WO2019008721A1 - Wearable display device - Google Patents

Wearable display device Download PDF

Info

Publication number
WO2019008721A1
WO2019008721A1 PCT/JP2017/024790 JP2017024790W WO2019008721A1 WO 2019008721 A1 WO2019008721 A1 WO 2019008721A1 JP 2017024790 W JP2017024790 W JP 2017024790W WO 2019008721 A1 WO2019008721 A1 WO 2019008721A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
eyepiece optical
user
axis
unit
Prior art date
Application number
PCT/JP2017/024790
Other languages
French (fr)
Japanese (ja)
Inventor
成示 龍田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/024790 priority Critical patent/WO2019008721A1/en
Publication of WO2019008721A1 publication Critical patent/WO2019008721A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to a wearable display device and the like.
  • the head mounted display is generally configured to observe a magnified virtual image through an eyepiece optical unit disposed in front of the eye, and in this case, in order to allow the user to appropriately view the display screen
  • eyepiece optics eyepiece window
  • eyepiece optical axis the optical axis of the eyepiece optical unit
  • Patent Document 1 discloses a method for assisting the mounting and adjustment of a wearable display. Specifically, Patent Document 1 discloses a method of displaying on a display screen an image used for mounting or adjustment, and an image for instructing mounting or adjustment, or instructing mounting or adjustment by voice. There is.
  • Patent Document 2 a determination image for appropriately adjusting the distance between the image display unit and the eye in an image display device that causes the image light subjected to the pupil enlargement processing to be projected on the eye to visually recognize the display image. And a method of displaying an image instructing the display unit to move closer or further away depending on how it looks.
  • NED Near Eye Display
  • a given direction side of the image is often worn when worn Situations may occur that are missing and visible.
  • the user may view the top of the image but not the bottom of the image.
  • the operation method the method of improving the positional relationship for resolving the situation is not sensory, the user may not know how to operate the entire image.
  • Patent Document 1 displays an instruction such as “adjust the position of the display unit so that all the black lines enter the field of view”, and does not indicate a specific operation content. Therefore, the user can not easily understand how to operate the display unit “the black line is all in the field of view”, which may require time for adjustment.
  • Patent Document 2 since the method of Patent Document 2 is applied to an image display apparatus that projects image light subjected to pupil expansion processing, the eye box is relatively large, but the distance between the eye and the eyepiece optical unit is large. And the edge of the image is lost, and on the contrary, even if it is too close, color misregistration occurs in the image. Therefore, in Patent Document 2, on the premise that the eyepiece optical axis passes near the center of the eyeball by pupil enlargement processing, a judgment image for adjusting the distance (position in the front-rear direction) between the eyepiece optical unit and the eyeball is displayed Do. That is, Patent Document 2 does not disclose an adjustment method when the eyepiece optical axis does not pass near the center of the eyeball.
  • a wearable display device or the like that facilitates the adjustment of the eyepiece optics by the user by presenting the operation content using the guide image.
  • a display unit for displaying an image, an eyepiece optical unit disposed in front of the user's eyes, enlarging the image displayed on the display unit and presenting the image as a virtual image to the user
  • An adjustment unit capable of adjusting the position and the orientation of the eyepiece optical axis, and the display unit is configured to adjust the eyepiece optical axis to the eyeball of the user when the eyepiece optical axis does not pass near the eyeball center of the user
  • the present invention relates to a wearable display device that displays a guide image including instruction information indicating operation content for passing near the center.
  • the eyepiece optical axis does not pass near the center of the eye of the user, which may result in the user not being able to properly observe the image (a part of the image may be lost and viewed).
  • a certain wearable display device displays a guide image that specifically shows the operation content for eliminating the state. In this way, it is possible to present the user with an operation for making the appropriate state in an easy-to-understand manner.
  • Another aspect of the present invention is a display unit for displaying an image, an eyepiece optical unit disposed in front of the user's eyes, enlarging the image displayed on the display unit, and presenting the image as a virtual image to the user
  • An adjustment unit capable of adjusting the position and orientation of the eyepiece optical axis of the department, and the display unit is operable to operate the adjustment unit such that a region where the user can not appropriately view the image is not generated
  • the instruction information which is displayed in a first area of the guide images and which indicates a second operation content different from the first operation content is different from the first area of the plurality of areas of the guide image Display in area 2 Related to the trouble display device.
  • the guide image is divided into a plurality of areas, and the operation contents displayed in a given area and the operation contents displayed in another area are made different.
  • the operation content for example, the moving direction or rotation direction of the eyepiece optical unit
  • instruction information is provided that defines for each state a highly probable area that can be viewed even when the user can not appropriately observe the image, and instructs different operation contents according to the state to each area of the guide image. Include This makes it possible to use the guide image to instruct the user about the appropriate operation content according to the state.
  • FIG. 2 is a perspective view of the wearable display device in a state of being attached to the head of the user.
  • FIG. 2 is a top view of the wearable display device in a state of being mounted on the head of a user.
  • the detailed structural example of an eyepiece optical part The detailed structural example of a connection part and a rotation mechanism.
  • FIGS. 7A and 7B show an example of the relationship between the eyeball center and the eyepiece optical unit, and an example of a virtual image observed by the user.
  • FIGS. 8A and 8B show an example of the relationship between the eyeball center and the eyepiece optical unit, and an example of a virtual image observed by the user.
  • FIGS. 7A and 7B show an example of the relationship between the eyeball center and the eyepiece optical unit, and an example of a virtual image observed by the user.
  • FIGS. 7A and 7B show an example of the relationship between the eyeball center and the eyepiece optical unit, and an example of a virtual image observed by the user.
  • FIGS. 13A and 13B are operation examples of the eyepiece optical unit by the adjustment unit of another method.
  • FIG. 1 schematically shows how a virtual image looks through the eyepiece window 142.
  • a pupil division see-through optical system the exit pupil of the optical system is set near the eyepiece (eyepiece window 142), which makes it possible to make the eyepiece smaller. Since the eyepiece is small, light from the outside field view can pass through the outside of the eyepiece and enter the eye pupil, thus realizing see-through.
  • the width of the tip of the eyepiece optical unit 140 (the part where the eyepiece window 142 is provided) is 4 mm or less.
  • the optical axis adjustment method of the present embodiment is applicable not only to the pupil division see-through optical system but also to a head mounted display using various types of optical systems.
  • the virtual image observed to the user through the eyepiece optics 140 appears to be projected onto the virtual image plane in front of the eyepiece window 142 as viewed from the user's eyes. That is, the virtual image is viewed from the eyepiece window 142, and this can be interpreted as a virtual cylinder connecting the eyepiece window 142 and the virtual image and viewed as a virtual cylinder.
  • the tube looks straight from the front, and the eyepiece Since the area visible to the user through the window 142 (hereinafter simply referred to as the visible area) and the entire virtual image appear to overlap, the display image can be viewed through the eyepiece window 142 without any loss.
  • the difference between the direction in which the user observes the eyepiece window 142 (line of sight) and the eyepiece optical axis AX of the eyepiece optical unit 140 is small.
  • the image is displayed so that the image can be seen in a part of the field of view (typically, for example, a viewing angle of 10 to 15 degrees). Therefore, the image is located not only at the center (front) of the field of view but also at the periphery. It is also possible to That is, reading the information displayed in the image by looking at the eyepiece window 142 located at the periphery (for example, not the front, not the upper right, etc.) of the field of vision while keeping the center of the field of vision clear. it can.
  • the display position in which the display position can be freely determined, it is possible to assume initial positioning when the head mounted display is mounted, and change of the position during use. Then, it is necessary to make adjustments so that the entire image can be seen at that position.
  • an operation for causing the eyepiece optical axis AX to pass near the eyeball center from the state of FIG. 7A specifically, an operation shown in FIG. 7B or FIG. It is not easy to grasp. In particular, when the user using the wearable display device is a beginner, the user may not know the appropriate operation, which may require time for adjustment.
  • the pupil division see-through optical system is considered to have many scenes used for teaching at the work site because it can display an image at the periphery of the field of vision while keeping the center of the field of vision clear.
  • a wearable display device is attached to a worker who is not accustomed to work, and work content (work procedure or the like) is displayed as a virtual image. In this way, it is possible to assist the worker as needed without interrupting the work. However, in such a case, the worker is likely to be a beginner also in the operation of the wearable display device.
  • a leader secreted person
  • the user does not know how the image is viewed by the wearer, so the operation content is also displayed in the image visually recognized by the wearer. You may instruct.
  • Patent Document 1 allows the user to confirm whether or not the entire image can be viewed by displaying a frame line, but if any operation is performed, the state becomes appropriate. Do not tell. Further, in Patent Document 2, it is assumed that one side of the image (the lower side of the image in the example of FIG. 7A) is lost as shown in FIG. 7A because the eye box is enlarged by pupil enlargement processing. I did not. That is, the image loss in Patent Document 2 is a loss of the entire image peripheral area (for example, FIG. 11A to be described later) that occurs when the image display unit is too far from the eye. It is limited to the operation of bringing the display unit close to or away from the eye. Therefore, the method of Patent Document 2 does not cope with the elimination of the image loss caused by the fact that the eyepiece optical axis AX does not pass near the center of the eyeball as shown in FIG. 7A.
  • the wearable display device 100 is provided with a display unit 160 for displaying an image and an image displayed in front of the user's eyes and displayed on the display unit 160. It includes an eyepiece optical unit 140 enlarged and presented to the user as a virtual image, and an adjustment unit 180 capable of adjusting the position and orientation of the eyepiece optical axis AX of the eyepiece optical unit 140. Then, when the eyepiece optical axis AX does not pass near the eyeball center of the user, the display unit 160 displays a guide image including instruction information indicating operation content for causing the eyepiece optical axis AX to pass near the eyeball center of the user indicate.
  • the eyeball center 64 is a position (point) representing the center of the eyeball 60, and is a rotation center (eyeball rotation point) of the eyeball 60 or the like.
  • the eye center 64 is the center of the sphere when the eye 60 is regarded as a sphere in a narrow sense.
  • the vicinity of the eyeball center is a region of a given size with reference to the eyeball center 64.
  • the vicinity of the eyeball center may be a spherical region centered on the eyeball center 64.
  • the shape and size near the center of the eye may be defined from the visual state of the image (virtual image).
  • the visual axis (line of sight) substantially matches the eyepiece optical axis, the user can correctly observe the entire virtual image. Conversely, when the visual axis (line of sight) and the eyepiece optical axis do not coincide with each other, even if the user directs the line of sight to the eyepiece optical unit 140, a part of the image is lost and visually recognized (or not visible at all) .
  • the “visual axis (line of sight)” is defined as a line connecting the fixation point and the retinal fovea.
  • the fixation point represents a point at which the user is looking (a point seen without moving the eye), and the fovea is a portion contributing to vision in a high-definition central visual field, and is a region of about 1 mm in diameter.
  • “gaze line” is defined as a line connecting the fixation point and the eyeball rotation point (rotation center of the eyeball). Although the visual axis and the fixation line are slightly deviated, both pass near the center of the eyeball.
  • the eyepiece optical axis AX passes near the eyeball center of the user, it can be said that the eyepiece optical axis AX and the line of sight substantially coincide with each other when the user directs the gaze to the virtual image in order to observe the virtual image through the eyepiece window.
  • the eyepiece optical axis AX passes through the vicinity of the center of the eye of the user.
  • the size in the vicinity of the eyeball center may be set based on the design of the eyepiece optical unit 140 in view of visual recognition of the entire image.
  • the “visible range” shown in FIG. 7A and FIG. 7B and the display range (position, size) of the virtual image are both determined based on the optical characteristics of the eyepiece optical unit 140. Therefore, if the design of the eyepiece optical unit 140 is known, the approximate value of the allowable deviation of the eyepiece optical axis AX from the eyeball center 64 (the maximum value of the deviation satisfying the condition that the entire virtual image is visible) It is possible to ask in advance.
  • the vicinity of the eyeball center in the present embodiment may be obtained from the eyeball center 64 and the deviation allowance, or in a narrow sense, may be a spherical region whose center is the eyeball center 64 and the radius becomes the deviation allowance.
  • the setting method in the vicinity of the eyeball center is not limited to the above.
  • the setting process may be simplified by setting the size near the center of the eyeball based on the average size of the entire eyeball 60.
  • the size near the center of the eye may be 1 / N (N is a number larger than at least 1) of the average size of the eye 60.
  • the operation content for canceling the state is It is possible to present to the user using a visible partial area of the image. Therefore, even if the user is a beginner, it is possible to easily execute an operation for making the entire image visible.
  • the operation content here indicates an operation for changing the position and orientation (hereinafter also referred to as direction) of the eyepiece optical unit 140 in a narrow sense.
  • the operation content here may represent a moving operation or a rotating operation of the eyepiece optical unit 140, and an adjusting unit 180 (a movable unit, for moving and rotating the eyepiece optical unit 140) It may represent an operation on a joint, a flexible tube).
  • the portion where the image is lost differs depending on which direction the eyepiece optical axis AX deviates with respect to the eyeball center 64.
  • the portion where the image is lost differs depending on which direction the eyepiece optical axis AX deviates with respect to the eyeball center 64.
  • the eyepiece optical axis AX when the eyepiece optical axis AX is shifted to the upper side (parietal side) of the eyeball center 64, the lower side of the image is lost.
  • the eyepiece optical axis AX shifts below the eyeball center 64 (opposite to the top of the head, on the side of the chin), the upper side of the image is lost.
  • the eyepiece optical axis AX shifts to the right of the eyeball center 64, the left side of the image is lost.
  • the eyepiece optical axis AX shifts to the left of the eyeball center 64, the right side of the image is lost. And if the part to be lost is different, the operation for making the whole image visible is also different. Specifically, it is necessary to make the moving direction and the rotating direction of the eyepiece optical unit 140 (eyepiece window 142) different.
  • the guide image of the present embodiment is divided into a plurality of areas, and the display unit 160 displays instruction information indicating the first operation content in the first area among the plurality of areas of the guide image, Instruction information indicating a second operation content different from the operation content of 1 is displayed in a second region different from the first region among the plurality of regions of the guide image.
  • the operation content indicated by the instruction information differs for each area of the guide image.
  • FIG. 2 is an example of a guide image according to the present embodiment, and in FIG. 2, a region whose outer edge is the dotted line indicated by OB2 represents the guide image.
  • the guide image includes a central area RC, an upper peripheral area RU that is an area above the central area RC, a lower peripheral area RD that is a lower area, a right peripheral area RR that is a right area, and a left area. Divided into the left peripheral region RL.
  • FIG. 2 is an example of the guide image, and the division of the area is not limited to FIG. For example, a modification such as dividing the peripheral area into a larger number (for example, dividing into eight including the oblique direction) is possible.
  • the first region is one of four peripheral regions (RU, RD, RR, RL), and the second region is a region different from the first one of the four peripheral regions.
  • the display of instruction information in the central region RC of the guide image is not hindered either, and even in the central region RC in FIG.
  • the instruction information is displayed. Therefore, it is also possible to consider the central area RC as either the first area or the second area.
  • the guide image includes, in the upper peripheral region RU of the image, instruction information indicating operation content that can eliminate the state where the lower side of the image is lost.
  • the lower peripheral region RD, the right peripheral region RR, and the left peripheral region RL of the four peripheral regions are at least partially defective and low in visibility, while the upper peripheral region RU is not
  • a large percentage of the area (the entire area in a narrow sense) is visible as compared with the three areas of (3), and the visibility is relatively high. That is, if the user performs an operation corresponding to instruction information having high visibility among a plurality of pieces of instruction information included in the guide image, the user naturally executes the operation according to the image loss state.
  • the display unit 160 of the wearable display device 100 displays a guide image including instruction information indicating an operation content to the adjusting unit 180 such that a region which can not be visually recognized by the user is not generated in the image.
  • the guide image is divided into a plurality of areas, and the display unit 160 displays instruction information indicating the first operation content in the first area of the plurality of areas of the guide image, and the first operation content and the like.
  • the instruction information indicating the different second operation content is displayed in a second area different from the first area among the plurality of areas of the guide image.
  • the user can divide the guide image into a plurality of areas and make the operation contents represented by the instruction information different for each area even if the appropriate operation contents differ depending on the situation. It is possible to give appropriate instructions to
  • FIGS. 3 and 4 show a configuration example of the wearable display device 100 according to the present embodiment.
  • FIG. 3 is a perspective view of the wearable display device 100 in a state of being attached to the head 70 of the user.
  • FIG. 4 is a top view of the wearable display device 100 in a state of being mounted on the head 70 of the user.
  • the directions DX, DY and DZ are directions perpendicular to each other (including substantially right angles but intersecting in a broad sense).
  • the direction DX is the right direction (the direction from the center of the head 70 to the right side of the head) as viewed from the user
  • the direction DY is the upward direction (the direction from the center of the head 70 to the parietal region) as viewed from the user
  • DZ is the front direction (the direction from the center of the head 70 to the front of the face) as viewed from the user.
  • the wearable display device 100 includes a mounting unit (head mount), an arm 130, a connection unit 110, and an eyepiece optical unit 140 (display device).
  • the wearable display device 100 can also include a pivoting mechanism 120.
  • the mounting unit is a device (mechanism and component) mounted on the head 70 of the user (wearer) and holding the arm 130 and the eyepiece optics 140 on the head 70.
  • the mounting portion includes the first contact portion 10 (first contact portion), the second contact portion 20 (second contact portion), the headband 30, the first connecting portion 40, and the second connecting portion 50. including.
  • the configuration of the mounting unit is not limited to this.
  • the mounting unit may be a spectacles-type frame 150, or may be configured like a headphone equipped with an ear pad (ear pad portion).
  • the arm 130 is connected (connected) to the first contact unit 10 via the connection unit 110, and holds the eyepiece optical unit 140 at a desired position of the user (for example, in front of the user's eye).
  • the arm 130 is, for example, a linear or curved rod-like member.
  • the eyepiece optical unit 140 is connected (connected) to one end of the arm 130 via the rotation mechanism 120, and the mounting unit is connected to the other end of the arm 130 via the connection unit 110.
  • the connecting portion 110 does not have to be provided at the end of the arm 130, and may be provided at a portion distant from the end of the arm 130.
  • a slide mechanism or the like for adjusting the length of the arm 130 may be further provided.
  • the eyepiece optical unit 140 is provided at one end of the arm 130 and displays an image in a part of the field of view of the user.
  • the eyepiece optical unit 140 includes an optical system 143, guides the image light displayed on the display unit 160 to the eyepiece window 142 by the optical system 143, and from the eyepiece window 142 toward the pupil of the eye (facing the eye line of sight) Emit in the direction of the visual axis) and display an enlarged virtual image of the image in the field of view (project the image on the retina).
  • the optical system 143 includes, for example, a prism, a mirror, a lens, and the like.
  • the eyepiece optical unit 140 can adopt, for example, a pupil division see-through optical system.
  • the pivoting mechanism 120 is a mechanism for pivotably holding the eyepiece optical unit 140 with respect to the arm 130, and is pivotable, for example, on an axis parallel to the horizontal scanning direction of the display image. Alternatively, it may be pivotable about an axis perpendicular to the axis (including substantially perpendicular, generally intersecting). For example, in the case where the eyepiece optical unit 140 is adjusted in front of the user's eyes and the axis parallel to the horizontal scanning direction of the display image is parallel to the direction DX, even if it can be pivoted about the axis parallel to the direction DZ or the direction DY. Good. Alternatively, it may be freely pivotable in these three axes.
  • connection portion 110 is a mechanism (part) for connecting the arm 130 and the mounting portion, and is a mechanism for rotatably holding the arm 130 with respect to the mounting portion.
  • connection portion 110 includes a first rotation mechanism 111 and a second rotation mechanism 112.
  • the first pivoting mechanism 111 is a pivoting mechanism capable of pivoting the arm 130 on the first axis TX1.
  • the second pivoting mechanism 112 is provided closer to the mounting portion than the first pivoting mechanism 111, and is capable of pivoting the arm 130 with a degree of freedom including the second shaft TX2 and the third shaft TX3. It is.
  • the second axis TX2 is an axis perpendicular to the first axis TX1.
  • the third axis TX3 is an axis perpendicular to the second axis TX2 and (non-parallel) to the first axis TX1.
  • first axis TX1 and the second axis TX2, and the second axis and the third axis TX3 are at right angles.
  • the angle formed by the third axis TX3 and the first axis TX1 is indeterminate and is not limited to a right angle.
  • being rotatable with a freedom degree including the second axis TX2 and the third axis TX3 means that only rotation on the second axis TX2 and rotation on the third axis TX3 are possible, and There are cases where rotation with other axes is further possible and cases where rotation is possible with any axis, such as a ball joint or the like.
  • connection portion 110 includes members (parts) 15, 171 to 175. These members are formed of, for example, a resin or the like.
  • the eyepiece optical unit 140 is connected to one end of the arm 130, and the other end is provided with a first joint that pivots about a first axis TX1.
  • One end of a first link (member 174) is connected to the first joint, and the other end of the first link is provided with a second joint that rotates about a second shaft TX2.
  • One end of a second link (member 172) is connected to the second joint, and the other end of the second link is provided with a third joint that rotates with a degree of freedom including a third axis TX3.
  • a base (member 15) is connected to the third joint, and the base is fixed to the first contact portion 10.
  • the first joint corresponds to the first pivoting mechanism 111 in FIGS. 1 and 2
  • the second and third joints correspond to the second pivoting mechanism 112.
  • each joint of the first and second joints is a pin joint that pivots about one pin. That is, the U-shaped (U-shaped) recess is provided at the other end of the arm 130, one end of the first link (member 174) is inserted into the recess, and the pin (one end) is inserted into the recess and one end of the first link. The member 175) is penetrating. Similarly, a U-shaped (U-shaped) recess is provided at one end of the second link (member 172), the other end of the first link (member 174) is inserted in the recess, and the recess and the first A pin (member 173) passes through the other end of the link.
  • the third joint is a ball joint that can freely rotate with three degrees of freedom. That is, at the other end of the second link (member 172), the ball receiver of the third joint (a hole into which the ball of the member 171 fits) is provided.
  • the member 171 is a ball portion of a ball joint, and has a structure in which a ball protrudes from one end of a member 15 which is a base. By freely sliding (sliding) between the ball and the ball receiver, rotation of a degree of freedom including the third axis TX3 is realized.
  • the third axis TX3 is an axis perpendicular to the second axis TX2, and is, for example, an axis along the longitudinal direction of the second link (member 172).
  • the second link when the second link is pivoted about the longitudinal direction of the second link, it pivots on the third axis TX3. It is also possible to pivot the second link in a direction perpendicular to the longitudinal direction of the second link by means of a ball joint.
  • each member is, for example, as follows. That is, the member 174 which is the first link and the member 172 which is the second link are rod-like members having a cylindrical shape or a square pole shape.
  • the member 15 which is a base is, for example, a square pole.
  • the members 15, 171 are, for example, integrally formed.
  • the shape of the member 15 is not limited to this.
  • the member 15 may be a plate-like member that curves along the curved shape of the first contact portion 10.
  • the member 171 may be fixed or formed directly on the first contact portion 10, and the member 15 may be omitted.
  • the adjustment unit 180 in the present embodiment is configured to be able to adjust the position and posture of the eyepiece optical unit 140 (eyepiece window 142), and in the example of FIGS. This is realized by the first rotation mechanism 111 and the second rotation mechanism 112). Also, the adjustment unit 180 may include an arm 130.
  • FIGS. 7A to 8B are diagrams showing the relationship between the eyepiece optical axis AX and the eyeball center 64.
  • FIG. 7A to FIG. 8B are side views in which the eyeball 60 is observed (viewed) from the right side.
  • FIG. 7 (A) and FIG. 8 (A) are figures which represent the state before operation with respect to the eyepiece optical part 140 (adjustment part 180), respectively.
  • the eyepiece optical axis AX is the eyeball center
  • One is a moving operation for moving the position of the eyepiece optical unit 140 (eyepiece window 142) downward as shown in FIG. 7 (B).
  • the other is a rotation operation (a tilt operation, a tilt operation) for changing the posture of the eyepiece optical unit 140 as shown in FIG. 8 (B).
  • the eyepiece optical axis AX passes near the center of the eyeball, so that it is possible to reduce (eliminate) image defects.
  • FIG. 7B is a diagram for explaining the moving operation.
  • the user observes the eyepiece window 142 located above the front of the eye.
  • the visible range is the inside of the angle at which the eyepiece window 142 (effective diameter) is viewed, and therefore, as shown in FIG. 7A, it is a range above the front of the eye.
  • the virtual image is formed perpendicular to the eyepiece optical axis AX and at a predetermined angle of view and a predetermined distance based on the design of the eyepiece optical unit 140. As a result, only the upper side of the image (virtual image) can be viewed by the user, and the lower side of the image is lost.
  • FIG. 7B is a diagram showing a state after the operation of moving the eyepiece optical unit 140 (eyepiece window 142) downward (front of the user's eye) from the state of FIG. 7A.
  • the virtual image fits within the visible range, so the entire image can be viewed. That is, the display unit 160 may display instruction information indicating an operation of moving the eyepiece optical unit 140 downward in the upper peripheral region RU which can be seen in the state of FIG. 7A in the guide image.
  • the display unit 160 displays, in the upper peripheral region RU of the guide image, instruction information in a text format of “move down”.
  • the viewable range moves downward as viewed from the user by the move operation in FIG. 7B.
  • the parallel movement of the eyepiece optical unit 140 translates the virtual image by the same amount, but the distance from the eye 60 to the virtual image (eg 500) with respect to the movement distance of the eyepiece optical unit 140 (eg several mm)
  • the position of the virtual image is hardly changed by this moving operation because the distance of -2000 mm) is sufficiently large.
  • the moving operation of the eyepiece optical unit 140 can be considered as an operation in which the visible range is aligned with the position of the virtual image while the position of the virtual image in the field of view of the user is substantially fixed.
  • the movement operation is effective when it is desired to make the entire image visible without moving the position of the virtual image which is only partially visible in the user's view.
  • FIG. 8 (B) is a figure explaining rotation operation.
  • FIG. 8B is a diagram showing a state after an operation of rotating the eyepiece optical unit 140 (eyepiece window 142) in the vertical direction from the state of FIG. 8A.
  • the portion (AX1) between the eyeball 60 and the eyepiece window 142 in the eyepiece optical axis AX is rotated downward, and the side of the eyepiece optical axis AX ahead of the eyepiece window 142 (the side farther from the eyeball 60) , AX2) are rotated upward.
  • the virtual image falls within the visible range, the entire image can be viewed.
  • the display unit 160 may display instruction information indicating an operation (an operation for turning upward, an upper tilt operation) for rotating the eyepiece optical unit 140 in the upper peripheral region RU which can be seen also in FIG. .
  • the display unit 160 displays, in the upper peripheral region RU of the guide image, the instruction information in the text format of “skip up”.
  • the rotational operation of the eyepiece optical unit 140 can be considered to be an operation in which the position of the visible range in the field of view of the user is substantially fixed and the position of the virtual image is adjusted to the visible range.
  • FIG. 9 (A) is a side view showing a specific example of the movement operation
  • FIG. 9 (B) is a side view showing a specific example of the rotation operation.
  • the pivoting mechanism 120 and the connecting portion 110 are respectively represented by ball joints, but the specific configuration can be variously modified.
  • the downward movement operation of the eyepiece optical unit 140 can be realized by the rotation operation of the connecting unit 110 with DX (TX1) as the rotation axis.
  • the rotation operation of the eyepiece optical unit 140 can be realized by the rotation operation of the rotation mechanism 120 with DX as the rotation axis.
  • the case of shifting in other directions may be considered similarly. Specifically, when the eyepiece optical axis AX is displaced below the eyeball center 64, the upper side of the virtual image is lost, and the operation opposite to the case where the eyepiece is displaced upward for eliminating the defect, ie, above the eyepiece optics 140 A movement operation in the direction or a rotation operation in the reverse direction of the eyepiece optics 140 is required.
  • the display unit 160 is instruction information indicating an operation of moving the eyepiece optical unit 140 upward in the lower peripheral region RD which can be visually recognized even if the eyepiece optical axis AX is shifted to the lower side of the eyeball center 64 in the guide image. And it is good to display at least one of the indication information which shows operation (operation which turns down, down tilt operation) which rotates eyepiece optics part 140.
  • the display unit 160 displays instruction information in the form of text “move up” and “move down” in the lower peripheral region RD of the guide image.
  • FIGS. 7A and 8A show a state in which the eyepiece optical axis AX is shifted to the left of the eyeball center 64, and FIG. 7B is a moving operation for eliminating the shift, FIG. Can be considered as a diagram representing a rotation operation for eliminating the deviation.
  • the image loss can be eliminated by moving the eyepiece optical unit 140 to the right.
  • a portion (AX1) between the eyeball 60 and the eyepiece window 142 in the eyepiece optical axis AX is rotated to the right, and from the eyepiece window 142 of the eyepiece optical axis AX.
  • the image loss can be eliminated by rotating the front (AX2) to the left.
  • the display unit 160 instructs information indicating an operation to move the eyepiece optical unit 140 to the right, and an operation to rotate the eyepiece optical unit 140 (operation to turn to the left, left tilt operation). It is preferable to display at least one of the instruction information to be shown.
  • the display unit 160 displays instruction information in text format “move to the right” and “move to the left” in the left peripheral region RL of the guide image.
  • the display unit 160 indicates instruction information indicating an operation to move the eyepiece optical unit 140 to the left and an operation to rotate the eyepiece optical unit 140 (operation to the right, right tilt operation) in the right peripheral region RR of the guide image. At least one of the instruction information may be displayed. In the example of FIG. 2, the display unit 160 displays instruction information in text format “move to left” and “move to right” in the right peripheral region RR of the guide image.
  • FIG. 9C is a top view showing a specific example of the movement operation
  • FIG. 9D is a top view showing a specific example of the rotation operation.
  • FIGS. 9C and 9D correspond to the operation when the eyepiece optical axis AX shifts to the right.
  • the movement operation of the eyepiece optical unit 140 in the left direction can be realized by the rotation operation of the connecting unit 110 with DY (TX2) as the rotation axis.
  • the rotation operation of the eyepiece optical unit 140 can be realized by the rotation operation of the rotation mechanism 120 having DY as a rotation axis.
  • the example has been described above in which the instruction information displayed on the guide image is text information.
  • other forms may be used as instruction information.
  • an icon representing a moving direction or a rotating direction may be displayed together with (or in place of) text information.
  • an arrow is used as an icon is shown in FIG. 2, it is also possible to use another icon which can clearly indicate the moving direction or the rotating direction.
  • the instruction information may be still image information or moving image information.
  • the images shown in FIGS. 9A to 9D may be used as instruction information.
  • FIG. 9A or the like may be displayed as a still image, or may be displayed as a moving image that animates a change in posture of the adjustment unit 180 (the connection unit 110, the rotation mechanism 120, the arm 130).
  • the display unit 160 of the wearable display device 100 displays a guide image including instruction information in a region visually recognized when the eyepiece optical axis AX does not pass near the center of the eyeball of the user.
  • a region visually recognized when the eyepiece optical axis AX does not pass near the eyeball center of the user” in the guide image corresponds to which side the eyepiece optical axis AX is shifted with respect to the eyeball center 64.
  • the eyepiece optical axis AX is located above the eyeball center 64 as shown in FIG. 7A, it corresponds to the upper peripheral region RU. If the eyepiece optical axis AX does not pass near the center of the user's eye, the opposite region is highly likely to be visible even if a part of the image is lost.
  • a part of the guide image is missing, it is possible to estimate to which side the viewable optical axis AX is deviated with respect to the eyeball center 64 in which area still visible. That is, it is possible to associate each area of the guide image with the operation content necessary to make the entire guide image visible. Therefore, by including instruction information representing the operation content in each area of the guide image, it is possible to instruct the user to perform appropriate adjustment.
  • the display unit 160 displays instruction information indicating an operation content for causing the eyepiece optical axis AX to pass near the center of the eyeball, in a peripheral region outside the central region in the guide image.
  • the eyepiece optical axis AX does not pass near the eyeball center of the user, there is a high probability that the peripheral region on one side of the image is lost and the region on the other side is visible. That is, in order to eliminate the state in which the eyepiece optical axis AX does not pass through the vicinity of the eyeball center of the user, it is preferable to instruct the user for the operation content using the peripheral area.
  • the display unit 160 displays a guide image including instruction information indicating at least one operation content of a movement operation for changing the position of the eyepiece optical unit 140 and a rotation operation for changing the posture of the eyepiece optical unit 140.
  • the movement operation refers to an operation (translational movement operation) in which the position of the eyepiece optical unit 140 (in a narrow sense, the position of the eyepiece window 142) is changed in a narrow sense and the posture of the eyepiece optical unit 140 is not changed.
  • the position of the eyepiece optical unit 140 is represented, for example, by coordinate values in a given coordinate system (for example, a three-dimensional coordinate system defined by three axes DX, DY, DZ in FIG. 1), and the posture is each axis of the coordinate system It is expressed by a rotation angle (a change angle with respect to a reference posture).
  • the rotation operation represents an operation of changing the posture of the eyepiece optical unit 140 and not changing the position of the eyepiece optical unit 140.
  • the operation content corresponding to the instruction information displayed in the guide image is divided into the moving operation and the rotation operation, and the user combines movement and rotation based on the instruction information. There is no hindrance to performing
  • the movement operation corresponds to the movement in the vertical and horizontal directions
  • the rotation operation corresponds to the turning in the vertical and horizontal directions (an operation to rotate the AX 1 in the vertical and horizontal directions).
  • the specific operation may be realized by, for example, a rotation operation around the predetermined axis of the adjustment unit 180 as shown in FIG. 9 (A) to FIG. 9 (D).
  • the position of the visible range in the user view changes, but in the rotation operation, the position of the visible range does not change. That is, by displaying instruction information indicating both the moving operation and the rotating operation, the user can freely select the position of the visible range.
  • the guide image includes instruction information representing the operation content of only one of the movement operation and the rotation operation to adjust without changing the position of the virtual image in the user view or the position of the viewable range in the user view It is also possible to decide in advance whether to adjust without changing.
  • a region on the first direction side with respect to the central region RC is defined as a first peripheral region, and a region on the second direction opposite to the first direction with respect to the central region RC is
  • the first peripheral region is instruction information indicating operation content for making the second peripheral region visible when the second peripheral region is not visually recognized.
  • combinations of (the first direction, the second direction, the first peripheral area, and the second peripheral area) are, for example, four types shown in the following (1) to (4).
  • the first direction and the second direction are directions on the guide image.
  • the vertical direction corresponds to the vertical scanning direction of the image (for example, the start side of the scan is up and the end side is down)
  • the horizontal direction is the horizontal scan direction of the image (for example, the start side of the scan is left and the end side is right Corresponding to).
  • an oblique direction may be considered as the first direction and the second direction, and the combination of the direction and the peripheral region is not limited to the above four.
  • the display unit 160 displays instruction information indicating a moving operation for moving the position of the eyepiece optical unit 140 in the second direction side in the first peripheral region of the guide image.
  • the first direction and the second direction are directions based on the guide image
  • the relationship between the wearable display device 100 (eyepiece optical unit 140) and each direction is determined by how the guide image is displayed and viewed. It depends on what is done.
  • the guide image (virtual image) is observed to be perpendicular to the eyepiece optical axis AX, at a predetermined angle of view based on the design of the eyepiece optical unit 140, and at a predetermined distance. That is, the first direction and the second direction are directions in a plane perpendicular to the eyepiece optical axis AX.
  • FIG. 10 is a perspective view for explaining the positional relationship between the eyeball 60, the eyepiece optical unit 140, and the virtual image.
  • the first direction and the second direction here are directions along a plane showing a virtual image.
  • four directions of up, down, left, and right are shown, and a direction (oblique direction) combining any of these directions or a plurality of these directions is taken as a first direction and a second direction.
  • the left and right direction is defined based on the user's viewing direction (the direction from the eye 60 toward the virtual image).
  • the display unit 160 is an instruction information indicating a rotation operation of the eyepiece optical unit 140 such that the eyeball side (AX1) of the user is rotated to the second direction side with respect to the eyepiece optical unit 140 of the eyepiece optical axis AX. Are displayed in the first peripheral area of the guide image.
  • the display unit 160 performs a rotation operation of the eyepiece optical unit 140 so as to rotate the anterior side of the eyepiece optical unit 140 of the eyepiece optical axis AX (the side farther from the user's eyeball 60, AX2) to the first direction side. It may be considered that the indication information to be shown is displayed in the first peripheral area of the guide image.
  • the rotation operation is an operation to move the eyeball passing position of the eyepiece optical axis AX to the second direction side. That is, the eyeball side (AX1) of the user with respect to the eyepiece optical unit 140 of the eyepiece optical axis AX may be rotated in the second direction.
  • the rotation operation here is the rotation operation of the eyepiece optical unit 140
  • the front side (the side farther from the eyeball 60 of the user) than the eyepiece optical unit 140 of the eyepiece optical axis AX is the second direction. It will rotate to the opposite side, ie, the 1st direction side.
  • the first direction and the second direction are directions set with reference to the guide image or the eyepiece optical unit 140. Therefore, when the posture of the eyepiece optical unit 140 with respect to the eyeball 60 changes, the relative relationship between the first direction and the eyeball 60 also changes.
  • the first direction and the second direction are directions defined by the coordinate system set in the eyepiece optical unit 140, and the coordinate system is set based on the user (eyeball 60) Different from DX, DY, DZ).
  • the operation content instructed by the instruction information of the guide image may be defined not by using the guide image or the eyepiece optical unit 140 as a reference but by a coordinate system based on the user.
  • the coordinate system based on the user is based on the fixed part of the wearable display device 100 You may think of it as a coordinate system.
  • an axis in the direction from the center of the head to the side of the head of the user is taken as the first axis
  • an axis in the direction from the center of the head to the head of the user is taken as the second axis.
  • the second axis is the second axis.
  • the first axis here corresponds to DX in FIG. 1
  • the second axis corresponds to DY in FIG. 1
  • the third axis corresponds to DZ in FIG.
  • the display unit 160 uses the axis in the direction along the first axis (DX) as the axis of rotation and the eyepiece optical unit Instruction information indicating a rotation operation to rotate 140 is displayed in the first peripheral region of the guide image.
  • the display unit 160 sets the eyepiece optical unit 140 with the axis in the direction along the second axis (DY) as the rotation axis.
  • the instruction information indicating the rotation operation to be rotated is displayed in the first peripheral region of the guide image.
  • the instruction information included in the guide image is at least one of text, an icon, a still image, and a moving image.
  • FIG. 2 shows an example in which text and an icon (arrow) are combined.
  • images such as those in FIGS. 9A to 9D can be used.
  • instruction information it is possible to present instruction information to the user in various formats.
  • by using an icon or an image it is possible to intuitively instruct the user an operation that is difficult to understand.
  • the display unit 160 may display a guide image including index information indicating whether or not the entire guide image can be viewed.
  • the index information here may be, for example, an object shown in OB1 of FIG.
  • the four isosceles triangle objects shown in OB1 are objects whose tip (apex of the isosceles triangle) points to the four corners of the guide image.
  • the index information it is determined whether or not the entire guide image can be viewed by the user, that is, whether the adjustment such that the eyepiece optical axis AX passes near the center of the eyeball is completed by an appropriate operation It becomes possible to make
  • the index information is not limited to the object shown in OB1.
  • a frame may be displayed on the periphery of the guide image as shown in OB2.
  • the peripheral portion of the guide image may be displayed in a color different from that of the region inside the guide image.
  • the information displayed as index information can be variously modified.
  • FIG. 11A is a diagram showing the relationship between the visible range and the virtual image when the distance between the eyeball 60 and the eyepiece optical unit 140 (eyepiece window 142) is large compared to the example of FIG. 7A. . Since the visible range is inside the angle at which the eyepiece window 142 (effective diameter) is seen, if the eyepiece window 142 is relatively far, the visible range becomes narrow. In this case, as shown in FIG. 11A, the eyepiece optical axis AX passes near the center of the eyeball, but the visible range for the size of the virtual image is narrow, so the periphery of the virtual image is lost.
  • display unit 160 displays a virtual image of an angle of view that can be observed by the user in a region of the guide image that is viewed when the angle of view that can be observed by the user is smaller than the display angle of the virtual image.
  • the instruction information indicating the moving operation of the eyepiece optical unit 140 for making the display angle of view or more is displayed.
  • the display viewing angle of the virtual image corresponds to theta A of example FIG. 11 (A).
  • the angle of view that can be observed by the user is the size of the angle that represents the viewable range, and corresponds to, for example, ⁇ B that is the inside of the angle from which the eyepiece window 142 is viewed.
  • the display unit 160 displays instruction information indicating a moving operation for bringing the eyepiece optical unit 140 close to the eyeball of the user in the central region RC of the guide image.
  • the display unit 160 displays instruction information in text format “close” in the center region RC of the guide image.
  • Adjustment Unit 180 including a plurality of movable units (joints, in the narrow sense, the rotation mechanism 120 and the connection unit 110) has been described. However, different configurations may be used as the adjustment unit 180.
  • FIG. 12 is a perspective view illustrating another configuration example of the wearable display device 100.
  • the wearable display device 100 includes a base unit 190, a connection unit 115, an adjustment unit 180, and an eyepiece optical unit 140.
  • the wearable display device 100 includes a mounting portion (not shown) (the mounting portion shown in FIG. 3 and FIG. 4 and is the first contact portion 10 or the like), and the connection portion 115 is configured to be connectable with the mounting portion Ru.
  • the adjustment unit 180 is realized by a flexible tube.
  • the adjustment unit 180 can perform various adjustments (can bend at various positions). More specifically, the adjustment section 180 which is a flexible tube is realized at a position where it can be bent or at each position depending on the coil pitch of the coiled member that constitutes the flexible tube, and the material characteristics of the tube main body and the film. The possible bending angle range is determined.
  • the flexible tube has one end connected to the base portion 190 and the other end connected to the eyepiece optical unit 140. If the relative position between the base portion 190 and the user (eyeball 60) is considered to be fixed, the relative position and posture of the eyepiece optical portion 140 and the eyeball 60 can be obtained by changing the shape (flexure state) of the flexible tube. It is possible to change
  • FIG. 13 (A) is an explanatory view of a moving operation when the adjusting unit 180 is realized by a flexible tube
  • FIG. 13 (B) is an explanatory view of a rotating operation.
  • the flexible tube has a shape having an inflection point in the middle, that is, on the base portion 190 side than a given point.
  • the bending direction is adjusted to be different from the given point in the bending direction on the eyepiece optical unit 140 side.
  • it may be considered that the flexible tube is deformed into an S shape.
  • the rotation operation of the eyepiece optical unit 140 is performed by performing adjustment such that the left side ( ⁇ DX side) is extended relative to the right side (+ DX side) of the flexible tube.
  • the user can realize the rotation operation by applying a force to, for example, the distal end side of the flexible tube (eyepiece optical unit 140) or the eyepiece optical unit 140 itself.
  • each area of the guide image may include the image information (still or moving image) shown in FIG. 13A or 13B as instruction information indicating operation content. .
  • image information still or moving image
  • instruction information indicating operation content.
  • RC central region
  • RD lower peripheral region
  • RL left peripheral region
  • RR right peripheral region
  • RU upper peripheral region
  • TX1 first axis
  • TX2 second axis
  • TX3 third axis

Abstract

This wearable display device 100 comprises: a display unit 160 for displaying an image; an ocular optical unit 140 disposed in front of a user's eye and presenting the user with a magnified image of the image displayed on the display unit 160; and an adjustment unit 180 capable of adjusting the position and the direction of an ocular optical axis AX of the ocular optical unit 140, wherein, when the ocular optical axis AX does not pass through the vicinity of the center of the user's eyeball, the display unit 160 displays a guide image including display information that indicates operation content for ensuring that the ocular optical axis AX passes through the vicinity of the center of the user's eyeball.

