元素を混入させることもできる。
 載置台構造50は、冷凍機52と、冷凍伝熱体54と、載置台56と、外筒58と、を有する。
 冷凍機52は、冷凍伝熱体54を保持し、冷凍伝熱体54の上面を極低温(例えば-30℃以下)に冷却する。冷凍機52は、冷却能力の観点から、GM(Gifford-McMahon)サイクルを利用したタイプであることが好ましい。
 冷凍伝熱体54は、冷凍機52の上に固定配置されており、その上部が真空容器10内に配置されている。冷凍伝熱体54は、例えば純銅(Cu)等の熱伝導性の高い材料により形成されており、略円柱形状を有する。冷凍伝熱体54は、載置台56の中心軸Cにその中心が一致するように配置されている。冷凍伝熱体54の内部には、後述する隙間Gと連通し、第1冷却ガスを通流可能な第1冷却ガス供給部54aが形成されている。これにより、第1冷却ガスを隙間Gに供給することができる。第1冷却ガスとしては、高い熱伝導性を有するという観点から、ヘリウム(He)を用いることが好ましい。
 載置台56は、冷凍伝熱体54の上面との間に隙間G(例えば2mm以下)を有して配置されている。載置台56は、例えば純銅(Cu)等の熱伝導性の高い材料により形成されている。隙間Gは、冷凍伝熱体54の内部に形成された第1冷却ガス供給部54aと連通している。そのため、隙間Gには、第1冷却ガス供給部54aから第1冷却ガスが供給される。これにより、載置台56は、冷凍機52、冷凍伝熱体54、及び隙間Gに供給される第1冷却ガスによって極低温(例えば、-30℃以下)に冷却される。なお、第1冷却ガスに代えて、熱伝導性の良好な熱伝導グリースを隙間Gに充填してもよい。この場合、第1冷却ガス供給部54aを設ける必要がないため、冷凍伝熱体54の構造をシンプルにできる。載置台56には、上下に貫通する貫通孔56aが形成されている。貫通孔56aは、隙間Gを介して第1冷却ガス供給部54aに連通する。これにより、第1冷却ガス供給部54aから隙間Gに供給される第1冷却ガスの一部が貫通孔56aを介して、載置台56(静電チャック)の上面と半導体ウエハWの下面との間に供給される。そのため、冷凍伝熱体54の冷熱が効率よく半導体ウエハWに伝達する。貫通孔56aは、1つであってもよく、複数であってもよい。但し、冷凍伝熱体54の冷熱を特に効率よく半導体ウエハWに伝達するという観点から、複数であることが好ましい。載置台56は、静電チャックを含む。静電チャックは、誘電体膜内に埋設されたチャック電極56bを有する。チャック電極56bには、配線Lを介して所定の電位が与えられる。これにより、半導体ウエハWを静電チャックにより吸着して固定することができる。
 載置台56の下面には、冷凍伝熱体54の側に向かって突出する凸部56cが形成されている。図示の例では、凸部56cは、載置台56の中心軸Cを取り囲む略円環形状を有する。凸部56cの高さは、例えば40~50mmとすることができる。凸部56cの幅は、例えば6~7mmとすることができる。なお、凸部56cの形状及び数は特に限定されないが、冷凍伝熱体54との間の熱伝達効率を高めるという観点から、表面積が大きくなるような形状及び数であることが好ましい。凸部56cは、例えば図2に示されるように、その外面が波打った形状であってもよい。また、凸部56cの外面は、ブラスト等により凹凸加工が施されていることが好ましい。表面積が大きくなり、冷凍伝熱体54との間の熱伝達効率を高めることができるからである。また、凸部56cは、複数形成されていてもよい。
 また、載置台56における静電チャックを含む部分と凸部56cが形成される部分とは、一体的に成形されていてもよく、別体で成形され接合されていてもよい。
 冷凍伝熱体54の上面、即ち、凸部56cと対向する面には、凸部56cに対して隙間Gを有して嵌合する凹部54cが形成されている。図示の例では、凹部54cは、載置台56の中心軸Cを取り囲む略円環形状を有する。凹部54cの高さは、凸部56cの高さと同じであってよく、例えば40~50mmとすることができる。凹部54cの幅は、例えば凸部56cの幅よりも僅かに広い幅とすることができ、例えば7~9mmであることが好ましい。なお、凹部54cの形状及び数は、凸部56cの形状及び数と対応するように定められる。例えば図2に示されるように、凸部56cの外面が波打った形状である場合、凹部54cの内面も対応して波打った形状とすることができる。また、凹部54cの内面は、ブラスト等により凹凸加工が施されていることが好ましい。表面積が大きくなり、載置台56との間の熱伝達効率を高めることができるからである。また、凹部54cは、複数形成されていてもよい。
