WO2019008685A1 - Method for processing carbon fiber-reinforced plastic - Google Patents

Method for processing carbon fiber-reinforced plastic Download PDF

Info

Publication number
WO2019008685A1
WO2019008685A1 PCT/JP2017/024549 JP2017024549W WO2019008685A1 WO 2019008685 A1 WO2019008685 A1 WO 2019008685A1 JP 2017024549 W JP2017024549 W JP 2017024549W WO 2019008685 A1 WO2019008685 A1 WO 2019008685A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
reinforced plastic
fiber reinforced
acid solution
surfactant
Prior art date
Application number
PCT/JP2017/024549
Other languages
French (fr)
Japanese (ja)
Inventor
雄哉 佐野
香奈 宮武
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to CN201780091810.4A priority Critical patent/CN110719930A/en
Priority to PCT/JP2017/024549 priority patent/WO2019008685A1/en
Priority to JP2019528246A priority patent/JP6892509B2/en
Publication of WO2019008685A1 publication Critical patent/WO2019008685A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/033Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment comminuting or crushing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method of burning and treating waste plastic containing carbon fiber.
  • the crushed carbon fiber reinforced plastic is crushed so that the average particle diameter of the carbon fiber reinforced plastic is 3 mm or less, and the crushed carbon fiber reinforced plastic is cement kiln
  • the method of supplying to the position whose internal temperature of is 1200 degreeC or more is proposed (for example, refer patent document 1).
  • Patent Document 1 it is necessary to finely grind a high-strength carbon fiber reinforced plastic into extremely small particles having an average particle diameter of 3 mm or less, which requires a large amount of labor for the pulverization. There was a problem of becoming
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a method of treating carbon fiber reinforced plastic which can burn the carbon fiber reinforced plastic sufficiently with little effort.
  • the method of treating carbon fiber reinforced plastic of the present invention is a method of treating carbon fiber reinforced plastic which burns carbon fiber reinforced plastic, which comprises the carbon fiber reinforced plastic, surfactant, and acid. After contacting with a solution, the carbon fiber reinforced plastic is incinerated.
  • the surfactant improves the wettability of the carbon fiber reinforced plastic, and the acid solution is in sufficient contact with the carbon fiber reinforced plastic. And, at the time of incineration, the acid solution and the carbon fiber reinforced plastic react efficiently, and the thermal deterioration accompanied by the oxidative deterioration is promoted, so the flammability of the carbon fiber reinforced plastic is sufficiently enhanced.
  • the method for treating a carbon fiber reinforced plastic of the present invention it is not necessary to remove the carbon fiber in advance, and the average particle diameter of the carbon fiber reinforced plastic is not reduced to an extremely small size such as 3 mm or less. As it may be, the carbon fibers contained in the carbon fiber reinforced plastic can be sufficiently burned with less labor.
  • the carbon fiber reinforced plastic is brought into contact with the surfactant to reduce its diameter, and the acid solution is further brought into contact with it, and then the carbon fiber reinforced plastic is incinerated.
  • the carbon fiber reinforced plastic is brought into contact with a surfactant to reduce its diameter, and therefore, when the carbon fiber reinforced plastic is made smaller in diameter or dust is generated after the carbon fiber reinforced plastic is made smaller by the surfactant. It can be suppressed.
  • the amount of the acid solution is 10 parts by mass or more and 200 parts by mass or less, based on 100 parts by mass of the carbon fiber reinforced plastic. preferable.
  • the amount of the carbon fiber reinforced plastic is 100 parts by mass and the amount of the acid solution is less than 10 parts by mass, the effect of improving the flammability of the carbon fiber reinforced plastic may not be obtained sufficiently.
  • the amount of the acid solution is more than 200 parts by mass, even if the amount of the acid solution is increased, the effect of improving the flammability of the carbon fiber reinforced plastic becomes insufficient.
  • the amount of the surfactant is 0.5 parts by mass or more and 10 parts by mass or less when the amount of the acid solution is 100 parts by mass. Is preferred. When the amount of the acid solution is 100 parts by mass and the amount of the surfactant is less than 0.5 parts by mass, the effect of improving the combustibility of the carbon fiber reinforced plastic may not be obtained sufficiently.
  • the upper limit of the amount of surfactant is not limited from the viewpoint of improving the flammability of the carbon fiber reinforced plastic. However, from the viewpoint of drug cost and the like, when the amount of the surfactant solution is 10 parts by mass when the amount of the acid solution is 100 parts by mass, the cost is undesirably increased.
  • the average particle diameter of the said carbon fiber reinforced plastic is 10 mm or less.
  • the effect of improving the flammability can be obtained without extremely reducing the average particle size of the carbon fiber reinforced plastic, but if the average particle size is reduced to about 10 mm, the effect is particularly enhanced.
  • the carbon fiber reinforced plastic is brought into contact with a surfactant and an acid solution, the carbon fiber reinforced plastic is incinerated in a cement manufacturing facility. It is also good.
  • the present invention relates to a method of treating carbon fiber reinforced plastic by burning the carbon fiber reinforced plastic for treatment.
  • a carbon fiber reinforced plastic is brought into contact with a surfactant and an acid solution.
  • the surfactant may be one or more selected from various anionic, nonionic and cationic surfactants, and in particular, anionic or nonionic surfactants are preferably used.
  • anionic surfactants include sodium alkyl ether sulfate, sodium alkyl sulfate, sodium linear alkyl benzene sulfonate (LAS), sodium fatty acid, potassium fatty acid, sodium alpha sulfo fatty acid ester, sodium alpha olefin sulfonate, Examples include sodium alkyl sulfonate and the like.
  • nonionic surfactants include sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, fatty acid alkanolamide, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether and the like.
  • the amount of the surfactant is 0.05 to 20 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 0 when the amount of the carbon fiber reinforced plastic is 100 parts by mass. .5 to 5 parts by mass.
  • the amount of surfactant is 0.5 to 10 parts by mass, preferably 0.5 to 5 parts by mass, and more preferably 0 when the amount of the acid solution is 100 parts by mass. .5 parts by mass or more and 3 parts by mass or less.
  • the amount of surfactant is not within the above range, the effect of improving the flammability of the carbon fiber reinforced plastic may not be obtained sufficiently.
  • the pH of the acid solution used in the present invention is preferably 4 or less, more preferably 2 or less, particularly preferably less than 1, and the purity and the like are not particularly limited, and those generally available can be used. It may be used. Therefore, for example, waste acids having a pH of 4 or less can also be used effectively.
  • the amount of the acid solution is 10 parts by mass to 200 parts by mass, preferably 10 parts by mass to 100 parts by mass, more preferably 10 parts by mass to 50 parts by mass, based on 100 parts by mass of the carbon fiber reinforced plastic. Part or less.
  • the lower limit of the amount of the acid solution when the amount of carbon fiber reinforced plastic is 100 parts by mass, the effect of improving the flammability of the carbon fiber reinforced plastic is sufficiently obtained when the amount of the acid solution is less than 10 parts by mass. I can not do it.
  • the amount of the acid solution there is no limitation on the upper limit of the amount of the acid solution from the viewpoint of improving the flammability of the carbon fiber reinforced plastic.
  • the amount of the carbon fiber reinforced plastic is 100 parts by mass from the viewpoint of drug cost etc., if the amount of the acid solution exceeds 200 parts by mass, the cost increases, which is not preferable.
  • the method of bringing the carbon fiber reinforced plastic into contact with the surfactant and the acid solution is not particularly limited. That is, the carbon fiber reinforced plastic may be allowed to act on the surfactant and the acid solution. Specifically, for example, a surfactant and / or an acid solution may be dropped, sprayed, applied, etc. to a carbon fiber reinforced plastic, and operations such as mixing, stirring etc. are performed along with it if necessary. May be Alternatively, the carbon fiber reinforced plastic may be impregnated with a solution containing a surfactant and / or an acid solution, and if necessary, the carbon fiber reinforced plastic may be shaken while being shaken.
  • the carbon fiber reinforced plastic may be allowed to stand still under the atmosphere in which the surfactant and / or the acid solution is vaporized, or the carbon fiber reinforced plastic may be exposed under the atmosphere while being shaken.
  • You may More typically, it may be, for example, a method of configuring an environment where thermal decomposition of the acid solution occurs around the carbon fiber reinforced plastic inside the incinerator.
  • the surfactant and the acid solution may be used in a mixed state or in different forms.
  • the mixing method is not particularly limited, and any common method may be used as a liquid mixing method. For example, after adding a predetermined amount of surfactant to an acid solution having a large mixing ratio, mixing may be performed by stirring. Also, an aqueous solution containing both of them may be prepared and used. On the other hand, even when the surfactant and the acid solution are used in different forms, the form of the aqueous solution can be separately prepared and used.
  • an aqueous solution containing a surfactant when preparing an aqueous solution containing a surfactant, it is prepared by adding 0.1 part by mass to 30 parts by mass of the surfactant to 100 parts by mass of water from the viewpoint of not increasing the viscosity of the aqueous solution. It is preferable that it is prepared by adding 1 part by mass to 10 parts by mass.
  • the timing which contacts surfactant and an acid solution with a carbon fiber reinforced plastic there is no restriction
  • the surfactant and the acid solution are used in different forms, there is no particular limitation on the timing of contacting them with the carbon fiber reinforced plastic. That is, the surfactant may be brought into contact with the carbon fiber reinforced plastic prior to the acid solution, or may be brought into contact simultaneously, or the surfactant may be brought into contact with the carbon fiber reinforced plastic after the acid solution.
  • a carbon fiber reinforced plastic is brought into contact with a surfactant to reduce its diameter, and this is further brought into contact with an acid solution. According to this, the combustion improvement effect is further enhanced by the reduction in diameter. In addition, when the carbon fiber reinforced plastic is made smaller in diameter, or dust generation after the carbon fiber reinforced plastic is made smaller is suppressed by the surfactant.
