WO2019008730A1 - High-frequency amplifier - Google Patents

High-frequency amplifier Download PDF

Info

Publication number
WO2019008730A1
WO2019008730A1 PCT/JP2017/024845 JP2017024845W WO2019008730A1 WO 2019008730 A1 WO2019008730 A1 WO 2019008730A1 JP 2017024845 W JP2017024845 W JP 2017024845W WO 2019008730 A1 WO2019008730 A1 WO 2019008730A1
Authority
WO
WIPO (PCT)
Prior art keywords
high frequency
transistor
frequency signal
phase
line
Prior art date
Application number
PCT/JP2017/024845
Other languages
French (fr)
Japanese (ja)
Inventor
純 神岡
山中 宏治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/024845 priority Critical patent/WO2019008730A1/en
Publication of WO2019008730A1 publication Critical patent/WO2019008730A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics

Definitions

  • the present invention relates to a high frequency amplifier for amplifying a high frequency signal.
  • a high frequency amplifier for amplifying a high frequency signal is mounted in a wireless communication apparatus, a radar apparatus, etc., and high frequency characteristics are required for the high frequency amplifier.
  • a push-pull amplifier that includes two source-grounded field effect transistors (FETs) as high frequency amplifiers with high gain characteristics, and the connection point of the source electrodes of the two FETs is grounded via a via hole Is disclosed in the following non-patent document 1.
  • one high frequency signal into which the high frequency signal is reverse phase distributed is inputted to the gate electrode of one FET, and the other high frequency signal into which the high frequency signal is reverse phase distributed is inputted to the gate electrode of the other FET.
  • a virtual ground is generated at a symmetry point which is a connection point between source electrodes in two FETs. This virtual ground reduces the influence of the source inductance due to the via holes, thereby improving the gain of the high frequency amplifier.
  • the influence of the source inductance due to the via hole can be reduced by grounding the connection point of the source electrodes of the two FETs via the via hole it can.
  • the influence of the source inductance due to the via holes can be reduced. Because of the failure, there is a problem that a combined loss occurs between high frequency signals amplified by a plurality of FETs connected in parallel.
  • the connection point of the source electrodes of the two centrally arranged FETs can be grounded via the via holes.
  • the two FETs arranged in the center are the FET adjacent to the second FET group in the first FET group, and the first FET group in the second FET group. Adjacent FETs correspond.
  • the source electrode is connected to the source electrode of the next FET Even if it does not generate virtual ground. For this reason, in the first FET group, each of the source electrodes of the FETs other than the centrally disposed FET is grounded via a separate via hole. Further, in the second FET group, since the FETs other than the FET arranged in the center are not adjacent to the FETs belonging to the first FET group, the source electrode is connected to the source electrode of the adjacent FET But virtual ground does not occur.
  • each of the source electrodes of the FETs other than the centrally disposed FET is grounded via a separate via hole. Therefore, since the FETs other than the two FETs disposed in the center are affected by the source inductance due to the via holes, the gain is smaller than those of the two FETs disposed in the center. As a result, gain imbalance occurs between the respective FETs mounted in the high frequency amplifier, resulting in a combined loss among the high frequency signals amplified by the plurality of FETs connected in parallel.
  • the present invention has been made to solve the above problems, and provides a high frequency amplifier capable of reducing the influence of source inductance due to a via hole for grounding the source electrode even if four transistors are mounted.
  • the purpose is
  • the high frequency amplifier distributes the high frequency signal in reverse phase, distributes one of the high frequency signals in reverse phase as the first and third high frequency signals in phase, and distributes the other high frequency signal in reverse phase as the second and third high frequency signals.
  • the source electrodes of the first and second transistors are connected to the first ground point, and the source electrodes of the second and third transistors are connected to the second ground point. Since the source electrodes of the four transistors are connected to the third ground point, even if the first to fourth transistors are mounted, the influence of the source inductance due to the via holes for grounding the source electrodes is There is an effect that can be reduced.
  • FIG. 1 is a block diagram showing a high frequency amplifier according to a first embodiment of the present invention.
  • an input terminal 1 is a terminal to which a high frequency signal to be amplified is input.
  • the signal distributor 2 includes a balun 3, a first input matching circuit 4 and a second input matching circuit 5.
  • the signal distributor 2 performs reverse phase distribution on the high frequency signal input from the input terminal 1 and distributes one of the high frequency signals subjected to reverse phase distribution as the first and third high frequency signals in phase and the other phase obtained by reverse phase distribution.
  • the high frequency signal is in-phase distributed as second and fourth high frequency signals.
  • the balun 3 performs reverse phase distribution on the high frequency signal input from the input terminal 1, outputs one high frequency signal subjected to reverse phase distribution to the first input matching circuit 4, and outputs the other high frequency signal subjected to reverse phase distribution Output to the input matching circuit 5 of 2.
  • the first input matching circuit 4 in-phase distributes one high frequency signal output from the balun 3 as the first and third high frequency signals, and outputs the first high frequency signal to the first transistor 6a,
  • the third high frequency signal is output to the third transistor 6c.
  • the second input matching circuit 5 in-phase distributes the other high frequency signal output from the balun 3 as the second and fourth high frequency signals, and outputs the second high frequency signal to the second transistor 6b.
  • the fourth high frequency signal is output to the fourth transistor 6d.
  • the first transistor 6a amplifies the first high frequency signal output from the first input matching circuit 4 and outputs the amplified first high frequency signal to the first output matching circuit 8 of the signal combiner 7.
  • the second transistor 6 b amplifies the second high frequency signal output from the second input matching circuit 5 and outputs the amplified second high frequency signal to the second output matching circuit 9 of the signal combiner 7.
  • the third transistor 6 c amplifies the third high frequency signal output from the first input matching circuit 4, and outputs the amplified third high frequency signal to the first output matching circuit 8 of the signal combiner 7.
  • the fourth transistor 6 d amplifies the fourth high frequency signal output from the second input matching circuit 5, and outputs the amplified fourth high frequency signal to the second output matching circuit 9 of the signal combiner 7. Do.
  • the signal synthesizer 7 comprises a first output matching circuit 8, a second output matching circuit 9 and a balun 10.
  • the first output matching circuit 8 combines in phase the amplified first high frequency signal output from the first transistor 6a and the amplified third high frequency signal output from the third transistor 6c. Then, the in-phase combined signal is output to the balun 10.
  • the second output matching circuit 9 performs in-phase combining of the amplified second high frequency signal output from the second transistor 6b and the amplified fourth high frequency signal output from the fourth transistor 6d. Then, the in-phase combined signal is output to the balun 10.
  • the balun 10 reverse-phase synthesizes the in-phase composite signal output from the first output matching circuit 8 and the in-phase composite signal output from the second output matching circuit 9, and outputs a composite signal obtained by reverse-phase combining Output to 11.
  • the output terminal 11 is a terminal that outputs the amplified high frequency signal which is a combined signal output from the balun 10.
  • connection point 12 is a point at which the source electrode of the first transistor 6a and the source electrode of the second transistor 6b are connected.
  • the connection point 12 is disposed at a position where the distance from the source electrode of the first transistor 6a and the distance from the source electrode of the second transistor 6b are equal.
  • One end of the first via hole 13 is connected to the connection point 12 and the other end is connected to a first ground point 14 which is a ground.
  • connection point 15 is a point at which the source electrode of the second transistor 6b and the source electrode of the third transistor 6c are connected.
  • the connection point 15 is disposed at a position where the distance from the source electrode of the second transistor 6b is equal to the distance from the source electrode of the third transistor 6c.
  • One end of the second via hole 16 is connected to the connection point 15 and the other end is connected to a second ground point 17 which is a ground.
  • connection point 18 is a point at which the source electrode of the third transistor 6c and the source electrode of the fourth transistor 6d are connected.
  • the connection point 18 is disposed at a position where the distance from the source electrode of the third transistor 6c is equal to the distance from the source electrode of the fourth transistor 6d.
  • One end of the third via hole 19 is connected to the connection point 18, and the other end is connected to the third ground point 20 which is a ground.
  • the first line 21 is a line that propagates the third high frequency signal output from the first input matching circuit 4 to the third transistor 6 c.
  • the second line 22 is a line that propagates the second high frequency signal output from the second input matching circuit 5 to the second transistor 6 b.
  • the intersection portion 23 is a portion where the first line 21 and the second line 22 intersect. The first line 21 and the second line 22 cross each other so as not to contact physically and electrically at the intersection 23.
  • the third line 31 is a line for propagating the amplified second high frequency signal output from the second transistor 6 b to the second output matching circuit 9.
  • the fourth line 32 is a line that propagates the amplified third high frequency signal output from the third transistor 6 c to the first output matching circuit 8.
  • the intersection 33 is a portion where the third line 31 and the fourth line 32 intersect.
  • the third line 31 and the fourth line 32 cross each other so as not to contact physically and electrically at the intersection 33.
  • FIG. 2 is an explanatory view showing a structure of a transistor of the high frequency amplifier according to the first embodiment of the present invention.
  • the gate terminal 6a g is a terminal connected to a gate electrode of the first transistor 6a.
  • the drain terminal 6 ad is a terminal connected to the drain electrode of the first transistor 6 a.
  • the gate terminal 6b g is a terminal connected to the gate electrode of the second transistor 6b.
  • the drain terminal 6b d is a terminal connected to a drain electrode of the second transistor 6b.
  • the gate terminal 6c g is a terminal connected to the gate electrode of the third transistor 6c.
  • the drain terminal 6c d is a terminal connected to the drain electrode of the third transistor 6c.
  • the gate terminal 6d g is a terminal connected to the gate electrode of the fourth transistor 6d.
  • the drain terminal 6d d is a terminal connected to the drain electrode of the fourth transistor 6d.
  • FIG. 3 is an explanatory view showing the crossing portion 23 of the high frequency amplifier according to the first embodiment of the present invention.
  • the line at the intersection 23 of the first line 21 is a base electrode 24.
  • the line at the intersection 23 in the second line 22 is an air bridge 25 disposed so as to straddle the base electrode 24.
  • FIG. 3 shows an example in which the crossing angle between the first line 21 and the second line 22 is at a right angle at the crossing portion 23, the first line 21 and the second line 22 are in contact with each other. If not, the crossing angle is not limited to a right angle.
  • FIG. 4 is an explanatory view showing a crossing portion 33 of the high frequency amplifier according to the first embodiment of the present invention.
  • the line at the intersection 33 in the third line 31 is the base electrode 34.
  • the line at the intersection 33 in the fourth line 32 is an air bridge 35 disposed so as to straddle the base electrode 34.
  • FIG. 4 shows an example in which the crossing angle between the third line 31 and the fourth line 32 is at a right angle at the crossing portion 33, the third line 31 and the fourth line 32 are in contact with each other. If not, the crossing angle is not limited to a right angle.
  • the high frequency signal to be amplified input from the input terminal 1 is distributed in reverse phase by the balun 3 of the signal distributor 2.
  • the phase of the high frequency signal output from balun 3 to first input matching circuit 4 is 0 degree
  • the high frequency signal output from balun 3 to second input matching circuit 5 Assume that the phase of the signal is 180 degrees.
  • the first input matching circuit 4 performs in-phase distribution of the high frequency signal having a phase of 0 degrees output from the balun 3 as the first and third high frequency signals, and outputs the first high frequency signal to the first transistor 6 a Outputs the third high frequency signal to the third transistor 6c.
  • the second input matching circuit 5 performs in-phase distribution of the high frequency signal having a phase of 180 degrees output from the balun 3 as the second and fourth high frequency signals, and outputs the second high frequency signal to the second transistor 6 b
  • the fourth high frequency signal is output to the fourth transistor 6d.
  • the first input matching circuit 4 and the second input matching circuit 5 are set to circuits in which the pass characteristics of a high frequency signal having a phase of 0 degrees are the same as the pass characteristics of a high frequency signal having a phase of 180 degrees. It shall be done. Further, in the first input matching circuit 4 and the second input matching circuit 5, at the intersection 23, the second high frequency signal and the third high frequency signal are obtained because one is the base electrode 24 and the other is the air bridge 25. It is assumed that the circuit is set in such a way that each of the passing phase difference and the amplitude difference with the signal is canceled.
  • a first high frequency signal which is a high frequency signal with a phase of 0 degrees, is applied from the first input matching circuit 4 to the gate electrode of the first transistor 6a.
  • the first transistor 6 a amplifies the first high frequency signal, and outputs the amplified first high frequency signal from the drain electrode to the first output matching circuit 8 of the signal combiner 7.
  • a second high frequency signal which is a high frequency signal having a phase of 180 degrees, is applied from the second input matching circuit 5 to the second transistor 6b disposed next to the first transistor 6a.
  • the second transistor 6 b amplifies the second high frequency signal, and outputs the amplified second high frequency signal from the drain electrode to the second output matching circuit 9 of the signal combiner 7.
  • a third high frequency signal which is a high frequency signal having a phase of 0 degrees, is supplied from the first input matching circuit 4 to the third transistor 6c arranged next to the second transistor 6b.
  • the third transistor 6 c amplifies the third high frequency signal, and outputs the amplified third high frequency signal from the drain electrode to the first output matching circuit 8 of the signal combiner 7.
  • a fourth high frequency signal which is a high frequency signal having a phase of 180 degrees, is applied from the second input matching circuit 5 to the fourth transistor 6d disposed next to the third transistor 6c.
  • the fourth transistor 6 d amplifies the fourth high frequency signal, and outputs the amplified fourth high frequency signal from the drain electrode to the second output matching circuit 9 of the signal combiner 7.
  • the source electrode of the first transistor 6 a and the source electrode of the second transistor 6 b are connected at the connection point 12, and the connection point 12 is the ground via the first via hole 13. It is connected to the ground point 14 of 1. Since the first high frequency signal and the second high frequency signal are high frequency signals of opposite phase, a symmetry point which is a connection point 12 between the source electrode of the first transistor 6a and the source electrode of the second transistor 6b. Virtual grounding occurs.
  • the source electrode of the second transistor 6 b and the source electrode of the third transistor 6 c are connected at the connection point 15, and the connection point 15 is a second via the second via hole 16.
  • the source electrode of the third transistor 6c and the source electrode of the fourth transistor 6d are connected at the connection point 18, and the connection point 18 is the third via the third via hole 19 and is the ground.
  • the first output matching circuit 8 of the signal synthesizer 7 outputs the amplified first high frequency signal output from the first transistor 6a and the amplified third high frequency signal output from the third transistor 6c. Is output to the balun 10 as an in-phase composite signal with a phase of 0 degrees.
  • the second output matching circuit 9 of the signal synthesizer 7 outputs the amplified second high frequency signal output from the second transistor 6 b and the amplified fourth high frequency signal output from the fourth transistor 6 d. Are output to the balun 10 as an in-phase composite signal having a phase of 180 degrees.
  • the balun 10 of the signal synthesizer 7 outputs the in-phase composite signal of 0 degree output from the first output matching circuit 8 and the in-phase composite signal of 180 degrees in phase output from the second output matching circuit 9. Are synthesized in the reverse phase, and a synthesized signal having a phase of 0 degree obtained by the reverse phase synthesis is output to the output terminal 11.
  • the first output matching circuit 8 and the second output matching circuit 9 are set to circuits in which the pass characteristics of a high frequency signal having a phase of 0 degrees are the same as the pass characteristics of a high frequency signal having a phase of 180 degrees. It shall be done. Further, in the first output matching circuit 8 and the second output matching circuit 9, the second high-frequency signal and the third high-frequency signal due to one being the base electrode 34 and the other being the air bridge 35 at the intersection 33. It is assumed that the circuit is set in such a way that each of the passing phase difference and the amplitude difference with the signal is canceled.
  • the source electrode of the first transistor 6a and the source electrode of the second transistor 6b are connected to the first ground point 14, and the second transistor 6b is The source electrode and the source electrode of the third transistor 6c are connected to the second ground point 17, and the source electrode of the third transistor 6c and the source electrode of the fourth transistor 6d are connected to the third ground point 20.
  • the first transistor 6a, the second transistor 6b, the third transistor 6c and the fourth transistor 6d are mounted, the influence of the source inductance due to the via hole for grounding the source electrode can be reduced. it can. Therefore, the combined loss is reduced compared to the case where the source electrodes of the first transistor 6a, the second transistor 6b, the third transistor 6c, and the fourth transistor 6d are grounded through separate via holes, respectively.
  • the overall gain of the high frequency amplifier can be increased.
  • the first transistor 6a, the second transistor 6b, the third transistor 6c and the fourth transistor 6d have a structure as shown in FIG.
  • this is merely an example, and the structure as shown in FIG. 5 may be employed.
  • the generation of virtual ground at the symmetry points, which are the connection points 12, 15 and 18, makes the source inductance due to the first via hole 13, the second via hole 16 and the third via hole 19 invisible. For this reason, the first via hole 13, the second via hole 16, and the third via hole 19 may not be disposed near the source electrode.
  • the lead lines 41, 42 and 43 are provided at the connection points 12, 15 and 18, and the first via hole 13, the second via hole 16 and the third via the lead lines 41, 42 and 43 are provided.
  • the via hole 19 is connected to the connection points 12, 15 and 18.
  • the first via hole 13, the second via hole 16 and the third via hole 19 are disposed in the vicinity of the drain terminals 6a d , 6b d , 6c d and 6d d. It may be arranged in the vicinity of g 6 b g 6 c g 6 d g .
  • balun 3 performs reverse phase distribution on the high frequency signal input from the input terminal 1 as long as the high frequency signal can be distributed in reverse phase.
  • a 180 degree line may be used.
  • balun 10 performs reverse phase synthesis on the in-phase combined signal output from first output matching circuit 8 and the in-phase combined signal output from second output matching circuit 9.
  • a 180-degree line may be used instead of the balun 10, for example.
  • the balun 3a performs reverse phase distribution on the high frequency signal input from the input terminal 1, and outputs one high frequency signal subjected to reverse phase distribution as the first high frequency signal to the first transistor 6a,
  • the other distributed high frequency signal is output to the second transistor 6b as a second high frequency signal.
  • the balun 3b performs reverse phase distribution on the high frequency signal input from the input terminal 1 and outputs one high frequency signal subjected to reverse phase distribution to the third transistor 6c as a third high frequency signal, and the other phase obtained by reverse phase distribution.
  • the high frequency signal is output to the fourth transistor 6 d as a fourth high frequency signal.
  • the phases of the first and third high frequency signals are 0 degrees
  • the phases of the second and fourth high frequency signals are 180 degrees.
  • FIG. 7 is an explanatory view showing the crossing portion 23 and the open stub 26 of the high frequency amplifier according to the second embodiment of the present invention.
  • the open stub 26 may be connected to the first line 21.
  • the open stub 26 may be connected to the first line 21 or the second line 22 as long as the difference between the pass phase of the second high frequency signal and the pass phase of the third high frequency signal can be eliminated. It is not limited to Therefore, another line may be connected in series to the first line 21 or the second line 22.
  • the first line 21 or the second line 22 MIM (Metal-Insulator-Metal) capacitance may be connected in series or in a shunt.
  • an open stub or an MIM capacitor may be connected to the inside of the first input matching circuit 4 or the second input matching circuit 5 instead of the first line 21 or the second line 22.
  • FIG. 8 is an explanatory view showing an intersection 33 and an open stub 36 of a high frequency amplifier according to a second embodiment of the present invention.
  • the open stub 36 may be connected to the third line 31.
  • the open stub 36 may be connected to the third line 31 or the fourth line 32 as long as the difference between the passing phase of the second high frequency signal and the passing phase of the third high frequency signal can be eliminated. It is not limited to Therefore, another line may be connected in series to the third line 31 or the fourth line 32.
  • the MIM capacitor may be connected in series or in a shunt to the third line 31 or the fourth line 32.
  • an open stub or an MIM capacitor may be connected to the inside of the first output matching circuit 8 or the second output matching circuit 9 instead of the third line 31 or the fourth line 32.
  • the first transistor 6a, the second transistor 6b, the third transistor 6c, and the fourth transistor 6d are arranged in the same direction.
  • the third embodiment as shown in FIG. 9, an example in which a first transistor 6a, a second transistor 6b, a third transistor 6c and a fourth transistor 6d are arranged will be described.
  • the direction of each gate electrode of the first transistor 6a and the third transistor 6c is opposite to the direction of each gate electrode of the second transistor 6b and the fourth transistor 6d.
  • the first transistor 6a, the second transistor 6b, the third transistor 6c, and the fourth transistor 6d are disposed.
  • FIG. 9 is a block diagram showing a high frequency amplifier according to a third embodiment of the present invention.
  • FIG. 10 is an explanatory view showing a structure of a transistor of a high frequency amplifier according to a third embodiment of the present invention.
  • One end of the line 51 is connected to the output side of the second input matching circuit 5, and the other end is connected to the second line 22.
  • the line 52 has one end connected to the input side of the first output matching circuit 8 and the other end connected to the fourth line 32.
  • the intersection portion 61 is a portion where the first line 21 and the third line 31 intersect. The first line 21 and the third line 31 cross each other so as not to make physical and electrical contact at the intersection 61.
  • the intersection portion 62 is a portion where the second line 22 and the fourth line 32 intersect. The second line 22 and the fourth line 32 cross each other so as not to make physical and electrical contact at the intersection 62.
  • the intersection portion 63 is a portion where the line 51 and the line 52 intersect. The line 51 and the line 52 cross each other so as not to make physical and electrical contact at the intersection 63.
  • the direction of the gate electrode of each of the first transistor 6a and the third transistor 6c is opposite to the direction of the gate electrode of each of the second transistor 6b and the fourth transistor 6d, so that adjacent transistors are adjacent to each other. It becomes possible to directly connect the source electrodes 70 of each other.
  • 71 is a symmetry line of adjacent transistors. The distance from the symmetry line 71 to the source electrode 70 of each transistor is shorter than the distance from the connection points 12, 15, and 18 to the source electrode of each transistor in the first embodiment, as compared with the first embodiment. Furthermore, the influence of the source inductance can be reduced.
  • the high frequency amplifier including four transistors is described.
  • the number of the transistors included in the high frequency amplifier may be four or more even numbers, and the number of the transistors is limited to four. Absent.
  • a high frequency amplifier including six transistors will be described.
  • FIG. 11 is a block diagram showing a high frequency amplifier according to a fourth embodiment of the present invention.
  • the first input matching circuit 4a performs in-phase distribution of one high frequency signal output from the balun 3 as first, third and fifth high frequency signals, and outputs the first high frequency signal to the first transistor 6a.
  • the third high frequency signal is output to the third transistor 6c, and the fifth high frequency signal is output to the fifth transistor 6e.
  • the second input matching circuit 5a distributes the other high frequency signal output from the balun 3 in phase as the second, fourth and sixth high frequency signals, and outputs the second high frequency signal to the second transistor 6b.
  • the fourth high frequency signal is output to the fourth transistor 6d, and the sixth high frequency signal is output to the sixth transistor 6f.
  • the fifth transistor 6e amplifies the fifth high frequency signal output from the first input matching circuit 4a, and outputs the amplified fifth high frequency signal to the first output matching circuit 8a of the signal combiner 7.
  • the sixth transistor 6f amplifies the sixth high frequency signal output from the second input matching circuit 5a, and outputs the amplified sixth high frequency signal to the second output matching circuit 9a of the signal combiner 7.
  • the first output matching circuit 8a includes the amplified first high frequency signal output from the first transistor 6a and the amplified third high frequency signal output from the third transistor 6c and the fifth transistor 6e.
  • the in-phase combined signal is output to the balun 10 by in-phase combining with the amplified fifth high-frequency signal output from the circuit.
  • the second output matching circuit 9a includes the amplified second high frequency signal output from the second transistor 6b and the amplified fourth high frequency signal output from the fourth transistor 6d and the sixth transistor 6f.
  • the in-phase combined signal is output to the balun 10 by in-phase combining with the amplified sixth high-frequency signal output from the circuit.
  • connection point 81 is a point at which the source electrode of the fourth transistor 6d and the source electrode of the fifth transistor 6e are connected.
  • the connection point 81 is disposed at a position where the distance from the source electrode of the fourth transistor 6d is equal to the distance from the source electrode of the fifth transistor 6e.
  • One end of the fourth via hole 82 is connected to the connection point 81, and the other end is connected to a fourth ground point 83 which is a ground.
  • connection point 84 is a point at which the source electrode of the fifth transistor 6e and the source electrode of the sixth transistor 6f are connected.
  • the connection point 84 is disposed at a position where the distance from the source electrode of the fifth transistor 6e is equal to the distance from the source electrode of the sixth transistor 6f.
  • One end of the fifth via hole 85 is connected to the connection point 84, and the other end is connected to a fifth ground point 86 which is a ground.
  • virtual ground occurs at the connection points 81 and 84 as well as virtual ground occurs at the connection points 12 15 and 18 as in the first embodiment.
  • virtual ground is generated at the connection points 12, 15, 18, 81, 84, the source by the first via hole 13, the second via hole 16, the third via hole 19, the fourth via hole 82 and the fifth via hole 85.
  • the influence of the inductance is reduced. Therefore, the unbalance in gain among the first transistor 6a, the second transistor 6b, the third transistor 6c, the fourth transistor 6d, the fifth transistor 6e, and the sixth transistor 6f is eliminated. . Therefore, even when the high frequency amplifier includes six transistors, the combined loss can be reduced and the gain of the entire high frequency amplifier can be increased as in the first embodiment.
  • the fourth embodiment shows an example in which the number of transistors mounted in the high frequency amplifier is six, but the number of transistors mounted in the high frequency amplifier is eight, ten, twelve,. Similarly, the combined losses can be reduced to increase the overall gain of the high frequency amplifier.
  • the present invention allows free combination of each embodiment, or modification of any component of each embodiment, or omission of any component in each embodiment. .
  • the present invention is suitable for a high frequency amplifier for amplifying a high frequency signal.