Description

ウェアラブル表示装置Wearable display device
 本発明は、ウェアラブル表示装置等に関する。 The present invention relates to a wearable display device and the like.
 従来より、ユーザーの頭部に装着してユーザーの視界に画像を投影するウェアラブル表示装置(ヘッドマウントディスプレイ)が知られている。ヘッドマウントディスプレイでは、眼前に配置された接眼光学部を通して拡大された虚像を観察するように構成されたものが一般的で、この場合、ユーザーが表示画面を適切に視認できるようにするためには、ユーザーの眼球に対して、接眼光学部(接眼窓)を正しい位置と向きに調整する必要がある。具体的には、接眼光学部の光軸(以下、接眼光軸)がユーザーの眼球中心近傍を通るように接眼光学部の位置と向きを調整する必要があり、接眼光軸が眼球中心近傍を通らない場合、画像の一部が欠損したり、種々の収差により劣化したりした状態で視認されてしまう。 2. Description of the Related Art Wearable display devices (head mounted displays) that are worn on the head of a user and project an image onto the user's field of view have been known. The head mounted display is generally configured to observe a magnified virtual image through an eyepiece optical unit disposed in front of the eye, and in this case, in order to allow the user to appropriately view the display screen It is necessary to adjust the eyepiece optics (eyepiece window) to the correct position and orientation with respect to the eye of the user. Specifically, it is necessary to adjust the position and the direction of the eyepiece optical unit so that the optical axis of the eyepiece optical unit (hereinafter referred to as the eyepiece optical axis) passes near the eyeball center of the user. If it does not pass, a part of the image is visually recognized in a state of being lost or deteriorated due to various aberrations.
 特許文献1には、ウェアラブルディスプレイの装着や調整を補助する手法が開示されている。具体的には、特許文献1には、表示画面に装着や調整に使用する画像、および装着や調整を指示する画像を表示したり、音声で装着や調整を指示したりする手法が開示されている。 Patent Document 1 discloses a method for assisting the mounting and adjustment of a wearable display. Specifically, Patent Document 1 discloses a method of displaying on a display screen an image used for mounting or adjustment, and an image for instructing mounting or adjustment, or instructing mounting or adjustment by voice. There is.
 特許文献2には、瞳拡大処理が施された画像光を眼に投射して、表示画像を視認させる画像表示装置において、画像表示部と眼との間隔を適切に調整するための判定用画像、およびその見え方に応じて表示部を近づけたり、遠ざけたりするよう指示する画像を表示する手法が開示されている。 According to Patent Document 2, a determination image for appropriately adjusting the distance between the image display unit and the eye in an image display device that causes the image light subjected to the pupil enlargement processing to be projected on the eye to visually recognize the display image. And a method of displaying an image instructing the display unit to move closer or further away depending on how it looks.
特開2006-148404号公報JP, 2006-148404, A 特開2010-237308号公報JP, 2010-237308, A
 ユーザーが眼を動かしても表示画像を正しく視認できる範囲(以下、アイボックスとも表記する)の狭いウェアラブル表示装置(NED,Near Eye Display)では、しばしば、装着時に画像のうちの所与の方向側が欠損して視認されるという状況が発生しうる。例えば、ユーザーは画像の上部を視認できるが、画像の下部が視認できないといった状況が考えられる。この場合、当該状況を解消するための操作方法(前記位置関係を改善する方法)は感覚的でないため、どのように操作したら画像全体が見えるようになるのか、ユーザーがわからないおそれがある。 In a narrow wearable display area (NED, Near Eye Display) where the display image can be viewed correctly even when the user moves the eyes (NED, Near Eye Display), a given direction side of the image is often worn when worn Situations may occur that are missing and visible. For example, the user may view the top of the image but not the bottom of the image. In this case, since the operation method (the method of improving the positional relationship) for resolving the situation is not sensory, the user may not know how to operate the entire image.
 特許文献1の手法は、「黒い線が全て視界に入るように表示ユニットの位置を調整してください」といった指示を表示するものであって、具体的な操作内容を指示するものではない。そのためユーザーは、表示ユニットをどのように操作すれば「黒い線が全て視界に入る」のかを容易に理解することができず、調整に時間を要するおそれがある。 The method of Patent Document 1 displays an instruction such as “adjust the position of the display unit so that all the black lines enter the field of view”, and does not indicate a specific operation content. Therefore, the user can not easily understand how to operate the display unit “the black line is all in the field of view”, which may require time for adjustment.
 また特許文献2の手法は、瞳拡大処理を施された画像光を投射する画像表示装置に適用されるものであるため、アイボックスは比較的大きいが、眼球と接眼光学部との距離が離れると画像周縁部が欠損し、逆に近すぎても画像に色ずれを起こしてしまう。そのため特許文献2では、瞳拡大処理によって接眼光軸は眼球中心近傍を通過することを前提として、接眼光学部と眼球との距離(前後方向での位置)を調整するための判定用画像を表示する。即ち、特許文献2では、接眼光軸が眼球中心近傍を通らない場合の調整手法を開示していない。 Further, since the method of Patent Document 2 is applied to an image display apparatus that projects image light subjected to pupil expansion processing, the eye box is relatively large, but the distance between the eye and the eyepiece optical unit is large. And the edge of the image is lost, and on the contrary, even if it is too close, color misregistration occurs in the image. Therefore, in Patent Document 2, on the premise that the eyepiece optical axis passes near the center of the eyeball by pupil enlargement processing, a judgment image for adjusting the distance (position in the front-rear direction) between the eyepiece optical unit and the eyeball is displayed Do. That is, Patent Document 2 does not disclose an adjustment method when the eyepiece optical axis does not pass near the center of the eyeball.
 本発明の幾つかの態様によれば、ガイド画像を用いて操作内容を提示することで、ユーザーによる接眼光学部の調整を容易にするウェアラブル表示装置等を提供できる。 According to some aspects of the present invention, it is possible to provide a wearable display device or the like that facilitates the adjustment of the eyepiece optics by the user by presenting the operation content using the guide image.
 本発明の一態様は、画像を表示する表示部と、ユーザーの眼前に配置され、前記表示部に表示された画像を拡大して虚像としてユーザーに提示する接眼光学部と、前記接眼光学部の接眼光軸の位置及び向きを調整可能な調整部と、を含み、前記表示部は、前記接眼光軸が前記ユーザーの眼球中心近傍を通らない場合に、前記接眼光軸が前記ユーザーの前記眼球中心近傍を通るようにするための操作内容を示す指示情報を含むガイド画像を、表示するウェアラブル表示装置に関係する。 According to one aspect of the present invention, a display unit for displaying an image, an eyepiece optical unit disposed in front of the user's eyes, enlarging the image displayed on the display unit and presenting the image as a virtual image to the user An adjustment unit capable of adjusting the position and the orientation of the eyepiece optical axis, and the display unit is configured to adjust the eyepiece optical axis to the eyeball of the user when the eyepiece optical axis does not pass near the eyeball center of the user The present invention relates to a wearable display device that displays a guide image including instruction information indicating operation content for passing near the center.
 本発明の一態様では、接眼光軸がユーザーの眼球中心近傍を通らないことで、ユーザーが画像を適切に観察できない状態(画像の一部が欠損して視認される状態)となる可能性があるウェアラブル表示装置において、当該状態を解消するための操作内容を具体的に示すガイド画像を表示する。このようにすれば、適切な状態にするための操作をわかりやすい形態でユーザーに提示すること等が可能になる。 In one aspect of the present invention, the eyepiece optical axis does not pass near the center of the eye of the user, which may result in the user not being able to properly observe the image (a part of the image may be lost and viewed). A certain wearable display device displays a guide image that specifically shows the operation content for eliminating the state. In this way, it is possible to present the user with an operation for making the appropriate state in an easy-to-understand manner.
 また本発明の他の態様は、画像を表示する表示部と、ユーザーの眼前に配置され、前記表示部に表示された画像を拡大して虚像としてユーザーに提示する接眼光学部と、前記接眼光学部の接眼光軸の位置及び向きを調整可能な調整部と、を含み、前記表示部は、前記画像に前記ユーザーが適切に視認できない領域が非発生となるように、前記調整部に対する操作内容を示す指示情報を含むガイド画像を表示し、前記ガイド画像は、複数の領域に分割され、前記表示部は、第1の操作内容を示す前記指示情報を、前記ガイド画像の前記複数の領域のうちの第1の領域に表示し、前記第1の操作内容とは異なる第2の操作内容を示す前記指示情報を、前記ガイド画像の前記複数の領域のうちの前記第1の領域と異なる第2の領域に表示するウェアラブル表示装置に関係する。 Another aspect of the present invention is a display unit for displaying an image, an eyepiece optical unit disposed in front of the user's eyes, enlarging the image displayed on the display unit, and presenting the image as a virtual image to the user An adjustment unit capable of adjusting the position and orientation of the eyepiece optical axis of the department, and the display unit is operable to operate the adjustment unit such that a region where the user can not appropriately view the image is not generated Displaying a guide image including instruction information indicating the guide image, the guide image is divided into a plurality of areas, and the display unit displays the instruction information indicating a first operation content of the plurality of areas of the guide image The instruction information which is displayed in a first area of the guide images and which indicates a second operation content different from the first operation content is different from the first area of the plurality of areas of the guide image Display in area 2 Related to the trouble display device.
 本発明の他の態様では、ガイド画像を複数の領域に分割し、所与の領域で表示する操作内容と他の領域で表示する操作内容を異ならせる。ユーザーが画像を適切に観察できない状態において、当該状態を解消するための操作内容(例えば接眼光学部の移動方向や回転方向)は状態に応じて異なると考えられる。その点、本発明では、ユーザーが画像を適切に観察できない状態でも視認可能である蓋然性の高い領域を状態毎に規定し、ガイド画像の各領域に状態に応じた異なる操作内容を指示する指示情報を含ませる。これにより、ガイド画像を用いて、状態に応じた適切な操作内容をユーザーに指示すること等が可能になる。 In another aspect of the present invention, the guide image is divided into a plurality of areas, and the operation contents displayed in a given area and the operation contents displayed in another area are made different. In the state where the user can not appropriately observe the image, it is considered that the operation content (for example, the moving direction or rotation direction of the eyepiece optical unit) for canceling the state is different depending on the state. In that respect, according to the present invention, instruction information is provided that defines for each state a highly probable area that can be viewed even when the user can not appropriately observe the image, and instructs different operation contents according to the state to each area of the guide image. Include This makes it possible to use the guide image to instruct the user about the appropriate operation content according to the state.
接眼窓を通した虚像の見え方の模式図。A schematic view of how a virtual image looks through an eyepiece window. ガイド画像の例。Example of a guide image. ユーザーの頭部に装着された状態でのウェアラブル表示装置の斜視図。FIG. 2 is a perspective view of the wearable display device in a state of being attached to the head of the user. ユーザーの頭部に装着された状態でのウェアラブル表示装置の上面視図。FIG. 2 is a top view of the wearable display device in a state of being mounted on the head of a user. 接眼光学部の詳細な構成例。The detailed structural example of an eyepiece optical part. 連結部、回動機構の詳細な構成例。The detailed structural example of a connection part and a rotation mechanism. 図7(A)、図7(B)は眼球中心と接眼光学部の関係例、及びユーザーから観察される虚像の例。FIGS. 7A and 7B show an example of the relationship between the eyeball center and the eyepiece optical unit, and an example of a virtual image observed by the user. 図8(A)、図8(B)は眼球中心と接眼光学部の関係例、及びユーザーから観察される虚像の例。FIGS. 8A and 8B show an example of the relationship between the eyeball center and the eyepiece optical unit, and an example of a virtual image observed by the user. 図9(A)~図9(D)は接眼光学部の操作例。FIGS. 9A to 9D are operation examples of the eyepiece optical unit. ガイド画像の方向と、ユーザーを基準とした方向(座標系)の関係図。The relationship between the direction of a guide image and the direction (coordinate system) based on the user. 図11(A)、図11(B)は眼球中心と接眼光学部の関係例、及びユーザーから観察される虚像の例。11A and 11B show an example of the relationship between the eyeball center and the eyepiece optical unit, and an example of a virtual image observed by the user. ウェアラブル表示装置の他の構成例。The other structural example of a wearable display apparatus. 図13(A)、図13(B)は他の方式の調整部による接眼光学部の操作例。FIGS. 13A and 13B are operation examples of the eyepiece optical unit by the adjustment unit of another method.
 以下、本実施形態について説明する。なお、以下に説明する本実施形態は、請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。 Hereinafter, the present embodiment will be described. Note that the embodiments described below do not unduly limit the contents of the present invention described in the claims. Further, not all of the configurations described in the present embodiment are necessarily essential configuration requirements of the present invention.
1.本実施形態の手法
 図1に、接眼窓142を通した虚像の見え方を模式的に示す。以下では、瞳分割シースルー光学系を用いた場合を例に説明する。瞳分割シースルー光学系は、接眼レンズ(接眼窓142)の付近に光学系の射出瞳が設定されており、それによって接眼レンズを小さくすることが可能である。接眼レンズが小さいので、外界視界の光が接眼レンズの外側を通って目の瞳に入射し、シースルーを実現できる。この光学系を用いた場合、例えば接眼光学部140の先端部(接眼窓142が設けられている部分)の幅は4mm以下である。なお、本実施形態の光軸調整手法は、瞳分割シースルー光学系に限らず種々の形式の光学系を用いたヘッドマウントディスプレイに適用できる。
1. Method of the Present Embodiment FIG. 1 schematically shows how a virtual image looks through the eyepiece window 142. Below, the case where a pupil division see-through optical system is used is explained to an example. In the pupil division see-through optical system, the exit pupil of the optical system is set near the eyepiece (eyepiece window 142), which makes it possible to make the eyepiece smaller. Since the eyepiece is small, light from the outside field view can pass through the outside of the eyepiece and enter the eye pupil, thus realizing see-through. When this optical system is used, for example, the width of the tip of the eyepiece optical unit 140 (the part where the eyepiece window 142 is provided) is 4 mm or less. The optical axis adjustment method of the present embodiment is applicable not only to the pupil division see-through optical system but also to a head mounted display using various types of optical systems.
 図1に示すように、接眼光学部140を通してユーザーに観察される虚像は、ユーザーの目から見て接眼窓142の前方の虚像面に投影されているように見える。即ち、接眼窓142から虚像をのぞき込んで見ているような状態となり、これは接眼窓142と虚像を結ぶ仮想的な筒を想定し、これをのぞき込んでいる状態と解釈することができる。 As shown in FIG. 1, the virtual image observed to the user through the eyepiece optics 140 appears to be projected onto the virtual image plane in front of the eyepiece window 142 as viewed from the user's eyes. That is, the virtual image is viewed from the eyepiece window 142, and this can be interpreted as a virtual cylinder connecting the eyepiece window 142 and the virtual image and viewed as a virtual cylinder.
 後述する図7(B)に示すように、接眼光軸AXが眼球中心64の近傍(以下、眼球中心近傍と表記)を通過している場合には、筒を正面から真っ直ぐのぞき込む状態となり、接眼窓142を通してユーザーが見ることのできる範囲(以下、単に見える範囲と表記)と虚像の全体が重なって見えるので、接眼窓142を通して表示画像を欠けることなく見ることができる。この状態は、図1に示すように、ユーザーが接眼窓142を観察する方向(視線)と、接眼光学部140の接眼光軸AXの差が小さい(なす角度が所定閾値以下である、狭義には視線と接眼光軸AXが一致する)状態と言い換えることが可能である。一方、図7(A)に示すように、接眼光軸AXが眼球中心近傍を通らず、筒を斜めからのぞき込む状態となっている場合には、見える範囲と虚像がずれて、一部しか重ならないので、重なった部分の表示画像しか見えない。 As shown in FIG. 7B described later, when the eyepiece optical axis AX passes near the eyeball center 64 (hereinafter referred to as “eyeball center vicinity”), the tube looks straight from the front, and the eyepiece Since the area visible to the user through the window 142 (hereinafter simply referred to as the visible area) and the entire virtual image appear to overlap, the display image can be viewed through the eyepiece window 142 without any loss. In this state, as shown in FIG. 1, the difference between the direction in which the user observes the eyepiece window 142 (line of sight) and the eyepiece optical axis AX of the eyepiece optical unit 140 is small. Can be rephrased as a state in which the line of sight and the eyepiece optical axis AX coincide with each other. On the other hand, as shown in FIG. 7A, when the eyepiece optical axis AX does not pass near the center of the eyeball and the tube is in a state of looking into the cylinder obliquely, the visible range and the virtual image are shifted and only a part is overlapped Because you can not see, you can only see the display image of the overlapping part.
 瞳分割シースルー光学系では、視界の一部(典型的には例えば視野角10~15度)に画像が見えるように表示するので、その画像を視界の中心(正面)だけでなく周辺部に位置させることも可能である。即ち、視界の中心をクリアに保ちつつ、視界の周辺部(たとえば正面でなく、右上など)に位置させた接眼窓142を必要に応じて見ることによって、画像に表示される情報を読み取ることができる。このように自由に表示位置を決められる光学系では、ヘッドマウントディスプレイを装着したときの最初の位置決めや、使用途中での位置の変更などが想定できる。そして、その位置において画像全体が見えるように調整する必要がある。 In the pupil division see-through optical system, the image is displayed so that the image can be seen in a part of the field of view (typically, for example, a viewing angle of 10 to 15 degrees). Therefore, the image is located not only at the center (front) of the field of view but also at the periphery. It is also possible to That is, reading the information displayed in the image by looking at the eyepiece window 142 located at the periphery (for example, not the front, not the upper right, etc.) of the field of vision while keeping the center of the field of vision clear. it can. In such an optical system in which the display position can be freely determined, it is possible to assume initial positioning when the head mounted display is mounted, and change of the position during use. Then, it is necessary to make adjustments so that the entire image can be seen at that position.
 しかし、図7(A)の状態から接眼光軸AXが眼球中心近傍を通過するようにするための操作、具体的には後述する図7(B)或いは図8(B)に示す操作を直感的に把握することは容易でない。特に、ウェアラブル表示装置を使用するユーザーが初心者である場合、適切な操作がわからず、調整に時間を要するおそれがある。 However, an operation for causing the eyepiece optical axis AX to pass near the eyeball center from the state of FIG. 7A, specifically, an operation shown in FIG. 7B or FIG. It is not easy to grasp. In particular, when the user using the wearable display device is a beginner, the user may not know the appropriate operation, which may require time for adjustment.
 瞳分割シースルー光学系は、視界の中心をクリアに保ちつつ、視界の周辺部で画像を表示できるという特性上、作業現場での教示に用いられる場面も多いと考えられる。例えば、作業に慣れていない作業者にウェアラブル表示装置を装着させ、作業内容(作業手順等)を虚像として表示する。このようにすれば、作業を妨げることなく、必要に応じて作業者を補助することが可能になる。ただしこのようなケースでは、作業者はウェアラブル表示装置の操作についても初心者である蓋然性が高い。作業現場ではいちいちウェアラブル表示装置のマニュアルを確認することが容易でないことを考慮すれば、表示される画像によりウェアラブル表示装置の操作内容を指示することが好ましい。さらに言えば、指導者(熟練者)が周囲にいたとしても、画像が装着者にどのように視認されているかは当該指導者からはわからないため、やはり装着者に視認される画像において操作内容を指示するとよい。 The pupil division see-through optical system is considered to have many scenes used for teaching at the work site because it can display an image at the periphery of the field of vision while keeping the center of the field of vision clear. For example, a wearable display device is attached to a worker who is not accustomed to work, and work content (work procedure or the like) is displayed as a virtual image. In this way, it is possible to assist the worker as needed without interrupting the work. However, in such a case, the worker is likely to be a beginner also in the operation of the wearable display device. In view of the fact that it is not easy to check the manual of the wearable display device at the work site, it is preferable to indicate the operation content of the wearable display device by the displayed image. Furthermore, even if a leader (skilled person) is around, the user does not know how the image is viewed by the wearer, so the operation content is also displayed in the image visually recognized by the wearer. You may instruct.
 これに対して、特許文献1は、枠線を表示することで画像全体が視認できているか否かをユーザーに確認させることは可能であるが、どのような操作を行えば適切な状態になるかを指示していない。また特許文献2は、瞳拡大処理によりアイボックスが拡大されているため、図7(A)のように画像の片側(図7(A)の例では画像の下側)が欠損することを想定していない。即ち、特許文献2における画像の欠損とは、画像表示部が眼から離れすぎている場合に生じる画像周縁領域全体の欠損(例えば後述する図11(A))であり、表示する操作内容は、表示部を眼球に近づけるか遠ざけるかの操作に限定される。そのため特許文献2の手法は、図7(A)のように接眼光軸AXが眼球中心近傍を通らないことによる画像欠損の解消には対応していない。 On the other hand, Patent Document 1 allows the user to confirm whether or not the entire image can be viewed by displaying a frame line, but if any operation is performed, the state becomes appropriate. Do not tell. Further, in Patent Document 2, it is assumed that one side of the image (the lower side of the image in the example of FIG. 7A) is lost as shown in FIG. 7A because the eye box is enlarged by pupil enlargement processing. I did not. That is, the image loss in Patent Document 2 is a loss of the entire image peripheral area (for example, FIG. 11A to be described later) that occurs when the image display unit is too far from the eye. It is limited to the operation of bringing the display unit close to or away from the eye. Therefore, the method of Patent Document 2 does not cope with the elimination of the image loss caused by the fact that the eyepiece optical axis AX does not pass near the center of the eyeball as shown in FIG. 7A.