 外筒58は、冷凍伝熱体54の周囲に配置されている。図示の例では、外筒58は、冷凍伝熱体54の上部の外周面を覆うように配置されている。外筒58は、冷凍伝熱体54の外径よりも僅かに大きい内径の円筒部58aと、円筒部58aの下面において外径方向に延びるフランジ部58bと、を有する。円筒部58a及びフランジ部58bは、例えばステンレス等の金属により形成されている。フランジ部58bの下面には、断熱部材60が接続されている。
 断熱部材60は、フランジ部58bと同軸に延在する略円筒形状を有し、フランジ部58bに対して固定されている。断熱部材60は、アルミナ等のセラミックスにより形成されている。断熱部材60の下面には、磁性流体シール部62が設けられている。
 磁性流体シール部62は、回転部62aと、内側固定部62bと、外側固定部62cと、加熱手段62dと、を有する。回転部62aは、断熱部材60と同軸に延在する略円筒形状を有し、断熱部材60に対して固定されている。言い換えると、回転部62aは、断熱部材60を介して外筒58と接続されている。これにより、外筒58の冷熱の回転部62aへの伝達が断熱部材60により遮断されるので、磁性流体シール部62の磁性流体の温度が低下し、シール性能が低下したり、結露が生じたりすることを抑制できる。内側固定部62bは、冷凍伝熱体54と回転部62aとの間に磁性流体を介して設けられている。内側固定部62bは、内径が冷凍伝熱体54の外径よりも大きく、外径が回転部62aの内径よりも小さい略円筒形状を有する。外側固定部62cは、回転部62aの外側に磁性流体を介して設けられている。外側固定部62cは、内径が回転部62aの外径よりも大きい略円筒形状を有する。加熱手段62dは、内側固定部62bの内部に埋め込まれており、磁性流体シール部62の全体を加熱する。これにより、磁性流体シール部62の磁性流体の温度が低下し、シール性能が低下したり、結露が生じたりすることを抑制できる。係る構成により、磁性流体シール部62では、回転部62aが、内側固定部62b及び外側固定部62cに対して気密状態で回転可能となっている。即ち、外筒58は、磁性流体シール部62を介して回転可能に支持されている。外側固定部62cの上面と真空容器10の下面との間には、ベローズ64が設けられている。
 ベローズ64は、上下方向に伸縮可能な金属製の蛇腹構造体である。ベローズ64は、冷凍伝熱体54、外筒58、及び断熱部材60を囲み、真空容器10内の減圧可能な空間と真空容器10の外部の空間とを分離する。
 スリップリング66は、磁性流体シール部62の下方に設けられている。スリップリング66は、金属リングを含む回転体66aと、ブラシを含む固定体66bと、を有する。回転体66aは、磁性流体シール部62の回転部62aと同軸に延在する略円筒形状を有し、回転部62aに対して固定されている。固定体66bは、内径が回転体66aの外径よりも僅かに大きい略円筒形状を有する。スリップリング66は、直流電源(図示せず)と電気的に接続されており、直流電源から供給される電力を、固定体66bのブラシ及び回転体66aの金属リングを介して、配線Lに伝達する。この構成により、配線Lにねじれ等を発生させることなく、直流電源からチャック電極に電位を与えることができる。スリップリング66の回転体66aは、駆動機構68に取り付けられている。
 駆動機構68は、ロータ68aと、ステータ68bと、を有するダイレクトドライブモータである。ロータ68aは、スリップリング66の回転体66aと同軸に延在する略円筒形状を有し、回転体66aに対して固定されている。ステータ68bは、内径がロータ68aの外径よりも大きい略円筒形状を有する。係る構成により、ロータ68aが回転すると、回転体66a、回転部62a、外筒58、及び載置台56が冷凍伝熱体54に対して回転する。