  • the timing of contacting the surfactant and the acid solution with the carbon fiber reinforced plastic there is no particular limitation on the timing of contacting the surfactant and the acid solution with the carbon fiber reinforced plastic. That is, for example, the carbon fiber reinforced plastic may be put into the facility for incineration, may be at the same time as the put in, or may be put in after the put in place.
  • the acid solution After contacting the carbon fiber reinforced plastic in contact with them in the inside of the incinerator or dropping the surfactant and introducing the carbon fiber reinforced plastic into the incinerator, the acid solution is put in the inside of the incinerator.
  • fog may be a method of contacting them within the incinerator.
  • waste of carbon fiber reinforced plastic (hereinafter referred to as “waste CFRP”) is described in more detail by taking thermal recycling treatment in a cement kiln as an example. explain.
  • CFRP Carbon fiber reinforced plastics
  • CFRP is a structural material which is light in weight but is very excellent in mechanical properties and corrosion resistance.
  • the carbon fiber content is generally about 30% by mass to 80% by mass.
  • the content rate of the carbon fiber of CFRP can be calculated
  • carbon fibers used in CFRP fibers formed from graphitic carbon and having excellent mechanical properties such as rigidity are used.
  • carbon fibers for example, polyacrylonitrile-based, pitch-based or cellulose-based fibers and the like are heated to 150 ° C. to 400 ° C. in an oxidizing atmosphere to perform a flameproofing treatment, and then in an inert atmosphere.
  • activated carbon fibers activated in a semi-active atmosphere such as water vapor and the like can be mentioned.
  • thermoplastic resin As a matrix material used for CFRP, a thermoplastic resin or a thermosetting resin is used.
  • the thermoplastic resin include polyamide resin, or polypropylene resin, nylon resin, and the like.
  • thermosetting resin an epoxy resin, unsaturated polyester resin, a polyimide resin, bismaleimide resin, a phenol resin etc. are mentioned, for example.
  • waste CFRP which is a waste of CFRP comprising the above-mentioned components
  • a crushing apparatus such as a rotary cutter shear crusher, and then a jaw crusher and a roll mill.
  • the diameter is reduced to a predetermined size by crushing equipment such as a roller mill and a crusher.
  • a classification device such as a separator to the grinding equipment at the latter stage.
  • the average particle size of the waste CFRP after the treatment for reducing the diameter is obtained by drying those after the treatment for reducing the diameter and using the sieve specified in JIS Z 8801 "Sieve for test-Part 1: Metal mesh sieve" It can be determined by sifting and calculating the diameter corresponding to 50% by mass of the sample remaining on the sieve.
  • the waste CFRP it is not always necessary to make the diameter reduction that requires excessive labor, but in order to perform the treatment efficiently, it is preferable to reduce the waste CFRP to a certain extent. Specifically, it may be 10 mm or less, preferably 7 mm or less.
  • the waste CFRP reduced in diameter is brought into contact with the surfactant and the acid solution.
  • the environment in which the thermal decomposition of the acid solution occurs around the waste CFRP is configured in the inside of the cement kiln.
  • the size of waste CFRP to which a surfactant is dropped is reduced to obtain waste CFRP containing a surfactant, and the waste CFRP containing the surfactant is then brought into contact with an acid solution. Good.
  • the acid solution may be dropped to the waste CFRP having a reduced diameter, or the waste CFRP having a reduced diameter may be impregnated with the acid solution after the surfactant is dropped, and then these may be added to the cement kiln.
  • waste CFRP After charging the waste CFRP into a cement kiln, spray the surfactant and acid solution inside the cement kiln to bring them into contact with the inside of the cement kiln, or drip the surfactant
  • the waste CFRP having a reduced diameter may be introduced into the incinerator, and then the acid solution may be sprayed into the inside of the incinerator to bring them into contact with the inside of the incinerator.
  • the position of the waste CFRP to be introduced into the cement kiln and it may be from the weir front side (kiln burner side), from the weir end side, or from the calciner.
  • waste CFRP and waste CFRP should be used when using a method of contacting the inside of the cement kiln in order to efficiently utilize the effect of improving the flammability by the acid solution. It is preferable to introduce the surfactant and the acid solution into the cement kiln simultaneously or substantially simultaneously from a common or very near location.
  • first blowing port for waste CFRP in a kiln burner etc.
  • second blowing port may be installed.
  • waste CFRP is heated inside the cement kiln with the surfactant and acid solution in contact with it.
  • the heating temperature is preferably set to a temperature exceeding the combustion temperature range (500 ° C. to 800 ° C.) of fixed carbon.
  • fixed carbon refers to a carbon compound present in a form that does not volatilize in a carbon fiber reinforced plastic, and includes carbon fibers and the like contained in waste CFRP.
  • an example of a cement kiln which is a cement production facility is described as an incineration facility for carbon fiber reinforced plastic, but in the treatment method of the present invention, an incineration facility other than a cement kiln may be used. Of course.
  • test results according to the treatment method of the present invention (that is, an embodiment of the treatment method of the present invention) will be described.
  • Carbon fiber reinforced plastic Waste CFRP (carbon fiber content: 58% by mass) Waste CFRP sample size: average particle size 1 mm
  • Acid solution a HNO 3 solution of pH 0.6 (69% HNO 3 solution)
  • Acid solution b pH 2 HNO 3 solution (adjusted by diluting acid solution 1)
  • Acid solution c HNO 3 solution of pH 4 (adjusted by diluting acid solution 1)
  • Acid solution d HNO 3 solution of pH 6 (adjusted by diluting acid solution 1)
  • Surfactant Linear alkyl benzene sulfonate sodium, linear alkyl benzene sulfonic acid, and alkyl ether sulfate sodium mixture (manufactured by Lion Corporation: Mama Lemon (trade name))
  • Method of using surfactant and acid solution Tests were conducted at ten test levels of Examples 1 to 8 and Comparative Examples 1 and 2 shown below.
  • Example 1 Assuming a condition in which a carbon fiber reinforced plastic is exposed in an atmosphere in which a surfactant and an acid solution are vaporized, the waste CFRP (100 parts by mass) without impregnating the waste CFRP in advance with the acid solution Mixed solution a consisting of surfactant (0.08 parts by mass) and acid solution a (12.5 parts by mass) (0.64 parts by mass of surfactant per 100 parts by mass of acid solution a) 12.58 parts by mass of the mixed solution a obtained above was dropped and simultaneously heated.
  • Example 2 Assuming that the carbon fiber reinforced plastic is impregnated with a surfactant and an acid solution and then burned, waste CFRP is added in advance with 0.64 parts by weight of surfactant per 100 parts by weight of acid solution a.
  • Example 3 Example 1 was repeated except that the acid solution a was changed to the acid solution b.
  • Example 4 Example 2 was repeated except that the acid solution a was changed to the acid solution b.
  • Example 5 Example 1 was repeated except that the acid solution a was changed to the acid solution c.
  • Example 6 The same procedure as in Example 2 was performed except that the acid solution a was changed to the acid solution c.
  • Example 7 The same procedure as in Example 1 was performed except that the acid solution a was changed to the acid solution d.
  • Example 8 The procedure of Example 2 was repeated except that the acid solution a was changed to the acid solution d. Comparative Example 1: Only waste CFRP was heated without using a surfactant and an acid solution. Comparative Example 2: Assuming that the carbon fiber reinforced plastic is exposed in an atmosphere in which only the acid solution is vaporized, the waste CFRP (100 parts by mass) is surrounded without being impregnated with the acid solution in advance. Acid solution a (12.5 parts by mass) was dropped and heated at the same time.
  • the samples were heated at a heating rate of 10 ° C./min at all test levels, and the weight loss was measured in the temperature range of 150 to 1000 ° C.
  • the weight reduction rate was measured using a thermogravimetric / differential heat measurement apparatus (manufactured by Netti Japan Co., Ltd .: TG-DTA 2020SR (trade name)).
  • thermogravimetric curve obtained at each test level the weight of fixed carbon (the mass at the start point of the slow gradient in the thermogravimetric curve at 500 ° C. to 600 ° C., and the point at which the weight loss near 800 ° C. does not occur In the difference with weight), the weight reduction rate (mass%) at a predetermined temperature was calculated, where the weight of the fixed carbon was 100%.
  • Table 1 The results are shown in Table 1.
  • thermogravimetric curve of Example 1, 2 and Comparative Example 1, 2 is shown in FIG. 1 for reference.
  • two regions on the low temperature side are mainly resin Weight loss due to combustion of volatile carbon, etc.
  • the weight loss region on the highest temperature side is weight loss mainly due to combustion of fixed carbon such as carbon fiber. Therefore, it can be seen from FIG. 1 that the method of the present invention (Examples 1 and 2) also promotes the flammability of fixed carbon thereafter by promoting the flammability of the resin.
  • the method of using the surfactant and the acid solution for waste CFRP was the same as Example 2 of Test Example 1 above. That is, after impregnating the waste CFRP into the mixed solution a obtained by adding 0.64 parts by mass of the surfactant to 100 parts by mass of the acid solution a in advance, the drained waste CFRP was used.
  • the sample impregnated with the above mixed solution a is heated for 3 minutes in an electric furnace in an air atmosphere set at a temperature of 1400 ° C., and fixed carbon (carbon fiber) remaining without burning in the sample after heating
  • This heating condition is a condition that simulates the case where combustion treatment is performed by introducing it into the front of the cement kiln.
  • the evaluation of the burning rate is that all samples after electric furnace heating are regarded as fixed carbon, and the weight of fixed carbon contained in unheated waste CFRP from the measured value of the amount of remaining sample after heating (carbon fiber content: 58 The mass residual rate (%) at the time of mass% being 100% was calculated. The results are shown in Table 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided is a method for processing carbon fiber-reinforced plastic whereby carbon fiber-reinforced plastic can be sufficiently burned using less effort. Carbon fiber-reinforced plastic is placed in contact with a surfactant and an acid solution, then incinerated.