 本実施形態に係るウェアラブル表示装置100は、図3~図6、或いは図12に示すように、画像を表示する表示部160と、ユーザーの眼前に配置され、表示部160に表示された画像を拡大して虚像としてユーザーに提示する接眼光学部140と、接眼光学部140の接眼光軸AXの位置及び向きを調整可能な調整部180と、を含む。そして表示部160は、接眼光軸AXがユーザーの眼球中心近傍を通らない場合に、接眼光軸AXがユーザーの眼球中心近傍を通るようにするための操作内容を示す指示情報を含むガイド画像を表示する。 As shown in FIG. 3 to FIG. 6 or FIG. 12, the wearable display device 100 according to the present embodiment is provided with a display unit 160 for displaying an image and an image displayed in front of the user's eyes and displayed on the display unit 160. It includes an eyepiece optical unit 140 enlarged and presented to the user as a virtual image, and an adjustment unit 180 capable of adjusting the position and orientation of the eyepiece optical axis AX of the eyepiece optical unit 140. Then, when the eyepiece optical axis AX does not pass near the eyeball center of the user, the display unit 160 displays a guide image including instruction information indicating operation content for causing the eyepiece optical axis AX to pass near the eyeball center of the user indicate.
 ここで眼球中心64とは、眼球60の中心を表す位置(点)であって、眼球60の回転中心(眼球回旋点)等である。眼球中心64は、狭義には眼球60を球と見なした場合の球の中心である。また、眼球中心近傍とは、眼球中心64を基準とした所与の大きさの領域である。眼球中心近傍とは、眼球中心64を中心とした球状領域であってもよい。ただし、眼球中心近傍の形状、サイズを画像(虚像)の視認状態から定義してもよい。 Here, the eyeball center 64 is a position (point) representing the center of the eyeball 60, and is a rotation center (eyeball rotation point) of the eyeball 60 or the like. The eye center 64 is the center of the sphere when the eye 60 is regarded as a sphere in a narrow sense. Moreover, the vicinity of the eyeball center is a region of a given size with reference to the eyeball center 64. The vicinity of the eyeball center may be a spherical region centered on the eyeball center 64. However, the shape and size near the center of the eye may be defined from the visual state of the image (virtual image).
 視軸(視線)と接眼光軸とが略一致すれば、ユーザーは虚像全体を正しく観察することができる。逆に、視軸(視線)と接眼光軸とが一致しない場合には、ユーザーが接眼光学部140に視線を向けても、画像の一部が欠損して視認される(または全く視認できない)。 If the visual axis (line of sight) substantially matches the eyepiece optical axis, the user can correctly observe the entire virtual image. Conversely, when the visual axis (line of sight) and the eyepiece optical axis do not coincide with each other, even if the user directs the line of sight to the eyepiece optical unit 140, a part of the image is lost and visually recognized (or not visible at all) .
 眼に関して各種の軸が定義可能なことが知られている。例えば、「視軸(視線)」は、固視点と網膜中心窩を結ぶ線と定義されている。固視点とは、ユーザーがみている点(眼を動かさずにみる一点)を表し、中心窩とは、高精細な中心視野での視覚に寄与する部分であり、直径1mm程度の領域である。一方、「注視線」は、固視点と眼球回旋点(眼球の回転中心)を結ぶ線と定義される。視軸と注視線は若干ずれているものの、いずれも眼球中心近傍を通る。 It is known that various axes can be defined for the eye. For example, the “visual axis (line of sight)” is defined as a line connecting the fixation point and the retinal fovea. The fixation point represents a point at which the user is looking (a point seen without moving the eye), and the fovea is a portion contributing to vision in a high-definition central visual field, and is a region of about 1 mm in diameter. On the other hand, “gaze line” is defined as a line connecting the fixation point and the eyeball rotation point (rotation center of the eyeball). Although the visual axis and the fixation line are slightly deviated, both pass near the center of the eyeball.
 したがって、接眼光軸AXがユーザーの眼球中心近傍を通っている場合、ユーザーが接眼窓を通して虚像を観察しようとして虚像に視線を向けたときに、接眼光軸AXと視線は略一致するといえる。換言すると、画像が欠損することなく全体が正しくユーザーに視認されるとき、「接眼光軸AXはユーザーの眼球中心近傍を通っている」と表現することができる。 Therefore, when the eyepiece optical axis AX passes near the eyeball center of the user, it can be said that the eyepiece optical axis AX and the line of sight substantially coincide with each other when the user directs the gaze to the virtual image in order to observe the virtual image through the eyepiece window. In other words, when the entire image is correctly viewed by the user without loss of image, it can be expressed as "the eyepiece optical axis AX passes through the vicinity of the center of the eye of the user".
 接眼光軸AXが眼球中心近傍を通過する場合に、画像全体が視認されることに鑑みれば、眼球中心近傍のサイズを接眼光学部140の設計に基づいて設定してもよい。例えば、図7(A)、図7(B)に示した「見える範囲」と、虚像の表示範囲(位置、サイズ)は、いずれも接眼光学部140の光学特性に基づいて決定される。よって、接眼光学部140の設計が既知であれば、接眼光軸AXの眼球中心64からのズレ許容量(虚像全体を視認可能であるという条件を満たすズレの最大値)の概略的な値を事前に求めておくことが可能である。本実施形態の眼球中心近傍は、眼球中心64と当該ズレ許容量から求められてもよく、狭義には眼球中心64を中心とし、半径がズレ許容量となる球状領域であってもよい。 When the eyepiece optical axis AX passes near the eyeball center, the size in the vicinity of the eyeball center may be set based on the design of the eyepiece optical unit 140 in view of visual recognition of the entire image. For example, the “visible range” shown in FIG. 7A and FIG. 7B and the display range (position, size) of the virtual image are both determined based on the optical characteristics of the eyepiece optical unit 140. Therefore, if the design of the eyepiece optical unit 140 is known, the approximate value of the allowable deviation of the eyepiece optical axis AX from the eyeball center 64 (the maximum value of the deviation satisfying the condition that the entire virtual image is visible) It is possible to ask in advance. The vicinity of the eyeball center in the present embodiment may be obtained from the eyeball center 64 and the deviation allowance, or in a narrow sense, may be a spherical region whose center is the eyeball center 64 and the radius becomes the deviation allowance.
 ただし、眼球中心近傍の設定手法は上記に限定されない。例えば、眼球60全体の平均的なサイズに基づいて眼球中心近傍のサイズを設定することで、設定処理を簡略化してもよい。具体的には、眼球中心近傍のサイズを、眼球60の平均サイズの1/N(Nは少なくとも1より大きい数)としてもよい。 However, the setting method in the vicinity of the eyeball center is not limited to the above. For example, the setting process may be simplified by setting the size near the center of the eyeball based on the average size of the entire eyeball 60. Specifically, the size near the center of the eye may be 1 / N (N is a number larger than at least 1) of the average size of the eye 60.
 本実施形態の手法によれば、接眼光軸AXがユーザーの眼球中心近傍を通らないことで画像の一部(片側)が視認されない状態であっても、当該状態を解消するための操作内容を画像の視認可能な一部の領域を用いてユーザーに提示することが可能になる。そのため、ユーザーが初心者であっても、画像全体を視認可能にするための操作を容易に実行させることが可能である。なお、ここでの操作内容とは、狭義には接眼光学部140の位置や姿勢(以下、向きとも表記する)を変更するための操作を示す。具体的には、ここでの操作内容は、接眼光学部140の移動操作や回転操作を表すものであってもよいし、接眼光学部140を移動、回転させるための調整部180(可動部、関節、フレキシブルチューブ)に対する操作を表すものであってもよい。 According to the method of the present embodiment, even if the eyepiece optical axis AX does not pass through the vicinity of the eyeball center of the user and a part (one side) of the image is not visually recognized, the operation content for canceling the state is It is possible to present to the user using a visible partial area of the image. Therefore, even if the user is a beginner, it is possible to easily execute an operation for making the entire image visible. Note that the operation content here indicates an operation for changing the position and orientation (hereinafter also referred to as direction) of the eyepiece optical unit 140 in a narrow sense. Specifically, the operation content here may represent a moving operation or a rotating operation of the eyepiece optical unit 140, and an adjusting unit 180 (a movable unit, for moving and rotating the eyepiece optical unit 140) It may represent an operation on a joint, a flexible tube).
 ただし、接眼光軸AXが眼球中心64に対していずれの方向にずれるかに応じて、画像の欠損する部分は異なる。図7(A)のように接眼光軸AXが眼球中心64の上側(頭頂部側)にずれれば、画像の下側が欠損する。一方、接眼光軸AXが眼球中心64の下側(頭頂部と反対側、顎部側)にずれれば、画像の上側が欠損する。接眼光軸AXが眼球中心64の右側にずれれば画像の左側が欠損し、接眼光軸AXが眼球中心64の左側にずれれば画像の右側が欠損する。そして、欠損する部分が異なれば、画像全体を視認可能にするための操作も異なる。具体的には、接眼光学部140(接眼窓142)の移動方向や回転方向を異ならせる必要がある。 However, depending on which direction the eyepiece optical axis AX deviates with respect to the eyeball center 64, the portion where the image is lost differs. As shown in FIG. 7A, when the eyepiece optical axis AX is shifted to the upper side (parietal side) of the eyeball center 64, the lower side of the image is lost. On the other hand, if the eyepiece optical axis AX shifts below the eyeball center 64 (opposite to the top of the head, on the side of the chin), the upper side of the image is lost. If the eyepiece optical axis AX shifts to the right of the eyeball center 64, the left side of the image is lost. If the eyepiece optical axis AX shifts to the left of the eyeball center 64, the right side of the image is lost. And if the part to be lost is different, the operation for making the whole image visible is also different. Specifically, it is necessary to make the moving direction and the rotating direction of the eyepiece optical unit 140 (eyepiece window 142) different.
 よって本実施形態のガイド画像は、複数の領域に分割され、表示部160は、第1の操作内容を示す指示情報を、ガイド画像の複数の領域のうちの第1の領域に表示し、第1の操作内容とは異なる第2の操作内容を示す指示情報を、ガイド画像の複数の領域のうちの第1の領域と異なる第2の領域に表示する。言い換えれば、指示情報により示される操作内容は、ガイド画像の領域毎に異なる。 Therefore, the guide image of the present embodiment is divided into a plurality of areas, and the display unit 160 displays instruction information indicating the first operation content in the first area among the plurality of areas of the guide image, Instruction information indicating a second operation content different from the operation content of 1 is displayed in a second region different from the first region among the plurality of regions of the guide image. In other words, the operation content indicated by the instruction information differs for each area of the guide image.
 図2は本実施形態のガイド画像の例であり、図2のうちOB2で示した点線を外縁とする領域がガイド画像を表す。ガイド画像は、中央領域RCと、中央領域RCに対して上側の領域である上側周縁領域RU、下側の領域である下側周縁領域RD、右側の領域である右側周縁領域RR、左側の領域である左側周縁領域RLに分割される。ただし、図2はガイド画像の一例であり、領域の分割は図2に限定されない。例えば、周縁領域をより多い数に分割(例えば斜め方向を含めた8分割)する等の変形実施が可能である。 FIG. 2 is an example of a guide image according to the present embodiment, and in FIG. 2, a region whose outer edge is the dotted line indicated by OB2 represents the guide image. The guide image includes a central area RC, an upper peripheral area RU that is an area above the central area RC, a lower peripheral area RD that is a lower area, a right peripheral area RR that is a right area, and a left area. Divided into the left peripheral region RL. However, FIG. 2 is an example of the guide image, and the division of the area is not limited to FIG. For example, a modification such as dividing the peripheral area into a larger number (for example, dividing into eight including the oblique direction) is possible.
 ここで第1の領域とは、4つの周縁領域(RU,RD,RR,RL)のいずれかであり、第2の領域とは4つの周縁領域のうちの第1の領域と異なる領域である。ただし、図11(A)、図11(B)を用いて後述する変形実施のように、ガイド画像の中央領域RCにおいて、指示情報を表示することも妨げられず、図2では中央領域RCでも指示情報を表示している。そのため、第1の領域或いは第2の領域のいずれかとして中央領域RCを考えることも可能である。 Here, the first region is one of four peripheral regions (RU, RD, RR, RL), and the second region is a region different from the first one of the four peripheral regions. . However, as in the modified implementation described later with reference to FIGS. 11A and 11B, the display of instruction information in the central region RC of the guide image is not hindered either, and even in the central region RC in FIG. The instruction information is displayed. Therefore, it is also possible to consider the central area RC as either the first area or the second area.
 このようにすれば、画像の欠損状態(眼球中心64に対する接眼光軸AXのズレの状態)に応じて、ユーザーに対して適切な指示を行うことが可能になる。図7(A)に示したように、アイボックスの狭いウェアラブル表示装置では、しばしば、装着時に画像の片側が欠損する状態が発生することがある。このような状態では、画像のうち、欠損する側の反対側(図7(A)では上側)は視認可能である蓋然性が高い。よって本実施形態のガイド画像では、画像の一部が欠損したとしても画像の視認可能な一部の領域において、当該欠損を解消するための操作内容を指示する。 In this way, it is possible to give an appropriate instruction to the user according to the missing state of the image (the state of displacement of the eyepiece optical axis AX with respect to the eyeball center 64). As shown in FIG. 7A, in a wearable display device with a narrow eyebox, often, one side of an image may be lost at the time of wearing. In such a state, it is highly probable that the image on the side opposite to the missing side (the upper side in FIG. 7A) is visible. Therefore, in the guide image of the present embodiment, even in the case where a part of the image is lost, in the partial area where the image can be viewed, the operation content for eliminating the loss is indicated.
 例えばガイド画像は、画像の上側周縁領域RUに、画像の下側が欠損した状態を解消可能な操作内容を表す指示情報を含む。ユーザーからすれば、4つの周縁領域のうち、下側周縁領域RD、右側周縁領域RR、及び左側周縁領域RLは少なくとも一部が欠損し視認性が低いのに対して、上側周縁領域RUは他の3領域に比べて大きい割合の領域(狭義には領域全体)が視認可能であり視認性が相対的に高い。つまりユーザーは、ガイド画像に含まれる複数の指示情報のうち、視認性が高い指示情報に対応する操作を行えば、画像の欠損状態に応じた操作を自然に実行することになる。 For example, the guide image includes, in the upper peripheral region RU of the image, instruction information indicating operation content that can eliminate the state where the lower side of the image is lost. From the user's point of view, the lower peripheral region RD, the right peripheral region RR, and the left peripheral region RL of the four peripheral regions are at least partially defective and low in visibility, while the upper peripheral region RU is not A large percentage of the area (the entire area in a narrow sense) is visible as compared with the three areas of (3), and the visibility is relatively high. That is, if the user performs an operation corresponding to instruction information having high visibility among a plurality of pieces of instruction information included in the guide image, the user naturally executes the operation according to the image loss state.
 また、ガイド画像の分割という観点からすれば、本実施形態の手法は以下のウェアラブル表示装置100に適用できる。ウェアラブル表示装置100の表示部160は、画像にユーザーが視認できない領域が非発生となるように、調整部180に対する操作内容を示す指示情報を含むガイド画像を表示する。そしてガイド画像は複数の領域に分割され、表示部160は、第1の操作内容を示す指示情報を、ガイド画像の複数の領域のうちの第1の領域に表示し、第1の操作内容とは異なる第2の操作内容を示す指示情報を、ガイド画像の複数の領域のうちの第1の領域と異なる第2の領域に表示する。 Further, from the viewpoint of dividing the guide image, the method of the present embodiment can be applied to the following wearable display device 100. The display unit 160 of the wearable display device 100 displays a guide image including instruction information indicating an operation content to the adjusting unit 180 such that a region which can not be visually recognized by the user is not generated in the image. The guide image is divided into a plurality of areas, and the display unit 160 displays instruction information indicating the first operation content in the first area of the plurality of areas of the guide image, and the first operation content and the like. The instruction information indicating the different second operation content is displayed in a second area different from the first area among the plurality of areas of the guide image.
 このようにすれば、状況に応じて適切な操作内容が異なる場合であっても、ガイド画像を複数の領域に分割し、領域毎に指示情報により表される操作内容を異ならせることによって、ユーザーに対して適切な指示を行うことが可能になる。 In this way, the user can divide the guide image into a plurality of areas and make the operation contents represented by the instruction information different for each area even if the appropriate operation contents differ depending on the situation. It is possible to give appropriate instructions to
2.ウェアラブル表示装置の構成例
 図3、図4に、本実施形態のウェアラブル表示装置100の構成例を示す。図3は、ユーザーの頭部70に装着された状態でのウェアラブル表示装置100の斜視図である。図4は、ユーザーの頭部70に装着された状態でのウェアラブル表示装置100の上面視図である。
2. Configuration Example of Wearable Display Device FIGS. 3 and 4 show a configuration example of the wearable display device 100 according to the present embodiment. FIG. 3 is a perspective view of the wearable display device 100 in a state of being attached to the head 70 of the user. FIG. 4 is a top view of the wearable display device 100 in a state of being mounted on the head 70 of the user.
 図3、図4において、方向DX、DY、DZは互いに直角な(略直角を含む。広義には交差する)方向である。方向DXはユーザーから見て右方向(頭部70中央から右側頭部へ向かう方向)であり、方向DYはユーザーから見て上方向(頭部70中央から頭頂部へ向かう方向)であり、方向DZはユーザーから見て正面方向(頭部70中央から顔正面へ向かう方向)である。 In FIG. 3 and FIG. 4, the directions DX, DY and DZ are directions perpendicular to each other (including substantially right angles but intersecting in a broad sense). The direction DX is the right direction (the direction from the center of the head 70 to the right side of the head) as viewed from the user, and the direction DY is the upward direction (the direction from the center of the head 70 to the parietal region) as viewed from the user DZ is the front direction (the direction from the center of the head 70 to the front of the face) as viewed from the user.
 ウェアラブル表示装置100は、装着部(ヘッドマウント)、アーム130、連結部110、接眼光学部140(表示装置)を含む。またウェアラブル表示装置100は、回動機構120を含むことができる。 The wearable display device 100 includes a mounting unit (head mount), an arm 130, a connection unit 110, and an eyepiece optical unit 140 (display device). The wearable display device 100 can also include a pivoting mechanism 120.
 装着部は、ユーザー(装着者)の頭部70に装着され、アーム130や接眼光学部140を頭部70に対して保持するための装置(機構、部品)である。具体的には、装着部は、第1当接部10(第1接触部)、第2当接部20(第2接触部)、ヘッドバンド30、第1連結部40、第2連結部50を含む。なお、装着部の構成はこれに限定されない。例えば、装着部は、眼鏡型のフレーム150であってもよいし、イヤーパッド(耳当て部分)を備えたヘッドホンのような構成であってもよい。 The mounting unit is a device (mechanism and component) mounted on the head 70 of the user (wearer) and holding the arm 130 and the eyepiece optics 140 on the head 70. Specifically, the mounting portion includes the first contact portion 10 (first contact portion), the second contact portion 20 (second contact portion), the headband 30, the first connecting portion 40, and the second connecting portion 50. including. The configuration of the mounting unit is not limited to this. For example, the mounting unit may be a spectacles-type frame 150, or may be configured like a headphone equipped with an ear pad (ear pad portion).
 アーム130は、連結部110を介して第1当接部10に連結(接続)され、接眼光学部140をユーザーの所望の位置(例えばユーザーの眼前)に保持する。アーム130は、例えば直線状の又は湾曲した棒状の部材である。例えばアーム130の一端に回動機構120を介して接眼光学部140が連結(接続)され、アーム130の他端に連結部110を介して装着部が接続される。なお、連結部110はアーム130の端に設けられる必要はなく、アーム130の端から離れた部分に設けられてもよい。なお、アーム130の長さを調整するスライド機構等が更に設けられてもよい。 The arm 130 is connected (connected) to the first contact unit 10 via the connection unit 110, and holds the eyepiece optical unit 140 at a desired position of the user (for example, in front of the user's eye). The arm 130 is, for example, a linear or curved rod-like member. For example, the eyepiece optical unit 140 is connected (connected) to one end of the arm 130 via the rotation mechanism 120, and the mounting unit is connected to the other end of the arm 130 via the connection unit 110. The connecting portion 110 does not have to be provided at the end of the arm 130, and may be provided at a portion distant from the end of the arm 130. A slide mechanism or the like for adjusting the length of the arm 130 may be further provided.
 接眼光学部140は、アーム130の一端に設けられ、ユーザーの視界の一部に画像を表示する。 The eyepiece optical unit 140 is provided at one end of the arm 130 and displays an image in a part of the field of view of the user.
 図5に、接眼光学部140の詳細な構成例を示す。接眼光学部140は、光学系143を含み、表示部160に表示される画像光を光学系143により接眼窓142に導き、接眼窓142から眼球の瞳に向けて(眼球の視線に対向して視軸方向に)射出し、画像の拡大虚像を視界に表示する(網膜に画像を投影する)。光学系143は、例えばプリズムや鏡、レンズ等で構成される。接眼光学部140は、例えば瞳分割シースルー光学系方式を採用できる。 The detailed structural example of the eyepiece optical part 140 is shown in FIG. The eyepiece optical unit 140 includes an optical system 143, guides the image light displayed on the display unit 160 to the eyepiece window 142 by the optical system 143, and from the eyepiece window 142 toward the pupil of the eye (facing the eye line of sight) Emit in the direction of the visual axis) and display an enlarged virtual image of the image in the field of view (project the image on the retina). The optical system 143 includes, for example, a prism, a mirror, a lens, and the like. The eyepiece optical unit 140 can adopt, for example, a pupil division see-through optical system.
 回動機構120は、アーム130に対して接眼光学部140を回動可能に保持する機構であり、例えば表示画像の水平走査方向に平行な軸で回動可能である。或いは、その軸に直角な(略直角を含む。広義には交差する)軸で回動可能であってもよい。例えば接眼光学部140をユーザーの眼前に調整し、表示画像の水平走査方向に平行な軸を方向DXに平行にした場合において、方向DZ又は方向DYに平行な軸で回動可能であってもよい。或いは、これら3軸で自由に回動可能であってもよい。 The pivoting mechanism 120 is a mechanism for pivotably holding the eyepiece optical unit 140 with respect to the arm 130, and is pivotable, for example, on an axis parallel to the horizontal scanning direction of the display image. Alternatively, it may be pivotable about an axis perpendicular to the axis (including substantially perpendicular, generally intersecting). For example, in the case where the eyepiece optical unit 140 is adjusted in front of the user's eyes and the axis parallel to the horizontal scanning direction of the display image is parallel to the direction DX, even if it can be pivoted about the axis parallel to the direction DZ or the direction DY. Good. Alternatively, it may be freely pivotable in these three axes.
 連結部110は、アーム130と装着部とを連結する機構(部品)であり、装着部に対してアーム130を回動可能に保持する機構である。具体的には、連結部110は、第1の回動機構111と第2の回動機構112とを含む。 The connection portion 110 is a mechanism (part) for connecting the arm 130 and the mounting portion, and is a mechanism for rotatably holding the arm 130 with respect to the mounting portion. Specifically, the connection portion 110 includes a first rotation mechanism 111 and a second rotation mechanism 112.
 第1の回動機構111は、第1軸TX1でアーム130を回動可能な回動機構である。第2の回動機構112は、第1の回動機構111よりも装着部側に設けられ、第2軸TX2と第3軸TX3とを含む自由度でアーム130を回動可能な回動機構である。第2軸TX2は、第1軸TX1に直角な軸である。第3軸TX3は、第2軸TX2に直角で且つ第1軸TX1に交差する(非平行な)軸である。即ち、3軸のうち隣り合う2軸(第1軸TX1と第2軸TX2、第2軸と第3軸TX3)が直角になっている。なお、第2軸TX2での回動により第1軸TX1の方向が変わるので、第3軸TX3と第1軸TX1とが成す角度は不定であり、直角とは限らない。 The first pivoting mechanism 111 is a pivoting mechanism capable of pivoting the arm 130 on the first axis TX1. The second pivoting mechanism 112 is provided closer to the mounting portion than the first pivoting mechanism 111, and is capable of pivoting the arm 130 with a degree of freedom including the second shaft TX2 and the third shaft TX3. It is. The second axis TX2 is an axis perpendicular to the first axis TX1. The third axis TX3 is an axis perpendicular to the second axis TX2 and (non-parallel) to the first axis TX1. That is, adjacent two of the three axes (the first axis TX1 and the second axis TX2, and the second axis and the third axis TX3) are at right angles. In addition, since the direction of the first axis TX1 is changed by the rotation on the second axis TX2, the angle formed by the third axis TX3 and the first axis TX1 is indeterminate and is not limited to a right angle.
 ここで、第2軸TX2と第3軸TX3とを含む自由度で回動可能であるとは、第2軸TX2での回動、第3軸TX3での回動のみが可能な場合と、それ以外の軸での回動が更に可能な場合と、例えばボールジョイント等のような任意の軸で回動可能な場合とを含む。 Here, being rotatable with a freedom degree including the second axis TX2 and the third axis TX3 means that only rotation on the second axis TX2 and rotation on the third axis TX3 are possible, and There are cases where rotation with other axes is further possible and cases where rotation is possible with any axis, such as a ball joint or the like.
 図6に、連結部110の詳細な構成例を示す。連結部110は、部材(部品)15、171~175を含む。これらの部材は例えば樹脂等により形成される。 The detailed structural example of the connection part 110 is shown in FIG. The connection portion 110 includes members (parts) 15, 171 to 175. These members are formed of, for example, a resin or the like.
 アーム130の一端には接眼光学部140が連結されており、他端には第1軸TX1で回動する第1ジョイントが設けられている。第1ジョイントには第1リンク(部材174)の一端が連結され、第1リンクの他端には第2軸TX2で回動する第2ジョイントが設けられている。第2ジョイントには第2リンク(部材172)の一端が連結され、第2リンクの他端には第3軸TX3を含む自由度で回動する第3ジョイントが設けられる。第3ジョイントには基部(部材15)が連結され、基部は第1当接部10に固定される。なお、図1、図2の第1の回動機構111には第1ジョイントが対応し、第2の回動機構112には第2、第3ジョイントが対応する。 The eyepiece optical unit 140 is connected to one end of the arm 130, and the other end is provided with a first joint that pivots about a first axis TX1. One end of a first link (member 174) is connected to the first joint, and the other end of the first link is provided with a second joint that rotates about a second shaft TX2. One end of a second link (member 172) is connected to the second joint, and the other end of the second link is provided with a third joint that rotates with a degree of freedom including a third axis TX3. A base (member 15) is connected to the third joint, and the base is fixed to the first contact portion 10. The first joint corresponds to the first pivoting mechanism 111 in FIGS. 1 and 2, and the second and third joints correspond to the second pivoting mechanism 112.
 より具体的には、第1、第2ジョイントの各ジョイントは、1つのピンを軸に回動するピンジョイントである。即ち、アーム130の他端にはコの字型の(U-shaped)凹部が設けられ、その凹部に第1リンク(部材174)の一端が挿入され、凹部と第1リンクの一端にピン(部材175)が貫通している。同様に、第2リンク(部材172)の一端にはコの字型の(U-shaped)凹部が設けられ、その凹部に第1リンク(部材174)の他端が挿入され、凹部と第1リンクの他端にピン(部材173)が貫通している。これらのピン(部材175、173)を軸とする回動によって、第1軸TX1、第2軸TX2での回動が実現される。第1軸TX1、第2軸TX2は直角なので、ピン(部材175、173)は直角を成すように設けられている。 More specifically, each joint of the first and second joints is a pin joint that pivots about one pin. That is, the U-shaped (U-shaped) recess is provided at the other end of the arm 130, one end of the first link (member 174) is inserted into the recess, and the pin (one end) is inserted into the recess and one end of the first link. The member 175) is penetrating. Similarly, a U-shaped (U-shaped) recess is provided at one end of the second link (member 172), the other end of the first link (member 174) is inserted in the recess, and the recess and the first A pin (member 173) passes through the other end of the link. By rotation around these pins (members 175 and 173), rotation on the first axis TX1 and the second axis TX2 is realized. Since the first axis TX1 and the second axis TX2 are at right angles, the pins (members 175 and 173) are provided at right angles.
 第3ジョイントは、3軸の自由度で自在に回動可能なボールジョイントである。即ち、第2リンク(部材172)の他端には、第3ジョイントのボール受け(部材171のボールが嵌まり合う穴)が設けられる。部材171はボールジョイントのボール部分であり、基部である部材15の一端からボールが突出した構造となっている。このボールとボール受けとの間が自在に摺動する(滑り動く)ことで、第3軸TX3を含む自由度の回動が実現される。第3軸TX3は第2軸TX2に直角な軸であり、例えば第2リンク(部材172)の長手方向に沿った軸である。即ち、第2リンクの長手方向を軸に第2リンクを回動させると、第3軸TX3で回動することになる。また、ボールジョイントによって、第2リンクの長手方向に直角な方向に第2リンクを回動させることも可能である。 The third joint is a ball joint that can freely rotate with three degrees of freedom. That is, at the other end of the second link (member 172), the ball receiver of the third joint (a hole into which the ball of the member 171 fits) is provided. The member 171 is a ball portion of a ball joint, and has a structure in which a ball protrudes from one end of a member 15 which is a base. By freely sliding (sliding) between the ball and the ball receiver, rotation of a degree of freedom including the third axis TX3 is realized. The third axis TX3 is an axis perpendicular to the second axis TX2, and is, for example, an axis along the longitudinal direction of the second link (member 172). That is, when the second link is pivoted about the longitudinal direction of the second link, it pivots on the third axis TX3. It is also possible to pivot the second link in a direction perpendicular to the longitudinal direction of the second link by means of a ball joint.
 各部材の形状は例えば以下のようである。即ち、第1リンクである部材174、第2リンクである部材172は、円柱状或いは四角柱状等の棒状の部材である。基部である部材15は、例えば四角柱状である。部材15、171は例えば一体に形成される。なお、部材15の形状はこれに限定されない。例えば、部材15は第1当接部10の湾曲形状に沿って湾曲する板状部材であってもよい。或いは、第1当接部10に直接に部材171が固定又は一体形成され、部材15が省略されてもよい。 The shape of each member is, for example, as follows. That is, the member 174 which is the first link and the member 172 which is the second link are rod-like members having a cylindrical shape or a square pole shape. The member 15 which is a base is, for example, a square pole. The members 15, 171 are, for example, integrally formed. The shape of the member 15 is not limited to this. For example, the member 15 may be a plate-like member that curves along the curved shape of the first contact portion 10. Alternatively, the member 171 may be fixed or formed directly on the first contact portion 10, and the member 15 may be omitted.
 本実施形態における調整部180は、接眼光学部140(接眼窓142)の位置及び姿勢を調整可能な構成であり、図3~図6の例で言えば回動機構120及び連結部110(第1の回動機構111と第2の回動機構112)により実現される。また、調整部180はアーム130を含んでもよい。 The adjustment unit 180 in the present embodiment is configured to be able to adjust the position and posture of the eyepiece optical unit 140 (eyepiece window 142), and in the example of FIGS. This is realized by the first rotation mechanism 111 and the second rotation mechanism 112). Also, the adjustment unit 180 may include an arm 130.
3.操作内容及びガイド画像の例
 図7(A)~図8(B)は、接眼光軸AXと眼球中心64の関係を示す図である。図7(A)~図8(B)は、眼球60を右側から観察(透視)した側面図である。また、図7(A)、図8(A)は、いずれも接眼光学部140(調整部180)に対する操作前の状態を表す図である。
3. Example of Operation Content and Guide Image FIGS. 7A to 8B are diagrams showing the relationship between the eyepiece optical axis AX and the eyeball center 64. FIG. FIG. 7A to FIG. 8B are side views in which the eyeball 60 is observed (viewed) from the right side. Moreover, FIG. 7 (A) and FIG. 8 (A) are figures which represent the state before operation with respect to the eyepiece optical part 140 (adjustment part 180), respectively.
 図7(A)或いは図8(A)に示したように、接眼光軸AXが眼球中心64に対して上側(頭頂部側、DY側)にずれている場合、接眼光軸AXが眼球中心64を通るようにする操作は、2つ考えられる。1つは図7(B)に示すように、接眼光学部140(接眼窓142)の位置を下に移動させる移動操作である。もう1つは図8(B)に示すように、接眼光学部140の姿勢を変化させる回転操作(あおり操作、チルト操作)である。いずれの操作でも、接眼光軸AXが眼球中心近傍を通過するようになるため、画像の欠損を低減(解消)することが可能になる。 As shown in FIG. 7A or FIG. 8A, when the eyepiece optical axis AX deviates to the upper side (parietal side, DY side) with respect to the eyeball center 64, the eyepiece optical axis AX is the eyeball center There are two possible operations for passing 64. One is a moving operation for moving the position of the eyepiece optical unit 140 (eyepiece window 142) downward as shown in FIG. 7 (B). The other is a rotation operation (a tilt operation, a tilt operation) for changing the posture of the eyepiece optical unit 140 as shown in FIG. 8 (B). In any of the operations, the eyepiece optical axis AX passes near the center of the eyeball, so that it is possible to reduce (eliminate) image defects.
 図7(B)は、移動操作を説明する図である。図7(A)に示した状態では、ユーザーは眼球正面に対して上側に位置する接眼窓142を観察する。見える範囲は、接眼窓142(有効径)を見込む角の内側であるため、図7(A)に示したように、眼球正面よりも上側の範囲となる。それに対して、虚像は接眼光軸AXに垂直、且つ接眼光学部140の設計に基づいて所定の画角、所定の距離に形成される。結果として、ユーザーが視認できるのは画像(虚像)の上側のみとなり、画像の下側が欠損する。 FIG. 7B is a diagram for explaining the moving operation. In the state shown in FIG. 7A, the user observes the eyepiece window 142 located above the front of the eye. The visible range is the inside of the angle at which the eyepiece window 142 (effective diameter) is viewed, and therefore, as shown in FIG. 7A, it is a range above the front of the eye. On the other hand, the virtual image is formed perpendicular to the eyepiece optical axis AX and at a predetermined angle of view and a predetermined distance based on the design of the eyepiece optical unit 140. As a result, only the upper side of the image (virtual image) can be viewed by the user, and the lower side of the image is lost.
 図7(B)は、図7(A)の状態から、接眼光学部140(接眼窓142)を下側(ユーザーの眼球正面)に移動させる操作を行った後の状態を表す図である。図7(B)の状態では、見える範囲内に虚像が収まるため、画像全体を視認可能となる。つまり表示部160は、ガイド画像のうち、図7(A)の状態でも見える上側周縁領域RUにおいて、接眼光学部140を下側に移動させる操作を示す指示情報を表示するとよい。図2の例では、表示部160は、ガイド画像の上側周縁領域RUにおいて、「下に移動」というテキスト形式の指示情報を表示する。 FIG. 7B is a diagram showing a state after the operation of moving the eyepiece optical unit 140 (eyepiece window 142) downward (front of the user's eye) from the state of FIG. 7A. In the state of FIG. 7B, the virtual image fits within the visible range, so the entire image can be viewed. That is, the display unit 160 may display instruction information indicating an operation of moving the eyepiece optical unit 140 downward in the upper peripheral region RU which can be seen in the state of FIG. 7A in the guide image. In the example of FIG. 2, the display unit 160 displays, in the upper peripheral region RU of the guide image, instruction information in a text format of “move down”.
 なお、図7(B)の移動操作により、見える範囲がユーザーから見て下に移動する。また、接眼光学部140を平行移動することで虚像も同じだけ平行移動することになるが、接眼光学部140の移動距離(例えば数mm)に対して、眼球60から虚像までの距離(例えば500~2000mm)は十分大きいため、この移動操作で虚像の位置はほとんど変化しない。つまり接眼光学部140の移動操作は、ユーザーの視界における虚像の位置をほぼ固定したまま、見える範囲を虚像の位置に合わせるような操作と考えることが可能である。移動操作では、ユーザーの視界内で一部だけ見えている虚像の位置を動かさずに、そのまま全体を見えるようにしたいという場合に有効である。 Note that the viewable range moves downward as viewed from the user by the move operation in FIG. 7B. Also, the parallel movement of the eyepiece optical unit 140 translates the virtual image by the same amount, but the distance from the eye 60 to the virtual image (eg 500) with respect to the movement distance of the eyepiece optical unit 140 (eg several mm) The position of the virtual image is hardly changed by this moving operation because the distance of -2000 mm) is sufficiently large. In other words, the moving operation of the eyepiece optical unit 140 can be considered as an operation in which the visible range is aligned with the position of the virtual image while the position of the virtual image in the field of view of the user is substantially fixed. The movement operation is effective when it is desired to make the entire image visible without moving the position of the virtual image which is only partially visible in the user's view.
 一方、図8(B)は回転操作を説明する図である。図8(B)は、図8(A)の状態から、接眼光学部140(接眼窓142)を上下方向に回転させる操作を行った後の状態を表す図である。ここでの回転は、接眼光軸AXのうち眼球60と接眼窓142の間の部分(AX1)を下側に回転させ、接眼光軸AXのうち接眼窓142よりも前方(眼球60から遠い側,AX2)を上側に回転させる操作である。図8(B)の状態でも、見える範囲内に虚像が収まるため、画像全体を視認可能となる。つまり表示部160は、ガイド画像のうち、図8(A)でも見える上側周縁領域RUにおいて、接眼光学部140を回転させる操作(上に煽る操作、上チルト操作)を示す指示情報を表示するとよい。図2の例では、表示部160は、ガイド画像の上側周縁領域RUにおいて、「上に煽り」というテキスト形式の指示情報を表示する。 On the other hand, FIG. 8 (B) is a figure explaining rotation operation. FIG. 8B is a diagram showing a state after an operation of rotating the eyepiece optical unit 140 (eyepiece window 142) in the vertical direction from the state of FIG. 8A. In this rotation, the portion (AX1) between the eyeball 60 and the eyepiece window 142 in the eyepiece optical axis AX is rotated downward, and the side of the eyepiece optical axis AX ahead of the eyepiece window 142 (the side farther from the eyeball 60) , AX2) are rotated upward. Even in the state of FIG. 8B, since the virtual image falls within the visible range, the entire image can be viewed. That is, the display unit 160 may display instruction information indicating an operation (an operation for turning upward, an upper tilt operation) for rotating the eyepiece optical unit 140 in the upper peripheral region RU which can be seen also in FIG. . In the example of FIG. 2, the display unit 160 displays, in the upper peripheral region RU of the guide image, the instruction information in the text format of “skip up”.
 なお、図8(B)の回転操作では、ユーザーの視界における見える範囲の位置はほぼ変わらずに、虚像が上に移動する。つまり接眼光学部140の回転操作は、ユーザーの視界における見える範囲の位置をほぼ固定しておき、虚像の位置を見える範囲に合わせるような操作と考えることが可能である。回転操作では、ユーザーの視界内での見える範囲の位置を動かさずに、その中に画像全体を見えるようにしたい(例えば視界の少し上側にある見える範囲を動かさずに虚像が見えるようにしたい)という場合に有効である。 In the rotation operation of FIG. 8B, the position of the visible range in the field of view of the user does not substantially change, and the virtual image moves upward. That is, the rotational operation of the eyepiece optical unit 140 can be considered to be an operation in which the position of the visible range in the field of view of the user is substantially fixed and the position of the virtual image is adjusted to the visible range. In the rotation operation, you do not want to move the position of the visible range in the field of view of the user, but you want to make the entire image visible in it (for example, you want to make the virtual image visible without moving the visible range slightly above the field of view) It is effective in that case.
 図9(A)は移動操作の具体例を表す側面図であり、図9(B)は回転操作の具体例を表す側面図である。なお、図9(A)、図9(B)では回動機構120及び連結部110をそれぞれボールジョイントで表現しているが、具体的な構成は種々の変形実施が可能である。図9(A)に示したように、接眼光学部140の下方向への移動操作は、DX(TX1)を回転軸とした連結部110の回転操作により実現できる。また図9(B)に示したように、接眼光学部140の回転操作は、DXを回転軸とした回動機構120の回転操作により実現できる。 FIG. 9 (A) is a side view showing a specific example of the movement operation, and FIG. 9 (B) is a side view showing a specific example of the rotation operation. 9A and 9B, the pivoting mechanism 120 and the connecting portion 110 are respectively represented by ball joints, but the specific configuration can be variously modified. As shown in FIG. 9A, the downward movement operation of the eyepiece optical unit 140 can be realized by the rotation operation of the connecting unit 110 with DX (TX1) as the rotation axis. Further, as shown in FIG. 9B, the rotation operation of the eyepiece optical unit 140 can be realized by the rotation operation of the rotation mechanism 120 with DX as the rotation axis.
 以上では接眼光軸AXが眼球中心64の上側にずれる例を示したが、他の方向にずれる場合も同様に考えればよい。具体的には、接眼光軸AXが眼球中心64の下側にずれる場合、虚像の上側が欠損し、当該欠損の解消には上側にずれる場合とは反対の操作、即ち接眼光学部140の上方向への移動操作、又は接眼光学部140の逆方向への回転操作が必要となる。表示部160は、ガイド画像のうち、接眼光軸AXが眼球中心64の下側にずれても視認可能な下側周縁領域RDにおいて、接眼光学部140を上側に移動させる操作を示す指示情報、及び接眼光学部140を回転させる操作(下に煽る操作、下チルト操作)を示す指示情報の少なくとも一方を表示するとよい。図2の例では、表示部160は、ガイド画像の下側周縁領域RDにおいて、「上に移動」及び「下に煽り」というテキスト形式の指示情報を表示する。 Although the example in which the eyepiece optical axis AX is shifted to the upper side of the eyeball center 64 has been described above, the case of shifting in other directions may be considered similarly. Specifically, when the eyepiece optical axis AX is displaced below the eyeball center 64, the upper side of the virtual image is lost, and the operation opposite to the case where the eyepiece is displaced upward for eliminating the defect, ie, above the eyepiece optics 140 A movement operation in the direction or a rotation operation in the reverse direction of the eyepiece optics 140 is required. The display unit 160 is instruction information indicating an operation of moving the eyepiece optical unit 140 upward in the lower peripheral region RD which can be visually recognized even if the eyepiece optical axis AX is shifted to the lower side of the eyeball center 64 in the guide image. And it is good to display at least one of the indication information which shows operation (operation which turns down, down tilt operation) which rotates eyepiece optics part 140. In the example of FIG. 2, the display unit 160 displays instruction information in the form of text “move up” and “move down” in the lower peripheral region RD of the guide image.
 また、以上では図7(A)~図8(B)を側面図として説明したが、図7(A)~図8(B)を上面図(頭頂部側から観察した図)としてみれば、図7(A)及び図8(A)は接眼光軸AXが眼球中心64の左側にずれた状態を示す図であり、図7(B)は当該ズレを解消する移動操作、図8(B)は当該ズレを解消する回転操作を表す図と考えることが可能である。 Furthermore, although the side views of FIG. 7A to FIG. 8B are described above, if FIG. 7A to FIG. 8B are viewed as a top view (a view observed from the top of the head), FIGS. 7A and 8A show a state in which the eyepiece optical axis AX is shifted to the left of the eyeball center 64, and FIG. 7B is a moving operation for eliminating the shift, FIG. Can be considered as a diagram representing a rotation operation for eliminating the deviation.
 即ち、接眼光軸AXが眼球中心64の左側にずれる場合、接眼光学部140の右方向への移動操作により画像の欠損を解消できる。また接眼光軸AXが眼球中心64の左側にずれる場合、接眼光軸AXのうち眼球60と接眼窓142の間の部分(AX1)を右側に回転させ、接眼光軸AXのうち接眼窓142よりも前方(AX2)を左側に回転させる回転操作により、画像の欠損を解消できる。よって表示部160は、ガイド画像の左側周縁領域RLにおいて、接眼光学部140を右側に移動させる操作を示す指示情報、及び接眼光学部140を回転させる操作(左に煽る操作、左チルト操作)を示す指示情報の少なくとも一方を表示するとよい。図2の例では、表示部160は、ガイド画像の左側周縁領域RLにおいて、「右に移動」及び「左に煽り」というテキスト形式の指示情報を表示する。 That is, when the eyepiece optical axis AX is shifted to the left of the eyeball center 64, the image loss can be eliminated by moving the eyepiece optical unit 140 to the right. When the eyepiece optical axis AX is shifted to the left of the eyeball center 64, a portion (AX1) between the eyeball 60 and the eyepiece window 142 in the eyepiece optical axis AX is rotated to the right, and from the eyepiece window 142 of the eyepiece optical axis AX. The image loss can be eliminated by rotating the front (AX2) to the left. Therefore, in the left peripheral region RL of the guide image, the display unit 160 instructs information indicating an operation to move the eyepiece optical unit 140 to the right, and an operation to rotate the eyepiece optical unit 140 (operation to turn to the left, left tilt operation). It is preferable to display at least one of the instruction information to be shown. In the example of FIG. 2, the display unit 160 displays instruction information in text format “move to the right” and “move to the left” in the left peripheral region RL of the guide image.
 同様に、接眼光軸AXが眼球中心64の右側にずれる場合、虚像の左側が欠損し、当該欠損の解消には左側にずれる場合とは反対の操作、即ち接眼光学部140の左方向への移動操作、又は接眼光学部140の逆方向への回転操作が必要となる。表示部160は、ガイド画像の右側周縁領域RRにおいて、接眼光学部140を左側に移動させる操作を示す指示情報、及び接眼光学部140を回転させる操作(右に煽る操作、右チルト操作)を示す指示情報の少なくとも一方を表示するとよい。図2の例では、表示部160は、ガイド画像の右側周縁領域RRにおいて、「左に移動」及び「右に煽り」というテキスト形式の指示情報を表示する。 Similarly, when the eyepiece optical axis AX deviates to the right of the eyeball center 64, the left side of the virtual image is lost, and for the elimination of the defect, the opposite operation to the case of the leftward deviation, ie, to the left of the eyepiece 140. A movement operation or a rotation operation in the reverse direction of the eyepiece optical unit 140 is required. The display unit 160 indicates instruction information indicating an operation to move the eyepiece optical unit 140 to the left and an operation to rotate the eyepiece optical unit 140 (operation to the right, right tilt operation) in the right peripheral region RR of the guide image. At least one of the instruction information may be displayed. In the example of FIG. 2, the display unit 160 displays instruction information in text format “move to left” and “move to right” in the right peripheral region RR of the guide image.
 図9(C)は移動操作の具体例を表す上面図であり、図9(D)は回転操作の具体例を表す上面図である。図9(C)、図9(D)は、接眼光軸AXが右側にずれた場合の操作に対応する。図9(C)に示したように、接眼光学部140の左方向への移動操作は、DY(TX2)を回転軸とした連結部110の回転操作により実現できる。また図9(D)に示したように、接眼光学部140の回転操作は、DYを回転軸とした回動機構120の回転操作により実現できる。 FIG. 9C is a top view showing a specific example of the movement operation, and FIG. 9D is a top view showing a specific example of the rotation operation. FIGS. 9C and 9D correspond to the operation when the eyepiece optical axis AX shifts to the right. As shown in FIG. 9C, the movement operation of the eyepiece optical unit 140 in the left direction can be realized by the rotation operation of the connecting unit 110 with DY (TX2) as the rotation axis. Further, as shown in FIG. 9D, the rotation operation of the eyepiece optical unit 140 can be realized by the rotation operation of the rotation mechanism 120 having DY as a rotation axis.
 なお、以上では説明を簡略化するため、図9(A)、図9(C)の移動操作が、連結部110の回転操作により実現される例を示した。しかし厳密には、連結部110の回転操作では、接眼光学部140は位置だけでなく姿勢も変化する。よって、接眼光学部140の移動操作は、連結部110の回転操作と、回動機構120の回転操作の組み合わせにより実現されてもよい。また、調整部180が、図9(A)~図9(D)の例に比べて多くの可動部(関節)を有することも妨げられない。 In the above, in order to simplify the description, an example in which the movement operation of FIGS. 9A and 9C is realized by the rotation operation of the connecting portion 110 has been shown. However, strictly speaking, when the connecting portion 110 is rotated, not only the position but also the posture of the eyepiece optical unit 140 changes. Therefore, the movement operation of the eyepiece optical unit 140 may be realized by a combination of the rotation operation of the connection unit 110 and the rotation operation of the rotation mechanism 120. In addition, it is not hindered that the adjusting unit 180 has more movable parts (joints) as compared with the example of FIGS. 9A to 9D.
 また、以上ではガイド画像に表示される指示情報がテキスト情報である例を示した。ただし、指示情報として他の形態を用いてもよい。例えば、図2に示したように、テキスト情報とともに(或いはテキスト情報に代えて)移動方向や回転方向を表すアイコンを表示してもよい。図2ではアイコンとして矢印を用いる例を示したが、移動方向や回転方向を明示できる他のアイコンを用いることも可能である。 Also, the example has been described above in which the instruction information displayed on the guide image is text information. However, other forms may be used as instruction information. For example, as shown in FIG. 2, an icon representing a moving direction or a rotating direction may be displayed together with (or in place of) text information. Although an example in which an arrow is used as an icon is shown in FIG. 2, it is also possible to use another icon which can clearly indicate the moving direction or the rotating direction.
 また、指示情報は静止画情報や動画情報であってもよい。例えば、図9(A)~図9(D)に示した画像を、それぞれ指示情報として用いてもよい。図9(A)等は、静止画として表示されてもよいし、調整部180(連結部110、回動機構120、アーム130)の姿勢変化をアニメーション表示する動画として表示されてもよい。 The instruction information may be still image information or moving image information. For example, the images shown in FIGS. 9A to 9D may be used as instruction information. FIG. 9A or the like may be displayed as a still image, or may be displayed as a moving image that animates a change in posture of the adjustment unit 180 (the connection unit 110, the rotation mechanism 120, the arm 130).
 以上のように、本実施形態に係るウェアラブル表示装置100の表示部160は、接眼光軸AXがユーザーの眼球中心近傍を通らない場合に視認される領域に指示情報を含むガイド画像を表示する。 As described above, the display unit 160 of the wearable display device 100 according to the present embodiment displays a guide image including instruction information in a region visually recognized when the eyepiece optical axis AX does not pass near the center of the eyeball of the user.
 ここで、ガイド画像のうちの「接眼光軸AXがユーザーの眼球中心近傍を通らない場合に視認される領域」は、接眼光軸AXが眼球中心64に対してどちら側にずれているかに応じて異なる領域となり、図7(A)のように接眼光軸AXが眼球中心64の上側に位置する例であれば、上側周縁領域RUに対応する。接眼光軸AXがユーザーの眼球中心近傍を通らない場合、画像の一部が欠損したとしても、反対側の領域は視認可能である蓋然性が高い。ガイド画像の一部が欠損している場合において、それでも視認可能な領域がどの領域で、接眼光軸AXが眼球中心64に対してどちら側にずれているかを推定可能である。即ち、ガイド画像の各領域と、ガイド画像全体を視認可能にするために必要な操作内容との対応づけが可能である。よって、ガイド画像の各領域に当該操作内容を表す指示情報を含ませることにより、ユーザーに対して適切な調整を指示することが可能になる。 Here, “a region visually recognized when the eyepiece optical axis AX does not pass near the eyeball center of the user” in the guide image corresponds to which side the eyepiece optical axis AX is shifted with respect to the eyeball center 64. In the case where the eyepiece optical axis AX is located above the eyeball center 64 as shown in FIG. 7A, it corresponds to the upper peripheral region RU. If the eyepiece optical axis AX does not pass near the center of the user's eye, the opposite region is highly likely to be visible even if a part of the image is lost. In the case where a part of the guide image is missing, it is possible to estimate to which side the viewable optical axis AX is deviated with respect to the eyeball center 64 in which area still visible. That is, it is possible to associate each area of the guide image with the operation content necessary to make the entire guide image visible. Therefore, by including instruction information representing the operation content in each area of the guide image, it is possible to instruct the user to perform appropriate adjustment.
 また、表示部160は、接眼光軸AXが眼球中心近傍を通るようにするための操作内容を示す指示情報を、ガイド画像のうち、中央領域より外側の周縁領域に表示する。 In addition, the display unit 160 displays instruction information indicating an operation content for causing the eyepiece optical axis AX to pass near the center of the eyeball, in a peripheral region outside the central region in the guide image.
 接眼光軸AXがユーザーの眼球中心近傍を通らない場合とは、画像の一方側の周縁領域が欠損し、他方側の領域は視認可能である蓋然性が高い。つまり、接眼光軸AXがユーザーの眼球中心近傍を通らない状態を解消するには、周縁領域を用いてユーザーに操作内容を指示するとよい。 In the case where the eyepiece optical axis AX does not pass near the eyeball center of the user, there is a high probability that the peripheral region on one side of the image is lost and the region on the other side is visible. That is, in order to eliminate the state in which the eyepiece optical axis AX does not pass through the vicinity of the eyeball center of the user, it is preferable to instruct the user for the operation content using the peripheral area.
 また、表示部160は、接眼光学部140の位置を変更する移動操作、及び接眼光学部140の姿勢を変更する回転操作の少なくとも一方の操作内容を示す指示情報を含むガイド画像を表示する。 In addition, the display unit 160 displays a guide image including instruction information indicating at least one operation content of a movement operation for changing the position of the eyepiece optical unit 140 and a rotation operation for changing the posture of the eyepiece optical unit 140.
 ここで、移動操作とは狭義には接眼光学部140の位置(狭義には接眼窓142の位置)を変更し、且つ接眼光学部140の姿勢を変更しない操作(並進移動操作)を表す。接眼光学部140の位置は、例えば所与の座標系(例えば図1のDX、DY、DZの3軸により規定される3次元座標系)における座標値で表され、姿勢は座標系の各軸周りの回転角度(基準姿勢に対する変化角)で表される。一方、回転操作とは狭義には接眼光学部140の姿勢を変更し、且つ接眼光学部140の位置を変更しない操作を表す。なお、ここではガイド画像で表示される指示情報に対応する操作内容が、移動操作と回転操作に分けられることを示しているのであって、ユーザーが当該指示情報に基づいて移動と回転が組み合わされた操作を行うことは妨げられない。 Here, the movement operation refers to an operation (translational movement operation) in which the position of the eyepiece optical unit 140 (in a narrow sense, the position of the eyepiece window 142) is changed in a narrow sense and the posture of the eyepiece optical unit 140 is not changed. The position of the eyepiece optical unit 140 is represented, for example, by coordinate values in a given coordinate system (for example, a three-dimensional coordinate system defined by three axes DX, DY, DZ in FIG. 1), and the posture is each axis of the coordinate system It is expressed by a rotation angle (a change angle with respect to a reference posture). On the other hand, in a narrow sense, the rotation operation represents an operation of changing the posture of the eyepiece optical unit 140 and not changing the position of the eyepiece optical unit 140. Here, it is shown that the operation content corresponding to the instruction information displayed in the guide image is divided into the moving operation and the rotation operation, and the user combines movement and rotation based on the instruction information. There is no hindrance to performing
 図2の例であれば、移動操作とは上下左右での移動に対応し、回転操作とは上下左右での煽り(AX1を上下左右方向へ回転させる操作)に対応する。また、具体的な操作は、例えば図9(A)~図9(D)のように、調整部180の所定軸回りでの回転操作により実現されてもよい。上述したように、移動操作ではユーザー視界内での見える範囲の位置が変化するが、回転操作では見える範囲の位置が変化しない。つまり移動操作と回転操作の両方を示す指示情報を表示することで、見える範囲の位置をユーザー自身に自由に選択させることが可能である。或いは、ガイド画像が移動操作と回転操作の一方だけの操作内容を表す指示情報を含むことで、ユーザー視界内での虚像の位置を変えずに調整するか、ユーザー視界内での見える範囲の位置を変えずに調整するかを予め決定しておくことも可能である。 In the example of FIG. 2, the movement operation corresponds to the movement in the vertical and horizontal directions, and the rotation operation corresponds to the turning in the vertical and horizontal directions (an operation to rotate the AX 1 in the vertical and horizontal directions). Further, the specific operation may be realized by, for example, a rotation operation around the predetermined axis of the adjustment unit 180 as shown in FIG. 9 (A) to FIG. 9 (D). As described above, in the movement operation, the position of the visible range in the user view changes, but in the rotation operation, the position of the visible range does not change. That is, by displaying instruction information indicating both the moving operation and the rotating operation, the user can freely select the position of the visible range. Alternatively, the guide image includes instruction information representing the operation content of only one of the movement operation and the rotation operation to adjust without changing the position of the virtual image in the user view or the position of the viewable range in the user view It is also possible to decide in advance whether to adjust without changing.
 また、ガイド画像のうちの、中央領域RCよりも第1の方向側の領域を第1の周縁領域とし、中央領域RCよりも第1の方向と反対方向の第2の方向側の領域を第2の周縁領域とした場合に、表示部160は、第2の周縁領域が視認されない場合に、第2の周縁領域を視認可能にするための操作内容を示す指示情報を、第1の周縁領域に表示する。 In the guide image, a region on the first direction side with respect to the central region RC is defined as a first peripheral region, and a region on the second direction opposite to the first direction with respect to the central region RC is When the second peripheral region is not visually recognized in the case of the peripheral region of 2, the first peripheral region is instruction information indicating operation content for making the second peripheral region visible when the second peripheral region is not visually recognized. Display on
 ここで、(第1の方向,第2の方向,第1の周縁領域,第2周縁領域)の組み合わせは、例えば以下の(1)~(4)に示す4通りである。なお、ここでの第1の方向及び第2の方向は、ガイド画像上での方向である。例えば上下方向とは画像の垂直走査方向(例えば走査の開始側を上、終了側を下)に対応し、左右方向とは画像の水平走査方向(例えば走査の開始側を左、終了側を右)に対応する。
(1)(上方向,下方向,上側周縁領域RU,下側周縁領域RD)
(2)(下方向,上方向,下側周縁領域RD,上側周縁領域RU)
(3)(右方向,左方向,右側周縁領域RR,左側周縁領域RL)
(4)(左方向,右方向,左側周縁領域RL,右側周縁領域RR)
Here, combinations of (the first direction, the second direction, the first peripheral area, and the second peripheral area) are, for example, four types shown in the following (1) to (4). Here, the first direction and the second direction are directions on the guide image. For example, the vertical direction corresponds to the vertical scanning direction of the image (for example, the start side of the scan is up and the end side is down), the horizontal direction is the horizontal scan direction of the image (for example, the start side of the scan is left and the end side is right Corresponding to).
(1) (Upward, downward, upper peripheral region RU, lower peripheral region RD)
(2) (downward, upward, lower peripheral area RD, upper peripheral area RU)
(3) (right direction, left direction, right peripheral region RR, left peripheral region RL)
(4) (left direction, right direction, left peripheral region RL, right peripheral region RR)
 このようにすれば、接眼光軸AXがユーザーの眼球中心近傍を通らないことで欠損する領域(第2の周縁領域)と、その状態でも視認可能な蓋然性の高い領域(第1の周縁領域)を適切に対応付けることができる。そのため、ガイド画像の各領域において適切な操作内容の指示情報の表示が可能になる。なお、第1の方向及び第2の方向として斜め方向を考慮してもよく、方向及び周縁領域の組み合わせは上記4通りに限定されない。 In this way, the area (second peripheral area) where the eyepiece optical axis AX is lost by not passing near the eyeball center of the user (the second peripheral area), and the area with high probability of being visible even in that state (first peripheral area) Can be properly mapped. Therefore, it is possible to display instruction information of appropriate operation content in each area of the guide image. In addition, an oblique direction may be considered as the first direction and the second direction, and the combination of the direction and the peripheral region is not limited to the above four.
 また、表示部160は、接眼光学部140の位置を第2の方向側に移動させる移動操作を示す指示情報を、ガイド画像の第1の周縁領域に表示する。 In addition, the display unit 160 displays instruction information indicating a moving operation for moving the position of the eyepiece optical unit 140 in the second direction side in the first peripheral region of the guide image.
 ここで、第1の方向及び第2の方向はガイド画像を基準とした方向であるため、ウェアラブル表示装置100(接眼光学部140)と各方向の関係は、ガイド画像がどのように表示、視認されるかに応じて異なる。本実施形態では、ガイド画像(虚像)は接眼光軸AXに垂直、且つ接眼光学部140の設計に基づく所定の画角、所定の距離にあるように観察される。つまり第1の方向及び第2の方向は、接眼光軸AXに垂直な平面内での方向となる。 Here, since the first direction and the second direction are directions based on the guide image, the relationship between the wearable display device 100 (eyepiece optical unit 140) and each direction is determined by how the guide image is displayed and viewed. It depends on what is done. In the present embodiment, the guide image (virtual image) is observed to be perpendicular to the eyepiece optical axis AX, at a predetermined angle of view based on the design of the eyepiece optical unit 140, and at a predetermined distance. That is, the first direction and the second direction are directions in a plane perpendicular to the eyepiece optical axis AX.
 図10は、眼球60、接眼光学部140、虚像の位置関係を説明する斜視図である。ここでの第1の方向及び第2の方向は、虚像を示す平面に沿った方向である。図10では、上下左右の4方向を示しており、これらのいずれかの方向、或いは複数を組み合わせた方向(斜め方向)を第1の方向及び第2の方向とする。なお、左右方向については、ユーザーの観察方向(眼球60から虚像へ向かう方向)を基準に定義している。 FIG. 10 is a perspective view for explaining the positional relationship between the eyeball 60, the eyepiece optical unit 140, and the virtual image. The first direction and the second direction here are directions along a plane showing a virtual image. In FIG. 10, four directions of up, down, left, and right are shown, and a direction (oblique direction) combining any of these directions or a plurality of these directions is taken as a first direction and a second direction. The left and right direction is defined based on the user's viewing direction (the direction from the eye 60 toward the virtual image).
 このようにすれば、ガイド画像上での方向を基準として、接眼光学部140に対する移動方向や回転方向を適切に指示することができる。即ち、ガイド画像の各周縁領域において、接眼光学部140の適切な移動方向を指示することが可能になる。 In this way, it is possible to appropriately indicate the moving direction and the rotational direction with respect to the eyepiece optical unit 140 based on the direction on the guide image. That is, in each peripheral region of the guide image, it is possible to indicate an appropriate moving direction of the eyepiece optical unit 140.
 また、表示部160は、接眼光軸AXのうちの接眼光学部140よりもユーザーの眼球側(AX1)を第2の方向側に回転させるような、接眼光学部140の回転操作を示す指示情報を、ガイド画像の第1の周縁領域に表示する。表示部160は、接眼光軸AXのうちの接眼光学部140よりも前方(ユーザーの眼球60から遠い側、AX2)を第1の方向側に回転させるような、接眼光学部140の回転操作を示す指示情報を、ガイド画像の第1の周縁領域に表示すると考えてもよい。 In addition, the display unit 160 is an instruction information indicating a rotation operation of the eyepiece optical unit 140 such that the eyeball side (AX1) of the user is rotated to the second direction side with respect to the eyepiece optical unit 140 of the eyepiece optical axis AX. Are displayed in the first peripheral area of the guide image. The display unit 160 performs a rotation operation of the eyepiece optical unit 140 so as to rotate the anterior side of the eyepiece optical unit 140 of the eyepiece optical axis AX (the side farther from the user's eyeball 60, AX2) to the first direction side. It may be considered that the indication information to be shown is displayed in the first peripheral area of the guide image.
 このようにすれば、ガイド画像の各周縁領域において、接眼光学部140の適切な回転方向(及び回転軸)を指示することが可能になる。図8(B)に示したように、第1の周縁領域の指示情報を用いる状況とは、接眼光軸AXが眼球中心64よりも第1の方向側にずれている状態に対応する。よって、回転操作とは接眼光軸AXの眼球通過位置を、第2の方向側に移動させる操作となる。即ち、接眼光軸AXのうちの接眼光学部140よりもユーザーの眼球側(AX1)を第2の方向側に回転させる操作を行えばよい。なお、ここでの回転操作は接眼光学部140の回転操作である以上、接眼光軸AXのうちの接眼光学部140よりも前方(ユーザーの眼球60から遠い側)を、第2の方向とは反対側、即ち第1の方向側に回転させることになる。 In this way, it is possible to indicate an appropriate rotation direction (and rotation axis) of the eyepiece optical unit 140 in each peripheral region of the guide image. As shown in FIG. 8B, the situation in which the instruction information in the first peripheral area is used corresponds to the situation in which the eyepiece optical axis AX is shifted to the first direction side with respect to the eyeball center 64. Therefore, the rotation operation is an operation to move the eyeball passing position of the eyepiece optical axis AX to the second direction side. That is, the eyeball side (AX1) of the user with respect to the eyepiece optical unit 140 of the eyepiece optical axis AX may be rotated in the second direction. In addition, since the rotation operation here is the rotation operation of the eyepiece optical unit 140, the front side (the side farther from the eyeball 60 of the user) than the eyepiece optical unit 140 of the eyepiece optical axis AX is the second direction. It will rotate to the opposite side, ie, the 1st direction side.