 また、冷凍機52及び冷凍伝熱体54の周囲には、真空断熱二重構造に形成された断熱体70が設けられている。図示の例では、断熱体70は、冷凍機52とロータ68aとの間、及び冷凍伝熱体54の下部とロータ68aとの間に設けられている。これにより、冷凍機52及び冷凍伝熱体54の冷熱がロータ68aに伝達するのを抑制できる。
 また、冷凍機52及び冷凍伝熱体54の周囲には、第2冷却ガス供給部72が形成されている。第2冷却ガス供給部72は、冷凍伝熱体54と外筒58との間の空間Sに第2冷却ガスを供給する。第2冷却ガスは、例えば第1冷却ガスと熱伝導率が異なるガスであり、好ましくは熱伝導率が第1冷却ガスよりも低いガスであるため、第2冷却ガスの温度が第1冷却ガスの温度よりも相対的に高くなる。これにより、隙間Gから空間Sに漏れ出す第1冷却ガスが磁性流体シール部62に侵入するのを防止できる。言い換えると、第2冷却ガスは、隙間Gから漏れ出す第1冷却ガスに対するカウンターフローとして機能する。これにより、磁性流体シール部62の磁性流体の温度が低下し、シール性能が低下したり、結露が生じたりすることを抑制できる。また、カウンターフローとしての機能を高めるという観点から、第2冷却ガスの供給圧力は、第1冷却ガスの供給圧力と略同一、又は僅かに高い圧力であることが好ましい。なお、第2冷却ガスとしては、アルゴン、ネオン等の低沸点ガスを用いることができる。
 また、冷凍伝熱体54、隙間G等の温度を検出するための温度センサが設けられていてもよい。温度センサとしては、例えばシリコンダイオード温度センサ、白金抵抗温度センサ等の低温用温度センサを用いることができる。
 また、処理装置1は、載置台構造50の全体を真空容器10に対して昇降させる昇降機構74を有する。これにより、ターゲット30と半導体ウエハWとの間の距離を制御することができる。具体的には、昇降機構74により載置台構造50を昇降させることで、半導体ウエハWを載置台56に載置するときの位置と、載置台56に載置された半導体ウエハWに成膜を行うときの位置とを変更することができる。
 以上に説明したように、第1の実施形態の載置台構造50は、固定配置された冷凍伝熱体54と、冷凍伝熱体54の周囲に配置され、回転可能な外筒58と、外筒58に接続され、冷凍伝熱体54の上面に対して隙間Gを有して配置された載置台56と、を有する。これにより、半導体ウエハWを極低温に維持した状態で回転させることができる。また、載置台構造50を備える処理装置1を用いることで、良好な面内均一性と高い磁気抵抗比を有する磁気抵抗素子を製造することができる。
 特に、載置台56の上方に複数の異なる材料のターゲット30が配置された処理装置1において成膜を行う場合、載置台56が回転する本発明の第1の実施形態に係る載置台構造50を用いることで、良好な面内均一性を実現することができる。これに対して、載置台56が回転しない場合には、半導体ウエハWの表面におけるターゲット30からの距離の違いにより膜厚や膜質が異なる等、良好な面内均一性を実現することが困難である。
 [第2の実施形態]
 本発明の第2の実施形態に係る載置台構造を備える処理装置について説明する。第2の実施形態では、第1の実施形態の載置台構造50の貫通孔56aに代えて第3冷却ガス供給部76が形成されている。以下、第1の実施形態と異なる点を中心に説明する。図3は、本発明の第2の実施形態に係る処理装置の一例を示す概略断面図である。
 第3冷却ガス供給部76は、載置台56の上面と半導体ウエハWの下面との間に第3冷却ガスを供給する。第3冷却ガスとしては、例えば第1冷却ガスと同様のガスであるHeを用いることができる。第3冷却ガス供給部76は、例えば磁性流体シール部76aを介して載置台構造50Aに導入される。磁性流体シール部76aの外周側にはカバー76bが設けられている。
 以上に説明した第2の実施形態の載置台構造50Aによれば、上述した第1の実施形態による効果に加えて、以下のような効果が奏される。
 前述の第1の実施形態に係る載置台構造50を備える処理装置1では、半導体ウエハWを載置しない状態で載置台56を冷却すると、高真空雰囲気に維持された真空容器10内に第1冷却ガスが勢いよく放出されてしまい、隙間Gにおける熱伝達や真空容器10内の圧力制御が困難となる場合がある。そのため、上記の処理装置1では、載置台56にダミーウエハを載置することにより貫通孔56aから載置台56の上面とダミーウエハの下面との間に供給される第1冷却ガス量を調整していた。その結果、真空容器10内にダミーウエハを搬入又は搬出するといった動作が必要となり、スループットが悪化するという課題が生じる。
 これに対し、第2の実施形態によれば、冷凍伝熱体54の上面と載置台56の下面と隙間に冷却ガスを供給する第1冷却ガス供給部54aとは別に設けられ、載置台56の上面と半導体ウエハWの下面との間に冷却ガスを供給可能な第3冷却ガス供給部76を有する。これにより、上記の課題を解決することができる。
 [第3の実施形態]
 本発明の第3の実施形態に係る載置台構造を備える処理装置について説明する。第3の実施形態では、第1の実施形態の載置台構造50に対して更に第1摺動用シール部材78及び第2摺動用シール部材80が設けられている。但し、第1摺動用シール部材78又は第2摺動用シール部材80のいずれか一方のみが設けられていてもよい。以下、第1の実施形態と異なる点を中心に説明する。図4は、第3の実施形態に係る処理装置の一例を示す概略断面図である。
 第1摺動用シール部材78は、冷凍伝熱体54と外筒58との間の空間Sの上部に設けられている。言い換えると、第1摺動用シール部材78は、冷凍伝熱体54の凹部54c(載置台56の凸部56c)の周辺に設けられている。これにより、第1摺動用シール部材78は、隙間Gから空間Sに漏れ出す第1冷却ガスが磁性流体シール部62に侵入するのを防止する。第1摺動用シール部材78は、例えばオムニシール(登録商標)であってよい。また、第1摺動用シール部材78は、例えば磁性流体シール等を用いたガス分離構造であってもよい。
 第2摺動用シール部材80は、冷凍伝熱体54と外筒58との間の空間Sの下部に設けられている。言い換えると、第2摺動用シール部材80は、磁性流体シール部62の近傍に設けられている。これにより、第2冷却ガスの冷却機能を分離させることができ、磁性流体シール部62と冷凍伝熱体54との断熱機能に特化させることができる。
 以上に説明した第3の実施形態の載置台構造50Bによれば、上述した第1の実施形態による効果に加えて、以下のような効果が奏される。
 第3の実施形態によれば、冷凍伝熱体54と外筒58との間の空間Sに摺動用シール部材(第1摺動用シール部材78、第2摺動用シール部材80)が設けられている。これにより、隙間Gから空間Sに漏れ出す第1冷却ガスが磁性流体シール部62に侵入するのを防止できる。
 以上、本発明を実施するための形態について説明したが、上記内容は、発明の内容を限定するものではなく、本発明の範囲内で種々の変形及び改良が可能である。
 上記の実施形態では、処理装置1が成膜装置である場合を例に挙げて説明したが、本発明はこれに限定されず、例えばエッチング装置等であってもよい。
 本国際出願は、2017年7月7日に出願した日本国特許出願第2017-133991号及び2018年3月6日に出願した日本国特許出願第2018-039397号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。
1   処理装置
10  真空容器
30  ターゲット
50  載置台構造
52  冷凍機
54  冷凍伝熱体
54a 第1冷却ガス供給部
54c 凹部
56  載置台
56a 貫通孔
56b チャック電極
56c 凸部
58  外筒
58a 円筒部
58b フランジ部
60  断熱部材
62  磁性流体シール部
62a 回転部
62b 内側固定部
62c 外側固定部
62d 加熱手段
64  ベローズ
66  スリップリング
66a 回転体
66b 固定体
68  駆動機構
68a ロータ
68b ステータ
70  断熱体
72  第2冷却ガス供給部
74  昇降機構
76  第3冷却ガス供給部
76a 磁性流体シール部
76b カバー
78  第1摺動用シール部材
80  第2摺動用シール部材
C   中心軸
L   配線
G   隙間
S   空間
W   半導体ウエハ