Abstract

The source electrode of a first transistor (6a), and the source electrode of a second transistor (6b) are connected to a first grounding point (14), the source electrode of the second transistor (6b), and the source electrode of a third transistor (6c) are connected to a second grounding point (17), and the source electrode of the third transistor (6c), and the source electrode of a fourth transistor (6d) are connected to a third grounding point (20).

Description

高周波増幅器High frequency amplifier
 この発明は、高周波信号を増幅する高周波増幅器に関するものである。 The present invention relates to a high frequency amplifier for amplifying a high frequency signal.
 無線通信装置及びレーダ装置などには、高周波信号を増幅する高周波増幅器が実装され、高周波増幅器は、高利得な特性が求められる。
 高利得な特性が得られる高周波増幅器として、2つのソース接地の電界効果トランジスタ(FET:Field Effect Transistor)を備え、2つのFETのソース電極の接続点がビアホールを介して接地されているプッシュプル増幅器が以下の非特許文献1に開示されている。
A high frequency amplifier for amplifying a high frequency signal is mounted in a wireless communication apparatus, a radar apparatus, etc., and high frequency characteristics are required for the high frequency amplifier.
A push-pull amplifier that includes two source-grounded field effect transistors (FETs) as high frequency amplifiers with high gain characteristics, and the connection point of the source electrodes of the two FETs is grounded via a via hole Is disclosed in the following non-patent document 1.
 この高周波増幅器では、高周波信号が逆相分配された一方の高周波信号が一方のFETのゲート電極に入力され、高周波信号が逆相分配された他方の高周波信号が他方のFETのゲート電極に入力されると、2つのFETにおけるソース電極の間の接続点である対称点に仮想接地が生じる。
 この仮想接地によって、ビアホールによるソースインダクタンスの影響が低減されるため、高周波増幅器の利得が向上する。
In this high frequency amplifier, one high frequency signal into which the high frequency signal is reverse phase distributed is inputted to the gate electrode of one FET, and the other high frequency signal into which the high frequency signal is reverse phase distributed is inputted to the gate electrode of the other FET Then, a virtual ground is generated at a symmetry point which is a connection point between source electrodes in two FETs.
This virtual ground reduces the influence of the source inductance due to the via holes, thereby improving the gain of the high frequency amplifier.
 従来の高周波増幅器は、実装しているFETの数が2つであれば、2つのFETのソース電極の接続点をビアホールを介して接地することで、ビアホールによるソースインダクタンスの影響を低減することができる。
 しかし、出力電力を増加させる目的で、FETの実装数を2つよりも増やして、数多くのFETを例えば等間隔に配置して並列に接続する場合、ビアホールによるソースインダクタンスの影響を低減することができないために、並列に接続されている複数のFETによる増幅後の高周波信号の間で合成損失が生じてしまうという課題があった。
In the conventional high frequency amplifier, if the number of FETs mounted is two, the influence of the source inductance due to the via hole can be reduced by grounding the connection point of the source electrodes of the two FETs via the via hole it can.
However, in order to increase the output power, if the number of mounted FETs is increased more than two and many FETs are connected in parallel, for example, at equal intervals, the influence of the source inductance due to the via holes can be reduced. Because of the failure, there is a problem that a combined loss occurs between high frequency signals amplified by a plurality of FETs connected in parallel.
 即ち、数多くのFETを並列に接続する場合、高周波信号を伝搬する線路の交差を避けるように配線することが一般的であるため、例えば、位相が0度の高周波信号がゲート電極に入力される第1のFET群と、位相が180度の高周波信号がゲート電極に入力される第2のFET群とが分けて配置される。
 したがって、数多くのFETを並列に接続する場合、中央に配置される2つのFETについては、互いのソース電極の接続点をビアホールを介して接地することができる。ここで、中央に配置される2つのFETは、第1のFET群の中で、第2のFET群と隣接しているFETと、第2のFET群の中で、第1のFET群と隣接しているFETとが該当する。
That is, when many FETs are connected in parallel, it is general to avoid the crossing of the line that propagates the high frequency signal, so for example, a high frequency signal with a phase of 0 degree is input to the gate electrode A first group of FETs and a second group of FETs in which a high frequency signal having a phase of 180 degrees is input to a gate electrode are divided and arranged.
Therefore, when connecting a large number of FETs in parallel, the connection point of the source electrodes of the two centrally arranged FETs can be grounded via the via holes. Here, the two FETs arranged in the center are the FET adjacent to the second FET group in the first FET group, and the first FET group in the second FET group. Adjacent FETs correspond.
 しかし、第1のFET群の中で、中央に配置されるFET以外のFETは、第2のFET群に属しているFETと隣接していないため、ソース電極を隣のFETのソース電極と接続しても、仮想接地を生じない。このため、第1のFET群の中で、中央に配置されるFET以外のFETのソース電極のそれぞれは、別々のビアホールを介して接地される。
 また、第2のFET群の中で、中央に配置されるFET以外のFETは、第1のFET群に属しているFETと隣接していないため、ソース電極を隣のFETのソース電極と接続しても、仮想接地が生じない。このため、第2のFET群の中で、中央に配置されるFET以外のFETのソース電極のそれぞれは、別々のビアホールを介して接地される。
 よって、中央に配置される2つのFET以外のFETは、ビアホールによるソースインダクタンスの影響を受けてしまうので、中央に配置される2つのFETと比べて、利得が小さくなる。この結果、高周波増幅器に実装される各々のFETの間で、利得のアンバランスが生じるため、並列に接続されている複数のFETによる増幅後の高周波信号の間で合成損失が生じる。
However, in the first group of FETs, since the FETs other than the centrally placed FET are not adjacent to the FETs belonging to the second group of FETs, the source electrode is connected to the source electrode of the next FET Even if it does not generate virtual ground. For this reason, in the first FET group, each of the source electrodes of the FETs other than the centrally disposed FET is grounded via a separate via hole.
Further, in the second FET group, since the FETs other than the FET arranged in the center are not adjacent to the FETs belonging to the first FET group, the source electrode is connected to the source electrode of the adjacent FET But virtual ground does not occur. Thus, in the second group of FETs, each of the source electrodes of the FETs other than the centrally disposed FET is grounded via a separate via hole.
Therefore, since the FETs other than the two FETs disposed in the center are affected by the source inductance due to the via holes, the gain is smaller than those of the two FETs disposed in the center. As a result, gain imbalance occurs between the respective FETs mounted in the high frequency amplifier, resulting in a combined loss among the high frequency signals amplified by the plurality of FETs connected in parallel.
 この発明は上記のような課題を解決するためになされたもので、4つのトランジスタを実装しても、ソース電極を接地するためのビアホールによるソースインダクタンスの影響を低減することができる高周波増幅器を得ることを目的とする。 The present invention has been made to solve the above problems, and provides a high frequency amplifier capable of reducing the influence of source inductance due to a via hole for grounding the source electrode even if four transistors are mounted. The purpose is
 この発明に係る高周波増幅器は、高周波信号を逆相分配し、逆相分配した一方の高周波信号を第1及び第3の高周波信号として同相分配し、逆相分配した他方の高周波信号を第2及び第4の高周波信号として同相分配する信号分配器と、第1の高周波信号を増幅し、増幅後の第1の高周波信号を出力する第1のトランジスタと、第2の高周波信号を増幅し、増幅後の第2の高周波信号を出力する第2のトランジスタと、第3の高周波信号を増幅し、増幅後の第3の高周波信号を出力する第3のトランジスタと、第4の高周波信号を増幅し、増幅後の第4の高周波信号を出力する第4のトランジスタと、増幅後の第1の高周波信号と増幅後の第3の高周波信号との同相合成信号と、増幅後の第2の高周波信号と増幅後の第4の高周波信号との同相合成信号とを逆相合成する信号合成器とを備え、第1及び第2のトランジスタのソース電極が第1の接地点と接続され、第2及び第3のトランジスタのソース電極が第2の接地点と接続され、第3及び第4のトランジスタのソース電極が第3の接地点と接続されているようにしたものである。 The high frequency amplifier according to the present invention distributes the high frequency signal in reverse phase, distributes one of the high frequency signals in reverse phase as the first and third high frequency signals in phase, and distributes the other high frequency signal in reverse phase as the second and third high frequency signals. A signal distributor for performing in-phase distribution as a fourth high frequency signal, a first transistor for amplifying the first high frequency signal, and outputting the amplified first high frequency signal, and a second high frequency signal for amplification. A second transistor that outputs a second high frequency signal, a third transistor that amplifies the third high frequency signal, and outputs a third high frequency signal after amplification; and a fourth high frequency signal. A fourth transistor for outputting the fourth high frequency signal after amplification, an in-phase composite signal of the first high frequency signal after amplification and the third high frequency signal after amplification, and a second high frequency signal after amplification And the fourth high frequency signal after amplification A signal combiner for reverse-phase synthesizing the phase synthesis signal, the source electrodes of the first and second transistors are connected to the first ground point, and the source electrodes of the second and third transistors are second It is connected to the ground point, and the source electrodes of the third and fourth transistors are connected to the third ground point.
 この発明によれば、第1及び第2のトランジスタのソース電極が第1の接地点と接続され、第2及び第3のトランジスタのソース電極が第2の接地点と接続され、第3及び第4のトランジスタのソース電極が第3の接地点と接続されているように構成したので、第1から第4のトランジスタを実装しても、ソース電極を接地するためのビアホールによるソースインダクタンスの影響を低減することができる効果がある。 According to the present invention, the source electrodes of the first and second transistors are connected to the first ground point, and the source electrodes of the second and third transistors are connected to the second ground point. Since the source electrodes of the four transistors are connected to the third ground point, even if the first to fourth transistors are mounted, the influence of the source inductance due to the via holes for grounding the source electrodes is There is an effect that can be reduced.
この発明の実施の形態1による高周波増幅器を示す構成図である。It is a block diagram which shows the high frequency amplifier by Embodiment 1 of this invention. この発明の実施の形態1による高周波増幅器のトランジスタの構造を示す説明図である。It is explanatory drawing which shows the structure of the transistor of the high frequency amplifier by Embodiment 1 of this invention. この発明の実施の形態1による高周波増幅器の交差部23を示す説明図である。It is explanatory drawing which shows the cross | intersection part 23 of the high frequency amplifier by Embodiment 1 of this invention. この発明の実施の形態1による高周波増幅器の交差部33を示す説明図である。It is explanatory drawing which shows the cross | intersection part 33 of the high frequency amplifier by Embodiment 1 of this invention. この発明の実施の形態1による高周波増幅器のトランジスタの構造を示す説明図である。It is explanatory drawing which shows the structure of the transistor of the high frequency amplifier by Embodiment 1 of this invention. 2つのバラン3a,3bを用いる高周波信号の分配例を示す説明図である。It is an explanatory view showing an example of distribution of a high frequency signal using two baluns 3a and 3b. この発明の実施の形態2による高周波増幅器の交差部23及びオープンスタブ26を示す説明図である。It is explanatory drawing which shows the cross | intersection part 23 and the open stub 26 of the high frequency amplifier by Embodiment 2 of this invention. この発明の実施の形態2による高周波増幅器の交差部33及びオープンスタブ36を示す説明図である。It is explanatory drawing which shows the cross | intersection part 33 and the open stub 36 of the high frequency amplifier by Embodiment 2 of this invention. この発明の実施の形態3による高周波増幅器を示す構成図である。It is a block diagram which shows the high frequency amplifier by Embodiment 3 of this invention. この発明の実施の形態3による高周波増幅器のトランジスタの構造を示す説明図である。It is explanatory drawing which shows the structure of the transistor of the high frequency amplifier by Embodiment 3 of this invention. この発明の実施の形態4による高周波増幅器を示す構成図である。It is a block diagram which shows the high frequency amplifier by Embodiment 4 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described according to the attached drawings.
実施の形態1.
 図1は、この発明の実施の形態1による高周波増幅器を示す構成図である。
 図1において、入力端子1は、増幅対象の高周波信号が入力される端子である。
 信号分配器2は、バラン3、第1の入力整合回路4及び第2の入力整合回路5を備えている。
 信号分配器2は、入力端子1から入力された高周波信号を逆相分配して、逆相分配した一方の高周波信号を第1及び第3の高周波信号として同相分配し、逆相分配した他方の高周波信号を第2及び第4の高周波信号として同相分配する。
Embodiment 1
FIG. 1 is a block diagram showing a high frequency amplifier according to a first embodiment of the present invention.
In FIG. 1, an input terminal 1 is a terminal to which a high frequency signal to be amplified is input.
The signal distributor 2 includes a balun 3, a first input matching circuit 4 and a second input matching circuit 5.