 なお第1の方向及び第2の方向は、ガイド画像或いは接眼光学部140を基準として設定される方向となる。そのため、眼球60に対する接眼光学部140の姿勢が変化すれば、第1の方向と眼球60の相対関係も変化する。言い換えれば、第1の方向及び第2の方向は接眼光学部140に設定される座標系で定義される方向であって、当該座標系はユーザー(眼球60)を基準として設定される座標系(DX,DY,DZ)とは異なる。 The first direction and the second direction are directions set with reference to the guide image or the eyepiece optical unit 140. Therefore, when the posture of the eyepiece optical unit 140 with respect to the eyeball 60 changes, the relative relationship between the first direction and the eyeball 60 also changes. In other words, the first direction and the second direction are directions defined by the coordinate system set in the eyepiece optical unit 140, and the coordinate system is set based on the user (eyeball 60) Different from DX, DY, DZ).
 ただし、虚像全体を適切に観察することを考慮すれば、眼球60に対する接眼光学部140の姿勢が極端に変化するとは考えにくい。よって、ガイド画像の指示情報で指示される操作内容は、ガイド画像や接眼光学部140を基準とするのではなく、ユーザーを基準とした座標系により規定されてもよい。装着状態において、ウェアラブル表示装置100の固定部(装着部)とユーザーの相対位置が固定されることに鑑みれば、ユーザーを基準とした座標系とは、ウェアラブル表示装置100の固定部を基準とした座標系と考えてもよい。 However, in view of appropriately observing the entire virtual image, it is unlikely that the posture of the eyepiece optical unit 140 with respect to the eyeball 60 changes extremely. Therefore, the operation content instructed by the instruction information of the guide image may be defined not by using the guide image or the eyepiece optical unit 140 as a reference but by a coordinate system based on the user. In view of the fact that the relative position of the fixed part (wearing part) of the wearable display device 100 and the user is fixed in the mounted state, the coordinate system based on the user is based on the fixed part of the wearable display device 100 You may think of it as a coordinate system.
 例えば、ユーザーの頭部中央から側頭部へ向かう方向の軸を第1軸とし、ユーザーの頭部中央から頭頂部へ向かう方向の軸を第2軸とし、ユーザーの頭部の正面方向に対応する軸を第3軸とする。ここでの第1軸は図1のDXに対応し、第2軸は図1のDYに対応し、第3軸は図1のDZに対応する。 For example, an axis in the direction from the center of the head to the side of the head of the user is taken as the first axis, and an axis in the direction from the center of the head to the head of the user is taken as the second axis. The second axis is the second axis. The first axis here corresponds to DX in FIG. 1, the second axis corresponds to DY in FIG. 1, and the third axis corresponds to DZ in FIG.
 この場合、第1の周縁領域がガイド画像の上側周縁領域RU又は下側周縁領域RDの場合は、表示部160は、第1軸(DX)に沿った方向の軸を回転軸として接眼光学部140を回転させる回転操作を示す指示情報を、ガイド画像の第1の周縁領域に表示する。また、第1の周縁領域がガイド画像の右側周縁領域RR又は左側周縁領域RLの場合は、表示部160は、第2軸(DY)に沿った方向の軸を回転軸として接眼光学部140を回転させる回転操作を示す指示情報を、ガイド画像の第1の周縁領域に表示する。 In this case, when the first peripheral area is the upper peripheral area RU or the lower peripheral area RD of the guide image, the display unit 160 uses the axis in the direction along the first axis (DX) as the axis of rotation and the eyepiece optical unit Instruction information indicating a rotation operation to rotate 140 is displayed in the first peripheral region of the guide image. When the first peripheral area is the right peripheral area RR or the left peripheral area RL of the guide image, the display unit 160 sets the eyepiece optical unit 140 with the axis in the direction along the second axis (DY) as the rotation axis. The instruction information indicating the rotation operation to be rotated is displayed in the first peripheral region of the guide image.
 このようにしても、ガイド画像の各周縁領域において、接眼光学部140の適切な回転操作を指示することが可能になる。 Even in this case, it is possible to instruct an appropriate rotation operation of the eyepiece optical unit 140 in each peripheral region of the guide image.
 また、ガイド画像に含まれる指示情報は、テキスト、アイコン、静止画及び動画の少なくとも1つである。 Further, the instruction information included in the guide image is at least one of text, an icon, a still image, and a moving image.
 図2ではテキストとアイコン(矢印)を組み合わせる例を示した。また、静止画や動画としては図9(A)~図9(D)等の画像を用いることが可能である。このようにすれば、多様な形式により指示情報をユーザーに提示することが可能になる。特に、アイコンや画像を用いることで、わかりにくい操作を直感的にユーザーに指示することも可能になる。 FIG. 2 shows an example in which text and an icon (arrow) are combined. In addition, as still images and moving images, images such as those in FIGS. 9A to 9D can be used. In this way, it is possible to present instruction information to the user in various formats. In particular, by using an icon or an image, it is possible to intuitively instruct the user an operation that is difficult to understand.
 また、表示部160は、ガイド画像の全体が視認可能となったか否かを表す指標情報を含むガイド画像を表示してもよい。 In addition, the display unit 160 may display a guide image including index information indicating whether or not the entire guide image can be viewed.
 ここでの指標情報は、例えば図2のOB1に示したオブジェクトであってもよい。図2では、OB1に示した4つの二等辺三角形のオブジェクトは、それぞれ先端(二等辺三角形の頂点)がガイド画像の4隅を指し示すオブジェクトである。当該指標情報を用いることで、ユーザーに対して、ガイド画像の全体が視認可能となったか否か、即ち適切な操作により接眼光軸AXが眼球中心近傍を通るような調整が完了したか否かを認識させることが可能になる。なお、指標情報はOB1に示したオブジェクトには限定されない。例えばOB2に示したようにガイド画像の周縁部に枠を表示してもよい。或いは、ガイド画像の周縁部をそれよりも内側の領域と異なる色で表示してもよい。その他、指標情報として表示される情報は種々の変形実施が可能である。 The index information here may be, for example, an object shown in OB1 of FIG. In FIG. 2, the four isosceles triangle objects shown in OB1 are objects whose tip (apex of the isosceles triangle) points to the four corners of the guide image. By using the index information, it is determined whether or not the entire guide image can be viewed by the user, that is, whether the adjustment such that the eyepiece optical axis AX passes near the center of the eyeball is completed by an appropriate operation It becomes possible to make The index information is not limited to the object shown in OB1. For example, a frame may be displayed on the periphery of the guide image as shown in OB2. Alternatively, the peripheral portion of the guide image may be displayed in a color different from that of the region inside the guide image. In addition, the information displayed as index information can be variously modified.
4.変形例
 以下幾つかの変形例を説明する。
4. Modifications Several modifications will be described below.
4.1 接眼光学部を近づける調整
 以上では接眼光軸AXが眼球中心近傍を通らない場合に、画像の一部が欠損する例について説明した。しかし画像の欠損はこれに限定されない。
4.1 Adjustment to bring the eyepiece optical unit closer to each other In the above, an example in which a part of the image is lost when the eyepiece optical axis AX does not pass near the eyeball center has been described. However, the image loss is not limited to this.
 図11(A)は、図7(A)の例に比べて、眼球60と接眼光学部140(接眼窓142)の間の距離が大きい場合の、見える範囲と虚像の関係を示す図である。見える範囲は、接眼窓142(有効径)を見込む角の内側であるため、接眼窓142が相対的に遠ければ、見える範囲は狭くなる。この場合、図11(A)に示すように、接眼光軸AXは眼球中心近傍を通過しているが、虚像のサイズに対して見える範囲が狭くなるため、虚像の周囲が欠損する。 FIG. 11A is a diagram showing the relationship between the visible range and the virtual image when the distance between the eyeball 60 and the eyepiece optical unit 140 (eyepiece window 142) is large compared to the example of FIG. 7A. . Since the visible range is inside the angle at which the eyepiece window 142 (effective diameter) is seen, if the eyepiece window 142 is relatively far, the visible range becomes narrow. In this case, as shown in FIG. 11A, the eyepiece optical axis AX passes near the center of the eyeball, but the visible range for the size of the virtual image is narrow, so the periphery of the virtual image is lost.
 よって本変形例では、表示部160は、ガイド画像のうち、虚像の表示画角に対してユーザーが観察可能な画角が小さい場合に視認される領域に、ユーザーが観察可能な画角を虚像の表示画角以上にするための接眼光学部140の移動操作を示す指示情報を表示する。 Therefore, in the present modification, display unit 160 displays a virtual image of an angle of view that can be observed by the user in a region of the guide image that is viewed when the angle of view that can be observed by the user is smaller than the display angle of the virtual image. The instruction information indicating the moving operation of the eyepiece optical unit 140 for making the display angle of view or more is displayed.
 虚像の表示画角とは、虚像が視認される範囲を表す角度の大きさであり、例えば図11(A)のθに対応する。また、ユーザーが観察可能な画角とは、見える範囲を表す角度の大きさであり、例えば接眼窓142を見込む角の内側であるθに対応する。 The display viewing angle of the virtual image, the magnitude of the angle representing the extent to which the virtual image is viewed, corresponds to theta A of example FIG. 11 (A). Also, the angle of view that can be observed by the user is the size of the angle that represents the viewable range, and corresponds to, for example, θ B that is the inside of the angle from which the eyepiece window 142 is viewed.
 θ≦θであれば、ユーザーが虚像全体を視認可能となるが、図11(A)のようにθ>θの場合には、虚像の周縁領域がほぼ均等に欠損する。この場合、画像の中央領域RCは欠損せずに視認できる蓋然性が高い。また、図7(A)と図11(A)を比較すればわかるように、図11(A)での欠損は眼球60と接眼光学部140との距離が過剰に大きいことに起因する。 If θ A ≦ θ B , the user can visually recognize the entire virtual image, but if θ A > θ B as shown in FIG. 11A, the peripheral region of the virtual image is almost equally lost. In this case, the central region RC of the image is highly likely to be visible without being lost. Further, as can be understood by comparing FIG. 7A and FIG. 11A, the defect in FIG. 11A is caused by the distance between the eyeball 60 and the eyepiece optical unit 140 being excessively large.
 よって本変形例では、表示部160は、接眼光学部140をユーザーの眼球に近づける移動操作を示す指示情報を、ガイド画像の中央領域RCに表示する。図2の例では、表示部160は、ガイド画像の中央領域RCにおいて、「近づける」というテキスト形式の指示情報を表示する。当該指示情報に基づいて、ユーザーに接眼光学部140を眼球60に近づける操作を行わせることで、図11(B)に示すように、ユーザーに画像を欠損なく視認させることが可能になる。当該移動操作は、DZに沿った方向(狭義には-DZ方向)の移動操作と考えられる。なお、図11(A)の例では接眼光軸AXが眼球中心近傍を通過しているため、画像欠損の解消は回転操作ではなく前後の移動操作により実現される。 Therefore, in the present modification, the display unit 160 displays instruction information indicating a moving operation for bringing the eyepiece optical unit 140 close to the eyeball of the user in the central region RC of the guide image. In the example of FIG. 2, the display unit 160 displays instruction information in text format “close” in the center region RC of the guide image. By causing the user to perform an operation to bring the eyepiece optical unit 140 closer to the eyeball 60 based on the instruction information, as shown in FIG. 11B, it is possible to allow the user to visually recognize the image without a defect. The movement operation is considered to be a movement operation in the direction along DZ (in a narrow sense, the -DZ direction). In the example of FIG. 11A, since the eyepiece optical axis AX passes near the center of the eyeball, the elimination of the image loss is realized not by the rotation operation but by the forward and backward movement operation.
4.2 調整部の変形例
 また、以上では複数の可動部(関節、狭義には回動機構120、連結部110)を含む調整部180を用いる例を説明した。ただし調整部180として異なる構成を用いてもよい。
4.2 Modification of Adjustment Unit In the above, an example using the adjustment unit 180 including a plurality of movable units (joints, in the narrow sense, the rotation mechanism 120 and the connection unit 110) has been described. However, different configurations may be used as the adjustment unit 180.
 図12は、ウェアラブル表示装置100の他の構成例を説明する斜視図である。ウェアラブル表示装置100は、ベース部190と、接続部115と、調整部180と、接眼光学部140を含む。ウェアラブル表示装置100は、不図示の装着部(図3、図4に示した装着部であって、第1当接部10等)を含み、接続部115は当該装着部と接続可能に構成される。 FIG. 12 is a perspective view illustrating another configuration example of the wearable display device 100. The wearable display device 100 includes a base unit 190, a connection unit 115, an adjustment unit 180, and an eyepiece optical unit 140. The wearable display device 100 includes a mounting portion (not shown) (the mounting portion shown in FIG. 3 and FIG. 4 and is the first contact portion 10 or the like), and the connection portion 115 is configured to be connectable with the mounting portion Ru.
 図12のウェアラブル表示装置100では、調整部180はフレキシブルチューブにより実現される。フレキシブルチューブを用いることで、調整部180は多様な調整が可能(多様な位置において屈曲することが可能)である。より具体的には、フレキシブルチューブである調整部180は、当該フレキシブルチューブを構成するコイル状部材のコイルピッチや、チューブ本体や被膜の材料特性に応じて、屈曲可能な位置や、各位置で実現可能な屈曲角度範囲が決定される。 In the wearable display device 100 of FIG. 12, the adjustment unit 180 is realized by a flexible tube. By using a flexible tube, the adjustment unit 180 can perform various adjustments (can bend at various positions). More specifically, the adjustment section 180 which is a flexible tube is realized at a position where it can be bent or at each position depending on the coil pitch of the coiled member that constitutes the flexible tube, and the material characteristics of the tube main body and the film. The possible bending angle range is determined.
 フレキシブルチューブは、一端がベース部190に接続され、他端が接眼光学部140に接続される。ベース部190とユーザー(眼球60)との相対位置が固定であると考えれば、フレキシブルチューブの形状(屈曲状態)を変化させることで、接眼光学部140と眼球60との相対的な位置、姿勢を変更することが可能である。 The flexible tube has one end connected to the base portion 190 and the other end connected to the eyepiece optical unit 140. If the relative position between the base portion 190 and the user (eyeball 60) is considered to be fixed, the relative position and posture of the eyepiece optical portion 140 and the eyeball 60 can be obtained by changing the shape (flexure state) of the flexible tube. It is possible to change
 図13(A)は調整部180がフレキシブルチューブで実現される場合の移動操作の説明図であり、図13(B)は回転操作の説明図である。図13(A)のように、接眼光学部140を移動(並進移動)させる場合、フレキシブルチューブは例えば、途中に変曲点を有するような形状、即ち所与の点よりもベース部190側での曲がる方向と、当該所与の点よりも接眼光学部140側での曲がる方向が異なるような形状に調整される。或いは、フレキシブルチューブをS字型に変形させると考えてもよい。 FIG. 13 (A) is an explanatory view of a moving operation when the adjusting unit 180 is realized by a flexible tube, and FIG. 13 (B) is an explanatory view of a rotating operation. As shown in FIG. 13A, when the eyepiece optical unit 140 is moved (translationally moved), for example, the flexible tube has a shape having an inflection point in the middle, that is, on the base portion 190 side than a given point. The bending direction is adjusted to be different from the given point in the bending direction on the eyepiece optical unit 140 side. Alternatively, it may be considered that the flexible tube is deformed into an S shape.
 また、図13(B)のように、フレキシブルチューブの右側(+DX側)に対して左側(-DX側)を相対的に伸ばすような調整を行うことで、接眼光学部140の回転操作(図13(B)の例では右に煽る操作)を行うことが可能になる。図13(B)では、ユーザーは例えばフレキシブルチューブの先端側(接眼光学部140)、或いは接眼光学部140自体に力を加えることで、回転操作を実現できる。 Further, as shown in FIG. 13B, the rotation operation of the eyepiece optical unit 140 is performed by performing adjustment such that the left side (−DX side) is extended relative to the right side (+ DX side) of the flexible tube. In the example of 13 (B), it becomes possible to perform the operation of turning to the right. In FIG. 13B, the user can realize the rotation operation by applying a force to, for example, the distal end side of the flexible tube (eyepiece optical unit 140) or the eyepiece optical unit 140 itself.
 なお、図9(A)~図9(D)(狭義には図3~図6)に示した調整部180を用いる例では、移動操作用の可動部(関節)、回転操作用の可動部(関節)を分けて考えることができたり、複数の可動部を組み合わせて操作する場合にも、組み合わせのパターンは少数に限定される。そのため、テキスト情報により接眼光学部140の移動方向や回転方向を指示する手法でも、ユーザーによる操作は容易と考えられる。これに対して、図13(A)、図13(B)に示したように、フレキシブルチューブにより調整部180を実現した場合、調整の自由度が高いため、移動操作や回転操作を行うためのフレキシブルチューブの調整を直感的に理解することが難しい。よって本変形例では、指示情報としてフレキシブルチューブに対する操作内容を示す画像情報を提示することが好ましい。 In the example using the adjustment unit 180 shown in FIGS. 9A to 9D (in a narrow sense, FIGS. 3 to 6), a movable portion (joint) for movement operation, a movable portion for rotation operation Even when (joints) can be considered separately, or in the case of combining and operating a plurality of movable parts, the combination pattern is limited to a small number. Therefore, even with a method of instructing the moving direction or the rotating direction of the eyepiece optical unit 140 by text information, it is considered that the operation by the user is easy. On the other hand, as shown in FIGS. 13A and 13B, when the adjusting unit 180 is realized by a flexible tube, the degree of freedom of adjustment is high, so that the moving operation and the rotating operation can be performed. It is difficult to intuitively understand the adjustment of the flexible tube. Therefore, in the present modification, it is preferable to present, as the instruction information, image information indicating the content of the operation on the flexible tube.
 具体的には、ガイド画像の各領域は、操作内容を示す指示情報として、図13(A)や図13(B)に示した画像情報(静止画、動画のいずれでもよい)を含むとよい。このようにすれば、接眼光学部140を所望の方向に移動、回転させる際に、ユーザーによる調整部180の調整を容易にすることが可能になる。 Specifically, each area of the guide image may include the image information (still or moving image) shown in FIG. 13A or 13B as instruction information indicating operation content. . In this way, when moving and rotating the eyepiece optical unit 140 in a desired direction, it is possible to facilitate adjustment of the adjustment unit 180 by the user.
 以上、本発明を適用した実施形態およびその変形例について説明したが、本発明は、各実施形態やその変形例そのままに限定されるものではなく、実施段階では、発明の要旨を逸脱しない範囲内で構成要素を変形して具体化することができる。また、上記した各実施形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、各実施形態や変形例に記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施の形態や変形例で説明した構成要素を適宜組み合わせてもよい。また、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。このように、発明の主旨を逸脱しない範囲内において種々の変形や応用が可能である。 As mentioned above, although embodiment which applied this invention and its modification were described, this invention is not limited to each embodiment and its modification as it is, In the execution phase, it is the range which does not deviate from the summary of invention Can be transformed and embodied. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments and modifications. For example, some components may be deleted from all the components described in each embodiment or modification. Furthermore, the components described in different embodiments and modifications may be combined as appropriate. Further, in the specification or the drawings, the terms described together with the broader or synonymous different terms at least once can be replaced with the different terms anywhere in the specification or the drawings. Thus, various modifications and applications are possible without departing from the spirit of the invention.
10…第1当接部、15…部材、20…第2当接部、30…ヘッドバンド、
40…第1連結部、50…第2連結部、60…眼球、64…眼球中心、
70…頭部、100…ウェアラブル表示装置、110…連結部、
111…第1の回動機構、112…第2の回動機構、115…接続部、
120…回動機構、130…アーム、140…接眼光学部、142…接眼窓、
143…光学系、150…フレーム、160…表示部、171~175…部材、
180…調整部、190…ベース部、AX…接眼光軸、DX,DY,DZ…方向、
RC…中央領域、RD…下側周縁領域、RL…左側周縁領域、
RR…右側周縁領域、RU…上側周縁領域、TX1…第1軸、
TX2…第2軸、TX3…第3軸
DESCRIPTION OF SYMBOLS 10 ... 1st contact part, 15 ... member, 20 ... 2nd contact part, 30 ... headband,
40 ... 1st connection part, 50 ... 2nd connection part, 60 ... eyeball, 64 ... eyeball center,
70: head, 100: wearable display device, 110: coupling portion,
111 ... 1st rotation mechanism, 112 ... 2nd rotation mechanism, 115 ... connection part,
120: rotation mechanism, 130: arm, 140: eyepiece optics, 142: eyepiece window,
143: optical system, 150: frame, 160: display unit, 171 to 175: member,
180 ... adjustment unit, 190 ... base unit, AX ... eyepiece optical axis, DX, DY, DZ ... direction,
RC: central region, RD: lower peripheral region, RL: left peripheral region,
RR: right peripheral region, RU: upper peripheral region, TX1: first axis,
TX2 ... second axis, TX3 ... third axis