Description

炭素繊維強化プラスチックの処理方法Method of treating carbon fiber reinforced plastic
 本発明は、炭素繊維を含む廃プラスチックを焼却して処理する方法に関する。 The present invention relates to a method of burning and treating waste plastic containing carbon fiber.
 近年、軽量且つ高強度な構造材料として、樹脂又は金属等のマトリックス材料と炭素化合物とで形成された複合材料の需要が、飛躍的に増大している。特に、熱硬化性樹脂又は熱可塑性樹脂からなるマトリックス材料と炭素繊維とを複合化した炭素繊維強化プラスチック(CFRP:Carbon Fiber reinforced plastics)の需要の増大は、目覚ましいものがある。その一方で、その需要の増大に伴い、炭素繊維強化プラスチックを含有する廃棄物の廃棄量も増大している。 In recent years, as a lightweight and high-strength structural material, the demand for a composite material formed of a matrix material such as a resin or metal and a carbon compound has dramatically increased. In particular, the increase in demand for carbon fiber reinforced plastics (CFRP) in which a matrix material made of a thermosetting resin or a thermoplastic resin and a carbon fiber are composited is remarkable. On the other hand, with the increase in demand, the amount of waste containing carbon fiber reinforced plastic is also increasing.
 このような炭素繊維強化プラスチックの処理方法としては、セメント製造プロセスにおいて、代替燃料として有効利用しながら焼却して処理する方法がある。 As a method of treating such carbon fiber reinforced plastic, there is a method of incinerating and treating it in a cement manufacturing process while being effectively used as an alternative fuel.
 しかし、炭素繊維強化プラスチックを焼却して処理すると、プラスチックに含まれる炭素繊維が燃え残り、その燃え残った炭素繊維が、排ガス中に混入してしまうことがあった。その結果、排ガスの集塵設備(電気集塵機、バグフィルタ等)において、それらに付着した炭素繊維に起因する故障(電気短絡事故、フィルタの損傷等)が生じるおそれがあるという問題があった。 However, when the carbon fiber reinforced plastic is incinerated and treated, carbon fibers contained in the plastic may be burned off and the burned carbon fibers may be mixed in the exhaust gas. As a result, there has been a problem that there may be a failure (electric short circuit accident, damage to the filter, etc.) caused by carbon fibers adhering to exhaust gas dust collection equipment (electrostatic dust collector, bag filter, etc.).
 そのような問題を回避する方法としては、セメント製造プロセスによる処理を行う前に、炭素繊維強化プラスチックから炭素繊維を除去する処理を行うという方法があるが、事前の処理を行うことは非常に煩雑であった。 As a method to avoid such problems, there is a method of removing carbon fiber from carbon fiber reinforced plastic before performing treatment by cement manufacturing process, but it is very complicated to perform pretreatment in advance. Met.
 そこで、事前に炭素繊維を除去する処理を省略することができる処理方法として、炭素繊維強化プラスチックの平均粒子径が3mm以下になるように粉砕した後、その粉砕した炭素繊維強化プラスチックを、セメントキルンの内部温度が1200℃以上である位置に供給するという方法が提案されている(例えば、特許文献1参照)。 Therefore, as a treatment method capable of omitting the process of removing carbon fibers in advance, the crushed carbon fiber reinforced plastic is crushed so that the average particle diameter of the carbon fiber reinforced plastic is 3 mm or less, and the crushed carbon fiber reinforced plastic is cement kiln The method of supplying to the position whose internal temperature of is 1200 degreeC or more is proposed (for example, refer patent document 1).
特開2007-131463号公報Unexamined-Japanese-Patent No. 2007-131463
 しかし、特許文献1に記載の方法は、高強度の炭素繊維強化プラスチックを平均粒子径が3mm以下の極めて小さい粒子となるまで細かく粉砕する必要があり、その粉砕のために多大な労力が必要になるという問題があった。 However, in the method described in Patent Document 1, it is necessary to finely grind a high-strength carbon fiber reinforced plastic into extremely small particles having an average particle diameter of 3 mm or less, which requires a large amount of labor for the pulverization. There was a problem of becoming
 本発明は以上の点に鑑みてなされたものであり、少ない労力で炭素繊維強化プラスチックを十分に燃焼させることができる炭素繊維強化プラスチックの処理方法を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a method of treating carbon fiber reinforced plastic which can burn the carbon fiber reinforced plastic sufficiently with little effort.
 上記目的を達成するために、本発明の炭素繊維強化プラスチックの処理方法は、炭素繊維強化プラスチックを焼却する炭素繊維強化プラスチックの処理方法であって、前記炭素繊維強化プラスチックと、界面活性剤及び酸溶液とを接触させた後、該炭素繊維強化プラスチックを焼却することを特徴とする。 In order to achieve the above object, the method of treating carbon fiber reinforced plastic of the present invention is a method of treating carbon fiber reinforced plastic which burns carbon fiber reinforced plastic, which comprises the carbon fiber reinforced plastic, surfactant, and acid. After contacting with a solution, the carbon fiber reinforced plastic is incinerated.
 本発明の炭素繊維強化プラスチックの処理方法では、界面活性剤によって炭素繊維強化プラスチックの濡れ性が改善し、酸溶液が炭素繊維強化プラスチックに十分に接触する。そして、焼却時には、その酸溶液と炭素繊維強化プラスチックが効率よく反応し、酸化劣化を伴う熱劣化が促進されるので、炭素繊維強化プラスチックの燃焼性が十分に高められる。 In the method of treating carbon fiber reinforced plastic of the present invention, the surfactant improves the wettability of the carbon fiber reinforced plastic, and the acid solution is in sufficient contact with the carbon fiber reinforced plastic. And, at the time of incineration, the acid solution and the carbon fiber reinforced plastic react efficiently, and the thermal deterioration accompanied by the oxidative deterioration is promoted, so the flammability of the carbon fiber reinforced plastic is sufficiently enhanced.
 したがって、本発明の炭素繊維強化プラスチックの処理方法によれば、事前に炭素繊維の除去を行う必要がなく、また、炭素繊維強化プラスチックの平均粒子径を、例えば3mm以下などの極めて小さいサイズにしなくてもよいので、少ない労力で炭素繊維強化プラスチックに含まれる炭素繊維を十分に燃焼させることができる。 Therefore, according to the method for treating a carbon fiber reinforced plastic of the present invention, it is not necessary to remove the carbon fiber in advance, and the average particle diameter of the carbon fiber reinforced plastic is not reduced to an extremely small size such as 3 mm or less. As it may be, the carbon fibers contained in the carbon fiber reinforced plastic can be sufficiently burned with less labor.
 本発明の炭素繊維強化プラスチックの処理方法においては、前記炭素繊維強化プラスチックに前記界面活性剤を接触させて小径化し、これに更に前記酸溶液を接触させた後、その炭素繊維強化プラスチックを焼却することが好ましい。この態様では、炭素繊維強化プラスチックに界面活性剤を接触させて小径化するので、その界面活性剤により、炭素繊維強化プラスチックの小径化の際、あるいは炭素繊維強化プラスチックの小径化後の発塵を抑制することができる。 In the method for treating a carbon fiber reinforced plastic of the present invention, the carbon fiber reinforced plastic is brought into contact with the surfactant to reduce its diameter, and the acid solution is further brought into contact with it, and then the carbon fiber reinforced plastic is incinerated. Is preferred. In this embodiment, the carbon fiber reinforced plastic is brought into contact with a surfactant to reduce its diameter, and therefore, when the carbon fiber reinforced plastic is made smaller in diameter or dust is generated after the carbon fiber reinforced plastic is made smaller by the surfactant. It can be suppressed.
 本発明の炭素繊維強化プラスチックの処理方法においては、前記酸溶液の量は、前記炭素繊維強化プラスチックの量を100質量部としたとき、10質量部以上、且つ、200質量部以下であることが好ましい。炭素繊維強化プラスチックの量を100質量部としたときに、酸溶液の量が10質量部未満であると、十分に炭素繊維強化プラスチックの燃焼性改善効果を得られないことがある。一方、酸溶液の量が200質量部よりも多い場合については、酸溶液を増量しても、その増量にともなう炭素繊維強化プラスチックの燃焼性の改善の効果に乏しくなる。 In the method for treating carbon fiber reinforced plastic of the present invention, the amount of the acid solution is 10 parts by mass or more and 200 parts by mass or less, based on 100 parts by mass of the carbon fiber reinforced plastic. preferable. When the amount of the carbon fiber reinforced plastic is 100 parts by mass and the amount of the acid solution is less than 10 parts by mass, the effect of improving the flammability of the carbon fiber reinforced plastic may not be obtained sufficiently. On the other hand, in the case where the amount of the acid solution is more than 200 parts by mass, even if the amount of the acid solution is increased, the effect of improving the flammability of the carbon fiber reinforced plastic becomes insufficient.
 また、本発明の炭素繊維強化プラスチックの処理方法においては、前記界面活性剤の量は、前記酸溶液の量を100質量部としたとき、0.5質量部以上、且つ、10質量部以下であることが好ましい。酸溶液の量を100質量部としたときに、界面活性剤の量が0.5質量部未満であると、十分に炭素繊維強化プラスチックの燃焼性改善効果を得られないことがある。一方、界面活性剤の量の上限については、炭素繊維強化プラスチックの燃焼性改善の観点からは制約が生じない。しかし、薬剤コスト等の観点から、酸溶液の量を100質量部としたときに、界面活性剤の量が10質量部を超えると、コストが増加してしまうので好ましくない。 In the method for treating a carbon fiber reinforced plastic of the present invention, the amount of the surfactant is 0.5 parts by mass or more and 10 parts by mass or less when the amount of the acid solution is 100 parts by mass. Is preferred. When the amount of the acid solution is 100 parts by mass and the amount of the surfactant is less than 0.5 parts by mass, the effect of improving the combustibility of the carbon fiber reinforced plastic may not be obtained sufficiently. On the other hand, the upper limit of the amount of surfactant is not limited from the viewpoint of improving the flammability of the carbon fiber reinforced plastic. However, from the viewpoint of drug cost and the like, when the amount of the surfactant solution is 10 parts by mass when the amount of the acid solution is 100 parts by mass, the cost is undesirably increased.
 また、本発明の炭素繊維強化プラスチックの処理方法においては、前記炭素繊維強化プラスチックの平均粒子径は、10mm以下であることが好ましい。燃焼性改善効果は、炭素繊維強化プラスチックの平均粒子径を極めて小さくしなくても得ることができるが、平均粒子径を10mm程度まで小さくすると、特にその効果が大きくなる。 Moreover, in the processing method of the carbon fiber reinforced plastic of this invention, it is preferable that the average particle diameter of the said carbon fiber reinforced plastic is 10 mm or less. The effect of improving the flammability can be obtained without extremely reducing the average particle size of the carbon fiber reinforced plastic, but if the average particle size is reduced to about 10 mm, the effect is particularly enhanced.
 また、本発明の炭素繊維強化プラスチックの処理方法においては、前記炭素繊維強化プラスチックと、界面活性剤及び酸溶液とを接触させた後、該炭素繊維強化プラスチックをセメント製造設備で焼却するようにしてもよい。 Further, in the method for treating a carbon fiber reinforced plastic of the present invention, after the carbon fiber reinforced plastic is brought into contact with a surfactant and an acid solution, the carbon fiber reinforced plastic is incinerated in a cement manufacturing facility. It is also good.
試験例1における実施例1~2及び比較例1~2の熱重量曲線の結果を示すグラフであり、縦軸は試料の重量減少率(質量%)を示し、横軸は加熱温度(℃)を示す。It is a graph which shows the result of the thermal weight curve of Example 1-2 in Comparative Example 1 and Comparative example 1-2, a vertical axis shows a weight loss rate (mass%) of a sample, a horizontal axis shows heating temperature (° C) Indicates
 本発明は、炭素繊維強化プラスチックを焼却して処理する炭素繊維強化プラスチックの処理方法に関する。 The present invention relates to a method of treating carbon fiber reinforced plastic by burning the carbon fiber reinforced plastic for treatment.
 本発明の処理方法においては、炭素繊維強化プラスチックに、界面活性剤と酸溶液とを接触させる。 In the treatment method of the present invention, a carbon fiber reinforced plastic is brought into contact with a surfactant and an acid solution.
 界面活性剤としては、アニオン系、ノニオン系及びカチオン系の各種界面活性剤のうちから選択される1種以上であればよく、特に、アニオン系又はノニオン系の界面活性剤を用いることが好ましい。 The surfactant may be one or more selected from various anionic, nonionic and cationic surfactants, and in particular, anionic or nonionic surfactants are preferably used.
 アニオン系の界面活性剤としては、例えば、アルキルエーテル硫酸エステルナトリウム、アルキル硫酸エステルナトリウム、直鎖アルキルベンゼンスルホン酸ナトリウム(LAS)、脂肪酸ナトリウム、脂肪酸カリウム、アルファスルホ脂肪酸エステルナトリウム、アルファオレフィンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム等が挙げられる。 Examples of anionic surfactants include sodium alkyl ether sulfate, sodium alkyl sulfate, sodium linear alkyl benzene sulfonate (LAS), sodium fatty acid, potassium fatty acid, sodium alpha sulfo fatty acid ester, sodium alpha olefin sulfonate, Examples include sodium alkyl sulfonate and the like.
 また、ノニオン系の界面活性剤としては、例えば、しょ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルカノールアミド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル等が挙げられる。 Examples of nonionic surfactants include sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, fatty acid alkanolamide, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether and the like.
 界面活性剤の量は、炭素繊維強化プラスチックの量を100質量部としたときに、0.05質量部以上20質量部以下、好ましくは0.5量部以上10質量部以下、より好ましくは0.5質量部以上5質量部以下である。 The amount of the surfactant is 0.05 to 20 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 0 when the amount of the carbon fiber reinforced plastic is 100 parts by mass. .5 to 5 parts by mass.
 また、界面活性剤の量は、酸溶液の量を100質量部としたときに、0.5質量部以上10質量部以下、好ましくは0.5量部以上5質量部以下、より好ましくは0.5質量部以上3質量部以下である。 The amount of surfactant is 0.5 to 10 parts by mass, preferably 0.5 to 5 parts by mass, and more preferably 0 when the amount of the acid solution is 100 parts by mass. .5 parts by mass or more and 3 parts by mass or less.
 界面活性剤の量が上記の範囲でない場合には、十分に炭素繊維強化プラスチックの燃焼性改善効果を得られないことがある。 If the amount of surfactant is not within the above range, the effect of improving the flammability of the carbon fiber reinforced plastic may not be obtained sufficiently.
 本発明に用いる酸溶液は、そのpHは、好ましくは4以下、より好ましくは2以下、特に好ましくは1未満であり、純度等が特に限定されるものではなく、通常に入手が可能なものを用いればよい。したがって、例えば、pHが4以下の廃酸類も有効に使用することができる。 The pH of the acid solution used in the present invention is preferably 4 or less, more preferably 2 or less, particularly preferably less than 1, and the purity and the like are not particularly limited, and those generally available can be used. It may be used. Therefore, for example, waste acids having a pH of 4 or less can also be used effectively.
 酸溶液の量は、炭素繊維強化プラスチックの量を100質量部としたときに、10質量部以上200質量部以下、好ましくは10質量部以上100質量部以下、より好ましくは10質量部以上50質量部以下である。 The amount of the acid solution is 10 parts by mass to 200 parts by mass, preferably 10 parts by mass to 100 parts by mass, more preferably 10 parts by mass to 50 parts by mass, based on 100 parts by mass of the carbon fiber reinforced plastic. Part or less.
 酸溶液の量の下限については、炭素繊維強化プラスチックの量を100質量部としたときに、酸溶液の量が10質量部未満であると、十分に炭素繊維強化プラスチックの燃焼性改善効果を得られないことがある。 Regarding the lower limit of the amount of the acid solution, when the amount of carbon fiber reinforced plastic is 100 parts by mass, the effect of improving the flammability of the carbon fiber reinforced plastic is sufficiently obtained when the amount of the acid solution is less than 10 parts by mass. I can not do it.
 酸溶液の量の上限については、炭素繊維強化プラスチックの燃焼性改善の観点からは制約が生じない。しかし、薬剤コスト等の観点から炭素繊維強化プラスチックの量を100質量部としたときに、酸溶液の量が200質量部を超えると、コストが増加してしまうので好ましくない。 There is no limitation on the upper limit of the amount of the acid solution from the viewpoint of improving the flammability of the carbon fiber reinforced plastic. However, when the amount of the carbon fiber reinforced plastic is 100 parts by mass from the viewpoint of drug cost etc., if the amount of the acid solution exceeds 200 parts by mass, the cost increases, which is not preferable.
 本発明の処理方法において、炭素繊維強化プラスチックと、界面活性剤及び酸溶液とを接触させる方法に、特に制限はない。すなわち、炭素繊維強化プラスチックに、界面活性剤と酸溶液とが作用するようにすればよい。具体的には、例えば、炭素繊維強化プラスチックに対して、界面活性剤及び/又は酸溶液を滴下、噴霧、塗布等したりすればよく、必要に応じてそれとともに混合、攪拌等の操作を施してもよい。あるいは、炭素繊維強化プラスチックを界面活性剤及び/又は酸溶液を含んだ溶液に含浸させたり、必要に応じてその炭素繊維強化プラスチックを揺動させながらその含浸を行ったりしてもよい。あるいは、また、界面活性剤及び/又は酸溶液が気化した雰囲気下に炭素繊維強化プラスチックを静置して曝露したり、必要に応じてその炭素繊維強化プラスチックを揺動させながらその雰囲気下に曝露したりしてもよい。より典型的には、例えば、焼却設備の内部で炭素繊維強化プラスチックの周囲で酸溶液の熱分解が生じる環境が構成される方法などであってもよい。 In the treatment method of the present invention, the method of bringing the carbon fiber reinforced plastic into contact with the surfactant and the acid solution is not particularly limited. That is, the carbon fiber reinforced plastic may be allowed to act on the surfactant and the acid solution. Specifically, for example, a surfactant and / or an acid solution may be dropped, sprayed, applied, etc. to a carbon fiber reinforced plastic, and operations such as mixing, stirring etc. are performed along with it if necessary. May be Alternatively, the carbon fiber reinforced plastic may be impregnated with a solution containing a surfactant and / or an acid solution, and if necessary, the carbon fiber reinforced plastic may be shaken while being shaken. Alternatively, the carbon fiber reinforced plastic may be allowed to stand still under the atmosphere in which the surfactant and / or the acid solution is vaporized, or the carbon fiber reinforced plastic may be exposed under the atmosphere while being shaken. You may More typically, it may be, for example, a method of configuring an environment where thermal decomposition of the acid solution occurs around the carbon fiber reinforced plastic inside the incinerator.
 界面活性剤と酸溶液とは、混合状態で用いてもよく、各別の形態で用いてもよい。両者を混合状態で用いる場合には、その混合方法は特に限定されず、液体の混合方法として一般的なものであればどのような方法であってもよい。例えば、混合割合の多い酸溶液に所定量の界面活性剤を添加した後、撹拌することによって混合すればよい。また、両者をともに含有する水溶液を調製して用いてもよい。一方、界面活性剤と酸溶液とを各別の形態で用いる場合にも、水溶液の形態を別々に調製して用いることができる。ただし、界面活性剤を含む水溶液を調製する場合には、かかる水溶液の粘性を大きくしない観点から、水100質量部に対して界面活性剤を0.1質量部~30質量部添加して調製されたものであることが好ましく、1質量部~10質量部添加して調製されたものであることがより好ましい。 The surfactant and the acid solution may be used in a mixed state or in different forms. When both are used in a mixed state, the mixing method is not particularly limited, and any common method may be used as a liquid mixing method. For example, after adding a predetermined amount of surfactant to an acid solution having a large mixing ratio, mixing may be performed by stirring. Also, an aqueous solution containing both of them may be prepared and used. On the other hand, even when the surfactant and the acid solution are used in different forms, the form of the aqueous solution can be separately prepared and used. However, when preparing an aqueous solution containing a surfactant, it is prepared by adding 0.1 part by mass to 30 parts by mass of the surfactant to 100 parts by mass of water from the viewpoint of not increasing the viscosity of the aqueous solution. It is preferable that it is prepared by adding 1 part by mass to 10 parts by mass.
 また、界面活性剤と酸溶液とを、炭素繊維強化プラスチックに接触させるタイミングについては、特に制限はない。すなわち、例えば、炭素繊維強化プラスチックを焼却のための設備に投入する前であってもよく、投入と同時であってもよく、投入した後であってもよい。加えて、界面活性剤と酸溶液とを各別の形態で用いる場合にも、それらを炭素繊維強化プラスチックに接触させるタイミングについては、特に制限はない。すなわち、酸溶液より先に界面活性剤を炭素繊維強化プラスチックに接触させてもよく、同時に接触させてもよく、酸溶液よりあとに界面活性剤を炭素繊維強化プラスチックに接触させてもよい。ただし、炭素繊維強化プラスチックに十分な濡れ性を付与する観点からは、界面活性剤を酸溶液より先に炭素繊維強化プラスチックに接触させることが好ましい。 Moreover, there is no restriction | limiting in particular about the timing which contacts surfactant and an acid solution with a carbon fiber reinforced plastic. That is, for example, the carbon fiber reinforced plastic may be put into the facility for incineration, may be at the same time as the put in, or may be put in after the put in place. In addition, even when the surfactant and the acid solution are used in different forms, there is no particular limitation on the timing of contacting them with the carbon fiber reinforced plastic. That is, the surfactant may be brought into contact with the carbon fiber reinforced plastic prior to the acid solution, or may be brought into contact simultaneously, or the surfactant may be brought into contact with the carbon fiber reinforced plastic after the acid solution. However, from the viewpoint of imparting sufficient wettability to the carbon fiber reinforced plastic, it is preferable to contact the surfactant with the carbon fiber reinforced plastic prior to the acid solution.
 一方、本発明の他の態様では、炭素繊維強化プラスチックに界面活性剤を接触させて小径化し、これに更に酸溶液を接触させる。これによれば、その小径化により、燃焼性改善効果がより高められる。また、界面活性剤により、炭素繊維強化プラスチックの小径化の際、あるいは炭素繊維強化プラスチックの小径化後の発塵が抑制される。 On the other hand, in another embodiment of the present invention, a carbon fiber reinforced plastic is brought into contact with a surfactant to reduce its diameter, and this is further brought into contact with an acid solution. According to this, the combustion improvement effect is further enhanced by the reduction in diameter. In addition, when the carbon fiber reinforced plastic is made smaller in diameter, or dust generation after the carbon fiber reinforced plastic is made smaller is suppressed by the surfactant.
 上記の形態においても、界面活性剤と酸溶液とを、炭素繊維強化プラスチックに接触させるタイミングについては、特に制限はない。すなわち、例えば、炭素繊維強化プラスチックを焼却のための設備に投入する前であってもよく、投入と同時であってもよく、投入した後であってもよい。より具体的には、例えば、小径化した炭素繊維強化プラスチックに界面活性剤及び酸溶液を滴下した後、又は、界面活性剤及び酸溶液を含む溶液に小径化した炭素繊維強化プラスチックを含浸した後、又は、界面活性剤を滴下して小径化した炭素繊維強化プラスチックに酸溶液を滴下した後、又は、界面活性剤を滴下して小径化した炭素繊維強化プラスチックを酸溶液に含浸した後、焼却設備にそれらを投入する方法であってもよいし、焼却設備に小径化した炭素繊維強化プラスチックを投入する際に、もしくは投入した後に、焼却設備の内部に界面活性剤及び酸溶液を噴霧して、焼却設備の内部でそれらを接触させる、又は、界面活性剤を滴下して小径化した炭素繊維強化プラスチックを焼却設備に投入した後、焼却設備の内部に酸溶液を噴霧して、焼却設備の内部でそれらを接触させる方法などであってもよい。 Also in the above embodiment, there is no particular limitation on the timing of contacting the surfactant and the acid solution with the carbon fiber reinforced plastic. That is, for example, the carbon fiber reinforced plastic may be put into the facility for incineration, may be at the same time as the put in, or may be put in after the put in place. More specifically, for example, after dropping a surfactant and an acid solution onto a carbon fiber reinforced plastic with reduced diameter, or after impregnating the carbon fiber reinforced plastic with a solution containing a surfactant and an acid solution Alternatively, after the acid solution is dropped onto the carbon fiber reinforced plastic made small by dripping the surfactant, or after the carbon fiber reinforced plastic made small by impregnating the surfactant into the acid solution, it is incinerated It may be a method of charging them into the equipment, or when charging the carbon fiber reinforced plastic reduced in diameter into the incineration equipment or after injecting it, spray the surfactant and the acid solution inside the incineration equipment. After contacting the carbon fiber reinforced plastic in contact with them in the inside of the incinerator or dropping the surfactant and introducing the carbon fiber reinforced plastic into the incinerator, the acid solution is put in the inside of the incinerator. And fog, may be a method of contacting them within the incinerator.
 以下、本発明の炭素繊維強化プラスチックの処理方法について、炭素繊維強化プラスチックの廃棄物(以下、「廃CFRP」という。)を、セメントキルンでサーマルリサイクルの処理を行う場合を例として、更に詳細に説明する。 Hereinafter, regarding the method for treating carbon fiber reinforced plastic of the present invention, waste of carbon fiber reinforced plastic (hereinafter referred to as “waste CFRP”) is described in more detail by taking thermal recycling treatment in a cement kiln as an example. explain.
 まず、処理対象物である廃CFRPについて説明する。炭素繊維強化プラスチック(CFRP:Carbon Fiber reinforced plastics)は、軽量でありながら機械的特性や耐蝕性に非常に優れた構造材料である。炭素繊維の含有率は、一般的に、30質量%~80質量%程度とされている。なお、CFRPの炭素繊維の含有率は、JIS K 7075「炭素繊維強化プラスチックの繊維含有率及び空洞率試験方法」に準拠した試験方法で求めることができる。 First, waste CFRP, which is an object to be treated, will be described. Carbon fiber reinforced plastics (CFRP) is a structural material which is light in weight but is very excellent in mechanical properties and corrosion resistance. The carbon fiber content is generally about 30% by mass to 80% by mass. In addition, the content rate of the carbon fiber of CFRP can be calculated | required by the test method based on JISK 7075 "The fiber content rate and the void rate test method of a carbon fiber reinforced plastic."
 CFRPで用いられる炭素繊維としては、グラファイト状の炭素から形成され、剛性等の機械的特性に優れた繊維が用いられている。具体的には、炭素繊維としては、例えば、ポリアクリロニトリル系、ピッチ系又はセルロース系繊維等を酸化性雰囲気中で150℃~400℃に加熱して耐炎化処理を行なった後、不活性雰囲気中で300℃~2500℃で炭化又は黒鉛化処理をして得られたものの他、水蒸気等の半活性雰囲気で賦活化した活性炭素繊維等が挙げられる。 As carbon fibers used in CFRP, fibers formed from graphitic carbon and having excellent mechanical properties such as rigidity are used. Specifically, as carbon fibers, for example, polyacrylonitrile-based, pitch-based or cellulose-based fibers and the like are heated to 150 ° C. to 400 ° C. in an oxidizing atmosphere to perform a flameproofing treatment, and then in an inert atmosphere. In addition to those obtained by carbonization or graphitization at 300 ° C. to 2500 ° C., activated carbon fibers activated in a semi-active atmosphere such as water vapor and the like can be mentioned.
 CFRPで用いられるマトリックス材料としては、熱可塑性樹脂又は熱硬化性樹脂が用いられている。具体的には、熱可塑性樹脂としては、例えば、ポリアミド樹脂、またはポリプロピレン樹脂、ナイロン樹脂等が挙げられる。また、熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ビスマレイミド樹脂、フェノール樹脂等が挙げられる。 As a matrix material used for CFRP, a thermoplastic resin or a thermosetting resin is used. Specifically, examples of the thermoplastic resin include polyamide resin, or polypropylene resin, nylon resin, and the like. Moreover, as a thermosetting resin, an epoxy resin, unsaturated polyester resin, a polyimide resin, bismaleimide resin, a phenol resin etc. are mentioned, for example.
 本実施形態においては、まず、上記のような構成成分からなるCFRPの廃棄物である廃CFRPを、回転型カッター式剪断粗砕機等の粉砕設備で50mm以下に粗砕した後、ジョークラッシャ、ロールミル、ローラーミル、破砕機等の粉砕設備によって所定の大きさに小径化する。なお、硬いCFRPの粉砕作業を効率的に行うためには、後段の粉砕設備にはセパレーター等の分級装置を付設すると好ましい。 In the present embodiment, first, waste CFRP, which is a waste of CFRP comprising the above-mentioned components, is crushed to 50 mm or less by a crushing apparatus such as a rotary cutter shear crusher, and then a jaw crusher and a roll mill. The diameter is reduced to a predetermined size by crushing equipment such as a roller mill and a crusher. In addition, in order to efficiently carry out the grinding operation of the hard CFRP, it is preferable to attach a classification device such as a separator to the grinding equipment at the latter stage.
 ここで、小径化処理後の廃CFRPの平均粒子径は、小径化処理後に乾燥させたそれらをJIS Z 8801「試験用ふるい-第1部:金属製網ふるい」に規定された篩を使用してふるい分けし、その篩上に残分した試料の50質量%に相当する径を算出することにより求めることができる。 Here, the average particle size of the waste CFRP after the treatment for reducing the diameter is obtained by drying those after the treatment for reducing the diameter and using the sieve specified in JIS Z 8801 "Sieve for test-Part 1: Metal mesh sieve" It can be determined by sifting and calculating the diameter corresponding to 50% by mass of the sample remaining on the sieve.
 なお、本発明の処理方法においては、過度に労力のかかる小径化は必ずしも、必要ではないが、効率的に処理を行うためには、廃CFRPをある程度小径化することが好ましい。具体的には、10mm以下、好ましくは7mm以下とするとよい。 In the treatment method of the present invention, it is not always necessary to make the diameter reduction that requires excessive labor, but in order to perform the treatment efficiently, it is preferable to reduce the waste CFRP to a certain extent. Specifically, it may be 10 mm or less, preferably 7 mm or less.
 次に、小径化した廃CFRPと界面活性剤及び酸溶液とを接触させる。この接触の方法としては、上述したように、廃CFRPの周囲で酸溶液の熱分解が生じる環境がセメントキルンの内部で構成される方法等であればよい。さらに、廃CFRPの小径化において、界面活性剤を滴下した廃CFRPを小径化して、界面活性剤を含む廃CFRPを得た後、この界面活性剤を含む廃CFRPと酸溶液を接触させる方法でもよい。 Next, the waste CFRP reduced in diameter is brought into contact with the surfactant and the acid solution. As the method of this contact, as described above, it is sufficient that the environment in which the thermal decomposition of the acid solution occurs around the waste CFRP is configured in the inside of the cement kiln. Furthermore, in reducing the size of waste CFRP, the size of waste CFRP to which a surfactant is dropped is reduced to obtain waste CFRP containing a surfactant, and the waste CFRP containing the surfactant is then brought into contact with an acid solution. Good.
 具体的には、例えば、小径化した廃CFRPに界面活性剤及び酸溶液を滴下した後、又は、界面活性剤及び酸溶液に小径化した廃CFRPを含浸した後、又は、界面活性剤を滴下して小径化した廃CFRPに酸溶液を滴下した後、又は、界面活性剤を滴下して小径化した廃CFRPを酸溶液に含浸した後、セメントキルンにそれらを投入する方法であってもよいし、セメントキルンに小径化した廃CFRPを投入した後、セメントキルンの内部に界面活性剤及び酸溶液を噴霧して、セメントキルンの内部でそれらを接触させる、又は、界面活性剤を滴下して小径化した廃CFRPを焼却設備に投入した後、焼却設備の内部に酸溶液を噴霧して、焼却設備の内部でそれらを接触させる方法であってもよい。セメントキルンへの廃CFRPの投入箇所は、特に限定されるものではなく、窯前側(キルンバーナー側)からでも、窯尻側からでも、仮焼炉からのいずれであってもよい。 Specifically, for example, after the surfactant and the acid solution are dropped to the waste CFRP having a reduced diameter, or after the waste CFRP having a reduced diameter is impregnated into the surfactant and the acid solution, or a surfactant is added, for example Alternatively, the acid solution may be dropped to the waste CFRP having a reduced diameter, or the waste CFRP having a reduced diameter may be impregnated with the acid solution after the surfactant is dropped, and then these may be added to the cement kiln. After charging the waste CFRP into a cement kiln, spray the surfactant and acid solution inside the cement kiln to bring them into contact with the inside of the cement kiln, or drip the surfactant The waste CFRP having a reduced diameter may be introduced into the incinerator, and then the acid solution may be sprayed into the inside of the incinerator to bring them into contact with the inside of the incinerator. There is no particular limitation on the position of the waste CFRP to be introduced into the cement kiln, and it may be from the weir front side (kiln burner side), from the weir end side, or from the calciner.
 ただし、酸溶液はセメントキルンに投入すると直ちに熱分解するので、酸溶液による燃焼性改善効果を効率的に利用するために、セメントキルンの内部で接触させる方法を用いる場合には、廃CFRPと、界面活性剤及び酸溶液とを、共通のもしくはごく近傍の箇所から、同時にもしくは実質的に同時にセメントキルンへ投入することが好ましい。 However, since the acid solution thermally decomposes immediately when it is put into the cement kiln, waste CFRP and waste CFRP should be used when using a method of contacting the inside of the cement kiln in order to efficiently utilize the effect of improving the flammability by the acid solution. It is preferable to introduce the surfactant and the acid solution into the cement kiln simultaneously or substantially simultaneously from a common or very near location.
 具体的には、例えば、キルンバーナー等に廃CFRPの第1の吹込み用ポートを設置するとともに、その第1の吹込み用ポートに隣り合うように界面活性剤及び酸溶液、または酸溶液のみの第2の吹込み用ポートを設置するようにすればよい。 Specifically, for example, while installing a first blowing port for waste CFRP in a kiln burner etc., only a surfactant and an acid solution, or an acid solution so as to be adjacent to the first blowing port The second blowing port may be installed.
 最後に、廃CFRPを、これに接触させた界面活性剤及び酸溶液と共に、セメントキルンの内部で加熱する。加熱温度は、固定炭素の燃焼温度域(500℃~800℃)を超える温度にすることが好ましい。ここで、固定炭素とは、炭素繊維強化プラスチック中に揮発しない形態で存在する炭素化合物のことをいい、廃CFRPに含まれる炭素繊維などが含まれる。 Finally, waste CFRP is heated inside the cement kiln with the surfactant and acid solution in contact with it. The heating temperature is preferably set to a temperature exceeding the combustion temperature range (500 ° C. to 800 ° C.) of fixed carbon. Here, fixed carbon refers to a carbon compound present in a form that does not volatilize in a carbon fiber reinforced plastic, and includes carbon fibers and the like contained in waste CFRP.
 なお、本実施形態においては、炭素繊維強化プラスチックの焼却設備としてセメント製造設備であるセメントキルンの例を説明したが、本発明の処理方法においては、セメントキルン以外の焼却設備を用いてもよいことは勿論である。 In the present embodiment, an example of a cement kiln which is a cement production facility is described as an incineration facility for carbon fiber reinforced plastic, but in the treatment method of the present invention, an incineration facility other than a cement kiln may be used. Of course.
 次に、本発明の処理方法に係る試験結果(すなわち、本発明の処理方法の実施例)について説明する。 Next, test results according to the treatment method of the present invention (that is, an embodiment of the treatment method of the present invention) will be described.
 [試験例1]
 炭素繊維強化プラスチックの大きさを一定とし、界面活性剤の量並びに酸溶液のpH及び量を変化させて試験を行うことにより、界面活性剤及び酸溶液が炭素繊維強化プラスチックの燃焼性に与える影響を評価した。
[Test Example 1]
The effect of surfactant and acid solution on the flammability of carbon fiber reinforced plastic by making the size of carbon fiber reinforced plastic constant and conducting tests by changing the amount of surfactant and pH and amount of acid solution Was evaluated.
 具体的には、以下に示す試験水準を設定した。
  炭素繊維強化プラスチック:廃CFRP(炭素繊維含有率:58質量%)
  廃CFRPの試料サイズ:平均粒子径1mm
  酸溶液a:pH0.6のHNO溶液(69%HNO溶液)
  酸溶液b:pH2のHNO溶液(酸溶液1を希釈して調整)
  酸溶液c:pH4のHNO溶液(酸溶液1を希釈して調整)
  酸溶液d:pH6のHNO溶液(酸溶液1を希釈して調整)
  界面活性剤:直鎖アルキルベンゼンスルホン酸ナトリウム、直鎖アルキルベンゼンスルホン酸、及びアルキルエーテル硫酸エステルナトリウム混合物(ライオン株式会社製:ママレモン(商品名))
  界面活性剤及び酸溶液の使用方法:以下に示す実施例1~8及び比較例1、2の10通りの試験水準で試験を行った。
  実施例1:界面活性剤及び酸溶液が気化した雰囲気下に炭素繊維強化プラスチックを曝露した条件を想定し、廃CFRPを事前に酸溶液に含侵させることなく、該廃CFRP(100質量部)の周囲に、界面活性剤(0.08質量部)と酸溶液a(12.5質量部)からなる混合液a(酸溶液a100質量部に対し0.64質量部の界面活性剤を添加して得た混合液aの12.58質量部)を滴下して、同時に加熱した。
  実施例2:炭素繊維強化プラスチックを、界面活性剤及び酸溶液に含浸した後に燃焼させる条件を想定し、廃CFRPを事前に酸溶液a100質量部に対し0.64質量部の界面活性剤を添加して得た混合液aに含侵させた後、水切りした廃CFRPを加熱した。(加熱時の廃CFRPに付着していた、混合液aは、該廃CFRP100質量部に対し13.5質量部であった。)
  実施例3:酸溶液aを酸溶液bに変更した以外、実施例1と同様にした。
  実施例4:酸溶液aを酸溶液bに変更した以外、実施例2と同様にした。
  実施例5:酸溶液aを酸溶液cに変更した以外、実施例1と同様にした。
  実施例6:酸溶液aを酸溶液cに変更した以外、実施例2と同様にした。
  実施例7:酸溶液aを酸溶液dに変更した以外、実施例1と同様にした。
  実施例8:酸溶液aを酸溶液dに変更した以外、実施例2と同様にした。
  比較例1:界面活性剤及び酸溶液を使用することなく、廃CFRPのみを加熱した。
  比較例2:酸溶液のみが気化した雰囲気下に炭素繊維強化プラスチックを曝露した条件を想定し、廃CFRPを事前に酸溶液に含侵させることなく、該廃CFRP(100質量部)の周囲に酸溶液a(12.5質量部)を滴下して、同時に加熱した。
Specifically, the test levels shown below were set.
Carbon fiber reinforced plastic: Waste CFRP (carbon fiber content: 58% by mass)
Waste CFRP sample size: average particle size 1 mm
Acid solution a: HNO 3 solution of pH 0.6 (69% HNO 3 solution)
Acid solution b: pH 2 HNO 3 solution (adjusted by diluting acid solution 1)
Acid solution c: HNO 3 solution of pH 4 (adjusted by diluting acid solution 1)
Acid solution d: HNO 3 solution of pH 6 (adjusted by diluting acid solution 1)
Surfactant: Linear alkyl benzene sulfonate sodium, linear alkyl benzene sulfonic acid, and alkyl ether sulfate sodium mixture (manufactured by Lion Corporation: Mama Lemon (trade name))
Method of using surfactant and acid solution: Tests were conducted at ten test levels of Examples 1 to 8 and Comparative Examples 1 and 2 shown below.
Example 1: Assuming a condition in which a carbon fiber reinforced plastic is exposed in an atmosphere in which a surfactant and an acid solution are vaporized, the waste CFRP (100 parts by mass) without impregnating the waste CFRP in advance with the acid solution Mixed solution a consisting of surfactant (0.08 parts by mass) and acid solution a (12.5 parts by mass) (0.64 parts by mass of surfactant per 100 parts by mass of acid solution a) 12.58 parts by mass of the mixed solution a obtained above was dropped and simultaneously heated.
Example 2: Assuming that the carbon fiber reinforced plastic is impregnated with a surfactant and an acid solution and then burned, waste CFRP is added in advance with 0.64 parts by weight of surfactant per 100 parts by weight of acid solution a. After impregnating the resulting mixture solution a, the drained waste CFRP was heated. (The mixed solution a attached to the waste CFRP during heating was 13.5 parts by mass with respect to 100 parts by mass of the waste CFRP.)
Example 3 Example 1 was repeated except that the acid solution a was changed to the acid solution b.
Example 4 Example 2 was repeated except that the acid solution a was changed to the acid solution b.
Example 5 Example 1 was repeated except that the acid solution a was changed to the acid solution c.
Example 6: The same procedure as in Example 2 was performed except that the acid solution a was changed to the acid solution c.
Example 7 The same procedure as in Example 1 was performed except that the acid solution a was changed to the acid solution d.
Example 8 The procedure of Example 2 was repeated except that the acid solution a was changed to the acid solution d.
Comparative Example 1: Only waste CFRP was heated without using a surfactant and an acid solution.
Comparative Example 2: Assuming that the carbon fiber reinforced plastic is exposed in an atmosphere in which only the acid solution is vaporized, the waste CFRP (100 parts by mass) is surrounded without being impregnated with the acid solution in advance. Acid solution a (12.5 parts by mass) was dropped and heated at the same time.
 全ての試験水準で、上記試料を昇温速度10℃/分で加熱し、150~1000℃の温度域で、重量減少率を測定した。重量減少率の測定は、熱重量・示差熱測定装置(ネッチ・ジャパン株式会社製:TG-DTA 2020SR(商品名))を用いて行いた。 The samples were heated at a heating rate of 10 ° C./min at all test levels, and the weight loss was measured in the temperature range of 150 to 1000 ° C. The weight reduction rate was measured using a thermogravimetric / differential heat measurement apparatus (manufactured by Netti Japan Co., Ltd .: TG-DTA 2020SR (trade name)).
 各試験水準で得られた熱重量曲線について、固定炭素の重量(熱重量曲線において、500℃~600℃に生じる緩勾配の始点の重量と、800℃付近の重量減少が生じなくなった地点での重量との差分)において、かかる固定炭素の重量を100%とした場合の、所定温度における重量減少率(質量%)を算出した。結果を表1に示す。 Regarding the thermogravimetric curve obtained at each test level, the weight of fixed carbon (the mass at the start point of the slow gradient in the thermogravimetric curve at 500 ° C. to 600 ° C., and the point at which the weight loss near 800 ° C. does not occur In the difference with weight), the weight reduction rate (mass%) at a predetermined temperature was calculated, where the weight of the fixed carbon was 100%. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 その結果、表1に示されるように、界面活性剤と酸溶液とを組み合わせて、炭素繊維強化プラスチックに接触させる処理を行なうことにより、その燃焼性が向上することが明らかとなった。特に、界面活性剤とともにpH4の酸溶液で処理した場合(実施例5,6)では、未処理の場合(比較例1)やpH0.6の酸溶液の処理のみの場合(比較例2)に比べ、650℃ではおよそ2倍の燃焼性があり、また700℃でもおよそ1.4倍の燃焼性が得られた。さらに、実施例1~4の結果にみられるように、用いる酸溶液のpHが低いほど、より良好な燃焼性が得られることが明らかとなった。 As a result, as shown in Table 1, it was revealed that the flammability is improved by performing the treatment of bringing the carbon fiber reinforced plastic into contact by combining the surfactant and the acid solution. In particular, when treated with an acid solution of pH 4 together with a surfactant (Examples 5 and 6), in the case of no treatment (Comparative Example 1) or in the case of only treatment of an acid solution of pH 0.6 (Comparative Example 2). In comparison, at 650 ° C., there was approximately twice the flammability, and at 700 ° C., approximately 1.4 times the flammability was obtained. Furthermore, as shown in the results of Examples 1 to 4, it was revealed that the lower the pH of the acid solution used, the better the flammability can be obtained.
 なお、図1には参考のため、実施例1,2及び比較例1,2の熱重量曲線の結果を示す。図1中の重量減少曲線において重量減少が生じている3つの領域のうち、低温側の2つの領域(300~400℃に対応する領域及び450~550℃に対応する領域)が、主に樹脂等の揮発性炭素の燃焼による重量減少であり、最も高温側の減量域(550℃以上の領域)が、主に炭素繊維等の固定炭素の燃焼による重量減少である。よって、図1より、本発明の方法(実施例1,2)は、特に樹脂の燃焼性を促進することによって、その後の固定炭素の燃焼性をも促進していることがわかる。 In addition, the result of the thermogravimetric curve of Example 1, 2 and Comparative Example 1, 2 is shown in FIG. 1 for reference. Of the three regions where weight loss occurs in the weight loss curve in FIG. 1, two regions on the low temperature side (regions corresponding to 300 to 400 ° C. and regions corresponding to 450 to 550 ° C.) are mainly resin Weight loss due to combustion of volatile carbon, etc., and the weight loss region on the highest temperature side (region of 550 ° C. or more) is weight loss mainly due to combustion of fixed carbon such as carbon fiber. Therefore, it can be seen from FIG. 1 that the method of the present invention (Examples 1 and 2) also promotes the flammability of fixed carbon thereafter by promoting the flammability of the resin.
 [試験例2]
 次に、炭素繊維強化プラスチックの平均粒子径を変化させた場合の燃焼率の評価を行った。
[Test Example 2]
Next, the burning rate was evaluated when the average particle size of the carbon fiber reinforced plastic was changed.
 本試験の試料として、上記試験例1と同じ廃CFRPを用いて、平均粒子径が16mm、9.5mm、6.7mm、4.75mm、2.8mmの5種類の試料を作成した。 Using the same waste CFRP as in Test Example 1 above, five types of samples having an average particle diameter of 16 mm, 9.5 mm, 6.7 mm, 4.75 mm, and 2.8 mm were prepared as the samples of this test.
 廃CFRPへの、界面活性剤及び酸溶液の使用方法は、上記試験例1の実施例2と同じにした。すなわち、廃CFRPを事前に酸溶液a100質量部に対し0.64質量部の界面活性剤を添加して得た混合液aに含侵させた後、水切りした廃CFRPを使用した。 The method of using the surfactant and the acid solution for waste CFRP was the same as Example 2 of Test Example 1 above. That is, after impregnating the waste CFRP into the mixed solution a obtained by adding 0.64 parts by mass of the surfactant to 100 parts by mass of the acid solution a in advance, the drained waste CFRP was used.
 上記の混合液aに含侵させた試料を、1400℃に温度設定された大気雰囲気の電気炉で3分間加熱し、加熱後の試料中に燃焼せずに残っている固定炭素(炭素繊維)の残存率を評価した。この加熱条件は、セメントキルンの窯前部に投入して燃焼処理を行った場合を模した条件である。 The sample impregnated with the above mixed solution a is heated for 3 minutes in an electric furnace in an air atmosphere set at a temperature of 1400 ° C., and fixed carbon (carbon fiber) remaining without burning in the sample after heating We evaluated the residual rate of This heating condition is a condition that simulates the case where combustion treatment is performed by introducing it into the front of the cement kiln.
 燃焼率の評価は、電気炉加熱後の試料は全て固定炭素とみなして、加熱後の残存試料量の測定値から、未加熱の廃CFRPに含まれる固定炭素の重量(炭素繊維含有率:58質量%)を100%とした場合の質量残存率(%)を算出した。結果を表2に示す。 The evaluation of the burning rate is that all samples after electric furnace heating are regarded as fixed carbon, and the weight of fixed carbon contained in unheated waste CFRP from the measured value of the amount of remaining sample after heating (carbon fiber content: 58 The mass residual rate (%) at the time of mass% being 100% was calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 その結果、表2に示されるように、平均粒子径が10mm以下、好ましくは、7mm以下であれば、燃焼性改善効果がより大きいことが明らかとなった。
 
As a result, as shown in Table 2, when the average particle diameter is 10 mm or less, preferably 7 mm or less, it is clear that the effect of improving the flammability is greater.

Claims (6)

  1.  炭素繊維強化プラスチックを焼却する炭素繊維強化プラスチックの処理方法であって、
     前記炭素繊維強化プラスチックと、界面活性剤及びpHが4以下の酸溶液とを接触させた後、該炭素繊維強化プラスチックを焼却することを特徴とする炭素繊維強化プラスチックの処理方法。
    A method of treating carbon fiber reinforced plastic by burning carbon fiber reinforced plastic,
    A method of treating a carbon fiber reinforced plastic, comprising contacting the carbon fiber reinforced plastic with a surfactant and an acid solution having a pH of 4 or less and then incinerating the carbon fiber reinforced plastic.
  2.  請求項1に記載の炭素繊維強化プラスチックの処理方法において、
     前記炭素繊維強化プラスチックに前記界面活性剤を接触させて小径化し、これに更に前記酸溶液を接触させた後、該炭素繊維強化プラスチックを焼却することを特徴とする炭素繊維強化プラスチックの処理方法。
    In the method for treating a carbon fiber reinforced plastic according to claim 1,
    A method of treating a carbon fiber reinforced plastic comprising contacting the surfactant with the carbon fiber reinforced plastic to reduce the diameter thereof, and further bringing the carbon fiber reinforced plastic into contact with the acid solution, after which the carbon fiber reinforced plastic is incinerated.
  3.  請求項1又は請求項2に記載の炭素繊維強化プラスチックの処理方法において、
     前記pHが4以下の酸溶液の量は、前記炭素繊維強化プラスチックの量を100質量部としたとき、10質量部以上、且つ、200質量部以下であることを特徴とする炭素繊維強化プラスチックの処理方法。
    In the method for treating a carbon fiber reinforced plastic according to claim 1 or 2,
    The amount of the acid solution having a pH of 4 or less is 10 parts by mass or more and 200 parts by mass or less when the amount of the carbon fiber reinforced plastic is 100 parts by mass. Processing method.
  4.  請求項1~請求項3のいずれか1項に記載の炭素繊維強化プラスチックの処理方法において、
     前記界面活性剤の量は、前記pHが4以下の酸溶液の量を100質量部としたとき、0.5質量部以上、且つ、10質量部以下であることを特徴とする炭素繊維強化プラスチックの処理方法。
    The method for treating a carbon fiber reinforced plastic according to any one of claims 1 to 3.
    The carbon fiber reinforced plastic is characterized in that the amount of the surfactant is 0.5 parts by mass or more and 10 parts by mass or less when the amount of the acid solution having a pH of 4 or less is 100 parts by mass. How to handle
  5.  請求項1~請求項4のいずれか1項に記載の炭素繊維強化プラスチックの処理方法において、
     前記炭素繊維強化プラスチックの平均粒子径は、10mm以下であることを特徴とする炭素繊維強化プラスチックの処理方法。
    In the processing method of the carbon fiber reinforced plastic according to any one of claims 1 to 4,
    The average particle diameter of said carbon fiber reinforced plastic is 10 mm or less, The processing method of the carbon fiber reinforced plastic characterized by the above-mentioned.
  6.  請求項1~請求項5のいずれか1項に記載の炭素繊維強化プラスチックの処理方法において、
     前記炭素繊維強化プラスチックと、前記界面活性剤及び前記酸溶液とを接触させた後、該炭素繊維強化プラスチックをセメント製造設備で焼却することを特徴とする炭素繊維強化プラスチックの処理方法。
    In the processing method of the carbon fiber reinforced plastic according to any one of claims 1 to 5,
    A method of treating a carbon fiber reinforced plastic, comprising contacting the carbon fiber reinforced plastic with the surfactant and the acid solution, and then burning the carbon fiber reinforced plastic in a cement manufacturing facility.
PCT/JP2017/024549 2017-07-04 2017-07-04 Method for processing carbon fiber-reinforced plastic WO2019008685A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780091810.4A CN110719930A (en) 2017-07-04 2017-07-04 Treatment method of carbon fiber reinforced plastic
PCT/JP2017/024549 WO2019008685A1 (en) 2017-07-04 2017-07-04 Method for processing carbon fiber-reinforced plastic
JP2019528246A JP6892509B2 (en) 2017-07-04 2017-07-04 How to treat carbon fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024549 WO2019008685A1 (en) 2017-07-04 2017-07-04 Method for processing carbon fiber-reinforced plastic

Publications (1)

Publication Number Publication Date
WO2019008685A1 true WO2019008685A1 (en) 2019-01-10

Family

ID=64950302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024549 WO2019008685A1 (en) 2017-07-04 2017-07-04 Method for processing carbon fiber-reinforced plastic

Country Status (3)

Country Link
JP (1) JP6892509B2 (en)
CN (1) CN110719930A (en)
WO (1) WO2019008685A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022055302A1 (en) * 2020-09-10 2022-03-17 주식회사 카텍에이치 Method and apparatus for decomposing and washing off thermoplastic resin solids

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117614A (en) * 1992-10-01 1994-04-28 Toray Ind Inc Burning method of carbon fibers and burning method of carbon fiber reinforced resin mixture
JP2010537049A (en) * 2007-08-24 2010-12-02 ビーエーエスエフ、カタリスツ、エルエルシー Simplified method for leaching noble metals from fuel cell membrane electrode assemblies
JP2011074204A (en) * 2009-09-30 2011-04-14 Nippon Zeon Co Ltd Method for recovering carbon fiber from carbon fiber-crosslinked resin composite material
JP2013091727A (en) * 2011-10-26 2013-05-16 Kaneko Kagaku:Kk Solvent composition for dissolving synthetic resin
JP2013249386A (en) * 2012-05-31 2013-12-12 Institute Of National Colleges Of Technology Japan Method for recovering carbon fiber from carbon fiber composite material
JP2016522843A (en) * 2013-04-18 2016-08-04 アデッソ アドバーンスト マテリアルズ ウーシー カンパニー リミテッド.Adesso Advanced Materials Wuxi Co.,Ltd. Novel curing agents and degradable polymers and composites based on them
JP2017025312A (en) * 2015-07-22 2017-02-02 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Depolymerization method for epoxy resin cured matter and composition
EP3153543A1 (en) * 2015-10-06 2017-04-12 Korea Institute of Science and Technology Method and composition for swelling pretreatment before decomposition of cured thermosetting resin materials
JP2017104847A (en) * 2015-12-07 2017-06-15 現代自動車株式会社Hyundai Motor Company Reinforced-fiber recovery apparatus and method for using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4892935B2 (en) * 2005-11-08 2012-03-07 宇部興産株式会社 Method for treating waste plastic containing carbon fiber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117614A (en) * 1992-10-01 1994-04-28 Toray Ind Inc Burning method of carbon fibers and burning method of carbon fiber reinforced resin mixture
JP2010537049A (en) * 2007-08-24 2010-12-02 ビーエーエスエフ、カタリスツ、エルエルシー Simplified method for leaching noble metals from fuel cell membrane electrode assemblies
JP2011074204A (en) * 2009-09-30 2011-04-14 Nippon Zeon Co Ltd Method for recovering carbon fiber from carbon fiber-crosslinked resin composite material
JP2013091727A (en) * 2011-10-26 2013-05-16 Kaneko Kagaku:Kk Solvent composition for dissolving synthetic resin
JP2013249386A (en) * 2012-05-31 2013-12-12 Institute Of National Colleges Of Technology Japan Method for recovering carbon fiber from carbon fiber composite material
JP2016522843A (en) * 2013-04-18 2016-08-04 アデッソ アドバーンスト マテリアルズ ウーシー カンパニー リミテッド.Adesso Advanced Materials Wuxi Co.,Ltd. Novel curing agents and degradable polymers and composites based on them
JP2017025312A (en) * 2015-07-22 2017-02-02 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー Depolymerization method for epoxy resin cured matter and composition
EP3153543A1 (en) * 2015-10-06 2017-04-12 Korea Institute of Science and Technology Method and composition for swelling pretreatment before decomposition of cured thermosetting resin materials
JP2017104847A (en) * 2015-12-07 2017-06-15 現代自動車株式会社Hyundai Motor Company Reinforced-fiber recovery apparatus and method for using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022055302A1 (en) * 2020-09-10 2022-03-17 주식회사 카텍에이치 Method and apparatus for decomposing and washing off thermoplastic resin solids

Also Published As

Publication number Publication date
JPWO2019008685A1 (en) 2019-11-07
CN110719930A (en) 2020-01-21
JP6892509B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
US10427194B2 (en) Microwave-enabled thermal remediation of organic chemical contaminated soils using dielectric nanomaterials as additives
WO2019008685A1 (en) Method for processing carbon fiber-reinforced plastic
US8513159B2 (en) Process of manufacturing powdered coffee carbons from spent coffee grounds
CN105964221B (en) A kind of composite carbon rod and preparation method thereof based on discarded hair granular activated carbon
CN112322077A (en) Production method of conductive carbon black for environment-friendly cable shielding material
CN109500050A (en) A kind of waste printed circuit board recycling and reusing preparation composite plate method
CN105731455B (en) A kind of method that activated carbon is prepared in the residue from Chinese medicine
JP6858589B2 (en) Carbon-containing waste treatment method
CN106744884B (en) A kind of graphene and preparation method thereof
CN108728934A (en) A kind of heat-resisting ribbon of high-strength anti-flaming
CN104098095A (en) Method for preparing active carbon from phenolic foam wastes
JP2016068020A (en) Pulverization method of carbon fiber inclusion
CN109437664A (en) A kind of preparation method of environment-friendly sheet
JP6762890B2 (en) Carbon-containing waste treatment method
US20130291591A1 (en) Method and equipment for recovering waste from continuous fibre production installations and for directly recycling the resulting glass
DE102017118617A1 (en) Process for cleaning carbon particles
CN104671622A (en) System for treating solid pollutant containing C30<+> and system and method for treating oily sludge
Bansal et al. Thermal characterization, compositional analysis and extraction of elemental powder from Rohu fish residue used as composite particulate
WO2018061404A1 (en) Method for treating carbon-containing waste
KR101549566B1 (en) Manufacturing method of activated carbon fiber sheet using scrap carbon fiber
CN103785668A (en) Method for treating papermaking waste residues
JP5505081B2 (en) Blast furnace charging raw material manufacturing method and blast furnace charging raw material manufacturing apparatus
CN112029555A (en) Method for preparing graphite powder for lubrication by using reclaimed materials
Salehi et al. Preparation of activated carbon fabrics from cotton fabric precursor
CN108193302A (en) High-performance polyethylene superfine fibre is modified preparation process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916938

Country of ref document: EP

Kind code of ref document: A1