The signal distributor 2 performs reverse phase distribution on the high frequency signal input from the input terminal 1 and distributes one of the high frequency signals subjected to reverse phase distribution as the first and third high frequency signals in phase and the other phase obtained by reverse phase distribution. The high frequency signal is in-phase distributed as second and fourth high frequency signals.
 バラン3は、入力端子1から入力された高周波信号を逆相分配して、逆相分配した一方の高周波信号を第1の入力整合回路4に出力し、逆相分配した他方の高周波信号を第2の入力整合回路5に出力する。
 第1の入力整合回路4は、バラン3から出力された一方の高周波信号を第1及び第3の高周波信号として同相分配して、第1の高周波信号を第1のトランジスタ6aに出力し、第3の高周波信号を第3のトランジスタ6cに出力する。
 第2の入力整合回路5は、バラン3から出力された他方の高周波信号を第2及び第4の高周波信号として同相分配して、第2の高周波信号を第2のトランジスタ6bに出力し、第4の高周波信号を第4のトランジスタ6dに出力する。
The balun 3 performs reverse phase distribution on the high frequency signal input from the input terminal 1, outputs one high frequency signal subjected to reverse phase distribution to the first input matching circuit 4, and outputs the other high frequency signal subjected to reverse phase distribution Output to the input matching circuit 5 of 2.
The first input matching circuit 4 in-phase distributes one high frequency signal output from the balun 3 as the first and third high frequency signals, and outputs the first high frequency signal to the first transistor 6a, The third high frequency signal is output to the third transistor 6c.
The second input matching circuit 5 in-phase distributes the other high frequency signal output from the balun 3 as the second and fourth high frequency signals, and outputs the second high frequency signal to the second transistor 6b. The fourth high frequency signal is output to the fourth transistor 6d.
 第1のトランジスタ6aは、第1の入力整合回路4から出力された第1の高周波信号を増幅し、増幅後の第1の高周波信号を信号合成器7の第1の出力整合回路8に出力する。
 第2のトランジスタ6bは、第2の入力整合回路5から出力された第2の高周波信号を増幅し、増幅後の第2の高周波信号を信号合成器7の第2の出力整合回路9に出力する。
 第3のトランジスタ6cは、第1の入力整合回路4から出力された第3の高周波信号を増幅し、増幅後の第3の高周波信号を信号合成器7の第1の出力整合回路8に出力する。
 第4のトランジスタ6dは、第2の入力整合回路5から出力された第4の高周波信号を増幅し、増幅後の第4の高周波信号を信号合成器7の第2の出力整合回路9に出力する。
The first transistor 6a amplifies the first high frequency signal output from the first input matching circuit 4 and outputs the amplified first high frequency signal to the first output matching circuit 8 of the signal combiner 7. Do.
The second transistor 6 b amplifies the second high frequency signal output from the second input matching circuit 5 and outputs the amplified second high frequency signal to the second output matching circuit 9 of the signal combiner 7. Do.
The third transistor 6 c amplifies the third high frequency signal output from the first input matching circuit 4, and outputs the amplified third high frequency signal to the first output matching circuit 8 of the signal combiner 7. Do.
The fourth transistor 6 d amplifies the fourth high frequency signal output from the second input matching circuit 5, and outputs the amplified fourth high frequency signal to the second output matching circuit 9 of the signal combiner 7. Do.
 信号合成器7は、第1の出力整合回路8、第2の出力整合回路9及びバラン10を備えている。
 第1の出力整合回路8は、第1のトランジスタ6aから出力された増幅後の第1の高周波信号と第3のトランジスタ6cから出力された増幅後の第3の高周波信号とを同相合成することで、同相合成信号をバラン10に出力する。
 第2の出力整合回路9は、第2のトランジスタ6bから出力された増幅後の第2の高周波信号と第4のトランジスタ6dから出力された増幅後の第4の高周波信号とを同相合成することで、同相合成信号をバラン10に出力する。
 バラン10は、第1の出力整合回路8から出力された同相合成信号と、第2の出力整合回路9から出力された同相合成信号とを逆相合成し、逆相合成した合成信号を出力端子11に出力する。
 出力端子11は、バラン10から出力された合成信号である増幅後の高周波信号を出力する端子である。
The signal synthesizer 7 comprises a first output matching circuit 8, a second output matching circuit 9 and a balun 10.
The first output matching circuit 8 combines in phase the amplified first high frequency signal output from the first transistor 6a and the amplified third high frequency signal output from the third transistor 6c. Then, the in-phase combined signal is output to the balun 10.
The second output matching circuit 9 performs in-phase combining of the amplified second high frequency signal output from the second transistor 6b and the amplified fourth high frequency signal output from the fourth transistor 6d. Then, the in-phase combined signal is output to the balun 10.
The balun 10 reverse-phase synthesizes the in-phase composite signal output from the first output matching circuit 8 and the in-phase composite signal output from the second output matching circuit 9, and outputs a composite signal obtained by reverse-phase combining Output to 11.
The output terminal 11 is a terminal that outputs the amplified high frequency signal which is a combined signal output from the balun 10.
 接続点12は、第1のトランジスタ6aのソース電極と、第2のトランジスタ6bのソース電極とが接続されている点である。例えば、接続点12は、第1のトランジスタ6aのソース電極からの距離と、第2のトランジスタ6bのソース電極からの距離とが等しい位置に配置される。
 第1のビアホール13は、一端が接続点12と接続され、他端がグランドである第1の接地点14と接続されている。
The connection point 12 is a point at which the source electrode of the first transistor 6a and the source electrode of the second transistor 6b are connected. For example, the connection point 12 is disposed at a position where the distance from the source electrode of the first transistor 6a and the distance from the source electrode of the second transistor 6b are equal.
One end of the first via hole 13 is connected to the connection point 12 and the other end is connected to a first ground point 14 which is a ground.
 接続点15は、第2のトランジスタ6bのソース電極と、第3のトランジスタ6cのソース電極とが接続されている点である。例えば、接続点15は、第2のトランジスタ6bのソース電極からの距離と、第3のトランジスタ6cのソース電極からの距離とが等しい位置に配置される。
 第2のビアホール16は、一端が接続点15と接続され、他端がグランドである第2の接地点17と接続されている。
The connection point 15 is a point at which the source electrode of the second transistor 6b and the source electrode of the third transistor 6c are connected. For example, the connection point 15 is disposed at a position where the distance from the source electrode of the second transistor 6b is equal to the distance from the source electrode of the third transistor 6c.
One end of the second via hole 16 is connected to the connection point 15 and the other end is connected to a second ground point 17 which is a ground.
 接続点18は、第3のトランジスタ6cのソース電極と、第4のトランジスタ6dのソース電極とが接続されている点である。例えば、接続点18は、第3のトランジスタ6cのソース電極からの距離と、第4のトランジスタ6dのソース電極からの距離とが等しい位置に配置される。
 第3のビアホール19は、一端が接続点18と接続され、他端がグランドである第3の接地点20と接続されている。
The connection point 18 is a point at which the source electrode of the third transistor 6c and the source electrode of the fourth transistor 6d are connected. For example, the connection point 18 is disposed at a position where the distance from the source electrode of the third transistor 6c is equal to the distance from the source electrode of the fourth transistor 6d.
One end of the third via hole 19 is connected to the connection point 18, and the other end is connected to the third ground point 20 which is a ground.
 第1の線路21は、第1の入力整合回路4から出力された第3の高周波信号を第3のトランジスタ6cに伝搬する線路である。
 第2の線路22は、第2の入力整合回路5から出力された第2の高周波信号を第2のトランジスタ6bに伝搬する線路である。
 交差部23は、第1の線路21と第2の線路22とが交差している部分である。
 第1の線路21と第2の線路22とは、交差部23で物理的及び電気的に接触しないように、立体交差している。
The first line 21 is a line that propagates the third high frequency signal output from the first input matching circuit 4 to the third transistor 6 c.
The second line 22 is a line that propagates the second high frequency signal output from the second input matching circuit 5 to the second transistor 6 b.
The intersection portion 23 is a portion where the first line 21 and the second line 22 intersect.
The first line 21 and the second line 22 cross each other so as not to contact physically and electrically at the intersection 23.
 第3の線路31は、第2のトランジスタ6bから出力された増幅後の第2の高周波信号を第2の出力整合回路9に伝搬する線路である。
 第4の線路32は、第3のトランジスタ6cから出力された増幅後の第3の高周波信号を第1の出力整合回路8に伝搬する線路である。
 交差部33は、第3の線路31と第4の線路32とが交差している部分である。
 第3の線路31と第4の線路32とは、交差部33で物理的及び電気的に接触しないように、立体交差している。
The third line 31 is a line for propagating the amplified second high frequency signal output from the second transistor 6 b to the second output matching circuit 9.
The fourth line 32 is a line that propagates the amplified third high frequency signal output from the third transistor 6 c to the first output matching circuit 8.
The intersection 33 is a portion where the third line 31 and the fourth line 32 intersect.
The third line 31 and the fourth line 32 cross each other so as not to contact physically and electrically at the intersection 33.
 図2は、この発明の実施の形態1による高周波増幅器のトランジスタの構造を示す説明図である。図2において、図1と同一符号は同一または相当部分を示している。
 ゲート端子6aは、第1のトランジスタ6aのゲート電極と接続されている端子である。
 ドレイン端子6aは、第1のトランジスタ6aのドレイン電極と接続されている端子である。
 ゲート端子6bは、第2のトランジスタ6bのゲート電極と接続されている端子である。
 ドレイン端子6bは、第2のトランジスタ6bのドレイン電極と接続されている端子である。
 ゲート端子6cは、第3のトランジスタ6cのゲート電極と接続されている端子である。
 ドレイン端子6cは、第3のトランジスタ6cのドレイン電極と接続されている端子である。
 ゲート端子6dは、第4のトランジスタ6dのゲート電極と接続されている端子である。
 ドレイン端子6dは、第4のトランジスタ6dのドレイン電極と接続されている端子である。
FIG. 2 is an explanatory view showing a structure of a transistor of the high frequency amplifier according to the first embodiment of the present invention. In FIG. 2, the same reference numerals as in FIG. 1 denote the same or corresponding parts.
The gate terminal 6a g is a terminal connected to a gate electrode of the first transistor 6a.
The drain terminal 6 ad is a terminal connected to the drain electrode of the first transistor 6 a.
The gate terminal 6b g is a terminal connected to the gate electrode of the second transistor 6b.
The drain terminal 6b d is a terminal connected to a drain electrode of the second transistor 6b.
The gate terminal 6c g is a terminal connected to the gate electrode of the third transistor 6c.
The drain terminal 6c d is a terminal connected to the drain electrode of the third transistor 6c.
The gate terminal 6d g is a terminal connected to the gate electrode of the fourth transistor 6d.
The drain terminal 6d d is a terminal connected to the drain electrode of the fourth transistor 6d.
 図3は、この発明の実施の形態1による高周波増幅器の交差部23を示す説明図である。図3において、図1と同一符号は同一または相当部分を示している。
 第1の線路21における交差部23での線路は、下地電極24である。
 第2の線路22における交差部23での線路は、下地電極24を跨ぐように配置されているエアブリッジ25である。
 図3では、交差部23において、第1の線路21と第2の線路22との交差角度が直角である例を示しているが、第1の線路21と第2の線路22とが互いに接していなければよく、交差角度は、直角に限るものではない。
FIG. 3 is an explanatory view showing the crossing portion 23 of the high frequency amplifier according to the first embodiment of the present invention. In FIG. 3, the same reference numerals as in FIG. 1 denote the same or corresponding parts.
The line at the intersection 23 of the first line 21 is a base electrode 24.
The line at the intersection 23 in the second line 22 is an air bridge 25 disposed so as to straddle the base electrode 24.
Although FIG. 3 shows an example in which the crossing angle between the first line 21 and the second line 22 is at a right angle at the crossing portion 23, the first line 21 and the second line 22 are in contact with each other. If not, the crossing angle is not limited to a right angle.
 図4は、この発明の実施の形態1による高周波増幅器の交差部33を示す説明図である。図4において、図1と同一符号は同一または相当部分を示している。
 第3の線路31における交差部33での線路は、下地電極34である。
 第4の線路32における交差部33での線路は、下地電極34を跨ぐように配置されているエアブリッジ35である。
 図4では、交差部33において、第3の線路31と第4の線路32との交差角度が直角である例を示しているが、第3の線路31と第4の線路32とが互いに接していなければよく、交差角度は、直角に限るものではない。
FIG. 4 is an explanatory view showing a crossing portion 33 of the high frequency amplifier according to the first embodiment of the present invention. In FIG. 4, the same reference numerals as in FIG. 1 denote the same or corresponding parts.
The line at the intersection 33 in the third line 31 is the base electrode 34.
The line at the intersection 33 in the fourth line 32 is an air bridge 35 disposed so as to straddle the base electrode 34.
Although FIG. 4 shows an example in which the crossing angle between the third line 31 and the fourth line 32 is at a right angle at the crossing portion 33, the third line 31 and the fourth line 32 are in contact with each other. If not, the crossing angle is not limited to a right angle.
 次に動作について説明する。
 入力端子1から入力された増幅対象の高周波信号は、信号分配器2のバラン3によって逆相分配される。
 この実施の形態1では、説明の便宜上、バラン3から第1の入力整合回路4に出力される高周波信号の位相が0度であり、バラン3から第2の入力整合回路5に出力される高周波信号の位相が180度であるとする。
Next, the operation will be described.
The high frequency signal to be amplified input from the input terminal 1 is distributed in reverse phase by the balun 3 of the signal distributor 2.
In the first embodiment, for convenience of description, the phase of the high frequency signal output from balun 3 to first input matching circuit 4 is 0 degree, and the high frequency signal output from balun 3 to second input matching circuit 5 Assume that the phase of the signal is 180 degrees.
 第1の入力整合回路4は、バラン3から出力された位相が0度の高周波信号を第1及び第3の高周波信号として同相分配して、第1の高周波信号を第1のトランジスタ6aに出力し、第3の高周波信号を第3のトランジスタ6cに出力する。
 第2の入力整合回路5は、バラン3から出力された位相が180度の高周波信号を第2及び第4の高周波信号として同相分配して、第2の高周波信号を第2のトランジスタ6bに出力し、第4の高周波信号を第4のトランジスタ6dに出力する。
The first input matching circuit 4 performs in-phase distribution of the high frequency signal having a phase of 0 degrees output from the balun 3 as the first and third high frequency signals, and outputs the first high frequency signal to the first transistor 6 a Outputs the third high frequency signal to the third transistor 6c.
The second input matching circuit 5 performs in-phase distribution of the high frequency signal having a phase of 180 degrees output from the balun 3 as the second and fourth high frequency signals, and outputs the second high frequency signal to the second transistor 6 b The fourth high frequency signal is output to the fourth transistor 6d.
 ここで、第1の入力整合回路4と第2の入力整合回路5は、位相が0度の高周波信号の通過特性と位相が180度の高周波信号の通過特性とが同じなるような回路に設定されているものとする。
 また、第1の入力整合回路4と第2の入力整合回路5は、交差部23において、一方が下地電極24で、他方がエアブリッジ25であることによる第2の高周波信号と第3の高周波信号との通過位相差及び振幅差のそれぞれが打ち消されるような回路に設定されているものとする。
Here, the first input matching circuit 4 and the second input matching circuit 5 are set to circuits in which the pass characteristics of a high frequency signal having a phase of 0 degrees are the same as the pass characteristics of a high frequency signal having a phase of 180 degrees. It shall be done.
Further, in the first input matching circuit 4 and the second input matching circuit 5, at the intersection 23, the second high frequency signal and the third high frequency signal are obtained because one is the base electrode 24 and the other is the air bridge 25. It is assumed that the circuit is set in such a way that each of the passing phase difference and the amplitude difference with the signal is canceled.
 第1のトランジスタ6aのゲート電極には、第1の入力整合回路4から位相が0度の高周波信号である第1の高周波信号が与えられる。これにより、第1のトランジスタ6aは、第1の高周波信号を増幅し、ドレイン電極から増幅後の第1の高周波信号を信号合成器7の第1の出力整合回路8に出力する。
 第1のトランジスタ6aの隣に配置されている第2のトランジスタ6bには、第2の入力整合回路5から位相が180度の高周波信号である第2の高周波信号が与えられる。これにより、第2のトランジスタ6bは、第2の高周波信号を増幅し、ドレイン電極から増幅後の第2の高周波信号を信号合成器7の第2の出力整合回路9に出力する。
A first high frequency signal, which is a high frequency signal with a phase of 0 degrees, is applied from the first input matching circuit 4 to the gate electrode of the first transistor 6a. Thereby, the first transistor 6 a amplifies the first high frequency signal, and outputs the amplified first high frequency signal from the drain electrode to the first output matching circuit 8 of the signal combiner 7.
A second high frequency signal, which is a high frequency signal having a phase of 180 degrees, is applied from the second input matching circuit 5 to the second transistor 6b disposed next to the first transistor 6a. Thereby, the second transistor 6 b amplifies the second high frequency signal, and outputs the amplified second high frequency signal from the drain electrode to the second output matching circuit 9 of the signal combiner 7.
 また、第2のトランジスタ6bの隣に配置されている第3のトランジスタ6cには、第1の入力整合回路4から位相が0度の高周波信号である第3の高周波信号が与えられる。これにより、第3のトランジスタ6cは、第3の高周波信号を増幅し、ドレイン電極から増幅後の第3の高周波信号を信号合成器7の第1の出力整合回路8に出力する。
 さらに、第3のトランジスタ6cの隣に配置されている第4のトランジスタ6dには、第2の入力整合回路5から位相が180度の高周波信号である第4の高周波信号が与えられる。これにより、第4のトランジスタ6dは、第4の高周波信号を増幅し、ドレイン電極から増幅後の第4の高周波信号を信号合成器7の第2の出力整合回路9に出力する。
A third high frequency signal, which is a high frequency signal having a phase of 0 degrees, is supplied from the first input matching circuit 4 to the third transistor 6c arranged next to the second transistor 6b. Thereby, the third transistor 6 c amplifies the third high frequency signal, and outputs the amplified third high frequency signal from the drain electrode to the first output matching circuit 8 of the signal combiner 7.
Further, a fourth high frequency signal, which is a high frequency signal having a phase of 180 degrees, is applied from the second input matching circuit 5 to the fourth transistor 6d disposed next to the third transistor 6c. Thereby, the fourth transistor 6 d amplifies the fourth high frequency signal, and outputs the amplified fourth high frequency signal from the drain electrode to the second output matching circuit 9 of the signal combiner 7.
 ここで、第1のトランジスタ6aのソース電極と、第2のトランジスタ6bのソース電極とが接続点12で接続されており、接続点12は、第1のビアホール13を介して、グランドである第1の接地点14と接続されている。
 第1の高周波信号と第2の高周波信号とは、逆相の高周波信号であるため、第1のトランジスタ6aのソース電極と、第2のトランジスタ6bのソース電極との接続点12である対称点に仮想接地が生じる。
Here, the source electrode of the first transistor 6 a and the source electrode of the second transistor 6 b are connected at the connection point 12, and the connection point 12 is the ground via the first via hole 13. It is connected to the ground point 14 of 1.
Since the first high frequency signal and the second high frequency signal are high frequency signals of opposite phase, a symmetry point which is a connection point 12 between the source electrode of the first transistor 6a and the source electrode of the second transistor 6b. Virtual grounding occurs.
 また、第2のトランジスタ6bのソース電極と、第3のトランジスタ6cのソース電極とが接続点15で接続されており、接続点15は、第2のビアホール16を介して、グランドである第2の接地点17と接続されている。
 第2の高周波信号と第3の高周波信号とは、逆相の高周波信号であるため、第2のトランジスタ6bのソース電極と、第3のトランジスタ6cのソース電極との接続点15である対称点に仮想接地が生じる。
Further, the source electrode of the second transistor 6 b and the source electrode of the third transistor 6 c are connected at the connection point 15, and the connection point 15 is a second via the second via hole 16. And the ground point 17 of the
Since the second high frequency signal and the third high frequency signal are high frequency signals of opposite phase, a symmetry point which is a connection point 15 between the source electrode of the second transistor 6b and the source electrode of the third transistor 6c. Virtual grounding occurs.
 さらに、第3のトランジスタ6cのソース電極と、第4のトランジスタ6dのソース電極とが接続点18で接続されており、接続点18は、第3のビアホール19を介して、グランドである第3の接地点20と接続されている。
 第3の高周波信号と第4の高周波信号とは、逆相の高周波信号であるため、第3のトランジスタ6cのソース電極と、第4のトランジスタ6dのソース電極との接続点18である対称点に仮想接地が生じる。
Furthermore, the source electrode of the third transistor 6c and the source electrode of the fourth transistor 6d are connected at the connection point 18, and the connection point 18 is the third via the third via hole 19 and is the ground. And the ground point 20 of the
Since the third high frequency signal and the fourth high frequency signal are high frequency signals of opposite phase, a symmetry point which is a connection point 18 between the source electrode of the third transistor 6c and the source electrode of the fourth transistor 6d. Virtual grounding occurs.
 接続点12,15,18である対称点に仮想接地が生じることで、第1のビアホール13、第2のビアホール16及び第3のビアホール19によるソースインダクタンスの影響が低減される。
 このため、第1のトランジスタ6a、第2のトランジスタ6b、第3のトランジスタ6c及び第4のトランジスタ6dの間での利得のアンバランスが解消される。
The generation of virtual ground at the symmetry points which are the connection points 12, 15 and 18 reduces the influence of the source inductance due to the first via hole 13, the second via hole 16 and the third via hole 19.
For this reason, the unbalance in the gain among the first transistor 6a, the second transistor 6b, the third transistor 6c, and the fourth transistor 6d is eliminated.
 信号合成器7の第1の出力整合回路8は、第1のトランジスタ6aから出力された増幅後の第1の高周波信号と第3のトランジスタ6cから出力された増幅後の第3の高周波信号とを同相合成することで、位相が0度の同相合成信号をバラン10に出力する。
 信号合成器7の第2の出力整合回路9は、第2のトランジスタ6bから出力された増幅後の第2の高周波信号と第4のトランジスタ6dから出力された増幅後の第4の高周波信号とを同相合成することで、位相が180度の同相合成信号をバラン10に出力する。
 信号合成器7のバラン10は、第1の出力整合回路8から出力された位相が0度の同相合成信号と、第2の出力整合回路9から出力された位相が180度の同相合成信号とを逆相合成し、逆相合成した位相が0度の合成信号を出力端子11に出力する。
The first output matching circuit 8 of the signal synthesizer 7 outputs the amplified first high frequency signal output from the first transistor 6a and the amplified third high frequency signal output from the third transistor 6c. Is output to the balun 10 as an in-phase composite signal with a phase of 0 degrees.
The second output matching circuit 9 of the signal synthesizer 7 outputs the amplified second high frequency signal output from the second transistor 6 b and the amplified fourth high frequency signal output from the fourth transistor 6 d. Are output to the balun 10 as an in-phase composite signal having a phase of 180 degrees.
The balun 10 of the signal synthesizer 7 outputs the in-phase composite signal of 0 degree output from the first output matching circuit 8 and the in-phase composite signal of 180 degrees in phase output from the second output matching circuit 9. Are synthesized in the reverse phase, and a synthesized signal having a phase of 0 degree obtained by the reverse phase synthesis is output to the output terminal 11.
 ここで、第1の出力整合回路8と第2の出力整合回路9は、位相が0度の高周波信号の通過特性と位相が180度の高周波信号の通過特性とが同じなるような回路に設定されているものとする。
 また、第1の出力整合回路8と第2の出力整合回路9は、交差部33において、一方が下地電極34で、他方がエアブリッジ35であることによる第2の高周波信号と第3の高周波信号との通過位相差及び振幅差のそれぞれが打ち消されるような回路に設定されているものとする。
Here, the first output matching circuit 8 and the second output matching circuit 9 are set to circuits in which the pass characteristics of a high frequency signal having a phase of 0 degrees are the same as the pass characteristics of a high frequency signal having a phase of 180 degrees. It shall be done.
Further, in the first output matching circuit 8 and the second output matching circuit 9, the second high-frequency signal and the third high-frequency signal due to one being the base electrode 34 and the other being the air bridge 35 at the intersection 33. It is assumed that the circuit is set in such a way that each of the passing phase difference and the amplitude difference with the signal is canceled.
 以上で明らかなように、この実施の形態1によれば、第1のトランジスタ6aのソース電極及び第2のトランジスタ6bのソース電極が第1の接地点14と接続され、第2のトランジスタ6bのソース電極及び第3のトランジスタ6cのソース電極が第2の接地点17と接続され、第3のトランジスタ6cのソース電極及び第4のトランジスタ6dのソース電極が第3の接地点20と接続されているように構成している。これにより、第1のトランジスタ6a、第2のトランジスタ6b、第3のトランジスタ6c及び第4のトランジスタ6dを実装しても、ソース電極を接地するためのビアホールによるソースインダクタンスの影響を低減することができる。したがって、第1のトランジスタ6a、第2のトランジスタ6b、第3のトランジスタ6c及び第4のトランジスタ6dにおける各々のソース電極を別々のビアホールを介して接地する場合よりも、合成損失を低減して、高周波増幅器全体の利得を高めることができる。 As apparent from the above, according to the first embodiment, the source electrode of the first transistor 6a and the source electrode of the second transistor 6b are connected to the first ground point 14, and the second transistor 6b is The source electrode and the source electrode of the third transistor 6c are connected to the second ground point 17, and the source electrode of the third transistor 6c and the source electrode of the fourth transistor 6d are connected to the third ground point 20. Are configured to Thereby, even if the first transistor 6a, the second transistor 6b, the third transistor 6c and the fourth transistor 6d are mounted, the influence of the source inductance due to the via hole for grounding the source electrode can be reduced. it can. Therefore, the combined loss is reduced compared to the case where the source electrodes of the first transistor 6a, the second transistor 6b, the third transistor 6c, and the fourth transistor 6d are grounded through separate via holes, respectively. The overall gain of the high frequency amplifier can be increased.
 この実施の形態1では、第1のトランジスタ6a、第2のトランジスタ6b、第3のトランジスタ6c及び第4のトランジスタ6dが、図2に示すような構造である例を示している。
 しかし、これは一例に過ぎず、図5に示すような構造であってもよい。
 接続点12,15,18である対称点に仮想接地が生じることで、第1のビアホール13、第2のビアホール16及び第3のビアホール19によるソースインダクタンスが見えなくなる。このため、第1のビアホール13、第2のビアホール16及び第3のビアホール19は、ソース電極の近くに配置しなくてもよい。
 図5に示す構造では、接続点12,15,18に引き出し線41,42,43を設け、引き出し線41,42,43を介して、第1のビアホール13、第2のビアホール16及び第3のビアホール19を接続点12,15,18に接続している。
 図5に示す構造では、第1のビアホール13、第2のビアホール16及び第3のビアホール19をドレイン端子6a,6b,6c,6dの近傍に配置しているが、ゲート端子6a,6b,6c,6dの近傍に配置するようにしてもよい。
 接続点12,15,18に引き出し線41,42,43を設けることで、高周波増幅器における設計の自由度を高めることができる。
In the first embodiment, an example is shown in which the first transistor 6a, the second transistor 6b, the third transistor 6c and the fourth transistor 6d have a structure as shown in FIG.
However, this is merely an example, and the structure as shown in FIG. 5 may be employed.
The generation of virtual ground at the symmetry points, which are the connection points 12, 15 and 18, makes the source inductance due to the first via hole 13, the second via hole 16 and the third via hole 19 invisible. For this reason, the first via hole 13, the second via hole 16, and the third via hole 19 may not be disposed near the source electrode.
In the structure shown in FIG. 5, the lead lines 41, 42 and 43 are provided at the connection points 12, 15 and 18, and the first via hole 13, the second via hole 16 and the third via the lead lines 41, 42 and 43 are provided. The via hole 19 is connected to the connection points 12, 15 and 18.
In the structure shown in FIG. 5, the first via hole 13, the second via hole 16 and the third via hole 19 are disposed in the vicinity of the drain terminals 6a d , 6b d , 6c d and 6d d. It may be arranged in the vicinity of g 6 b g 6 c g 6 d g .
By providing the lead wires 41, 42, 43 at the connection points 12, 15, 18, the degree of freedom in design of the high frequency amplifier can be enhanced.
 この実施の形態1では、バラン3が、入力端子1から入力された高周波信号を逆相分配する例を示しているが、高周波信号を逆相分配することができればよく、バラン3の代わりに、例えば、180度線路を用いるようにしてもよい。
 また、この実施の形態1では、バラン10が、第1の出力整合回路8から出力された同相合成信号と、第2の出力整合回路9から出力された同相合成信号とを逆相合成する例を示しているが、2つの同相合成信号を逆相合成することができればよく、バラン10の代わりに、例えば、180度線路を用いるようにしてもよい。
In the first embodiment, an example is shown in which the balun 3 performs reverse phase distribution on the high frequency signal input from the input terminal 1 as long as the high frequency signal can be distributed in reverse phase. For example, a 180 degree line may be used.
Further, in the first embodiment, an example in which balun 10 performs reverse phase synthesis on the in-phase combined signal output from first output matching circuit 8 and the in-phase combined signal output from second output matching circuit 9. However, as long as two in-phase combined signals can be reverse-phase combined, a 180-degree line may be used instead of the balun 10, for example.
 この実施の形態1では、バラン3、第1の入力整合回路4及び第2の入力整合回路5を備える信号分配器2を用いて、高周波信号を第1のトランジスタ6a、第2のトランジスタ6b、第3のトランジスタ6c及び第4のトランジスタ6dのそれぞれに分配している例を示している。
 これは一例に過ぎず、図6に示すように、2つのバラン3a,3bを用いて、高周波信号を第1のトランジスタ6a、第2のトランジスタ6b、第3のトランジスタ6c及び第4のトランジスタ6dのそれぞれに分配するようにしてもよい。
 図6は、2つのバラン3a,3bを用いる高周波信号の分配例を示す説明図である。
 図6において、バラン3aは、入力端子1から入力された高周波信号を逆相分配して、逆相分配した一方の高周波信号を第1の高周波信号として第1のトランジスタ6aに出力し、逆相分配した他方の高周波信号を第2の高周波信号として第2のトランジスタ6bに出力する。
 バラン3bは、入力端子1から入力された高周波信号を逆相分配して、逆相分配した一方の高周波信号を第3の高周波信号として第3のトランジスタ6cに出力し、逆相分配した他方の高周波信号を第4の高周波信号として第4のトランジスタ6dに出力する。
 例えば、第1及び第3の高周波信号の位相が0度であり、第2及び第4の高周波信号の位相が180度である。
In the first embodiment, using the signal distributor 2 including the balun 3, the first input matching circuit 4 and the second input matching circuit 5, high frequency signals are transmitted to the first transistor 6 a, the second transistor 6 b, An example of distributing to the third transistor 6c and the fourth transistor 6d is shown.
This is only an example, and as shown in FIG. 6, using the two baluns 3a and 3b, the high frequency signal is transmitted to the first transistor 6a, the second transistor 6b, the third transistor 6c and the fourth transistor 6d. It may be distributed to each of the
FIG. 6 is an explanatory view showing an example of distribution of high frequency signals using two baluns 3a and 3b.
In FIG. 6, the balun 3a performs reverse phase distribution on the high frequency signal input from the input terminal 1, and outputs one high frequency signal subjected to reverse phase distribution as the first high frequency signal to the first transistor 6a, The other distributed high frequency signal is output to the second transistor 6b as a second high frequency signal.
The balun 3b performs reverse phase distribution on the high frequency signal input from the input terminal 1 and outputs one high frequency signal subjected to reverse phase distribution to the third transistor 6c as a third high frequency signal, and the other phase obtained by reverse phase distribution. The high frequency signal is output to the fourth transistor 6 d as a fourth high frequency signal.
For example, the phases of the first and third high frequency signals are 0 degrees, and the phases of the second and fourth high frequency signals are 180 degrees.
実施の形態2.
 上記実施の形態1では、第1の線路21と第2の線路22との交差部23において、一方が下地電極24で、他方がエアブリッジ25である例を示している。
 このとき、下地電極24における第2の高周波信号の通過位相よりも、エアブリッジ25における第3の高周波信号の通過位相が大きい場合、図7に示すように、第2の線路22に、オープンスタブ26を接続することで、エアブリッジ25における第3の高周波信号の通過位相を低減するようにしてもよい。これにより、下地電極24における第2の高周波信号の通過位相と、エアブリッジ25における第3の高周波信号の通過位相との差を解消することができる。
 図7は、この発明の実施の形態2による高周波増幅器の交差部23及びオープンスタブ26を示す説明図である。
Second Embodiment
In the first embodiment, an example is shown in which one is the base electrode 24 and the other is the air bridge 25 at the intersection 23 of the first line 21 and the second line 22.
At this time, when the passage phase of the third high frequency signal in the air bridge 25 is larger than the passage phase of the second high frequency signal in the base electrode 24, as shown in FIG. By connecting 26, the passing phase of the third high frequency signal in the air bridge 25 may be reduced. Thereby, the difference between the passing phase of the second high frequency signal in the base electrode 24 and the passing phase of the third high frequency signal in the air bridge 25 can be eliminated.
FIG. 7 is an explanatory view showing the crossing portion 23 and the open stub 26 of the high frequency amplifier according to the second embodiment of the present invention.
 ここでは、第2の線路22にオープンスタブ26を接続する例を示しているが、下地電極24における第2の高周波信号の通過位相よりも、エアブリッジ25における第3の高周波信号の通過位相が小さい場合、第1の線路21にオープンスタブ26を接続するようにすればよい。
 また、第2の高周波信号の通過位相と、第3の高周波信号の通過位相との差を解消することができればよく、第1の線路21又は第2の線路22にオープンスタブ26を接続するものに限るものではない。このため、第1の線路21又は第2の線路22に対して、別の線路を直列に接続するようにしてもよい。また、第1の線路21又は第2の線路22MIM(Metal-Insulator-Metal)容量を直列又はシャントに接続するようにしてもよい。
 また、第1の線路21又は第2の線路22ではなく、第1の入力整合回路4又は第2の入力整合回路5の内部に、オープンスタブ又はMIM容量などを接続するようにしてもよい。
Here, an example in which the open stub 26 is connected to the second line 22 is shown, but the passing phase of the third high frequency signal in the air bridge 25 is greater than the passing phase of the second high frequency signal in the base electrode 24 If it is smaller, the open stub 26 may be connected to the first line 21.
In addition, the open stub 26 may be connected to the first line 21 or the second line 22 as long as the difference between the pass phase of the second high frequency signal and the pass phase of the third high frequency signal can be eliminated. It is not limited to Therefore, another line may be connected in series to the first line 21 or the second line 22. Further, the first line 21 or the second line 22 MIM (Metal-Insulator-Metal) capacitance may be connected in series or in a shunt.
Alternatively, an open stub or an MIM capacitor may be connected to the inside of the first input matching circuit 4 or the second input matching circuit 5 instead of the first line 21 or the second line 22.
 上記実施の形態1では、第3の線路31と第4の線路32との交差部33において、一方が下地電極34で、他方がエアブリッジ35である例を示している。
 このとき、下地電極34における第2の高周波信号の通過位相よりも、エアブリッジ35における第3の高周波信号の通過位相が大きい場合、図8に示すように、第4の線路32に、オープンスタブ36を接続することで、エアブリッジ35における第3の高周波信号の通過位相を低減するようにしてもよい。これにより、下地電極34における第2の高周波信号の通過位相と、エアブリッジ35における第3の高周波信号の通過位相との差を解消することができる。
 図8は、この発明の実施の形態2による高周波増幅器の交差部33及びオープンスタブ36を示す説明図である。
In the first embodiment, an example is shown in which one is the base electrode 34 and the other is the air bridge 35 at the intersection 33 between the third line 31 and the fourth line 32.
At this time, when the passage phase of the third high frequency signal in the air bridge 35 is larger than the passage phase of the second high frequency signal in the base electrode 34, as shown in FIG. By connecting 36, the passing phase of the third high frequency signal in the air bridge 35 may be reduced. Thereby, the difference between the passing phase of the second high frequency signal in the base electrode 34 and the passing phase of the third high frequency signal in the air bridge 35 can be eliminated.
FIG. 8 is an explanatory view showing an intersection 33 and an open stub 36 of a high frequency amplifier according to a second embodiment of the present invention.
 ここでは、第4の線路32にオープンスタブ36を接続する例を示しているが、下地電極34における第2の高周波信号の通過位相よりも、エアブリッジ35における第3の高周波信号の通過位相が小さい場合、第3の線路31にオープンスタブ36を接続するようにすればよい。
 また、第2の高周波信号の通過位相と、第3の高周波信号の通過位相との差を解消することができればよく、第3の線路31又は第4の線路32にオープンスタブ36を接続するものに限るものではない。このため、第3の線路31又は第4の線路32に対して、別の線路を直列に接続するようにしてもよい。また、第3の線路31又は第4の線路32に対して、MIM容量を直列又はシャントに接続するようにしてもよい。
 また、第3の線路31又は第4の線路32ではなく、第1の出力整合回路8又は第2の出力整合回路9の内部に、オープンスタブ又はMIM容量などを接続するようにしてもよい。
Here, an example in which the open stub 36 is connected to the fourth line 32 is shown, but the passing phase of the third high frequency signal in the air bridge 35 is greater than the passing phase of the second high frequency signal in the base electrode 34 If it is smaller, the open stub 36 may be connected to the third line 31.
In addition, the open stub 36 may be connected to the third line 31 or the fourth line 32 as long as the difference between the passing phase of the second high frequency signal and the passing phase of the third high frequency signal can be eliminated. It is not limited to Therefore, another line may be connected in series to the third line 31 or the fourth line 32. In addition, the MIM capacitor may be connected in series or in a shunt to the third line 31 or the fourth line 32.
Alternatively, an open stub or an MIM capacitor may be connected to the inside of the first output matching circuit 8 or the second output matching circuit 9 instead of the third line 31 or the fourth line 32.
実施の形態3.
 上記実施の形態1では、第1のトランジスタ6a、第2のトランジスタ6b、第3のトランジスタ6c及び第4のトランジスタ6dの全てが同じ向きに配置されている例を示している。
 この実施の形態3では、図9に示すように、第1のトランジスタ6a、第2のトランジスタ6b、第3のトランジスタ6c及び第4のトランジスタ6dが配置されている例を説明する。
 図9の例では、第1のトランジスタ6a及び第3のトランジスタ6cにおける各々のゲート電極の向きと、第2のトランジスタ6b及び第4のトランジスタ6dにおける各々のゲート電極の向きとが逆向きになるように、第1のトランジスタ6a、第2のトランジスタ6b、第3のトランジスタ6c及び第4のトランジスタ6dが配置されている。
Third Embodiment
In the first embodiment, an example is shown in which all of the first transistor 6a, the second transistor 6b, the third transistor 6c, and the fourth transistor 6d are arranged in the same direction.
In the third embodiment, as shown in FIG. 9, an example in which a first transistor 6a, a second transistor 6b, a third transistor 6c and a fourth transistor 6d are arranged will be described.
In the example of FIG. 9, the direction of each gate electrode of the first transistor 6a and the third transistor 6c is opposite to the direction of each gate electrode of the second transistor 6b and the fourth transistor 6d. Thus, the first transistor 6a, the second transistor 6b, the third transistor 6c, and the fourth transistor 6d are disposed.
 図9は、この発明の実施の形態3による高周波増幅器を示す構成図である。
 図10は、この発明の実施の形態3による高周波増幅器のトランジスタの構造を示す説明図である。
 図9及び図10において、図1及び図2と同一符号は同一または相当部分を示している。
 線路51は、一端が第2の入力整合回路5の出力側と接続され、他端が第2の線路22と接続されている。
 線路52は、一端が第1の出力整合回路8の入力側と接続され、他端が第4の線路32と接続されている。
FIG. 9 is a block diagram showing a high frequency amplifier according to a third embodiment of the present invention.
FIG. 10 is an explanatory view showing a structure of a transistor of a high frequency amplifier according to a third embodiment of the present invention.
9 and 10, the same reference numerals as in FIGS. 1 and 2 denote the same or corresponding parts.
One end of the line 51 is connected to the output side of the second input matching circuit 5, and the other end is connected to the second line 22.
The line 52 has one end connected to the input side of the first output matching circuit 8 and the other end connected to the fourth line 32.
 交差部61は、第1の線路21と第3の線路31とが交差している部分である。
 第1の線路21と第3の線路31とは、交差部61で物理的及び電気的に接触しないように、立体交差している。
 交差部62は、第2の線路22と第4の線路32とが交差している部分である。
 第2の線路22と第4の線路32とは、交差部62で物理的及び電気的に接触しないように、立体交差している。
 交差部63は、線路51と線路52とが交差している部分である。
 線路51と線路52とは、交差部63で物理的及び電気的に接触しないように、立体交差している。
The intersection portion 61 is a portion where the first line 21 and the third line 31 intersect.
The first line 21 and the third line 31 cross each other so as not to make physical and electrical contact at the intersection 61.
The intersection portion 62 is a portion where the second line 22 and the fourth line 32 intersect.
The second line 22 and the fourth line 32 cross each other so as not to make physical and electrical contact at the intersection 62.
The intersection portion 63 is a portion where the line 51 and the line 52 intersect.
The line 51 and the line 52 cross each other so as not to make physical and electrical contact at the intersection 63.
 第1のトランジスタ6a及び第3のトランジスタ6cにおける各々のゲート電極の向きと、第2のトランジスタ6b及び第4のトランジスタ6dにおける各々のゲート電極の向きとが逆向きであることにより、隣り合うトランジスタのソース電極70同士を直接接続することが可能になる。
 71は、隣り合うトランジスタの対称線である。
 対称線71から各々のトランジスタのソース電極70までの距離が、上記実施の形態1における接続点12,15,18から各々のトランジスタのソース電極までの距離よりも短くなり、上記実施の形態1よりも更に、ソースインダクタンスの影響を低減することができる。
The direction of the gate electrode of each of the first transistor 6a and the third transistor 6c is opposite to the direction of the gate electrode of each of the second transistor 6b and the fourth transistor 6d, so that adjacent transistors are adjacent to each other. It becomes possible to directly connect the source electrodes 70 of each other.
71 is a symmetry line of adjacent transistors.
The distance from the symmetry line 71 to the source electrode 70 of each transistor is shorter than the distance from the connection points 12, 15, and 18 to the source electrode of each transistor in the first embodiment, as compared with the first embodiment. Furthermore, the influence of the source inductance can be reduced.
実施の形態4.
 上記実施の形態1~3では、4つのトランジスタを備えている高周波増幅器について説明しているが、高周波増幅器が備えるトランジスタの数は、4つ以上の偶数であればよく、4つに限るものではない。
 この実施の形態4では、例えば、6つのトランジスタを備えている高周波増幅器について説明する。
Fourth Embodiment
In the first to third embodiments, the high frequency amplifier including four transistors is described. However, the number of the transistors included in the high frequency amplifier may be four or more even numbers, and the number of the transistors is limited to four. Absent.
In the fourth embodiment, for example, a high frequency amplifier including six transistors will be described.
 図11は、この発明の実施の形態4による高周波増幅器を示す構成図である。図11において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 第1の入力整合回路4aは、バラン3から出力された一方の高周波信号を第1、第3及び第5の高周波信号として同相分配して、第1の高周波信号を第1のトランジスタ6aに出力し、第3の高周波信号を第3のトランジスタ6cに出力し、第5の高周波信号を第5のトランジスタ6eに出力する。
 第2の入力整合回路5aは、バラン3から出力された他方の高周波信号を第2、第4及び第6の高周波信号として同相分配して、第2の高周波信号を第2のトランジスタ6bに出力し、第4の高周波信号を第4のトランジスタ6dに出力、第6の高周波信号を第6のトランジスタ6fに出力する。
FIG. 11 is a block diagram showing a high frequency amplifier according to a fourth embodiment of the present invention. In FIG. 11, the same reference numerals as those in FIG.
The first input matching circuit 4a performs in-phase distribution of one high frequency signal output from the balun 3 as first, third and fifth high frequency signals, and outputs the first high frequency signal to the first transistor 6a. The third high frequency signal is output to the third transistor 6c, and the fifth high frequency signal is output to the fifth transistor 6e.
The second input matching circuit 5a distributes the other high frequency signal output from the balun 3 in phase as the second, fourth and sixth high frequency signals, and outputs the second high frequency signal to the second transistor 6b. The fourth high frequency signal is output to the fourth transistor 6d, and the sixth high frequency signal is output to the sixth transistor 6f.
 第5のトランジスタ6eは、第1の入力整合回路4aから出力された第5の高周波信号を増幅し、増幅後の第5の高周波信号を信号合成器7の第1の出力整合回路8aに出力する。
 第6のトランジスタ6fは、第2の入力整合回路5aから出力された第6の高周波信号を増幅し、増幅後の第6の高周波信号を信号合成器7の第2の出力整合回路9aに出力する。
The fifth transistor 6e amplifies the fifth high frequency signal output from the first input matching circuit 4a, and outputs the amplified fifth high frequency signal to the first output matching circuit 8a of the signal combiner 7. Do.
The sixth transistor 6f amplifies the sixth high frequency signal output from the second input matching circuit 5a, and outputs the amplified sixth high frequency signal to the second output matching circuit 9a of the signal combiner 7. Do.
 第1の出力整合回路8aは、第1のトランジスタ6aから出力された増幅後の第1の高周波信号と第3のトランジスタ6cから出力された増幅後の第3の高周波信号と第5のトランジスタ6eから出力された増幅後の第5の高周波信号とを同相合成することで、同相合成信号をバラン10に出力する。
 第2の出力整合回路9aは、第2のトランジスタ6bから出力された増幅後の第2の高周波信号と第4のトランジスタ6dから出力された増幅後の第4の高周波信号と第6のトランジスタ6fから出力された増幅後の第6の高周波信号とを同相合成することで、同相合成信号をバラン10に出力する。
The first output matching circuit 8a includes the amplified first high frequency signal output from the first transistor 6a and the amplified third high frequency signal output from the third transistor 6c and the fifth transistor 6e. The in-phase combined signal is output to the balun 10 by in-phase combining with the amplified fifth high-frequency signal output from the circuit.
The second output matching circuit 9a includes the amplified second high frequency signal output from the second transistor 6b and the amplified fourth high frequency signal output from the fourth transistor 6d and the sixth transistor 6f. The in-phase combined signal is output to the balun 10 by in-phase combining with the amplified sixth high-frequency signal output from the circuit.
 接続点81は、第4のトランジスタ6dのソース電極と、第5のトランジスタ6eのソース電極とが接続されている点である。例えば、接続点81は、第4のトランジスタ6dのソース電極からの距離と、第5のトランジスタ6eのソース電極からの距離とが等しい位置に配置される。
 第4のビアホール82は、一端が接続点81と接続され、他端がグランドである第4の接地点83と接続されている。
The connection point 81 is a point at which the source electrode of the fourth transistor 6d and the source electrode of the fifth transistor 6e are connected. For example, the connection point 81 is disposed at a position where the distance from the source electrode of the fourth transistor 6d is equal to the distance from the source electrode of the fifth transistor 6e.
One end of the fourth via hole 82 is connected to the connection point 81, and the other end is connected to a fourth ground point 83 which is a ground.
 接続点84は、第5のトランジスタ6eのソース電極と、第6のトランジスタ6fのソース電極とが接続されている点である。例えば、接続点84は、第5のトランジスタ6eのソース電極からの距離と、第6のトランジスタ6fのソース電極からの距離とが等しい位置に配置される。
 第5のビアホール85は、一端が接続点84と接続され、他端がグランドである第5の接地点86と接続されている。
The connection point 84 is a point at which the source electrode of the fifth transistor 6e and the source electrode of the sixth transistor 6f are connected. For example, the connection point 84 is disposed at a position where the distance from the source electrode of the fifth transistor 6e is equal to the distance from the source electrode of the sixth transistor 6f.
One end of the fifth via hole 85 is connected to the connection point 84, and the other end is connected to a fifth ground point 86 which is a ground.
 この実施の形態4では、上記実施の形態1と同様に、接続点12,15,18に仮想接地が生じるほか、接続点81,84に仮想接地が生じる。
 接続点12,15,18,81,84に仮想接地が生じることで、第1のビアホール13、第2のビアホール16、第3のビアホール19、第4のビアホール82及び第5のビアホール85によるソースインダクタンスの影響が低減される。
 このため、第1のトランジスタ6a、第2のトランジスタ6b、第3のトランジスタ6c、第4のトランジスタ6d、第5のトランジスタ6e及び第6のトランジスタ6fの間での利得のアンバランスが解消される。
 このため、高周波増幅器が、6つのトランジスタを備えている場合でも、上記実施の形態1と同様に、合成損失を低減して、高周波増幅器全体の利得を高めることができる。
In the fourth embodiment, virtual ground occurs at the connection points 81 and 84 as well as virtual ground occurs at the connection points 12 15 and 18 as in the first embodiment.
As virtual ground is generated at the connection points 12, 15, 18, 81, 84, the source by the first via hole 13, the second via hole 16, the third via hole 19, the fourth via hole 82 and the fifth via hole 85. The influence of the inductance is reduced.
Therefore, the unbalance in gain among the first transistor 6a, the second transistor 6b, the third transistor 6c, the fourth transistor 6d, the fifth transistor 6e, and the sixth transistor 6f is eliminated. .
Therefore, even when the high frequency amplifier includes six transistors, the combined loss can be reduced and the gain of the entire high frequency amplifier can be increased as in the first embodiment.
 この実施の形態4では、高周波増幅器が実装しているトランジスタの数が6である例を示しているが、高周波増幅器が実装しているトランジスタの数が8,10,12・・・であっても同様に、合成損失を低減して、高周波増幅器全体の利得を高めることができる。 The fourth embodiment shows an example in which the number of transistors mounted in the high frequency amplifier is six, but the number of transistors mounted in the high frequency amplifier is eight, ten, twelve,. Similarly, the combined losses can be reduced to increase the overall gain of the high frequency amplifier.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the scope of the invention, the present invention allows free combination of each embodiment, or modification of any component of each embodiment, or omission of any component in each embodiment. .
 この発明は、高周波信号を増幅する高周波増幅器に適している。 The present invention is suitable for a high frequency amplifier for amplifying a high frequency signal.
 1 入力端子、2 信号分配器、3,3a,3b バラン、4,4a 第1の入力整合回路、5,5a 第2の入力整合回路、6a 第1のトランジスタ、6a ゲート端子、6a ドレイン端子、6b 第2のトランジスタ、6b ゲート端子、6b ドレイン端子、6c 第3のトランジスタ、6c ゲート端子、6c ドレイン端子、6d 第4のトランジスタ、6d ゲート端子、6d ドレイン端子、6e 第5のトランジスタ、6f 第6のトランジスタ、7 信号合成器、8,8a 第1の出力整合回路、9,9a 第2の出力整合回路、10 バラン、11 出力端子、12 接続点、13 第1のビアホール、14 第1の接地点、15 接続点、16 第2のビアホール、17 第2の接地点、18 接続点、19 第3のビアホール、20 第3の接地点、21 第1の線路、22 第2の線路、23 交差部、24 下地電極、25 エアブリッジ、26 オープンスタブ、31 第3の線路、32 第4の線路、33 交差部、34 下地電極、35 エアブリッジ、36 オープンスタブ、41,42,43 引き出し線、51,52 線路、61,62,63 交差部、70 ソース電極、71 対称線、81 接続点、82 第4のビアホール、83 第4の接地点、84 接続点、85 第5のビアホール、86 第5の接地点。 1 input terminal, 2 a signal distributor, 3, 3a, 3b balun, 4, 4a first input matching circuit, 5, 5a second input matching circuit, 6a first transistor, 6a g gate terminal, 6a d drain terminal, 6b second transistor, 6b g gate terminal, 6b d drain terminal, 6c third transistor, 6c g gate terminal, 6c d drain terminal, 6d fourth transistor, 6d g gate terminal, 6d d drain terminal, 6e fifth transistor, 6f sixth transistor, 7 signal combiner, 8, 8a first output matching circuit, 9, 9a second output matching circuit, 10 balun, 11 output terminal, 12 connection point, 13 third 1 via hole, 14 first ground point, 15 connection point, 16 second via hole, 17 second ground point, 18 connection point, 19 third via hole, 20 third Point 21 first line 22 second line 23 intersection 24 base electrode 25 air bridge 26 open stub 31 third line 32 fourth line 33 intersection 34 base electrode 35 air bridge, 36 open stub, 41, 42, 43 lead wire, 51, 52 line, 61, 62, 63 intersection, 70 source electrode, 71 symmetry line, 81 connection point, 82 fourth via hole, 83 fourth Ground point, 84 connection point, 85 fifth via hole, 86 fifth ground point.

Claims (9)

  1.  高周波信号を逆相分配し、逆相分配した一方の高周波信号を第1及び第3の高周波信号として同相分配し、逆相分配した他方の高周波信号を第2及び第4の高周波信号として同相分配する信号分配器と、
     前記第1の高周波信号を増幅し、増幅後の第1の高周波信号を出力する第1のトランジスタと、
     前記第2の高周波信号を増幅し、増幅後の第2の高周波信号を出力する第2のトランジスタと、
     前記第3の高周波信号を増幅し、増幅後の第3の高周波信号を出力する第3のトランジスタと、
     前記第4の高周波信号を増幅し、増幅後の第4の高周波信号を出力する第4のトランジスタと、
     前記増幅後の第1の高周波信号と前記増幅後の第3の高周波信号との同相合成信号と、前記増幅後の第2の高周波信号と前記増幅後の第4の高周波信号との同相合成信号とを逆相合成する信号合成器とを備え、
     前記第1及び第2のトランジスタのソース電極が第1の接地点と接続され、前記第2及び第3のトランジスタのソース電極が第2の接地点と接続され、前記第3及び第4のトランジスタのソース電極が第3の接地点と接続されていることを特徴とする高周波増幅器。
    The high frequency signal is subjected to reverse phase distribution, and one high frequency signal subjected to reverse phase distribution is subjected to in-phase distribution as the first and third high frequency signals, and the other high frequency signal subjected to reverse phase distribution is provided as the second and fourth high frequency signals. A signal distributor,
    A first transistor that amplifies the first high frequency signal and outputs the amplified first high frequency signal;
    A second transistor that amplifies the second high frequency signal and outputs the amplified second high frequency signal;
    A third transistor that amplifies the third high frequency signal and outputs the amplified third high frequency signal;
    A fourth transistor that amplifies the fourth high frequency signal and outputs a fourth high frequency signal after amplification;
    In-phase composite signal of in-phase composite signal of amplified first high-frequency signal and amplified third high-frequency signal, in-phase composite signal of amplified second high-frequency signal and amplified fourth high-frequency signal And a signal combiner for reverse-phase combining
    Source electrodes of the first and second transistors are connected to a first ground point, and source electrodes of the second and third transistors are connected to a second ground point, and the third and fourth transistors are connected. A high-frequency amplifier characterized in that the source electrode of the second ground terminal is connected to the third ground point.
  2.  前記第1のトランジスタのソース電極と、前記第2のトランジスタのソース電極との接続点が、第1のビアホールを介して前記第1の接地点と接続され、
     前記第2のトランジスタのソース電極と、前記第3のトランジスタのソース電極との接続点が、第2のビアホールを介して前記第2の接地点と接続され、
     前記第3のトランジスタのソース電極と、前記第4のトランジスタのソース電極との接続点が、第3のビアホールを介して前記第3の接地点と接続されていることを特徴とする請求項1記載の高周波増幅器。
    A connection point between a source electrode of the first transistor and a source electrode of the second transistor is connected to the first ground point via a first via hole.
    A connection point between a source electrode of the second transistor and a source electrode of the third transistor is connected to the second ground point via a second via hole.
    A connection point between a source electrode of the third transistor and a source electrode of the fourth transistor is connected to the third ground point via a third via hole. High frequency amplifier as described.
  3.  前記信号分配器は、
     高周波信号を逆相分配するバランと、
     前記バランにより逆相分配された一方の高周波信号を第1及び第3の高周波信号として同相分配する第1の入力整合回路と、
     前記バランにより逆相分配された他方の高周波信号を第2及び第4の高周波信号として同相分配する第2の入力整合回路とを備えることを特徴とする請求項1記載の高周波増幅器。
    The signal distributor
    A balun for distributing the high frequency signal in reverse phase,
    A first input matching circuit for in-phase distributing one of the high-frequency signals reverse-phase distributed by the balun as the first and third high-frequency signals;
    2. The high frequency amplifier according to claim 1, further comprising: a second input matching circuit for in-phase distributing the other high frequency signal reverse-phase distributed by the balun as the second and fourth high frequency signals.
  4.  前記信号合成器は、
     前記増幅後の第1の高周波信号と前記増幅後の第3の高周波信号とを同相合成することで、同相合成信号を出力する第1の出力整合回路と、
     前記増幅後の第2の高周波信号と前記増幅後の第4の高周波信号とを同相合成することで、同相合成信号を出力する第2の出力整合回路と、
     前記第1の出力整合回路から出力された同相合成信号と、前記第2の出力整合回路から出力された同相合成信号とを逆相合成するバランとを備えることを特徴とする請求項1記載の高周波増幅器。
    The signal combiner is
    A first output matching circuit that outputs an in-phase combined signal by combining the first amplified high frequency signal and the amplified third high frequency signal in phase;
    A second output matching circuit that outputs an in-phase combined signal by combining the amplified second high-frequency signal and the amplified fourth high-frequency signal in phase;
    The balun according to claim 1, further comprising: a balun for combining the in-phase composite signal output from the first output matching circuit and the in-phase composite signal output from the second output matching circuit. High frequency amplifier.
  5.  前記第1の入力整合回路から出力された第3の高周波信号を前記第3のトランジスタに伝搬する第1の線路と、前記第2の入力整合回路から出力された第2の高周波信号を前記第2のトランジスタに伝搬する第2の線路とが交差部で接触しないように、前記第1の線路と前記第2の線路とが立体交差していることを特徴とする請求項3記載の高周波増幅器。 A first line for propagating a third high frequency signal output from the first input matching circuit to the third transistor, and a second high frequency signal output from the second input matching circuit; 4. The high frequency amplifier according to claim 3, wherein the first line and the second line cross three-dimensionally such that the second line propagating to the two transistors is not in contact at an intersection. .
  6.  前記第1の線路又は前記第2の線路に、オープンスタブが接続されていることを特徴とする請求項5記載の高周波増幅器。 The high frequency amplifier according to claim 5, wherein an open stub is connected to the first line or the second line.
  7.  前記第2のトランジスタから出力された増幅後の第2の高周波信号を前記第2の出力整合回路に伝搬する第3の線路と、前記第3のトランジスタから出力された増幅後の第3の高周波信号を前記第1の出力整合回路に伝搬する第4の線路とが交差部で接触しないように、前記第3の線路と前記第4の線路とが立体交差していることを特徴とする請求項4記載の高周波増幅器。 A third line for propagating the amplified second high frequency signal output from the second transistor to the second output matching circuit, and an amplified third high frequency signal output from the third transistor The third line and the fourth line intersect at a three-dimensional crossing so that the fourth line that propagates the signal to the first output matching circuit does not contact at the intersection. The high frequency amplifier according to item 4.
  8.  前記第3の線路又は前記第4の線路に、オープンスタブが接続されていることを特徴とする請求項7記載の高周波増幅器。 The high frequency amplifier according to claim 7, wherein an open stub is connected to the third line or the fourth line.
  9.  前記第1及び第3のトランジスタのゲート電極の向きと、前記第2及び第4のトランジスタのゲート電極の向きとが逆向きになるように、前記第1から第4のトランジスタが配置されていることを特徴とする請求項1記載の高周波増幅器。 The first to fourth transistors are disposed such that the directions of the gate electrodes of the first and third transistors and the directions of the gate electrodes of the second and fourth transistors are opposite to each other. The high frequency amplifier according to claim 1, characterized in that:
PCT/JP2017/024845 2017-07-06 2017-07-06 High-frequency amplifier WO2019008730A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024845 WO2019008730A1 (en) 2017-07-06 2017-07-06 High-frequency amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024845 WO2019008730A1 (en) 2017-07-06 2017-07-06 High-frequency amplifier