Claims (14)

  1.  画像を表示する表示部と、
     ユーザーの眼前に配置され、前記表示部に表示された画像を拡大して虚像としてユーザーに提示する接眼光学部と、
     前記接眼光学部の接眼光軸の位置及び向きを調整可能な調整部と、
     を含み、
     前記表示部は、
     前記接眼光軸が前記ユーザーの眼球中心近傍を通らない場合に、前記接眼光軸が前記ユーザーの前記眼球中心近傍を通るようにするための操作内容を示す指示情報を含むガイド画像を、表示することを特徴とするウェアラブル表示装置。
    A display unit for displaying an image;
    An eyepiece optical unit which is disposed in front of the user's eyes and which enlarges the image displayed on the display unit and presents the user as a virtual image to the user;
    An adjusting unit capable of adjusting the position and direction of an eyepiece optical axis of the eyepiece optical unit;
    Including
    The display unit is
    When the eyepiece optical axis does not pass near the eyeball center of the user, a guide image including instruction information indicating an operation content for causing the eyepiece optical axis to pass near the eyeball center of the user is displayed A wearable display device characterized by
  2.  請求項1において、
     前記表示部は、
     前記接眼光軸が前記ユーザーの前記眼球中心近傍を通らない場合に視認される領域に、前記指示情報を含む前記ガイド画像を表示することを特徴とするウェアラブル表示装置。
    In claim 1,
    The display unit is
    The wearable display device displays the guide image including the instruction information in a region viewed when the eyepiece optical axis does not pass near the eyeball center of the user.
  3.  請求項1又は2において、
     前記ガイド画像は、複数の領域に分割され、
     前記表示部は、
     第1の操作内容を示す前記指示情報を、前記ガイド画像の前記複数の領域のうちの第1の領域に表示し、前記第1の操作内容とは異なる第2の操作内容を示す前記指示情報を、前記ガイド画像の前記複数の領域のうちの前記第1の領域と異なる第2の領域に表示することを特徴とするウェアラブル表示装置。
    In claim 1 or 2,
    The guide image is divided into a plurality of areas,
    The display unit is
    The instruction information indicating the first operation content is displayed in a first region of the plurality of regions of the guide image, and the instruction information indicating a second operation content different from the first operation content The wearable display device according to any one of the preceding claims, wherein the second image is displayed in a second area different from the first area among the plurality of areas in the guide image.
  4.  請求項1又は2において、
     前記表示部は、
     前記接眼光軸が前記眼球中心近傍を通るようにするための前記操作内容を示す前記指示情報を、前記ガイド画像のうち、中央領域より外側の周縁領域に表示することを特徴とするウェアラブル表示装置。
    In claim 1 or 2,
    The display unit is
    A wearable display device, wherein the instruction information indicating the operation content for causing the eyepiece optical axis to pass near the eyeball center is displayed in a peripheral region outside the central region in the guide image. .
  5.  請求項1乃至4のいずれかにおいて、
     前記表示部は、
     前記接眼光学部の位置を変更する移動操作、及び前記接眼光学部の姿勢を変更する回転操作の少なくとも一方の前記操作内容を示す前記指示情報を含む前記ガイド画像を表示することを特徴とするウェアラブル表示装置。
    In any one of claims 1 to 4,
    The display unit is
    A wearable characterized by displaying the guide image including the instruction information indicating at least one of the moving operation for changing the position of the eyepiece optical unit and the rotating operation for changing the posture of the eyepiece optical unit. Display device.
  6.  請求項1又は2において、
     前記ガイド画像のうちの、中央領域よりも第1の方向側の領域を第1の周縁領域とし、前記中央領域よりも前記第1の方向と反対方向の第2の方向側の領域を第2の周縁領域とした場合に、
     前記表示部は、
     前記第2の周縁領域が視認されない場合に、前記第2の周縁領域を視認可能にするための前記操作内容を示す前記指示情報を、前記第1の周縁領域に表示することを特徴とするウェアラブル表示装置。
    In claim 1 or 2,
    An area on the first direction side of the central area in the guide image is a first peripheral area, and an area on the second direction opposite to the first direction is second area than the central area. If it is
    The display unit is
    A wearable characterized by displaying, in the first peripheral area, the instruction information indicating the operation content for making the second peripheral area visible when the second peripheral area is not visible. Display device.
  7.  請求項6において、
     前記表示部は、
     前記接眼光学部の位置を前記第2の方向側に移動させる移動操作を示す前記指示情報を、前記ガイド画像の前記第1の周縁領域に表示することを特徴とするウェアラブル表示装置。
    In claim 6,
    The display unit is
    A wearable display device, wherein the instruction information indicating a moving operation for moving the position of the eyepiece optical unit in the second direction is displayed in the first peripheral area of the guide image.
  8.  請求項6又は7において、
     前記表示部は、
     前記接眼光軸のうちの前記接眼光学部よりも前記ユーザーの眼球側を前記第2の方向側に回転させるような、前記接眼光学部の回転操作を示す前記指示情報を、前記ガイド画像の前記第1の周縁領域に表示することを特徴とするウェアラブル表示装置。
    In claim 6 or 7,
    The display unit is
    The instruction information indicating the rotation operation of the eyepiece optical unit, such as rotating the eyeball side of the user toward the second direction with respect to the eyepiece optical unit of the eyepiece optical axis, corresponds to the guide image A wearable display device characterized by displaying in a first peripheral area.
  9.  請求項6又は7において、
     前記ユーザーの頭部中央から側頭部へ向かう方向の軸を第1軸とし、前記ユーザーの前記頭部中央から頭頂部へ向かう方向の軸を第2軸とし、前記ユーザーの頭部の正面方向に対応する軸を第3軸とした場合であって、
     前記第1の周縁領域が前記ガイド画像の上側周縁領域又は下側周縁領域の場合は、
     前記表示部は、
     前記第1軸に沿った方向の軸を回転軸として前記接眼光学部を回転させる回転操作を示す前記指示情報を、前記ガイド画像の前記第1の周縁領域に表示し、
     前記第1の周縁領域が前記ガイド画像の右側周縁領域又は左側周縁領域の場合は、
     前記表示部は、
     前記第2軸に沿った方向の軸を回転軸として前記接眼光学部を回転させる回転操作を示す前記指示情報を、前記ガイド画像の前記第1の周縁領域に表示することを特徴とするウェアラブル表示装置。
    In claim 6 or 7,
    An axis in a direction from the center of the head to the side of the head of the user is taken as a first axis, and an axis in a direction from the center of the head to the head of the user is taken as a second axis. Where the axis corresponding to is the third axis,
    When the first peripheral area is the upper peripheral area or the lower peripheral area of the guide image,
    The display unit is
    The instruction information indicating a rotation operation of rotating the eyepiece optical unit with an axis in a direction along the first axis as a rotation axis is displayed in the first peripheral area of the guide image;
    When the first peripheral area is the right peripheral area or the left peripheral area of the guide image,
    The display unit is
    A wearable display characterized in that the instruction information indicating a rotation operation of rotating the eyepiece optical unit with an axis in a direction along the second axis as a rotation axis is displayed in the first peripheral area of the guide image. apparatus.
  10.  請求項1乃至9のいずれかにおいて、
     前記表示部は、
     前記ガイド画像のうち、虚像の表示画角に対して前記ユーザーが観察可能な画角が小さい場合に視認される領域に、前記ユーザーが観察可能な画角を前記虚像の表示画角以上にするための前記接眼光学部の移動操作を示す前記指示情報を表示することを特徴とするウェアラブル表示装置。
    In any one of claims 1 to 9,
    The display unit is
    In the guide image, the angle of view that can be observed by the user is made equal to or greater than the angle of display of the virtual image in a region viewed when the angle of view that the user can observe is smaller than the display angle of view of the virtual image. A wearable display device displaying the instruction information indicating a moving operation of the eyepiece optical unit for the purpose of display.
  11.  請求項10において、
     前記表示部は、
     前記接眼光学部を前記ユーザーの眼球に近づける移動操作を示す前記指示情報を、前記ガイド画像の中央領域に表示することを特徴とするウェアラブル表示装置。
    In claim 10,
    The display unit is
    A wearable display device, wherein the instruction information indicating a moving operation for bringing the eyepiece optical unit closer to the eyeball of the user is displayed in a central region of the guide image.
  12.  請求項1乃至11のいずれかにおいて、
     前記指示情報は、テキスト、アイコン、静止画及び動画の少なくとも1つであることを特徴とするウェアラブル表示装置。
    In any one of claims 1 to 11,
    The wearable display device, wherein the instruction information is at least one of text, an icon, a still image, and a moving image.
  13.  請求項1乃至12のいずれかにおいて、
     前記表示部は、
     前記ガイド画像の全体が視認可能となったか否かを表す指標情報を含む前記ガイド画像を表示することを特徴とするウェアラブル表示装置。
    In any one of claims 1 to 12,
    The display unit is
    A wearable display device characterized by displaying the guide image including index information indicating whether or not the entire guide image can be viewed.
  14.  画像を表示する表示部と、
     ユーザーの眼前に配置され、前記表示部に表示された画像を拡大して虚像としてユーザーに提示する接眼光学部と、
     前記接眼光学部の接眼光軸の位置及び向きを調整可能な調整部と、
     を含み、
     前記表示部は、
     前記画像に前記ユーザーが視認できない領域が非発生となるように、前記調整部に対する操作内容を示す指示情報を含むガイド画像を表示し、
     前記ガイド画像は、複数の領域に分割され、
     前記表示部は、
     第1の操作内容を示す前記指示情報を、前記ガイド画像の前記複数の領域のうちの第1の領域に表示し、前記第1の操作内容とは異なる第2の操作内容を示す前記指示情報を、前記ガイド画像の前記複数の領域のうちの前記第1の領域と異なる第2の領域に表示することを特徴とするウェアラブル表示装置。
    A display unit for displaying an image;
    An eyepiece optical unit which is disposed in front of the user's eyes and which enlarges the image displayed on the display unit and presents the user as a virtual image to the user;
    An adjusting unit capable of adjusting the position and direction of an eyepiece optical axis of the eyepiece optical unit;
    Including
    The display unit is
    A guide image including instruction information indicating an operation content to the adjustment unit is displayed such that an area in which the user can not visually recognize is not generated in the image.
    The guide image is divided into a plurality of areas,
    The display unit is
    The instruction information indicating the first operation content is displayed in a first region of the plurality of regions of the guide image, and the instruction information indicating a second operation content different from the first operation content The wearable display device according to any one of the preceding claims, wherein the second image is displayed in a second area different from the first area among the plurality of areas in the guide image.
PCT/JP2017/024790 2017-07-06 2017-07-06 Wearable display device WO2019008721A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024790 WO2019008721A1 (en) 2017-07-06 2017-07-06 Wearable display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024790 WO2019008721A1 (en) 2017-07-06 2017-07-06 Wearable display device

Publications (1)

Publication Number Publication Date
WO2019008721A1 true WO2019008721A1 (en) 2019-01-10

Family

ID=64950681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024790 WO2019008721A1 (en) 2017-07-06 2017-07-06 Wearable display device

Country Status (1)

Country Link
WO (1) WO2019008721A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148404A (en) * 2004-11-18 2006-06-08 Nikon Corp Wearable display apparatus
JP2007116538A (en) * 2005-10-21 2007-05-10 Canon Inc Image display program, picture display apparatus and method
JP2007259252A (en) * 2006-03-24 2007-10-04 Nikon Corp Data for position adjustment guidance, recording medium, and wearing type display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148404A (en) * 2004-11-18 2006-06-08 Nikon Corp Wearable display apparatus
JP2007116538A (en) * 2005-10-21 2007-05-10 Canon Inc Image display program, picture display apparatus and method
JP2007259252A (en) * 2006-03-24 2007-10-04 Nikon Corp Data for position adjustment guidance, recording medium, and wearing type display device

Similar Documents

Publication Publication Date Title
US9928629B2 (en) Combining video-based and optic-based augmented reality in a near eye display
US20220404629A1 (en) Head-mounted display with pivoting display
JP2017068045A (en) Wearable device
US10324296B2 (en) Display device
US11480799B2 (en) Head-mounted display
JPH09166759A (en) Picture display device
JP6797912B2 (en) Wearable device
JPWO2018008577A1 (en) Head-mounted display device
JP4622937B2 (en) Head-mounted display device
JP2018141874A (en) Head-mounted display device and image forming optical system
EP1524540A1 (en) Image observation apparatus
US11409091B2 (en) Method of operating a surgical microscope and surgical microscope
US20210271065A1 (en) Method of operating a surgical microscope and surgical microscope
WO2020009217A1 (en) Head-up display device
WO2019008721A1 (en) Wearable display device
US11025894B2 (en) Head-mounted display device and display control method for head-mounted display device
US20230004011A1 (en) Wearable display device
EP3628076B1 (en) Dual mode headset
CN217655373U (en) Head-up display device and moving object
WO2020009218A1 (en) Head-up display device
JP4504160B2 (en) Composite display device
US11607287B2 (en) Method of operating a surgical microscope and surgical microscope
US11796816B2 (en) Virtual image display apparatus
US20230004010A1 (en) Wearable display device
JPH0723310A (en) Picture display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP