WO2019008912A1 - Insulated glazing and sash window - Google Patents

Insulated glazing and sash window Download PDF

Info

Publication number
WO2019008912A1
WO2019008912A1 PCT/JP2018/018848 JP2018018848W WO2019008912A1 WO 2019008912 A1 WO2019008912 A1 WO 2019008912A1 JP 2018018848 W JP2018018848 W JP 2018018848W WO 2019008912 A1 WO2019008912 A1 WO 2019008912A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass plate
mass
multilayer
spacer
Prior art date
Application number
PCT/JP2018/018848
Other languages
French (fr)
Japanese (ja)
Inventor
関 芳和
桑原 英一郎
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2019008912A1 publication Critical patent/WO2019008912A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/70Door leaves
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/16Fireproof doors or similar closures; Adaptations of fixed constructions therefor

Definitions

  • the present invention relates to a multilayer glass comprising at least three or more glass plates and a sash window using the multilayer glass.
  • double glazing is used for the outer wall of a building for which fire resistance is required.
  • a multilayer glass is formed by arranging a plurality of glass plates at intervals via a spacer. And the peripheral part of a several glass plate is sealed by the sealing material, and, thereby, the hollow layer is provided between glass plates.
  • the multilayer glass used for fire protection equipment usually comprises at least one glass sheet having fire resistance such as netted glass, heat-resistant tempered glass, low expansion fire-resistant glass and the like.
  • Patent Document 1 discloses a double-layered glass composed of three glass plates (first to third glass plates).
  • the 1st glass plate and the 2nd glass plate are spaced apart via the spacer, and the 1st hollow layer is provided in the meantime.
  • the second glass plate and the third glass plate are also spaced apart via a spacer, and a second hollow layer is provided therebetween.
  • the 1st glass plate is comprised by the fire prevention glass plate
  • the 2nd glass plate and the 3rd glass plate are comprised by the glass plate which is not a fire prevention glass plate.
  • a heat-resistant low-e (low-emissivity) film is formed on the inner surface of the third glass plate on the intermediate layer side.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a double glazing excellent in fire resistance and a sash window using the double glazing.
  • the multilayer glass of the present invention comprises at least three or more glass plates facing each other and spaced apart via a spacer, and the peripheral portion of the at least three or more glass plates is A multi-layered glass in which hollow layers are provided between the glass plates by being sealed with a sealing material, and the outermost of the at least three glass plates is provided.
  • the low radiation film is provided on the main surface on the hollow layer side of at least one of the two glass plates, and the third glass plate is made of crystallized glass. It is characterized.
  • the multilayer glass of the present invention is used for at least a part of the outer wall of a building, the first glass plate is provided on the outdoor side, and the second glass plate is on the indoor side It is preferable to be provided.
  • the low emission film is provided on the main surface on the hollow layer side of both glass plates of the first glass plate and the second glass plate. preferable.
  • the low emission film preferably contains silver.
  • the multilayer glass of the present invention is preferably used for fire protection equipment.
  • the sash window of the present invention is characterized by comprising a double glazing configured according to the present invention, and a frame provided at the periphery of the double glazing.
  • FIG. 1 is a schematic cross-sectional view showing a multilayer glass according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a multilayer glass according to a second embodiment of the present invention.
  • Fig.3 (a) is a typical front view which shows the sash window which concerns on one Embodiment of this invention
  • FIG.3 (b) is typical sectional drawing in alignment with the AA in FIG. 3 (a). It is.
  • FIG. 1 is a schematic cross-sectional view showing a multilayer glass according to a first embodiment of the present invention.
  • the multilayer glass 1 includes a first glass plate 2, a second glass plate 3, and a third glass plate 4.
  • the first glass plate 2 and the second glass plate 3 are the outermost glass plates.
  • a third glass plate 4 is provided between the first glass plate 2 and the second glass plate 3.
  • the multilayer glass 1 is composed of three glass plates, and the first glass plate 2 and the second glass plate 3 are outer glass plates, and the third glass plate 4 is an intermediate glass plate. It is.
  • the multilayer glass 1 may be constituted by four or more glass plates.
  • the multilayer glass 1 is used for at least a part of the outer wall of a building.
  • the multilayer glass 1 may be provided in parts other than the outer wall of a building, and the provided position is not particularly limited.
  • the first glass plate 2 is provided on the outdoor side.
  • the second glass plate 3 is provided on the indoor side.
  • the first glass plate 2 and the third glass plate 4 are provided to face each other. More specifically, the major surface 2 a of the first glass plate 2 is provided to face the major surface 4 a of the third glass plate 4.
  • the first glass plate 2 and the third glass plate 4 are provided at an interval via the first spacer 9.
  • the main surface 2a of the first glass plate 2 is joined to the first spacer 9 by the primary sealing material 11A.
  • the main surface 4a of the third glass plate 4 is joined to the first spacer 9 by the primary seal material 11B.
  • peripheral edge portion 2 a 1 of the main surface 2 a of the first glass plate 2 and the peripheral edge portion 4 a 1 of the main surface 4 a of the third glass plate 4 are directly joined by the secondary sealing material 13. More specifically, the secondary sealing material 13 is provided closer to the end face 1A of the multilayer glass 1 than the primary sealing materials 11A and 11B and the first spacer 9, and the first glass plate 2, the first The portion divided by the third glass plate 4 and the first spacer 9 is filled.
  • the first sealing material 11A, 11B and the secondary sealing material 13 seal between the first glass plate 2, the third glass plate 4 and the first spacer 9.
  • the first hollow layer 5 is formed between the first glass plate 2, the third glass plate 4 and the first spacer 9.
  • the first hollow layer 5 is an air layer filled with dry air.
  • the first hollow layer 5 may be filled with a gas such as argon gas or krypton gas.
  • the first low emission film 7 is provided on the major surface 2 a of the first glass plate 2.
  • the first low emission film 7 is provided to face the first hollow layer 5.
  • the material constituting the first low emission film 7 is silver.
  • the first low emission film 7 may be made of another material such as tin oxide or ITO.
  • the third glass plate 4 is provided to face the second glass plate 3 as well. More specifically, the major surface 3 a of the second glass plate 3 is provided to face the major surface 4 b of the third glass plate 4.
  • the major surface 4 b of the third glass plate 4 is the major surface opposite to the major surface 4 a of the third glass plate 4. Therefore, the main surface 4 b of the third glass plate is provided on the opposite side to the first glass plate 2.
  • the second glass plate 3 and the third glass plate 4 are provided at an interval via the second spacer 10.
  • the main surface 3a of the second glass plate 3 is bonded to the second spacer 10 by the primary sealing material 12A.
  • the main surface 4b of the third glass plate 4 is joined to the second spacer 10 by the primary sealing material 12B.
  • peripheral edge portion 3a1 of the main surface 3a of the second glass plate 3 and the peripheral edge portion 4b1 of the main surface 4b of the third glass plate 4 are directly joined by the secondary seal member 14. More specifically, the secondary sealing material 14 is provided closer to the end face 1A of the multilayer glass 1 than the second spacer 10, and the second glass plate 3, the third glass plate 4, and the third The portion divided by the two spacers 10 is filled.
  • the second hollow layer 6 is formed between the second glass plate 3, the third glass plate 4 and the second spacer 10.
  • the second hollow layer 6 is an air layer. Dry air is enclosed in the air layer.
  • a gas such as argon gas or krypton gas may be enclosed.
  • the second low radiation film 8 is provided on the major surface 3 a of the second glass plate 3.
  • the second low emission film 8 is provided to face the second hollow layer 6.
  • the material constituting the second low emission film 8 is silver.
  • the second low emission film 8 may be made of another material such as tin oxide or ITO.
  • the first glass plate 2 and the second glass plate 3 are made of ordinary float glass.
  • the first glass plate 2 and the second glass plate 3 may be made of other glass.
  • the first glass plate 2 and the second glass plate 3 may be laminated glass.
  • the third glass plate 4 is made of crystallized glass having heat resistance.
  • a heat-resistant crystallized glass for example, a transparent crystallized glass in which crystals of ⁇ -quartz solid solution are precipitated can be used.
  • the average linear expansion coefficient of the heat-resistant crystallized glass is preferably in the range of ⁇ 10 / K to 10 ⁇ 10 ⁇ 7 / K in the temperature range of 30 ° C. to 750 ° C.
  • the third glass plate 4 can be made more difficult to be damaged even if it is quenched by fire extinguishing activity when a fire occurs.
  • the third glass plate 4 may be a laminated glass including at least one crystallized glass.
  • the 3rd glass plate 4 provided in the middle among the three glass plates which comprise the multilayer glass 1 is comprised with crystallized glass. Therefore, even if the double-glazed glass 1 is heated in the event of a fire and the first glass plate 2 and the second glass plate 3 on the outer side are broken, the third glass plate 4 provided in the middle is It is hard to cause breakage or dropout. Therefore, the third glass plate 4 can be used to shield the light, and the fire resistance of the multilayer glass 1 can be enhanced. Since the double glazing 1 is excellent in fire resistance, it is possible to achieve enlargement.
  • the third glass plate 4 is further cracked even when quenched by the fire extinguishing activity. It can be difficult. Therefore, in this case, the fire resistance of the multilayer glass 1 can be further enhanced.
  • the middle third glass plate 4 is made of crystallized glass, the case where the outer first glass plate 2 and the second glass plate 3 are made of crystallized glass and The manufacturing cost can be reduced by comparison.
  • the 3rd glass plate 4 is comprised by crystallized glass, delivery time can also be shortened compared with the case where tempered glass, such as a wind-cooling tempered glass, is used.
  • tempered glass such as a wind-cooling tempered glass
  • the thickness T 1 of the third glass plate 4 without increasing the double glazing 1 overall thickness T, a first hollow layer 5 and the second thickness of the hollow layer 6
  • the thickness can be increased, whereby the thermal insulation of the multilayer glass 1 can be enhanced.
  • the thickness of the third glass plate 4 is preferably 2 mm or more, more preferably 3 mm or more, preferably 5 mm or less, more preferably 4 mm or less.
  • the fire resistance of the multilayer glass 1 can be further enhanced.
  • the thickness of the third glass plate 4 is equal to or less than the above upper limit, the thicknesses of the first hollow layer 5 and the second hollow layer 6 can be further increased. Thermal insulation can be further enhanced.
  • the ratio (T 1 / T) of the thickness T 1 of the third glass plate 4 to the thickness T of the entire multilayer glass 1 is preferably at least 0.06, more preferably at least 0.09, preferably Is 0.19 or less, more preferably 0.14 or less.
  • the ratio (T 1 / T) is equal to or more than the above lower limit, the fire resistance of the multilayer glass 1 can be further enhanced.
  • the ratio (T 1 / T) is equal to or less than the above upper limit, the thicknesses of the first hollow layer 5 and the second hollow layer 6 can be further increased, whereby the heat insulation of the multilayer glass 1 is achieved. Sex can be further enhanced.
  • the ratio of the sum of the thickness T 2 and the thickness T 3 of the second hollow layer 6 of the first hollow layer 5 for double glazing 1 overall thickness T is Preferably it is 0.52 or more, More preferably, it is 0.65 or more, Preferably it is 0.75 or less, More preferably, it is 0.69 or less.
  • the ratio ((T 2 + T 3 ) / T) is equal to or more than the above lower limit, the heat insulation of the multilayer glass 1 can be further enhanced.
  • the ratio ((T 2 + T 3 ) / T) is less than or equal to the above upper limit, the fire resistance of the multilayer glass 1 can be further enhanced.
  • a first glass plate and a second glass plate For example, ordinary float glass can be used as the first glass plate and the second glass plate.
  • the first glass plate and the second glass plate may be tempered glass reinforced by air cooling reinforcement or chemical strengthening, or double strength glass. From the viewpoint of further reducing the manufacturing cost, the first glass plate and the second glass plate are preferably float glass.
  • the first glass and the second glass plate may be laminated glass.
  • the low emission film is a low-e (low-emissivity) film for reflecting heat rays. Therefore, by providing the low radiation film, the glass plate can be made more difficult to break in the event of a fire.
  • the metal constituting the low emission film is silver.
  • the low emission film can be formed, for example, by vapor deposition or sputtering.
  • the third glass plate is made of crystallized glass having heat resistance.
  • a heat-resistant crystallized glass for example, a transparent crystallized glass in which crystals of ⁇ -quartz solid solution are precipitated can be used.
  • the average linear expansion coefficient of the heat-resistant crystallized glass is preferably in the range of ⁇ 10 / K to 10 ⁇ 10 ⁇ 7 / K in the temperature range of 30 ° C. to 750 ° C.
  • the third glass plate can be made more difficult to be damaged even in the event of a fire, even when the water is quenched rapidly with fire extinguishing activity.
  • the third glass plate may be a laminated glass containing at least one crystallized glass.
  • Resistant crystallized glass a composition, SiO 2 60 wt% to 70 wt%, Al 2 O 3 17 wt% to 27 wt%, Li 2 O 3 wt% to 6 wt%, ZrO 2 1 wt% to 3 wt It is preferable to contain 1% by mass to 3% by mass of TiO 2 .
  • a composition SiO 2 60 wt% to 70 wt%, Al 2 O 3 17 wt% to 27 wt%, Li 2 O 3 wt% to 6 wt%, Na 2 O 0.05 wt% to 1 wt% , K 2 O 0.1% by mass to 1% by mass, ZrO 2 1% by mass to 3% by mass, TiO 2 1% by mass to 3% by mass, MgO 0.1% by mass to 0.9% by mass, P 2 O 5 0.05% by mass to 2% by mass, As 2 O 3 0% by mass to 2% by mass, Sb 2 O 3 0% by mass to 2% by mass, and SnO 2 0% by mass to 2% by mass preferable.
  • the average linear thermal expansion coefficient of the heat-resistant crystallized glass can be in the range of ⁇ 10 / K to 10 ⁇ 10 ⁇ 7 / K.
  • the detail about each composition of such a heat-resistant crystallized glass is demonstrated.
  • SiO 2 is a component which forms a network while forming a network structure.
  • the average linear expansion coefficient may be high and the mechanical strength may be low.
  • the content of SiO 2 is more preferably 64% by mass to 66% by mass.
  • Al 2 O 3 is a component that constitutes a crystal.
  • the content of Al 2 O 3 is less than 17% by mass, the devitrification of the glass may be strengthened and the chemical durability may be reduced.
  • the content is more than 27% by mass, the viscosity of the glass may be too high to obtain a uniform glass.
  • the Al 2 O 3 content is more preferably 21% by mass to 23% by mass. As a result, the chemical durability can be more reliably maintained, and the transparency of the glass can be maintained even more reliably.
  • Li 2 O is a component that constitutes a crystal.
  • the content of Li 2 O is less than 3% by mass, it may be difficult to form a desired crystal and the solubility may be deteriorated.
  • the content of Li 2 O is more preferably 3% by mass to 5% by mass. As a result, desired crystallization can be formed to further enhance the heat resistance, and the transparency of the glass can be more reliably maintained.
  • Na 2 O is a component that further improves the solubility of glass. If the content of Na 2 O is less than 0.05% by mass, desired solubility may not be obtained. On the other hand, if it is more than 1% by mass, the average linear expansion coefficient of the glass may be increased. The content of Na 2 O is more preferably 0.4% by mass to 0.6% by mass. As a result, the predetermined average linear expansion coefficient can be maintained more reliably, and the uniformity of the glass can be maintained more reliably.
  • K 2 O is a component that further improves the solubility of glass. If the content of K 2 O is less than 0.1% by mass, desired solubility may not be obtained. On the other hand, if it is more than 1% by mass, the average linear expansion coefficient of the glass may be increased. The content of K 2 O is more preferably 0.2% by mass to 0.4% by mass. As a result, the predetermined average linear expansion coefficient can be maintained more reliably, and the uniformity of the glass can be maintained more reliably.
  • the total content of Na 2 O and K 2 O is preferably 0.5% by mass to 2% by mass. If the total content of Na 2 O and K 2 O is less than 0.5% by mass, the solubility of the glass may decrease, and if it exceeds 2% by mass, the strength and heat resistance of the glass may decrease. is there.
  • ZrO 2 is a component that acts as a nucleation agent.
  • the content of ZrO 2 is less than 1% by mass, stable crystallization may not be performed, and coarse large crystals are formed, which may make it difficult to obtain a transparent crystallized glass.
  • it exceeds 3% by mass an undegraded product of zirconia may be generated, and a devitrified product may be generated in the glass.
  • TiO 2 is a component that acts as a nucleation agent. If the content of TiO 2 is less than 1% by mass, the effect of promoting crystallization can not be obtained, and a desired crystal may not be obtained. On the other hand, if the amount is more than 3% by mass, the liquid phase temperature may be high, which may make the forming operation difficult. Furthermore, the heat-resistant crystallized glass may turn brown and the transparency may be impaired.
  • the content of TiO 2 is more preferably 1.3% by mass to 3% by mass. Thus, the desired crystallinity can be achieved to further enhance the heat resistance, and the transparency of the glass can be maintained more reliably.
  • the total content of ZrO 2 and TiO 2 is preferably 2.6% by mass to 5% by mass. If the total content of ZrO 2 and TiO 2 is less than 2.6% by mass, the effect of promoting crystallization can not be obtained, and the mechanical strength may be reduced. On the other hand, when the total content exceeds 5% by mass, the devitrification resistance becomes strong, and it may be difficult to obtain a uniform crystallized glass.
  • P 2 O 5 is a component that improves the low solubility of ZrO 2 contained as a nucleating agent. If the content of P 2 O 5 is less than 0.05% by mass, the improvement effect may be reduced. On the other hand, if the amount is more than 2% by mass, phase separation may be facilitated, the amount of crystal formation may be increased, and transparency may be reduced. The content of P 2 O 5 is more preferably 1% by mass to 2% by mass. As a result, desired crystallization can be obtained more reliably, and the transparency of the glass can be maintained more reliably.
  • As 2 O 3 , Sb 2 O 3 and SnO 2 are added as a fining agent, and the total content thereof is preferably 0.1% by mass to 2% by mass. Thereby, the solubility, the workability, and the uniformity of the glass can be further improved. When the total content is less than 0.1% by mass, the fining effect may be reduced, and when it exceeds 2% by mass, it may be environmentally unfavorably.
  • a more preferable total content of As 2 O 3 , Sb 2 O 3 and SnO 2 is 0.1% by mass to 1% by mass.
  • the heat-resistant crystallized glass may contain 0.5% by mass to 3% by mass of optional components such as CaO, PbO, F 2 , Cl 2 or CeO 2 .
  • the spacer can be made of, for example, a metal such as aluminum or an alloy containing aluminum, or a resin such as butyl rubber. Moreover, it is preferable that a hollow part is provided in the inside of the spacer.
  • the hollow portion can be filled with a desiccant such as particulate zeolite. Thereby, the air in the first hollow layer and the second hollow layer can be dried.
  • Primary sealing material and secondary sealing material As a primary seal material, it is preferable to use the adhesive which consists of butyl rubber, for example. Since the primary sealing material is provided on the side of the first hollow layer or the second hollow layer, by using butyl rubber, it is possible to prevent moisture from entering the first hollow layer and the second hollow layer. It can be more effectively suppressed.
  • the butyl rubber is preferably not crosslinked.
  • an adhesive made of polyisobutylene may be used as the primary sealing material.
  • such a butyl-based pressure-sensitive adhesive may contain a filler such as carbon black.
  • resin excellent in durability such as silicone, urethane, polysulfide, can be used, for example.
  • the primary seal material can also be protected by using such a secondary seal material.
  • the manufacturing method of the multilayer glass 1 is not specifically limited, For example, it can manufacture by the following method.
  • first to third glass plates 2 to 4 are prepared.
  • the first to third glass plates 2 to 4 may be manufactured by a conventionally known manufacturing method, or commercially available products may be used.
  • the first low emission film 7 or the second low emission film is formed in advance on at least one of the main surface 2 a of the first glass plate 2 and the main surface 3 a of the second glass plate 3.
  • Form 8 The first low emission film 7 or the second low emission film 8 can be formed by, for example, a vapor deposition method or a sputtering method.
  • the first spacer 9 is prepared, and the primary sealing materials 11A and 11B are applied to both side surfaces of the first spacer 9 in contact with the first glass plate 2 and the third glass plate 4.
  • the first spacer 9 may be manufactured by a conventionally known method for manufacturing a spacer, or a commercially available product may be used. Subsequently, the side surface of the first spacer 9 provided with the primary sealing material 11A and the main surface 2a of the first glass plate 2 are pasted together. After that, the side surface of the first spacer 9 provided with the primary sealing material 11B and the main surface 4a of the third glass plate 4 are pasted together.
  • first glass plate 2 and the third glass plate 4 are bonded to the first spacer 9 using the primary sealing materials 11A and 11B, and the first glass plate 2 and the third glass plate 4 A first hollow layer 5 surrounded by the primary sealing materials 11A and 11B and the first spacer 9 is formed.
  • the secondary seal material 13 is filled between the first glass plate 2 and the third glass plate 4 on the side opposite to the first hollow layer 5 of the first spacer 9. Thereby, the first hollow layer 5 can be effectively sealed.
  • the second spacer 10 is prepared, and the primary sealing materials 12A and 12B are applied to both side surfaces of the second spacer 10 in contact with the second glass plate 3 and the third glass plate 4.
  • the 2nd spacer 10 may be manufactured by the manufacturing method of a conventionally well-known spacer, and may use a commercial item. Subsequently, the side surface of the second spacer 10 provided with the primary sealing material 12A and the main surface 3a of the second glass plate 3 are pasted together. After that, the side surface of the second spacer 10 provided with the primary sealing material 12B and the main surface 4b of the third glass plate 4 are pasted together.
  • the second glass plate 3 and the third glass plate 4 are bonded to the second spacer 10 using the primary sealing materials 12A and 12B, and the second glass plate 3 and the third glass plate 4 A second hollow layer 6 surrounded by the primary sealants 12A and 12B and the second spacer 10 is formed.
  • the secondary seal material 14 is filled between the second glass plate 3 and the third glass plate 4 on the side opposite to the second hollow layer 6 of the second spacer 10. Thereby, the second hollow layer 6 can be effectively sealed, and the multilayer glass 1 can be obtained.
  • FIG. 2 is a schematic cross-sectional view showing a multilayer glass according to a second embodiment of the present invention.
  • the first low emission film 7 is not provided on the major surface 2 a of the first glass plate 2.
  • the second low radiation film 8 is provided only on the major surface 3 a of the second glass plate 3. The other points are the same as in the first embodiment.
  • the low radiation film is provided on both of the first glass plate 2 and the second glass plate 3 which are the glass plates provided on the outermost side.
  • the low radiation film may be provided only on one of the glass plates.
  • the low radiation film is formed on both of the first glass plate 2 and the second glass plate 3 from the viewpoint of making the glass constituting the multi-layer glass more difficult to break and further enhancing the heat insulation. It is preferable to be provided.
  • the third glass plate 4 provided in the middle among the three glass plates 2 to 4 constituting the multilayer glass 21 is formed of crystallized glass. Therefore, the multilayer glass 21 is excellent in fire resistance.
  • FIG. 3 (a) is a schematic front view showing a sash window according to an embodiment of the present invention. Further, FIG. 3 (b) is a schematic cross-sectional view along the line AA in FIG. 3 (a).
  • the sash window 31 includes the multi-layer glass 1 and the frame 32.
  • the multilayer glass 1 is the multilayer glass 1 of the first embodiment described above.
  • a frame 32 is provided at the peripheral portion 1 a of the multilayer glass 1. More specifically, the frame 32 has a U-shape, and has a groove 33. In the groove portion 33, a part of the multilayer glass 1 including the peripheral portion 1a is fitted.
  • a heat resistant material 34 is filled in the gap between the peripheral portion 1 a of the multilayer glass 1 and the groove 33 of the frame 32.
  • a material which comprises the frame 32 For example, an aluminum alloy plate, a hot dip galvanized plate, etc. can be used. Moreover, as a material which comprises the heat resistant material 34, a silicone resin etc. can be used, for example. By filling such a heat-resistant material in the gap between the peripheral portion 1a of the multilayer glass 1 and the groove 33 of the frame 32, it is possible to more reliably block the flame and smoke at the time of fire occurrence. It is possible to suppress the spread of fire more effectively.
  • the sash window 31 of the present embodiment is provided with the above-described multilayer glass 1, it is excellent in fire resistance.
  • the double glazing and sash window of this invention are excellent in fire resistance, they can be used suitably for fire prevention equipment.
  • the double glazing and sash windows of the present invention can be more suitably used in the outer wall of a building for which fire protection performance is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)
  • Special Wing (AREA)

Abstract

Provided is insulated glazing having excellent fire retardant properties. This insulated glazing 1 comprises: a first glass pane 2 and a second glass pane 3 provided as the outermost layers of at least three or more glass panes 2 to 4; and a third glass pane 4 provided between the first glass pane 2 and second glass pane 3. The insulated glazing 1 is characterized in that the first glass pane 2 and/or the second glass pane 3 has a low-emissivity coating 7, 8 thereon, the coating being on a principal surface 2a, 3a on the side toward a cavity layer 5, 6, and in that the third glass pane 4 comprises crystallized glass.

Description

複層ガラス及びサッシ窓Double layer glass and sash window
 本発明は、少なくとも3枚以上のガラス板を備える、複層ガラス及び該複層ガラスを用いたサッシ窓に関する。 The present invention relates to a multilayer glass comprising at least three or more glass plates and a sash window using the multilayer glass.
 従来、防火性が求められる建物の外壁には、複層ガラスが用いられている。このような複層ガラスは、複数枚のガラス板が、スペーサーを介して間隔を隔てて配置されることにより形成されている。そして、複数のガラス板の周縁部は、シール材によって封止されており、それによってガラス板間に中空層が設けられている。また、防火設備に用いられる複層ガラスは、通常、網入りガラス、耐熱強化ガラス、低膨張防火ガラスなどの防火性を有するガラス板を少なくとも1枚以上備えている。 Conventionally, double glazing is used for the outer wall of a building for which fire resistance is required. Such a multilayer glass is formed by arranging a plurality of glass plates at intervals via a spacer. And the peripheral part of a several glass plate is sealed by the sealing material, and, thereby, the hollow layer is provided between glass plates. In addition, the multilayer glass used for fire protection equipment usually comprises at least one glass sheet having fire resistance such as netted glass, heat-resistant tempered glass, low expansion fire-resistant glass and the like.
 例えば、下記の特許文献1には、3枚のガラス板(第1~第3のガラス板)により構成されている複層ガラスが開示されている。特許文献1において、第1のガラス板及び第2のガラス板は、スペーサーを介して隔置されており、その間には第1の中空層が設けられている。また、第2のガラス板及び第3のガラス板も、スペーサーを介して隔置されており、その間には第2の中空層が設けられている。 For example, Patent Document 1 below discloses a double-layered glass composed of three glass plates (first to third glass plates). In patent document 1, the 1st glass plate and the 2nd glass plate are spaced apart via the spacer, and the 1st hollow layer is provided in the meantime. In addition, the second glass plate and the third glass plate are also spaced apart via a spacer, and a second hollow layer is provided therebetween.
 特許文献1では、第1のガラス板が、防火ガラス板で構成されており、第2のガラス板及び第3のガラス板が、防火ガラス板でないガラス板により構成されている。また、第3のガラス板の中間層側の内面には、耐熱Low-E(Low-Emissivity)膜が形成されている。 In patent document 1, the 1st glass plate is comprised by the fire prevention glass plate, and the 2nd glass plate and the 3rd glass plate are comprised by the glass plate which is not a fire prevention glass plate. In addition, a heat-resistant low-e (low-emissivity) film is formed on the inner surface of the third glass plate on the intermediate layer side.
特開2014-133675号公報JP, 2014-133675, A
 近年、防火設備に用いられる複層ガラスには、より一層の高い防火性が求められている。しかしながら、特許文献1のような複層ガラスにおいても、防火性がなお十分でなかった。 In recent years, even higher fire resistance is required for multi-layer glass used for fire protection equipment. However, even in the case of the multi-layer glass as disclosed in Patent Document 1, the fire resistance is still insufficient.
 本発明は、上記のような事情に鑑みてなされたものであり、防火性に優れる、複層ガラス及び該複層ガラスを用いたサッシ窓を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a double glazing excellent in fire resistance and a sash window using the double glazing.
 本発明の複層ガラスは、互いに対向しており、スペーサーを介して間隔を隔てて配置されている、少なくとも3枚以上のガラス板を備え、前記少なくとも3枚以上のガラス板の周縁部が、シール材によって封止されることにより、前記ガラス板間にそれぞれ中空層が設けられている、複層ガラスであって、前記少なくとも3枚以上のガラス板のうち、最も外側に設けられている第1のガラス板及び第2のガラス板と、前記第1のガラス板及び前記第2のガラス板の間に設けられている、第3のガラス板と、を備え、前記第1のガラス板及び前記第2のガラス板のうち、少なくとも一方のガラス板の前記中空層側の主面上に、低放射膜が設けられており、前記第3のガラス板が、結晶化ガラスにより構成されていることを特徴としている。 The multilayer glass of the present invention comprises at least three or more glass plates facing each other and spaced apart via a spacer, and the peripheral portion of the at least three or more glass plates is A multi-layered glass in which hollow layers are provided between the glass plates by being sealed with a sealing material, and the outermost of the at least three glass plates is provided. A first glass plate and a second glass plate, and a third glass plate provided between the first glass plate and the second glass plate, the first glass plate and the first glass plate The low radiation film is provided on the main surface on the hollow layer side of at least one of the two glass plates, and the third glass plate is made of crystallized glass. It is characterized.
 本発明の複層ガラスは、前記複層ガラスが、建物の外壁の少なくとも一部に用いられ、前記第1のガラス板が屋外側に設けられており、前記第2のガラス板が屋内側に設けられていることが好ましい。 In the multilayer glass of the present invention, the multilayer glass is used for at least a part of the outer wall of a building, the first glass plate is provided on the outdoor side, and the second glass plate is on the indoor side It is preferable to be provided.
 本発明の複層ガラスは、前記第1のガラス板及び前記第2のガラス板のうち、双方のガラス板の前記中空層側の主面上に、前記低放射膜が設けられていることが好ましい。 In the double-glazed glass of the present invention, the low emission film is provided on the main surface on the hollow layer side of both glass plates of the first glass plate and the second glass plate. preferable.
 本発明の複層ガラスは、前記低放射膜が、銀を含むことが好ましい。 In the multilayer glass of the present invention, the low emission film preferably contains silver.
 本発明の複層ガラスは、防火設備に用いられることが好ましい。 The multilayer glass of the present invention is preferably used for fire protection equipment.
 本発明のサッシ窓は、本発明に従って構成される複層ガラスと、前記複層ガラスの周縁部に設けられている枠体と、を備えることを特徴としている。 The sash window of the present invention is characterized by comprising a double glazing configured according to the present invention, and a frame provided at the periphery of the double glazing.
 本発明によれば、防火性に優れる、複層ガラス及び該複層ガラスを用いたサッシ窓を提供することができる。 According to the present invention, it is possible to provide a double glazing excellent in fire resistance and a sash window using the double glazing.
図1は、本発明の第1の実施形態に係る複層ガラスを示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing a multilayer glass according to a first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る複層ガラスを示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a multilayer glass according to a second embodiment of the present invention. 図3(a)は、本発明の一実施形態に係るサッシ窓を示す模式的正面図であり、図3(b)は、図3(a)中のA-A線に沿う模式的断面図である。Fig.3 (a) is a typical front view which shows the sash window which concerns on one Embodiment of this invention, FIG.3 (b) is typical sectional drawing in alignment with the AA in FIG. 3 (a). It is.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely illustrative, and the present invention is not limited to the following embodiments. In each drawing, members having substantially the same functions may be referred to by the same reference numerals.
 [複層ガラス]
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る複層ガラスを示す模式的断面図である。図1に示すように、複層ガラス1は、第1のガラス板2、第2のガラス板3、及び第3のガラス板4を備える。第1のガラス板2及び第2のガラス板3は、最も外側のガラス板である。また、第1のガラス板2及び第2のガラス板3の間には、第3のガラス板4が設けられている。このように、複層ガラス1は、3枚のガラス板からなり、第1のガラス板2及び第2のガラス板3が外側のガラス板であり、第3のガラス板4が中間のガラス板である。なお、本発明においては、複層ガラス1が4枚以上のガラス板により構成されていてもよい。
[Multilayer glass]
First Embodiment
FIG. 1 is a schematic cross-sectional view showing a multilayer glass according to a first embodiment of the present invention. As shown in FIG. 1, the multilayer glass 1 includes a first glass plate 2, a second glass plate 3, and a third glass plate 4. The first glass plate 2 and the second glass plate 3 are the outermost glass plates. Further, a third glass plate 4 is provided between the first glass plate 2 and the second glass plate 3. Thus, the multilayer glass 1 is composed of three glass plates, and the first glass plate 2 and the second glass plate 3 are outer glass plates, and the third glass plate 4 is an intermediate glass plate. It is. In the present invention, the multilayer glass 1 may be constituted by four or more glass plates.
 本実施形態において、複層ガラス1は、建物の外壁の少なくとも一部に用いられている。もっとも、複層ガラス1は、建物の外壁以外の部分に設けられていてもよいし、設けられる位置は特に限定されない。本実施形態において、第1のガラス板2は、屋外側に設けられている。他方、第2のガラス板3は、屋内側に設けられている。 In the present embodiment, the multilayer glass 1 is used for at least a part of the outer wall of a building. However, the multilayer glass 1 may be provided in parts other than the outer wall of a building, and the provided position is not particularly limited. In the present embodiment, the first glass plate 2 is provided on the outdoor side. On the other hand, the second glass plate 3 is provided on the indoor side.
 第1のガラス板2及び第3のガラス板4は、互いに対向するように設けられている。より具体的には、第1のガラス板2の主面2aが、第3のガラス板4の主面4aと対向するように設けられている。第1のガラス板2及び第3のガラス板4は、第1のスペーサー9を介して、間隔を隔てて設けられている。 The first glass plate 2 and the third glass plate 4 are provided to face each other. More specifically, the major surface 2 a of the first glass plate 2 is provided to face the major surface 4 a of the third glass plate 4. The first glass plate 2 and the third glass plate 4 are provided at an interval via the first spacer 9.
 第1のガラス板2の主面2aは、一次シール材11Aにより第1のスペーサー9と接合されている。第3のガラス板4の主面4aも同様に、一次シール材11Bにより第1のスペーサー9と接合されている。 The main surface 2a of the first glass plate 2 is joined to the first spacer 9 by the primary sealing material 11A. Similarly, the main surface 4a of the third glass plate 4 is joined to the first spacer 9 by the primary seal material 11B.
 また、第1のガラス板2の主面2aにおける周縁部2a1と、第3のガラス板4の主面4aにおける周縁部4a1とは、二次シール材13により直接接合されている。より具体的には、二次シール材13は、一次シール材11A,11Bや第1のスペーサー9よりも、複層ガラス1の端面1A側に設けられており、第1のガラス板2、第3のガラス板4、及び第1のスペーサー9で区画される部分に充填されている。 Further, the peripheral edge portion 2 a 1 of the main surface 2 a of the first glass plate 2 and the peripheral edge portion 4 a 1 of the main surface 4 a of the third glass plate 4 are directly joined by the secondary sealing material 13. More specifically, the secondary sealing material 13 is provided closer to the end face 1A of the multilayer glass 1 than the primary sealing materials 11A and 11B and the first spacer 9, and the first glass plate 2, the first The portion divided by the third glass plate 4 and the first spacer 9 is filled.
 従って、第1のガラス板2、第3のガラス板4及び第1のスペーサー9間は、一次シール材11A,11B及び二次シール材13により封止されている。それによって、第1のガラス板2、第3のガラス板4、及び第1のスペーサー9間に、第1の中空層5が形成されている。なお、本実施形態において、第1の中空層5は、乾燥空気が充填されている空気層である。もっとも、第1の中空層5内には、アルゴンガスや、クリプトンガスなどのガスが充填されていてもよい。 Therefore, the first sealing material 11A, 11B and the secondary sealing material 13 seal between the first glass plate 2, the third glass plate 4 and the first spacer 9. Thereby, the first hollow layer 5 is formed between the first glass plate 2, the third glass plate 4 and the first spacer 9. In the present embodiment, the first hollow layer 5 is an air layer filled with dry air. However, the first hollow layer 5 may be filled with a gas such as argon gas or krypton gas.
 なお、本実施形態においては、第1のガラス板2の主面2a上に第1の低放射膜7が設けられている。第1の低放射膜7は、第1の中空層5に臨むように設けられている。本実施形態において、第1の低放射膜7を構成する材料は、銀である。もっとも、本発明において、第1の低放射膜7は、酸化スズ、ITOなどの他の材料によって構成されていてもよい。 In the present embodiment, the first low emission film 7 is provided on the major surface 2 a of the first glass plate 2. The first low emission film 7 is provided to face the first hollow layer 5. In the present embodiment, the material constituting the first low emission film 7 is silver. However, in the present invention, the first low emission film 7 may be made of another material such as tin oxide or ITO.
 また、第3のガラス板4は、第2のガラス板3とも対向するように設けられている。より具体的には、第2のガラス板3の主面3aが、第3のガラス板4の主面4bと対向するように設けられている。第3のガラス板4の主面4bは、第3のガラス板4の主面4aとは反対側の主面である。従って、第3のガラス板の主面4bは、第1のガラス板2とは反対側に設けられている。第2のガラス板3及び第3のガラス板4は、第2のスペーサー10を介して、間隔を隔てて設けられている。 In addition, the third glass plate 4 is provided to face the second glass plate 3 as well. More specifically, the major surface 3 a of the second glass plate 3 is provided to face the major surface 4 b of the third glass plate 4. The major surface 4 b of the third glass plate 4 is the major surface opposite to the major surface 4 a of the third glass plate 4. Therefore, the main surface 4 b of the third glass plate is provided on the opposite side to the first glass plate 2. The second glass plate 3 and the third glass plate 4 are provided at an interval via the second spacer 10.
 第2のガラス板3の主面3aは、一次シール材12Aにより第2のスペーサー10と接合されている。第3のガラス板4の主面4bも同様に、一次シール材12Bにより第2のスペーサー10と接合されている。 The main surface 3a of the second glass plate 3 is bonded to the second spacer 10 by the primary sealing material 12A. Similarly, the main surface 4b of the third glass plate 4 is joined to the second spacer 10 by the primary sealing material 12B.
 また、第2のガラス板3の主面3aにおける周縁部3a1と、第3のガラス板4の主面4bにおける周縁部4b1とは、二次シール材14により直接接合されている。より具体的に、二次シール材14は、第2のスペーサー10よりも、複層ガラス1の端面1A側に設けられており、第2のガラス板3、第3のガラス板4、及び第2のスペーサー10により区画される部分に充填されている。 Further, the peripheral edge portion 3a1 of the main surface 3a of the second glass plate 3 and the peripheral edge portion 4b1 of the main surface 4b of the third glass plate 4 are directly joined by the secondary seal member 14. More specifically, the secondary sealing material 14 is provided closer to the end face 1A of the multilayer glass 1 than the second spacer 10, and the second glass plate 3, the third glass plate 4, and the third The portion divided by the two spacers 10 is filled.
 従って、第2のガラス板3、第3のガラス板4、及び第2のスペーサー10間は、一次シール材12A,12B及び二次シール材14によって封止されている。それによって、第2のガラス板3、第3のガラス板4及び第2のスペーサー10間に、第2の中空層6が形成されている。なお、本実施形態において、第2の中空層6は、空気層である。空気層には、乾燥空気が封入されている。もっとも、第2の中空層6内には、アルゴンガスや、クリプトンガスなどのガスが封入されていてもよい。 Therefore, the space between the second glass plate 3, the third glass plate 4 and the second spacer 10 is sealed by the primary sealing materials 12 A and 12 B and the secondary sealing material 14. Thereby, the second hollow layer 6 is formed between the second glass plate 3, the third glass plate 4 and the second spacer 10. In the present embodiment, the second hollow layer 6 is an air layer. Dry air is enclosed in the air layer. However, in the second hollow layer 6, a gas such as argon gas or krypton gas may be enclosed.
 なお、本実施形態においては、第2のガラス板3の主面3a上に第2の低放射膜8が設けられている。第2の低放射膜8は、第2の中空層6に臨むように設けられている。本実施形態において、第2の低放射膜8を構成する材料は、銀である。もっとも、本発明において、第2の低放射膜8は、酸化スズ、ITOなどの他の材料によって構成されていてもよい。 In the present embodiment, the second low radiation film 8 is provided on the major surface 3 a of the second glass plate 3. The second low emission film 8 is provided to face the second hollow layer 6. In the present embodiment, the material constituting the second low emission film 8 is silver. However, in the present invention, the second low emission film 8 may be made of another material such as tin oxide or ITO.
 本実施形態において、第1のガラス板2及び第2のガラス板3は、通常のフロートガラスにより構成されている。もっとも、第1のガラス板2や第2のガラス板3は、他のガラスにより構成されていてもよい。また、第1のガラス板2及び第2のガラス板3は、合わせガラスであってもよい。 In the present embodiment, the first glass plate 2 and the second glass plate 3 are made of ordinary float glass. However, the first glass plate 2 and the second glass plate 3 may be made of other glass. The first glass plate 2 and the second glass plate 3 may be laminated glass.
 一方、第3のガラス板4は、耐熱性を有する結晶化ガラスにより構成されている。このような耐熱結晶化ガラスとしては、例えば、β-石英固溶体の結晶が析出した透明な結晶化ガラスを用いることができる。耐熱結晶化ガラスの平均線膨張係数は、30℃~750℃の温度範囲において、-10/K~10×10-7/Kの範囲内にあることが好ましい。このような耐熱結晶化ガラスを用いると、万一の火災発生時に消火活動で急冷された場合においても、第3のガラス板4をより一層破損し難くすることができる。なお、第3のガラス板4は、少なくとも1枚の結晶化ガラスを含む合わせガラスであってもよい。 On the other hand, the third glass plate 4 is made of crystallized glass having heat resistance. As such a heat-resistant crystallized glass, for example, a transparent crystallized glass in which crystals of β-quartz solid solution are precipitated can be used. The average linear expansion coefficient of the heat-resistant crystallized glass is preferably in the range of −10 / K to 10 × 10 −7 / K in the temperature range of 30 ° C. to 750 ° C. When such a heat-resistant crystallized glass is used, the third glass plate 4 can be made more difficult to be damaged even if it is quenched by fire extinguishing activity when a fire occurs. The third glass plate 4 may be a laminated glass including at least one crystallized glass.
 このように、本実施形態においては、複層ガラス1を構成する3枚のガラス板のうち、中間に設けられている第3のガラス板4が、結晶化ガラスにより構成されている。そのため、万が一の火災発生時に複層ガラス1が加熱され、外側の第1のガラス板2や第2のガラス板3が破損したとしても、中間に設けられている第3のガラス板4は、破損や脱落が生じ難い。従って、第3のガラス板4により遮炎することができ、複層ガラス1の防火性を高めることができる。複層ガラス1は、防火性に優れているので、大型化を図ることが可能となる。 Thus, in this embodiment, the 3rd glass plate 4 provided in the middle among the three glass plates which comprise the multilayer glass 1 is comprised with crystallized glass. Therefore, even if the double-glazed glass 1 is heated in the event of a fire and the first glass plate 2 and the second glass plate 3 on the outer side are broken, the third glass plate 4 provided in the middle is It is hard to cause breakage or dropout. Therefore, the third glass plate 4 can be used to shield the light, and the fire resistance of the multilayer glass 1 can be enhanced. Since the double glazing 1 is excellent in fire resistance, it is possible to achieve enlargement.
 また、平均線膨張係数が上記の範囲内にある耐熱結晶化ガラスを第3のガラス板4に用いた場合は、消火活動で急冷された場合においても、第3のガラス板4をより一層割れ難くすることができる。よって、この場合、複層ガラス1の防火性をより一層高めることができる。 Further, when the heat-resistant crystallized glass having an average linear expansion coefficient in the above range is used for the third glass plate 4, the third glass plate 4 is further cracked even when quenched by the fire extinguishing activity. It can be difficult. Therefore, in this case, the fire resistance of the multilayer glass 1 can be further enhanced.
 本実施形態では、中間の第3のガラス板4が結晶化ガラスにより構成されているので、外側の第1のガラス板2や第2のガラス板3が結晶化ガラスにより構成されている場合と比較して製造コストを安くすることができる。 In this embodiment, since the middle third glass plate 4 is made of crystallized glass, the case where the outer first glass plate 2 and the second glass plate 3 are made of crystallized glass and The manufacturing cost can be reduced by comparison.
 また、第3のガラス板4が結晶化ガラスにより構成されているので、風冷強化ガラスなどの強化ガラスを用いた場合より、納期を短くすることもできる。加えて、第3のガラス板4の厚みTを薄くしても、十分な防火性を発現することができる。従って、製造コストを抑えつつ大型化を図ることができる。 Moreover, since the 3rd glass plate 4 is comprised by crystallized glass, delivery time can also be shortened compared with the case where tempered glass, such as a wind-cooling tempered glass, is used. In addition, even by reducing the thickness T 1 of the third glass plate 4, it is possible to exhibit a sufficient fire resistance. Therefore, the enlargement can be achieved while suppressing the manufacturing cost.
 また、第3のガラス板4の厚みTを薄くすることができるので、複層ガラス1全体の厚みTを厚くせずとも、第1の中空層5及び第2の中空層6の厚みを厚くすることができ、それによって複層ガラス1の断熱性を高めることができる。 Further, it is possible to reduce the thickness T 1 of the third glass plate 4, without increasing the double glazing 1 overall thickness T, a first hollow layer 5 and the second thickness of the hollow layer 6 The thickness can be increased, whereby the thermal insulation of the multilayer glass 1 can be enhanced.
 本発明において、第3のガラス板4の厚みは、好ましくは2mm以上、より好ましくは3mm以上、好ましくは5mm以下、より好ましくは4mm以下である。第3のガラス板4の厚みが、上記下限以上である場合、複層ガラス1の防火性をより一層高めることができる。一方、第3のガラス板4の厚みが、上記上限以下である場合、第1の中空層5及び第2の中空層6の厚みをより一層大きくすることができ、それによって複層ガラス1の断熱性をより一層高めることができる。 In the present invention, the thickness of the third glass plate 4 is preferably 2 mm or more, more preferably 3 mm or more, preferably 5 mm or less, more preferably 4 mm or less. When the thickness of the third glass plate 4 is equal to or more than the above lower limit, the fire resistance of the multilayer glass 1 can be further enhanced. On the other hand, when the thickness of the third glass plate 4 is equal to or less than the above upper limit, the thicknesses of the first hollow layer 5 and the second hollow layer 6 can be further increased. Thermal insulation can be further enhanced.
 本発明においては、複層ガラス1全体の厚みTに対する第3のガラス板4の厚みTの比(T/T)が、好ましくは0.06以上、より好ましくは0.09以上、好ましくは0.19以下、より好ましくは0.14以下である。比(T/T)が、上記下限以上である場合、複層ガラス1の防火性をより一層高めることができる。一方、比(T/T)が、上記上限以下である場合、第1の中空層5及び第2の中空層6の厚みをより一層大きくすることができ、それによって複層ガラス1の断熱性をより一層高めることができる。 In the present invention, the ratio (T 1 / T) of the thickness T 1 of the third glass plate 4 to the thickness T of the entire multilayer glass 1 is preferably at least 0.06, more preferably at least 0.09, preferably Is 0.19 or less, more preferably 0.14 or less. When the ratio (T 1 / T) is equal to or more than the above lower limit, the fire resistance of the multilayer glass 1 can be further enhanced. On the other hand, when the ratio (T 1 / T) is equal to or less than the above upper limit, the thicknesses of the first hollow layer 5 and the second hollow layer 6 can be further increased, whereby the heat insulation of the multilayer glass 1 is achieved. Sex can be further enhanced.
 本発明においては、複層ガラス1全体の厚みTに対する第1の中空層5の厚みT及び第2の中空層6の厚みTの和の比((T+T)/T)が、好ましくは0.52以上、より好ましくは0.65以上、好ましくは0.75以下、より好ましくは0.69以下である。比((T+T)/T)が上記下限以上である場合、複層ガラス1の断熱性をより一層高めることができる。また、比((T+T)/T)が上記上限以下である場合、複層ガラス1の防火性をより一層高めることができる。 In the present invention, the ratio of the sum of the thickness T 2 and the thickness T 3 of the second hollow layer 6 of the first hollow layer 5 for double glazing 1 overall thickness T ((T 2 + T 3 ) / T) is Preferably it is 0.52 or more, More preferably, it is 0.65 or more, Preferably it is 0.75 or less, More preferably, it is 0.69 or less. When the ratio ((T 2 + T 3 ) / T) is equal to or more than the above lower limit, the heat insulation of the multilayer glass 1 can be further enhanced. In addition, when the ratio ((T 2 + T 3 ) / T) is less than or equal to the above upper limit, the fire resistance of the multilayer glass 1 can be further enhanced.
 以下、複層ガラス1などの本発明の複層ガラスを構成する各部材の詳細について説明する。 Hereinafter, the detail of each member which comprises the multilayer glass of this invention, such as the multilayer glass 1, is demonstrated.
 第1のガラス板及び第2のガラス板;
 第1のガラス板及び第2のガラス板としては、例えば、通常のフロートガラスを用いることができる。もっとも、本発明においては、第1のガラス板及び第2のガラス板が、風冷強化や化学強化により強化された強化ガラスや、倍強度ガラスであってもよい。製造コストをより一層低減させる観点から、第1のガラス板及び第2のガラス板は、フロートガラスであることが好ましい。なお、第1のガラス及び第2のガラス板は、合わせガラスであってもよい。
A first glass plate and a second glass plate;
For example, ordinary float glass can be used as the first glass plate and the second glass plate. However, in the present invention, the first glass plate and the second glass plate may be tempered glass reinforced by air cooling reinforcement or chemical strengthening, or double strength glass. From the viewpoint of further reducing the manufacturing cost, the first glass plate and the second glass plate are preferably float glass. The first glass and the second glass plate may be laminated glass.
 低放射膜;
 低放射膜は、熱線を反射させるためのLow-E(Low-Emissivity)膜である。従って、低放射膜を設けることにより、万が一の火災の際、ガラス板をより一層割れ難くすることができる。
Low radiation membrane;
The low emission film is a low-e (low-emissivity) film for reflecting heat rays. Therefore, by providing the low radiation film, the glass plate can be made more difficult to break in the event of a fire.
 低放射膜を構成する材料としては、例えば、銀や、酸化スズ、ITOなどを用いることができる。遮熱性や断熱性をより一層高める観点から、低放射膜を構成する金属は、銀であることが好ましい。低放射膜は、例えば、蒸着法やスパッタリング法により形成することができる。 As a material which comprises a low radiation film | membrane, silver, a tin oxide, ITO etc. can be used, for example. From the viewpoint of further enhancing the heat shielding property and the heat insulating property, it is preferable that the metal constituting the low emission film is silver. The low emission film can be formed, for example, by vapor deposition or sputtering.
 第3のガラス板;
 第3のガラス板は、耐熱性を有する結晶化ガラスにより構成されている。このような耐熱結晶化ガラスとしては、例えば、β-石英固溶体の結晶が析出した透明な結晶化ガラスを用いることができる。耐熱結晶化ガラスの平均線膨張係数は、30℃~750℃の温度範囲において、-10/K~10×10-7/Kの範囲内にあることが好ましい。このような結晶化ガラスを用いると、万一の火災発生時に、消火活動の散水で急冷された場合においても、第3のガラス板をより一層破損し難くすることができる。なお、第3のガラス板は、少なくとも1枚の結晶化ガラスを含む合わせガラスであってもよい。
Third glass plate;
The third glass plate is made of crystallized glass having heat resistance. As such a heat-resistant crystallized glass, for example, a transparent crystallized glass in which crystals of β-quartz solid solution are precipitated can be used. The average linear expansion coefficient of the heat-resistant crystallized glass is preferably in the range of −10 / K to 10 × 10 −7 / K in the temperature range of 30 ° C. to 750 ° C. When such a crystallized glass is used, the third glass plate can be made more difficult to be damaged even in the event of a fire, even when the water is quenched rapidly with fire extinguishing activity. The third glass plate may be a laminated glass containing at least one crystallized glass.
 耐熱結晶化ガラスは、組成として、SiO 60質量%~70質量%、Al 17質量%~27質量%、LiO 3質量%~6質量%、ZrO 1質量%~3質量%、TiO 1質量%~3質量%を含有することが好ましい。 Resistant crystallized glass, a composition, SiO 2 60 wt% to 70 wt%, Al 2 O 3 17 wt% to 27 wt%, Li 2 O 3 wt% to 6 wt%, ZrO 2 1 wt% to 3 wt It is preferable to contain 1% by mass to 3% by mass of TiO 2 .
 また、組成として、SiO 60質量%~70質量%、Al 17質量%~27質量%、LiO 3質量%~6質量%、NaO 0.05質量%~1質量%、KO 0.1質量%~1質量%、ZrO 1質量%~3質量%、TiO 1質量%~3質量%、MgO 0.1質量%~0.9質量%、P 0.05質量%~2質量%、As 0質量%~2質量%、Sb 0質量%~2質量%、SnO 0質量%~2質量%を含有することがより好ましい。この組成であれば、耐熱結晶化ガラスの平均線熱膨張係数を-10/K~10×10-7/Kの範囲とすることができる。以下、このような耐熱結晶化ガラスの各組成についての詳細を説明する。 Further, a composition, SiO 2 60 wt% to 70 wt%, Al 2 O 3 17 wt% to 27 wt%, Li 2 O 3 wt% to 6 wt%, Na 2 O 0.05 wt% to 1 wt% , K 2 O 0.1% by mass to 1% by mass, ZrO 2 1% by mass to 3% by mass, TiO 2 1% by mass to 3% by mass, MgO 0.1% by mass to 0.9% by mass, P 2 O 5 0.05% by mass to 2% by mass, As 2 O 3 0% by mass to 2% by mass, Sb 2 O 3 0% by mass to 2% by mass, and SnO 2 0% by mass to 2% by mass preferable. With this composition, the average linear thermal expansion coefficient of the heat-resistant crystallized glass can be in the range of −10 / K to 10 × 10 −7 / K. Hereinafter, the detail about each composition of such a heat-resistant crystallized glass is demonstrated.
 SiOは、網目状のネットワーク構造を形成するとともに結晶を構成する成分である。SiOの含有量が60質量%より少ないと、平均線膨張係数が高くなるとともに機械的強度も低くなる場合がある。一方、70質量%より多いと、ガラスの溶解が困難となり、泡や失透物等の欠陥が発生する場合がある。SiOの含有量は、64質量%~66質量%であることがより好ましい。これにより、所定の平均線膨張係数をより一層確実に維持するとともに、ガラスの透明性もより一層確実に維持することができる。 SiO 2 is a component which forms a network while forming a network structure. When the content of SiO 2 is less than 60% by mass, the average linear expansion coefficient may be high and the mechanical strength may be low. On the other hand, if it is more than 70% by mass, melting of the glass becomes difficult, and defects such as bubbles and devitrified substances may occur. The content of SiO 2 is more preferably 64% by mass to 66% by mass. As a result, the predetermined average linear expansion coefficient can be maintained more reliably, and the transparency of the glass can be maintained more reliably.
 Alは、結晶を構成する成分である。Alの含有量が17質量%より少ないと、ガラスの失透性が強くなるとともに化学耐久性が低下する場合がある。一方、27質量%より多いと、ガラスの粘度が高くなりすぎて均一なガラスが得られなくなる場合がある。Al含有量は、21質量%~23質量%であることがより好ましい。これにより、化学耐久性をより一層確実に維持するとともに、ガラスの透明性もより一層確実に維持することができる。 Al 2 O 3 is a component that constitutes a crystal. When the content of Al 2 O 3 is less than 17% by mass, the devitrification of the glass may be strengthened and the chemical durability may be reduced. On the other hand, if the content is more than 27% by mass, the viscosity of the glass may be too high to obtain a uniform glass. The Al 2 O 3 content is more preferably 21% by mass to 23% by mass. As a result, the chemical durability can be more reliably maintained, and the transparency of the glass can be maintained even more reliably.
 LiOは、結晶を構成する成分である。LiOの含有量が3質量%より少ないと、所望の結晶を形成することが難しくなるとともに溶解性も悪くなる場合がある。一方、6質量%より多いと、ガラスの失透性が強くなる場合がある。LiOの含有量は、3質量%~5質量%であることがより好ましい。これにより、所望の結晶化を形成して耐熱性をより一層高めることができるとともに、ガラスの透明性もより一層確実に維持することができる。 Li 2 O is a component that constitutes a crystal. When the content of Li 2 O is less than 3% by mass, it may be difficult to form a desired crystal and the solubility may be deteriorated. On the other hand, if it is more than 6% by mass, the devitrification of the glass may become strong. The content of Li 2 O is more preferably 3% by mass to 5% by mass. As a result, desired crystallization can be formed to further enhance the heat resistance, and the transparency of the glass can be more reliably maintained.
 NaOは、ガラスの溶解性をより一層向上させる成分である。NaOの含有量が0.05質量%より少ないと、所望の溶解性が得られない場合がある。一方、1質量%より多いと、ガラスの平均線膨張係数が大きくなる場合がある。NaOの含有量は、0.4質量%~0.6質量%であることがより好ましい。これにより、所定の平均線膨張係数をより一層確実に維持するとともに、ガラスの均一性をより一層確実に維持することができる。 Na 2 O is a component that further improves the solubility of glass. If the content of Na 2 O is less than 0.05% by mass, desired solubility may not be obtained. On the other hand, if it is more than 1% by mass, the average linear expansion coefficient of the glass may be increased. The content of Na 2 O is more preferably 0.4% by mass to 0.6% by mass. As a result, the predetermined average linear expansion coefficient can be maintained more reliably, and the uniformity of the glass can be maintained more reliably.
 KOは、ガラスの溶解性をより一層向上させる成分である。KOの含有量が0.1質量%より少ないと、所望の溶解性が得られない場合がある。一方、1質量%より多いと、ガラスの平均線膨張係数が大きくなる場合がある。KOの含有量は、0.2質量%~0.4質量%であることがより好ましい。これにより、所定の平均線膨張係数をより一層確実に維持するとともに、ガラスの均一性をより一層確実に維持することができる。 K 2 O is a component that further improves the solubility of glass. If the content of K 2 O is less than 0.1% by mass, desired solubility may not be obtained. On the other hand, if it is more than 1% by mass, the average linear expansion coefficient of the glass may be increased. The content of K 2 O is more preferably 0.2% by mass to 0.4% by mass. As a result, the predetermined average linear expansion coefficient can be maintained more reliably, and the uniformity of the glass can be maintained more reliably.
 なお、NaO及びKOの合計含有量は、0.5質量%~2質量%であることが好ましい。NaO及びKOの合計含有量が0.5質量%より少ないと、ガラスの溶解性が低下する場合があり、2質量%を超えると、ガラスの強度や耐熱性が低下する場合がある。 The total content of Na 2 O and K 2 O is preferably 0.5% by mass to 2% by mass. If the total content of Na 2 O and K 2 O is less than 0.5% by mass, the solubility of the glass may decrease, and if it exceeds 2% by mass, the strength and heat resistance of the glass may decrease. is there.
 ZrOは、核形成剤として作用する成分である。ZrOの含有量が1質量%より少ないと、安定して結晶化しない場合があるとともに、粗く大きい結晶が形成されることから、透明な結晶化ガラスを得ることが困難となる場合がある。一方、3質量%を超えると、ジルコニアの未分解物が生成し、ガラス中に失透物が発生する場合がある。 ZrO 2 is a component that acts as a nucleation agent. When the content of ZrO 2 is less than 1% by mass, stable crystallization may not be performed, and coarse large crystals are formed, which may make it difficult to obtain a transparent crystallized glass. On the other hand, if it exceeds 3% by mass, an undegraded product of zirconia may be generated, and a devitrified product may be generated in the glass.
 TiOは、核形成剤として作用する成分である。TiOの含有量が1質量%より少ないと結晶化の促進効果が得られず、所望の結晶が得られなくなる場合がある。一方、3質量%より多いと、液相温度が高くなることにより、成形作業が困難となる場合がある。さらに、耐熱結晶化ガラスが褐色に呈色して透明感が損なわれる場合がある。TiOの含有量は、1.3質量%~3質量%であることがより好ましい。これにより、所望の結晶化度を達成して耐熱性をより一層高めることができるとともに、ガラスの透明性もより一層確実に維持することができる。 TiO 2 is a component that acts as a nucleation agent. If the content of TiO 2 is less than 1% by mass, the effect of promoting crystallization can not be obtained, and a desired crystal may not be obtained. On the other hand, if the amount is more than 3% by mass, the liquid phase temperature may be high, which may make the forming operation difficult. Furthermore, the heat-resistant crystallized glass may turn brown and the transparency may be impaired. The content of TiO 2 is more preferably 1.3% by mass to 3% by mass. Thus, the desired crystallinity can be achieved to further enhance the heat resistance, and the transparency of the glass can be maintained more reliably.
 なお、ZrO及びTiOの合計含有量は、2.6質量%~5質量%であることが好ましい。ZrO及びTiOの合計含有量が2.6質量%より少ないと、結晶化の促進効果が得られず、機械的強度が低下する場合がある。一方、合計含有量が5質量%を超えると失透性が強くなり、均一な結晶化ガラスを得ることが困難となる場合がある。 The total content of ZrO 2 and TiO 2 is preferably 2.6% by mass to 5% by mass. If the total content of ZrO 2 and TiO 2 is less than 2.6% by mass, the effect of promoting crystallization can not be obtained, and the mechanical strength may be reduced. On the other hand, when the total content exceeds 5% by mass, the devitrification resistance becomes strong, and it may be difficult to obtain a uniform crystallized glass.
 Pは、核形成剤として含有するZrOの難溶解性を改善する成分である。Pの含有量が0.05質量%より少ないと、その改善効果が低下する場合がある。一方、2質量%より多いと、相分離し易くなるとともに結晶生成量が多くなり、透明性が低下する場合がある。Pの含有量は、1質量%~2質量%であることがより好ましい。これにより、所望の結晶化がより一層確実に得られるとともに、ガラスの透明性をより一層確実に維持することができる。 P 2 O 5 is a component that improves the low solubility of ZrO 2 contained as a nucleating agent. If the content of P 2 O 5 is less than 0.05% by mass, the improvement effect may be reduced. On the other hand, if the amount is more than 2% by mass, phase separation may be facilitated, the amount of crystal formation may be increased, and transparency may be reduced. The content of P 2 O 5 is more preferably 1% by mass to 2% by mass. As a result, desired crystallization can be obtained more reliably, and the transparency of the glass can be maintained more reliably.
 また、As、Sb及びSnOは清澄剤として添加され、その合計含有量は、0.1質量%~2質量%であることが好ましい。これにより、ガラスの溶解性、作業性、均一性をより一層向上させることができる。合計含有量が0.1質量%より少なくなると清澄効果が低下する場合があり、2質量%を超えると環境上好ましくない場合がある。As、Sb及びSnOのより好ましい合計含有量は、0.1質量%~1質量%である。 Further, As 2 O 3 , Sb 2 O 3 and SnO 2 are added as a fining agent, and the total content thereof is preferably 0.1% by mass to 2% by mass. Thereby, the solubility, the workability, and the uniformity of the glass can be further improved. When the total content is less than 0.1% by mass, the fining effect may be reduced, and when it exceeds 2% by mass, it may be environmentally unfavorably. A more preferable total content of As 2 O 3 , Sb 2 O 3 and SnO 2 is 0.1% by mass to 1% by mass.
 さらに、耐熱結晶化ガラスは、CaO、PbO、F、Cl又はCeO等の任意の成分を、各々0.5質量%~3質量%含有してもよい。 Furthermore, the heat-resistant crystallized glass may contain 0.5% by mass to 3% by mass of optional components such as CaO, PbO, F 2 , Cl 2 or CeO 2 .
 スペーサー;
 スペーサーは、例えば、アルミニウムやアルミニウムを含む合金などの金属や、ブチルゴムなどの樹脂により構成することができる。また、スペーサーは、内部に中空部が設けられていることが好ましい。中空部には、粒状のゼオライトなどの乾燥剤を充填させることができる。それによって、第1の中空層及び第2の中空層内の空気を乾燥させることができる。
spacer;
The spacer can be made of, for example, a metal such as aluminum or an alloy containing aluminum, or a resin such as butyl rubber. Moreover, it is preferable that a hollow part is provided in the inside of the spacer. The hollow portion can be filled with a desiccant such as particulate zeolite. Thereby, the air in the first hollow layer and the second hollow layer can be dried.
 一次シール材及び二次シール材;
 一次シール材としては、例えば、ブチルゴムからなる粘着剤を用いることが好ましい。一次シール材は、第1の中空層又は第2の中空層側に設けられているため、ブチルゴムを用いることにより、第1の中空層及び第2の中空層に湿気が浸入することを、より一層効果的に抑制することができる。なお、ブチルゴムは、架橋されていないことが望ましい。また、一次シール材としては、ポリイソブチレンからなる粘着剤を用いてもよい。また、このようなブチル系の粘着剤には、カーボンブラックなどのフィラーが含まれていてもよい。
Primary sealing material and secondary sealing material;
As a primary seal material, it is preferable to use the adhesive which consists of butyl rubber, for example. Since the primary sealing material is provided on the side of the first hollow layer or the second hollow layer, by using butyl rubber, it is possible to prevent moisture from entering the first hollow layer and the second hollow layer. It can be more effectively suppressed. The butyl rubber is preferably not crosslinked. Further, as the primary sealing material, an adhesive made of polyisobutylene may be used. In addition, such a butyl-based pressure-sensitive adhesive may contain a filler such as carbon black.
 二次シール材としては、例えば、シリコーン、ウレタン、ポリサルファイド等の耐久性に優れた樹脂を用いることができる。このような二次シール材を用いることで、一次シール材を保護することもできる。 As a secondary sealing material, resin excellent in durability, such as silicone, urethane, polysulfide, can be used, for example. The primary seal material can also be protected by using such a secondary seal material.
 以下、複層ガラス1の製造方法の一例について説明する。 Hereinafter, an example of the manufacturing method of the multilayer glass 1 is demonstrated.
 製造方法;
 複層ガラス1の製造方法は、特に限定されないが、例えば、以下の方法により製造することができる。
Production method;
Although the manufacturing method of the multilayer glass 1 is not specifically limited, For example, it can manufacture by the following method.
 まず、第1~第3のガラス板2~4を用意する。第1~第3のガラス板2~4は、従来公知の製造方法により製造してもよく、市販品を用いてもよい。なお、第1のガラス板2の主面2a及び第2のガラス板3の主面3aのうち、少なくとも一方の主面上には、予め第1の低放射膜7又は第2の低放射膜8を形成する。第1の低放射膜7又は第2の低放射膜8は、例えば、蒸着法やスパッタリング法などにより形成することができる。 First, first to third glass plates 2 to 4 are prepared. The first to third glass plates 2 to 4 may be manufactured by a conventionally known manufacturing method, or commercially available products may be used. The first low emission film 7 or the second low emission film is formed in advance on at least one of the main surface 2 a of the first glass plate 2 and the main surface 3 a of the second glass plate 3. Form 8 The first low emission film 7 or the second low emission film 8 can be formed by, for example, a vapor deposition method or a sputtering method.
 次に、第1のスペーサー9を用意し、第1のスペーサー9の第1のガラス板2及び第3のガラス板4と接する両側面に一次シール材11A,11Bを塗布する。なお、第1のスペーサー9は、従来公知のスペーサーの製造方法により製造してもよく、市販品を用いてもよい。続いて、一次シール材11Aが設けられた第1のスペーサー9の側面と第1のガラス板2の主面2aを貼り合わせる。しかる後、一次シール材11Bが設けられた第1のスペーサー9の側面と第3のガラス板4の主面4aを貼り合わせる。それによって、一次シール材11A,11Bを用いて、第1のガラス板2及び第3のガラス板4を第1のスペーサー9と接着させ、第1のガラス板2、第3のガラス板4、一次シール材11A,11B、及び第1のスペーサー9によって囲まれた第1の中空層5を形成する。次に、第1のスペーサー9の第1の中空層5とは反対側の第1のガラス板2及び第3のガラス板4間に、二次シール材13を充填させる。それによって、第1の中空層5を効果的に封止することができる。 Next, the first spacer 9 is prepared, and the primary sealing materials 11A and 11B are applied to both side surfaces of the first spacer 9 in contact with the first glass plate 2 and the third glass plate 4. The first spacer 9 may be manufactured by a conventionally known method for manufacturing a spacer, or a commercially available product may be used. Subsequently, the side surface of the first spacer 9 provided with the primary sealing material 11A and the main surface 2a of the first glass plate 2 are pasted together. After that, the side surface of the first spacer 9 provided with the primary sealing material 11B and the main surface 4a of the third glass plate 4 are pasted together. Thereby, the first glass plate 2 and the third glass plate 4 are bonded to the first spacer 9 using the primary sealing materials 11A and 11B, and the first glass plate 2 and the third glass plate 4 A first hollow layer 5 surrounded by the primary sealing materials 11A and 11B and the first spacer 9 is formed. Next, the secondary seal material 13 is filled between the first glass plate 2 and the third glass plate 4 on the side opposite to the first hollow layer 5 of the first spacer 9. Thereby, the first hollow layer 5 can be effectively sealed.
 同様に、第2のスペーサー10を用意し、第2のスペーサー10の第2のガラス板3及び第3のガラス板4と接する両側面に一次シール材12A,12Bを塗布する。なお、第2のスペーサー10は、従来公知のスペーサーの製造方法により製造してもよく、市販品を用いてもよい。続いて、一次シール材12Aが設けられた第2のスペーサー10の側面と第2のガラス板3の主面3aを貼り合わせる。しかる後、一次シール材12Bが設けられた第2のスペーサー10の側面と第3のガラス板4の主面4bを貼り合わせる。それによって、一次シール材12A,12Bを用いて、第2のガラス板3及び第3のガラス板4を第2のスペーサー10と接着させ、第2のガラス板3、第3のガラス板4、一次シール材12A,12B、及び第2のスペーサー10によって囲まれた第2の中空層6を形成する。次に、第2のスペーサー10の第2の中空層6とは反対側の第2のガラス板3及び第3のガラス板4間に、二次シール材14を充填させる。それによって、第2の中空層6を効果的に封止することができ、複層ガラス1を得ることができる。 Similarly, the second spacer 10 is prepared, and the primary sealing materials 12A and 12B are applied to both side surfaces of the second spacer 10 in contact with the second glass plate 3 and the third glass plate 4. In addition, the 2nd spacer 10 may be manufactured by the manufacturing method of a conventionally well-known spacer, and may use a commercial item. Subsequently, the side surface of the second spacer 10 provided with the primary sealing material 12A and the main surface 3a of the second glass plate 3 are pasted together. After that, the side surface of the second spacer 10 provided with the primary sealing material 12B and the main surface 4b of the third glass plate 4 are pasted together. Thereby, the second glass plate 3 and the third glass plate 4 are bonded to the second spacer 10 using the primary sealing materials 12A and 12B, and the second glass plate 3 and the third glass plate 4 A second hollow layer 6 surrounded by the primary sealants 12A and 12B and the second spacer 10 is formed. Next, the secondary seal material 14 is filled between the second glass plate 3 and the third glass plate 4 on the side opposite to the second hollow layer 6 of the second spacer 10. Thereby, the second hollow layer 6 can be effectively sealed, and the multilayer glass 1 can be obtained.
 (第2の実施形態)
 図2は、本発明の第2の実施形態に係る複層ガラスを示す模式的断面図である。図2に示すように、複層ガラス21においては、第1のガラス板2の主面2a上に、第1の低放射膜7が設けられていない。複層ガラス21においては、第2のガラス板3の主面3a上にのみ第2の低放射膜8が設けられている。その他の点は、第1の実施形態と同様である。
Second Embodiment
FIG. 2 is a schematic cross-sectional view showing a multilayer glass according to a second embodiment of the present invention. As shown in FIG. 2, in the multilayer glass 21, the first low emission film 7 is not provided on the major surface 2 a of the first glass plate 2. In the multilayer glass 21, the second low radiation film 8 is provided only on the major surface 3 a of the second glass plate 3. The other points are the same as in the first embodiment.
 このように、本発明においては、最も外側に設けられているガラス板である第1のガラス板2及び第2のガラス板3のうち、双方のガラス板に低放射膜が設けられていてもよく、一方のガラス板にのみ低放射膜が設けられていてもよい。もっとも、複層ガラスを構成するガラスをより一層割れ難くし、断熱性をより一層高める観点から、第1のガラス板2及び第2のガラス板3のうち、双方のガラス板に低放射膜が設けられていることが好ましい。 Thus, in the present invention, even if the low radiation film is provided on both of the first glass plate 2 and the second glass plate 3 which are the glass plates provided on the outermost side. The low radiation film may be provided only on one of the glass plates. However, the low radiation film is formed on both of the first glass plate 2 and the second glass plate 3 from the viewpoint of making the glass constituting the multi-layer glass more difficult to break and further enhancing the heat insulation. It is preferable to be provided.
 なお、本実施形態においても、複層ガラス21を構成する3枚のガラス板2~4のうち、中間に設けられている第3のガラス板4が、結晶化ガラスにより構成されている。そのため、複層ガラス21は、防火性に優れている。 Also in this embodiment, the third glass plate 4 provided in the middle among the three glass plates 2 to 4 constituting the multilayer glass 21 is formed of crystallized glass. Therefore, the multilayer glass 21 is excellent in fire resistance.
 [サッシ窓]
 図3(a)は、本発明の一実施形態に係るサッシ窓を示す模式的正面図である。また、図3(b)は、図3(a)中のA-A線に沿う模式的断面図である。
[Sash window]
FIG. 3 (a) is a schematic front view showing a sash window according to an embodiment of the present invention. Further, FIG. 3 (b) is a schematic cross-sectional view along the line AA in FIG. 3 (a).
 図3(a)及び図3(b)に示すように、サッシ窓31は、複層ガラス1と、枠体32とを備える。複層ガラス1は、上述した第1の実施形態の複層ガラス1である。複層ガラス1の周縁部1aに、枠体32が設けられている。より具体的に、枠体32は、コの字状の形状を有しており、溝部33を有している。この溝部33に、周縁部1aを含む複層ガラス1の一部が嵌め込まれている。複層ガラス1の周縁部1aと枠体32の溝部33との間の隙間には、耐熱性材料34が充填されている。 As shown in FIGS. 3 (a) and 3 (b), the sash window 31 includes the multi-layer glass 1 and the frame 32. The multilayer glass 1 is the multilayer glass 1 of the first embodiment described above. A frame 32 is provided at the peripheral portion 1 a of the multilayer glass 1. More specifically, the frame 32 has a U-shape, and has a groove 33. In the groove portion 33, a part of the multilayer glass 1 including the peripheral portion 1a is fitted. A heat resistant material 34 is filled in the gap between the peripheral portion 1 a of the multilayer glass 1 and the groove 33 of the frame 32.
 枠体32を構成する材料としては、特に限定されないが、例えば、アルミニウム合金板や、溶融亜鉛メッキ板などを用いることができる。また、耐熱性材料34を構成する材料としては、例えば、シリコーン樹脂などを用いることができる。このような耐熱性材料を複層ガラス1の周縁部1aと枠体32の溝部33との隙間に充填することにより、万一の火災発生時における炎や煙をより一層確実に遮断することができ、延焼をより一層効果的に抑制することができる。 Although it does not specifically limit as a material which comprises the frame 32, For example, an aluminum alloy plate, a hot dip galvanized plate, etc. can be used. Moreover, as a material which comprises the heat resistant material 34, a silicone resin etc. can be used, for example. By filling such a heat-resistant material in the gap between the peripheral portion 1a of the multilayer glass 1 and the groove 33 of the frame 32, it is possible to more reliably block the flame and smoke at the time of fire occurrence. It is possible to suppress the spread of fire more effectively.
 本実施形態のサッシ窓31は、上述した複層ガラス1を備えているので、防火性に優れている。 Since the sash window 31 of the present embodiment is provided with the above-described multilayer glass 1, it is excellent in fire resistance.
 以上のように、本発明の複層ガラスやサッシ窓は、防火性に優れているので、防火設備に好適に用いることができる。特に、本発明の複層ガラスやサッシ窓は、防火性能が求められる建物の外壁により一層好適に用いることができる。 As mentioned above, since the double glazing and sash window of this invention are excellent in fire resistance, they can be used suitably for fire prevention equipment. In particular, the double glazing and sash windows of the present invention can be more suitably used in the outer wall of a building for which fire protection performance is required.
1,21…複層ガラス
1A…端面
2,3,4…第1,第2,第3のガラス板
2a,3a,4a,4b…主面
1a,2a1,3a1,4a1,4b1…周縁部
5,6…第1,第2の中空層
7,8…第1,第2の低放射膜
9,10…第1,第2のスペーサー
11A,11B,12A,12B…一次シール材
13,14…二次シール材
31…サッシ窓
32…枠体
33…溝部
34…耐熱性材料
1, 21 ... double layer glass 1A ... end face 2, 3, 4 ... first, second, third glass plate 2a, 3a, 4a, 4b ... principal surface 1a, 2a1, 3a1, 4a1, 4b1 ... rim portion 5 , 6 ... first and second hollow layers 7, 8 ... first and second low radiation films 9, 10 ... first and second spacers 11A, 11B, 12A, 12B ... primary seal members 13, 14 ... Secondary seal 31 ... sash window 32 ... frame 33 ... groove 34 ... heat resistant material

Claims (6)

  1.  互いに対向しており、スペーサーを介して間隔を隔てて配置されている、少なくとも3枚以上のガラス板を備え、前記少なくとも3枚以上のガラス板の周縁部が、シール材によって封止されることにより、前記ガラス板間にそれぞれ中空層が設けられている、複層ガラスであって、
     前記少なくとも3枚以上のガラス板のうち、最も外側に設けられている第1のガラス板及び第2のガラス板と、
     前記第1のガラス板及び前記第2のガラス板の間に設けられている、第3のガラス板と、
    を備え、
     前記第1のガラス板及び前記第2のガラス板のうち、少なくとも一方のガラス板の前記中空層側の主面上に、低放射膜が設けられており、
     前記第3のガラス板が、結晶化ガラスにより構成されている、複層ガラス。
    At least three or more glass plates facing each other and spaced apart via a spacer, and the peripheral portions of the at least three or more glass plates are sealed by a sealing material A multi-layered glass in which hollow layers are provided between the glass plates, respectively;
    Among the at least three or more glass plates, a first glass plate and a second glass plate provided on the outermost side,
    A third glass plate provided between the first glass plate and the second glass plate;
    Equipped with
    A low emission film is provided on the main surface on the hollow layer side of at least one of the first glass plate and the second glass plate,
    The multilayer glass, wherein the third glass plate is made of crystallized glass.
  2.  前記複層ガラスが、建物の外壁の少なくとも一部に用いられ、
     前記第1のガラス板が屋外側に設けられており、
     前記第2のガラス板が屋内側に設けられている、請求項1に記載の複層ガラス。
    The multi-layered glass is used for at least a part of the outer wall of a building,
    The first glass plate is provided on the outdoor side,
    The double glazing according to claim 1, wherein the second glass plate is provided indoors.
  3.  前記第1のガラス板及び前記第2のガラス板のうち、双方のガラス板の前記中空層側の主面上に、前記低放射膜が設けられている、請求項1又は2に記載の複層ガラス。 The compound according to claim 1 or 2, wherein the low radiation film is provided on the main surface of the first glass plate and the second glass plate on the hollow layer side of both glass plates. Layer glass.
  4.  前記低放射膜が、銀を含む、請求項1~3のいずれか1項に記載の複層ガラス。 The double glazing according to any of the preceding claims, wherein the low emission film comprises silver.
  5.  防火設備に用いられる、請求項1~4のいずれか1項に記載の複層ガラス。 The double glazing according to any one of claims 1 to 4, which is used for fire protection equipment.
  6.  請求項1~5のいずれか1項に記載の複層ガラスと、
     前記複層ガラスの周縁部に設けられている枠体と、
    を備える、サッシ窓。
    The multilayer glass according to any one of claims 1 to 5;
    A frame provided at the periphery of the multi-layer glass,
    With a sash window.
PCT/JP2018/018848 2017-07-06 2018-05-16 Insulated glazing and sash window WO2019008912A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-132525 2017-07-06
JP2017132525A JP2019014619A (en) 2017-07-06 2017-07-06 Multiple glass and sash window

Publications (1)

Publication Number Publication Date
WO2019008912A1 true WO2019008912A1 (en) 2019-01-10

Family

ID=64950784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018848 WO2019008912A1 (en) 2017-07-06 2018-05-16 Insulated glazing and sash window

Country Status (2)

Country Link
JP (1) JP2019014619A (en)
WO (1) WO2019008912A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112208562A (en) * 2019-07-11 2021-01-12 中国航发北京航空材料研究院 High-performance light-weight passenger room side window for high-speed train
CN112208561A (en) * 2019-07-11 2021-01-12 中国航发北京航空材料研究院 High-heat-insulation-performance side window system for high-speed train

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094252A (en) * 2017-11-22 2019-06-20 株式会社エクセルシャノン Fireproof multiple glass
JP7141712B2 (en) * 2019-04-05 2022-09-26 中島硝子工業株式会社 Fireproof double glazing, fireproof glass units and windows of heating cookers
JP7141714B2 (en) * 2019-05-28 2022-09-26 中島硝子工業株式会社 Fire rated double glazing and fire rated glass units

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330386A (en) * 1994-06-07 1995-12-19 Nippon Sheet Glass Co Ltd Multiple glass
JPH0840747A (en) * 1994-07-29 1996-02-13 Asahi Glass Co Ltd Fireproof glass
JP2014133675A (en) * 2013-01-09 2014-07-24 Asahi Glass Co Ltd Double glazing
WO2014168219A1 (en) * 2013-04-11 2014-10-16 旭硝子株式会社 Fire-preventing multilayer glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330386A (en) * 1994-06-07 1995-12-19 Nippon Sheet Glass Co Ltd Multiple glass
JPH0840747A (en) * 1994-07-29 1996-02-13 Asahi Glass Co Ltd Fireproof glass
JP2014133675A (en) * 2013-01-09 2014-07-24 Asahi Glass Co Ltd Double glazing
WO2014168219A1 (en) * 2013-04-11 2014-10-16 旭硝子株式会社 Fire-preventing multilayer glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112208562A (en) * 2019-07-11 2021-01-12 中国航发北京航空材料研究院 High-performance light-weight passenger room side window for high-speed train
CN112208561A (en) * 2019-07-11 2021-01-12 中国航发北京航空材料研究院 High-heat-insulation-performance side window system for high-speed train
CN112208562B (en) * 2019-07-11 2022-03-15 中国航发北京航空材料研究院 High-performance light-weight passenger room side window for high-speed train
CN112208561B (en) * 2019-07-11 2022-03-15 中国航发北京航空材料研究院 High-heat-insulation-performance side window system for high-speed train

Also Published As

Publication number Publication date
JP2019014619A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
WO2019008912A1 (en) Insulated glazing and sash window
KR100576209B1 (en) Double-glazing unit
US10526244B2 (en) Insulated glazing unit
US5551195A (en) Fire-retarding window assembly
CN111566060B (en) Multi-layer insulating glass units including low CTE glass layers
US9903152B2 (en) Super-insulating multi-layer glass
WO2013065641A1 (en) Single glass for fire door and double glass for fire door
WO2014168219A1 (en) Fire-preventing multilayer glass
JP2002226237A (en) Double-layered glass with heat screening film
JP7387637B2 (en) Asymmetric vacuum-insulated glazing unit
JP2021024773A (en) Double glazing and sash window
JP2020055736A (en) Adiabatic three-layered multiple glass for window glass
JP7437321B2 (en) Asymmetric vacuum insulated glazing unit
US20220154524A1 (en) Asymmetrical vacuum-insulated glazing unit
US20220402244A1 (en) Fire resistant vacuum insulating glazing
US20220178195A1 (en) Asymmetrical vacuum-insulated glazing unit
JP5812416B2 (en) Fireproof double glazing
US20220065027A1 (en) Asymmetrical vacuum-insulated glazing unit
EA041667B1 (en) ASYMMETRIC VACUUM INSULATED GLAZING UNIT
JP2018123540A (en) Double glazing
EA041330B1 (en) ASYMMETRIC VACUUM INSULATED GLAZING UNIT
US20220333433A1 (en) Laminated vacuum-insulated glazing assembly
EA041602B1 (en) ASYMMETRIC VACUUM INSULATED GLAZING UNIT
JP2020033233A (en) Adiabatic three-layer multiple glass for window glass
JP2022051456A (en) Double glazing for vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828000

Country of ref document: EP

Kind code of ref document: A1