WO2019008930A1 - Stator and motor - Google Patents

Stator and motor Download PDF

Info

Publication number
WO2019008930A1
WO2019008930A1 PCT/JP2018/019864 JP2018019864W WO2019008930A1 WO 2019008930 A1 WO2019008930 A1 WO 2019008930A1 JP 2018019864 W JP2018019864 W JP 2018019864W WO 2019008930 A1 WO2019008930 A1 WO 2019008930A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
stator
motor
insulator
magnet
Prior art date
Application number
PCT/JP2018/019864
Other languages
French (fr)
Japanese (ja)
Inventor
将之 石川
Original Assignee
日本電産テクノモータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産テクノモータ株式会社 filed Critical 日本電産テクノモータ株式会社
Priority to JP2019528395A priority Critical patent/JPWO2019008930A1/en
Priority to CN201880040271.6A priority patent/CN110771007A/en
Publication of WO2019008930A1 publication Critical patent/WO2019008930A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles

Definitions

  • the present invention relates to a stator and a motor.
  • Japanese Patent Application Laid-Open No. 2002-101583 discloses an electric motor for detecting the position of a rotor core.
  • a position detection element is disposed at a position facing in the axial direction of the rotor, and the position detection element passes the magnetic flux from the magnet of the rotor to detect the position. Then, in order to increase the amount of magnetic flux to the position detection element, the length of the magnet in the axial direction of the rotation axis is increased.
  • An object of the present invention is to provide a stator core and a motor which can take in more magnetic flux from the magnet to the stator core without increasing the thickness of the laminated thickness of the stator core.
  • An exemplary invention of the present application is a stator of a motor, which is a magnetic stator core having an annular core back surrounding a vertically extending central axis and a plurality of teeth radially extending from the core back.
  • the stator core can be effectively used as a magnetic path.
  • it is possible to increase the ratio of the output power to the input power of the motor, and to improve the efficiency of the motor, by increasing the thickness thickness of the stator core, that is, without increasing the number of stator cores in the axial direction. it can.
  • FIG. 1 is a longitudinal sectional view of a motor.
  • FIG. 2 is a perspective view of a stator core of the stator.
  • FIG. 3 is a diagram for explaining the magnetic flux passing through the stator core.
  • FIG. 4 is a diagram showing the magnetic flux distribution of the stator core.
  • FIG. 5 is a figure for demonstrating the magnetic flux which passes along the stator core which does not provide a nonmagnetic layer.
  • FIG. 6 is a diagram showing the magnetic flux distribution of the stator core.
  • FIG. 7 is a diagram showing a waveform of an induced voltage generated by the magnetic flux flowing into the stator core.
  • FIG. 8 is a figure for demonstrating the magnetic flux which passes along the stator core which divided the magnetic area
  • FIG. 9 is a diagram showing the waveform of the induced voltage of the stator core according to the difference in the number of nonmagnetic layers.
  • FIG. 10 is a diagram showing a separable stat
  • a direction parallel to the central axis of the motor is "axial direction”
  • a direction perpendicular to the central axis of the motor is “radial direction”
  • a direction along an arc centered on the central axis of the motor is “circumferential direction” , Respectively.
  • the shape and the positional relationship of each part will be described with the axial direction as the vertical direction.
  • the definition in the vertical direction is not intended to limit the direction at the time of manufacture and use of the motor according to the present invention.
  • FIG. 1 is a longitudinal sectional view of the motor 1.
  • the motor 1 is used for home appliances such as an air conditioner.
  • the motor 1 may be used for applications other than home appliances.
  • the motor 1 may be mounted on transportation equipment such as a car or a railway, OA equipment, medical equipment, tools, large-scale equipment for industrial use, etc. to generate various driving forces.
  • the motor 1 includes a stationary unit 2 and a rotating unit 3.
  • the stationary unit 2 is fixed to the frame of the home appliance.
  • the rotating unit 3 is rotatably supported with respect to the stationary unit 2.
  • the stationary portion 2 includes a stator 21, a circuit board 22, a resin casing 23, a lower bearing portion 24, and an upper bearing portion 25.
  • the stator 21 is an armature that generates a magnetic flux according to the drive current.
  • the stator 21 has a stator core 211, an insulator 212, and a plurality of coils 213.
  • FIG. 2 is a perspective view of a stator core 211 that the stator 21 has.
  • the stator core 211 shown in FIG. 2 shows a state of being cut at a cross section including the central axis 9.
  • the insulator 212 and the coil 213 are not shown.
  • the stator core 211 is composed of a plurality of divided cores 40.
  • the plurality of divided cores 40 are arranged in the circumferential direction.
  • Each divided core 40 has a core back 41 and teeth 42.
  • the plurality of core backs 41 form an annular shape centered on the central axis 9 as a whole by contacting each other.
  • the teeth 42 extend radially inward from the core back 41.
  • the split core 40 is configured by laminating a magnetic layer 40A, a nonmagnetic layer 40B, and a magnetic layer 40C in the axial direction.
  • the magnetic layers 40A and 40C are formed, for example, by laminating electromagnetic steel plates.
  • the nonmagnetic layer 40B is, for example, an insulator made of a nonmagnetic and electrically insulating resin material.
  • the magnetic layer 40A is stacked on the axial direction upper side of the nonmagnetic layer 40B, and the magnetic layer 40C is stacked on the axial direction lower side of the nonmagnetic layer 40B. That is, the magnetic region of the split core 40 is divided into a plurality of regions in the axial direction by interposing the nonmagnetic layer 40B.
  • the stator core 211 may also be an annular core of one connection.
  • the nonmagnetic layer 40B divides the magnetic region of the divided core 40 equally. Therefore, the axial length of the two magnetic layers 40A and 40C is the same.
  • the nonmagnetic layer 40 ⁇ / b> B is disposed at the axial center of the teeth 42.
  • the insulator 212 is attached to the stator core 211.
  • a resin which is an insulator is used as a material of the insulator 212.
  • the insulator 212 has teeth insulating portions 51 that cover both axial end surfaces of the teeth 42 and both circumferential surfaces.
  • the coil 213 is made of a conducting wire wound around the teeth insulating portion 51. That is, the conducting wire that constitutes the coil 213 is wound around the teeth 42 through the teeth insulating portion 51 of the insulator 212.
  • the insulator 212 has an upper side wall 52.
  • the upper side wall portion 52 extends from both radial inner and outer ends of the tooth insulating portion 51 toward both the axial upper side and the circumferential direction.
  • the insulator 212 also has a lower side wall 53.
  • the lower side wall portion 53 extends from both radial inner and outer ends of the tooth insulating portion 51 to both the axial lower side and the circumferential direction.
  • the upper side wall portion 52 and the lower side wall portion 53 suppress the winding collapse of the coil 213, and prevent the wire constituting the coil 213 from protruding radially inward and outward.
  • the insulator 212 may be the same member as the nonmagnetic layer 40B, or may be a separate member from the nonmagnetic layer 40B.
  • the circuit board 22 is located on the axial direction upper side of the stator 21 and disposed substantially perpendicular to the central axis 9.
  • the circuit board 22 is fixed to the upper end portion of the insulator 212 by welding, for example.
  • An electric circuit for supplying a driving current to the coil 213 is mounted on the circuit board 22.
  • the ends of the conductive wires constituting the coil 213 are electrically connected to the electric circuit on the circuit board 22.
  • the current supplied from the external power supply flows to the coil 213 through the circuit board 22.
  • the resin casing 23 is a member made of resin that holds the stator 21 and the circuit board 22.
  • the resin casing 23 is obtained by pouring resin into a cavity in a mold in which the stator 21 and the circuit board 22 are accommodated. That is, the resin casing 23 is a resin molded product having the stator 21 and the circuit board 22 as insert parts. Therefore, the stator 21 and the circuit board 22 are at least partially covered by the resin casing 23.
  • the resin casing 23 has a cylindrical portion 231 and a top plate portion 232.
  • the cylindrical portion 231 extends in a substantially cylindrical shape in the axial direction. At least the core back 41 of the stator 21 is covered with a resin that constitutes the cylindrical portion 231. Further, a rotor 32 described later is disposed on the inner side in the radial direction of the cylindrical portion 231.
  • the top plate portion 232 extends radially inward from the cylindrical portion 231 above the stator core 211 and the rotor 32 in the axial direction. At the center of the top plate portion 232, a circular hole 233 for passing a shaft 31 described later is provided.
  • the lower bearing portion 24 supports the shaft 31 rotatably below the rotor 32 in the axial direction.
  • the upper bearing portion 25 rotatably supports the shaft 31 above the rotor 32 in the axial direction.
  • the lower bearing portion 24 and the upper bearing portion 25 use ball bearings in which a plurality of balls intervene between the inner ring and the outer ring.
  • the outer ring of the lower bearing portion 24 is fixed to the cylindrical portion 231 of the resin casing 23 via the lower cover member 241 made of metal.
  • the outer ring of the upper bearing portion 25 is fixed to the top plate portion 232 of the resin casing 23 via the metal upper cover member 251.
  • other types of bearings such as slide bearings or fluid bearings may be used.
  • the rotating portion 3 has a shaft 31 and a rotor 32.
  • the shaft 31 is a cylindrical member extending in the axial direction.
  • the shaft 31 is supported by the lower bearing portion 24 and the upper bearing portion 25 and rotates about the central axis 9.
  • the upper end portion of the shaft 31 protrudes axially above the upper surface of the resin casing 23.
  • a fan for an air conditioner is attached at the upper end of the shaft 31, for example, a fan for an air conditioner is attached.
  • the shaft 31 may be connected to a driving unit other than the fan via a power transmission mechanism such as a gear.
  • the shaft 31 of this embodiment protrudes to the axial direction upper side of the resin casing 23, it is not limited to this.
  • the shaft 31 may project downward in the axial direction of the resin casing 23, and the lower end portion of the shaft 31 may be connected to the drive unit. Further, the shaft 31 may protrude to both the upper side and the lower side in the axial direction of the resin casing 23, and both the upper end and the lower end thereof may be respectively connected to the driving portion.
  • the rotor 32 is fixed to the shaft 31 and rotates with the shaft 31.
  • the rotor 32 has a rotor core 321 and a plurality of magnets 322.
  • the rotor core 321 is formed of a laminated steel plate in which electromagnetic steel plates, which are magnetic bodies, are laminated in the axial direction.
  • the plurality of magnets 322 are disposed on the outer peripheral surface of the rotor core 321.
  • the radially outer surface of each magnet 322 is a magnetic pole surface that faces the radially inner end surface of the tooth 42 in the radial direction.
  • the magnetic pole surfaces of the N pole and the magnetic pole surfaces of the S pole are alternately arranged, and are arranged at equal intervals in the circumferential direction.
  • the axial length of the magnet 322 is at least longer than the axial length of the stator core 211.
  • the axial upper end of the magnet 322 is located above the axial upper end of the stator core 211. Further, the lower end in the axial direction of the magnet 322 is located below the lower end in the axial direction of the stator core 211.
  • At least one of the length from the upper end of stator core 211 to the upper end of magnet 322 and the length from the lower end of stator core 211 to the lower end of magnet 322 Is longer than the thickness of the nonmagnetic layer 40B.
  • a single annular magnet may be used.
  • the N pole and the S pole may be alternately magnetized in the circumferential direction on the outer peripheral surface of the magnet.
  • a part of the magnet may be embedded inside the rotor core.
  • the magnet may be molded of a resin containing magnetic powder, and may be connected to the shaft 31.
  • the stator core 211 specifically, the magnetic regions of the plurality of divided cores 40 are axially divided by the nonmagnetic layer 40B.
  • more magnetic flux from the magnet 322 may be taken into the stator core 211 compared to a structure in which the stator core 211 is not divided by the nonmagnetic layer 40B under the condition that the axial length of the magnetic region of the stator core 211 is the same. it can.
  • the magnetic flux from the magnet 322 to the stator core 211 will be described below.
  • FIG. 3 is a diagram for explaining the magnetic flux passing through the stator core 211. As shown in FIG. In FIG. 3, the magnetic flux is indicated by a broken arrow. Moreover, the core back 41 and the teeth 42 etc. which are shown in FIG. 3 are simplified and shown.
  • FIG. 4 is a diagram showing the magnetic flux distribution of the stator core 211. As shown in FIG.
  • the magnet 322 protrudes in the axial direction above and below the teeth 42 in the axial direction.
  • the portion of the magnet 322 protruding upward from the teeth 42 in the axial direction is referred to as an upper overhang portion 322A.
  • the portion of the magnet 322 that protrudes below the teeth 42 is referred to as a lower overhang portion 322B.
  • a portion of the magnet 322 that radially faces the nonmagnetic layer 40B is referred to as a central portion 322C.
  • a magnetic flux in the radial direction flows into the entire magnetic layer 40A from the magnet 322 facing in the radial direction. Further, the magnetic flux flows from the upper overhang portion 322A to the axially upper end portion of the magnetic layer 40A in the radially outward and downward sloping direction. Furthermore, the magnetic flux along the direction which inclines radially outward and upward from the central portion 322C flows into the axially lower end of the magnetic layer 40A.
  • the magnetic flux in the radial direction flows from the magnet 322 facing in the radial direction into the entire magnetic layer 40C. Further, magnetic flux flows from the central portion 322C radially outward and downward to the upper end portion of the magnetic layer 40C in the axial direction. Furthermore, the magnetic flux along the direction which inclines radially outward and upward from the lower overhang part 322B flows into the lower end part in the axial direction of the magnetic layer 40C.
  • the lower end in the axial direction of the magnetic layer 40A and the upper end in the axial direction of the magnetic layer 40C will be referred to as the central portion of the stator core 211.
  • the magnetic flux density of the stator core 211 in the case where the nonmagnetic layer 40B is not provided will be described below for comparison with the present embodiment.
  • FIG. 5 is a diagram for explaining the magnetic flux passing through the stator core 211A in which the nonmagnetic layer is not provided.
  • FIG. 6 is a diagram showing the magnetic flux distribution of the stator core 211A.
  • the axial length of the magnetic region of the stator core 211A shown in FIG. 5 is the same as the magnetic region of the stator core 211 of the present embodiment.
  • the magnetic flux in the radial direction flows from the radially opposed magnets 322 into the entire stator core 211A. Further, the magnetic flux flows from the upper overhang portion 322A to the axially upper end portion of the stator core 211A in the radially outward and downward sloping direction. Furthermore, the magnetic flux along the direction which inclines radially outward and upward flows in from the lower overhang part 322B into the axial direction lower end part of the stator core 211A. Thereby, the amount of magnetic flux of the magnetic flux flowing into the upper end and the lower end of the stator core 211A becomes substantially the same.
  • the amount of magnetic flux flowing into the central portion of the stator core 211A is smaller than the upper end and the lower end of the stator core 211A.
  • the magnetic flux density of the stator core 211A is biased in the axial direction.
  • FIG. 7 is a diagram showing a waveform of an induced voltage generated by the magnetic flux flowing into the stator core.
  • the induced voltage of the stator core 211 of the present embodiment provided with the nonmagnetic layer 40B is indicated by a solid line
  • the induced voltage of the stator core 211A of FIG. 4 not provided with the nonmagnetic layer 40B is indicated by a broken line.
  • the induced voltage of the stator core 211 provided with the nonmagnetic layer 40B is higher than the induced voltage of the stator core 211A not provided with the nonmagnetic layer 40B. That is, the amount of magnetic flux flowing into the stator core 211 is larger than that of the stator core 211A.
  • the structure in which the magnetic region of the stator core is divided by the nonmagnetic layer 40B does not divide the magnetic region of the stator core by the nonmagnetic layer 40B.
  • more magnetic flux from the magnet 322 can be taken.
  • the stator core 211 can be effectively used as a magnetic path.
  • the ratio of the output power to the input power of the motor 1 can be increased without increasing the product thickness of the magnetic region of the stator core 211, and the efficiency of the motor 1 can be improved.
  • the number of turns of the coil 213 can be reduced. If the number of turns of the coil 213 is reduced, the thickness of the conductive wire of the coil 213 can be increased. As a result, copper loss in the conductor can be reduced, and efficiency can be improved.
  • the magnetic region of the stator core 211 is divided into two by the nonmagnetic layer 40B, but may be divided into three or more regions as shown in FIG.
  • FIG. 8 is a diagram for explaining the magnetic flux passing through the stator core 211B in which the magnetic region is divided into three by the two nonmagnetic layers 40B.
  • the stator core 211 has an increased number of surfaces for taking in the magnetic flux in the axial direction. Therefore, more magnetic flux can be taken in.
  • FIG. 9 is a diagram showing the waveform of the induced voltage of the stator core according to the difference in the number of nonmagnetic layers 40B.
  • the nonmagnetic layer 40B shows the voltage waveform of the two stator cores 211B by a broken line
  • the nonmagnetic layer 40B shows the voltage waveform of one stator core 211 by a broken line.
  • a higher induced voltage can be obtained in the case of a structure in which the number of nonmagnetic layers 40B is large and the magnetic region of the stator core is further divided.
  • the nonmagnetic layer 40B is provided in the position which bisects the magnetic area
  • the axial length of the magnetic layer 40A may be longer than the axial length of the magnetic layer 40C, or vice versa.
  • the axial length of at least one of the plurality of magnetic layers 40A and 40C of the stator core 211 is preferably longer than the thickness of the nonmagnetic layer 40B.
  • the thickness of the nonmagnetic layer 40B is not limited to this.
  • the stator core 211 may have a structure that can be separated in the axial direction up and down.
  • FIG. 10 shows the separable stator core 211.
  • the nonmagnetic layer 40B is formed by laminating a first layer 40B1 and a second layer 40B2.
  • the stator core 211 can be separated vertically in the axial direction as shown in FIG. 9 at the boundary between the first layer 40B1 and the second layer 40B2.
  • FIG. 10 shows the separable stator core 211.
  • the nonmagnetic layer 40B is formed by laminating a first layer 40B1 and a second layer 40B2.
  • the stator core 211 can be separated vertically in the axial direction as shown in FIG. 9 at the boundary between the first layer 40B1 and the second layer 40B2.
  • the nonmagnetic layer 40B is formed by attaching the two stator cores. Positioning of the stator core during formation is facilitated. In addition, after two separate stator cores are attached, the conducting wire is wound around the teeth 42, and the coil 213 is provided.
  • the present invention is applicable to stators and motors.

Abstract

A stator of a motor is provided with: a magnetic body stator core including an annular core back surrounding a central axis extending vertically, and a plurality of teeth extending in a radial direction from the core back; a resin insulator covering at least part of the teeth; and a coil comprising a conducting wire wound around the teeth with the insulator interposed therebetween. The stator core is divided into a plurality of regions in the axial direction by interposing a non-magnetic layer which is non-magnetic and electrically insulating.

Description

ステータおよびモータStator and motor
 本発明は、ステータおよびモータに関する。 The present invention relates to a stator and a motor.
 特開2002-101583号公報には、ロータコアの位置を検出する電動機が開示されている。当該公報に記載の電動機は、ロータの軸方向に対向する位置に、位置検出素子を配置し、位置検出素子に、ロータのマグネットからの磁束を通過させて、位置検出している。そして、位置検出素子への磁束量を増加させるために、回転軸の軸方向におけるマグネットの長さを長くした構造としている。
特開2002-101583号公報
Japanese Patent Application Laid-Open No. 2002-101583 discloses an electric motor for detecting the position of a rotor core. In the electric motor described in the publication, a position detection element is disposed at a position facing in the axial direction of the rotor, and the position detection element passes the magnetic flux from the magnet of the rotor to detect the position. Then, in order to increase the amount of magnetic flux to the position detection element, the length of the magnet in the axial direction of the rotation axis is increased.
Japanese Patent Application Publication No. 2002-101583
 特開2002-101583号公報に記載の構造の電動機において、マグネットからの磁束をステータコアにより多く取り込むことができれば、ステータコアを有効活用できる。その結果、電動機の入力電力に対する出力トルクの比率を高めることができ、モータの効率を向上させることができる。このため、ステータコアへ取り込む磁束をより多くすることが望まれる。 In the motor having the structure described in JP-A-2002-101583, if a large amount of magnetic flux from the magnet can be taken into the stator core, the stator core can be effectively used. As a result, the ratio of the output torque to the input power of the motor can be increased, and the efficiency of the motor can be improved. For this reason, it is desirable to increase the magnetic flux drawn into the stator core.
 本発明の目的は、ステータコアの積厚長さを厚くすることなく、ステータコアへマグネットからの磁束をより多く取り込むことができるステータコアおよびモータを提供することである。 An object of the present invention is to provide a stator core and a motor which can take in more magnetic flux from the magnet to the stator core without increasing the thickness of the laminated thickness of the stator core.
 本願の例示的な発明は、モータのステータであって、上下に延びる中心軸を取り囲む環状のコアバックと、前記コアバックから径方向に延びた複数のティースと、を有する磁性体のステータコアと、少なくとも前記ティースの一部を覆う樹脂製のインシュレータと、前記インシュレータを介して前記ティースに巻かれた導線からなるコイルと、を備え、前記ステータコアは、非磁性かつ電気的絶縁である絶縁体が介在することで、軸方向において複数の領域に分割される。 An exemplary invention of the present application is a stator of a motor, which is a magnetic stator core having an annular core back surrounding a vertically extending central axis and a plurality of teeth radially extending from the core back. A resin insulator covering at least a part of the teeth, and a coil formed of a conducting wire wound on the teeth via the insulator, the stator core being interposed by an insulator which is nonmagnetic and electrically insulating By doing this, it is divided into a plurality of regions in the axial direction.
 本願の例示的な発明によれば、ステータコアの積厚長さが同じである条件において、ステータコアを非磁性材料で分割しない構造と比べて、マグネットからの磁束をより多く取り込むことができる。これにより、ステータコアを磁路として有効に用いることができる。この結果、ステータコアの積厚長さを増加させる、つまり、より多くのステータコアを軸方向に増やさなくとも、モータの入力電力に対する出力電力の比率を高めることができ、モータの効率を向上させることができる。 According to an exemplary invention of the present application, it is possible to capture more magnetic flux from the magnet as compared to a structure in which the stator core is not divided by the nonmagnetic material under the condition that the stack thickness length of the stator core is the same. Thus, the stator core can be effectively used as a magnetic path. As a result, it is possible to increase the ratio of the output power to the input power of the motor, and to improve the efficiency of the motor, by increasing the thickness thickness of the stator core, that is, without increasing the number of stator cores in the axial direction. it can.
図1は、モータの縦断面図である。FIG. 1 is a longitudinal sectional view of a motor. 図2は、ステータが有するステータコアの斜視図である。FIG. 2 is a perspective view of a stator core of the stator. 図3は、ステータコアを通る磁束を説明するための図である。FIG. 3 is a diagram for explaining the magnetic flux passing through the stator core. 図4は、ステータコアの磁束分布を示す図である。FIG. 4 is a diagram showing the magnetic flux distribution of the stator core. 図5は、非磁性層を設けないステータコアを通る磁束を説明するための図である。FIG. 5 is a figure for demonstrating the magnetic flux which passes along the stator core which does not provide a nonmagnetic layer. 図6は、ステータコアの磁束分布を示す図である。FIG. 6 is a diagram showing the magnetic flux distribution of the stator core. 図7は、ステータコアに磁束が流れ込むことで生じる誘起電圧の波形を示す図である。FIG. 7 is a diagram showing a waveform of an induced voltage generated by the magnetic flux flowing into the stator core. 図8は、2つの非磁性層により、磁性領域を3つに分割したステータコアを通る磁束を説明するための図である。FIG. 8 is a figure for demonstrating the magnetic flux which passes along the stator core which divided the magnetic area | region into three by two nonmagnetic layers. 図9は、非磁性層の数の違いによる、ステータコアの誘起電圧の波形を示す図である。FIG. 9 is a diagram showing the waveform of the induced voltage of the stator core according to the difference in the number of nonmagnetic layers. 図10は、分離可能なステータコアを示す図である。FIG. 10 is a diagram showing a separable stator core.
 以下、本発明の例示的な実施形態について、図面を参照しながら説明する。なお、本願では、モータの中心軸と平行な方向を「軸方向」、モータの中心軸に直交する方向を「径方向」、モータの中心軸を中心とする円弧に沿う方向を「周方向」、とそれぞれ称する。また、本願では、軸方向を上下方向として、各部の形状や位置関係を説明する。ただし、この上下方向の定義により、本発明に係るモータの製造時および使用時の向きを限定する意図はない。 Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. In the present application, a direction parallel to the central axis of the motor is "axial direction", a direction perpendicular to the central axis of the motor is "radial direction", and a direction along an arc centered on the central axis of the motor is "circumferential direction" , Respectively. Further, in the present application, the shape and the positional relationship of each part will be described with the axial direction as the vertical direction. However, the definition in the vertical direction is not intended to limit the direction at the time of manufacture and use of the motor according to the present invention.
 <1.モータの全体構成>
 図1は、モータ1の縦断面図である。モータ1は、空調機等の家電製品に使用される。ただし、モータ1は、家電製品以外の用途に使用されるものであってもよい。例えば、モータ1は、自動車または鉄道等の輸送機器、OA機器、医療機器、工具、産業用の大型設備等に搭載されて、種々の駆動力を発生させるものであってもよい。
<1. Overall configuration of motor>
FIG. 1 is a longitudinal sectional view of the motor 1. The motor 1 is used for home appliances such as an air conditioner. However, the motor 1 may be used for applications other than home appliances. For example, the motor 1 may be mounted on transportation equipment such as a car or a railway, OA equipment, medical equipment, tools, large-scale equipment for industrial use, etc. to generate various driving forces.
 モータ1は、静止部2と回転部3とを備えている。静止部2は、家電製品の枠体に固定される。回転部3は、静止部2に対して回転可能に支持されている。 The motor 1 includes a stationary unit 2 and a rotating unit 3. The stationary unit 2 is fixed to the frame of the home appliance. The rotating unit 3 is rotatably supported with respect to the stationary unit 2.
 静止部2は、ステータ21、回路基板22、樹脂ケーシング23、下軸受部24、および上軸受部25を有している。 The stationary portion 2 includes a stator 21, a circuit board 22, a resin casing 23, a lower bearing portion 24, and an upper bearing portion 25.
 ステータ21は、駆動電流に応じて磁束を発生させる電機子である。ステータ21は、ステータコア211、インシュレータ212、および複数のコイル213を有している。 The stator 21 is an armature that generates a magnetic flux according to the drive current. The stator 21 has a stator core 211, an insulator 212, and a plurality of coils 213.
 図2は、ステータ21が有するステータコア211の斜視図である。図2に示すステータコア211は、中心軸9を含む断面で切断した状態を示す。図2では、インシュレータ212およびコイル213の図示は省略している。 FIG. 2 is a perspective view of a stator core 211 that the stator 21 has. The stator core 211 shown in FIG. 2 shows a state of being cut at a cross section including the central axis 9. In FIG. 2, the insulator 212 and the coil 213 are not shown.
 ステータコア211は、複数の分割コア40により構成されている。複数の分割コア40は、周方向に配列されている。各分割コア40は、コアバック41とティース42とを有している。複数のコアバック41は、互いに接触することにより、全体として、中心軸9を中心とする円環状となる。ティース42は、コアバック41から径方向内側へ向けて延びている。 The stator core 211 is composed of a plurality of divided cores 40. The plurality of divided cores 40 are arranged in the circumferential direction. Each divided core 40 has a core back 41 and teeth 42. The plurality of core backs 41 form an annular shape centered on the central axis 9 as a whole by contacting each other. The teeth 42 extend radially inward from the core back 41.
 分割コア40は、軸方向に、磁性層40Aと、非磁性層40Bと、磁性層40Cとが積層されて構成されている。磁性層40A、40Cは、例えば、電磁鋼板が積層されてなる。非磁性層40Bは、例えば、非磁性かつ電気的絶縁である樹脂材料からなる絶縁体である。磁性層40Aは、非磁性層40Bの軸方向上側に積層され、磁性層40Cは、非磁性層40Bの軸方向下側に積層されている。つまり、分割コア40の磁性領域は、非磁性層40Bが介在することで、軸方向において複数の領域に分割されている。なお、ステータコア211は、一繋がりの円環状のコアでもあってもよい。 The split core 40 is configured by laminating a magnetic layer 40A, a nonmagnetic layer 40B, and a magnetic layer 40C in the axial direction. The magnetic layers 40A and 40C are formed, for example, by laminating electromagnetic steel plates. The nonmagnetic layer 40B is, for example, an insulator made of a nonmagnetic and electrically insulating resin material. The magnetic layer 40A is stacked on the axial direction upper side of the nonmagnetic layer 40B, and the magnetic layer 40C is stacked on the axial direction lower side of the nonmagnetic layer 40B. That is, the magnetic region of the split core 40 is divided into a plurality of regions in the axial direction by interposing the nonmagnetic layer 40B. The stator core 211 may also be an annular core of one connection.
 本実施形態では、非磁性層40Bは、分割コア40の磁性領域を均等に分割している。したがって、2つの磁性層40A、40Cの軸方向の長さは同じである。そして、非磁性層40Bは、ティース42の軸方向の中央に配置されている。 In the present embodiment, the nonmagnetic layer 40B divides the magnetic region of the divided core 40 equally. Therefore, the axial length of the two magnetic layers 40A and 40C is the same. The nonmagnetic layer 40 </ b> B is disposed at the axial center of the teeth 42.
 インシュレータ212は、ステータコア211に取り付けられている。インシュレータ212の材料には、絶縁体である樹脂が用いられている。インシュレータ212は、各ティース42の軸方向の両端面および周方向の両面を覆うティース絶縁部51を有している。コイル213は、ティース絶縁部51に巻かれた導線からなっている。すなわち、コイル213を構成する導線は、インシュレータ212のティース絶縁部51を介してティース42に巻かれている。 The insulator 212 is attached to the stator core 211. As a material of the insulator 212, a resin which is an insulator is used. The insulator 212 has teeth insulating portions 51 that cover both axial end surfaces of the teeth 42 and both circumferential surfaces. The coil 213 is made of a conducting wire wound around the teeth insulating portion 51. That is, the conducting wire that constitutes the coil 213 is wound around the teeth 42 through the teeth insulating portion 51 of the insulator 212.
 インシュレータ212は、上側壁部52を有している。上側壁部52は、ティース絶縁部51の径方向内側および外側の両端部から、軸方向上側および周方向の両側へ向けて広がっている。また、インシュレータ212は、下側壁部53を有している。下側壁部53は、ティース絶縁部51の径方向内側および外側の両端部から、軸方向下側および周方向の両側へ向けて広がっている。上側壁部52および下側壁部53は、コイル213の巻き崩れを抑制し、コイル213を構成する導線が径方向内側および外側へはみ出すことを防止する。 The insulator 212 has an upper side wall 52. The upper side wall portion 52 extends from both radial inner and outer ends of the tooth insulating portion 51 toward both the axial upper side and the circumferential direction. The insulator 212 also has a lower side wall 53. The lower side wall portion 53 extends from both radial inner and outer ends of the tooth insulating portion 51 to both the axial lower side and the circumferential direction. The upper side wall portion 52 and the lower side wall portion 53 suppress the winding collapse of the coil 213, and prevent the wire constituting the coil 213 from protruding radially inward and outward.
 インシュレータ212は、非磁性層40Bと同一部材であってもよいし、非磁性層40Bと別部材であってもよい。 The insulator 212 may be the same member as the nonmagnetic layer 40B, or may be a separate member from the nonmagnetic layer 40B.
 回路基板22は、ステータ21の軸方向上側に位置し、中心軸9に対して略垂直に配置されている。回路基板22は、インシュレータ212の上端部に、例えば溶着により固定されている。回路基板22には、コイル213に駆動電流を供給するための電気回路が搭載されている。コイル213を構成している導線の端部は、回路基板22上の電気回路と電気的に接続されている。外部電源から供給される電流は、回路基板22を介してコイル213へ流れる。 The circuit board 22 is located on the axial direction upper side of the stator 21 and disposed substantially perpendicular to the central axis 9. The circuit board 22 is fixed to the upper end portion of the insulator 212 by welding, for example. An electric circuit for supplying a driving current to the coil 213 is mounted on the circuit board 22. The ends of the conductive wires constituting the coil 213 are electrically connected to the electric circuit on the circuit board 22. The current supplied from the external power supply flows to the coil 213 through the circuit board 22.
 樹脂ケーシング23は、ステータ21および回路基板22を保持する樹脂製の部材である。樹脂ケーシング23は、ステータ21および回路基板22が収容された金型内の空洞に、樹脂を流し込むことにより得られる。すなわち、樹脂ケーシング23は、ステータ21および回路基板22をインサート部品とする樹脂成型品である。したがって、ステータ21および回路基板22は、少なくとも部分的に、樹脂ケーシング23に覆われている。 The resin casing 23 is a member made of resin that holds the stator 21 and the circuit board 22. The resin casing 23 is obtained by pouring resin into a cavity in a mold in which the stator 21 and the circuit board 22 are accommodated. That is, the resin casing 23 is a resin molded product having the stator 21 and the circuit board 22 as insert parts. Therefore, the stator 21 and the circuit board 22 are at least partially covered by the resin casing 23.
 樹脂ケーシング23は、円筒部231および天板部232を有している。円筒部231は、軸方向に略円筒状に延びている。ステータ21の少なくともコアバック41は、円筒部231を構成する樹脂に覆われている。また、円筒部231の径方向内側には、後述するロータ32が配置されている。天板部232は、ステータコア211およびロータ32よりも軸方向上側において、円筒部231から径方向内側へ広がる。天板部232の中央には、後述するシャフト31を通すための円孔233が設けられている。 The resin casing 23 has a cylindrical portion 231 and a top plate portion 232. The cylindrical portion 231 extends in a substantially cylindrical shape in the axial direction. At least the core back 41 of the stator 21 is covered with a resin that constitutes the cylindrical portion 231. Further, a rotor 32 described later is disposed on the inner side in the radial direction of the cylindrical portion 231. The top plate portion 232 extends radially inward from the cylindrical portion 231 above the stator core 211 and the rotor 32 in the axial direction. At the center of the top plate portion 232, a circular hole 233 for passing a shaft 31 described later is provided.
 下軸受部24は、ロータ32よりも軸方向下側において、シャフト31を回転可能に支持している。上軸受部25は、ロータ32よりも軸方向上側において、シャフト31を回転可能に支持している。下軸受部24および上軸受部25には、内輪と外輪との間に複数の球体が介在するボールベアリングが、使用されている。下軸受部24の外輪は、金属製の下カバー部材241を介して、樹脂ケーシング23の円筒部231に固定されている。上軸受部25の外輪は、金属製の上カバー部材251を介して、樹脂ケーシング23の天板部232に固定されている。ただし、ボールベアリングに代えて、すべり軸受または流体軸受等の他方式の軸受が、使用されていてもよい。 The lower bearing portion 24 supports the shaft 31 rotatably below the rotor 32 in the axial direction. The upper bearing portion 25 rotatably supports the shaft 31 above the rotor 32 in the axial direction. The lower bearing portion 24 and the upper bearing portion 25 use ball bearings in which a plurality of balls intervene between the inner ring and the outer ring. The outer ring of the lower bearing portion 24 is fixed to the cylindrical portion 231 of the resin casing 23 via the lower cover member 241 made of metal. The outer ring of the upper bearing portion 25 is fixed to the top plate portion 232 of the resin casing 23 via the metal upper cover member 251. However, in place of the ball bearings, other types of bearings such as slide bearings or fluid bearings may be used.
 回転部3は、シャフト31およびロータ32を有している。シャフト31は、軸方向に延びる円柱状の部材である。シャフト31は、下軸受部24および上軸受部25に支持され、中心軸9を中心として回転する。シャフト31の上端部は、樹脂ケーシング23の上面よりも軸方向上側へ突出している。シャフト31の上端部には、例えば、空調機用のファンが取り付けられる。ただし、シャフト31は、ギア等の動力伝達機構を介して、ファン以外の駆動部に連結されるものであってもよい。 The rotating portion 3 has a shaft 31 and a rotor 32. The shaft 31 is a cylindrical member extending in the axial direction. The shaft 31 is supported by the lower bearing portion 24 and the upper bearing portion 25 and rotates about the central axis 9. The upper end portion of the shaft 31 protrudes axially above the upper surface of the resin casing 23. At the upper end of the shaft 31, for example, a fan for an air conditioner is attached. However, the shaft 31 may be connected to a driving unit other than the fan via a power transmission mechanism such as a gear.
 なお、本実施形態のシャフト31は、樹脂ケーシング23の軸方向上側へ突出しているが、これに限定されない。シャフト31は、樹脂ケーシング23の軸方向下側へ突出し、その下端部が駆動部と連結されるようになっていてもよい。また、シャフト31は、樹脂ケーシング23の軸方向上側および軸方向下側の双方に突出し、その上端部および下端部の双方が、それぞれ駆動部に連結されるようになっていてもよい。 In addition, although the shaft 31 of this embodiment protrudes to the axial direction upper side of the resin casing 23, it is not limited to this. The shaft 31 may project downward in the axial direction of the resin casing 23, and the lower end portion of the shaft 31 may be connected to the drive unit. Further, the shaft 31 may protrude to both the upper side and the lower side in the axial direction of the resin casing 23, and both the upper end and the lower end thereof may be respectively connected to the driving portion.
 ロータ32は、シャフト31に固定されていて、シャフト31とともに回転する。ロータ32は、ロータコア321および複数のマグネット322を有している。ロータコア321は、磁性体である電磁鋼板が軸方向に積層された積層鋼板からなる。複数のマグネット322は、ロータコア321の外周面に配置されている。各マグネット322の径方向外側の面は、ティース42の径方向内側の端面と径方向に対向する磁極面となる。複数のマグネット322は、N極の磁極面とS極の磁極面とが交互に並び、周方向に等間隔に配列されている。 The rotor 32 is fixed to the shaft 31 and rotates with the shaft 31. The rotor 32 has a rotor core 321 and a plurality of magnets 322. The rotor core 321 is formed of a laminated steel plate in which electromagnetic steel plates, which are magnetic bodies, are laminated in the axial direction. The plurality of magnets 322 are disposed on the outer peripheral surface of the rotor core 321. The radially outer surface of each magnet 322 is a magnetic pole surface that faces the radially inner end surface of the tooth 42 in the radial direction. In the plurality of magnets 322, the magnetic pole surfaces of the N pole and the magnetic pole surfaces of the S pole are alternately arranged, and are arranged at equal intervals in the circumferential direction.
 また、マグネット322の軸方向の長さは、少なくとも、ステータコア211の軸方向の長さよりも長い。そして、マグネット322の軸方向の上側端部は、ステータコア211の軸方向の上側端部よりも上側に位置している。また、マグネット322の軸方向の下側端部は、ステータコア211の軸方向の下側端部よりも下側に位置している。マグネット322の長さをステータコア211よりも長くすることで、ステータコア211には、より多くの磁束が取り込まれるようになり、モータ1の効率を高めることができる。また、この場合において、ステータコア211の上側端部から、マグネット322の上側端部までの長さ、および、ステータコア211の下側端部から、マグネット322の下側端部までの長さの少なくとも一方は、非磁性層40Bの厚さよりも長い。 The axial length of the magnet 322 is at least longer than the axial length of the stator core 211. The axial upper end of the magnet 322 is located above the axial upper end of the stator core 211. Further, the lower end in the axial direction of the magnet 322 is located below the lower end in the axial direction of the stator core 211. By making the length of the magnet 322 longer than that of the stator core 211, more magnetic flux can be taken into the stator core 211, and the efficiency of the motor 1 can be enhanced. In this case, at least one of the length from the upper end of stator core 211 to the upper end of magnet 322 and the length from the lower end of stator core 211 to the lower end of magnet 322 Is longer than the thickness of the nonmagnetic layer 40B.
 なお、複数のマグネット322に代えて、単一の円環状のマグネットが使用されていてもよい。円環状のマグネットを使用する場合には、マグネットの外周面に、N極とS極とが、周方向に交互に着磁されていればよい。また、マグネットの一部は、ロータコアの内部に埋め込まれていてもよい。また、マグネットは、磁性体粉を配合した樹脂で成型され、シャフト31に連結されていてもよい。 In place of the plurality of magnets 322, a single annular magnet may be used. When an annular magnet is used, the N pole and the S pole may be alternately magnetized in the circumferential direction on the outer peripheral surface of the magnet. In addition, a part of the magnet may be embedded inside the rotor core. In addition, the magnet may be molded of a resin containing magnetic powder, and may be connected to the shaft 31.
 モータ1の駆動時には、回路基板22を介してコイル213に駆動電流が供給される。そうすると、ステータコア211の複数のティース42に、磁束が生じる。そして、ティース42とマグネット322との間の磁束が及ぼす作用により、周方向のトルクが発生する。その結果、中心軸9を中心として回転部3が回転する。 When the motor 1 is driven, a drive current is supplied to the coil 213 via the circuit board 22. Then, magnetic flux is generated in the plurality of teeth 42 of stator core 211. Then, the action of the magnetic flux between the teeth 42 and the magnet 322 generates torque in the circumferential direction. As a result, the rotating portion 3 rotates around the central axis 9.
 <2.ステータコアの磁束について>
 上記のように、本実施形態では、ステータコア211、詳しくは、複数の分割コア40それぞれの磁性領域を、非磁性層40Bで軸方向に分割している。この場合、ステータコア211の磁性領域の軸方向の長さが同じである条件において、ステータコア211を非磁性層40Bで分割しない構造と比べて、マグネット322からの磁束をステータコア211へより多く取り込むことができる。以下、マグネット322からステータコア211への磁束について説明する。
<2. About magnetic flux of stator core>
As described above, in the present embodiment, the stator core 211, specifically, the magnetic regions of the plurality of divided cores 40 are axially divided by the nonmagnetic layer 40B. In this case, more magnetic flux from the magnet 322 may be taken into the stator core 211 compared to a structure in which the stator core 211 is not divided by the nonmagnetic layer 40B under the condition that the axial length of the magnetic region of the stator core 211 is the same. it can. The magnetic flux from the magnet 322 to the stator core 211 will be described below.
 図3は、ステータコア211を通る磁束を説明するための図である。図3では、磁束を破線矢印で示している。また、図3に示す、コアバック41およびティース42等は、簡略化して示している。図4は、ステータコア211の磁束分布を示す図である。 FIG. 3 is a diagram for explaining the magnetic flux passing through the stator core 211. As shown in FIG. In FIG. 3, the magnetic flux is indicated by a broken arrow. Moreover, the core back 41 and the teeth 42 etc. which are shown in FIG. 3 are simplified and shown. FIG. 4 is a diagram showing the magnetic flux distribution of the stator core 211. As shown in FIG.
 前記のように、マグネット322は、軸方向において、ティース42よりも軸方向上下に突出している。以下、軸方向において、ティース42よりも上側に突出したマグネット322の部分を、上側オーバーハング部322Aと称する。また、ティース42よりも下側に突出したマグネット322の部分を、下側オーバーハング部322Bと称する。また、非磁性層40Bと径方向に対向するマグネット322の部分を、中央部322Cと称する。 As described above, the magnet 322 protrudes in the axial direction above and below the teeth 42 in the axial direction. Hereinafter, the portion of the magnet 322 protruding upward from the teeth 42 in the axial direction is referred to as an upper overhang portion 322A. Further, the portion of the magnet 322 that protrudes below the teeth 42 is referred to as a lower overhang portion 322B. In addition, a portion of the magnet 322 that radially faces the nonmagnetic layer 40B is referred to as a central portion 322C.
 磁性層40A全体には、径方向に対向するマグネット322から径方向に沿った磁束が流れ込む。また、磁性層40Aの軸方向の上側端部には、上側オーバーハング部322Aから、径方向外向きかつ下向きに傾斜する方向に沿った磁束が流れ込む。さらに、磁性層40Aの軸方向の下側端部は、中央部322Cから、径方向外向きかつ上向きに傾斜する方向に沿った磁束が流れ込む。 A magnetic flux in the radial direction flows into the entire magnetic layer 40A from the magnet 322 facing in the radial direction. Further, the magnetic flux flows from the upper overhang portion 322A to the axially upper end portion of the magnetic layer 40A in the radially outward and downward sloping direction. Furthermore, the magnetic flux along the direction which inclines radially outward and upward from the central portion 322C flows into the axially lower end of the magnetic layer 40A.
 同様に、磁性層40C全体には、径方向に対向するマグネット322から径方向に沿った磁束が流れ込む。また、磁性層40Cの軸方向の上側端部には、中央部322Cから、径方向外向きかつ下向きに傾斜する方向に沿った磁束が流れ込む。さらに、磁性層40Cの軸方向の下側端部は、下側オーバーハング部322Bから、径方向外向きかつ上向きに傾斜する方向に沿った磁束が流れ込む。 Similarly, the magnetic flux in the radial direction flows from the magnet 322 facing in the radial direction into the entire magnetic layer 40C. Further, magnetic flux flows from the central portion 322C radially outward and downward to the upper end portion of the magnetic layer 40C in the axial direction. Furthermore, the magnetic flux along the direction which inclines radially outward and upward from the lower overhang part 322B flows into the lower end part in the axial direction of the magnetic layer 40C.
 なお、以下、磁性層40Aの軸方向の下側端部、および磁性層40Cの軸方向の上側端部を、ステータコア211の中央部と称する。 Hereinafter, the lower end in the axial direction of the magnetic layer 40A and the upper end in the axial direction of the magnetic layer 40C will be referred to as the central portion of the stator core 211.
 このように、軸方向において、ステータコア211の上側端部、下側端部、および中央部には、径方向以外の方向(径方向に傾斜する方向)からの磁束が流れ込む。これにより、ステータコア211の上側端部、下側端部、および中央部に流れ込む磁束の磁束量は、略同じになる。その結果、図4に示すように、軸方向において、ステータコア211の磁束密度は、非磁性層40Bを除く領域で、略均等となる。 As described above, in the axial direction, magnetic flux from a direction other than the radial direction (a direction inclined in the radial direction) flows into the upper end portion, the lower end portion, and the central portion of the stator core 211. Thereby, the amount of magnetic flux of the magnetic flux flowing into the upper end portion, the lower end portion, and the central portion of the stator core 211 becomes substantially the same. As a result, as shown in FIG. 4, in the axial direction, the magnetic flux density of the stator core 211 is substantially uniform in the region excluding the nonmagnetic layer 40B.
 以下に、本実施形態との対比のために、非磁性層40Bを設けない場合の、ステータコア211の磁束密度について説明する。 The magnetic flux density of the stator core 211 in the case where the nonmagnetic layer 40B is not provided will be described below for comparison with the present embodiment.
 図5は、非磁性層を設けないステータコア211Aを通る磁束を説明するための図である。図6は、ステータコア211Aの磁束分布を示す図である。なお、図5に示すステータコア211Aの磁性領域の軸方向の長さは、本実施形態のステータコア211の磁性領域と同じである。 FIG. 5 is a diagram for explaining the magnetic flux passing through the stator core 211A in which the nonmagnetic layer is not provided. FIG. 6 is a diagram showing the magnetic flux distribution of the stator core 211A. The axial length of the magnetic region of the stator core 211A shown in FIG. 5 is the same as the magnetic region of the stator core 211 of the present embodiment.
 ステータコア211A全体には、径方向に対向するマグネット322から径方向に沿った磁束が流れ込む。また、ステータコア211Aの軸方向の上側端部には、上側オーバーハング部322Aから、径方向外向きかつ下向きに傾斜する方向に沿った磁束が流れ込む。さらに、ステータコア211Aの軸方向の下側端部は、下側オーバーハング部322Bから、径方向外向きかつ上向きに傾斜する方向に沿った磁束が流れ込む。これにより、ステータコア211Aの上側端部および下側端部に流れ込む磁束の磁束量は、略同じになる。一方で、ステータコア211Aの中央部に流れ込む磁束の磁束量は、ステータコア211Aの上側端部および下側端部よりも少ない。その結果、図6に示すように、ステータコア211Aの磁束密度は、軸方向に偏りが生じる。 The magnetic flux in the radial direction flows from the radially opposed magnets 322 into the entire stator core 211A. Further, the magnetic flux flows from the upper overhang portion 322A to the axially upper end portion of the stator core 211A in the radially outward and downward sloping direction. Furthermore, the magnetic flux along the direction which inclines radially outward and upward flows in from the lower overhang part 322B into the axial direction lower end part of the stator core 211A. Thereby, the amount of magnetic flux of the magnetic flux flowing into the upper end and the lower end of the stator core 211A becomes substantially the same. On the other hand, the amount of magnetic flux flowing into the central portion of the stator core 211A is smaller than the upper end and the lower end of the stator core 211A. As a result, as shown in FIG. 6, the magnetic flux density of the stator core 211A is biased in the axial direction.
 図7は、ステータコアに磁束が流れ込むことで生じる誘起電圧の波形を示す図である。図7では、非磁性層40Bを設けた、本実施形態のステータコア211の誘起電圧を実線で示し、非磁性層40Bを設けない図4のステータコア211Aの誘起電圧を破線で示す。 FIG. 7 is a diagram showing a waveform of an induced voltage generated by the magnetic flux flowing into the stator core. 7, the induced voltage of the stator core 211 of the present embodiment provided with the nonmagnetic layer 40B is indicated by a solid line, and the induced voltage of the stator core 211A of FIG. 4 not provided with the nonmagnetic layer 40B is indicated by a broken line.
 図7に示すように、非磁性層40Bを設けたステータコア211の誘起電圧は、非磁性層40Bを設けないステータコア211Aの誘起電圧よりも高い。つまり、ステータコア211に流れ込む磁束の磁束量は、ステータコア211Aよりも多い。 As shown in FIG. 7, the induced voltage of the stator core 211 provided with the nonmagnetic layer 40B is higher than the induced voltage of the stator core 211A not provided with the nonmagnetic layer 40B. That is, the amount of magnetic flux flowing into the stator core 211 is larger than that of the stator core 211A.
 以上のように、ステータコアの磁性領域の積厚長さが同じである条件において、ステータコアの磁性領域を非磁性層40Bで分割した構造の方が、ステータコアの磁性領域を非磁性層40Bで分割しない構造と比べて、マグネット322からの磁束をより多く取り込むことができる。これにより、ステータコア211を磁路として有効に用いることができる。この結果、ステータコア211の磁性領域の積厚長さを増加させなくとも、モータ1の入力電力に対する出力電力の比率を高めることができ、モータ1の効率を向上させることができる。 As described above, under the condition that the thickness of the laminated region of the magnetic region of the stator core is the same, the structure in which the magnetic region of the stator core is divided by the nonmagnetic layer 40B does not divide the magnetic region of the stator core by the nonmagnetic layer 40B. Compared to the structure, more magnetic flux from the magnet 322 can be taken. Thus, the stator core 211 can be effectively used as a magnetic path. As a result, the ratio of the output power to the input power of the motor 1 can be increased without increasing the product thickness of the magnetic region of the stator core 211, and the efficiency of the motor 1 can be improved.
 また、ステータコア211へより多くの磁束を通し、誘起電圧を高くできることで、コイル213の巻き数を少なくすることができる。コイル213の巻き数を少なくすると、コイル213の導線の太さを太くできる。その結果、導線での銅損を低減でき、効率を向上させることができる。 In addition, by passing more magnetic flux to the stator core 211 and increasing the induced voltage, the number of turns of the coil 213 can be reduced. If the number of turns of the coil 213 is reduced, the thickness of the conductive wire of the coil 213 can be increased. As a result, copper loss in the conductor can be reduced, and efficiency can be improved.
 <3.変形例>
 以上、本発明の例示的な実施形態について説明したが、本発明は上記の実施形態には限定されない。
<3. Modified example>
Although the exemplary embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments.
 上記の実施形態では、ステータコア211の磁性領域は、非磁性層40Bにより、二分されているが、図8に示すように、3つ以上領域に分割されていてもよい。図8は、2つの非磁性層40Bにより、磁性領域を3つに分割したステータコア211Bを通る磁束を説明するための図である。この場合、ステータコア211には、軸方向に磁束を取り込む面が増える。したがって、さらに多くの磁束を取り込むことができる。 In the above embodiment, the magnetic region of the stator core 211 is divided into two by the nonmagnetic layer 40B, but may be divided into three or more regions as shown in FIG. FIG. 8 is a diagram for explaining the magnetic flux passing through the stator core 211B in which the magnetic region is divided into three by the two nonmagnetic layers 40B. In this case, the stator core 211 has an increased number of surfaces for taking in the magnetic flux in the axial direction. Therefore, more magnetic flux can be taken in.
 図9は、非磁性層40Bの数の違いによる、ステータコアの誘起電圧の波形を示す図である。図9では、非磁性層40Bが2つのステータコア211Bの電圧波形を破線で示し、非磁性層40Bが1つのステータコア211の電圧波形を破線で示す。図9に示すように、非磁性層40Bの数が多く、ステータコアの磁性領域をより多く分割した構造の方が、高い誘起電圧を得ることができる。 FIG. 9 is a diagram showing the waveform of the induced voltage of the stator core according to the difference in the number of nonmagnetic layers 40B. In FIG. 9, the nonmagnetic layer 40B shows the voltage waveform of the two stator cores 211B by a broken line, and the nonmagnetic layer 40B shows the voltage waveform of one stator core 211 by a broken line. As shown in FIG. 9, in the case of a structure in which the number of nonmagnetic layers 40B is large and the magnetic region of the stator core is further divided, a higher induced voltage can be obtained.
 また、上記実施形態では、非磁性層40Bは、ステータコア211の磁性領域を、軸方向に、二等分する位置に設けられているが、これに限定されない。例えば、磁性層40Aの軸方向の長さが、磁性層40Cの軸方向の長さよりも長くてもよいし、その逆であってもよい。ただし、磁性層40Aまたは磁性層40Cの軸方向の長さが小さ過ぎると、その磁性層内の磁路となる領域が狭くなって、磁束が流れにくくなる。このため、ステータコア211の複数の磁性層40A、40Cの少なくとも一つの軸方向の長さは、非磁性層40Bの厚さよりも長いことが好ましい。 Moreover, in the said embodiment, although the nonmagnetic layer 40B is provided in the position which bisects the magnetic area | region of the stator core 211 to an axial direction, it is not limited to this. For example, the axial length of the magnetic layer 40A may be longer than the axial length of the magnetic layer 40C, or vice versa. However, if the axial length of the magnetic layer 40A or the magnetic layer 40C is too small, the region to be the magnetic path in the magnetic layer becomes narrow, and the magnetic flux hardly flows. Therefore, the axial length of at least one of the plurality of magnetic layers 40A and 40C of the stator core 211 is preferably longer than the thickness of the nonmagnetic layer 40B.
 上記実施形態では、ステータコア211の上側端部から、マグネット322の上側端部までの長さ、および、ステータコア211の下側端部から、マグネット322の下側端部までの長さの少なくとも一方は、非磁性層40Bの厚さよりも長い。これにより、ステータコア211の磁束密度をさらに高めることができる。しかしながら、非磁性層40Bの厚さは、これに限定されない。 In the above embodiment, at least one of the length from the upper end of the stator core 211 to the upper end of the magnet 322 and the length from the lower end of the stator core 211 to the lower end of the magnet 322 is , And the thickness of the nonmagnetic layer 40B. Thereby, the magnetic flux density of stator core 211 can be further raised. However, the thickness of the nonmagnetic layer 40B is not limited to this.
 また、ステータコア211は、軸方向に上下に分離可能な構造であってもよい。図10は、分離可能なステータコア211を示す図である。非磁性層40Bは、第1層40B1と、第2層40B2とが積層されてなる。そして、ステータコア211は、第1層40B1と、第2層40B2との間を境に、図9に示すように、軸方向に上下に分離可能となる。この構成において、上下に分離した2つのステータコアを取り付けると同時に、非磁性層を設ける方法の場合、金型または治具によるステータコアの位置決めが難しい。これに対し、図9に示すように、分離した2つのステータコアの双方に非磁性層を設けておくことで、2つのステータコアを取り付ければ非磁性層40Bが構成されるため、非磁性層40Bの形成時におけるステータコアの位置決めが容易となる。なお、分離した2つのステータコアが取り付けられた後に、ティース42に導線が巻かれて、コイル213が設けられる。 The stator core 211 may have a structure that can be separated in the axial direction up and down. FIG. 10 shows the separable stator core 211. As shown in FIG. The nonmagnetic layer 40B is formed by laminating a first layer 40B1 and a second layer 40B2. The stator core 211 can be separated vertically in the axial direction as shown in FIG. 9 at the boundary between the first layer 40B1 and the second layer 40B2. In this configuration, in the case of providing a nonmagnetic layer at the same time as attaching two stator cores separated vertically, it is difficult to position the stator core with a mold or jig. On the other hand, as shown in FIG. 9, by providing the nonmagnetic layer on both of the two separate stator cores, the nonmagnetic layer 40B is formed by attaching the two stator cores. Positioning of the stator core during formation is facilitated. In addition, after two separate stator cores are attached, the conducting wire is wound around the teeth 42, and the coil 213 is provided.
 本発明は、ステータおよびモータに利用できる。 The present invention is applicable to stators and motors.
1    :モータ
2    :静止部
3    :回転部
9    :中心軸
21   :ステータコア
22   :回路基板
23   :樹脂ケーシング
24   :下軸受部
25   :上軸受部
31   :シャフト
32   :ロータ
40   :分割コア
40A  :磁性層
40B  :非磁性層
40B1 :第1層
40B2 :第2層
40C  :磁性層
41   :コアバック
42   :ティース
51   :ティース絶縁部
52   :上側壁部
53   :下側壁部
211  :ステータコア
211A :ステータコア
211B :ステータコア
212  :インシュレータ
213  :コイル
231  :円筒部
232  :天板部
233  :円孔
241  :下カバー部材
251  :上カバー部材
321  :ロータコア
322  :マグネット
322A :上側オーバーハング部
322B :下側オーバーハング部
322C :中央部
 

 
1: Motor 2: Static part 3: Rotating part 9: Center axis 21: Stator core 22: Circuit board 23: Resin casing 24: Lower bearing 25: Upper bearing 31: Shaft 32: Rotor 40: Divided core 40A: Magnetic layer 40B: nonmagnetic layer 40B1: first layer 40B2: second layer 40C: magnetic layer 41: core back 42: core 51: teeth insulating portion 52: upper side wall 53: lower side wall 211: stator core 211A: stator core 211B: stator core 212: insulator 213: coil 231: cylindrical portion 232: top plate portion 233: circular hole 241: lower cover member 251: upper cover member 321: rotor core 322: magnet 322A: upper overhang portion 322B: lower overhang portion 322C: Center

Claims (8)

  1.  モータのステータであって、
     上下に延びる中心軸を取り囲む環状のコアバックと、前記コアバックから径方向に延びた複数のティースと、を有する磁性体のステータコアと、
     少なくとも前記ティースの一部を覆う樹脂製のインシュレータと、
     前記インシュレータを介して前記ティースに巻かれた導線からなるコイルと、
    を備え、
     前記ステータコアは、
      非磁性かつ電気的絶縁である絶縁体が介在することで、軸方向において複数の領域に分割される、
     ステータ。
    The stator of the motor,
    A stator core of a magnetic body having an annular core back surrounding a vertically extending central axis, and a plurality of teeth radially extending from the core back;
    A resin insulator covering at least a part of the teeth;
    A coil made of a conducting wire wound on the teeth via the insulator;
    Equipped with
    The stator core is
    Divided into a plurality of regions in the axial direction by interposing an insulator that is nonmagnetic and electrically insulating
    Stator.
  2.  請求項1に記載のステータであって、
     前記絶縁体は樹脂材料である、
     ステータ。
    The stator according to claim 1, wherein
    The insulator is a resin material,
    Stator.
  3.  請求項1または請求項2に記載のステータであって、
     前記ステータコアは、複数の前記絶縁体を有し、複数の前記絶縁体により、三つ以上の領域に分割されている、
     ステータ。
    The stator according to claim 1 or 2, wherein
    The stator core includes a plurality of the insulators and is divided into three or more regions by the plurality of insulators.
    Stator.
  4.  請求項1から請求項3に記載のステータを有するモータであって、
     中心軸を中心に回転するロータ、を備え、
     前記ロータは、前記ステータコアと対向する位置にマグネットを有し、
     前記マグネットの軸方向長さは、前記ステータコアの軸方向の長さよりも長く、
     前記マグネットの軸方向の上側端部は、前記ステータコアの軸方向の上側端部よりも上側に位置し、
     前記マグネットの軸方向の下側端部は、前記ステータコアの軸方向の下側端部よりも下側に位置している、
     モータ。
    A motor comprising the stator according to any one of claims 1 to 3,
    A rotor rotating about a central axis,
    The rotor has a magnet at a position facing the stator core,
    The axial length of the magnet is longer than the axial length of the stator core,
    The axial upper end of the magnet is positioned above the axial upper end of the stator core,
    An axially lower end of the magnet is positioned lower than an axially lower end of the stator core.
    motor.
  5.  請求項4に記載のモータであって、
     前記ステータコアの前記上側端部から、前記マグネットの前記上側端部までの長さ、および、前記ステータコアの前記下側端部から、前記マグネットの前記下側端部までの長さの少なくとも一方は、前記絶縁体の厚さよりも長い、
     モータ。
    The motor according to claim 4, wherein
    At least one of a length from the upper end of the stator core to the upper end of the magnet and a length from the lower end of the stator core to the lower end of the magnet is Longer than the thickness of the insulator,
    motor.
  6.  請求項4または請求項5に記載のモータであって、
     前記ステータコアの複数の領域の少なくとも一つの前記軸方向の長さは、前記絶縁体の厚さよりも長い、
     モータ。
    The motor according to claim 4 or 5, wherein
    The axial length of at least one of the plurality of regions of the stator core is greater than the thickness of the insulator,
    motor.
  7.  請求項4から請求項6までのいずれか一つに記載のモータであって、
     前記インシュレータと、前記絶縁体とは、同一部材である、
     モータ。
    A motor according to any one of claims 4 to 6, wherein
    The insulator and the insulator are the same member,
    motor.
  8.  請求項7に記載のモータであって、
     前記絶縁体は、前記軸方向に延びる、第1層と第2層とを有し、
     前記ステータコアは、
     前記第1層と前記第2層との間を境に、前記軸方向に分離する、
     モータ。
    The motor according to claim 7, wherein
    The insulator has a first layer and a second layer extending in the axial direction,
    The stator core is
    The axial direction is separated at the boundary between the first layer and the second layer,
    motor.
PCT/JP2018/019864 2017-07-04 2018-05-23 Stator and motor WO2019008930A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019528395A JPWO2019008930A1 (en) 2017-07-04 2018-05-23 Stator and motor
CN201880040271.6A CN110771007A (en) 2017-07-04 2018-05-23 Stator and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017131349 2017-07-04
JP2017-131349 2017-07-04

Publications (1)

Publication Number Publication Date
WO2019008930A1 true WO2019008930A1 (en) 2019-01-10

Family

ID=64950838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019864 WO2019008930A1 (en) 2017-07-04 2018-05-23 Stator and motor

Country Status (3)

Country Link
JP (1) JPWO2019008930A1 (en)
CN (1) CN110771007A (en)
WO (1) WO2019008930A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD862104S1 (en) 2018-03-21 2019-10-08 Casper Sleep Inc. Platform bed frame
RU2753739C1 (en) * 2020-11-17 2021-08-23 Общество с ограниченной ответственностью "ЭТК" Fault-tolerant electric machine with stator made of two-phase material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06253522A (en) * 1993-03-03 1994-09-09 Sankyo Seiki Mfg Co Ltd Magnetic disc drive
JP2005117846A (en) * 2003-10-10 2005-04-28 Hitachi Ltd Permanent magnet synchronous motor and its driving method
JP2005341713A (en) * 2004-05-27 2005-12-08 Victor Co Of Japan Ltd Motor with core
JP2006223024A (en) * 2005-02-08 2006-08-24 Nsk Ltd Brushless motor
JP2012253919A (en) * 2011-06-03 2012-12-20 Daikin Ind Ltd Rotating electric machine and compressor using the same
JP2016152755A (en) * 2015-02-19 2016-08-22 アスモ株式会社 Multi-lundell type motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283049A (en) * 1988-05-10 1989-11-14 Oki Electric Ind Co Ltd Pulse motor
CN2485860Y (en) * 2001-03-29 2002-04-10 王惠忠 Bidirectional large moment synchronous motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06253522A (en) * 1993-03-03 1994-09-09 Sankyo Seiki Mfg Co Ltd Magnetic disc drive
JP2005117846A (en) * 2003-10-10 2005-04-28 Hitachi Ltd Permanent magnet synchronous motor and its driving method
JP2005341713A (en) * 2004-05-27 2005-12-08 Victor Co Of Japan Ltd Motor with core
JP2006223024A (en) * 2005-02-08 2006-08-24 Nsk Ltd Brushless motor
JP2012253919A (en) * 2011-06-03 2012-12-20 Daikin Ind Ltd Rotating electric machine and compressor using the same
JP2016152755A (en) * 2015-02-19 2016-08-22 アスモ株式会社 Multi-lundell type motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD862104S1 (en) 2018-03-21 2019-10-08 Casper Sleep Inc. Platform bed frame
RU2753739C1 (en) * 2020-11-17 2021-08-23 Общество с ограниченной ответственностью "ЭТК" Fault-tolerant electric machine with stator made of two-phase material

Also Published As

Publication number Publication date
JPWO2019008930A1 (en) 2020-04-30
CN110771007A (en) 2020-02-07

Similar Documents

Publication Publication Date Title
JP5318758B2 (en) Ring coil motor
JP6651545B2 (en) motor
US3842300A (en) Laminated rotor structure for a dynamoelectric machine
JP2007074776A (en) Rotating electric machine
US20070138894A1 (en) Rotor assembly for use in line start permanent magnet synchronous motor
JP2014138433A (en) Rotating electrical machine
WO2014188628A1 (en) Rotor and motor
US10931154B2 (en) Axial-gap type motor
US20070138893A1 (en) Rotor assembly for use in line start permanent magnet synchronous motor
US20160105088A1 (en) Dc-excited synchronous electric motor
WO2019077983A1 (en) Axial gap-type dynamo-electric machine
JP6474268B2 (en) Induction synchronous motor
JP2014165927A (en) Permanent magnet type synchronous motor
JPWO2019203076A1 (en) Coil and motor using it
WO2019008930A1 (en) Stator and motor
JP2018074638A (en) Stator, motor, and manufacturing method of stator
JP2017163675A (en) Stator core, stator and rotary electric machine
JP2019165633A (en) Multi-phase claw pole motor and stator constituting the same
JP2016129447A (en) Rotary electric machine
JP2015130796A (en) Rotary electric apparatus
JP2018143049A (en) Method of manufacturing motor and motor
JP2013223370A (en) Synchronous rotary machine
JP2008022593A (en) Electric motor
JP2008029173A (en) Eddy current reduction gear
US20070001539A1 (en) Device for an electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828004

Country of ref document: EP

Kind code of ref document: A1