Claims (17)

  1.  固定配置された冷凍伝熱体と、
     前記冷凍伝熱体の周囲に配置され、回転可能な外筒と、
     前記外筒に接続され、前記冷凍伝熱体の上面に対して隙間を有して配置された載置台と、
     を有する、
     載置台構造。
  2.  前記載置台は、前記冷凍伝熱体の側に向かって突出する凸部を有し、
     前記冷凍伝熱体は、前記凸部と対向する面に前記凸部に対して隙間を有して嵌合する凹部を有する、
     請求項1に記載の載置台構造。
  3.  前記凸部及び前記凹部は、前記載置台の中心軸を取り囲む略円環形状を有する、
     請求項2に記載の載置台構造。
  4.  前記凸部及び前記凹部は、それぞれ複数形成されている、
     請求項2に記載の載置台構造。
  5.  前記凸部の外面及び前記凹部の内面の少なくともいずれかには、凹凸加工が施されている、
     請求項2に記載の載置台構造。
  6.  前記冷凍伝熱体を保持し、前記冷凍伝熱体の上面を-30℃以下に冷却する冷凍機を有する、
     請求項1に記載の載置台構造。
  7.  前記冷凍機及び前記冷凍伝熱体の周囲に設けられ、真空断熱二重構造に形成された断熱体を有する、
     請求項6に記載の載置台構造。
  8.  前記隙間には、第1冷却ガスが充填される、
     請求項1に記載の載置台構造。
  9.  前記冷凍伝熱体は、前記隙間と連通し、前記隙間に前記第1冷却ガスを供給する第1冷却ガス供給部を有する、
     請求項8に記載の載置台構造。
  10.  前記載置台は、上下に貫通する貫通孔を有し、
     前記貫通孔は、前記隙間を介して前記第1冷却ガス供給部に連通する、
     請求項9に記載の載置台構造。
  11.  前記冷凍伝熱体と前記外筒との間の空間に前記第1冷却ガスと熱伝導率が異なる第2冷却ガスを供給する第2冷却ガス供給部を有する、
     請求項8に記載の載置台構造。
  12.  前記載置台の上面に第3冷却ガスを供給する第3冷却ガス供給部を有する、
     請求項8に記載の載置台構造。
  13.  前記冷凍伝熱体と前記外筒との間の空間に設けられ、前記第1冷却ガスが前記空間を介して漏れ出すことを防止する摺動用シール部材を有する、
     請求項8に記載の載置台構造。
  14.  前記隙間には、熱伝導グリースが充填される、
     請求項1に記載の載置台構造。
  15.  前記載置台は、静電チャックを有し、
     前記静電チャックに電力を供給する配線は、スリップリングを介して前記配線に電力を供給する電源と電気的に接続されている、
     請求項1に記載の載置台構造。
  16.  前記外筒は、磁性流体シール部を介して回転可能に支持されており、
     前記磁性流体シール部は、加熱手段を含む、
     請求項1に記載の載置台構造。
  17.  請求項1に記載の載置台構造と、
     前記載置台の上方に配置されたターゲットと、
     を備える、
     処理装置。
PCT/JP2018/023967 2017-07-07 2018-06-25 載置台構造及び処理装置 WO2019009118A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/624,492 US20200381272A1 (en) 2017-07-07 2018-06-25 Placing table structure and treatment device
KR1020197038252A KR102632158B1 (ko) 2017-07-07 2018-06-25 거치대 구조 및 처리 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-133991 2017-07-07
JP2017133991 2017-07-07
JP2018039397A JP6605061B2 (ja) 2017-07-07 2018-03-06 載置台構造及び処理装置
JP2018-039397 2018-03-06

Publications (1)

Publication Number Publication Date
WO2019009118A1 true WO2019009118A1 (ja) 2019-01-10

Family

ID=64949954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023967 WO2019009118A1 (ja) 2017-07-07 2018-06-25 載置台構造及び処理装置

Country Status (1)

Country Link
WO (1) WO2019009118A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965519A (zh) * 2020-07-24 2020-11-20 武汉锐科光纤激光技术股份有限公司 一种芯片测试设备
CN111965520A (zh) * 2020-07-24 2020-11-20 武汉锐科光纤激光技术股份有限公司 一种芯片测试设备
CN113363199A (zh) * 2020-03-06 2021-09-07 东京毅力科创株式会社 基片处理装置和基片处理方法
CN113394129A (zh) * 2020-03-11 2021-09-14 东京毅力科创株式会社 基片处理装置和基片处理装置的制造方法
US11149345B2 (en) * 2017-12-11 2021-10-19 Applied Materials, Inc. Cryogenically cooled rotatable electrostatic chuck

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267355A (ja) * 1991-02-22 1992-09-22 Ebara Corp ウエハ移送ロボット
JPH05299360A (ja) * 1992-04-20 1993-11-12 Fujitsu Ltd 静電チャック
JPH11131230A (ja) * 1997-10-28 1999-05-18 Shibaura Mechatronics Corp 基板冷却手段を備えた成膜装置
WO2017221631A1 (ja) * 2016-06-23 2017-12-28 株式会社アルバック 保持装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267355A (ja) * 1991-02-22 1992-09-22 Ebara Corp ウエハ移送ロボット
JPH05299360A (ja) * 1992-04-20 1993-11-12 Fujitsu Ltd 静電チャック
JPH11131230A (ja) * 1997-10-28 1999-05-18 Shibaura Mechatronics Corp 基板冷却手段を備えた成膜装置
WO2017221631A1 (ja) * 2016-06-23 2017-12-28 株式会社アルバック 保持装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149345B2 (en) * 2017-12-11 2021-10-19 Applied Materials, Inc. Cryogenically cooled rotatable electrostatic chuck
CN113363199A (zh) * 2020-03-06 2021-09-07 东京毅力科创株式会社 基片处理装置和基片处理方法
CN113394129A (zh) * 2020-03-11 2021-09-14 东京毅力科创株式会社 基片处理装置和基片处理装置的制造方法
CN111965519A (zh) * 2020-07-24 2020-11-20 武汉锐科光纤激光技术股份有限公司 一种芯片测试设备
CN111965520A (zh) * 2020-07-24 2020-11-20 武汉锐科光纤激光技术股份有限公司 一种芯片测试设备

Similar Documents

Publication Publication Date Title
JP6771632B2 (ja) 載置台構造
WO2019009118A1 (ja) 載置台構造及び処理装置
JP7450775B2 (ja) ステージ装置および処理装置
US11417504B2 (en) Stage device and processing apparatus
KR20160028971A (ko) 처리 장치
US11293092B2 (en) Stage device and processing apparatus
KR102499908B1 (ko) 스테이지 장치 및 처리 장치
JP7154160B2 (ja) 温度測定機構、温度測定方法、およびステージ装置
JP7224140B2 (ja) ステージ装置および処理装置
WO2021039218A1 (ja) 基板を処理する方法および装置
JP2021139017A (ja) 基板処理装置及び基板処理方法
JP7426842B2 (ja) ステージ装置、給電機構、および処理装置
JP2018003117A (ja) 絶縁膜を形成する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197038252

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18827495

Country of ref document: EP

Kind code of ref document: A1