Publications (1)

Publication Number Publication Date
WO2019008730A1 true WO2019008730A1 (en) 2019-01-10

Family

ID=64950710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024845 WO2019008730A1 (en) 2017-07-06 2017-07-06 High-frequency amplifier

Country Status (1)

Country Link
WO (1) WO2019008730A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021078054A (en) * 2019-11-12 2021-05-20 富士通株式会社 Semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274866A (en) * 1998-03-25 1999-10-08 Matsushita Electric Ind Co Ltd Power amplifier
JP2004281625A (en) * 2003-03-14 2004-10-07 Mitsubishi Electric Corp Semiconductor device
JP2006094557A (en) * 2005-11-21 2006-04-06 Renesas Technology Corp Semiconductor element, high-frequency power amplifier device and radio communication device
JP2007251264A (en) * 2006-03-13 2007-09-27 Mitsubishi Electric Corp Phase adjustment circuit, and matching circuit
JP2008148099A (en) * 2006-12-12 2008-06-26 Mitsubishi Electric Corp Differential amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274866A (en) * 1998-03-25 1999-10-08 Matsushita Electric Ind Co Ltd Power amplifier
JP2004281625A (en) * 2003-03-14 2004-10-07 Mitsubishi Electric Corp Semiconductor device
JP2006094557A (en) * 2005-11-21 2006-04-06 Renesas Technology Corp Semiconductor element, high-frequency power amplifier device and radio communication device
JP2007251264A (en) * 2006-03-13 2007-09-27 Mitsubishi Electric Corp Phase adjustment circuit, and matching circuit
JP2008148099A (en) * 2006-12-12 2008-06-26 Mitsubishi Electric Corp Differential amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021078054A (en) * 2019-11-12 2021-05-20 富士通株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP2012029239A (en) Doherty amplifier
US20140145791A1 (en) Amplifier circuit
US20140085165A1 (en) Combining signal power using magnetic coupling between conductors
JPH11330813A (en) Power distributing circuit and power amplifier
TW202002507A (en) Multi-channel radio-frequency power amplification device capable of increasing power gain and power-added efficiency
JPWO2019097609A1 (en) Doherty amplifier and Doherty amplifier circuit
WO2016013047A1 (en) Transistor package, amplifier circuit provided therewith, and transistor configuring method
WO2019008730A1 (en) High-frequency amplifier
JPH02190003A (en) Phase inverter
WO2018135151A1 (en) Variable gain amplifier and vector-sum phase shifter
US10158508B1 (en) Methods, systems, and apparatus for phase-shifted signal generation
JPH1197952A (en) High-output power amplifier
US10951179B2 (en) Impedance control unit
JP7195480B2 (en) High frequency amplifier, wireless communication device and radar device
US11533026B2 (en) Amplifier module
US10205427B2 (en) Multi-way power amplifier circuit
JP4774949B2 (en) Distributor, combiner, and power amplifier using them
JP5913442B2 (en) Doherty amplifier
US9559643B2 (en) Amplifier circuit
JPH1197980A (en) Unbalance-balance converting circuit
JP5902070B2 (en) Power amplifier and transmitter
KR100977476B1 (en) High frequency power amplifier
JP4994588B2 (en) High power differential amplifier
JP2010273117A (en) Amplifier
JP3508835B2 (en) Multiple frequency band amplifier circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP