WO2019007101A1 - 飞行器、倾转驱动机构及其控制方法 - Google Patents

飞行器、倾转驱动机构及其控制方法 Download PDF

Info

Publication number
WO2019007101A1
WO2019007101A1 PCT/CN2018/079013 CN2018079013W WO2019007101A1 WO 2019007101 A1 WO2019007101 A1 WO 2019007101A1 CN 2018079013 W CN2018079013 W CN 2018079013W WO 2019007101 A1 WO2019007101 A1 WO 2019007101A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive mechanism
tilting
tilting drive
aircraft
worm
Prior art date
Application number
PCT/CN2018/079013
Other languages
English (en)
French (fr)
Inventor
罗东东
施瓦茨巴赫马克
苏文兵
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to EP18753039.9A priority Critical patent/EP3444186B1/en
Priority to US16/129,115 priority patent/US10894600B2/en
Publication of WO2019007101A1 publication Critical patent/WO2019007101A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/26Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/28Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/296Rotors with variable spatial positions relative to the UAV body
    • B64U30/297Tilting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/40Empennages, e.g. V-tails

Definitions

  • the invention relates to the technical field of drones, in particular to an aircraft and a tilting drive mechanism and a control method thereof.
  • the drones are mainly divided into fixed-wing drones and rotary-wing drones.
  • the power is mainly concentrated in The nose provides tension or the tail provides thrust, which makes it impossible to take off and land vertically and hover in the air. It requires a long taxiway.
  • helicopters although it can take off and land vertically and hover in the air, its flight distance is short, so there is It is necessary to provide a tilt-rotor aircraft that combines the advantages of fixed wings and helicopters to meet customer needs.
  • FIG. 1 a schematic view of a prior art tiltrotor aircraft.
  • the existing tiltrotor aircraft includes a fuselage 1' and a wing 2' and a tail 3' disposed on the fuselage 1'.
  • the middle position of the wing 2' is provided with a link perpendicular to the length of the wing 2'.
  • 4', the connecting rod 4' and the wing 2' are connected with a steering gear 5', and both ends of the connecting rod 4' are provided with a set of tilting mechanism 6' connected to the steering gear 5', and the tilting mechanism 6'
  • a rotor system 7' tiltable 90 degrees is mounted thereon, and the tilting mechanism 6' is pulled by the steering gear 5' to achieve a 90 degree tilt of the rotor system 7'.
  • the above-mentioned tilting rotor aircraft is driven by the steering gear 5' to drive the tilting mechanism 6', and the steering gear 5' is connected with the tilting mechanism 6' by means of the connecting rod 4', so that the steering gear 5' needs to be carried.
  • the larger torque has higher performance requirements for the servo 5'; at the same time, the link structure also causes the rotorcraft to increase in volume, is not easy to be miniaturized by the aircraft, and is prone to jam during flight. Thereby the stability and safety of the tilting rotorcraft is reduced.
  • the technical problem to be solved by the present invention is to overcome the technical drawback that the tilting rotor aircraft steering gear of the prior art adopts a link structure to control the rotation of the tilting mechanism, thereby causing a large volume, a decrease in safety and stability.
  • the present invention provides a tilting drive mechanism mounted on an aircraft to control tilting of a power unit of the aircraft, the tilting drive mechanism comprising a housing, a drive mechanism and a mount, wherein the housing is fixedly mounted On the aircraft; the driving mechanism is installed in the outer casing; the mounting seat is movably mounted on the outer casing, and the power mounting device is fixedly mounted on the mounting seat, and the driving mechanism is fixedly connected with the mounting seat to drive the mounting seat to rotate relative to the outer casing, thereby setting the driving mechanism
  • the torque of the driving mechanism is greatly reduced, the miniaturization design of the tilting drive mechanism is facilitated, the jamming is less likely to occur during the flight, and the stability and safety of the tilting drive mechanism are improved.
  • the driving mechanism comprises a power source, a first rotating mechanism and a second rotating mechanism, wherein an output shaft of the power source is connected to the first rotating mechanism, and the second rotating mechanism is fixedly connected with the mounting seat, when the power source When the output shaft drives the first rotating mechanism to rotate, the second rotating mechanism is coupled with the first rotating mechanism, thereby providing corresponding power to the driving mechanism through the power source, and simultaneously, the power source, the first rotating mechanism, and the first
  • the sequential rotation of the two rotating mechanisms causes the mounting seat fixedly connected to the second rotating mechanism to rotate correspondingly, that is, the tilting function of the tilting drive mechanism is realized.
  • the outer casing includes a first shell and a second shell that are detachably fitted, and the first shell and the second shell surround and form a receiving cavity, and the driving mechanism is received in the receiving cavity.
  • two card slots are defined in the sidewall of the receiving cavity, and a baffle is inserted into the card slot, and the baffle partitions the receiving cavity into the first cavity and the second cavity, and the power source is disposed in the first cavity.
  • the first rotating mechanism and the second rotating mechanism are disposed in the second cavity, and the design of the first cavity and the second cavity facilitates installation and fixation of the power source, the first rotating mechanism and the second rotating mechanism.
  • the baffle is provided with a through hole
  • the power source is fixedly mounted on the baffle
  • the output shaft of the power source extends through the through hole into the second cavity
  • the power source is fixedly mounted on the baffle.
  • the plate activity is inserted in the card slot, thereby making the installation of the power source more convenient, and the communication between the first cavity and the second cavity is realized by providing the through hole, that is, the power source and the first rotating mechanism are ensured. Connected.
  • a controller is installed in the aircraft;
  • the power source includes a driving motor, and the two ends of the motor shaft of the driving motor are respectively connected with a speed reducing mechanism and an encoder, and the rotating shaft of the speed reducing mechanism is an output shaft, and the encoder and the controller are electrically connected.
  • the speed reduction mechanism By connecting the speed reduction mechanism, the rotation speed of the power source is reduced, and the torque is increased, thereby facilitating the miniaturization of the power source specification, that is, while ensuring the tilting stability of the tilting drive mechanism, the weight of the tilting drive mechanism is reduced.
  • the speed signal of the driving motor can be fed back in time.
  • the first rotating mechanism is a worm
  • the second rotating mechanism is a worm wheel
  • the worm shaft of the worm is respectively provided with a worm bearing
  • the worm wheel shaft of the worm wheel is a rotating shaft
  • the worm wheel bearing is respectively provided with a worm wheel bearing
  • Two inner chambers are provided with two first bearing chambers and two second bearing chambers, the worm bearing is built in the first bearing chamber, and the worm wheel bearing is built in the second bearing chamber, and the worm gear is used to drive
  • the output shaft of the mechanism power source is different from the direction of the rotating shaft of the driving mechanism, thereby facilitating the positional arrangement between the various mechanisms in the housing, and also brings the advantages of large speed ratio, low noise and small vibration.
  • the driving mechanism further includes a connecting mechanism disposed between the output shaft and the worm shaft to connect the output shaft and the worm shaft to ensure the stability of the connection between the output shaft and the worm shaft.
  • connection mechanism is a coupling assembly or a metal connection block.
  • the housing is fixedly provided with a fixing seat having an opening
  • the mounting seat cover is disposed outside the fixing seat, and the opening is in communication with the second cavity
  • the worm wheel protrudes out of the second cavity and extends into the fixing seat
  • the worm wheel shaft is convex
  • the outer casing is extended and fixedly connected with the mounting seat, so that the worm wheel can be installed on the fixing seat and then placed in the outer casing, so that the worm wheel is more convenient to install.
  • a receiving space is defined in the mounting seat, the fixing seat is inserted into the receiving space, and the power device is mounted on the opposite outer surface of the mounting seat in the insertion direction of the fixing seat, and the fixing seat and the mounting seat are reduced by providing the receiving space.
  • the installation space also enables the relevant wires of the power unit to be properly stored and arranged, which facilitates the cable management and routing of the tilting drive mechanism.
  • the lead angle of the worm is smaller than the equivalent friction angle between the worm wheel and the worm gear, so that the tilting drive mechanism has a self-locking function to prevent the reverse from occurring.
  • the present invention further provides an aircraft comprising a fuselage and two wings disposed on two sides of the fuselage, and the two wings are respectively provided with short wings perpendicular to the longitudinal direction of the wing, and the short wings are
  • the two ends is provided with any one of the above-mentioned tilting drive mechanisms
  • the power mounting device is fixedly mounted on the mounting seat of the tilting drive mechanism
  • the tilting drive mechanism is provided to provide any of the above advantages; and at the same time, by controlling the tilting drive
  • the tilting angle of the mechanism can change the direction of the power unit on the mounting seat, so that the power unit can switch back and forth between providing the lifting force and the driving force, thereby reducing the cost, improving the utilization rate of the power unit, and being efficient.
  • the purpose of the flight is not limited to control the flight.
  • a controller is disposed in the body, the first inertial measurement unit is disposed on the mounting seat of the tilting drive mechanism, and the second inertial measurement unit is disposed on the outer casing, the controller and the first inertial measurement unit and the second inertia
  • the measuring unit is electrically connected, and the controller obtains the position of the mounting seat of the tilting driving mechanism according to the information collected by the first inertial measuring unit and the second inertial measuring unit, by setting the first inertial measuring unit and the second inertial measuring unit, That is, the tilting angle of the tilting drive mechanism can be detected in real time.
  • the mounting seat of the tilting drive mechanism when the aircraft is in the ascending or descending or air hovering state, the mounting seat of the tilting drive mechanism is in a vertical position, thereby providing sufficient ascending force for the ascent of the aircraft; and the tilting drive mechanism when the aircraft is in flight
  • the mount is in a horizontal position, and the power unit on the short wing that is away from the flight direction stops working, and the power device in the flight direction of the short wing provides a corresponding driving force for the flight of the aircraft.
  • the power unit is a propeller.
  • the present invention further provides a control method of a tilting drive mechanism, comprising the steps of: acquiring first inertial measurement unit data and second inertial measurement unit data; and obtaining tilting of the tilting drive mechanism according to the acquired data processing Angle; control drive mechanism drive, so that the rotating shaft drives the mount to rotate to the set position, and then the rotation angle of the tilting drive mechanism can be controlled with high precision by real-time measurement of the tilting angle position of the tilting drive mechanism.
  • the method further comprises the steps of: controlling the driving motor of the driving mechanism to rotate one revolution; and reducing the speed ratio n1 according to the speed reducing mechanism connected to the driving motor. And a gear ratio n2 between the first rotating mechanism and the second rotating mechanism in the driving mechanism, and when the driving motor rotates one revolution, the rotation angle of the tilt driving mechanism is 360°/(n1*n2).
  • the method further includes the step of: when the mounting seat is rotated to the set position according to the obtained tilting angle, the tilting driving mechanism needs to rotate The angle difference is calculated; the rotation angle of the driving motor is calculated according to the angle difference and the rotation angle; the rotation of the driving motor is controlled, so that the tilting driving mechanism drives the rotating shaft to rotate, thereby driving the mounting seat to the set position.
  • the tilting drive mechanism of the method provides the above described tilting drive mechanism for the present invention.
  • the tilting drive mechanism, the control method thereof and the aircraft provided by the invention can be controlled by the tilting drive mechanism on the aircraft, thereby real-time measurement of the tilting angle position of the tilting drive mechanism, and the high-precision control of the tilting drive mechanism a rotation angle to change the direction of the power unit mounted on the tilting drive mechanism such that the power unit can be switched back and forth between the positions providing the lifting force and the pushing force; and at the same time by setting the driving mechanism to the tilting drive mechanism
  • the torque of the driving mechanism is greatly reduced, the miniaturization design of the tilting drive mechanism is facilitated, the locking of the aircraft is less likely to occur during the flight of the aircraft, and the stability and safety of the tilting drive mechanism are improved, thereby
  • the aircraft achieves the goal of reducing costs, improving power utilization, and efficient flight.
  • Figure 1 is a schematic view of a prior art tiltrotor aircraft
  • Figure 2 is a plan view of the aircraft of the present invention.
  • Figure 3 is a partial enlarged view of the aircraft shown in Figure 2, showing the state in which the power unit of the aircraft is mounted on the short wing;
  • Figure 4 is a perspective view of the tilting drive mechanism of the aircraft of Figure 2 in a vertical position
  • Figure 5 is a perspective view of the tilting drive mechanism of the aircraft of Figure 2 in a horizontal position
  • Figure 6 is a perspective view of the second housing and the fixing base of the tilting drive mechanism shown in Figure 4;
  • Figure 7 is a perspective view of the tilting drive mechanism of Figure 4 after the first housing is removed;
  • Figure 8 is a perspective view of the power source of the tilting drive mechanism shown in Figure 4.
  • Figure 9 is a perspective view of the first rotating mechanism of the tilting drive mechanism shown in Figure 4.
  • Figure 10 is a perspective view showing the second rotating mechanism mounting and fixing seat and the mounting seat of the tilting drive mechanism shown in Figure 4;
  • Figure 11 is a flow chart showing the control method of the tilting drive mechanism of the present invention.
  • 5-second inertial measurement unit 200-aircraft; 201- fuselage; 202-wing;
  • fixed connection may be a direct connection of two components or an indirect connection; the terms “first” and “second” are used for descriptive purposes only and cannot be understood. To indicate or imply relative importance.
  • the aircraft 200 shown in FIG. 2 and FIG. 3 includes a fuselage 201 and two wings 202 disposed on two sides of the fuselage 201.
  • the two wings 202 are respectively provided with short wings perpendicular to the longitudinal direction of the wing 202.
  • the tilting drive mechanism 100 includes a housing 1, a driving mechanism and a mounting base 3, wherein
  • the outer casing 1 is fixedly mounted on the aircraft 200, for example, the outer casing 1 is screwed onto the aircraft 200 or glued to the aircraft 200.
  • the drive mechanism is mounted in the housing 1.
  • the mount 3 is movably mounted on the outer casing 1, for example, the mount 3 is movably connected to the outer casing 1 by means of a hinge.
  • a power unit 300 is fixedly mounted on the mounting seat 3, and the driving mechanism is fixedly coupled to the mounting seat 3 to drive the mounting base 3 to rotate relative to the housing 1, thereby greatly reducing the driving mechanism by arranging the driving mechanism in the tilting drive mechanism 100.
  • the torque facilitates the miniaturization design of the tilting drive mechanism 100, which is less likely to be stuck during flight, and improves the stability and safety of the tilting drive mechanism 100.
  • the aircraft 200 can control the tilt angle of the tilting drive mechanism 100 with high precision by real-time measurement of the tilting angle position of the tilting drive mechanism 100 to be mounted on the tilting drive mechanism 100.
  • the direction of the power unit 300 is changed so that the power unit 300 can be switched back and forth between the positions providing the lifting force and the pushing force; and at the same time, the driving mechanism is greatly reduced by arranging the driving mechanism in the tilting drive mechanism 100.
  • the torque facilitates the miniaturization of the tilting drive mechanism 100, making it less prone to jamming, improving the stability and safety of the tilting drive mechanism 100, thereby improving the utilization of the power unit 300 and achieving efficient flight. the goal of.
  • the outer casing 1 includes a first shell 11 and a second shell 12 that are detachably fitted.
  • the first shell 11 and the second shell 12 are formed to form a receiving cavity 13 , and the driving mechanism is received in the receiving cavity 13 .
  • Two card slots 131 are defined in the side wall of the receiving cavity 13.
  • the card slot 131 is internally provided with a baffle 14 that partitions the receiving cavity 13 into a first cavity 132 and a second cavity 133.
  • the plate 14 is provided with a through hole 141.
  • the housing 1 is fixedly provided with a fixing seat 15 having an opening, and the opening communicates with the second cavity 133.
  • the driving mechanism includes a power source 21, a first rotating mechanism 22, a second rotating mechanism 23, and a connecting mechanism 24, wherein the power source 21 is disposed in the first cavity 132; the first rotating mechanism 22 The second rotation mechanism 23 is disposed in the second cavity 133, and the output shaft 211 of the power source 21 is connected to the first rotation mechanism 22; and the second rotation mechanism 23 is fixedly coupled to the mount 3 when the output shaft 211 of the power source 21 When the first rotating mechanism 22 is rotated, the second rotating mechanism 23 is in a driving engagement with the first rotating mechanism 22.
  • the power source 21, the first rotating mechanism 22 and the second rotating mechanism 23 are fixed and fixed; meanwhile, the power source 21, the first rotating mechanism 22 and the second
  • the sequential transmission of the rotating mechanism 23 causes the mounting seat 3 fixedly coupled to the second rotating mechanism 23 to rotate correspondingly, that is, the tilting function of the tilting drive mechanism 100 is achieved.
  • the power source 21 is fixedly mounted on the baffle 14, and the output shaft 211 of the power source 21 extends through the through hole 141 into the second cavity 133, so that the installation of the power source 21 is more convenient, and the power source 21 and the A rotating mechanism 22 is connected to each other.
  • the power source 21 includes a driving motor 212.
  • the two ends of the motor shaft of the driving motor 212 are respectively connected with a speed reducing mechanism 213 and an encoder 214.
  • the rotating shaft of the speed reducing mechanism 213 is an output shaft 211.
  • the rotation speed of the power source 21 is reduced, and the torque is increased, thereby facilitating miniaturization of the power source 21, that is, while ensuring the tilting stability of the tilting drive mechanism 100, the weight of the tilting drive mechanism 100 is reduced, thereby improving The stability of the flight of the aircraft 200.
  • the first rotating mechanism 22 is a worm
  • the second rotating mechanism 23 is a worm gear.
  • the lead angle of the worm is smaller than the equivalent friction angle between the worm wheel and the worm meshing teeth, so that the tilting drive mechanism 100 has the self.
  • the lock function prevents the reverse condition from occurring; specifically, the worm shaft 221 of the worm is respectively provided with a worm bearing 222, the worm wheel shaft of the worm wheel is a rotating shaft 231, and the worm wheel shaft is respectively provided with a worm wheel bearing; the second cavity 133
  • the inner wall is provided with two first bearing chambers 1331 and two second bearing chambers 1332.
  • the worm shaft 221 is built in the first bearing chamber 1331.
  • the worm wheel bearing 232 is built in the second bearing chamber 1332 and is driven by a worm gear.
  • the output shaft 211 of the driving mechanism power source 21 is different from the rotating shaft 231 of the driving mechanism, thereby facilitating the positional arrangement between the various mechanisms in the outer casing 1, and also bringing a large speed ratio, low noise, small vibration.
  • the connecting mechanism 24 is disposed between the output shaft 211 and the worm shaft 221 to connect the output shaft 211 and the worm shaft 221, thereby ensuring the stability of the connection between the output shaft 211 and the worm shaft 221.
  • the connecting mechanism 24 It is a coupling assembly or a metal connection block.
  • the mounting seat 3 is disposed outside the fixing base 15.
  • the mounting seat 3 defines a receiving space 31.
  • the fixing base 15 is inserted into the receiving space 31.
  • the worm wheel protrudes from the second cavity 133 and extends toward In the fixing base 15, the worm wheel shaft protrudes from the outer casing 1 and is fixedly connected with the mounting seat 3, so that the worm wheel can be installed on the fixing base 15 and then placed in the outer casing 1, so that the worm wheel is more convenient to install;
  • the power device 300 of the power device 300 is a propeller, which is mounted on the opposite outer surface of the mounting seat 3 in the insertion direction of the fixing base 15 , and further reduces the installation space of the fixing seat 15 and the mounting seat 3 by providing the receiving space 31 .
  • the related wires of the power unit 300 can also be reasonably stored and arranged, which facilitates the cable and the routing of the tilting drive mechanism 100.
  • the mount 3 of the tilting drive mechanism 100 When the aircraft 200 is in the ascending or descending or air hovering state, the mount 3 of the tilting drive mechanism 100 is in a vertical position, thereby providing sufficient ascending force for the ascent of the aircraft 200; when the aircraft 200 is in flight, the tilting drive The mount 3 of the mechanism 100 is in a horizontal position, and the power unit 300 on the short wing 203 facing away from the flight direction stops working, and the power unit 300 in which the short wing 203 is in the flight direction provides a corresponding driving force for the flight of the aircraft 200.
  • a controller is installed in the body 201 of the aircraft 200, and the encoder 214 is electrically connected to the controller, so that the speed signal of the driving motor 212 can be fed back in time, and the first inertial measuring unit 4 is disposed on the mounting seat 3.
  • the second inertial measurement unit 5 is disposed on the outer casing 1.
  • the controller is electrically connected to the first inertial measurement unit 4 and the second inertial measurement unit 5, and the controller collects according to the first inertial measurement unit 4 and the second inertial measurement unit 5.
  • the obtained information obtains the position of the mount 3 of the tilt drive mechanism 100.
  • FIG. 11 is a flowchart of a control method of the tilt drive mechanism 100, including the steps of:
  • the drive mechanism is controlled to drive the rotating shaft 231 to rotate the mount 3 to the set position.
  • the method further includes the steps of:
  • the drive motor 212 that controls the drive mechanism rotates one revolution
  • the tilt drive mechanism is calculated.
  • the rotation angle 360 ° / (n1 * n2), thereby calculating the relationship between the rotation angle of the mount 3 and the rotation angle of the drive motor 212.
  • the method further includes the steps of:
  • the drive motor 212 is controlled to rotate, so that the tilt drive mechanism drives the rotary shaft 231 to rotate, thereby driving the mount 3 to rotate to the set position.
  • the tilting drive mechanism in the control method is the tilting drive mechanism provided in Embodiment 1 of the present invention.
  • the control method of the tilting drive mechanism 100 can control the tilt angle of the tilting drive mechanism 100 in real time by high-precision control of the rotation angle of the tilting drive mechanism 100 to be mounted on the tilting drive mechanism 100.
  • the direction of the power unit 300 is changed so that the power unit 300 can be switched back and forth between the positions providing the lifting force and the pushing force, which facilitates the miniaturization design of the tilting drive mechanism 100, improves the stability of the tilting drive mechanism 100, and Safety, thereby improving the utilization of the power unit 300 and achieving the purpose of efficient flight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Transmission Devices (AREA)
  • Seats For Vehicles (AREA)

Abstract

一种飞行器、倾转驱动机构及其控制方法。所述倾转驱动机构(100)安装在飞行器(200)上以控制所述飞行器(200)的动力装置(300)倾转,该倾转驱动机构(100)包括固定安装在飞行器(200)上的外壳(1)、安装在所述外壳(1)中的驱动机构,以及活动安装在所述外壳(1)上的安装座(3),所述安装座(3)上固定安装有动力装置(300),驱动机构与安装座(3)固定连接,以驱动安装座(3)相对外壳(1)旋转,进而通过在飞行器(200)上设置倾转驱动机构(100),高精度的控制倾转驱动机构(100)的旋转角,以对动力装置(300)的方向进行改变,使其在提供上升力以及推动力的位置之间来回切换;同时将驱动机构设置在倾转驱动机构(100)中,大大减小了驱动机构的力矩,便于了倾转驱动机构的小型化设计,提高了倾转驱动机构稳定性和安全性。

Description

飞行器、倾转驱动机构及其控制方法
本申请要求于2017年07月6日提交中国专利局、申请号为201710547182.8、申请名称为“飞行器及其倾转驱动机构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无人机技术领域,尤其涉及飞行器及其倾转驱动机构和控制方法。
背景技术
随着社会的发展以及科技的进步,无人机行业得到了迅猛的发展,无人机主要分为固定翼无人机和旋翼式无人机,对于固定翼飞机而言,由于动力主要集中在机头提供拉力或者机尾提供推力,进而无法垂直起降和空中悬停,需要较长的滑行跑道;对于直升机而言,虽然可以垂直起降和空中悬停,但是其飞行距离短,因此有必要提供一种结合固定翼和直升机优点的倾转旋翼飞行器,以满足客户需求。
如图1所示,为现有技术的倾转旋翼飞行器的示意图。现有的倾转旋翼飞行器包括机身1'以及设置在机身1'上的机翼2'和尾翼3',机翼2'的中部位置设置有与机翼2'长度方向垂直的连杆4',连杆4'与机翼2'连接处设置有舵机5',连杆4'的两端均设置有一组与舵机5'连接的倾转机构6',倾转机构6'上安装有可倾转90度的旋翼系统7',通过舵机5'对倾转机构6'的拉动,以实现旋翼系统7'的90度倾转。
但是,上述倾转旋翼飞行器由于采用舵机5'以驱动倾转机构6'旋转,舵机5'与倾转机构6'之间采用连杆4'的方式连接,进而舵机5'需要承载较大的力矩,对舵机5'的性能要求高;同时,连杆结构还会造成旋翼飞行器的体积增大,不易于飞行器的小型化设计,在飞行的过程中容易发 生卡死的情况,从而使得该倾转旋翼飞行器的稳定性和安全性降低。
发明内容
为此,本发明要解决的技术问题在于克服现有技术的倾转旋翼飞行器舵机采用连杆结构以控制倾斜机构旋转,进而造成体积变大、安全性和稳定性降低的技术缺陷。
为了实现上述目的,本发明提供一种倾转驱动机构,安装在飞行器上以控制所述飞行器的动力装置倾转,所述倾转驱动机构包括外壳、驱动机构和安装座,其中,外壳固定安装在飞行器上;驱动机构安装在外壳中;安装座活动安装在外壳上,安装座上固定安装有动力装置,驱动机构与安装座固定连接,以驱动安装座相对外壳旋转,进而通过将驱动机构设置在倾转驱动机构中,大大减小了驱动机构的力矩,便于了倾转驱动机构的小型化设计,在飞行的过程中不易发生卡死的情况,提高了倾转驱动机构稳定性和安全性。
可选地,驱动机构包括动力源、第一旋转机构和第二旋转机构,其中,动力源的输出轴与第一旋转机构相连,并且第二旋转机构与安装座固定连接,当所述动力源的输出轴带动所述第一旋转机构转动时,第二旋转机构与第一旋转机构传动配合,进而通过动力源为驱动机构提供了相应的动力,同时,通过动力源、第一旋转机构与第二旋转机构的依次传动,使得与第二旋转机构固定连接的安装座相应的发生转动,即实现了倾转驱动机构的倾转功能。
可选地,外壳包括可拆卸配合的第一壳和第二壳,第一壳和第二壳之间围绕形成收容腔,驱动机构收容在收容腔中。
可选地,收容腔的侧壁上开设有两个卡槽,卡槽内插设有挡板,挡板将收容腔分隔成第一腔和第二腔,动力源设置在第一腔中,第一旋转机构与第二旋转机构设置在第二腔中,进而通过第一腔和第二腔的设计,利于动力源、第一旋转机构与第二旋转机构的安装固定。
可选地,挡板上设置有通孔,动力源固定安装在挡板上,并且动力源 的输出轴穿过通孔伸向第二腔中,通过将动力源固定安装在挡板上,挡板活动插设在卡槽中,进而使得动力源的安装更加方便,同时通过设置通孔,实现了第一腔和第二腔之间的连通,即保证了动力源与第一旋转机构之间相连接。
可选地,飞行器内安装有控制器;动力源包括驱动电机,驱动电机的电机轴的两端分别连接有减速机构和编码器,减速机构的转动轴为输出轴,编码器与控制器电性连接,通过设置减速机构,使得动力源的转速降低,扭矩增大,进而便于动力源规格的小型化,即在保证倾转驱动机构倾转稳定的同时,减小了倾转驱动机构的重量,从而提高了飞行器飞行的稳定性;同时通过设置编码器,使得驱动电机的转速信号能够及时反馈。
可选地,第一旋转机构为蜗杆,第二旋转机构为蜗轮;蜗杆的蜗杆轴的两端分别设置有蜗杆轴承,蜗轮的蜗轮轴为转轴,蜗轮轴的两端分别设置有蜗轮轴承;第二腔的内壁上设置有两个第一轴承腔和两个第二轴承腔,蜗杆轴承内置于第一轴承腔中,蜗轮轴承内置于第二轴承腔中,采用蜗轮蜗杆传动的方式,使得驱动机构动力源输出轴与驱动机构的转轴方向不同,进而方便了外壳内各机构之间的位置排布,同时还带来了大速比、低噪音、小振动的优点。
可选地,驱动机构还包括连接机构,连接机构设置在输出轴和蜗杆轴之间,以连接输出轴和蜗杆轴,进而保证输出轴和蜗杆轴之间连接的稳定性。
可选地,连接机构为联轴器组件或者是金属连接块。
可选地,外壳上固定设置有具有一开口的固定座,安装座罩设在固定座外,开口与第二腔相连通,蜗轮凸伸出第二腔并伸向固定座中,蜗轮轴凸伸出外壳并与安装座固定连接,进而使得蜗轮可以采用先安装在固定座上,然后放置于外壳中的安装方式,使得蜗轮的安装更加方便。
可选地,安装座上开设有一收容空间,固定座插入收容空间内,动力装置安装在安装座上位于固定座插入方向的相对外表面,进而通过设置收 容空间,减小了固定座与安装座的安装空间,还使得动力装置的相关线材能够合理被收纳和整理,方便了倾转驱动机构的理线和走线。
可选地,蜗杆的导程角小于蜗轮和蜗杆啮合齿之间的当量摩擦角,进而使得该倾转驱动机构具备自锁功能,防止逆转的情况发生。
为了实现上述目的,本发明进一步提供一种飞行器,包括机身以及设置在机身两侧的两个机翼,两个机翼上分别设置有与机翼长度方向垂直的短翼,短翼的两端分别设置有上述任一项倾转驱动机构,倾转驱动机构的安装座上固定安装有动力装置,通过设置倾转驱动机构,进而具备上述任一项优点;同时,通过控制倾转驱动机构的倾转角度,即可实现对安装座上动力装置的方向进行改变,从而使得动力装置可以在提供上升力以及推动力之间来回切换,达到了降低成本、提高动力装置的利用率以及高效飞行的目的。
可选地,机身内设置有控制器,倾转驱动机构的安装座上设置有第一惯性测量单元,外壳上设置有第二惯性测量单元,控制器与第一惯性测量单元和第二惯性测量单元电性连接,控制器根据第一惯性测量单元和第二惯性测量单元采集到的信息,得到倾转驱动机构的安装座的位置,通过设置第一惯性测量单元和第二惯性测量单元,即可以对倾转驱动机构的倾转角度进行实时侦测。
可选地,当飞行器处于起降或者空中悬停状态时,倾转驱动机构的安装座处于垂直位置,进而为飞行器的上升提供了足够的上升力;当飞行器处于飞行状态时,倾转驱动机构的安装座处于水平位置,并且短翼上背离飞行方向的动力装置停止工作,进而短翼上演飞行方向的动力装置为飞行器的飞行提供相应的推动力。
可选地,动力装置为螺旋桨。
为了实现上述目的,本发明还提供一种倾转驱动机构的控制方法,包括步骤:获取第一惯性测量单元数据和第二惯性测量单元数据;根据获取的数据处理得到倾转驱动机构的倾转角度;控制驱动机构驱动,以使转轴 带动安装座旋转至设定位置,进而可以通过对倾转驱动机构的倾转角度位置实时测量,高精度的控制倾转驱动机构的旋转角。
可选地,在控制驱动机构驱动,以使转轴带动安装座旋转至设定位置的步骤之前,还包括步骤:控制驱动机构的驱动电机旋转一周;根据与驱动电机相连的减速机构的减速比n1,以及驱动机构中第一旋转机构和第二旋转机构之间的传动比n2,计算得到驱动电机旋转一周时,倾斜驱动机构的旋转角度=360°/(n1*n2)。
可选地,在根据获取的数据处理得到倾转驱动机构的倾转角度的步骤之后,还包括步骤:根据获取的倾转角度,计算安装座旋转至设定位置时,倾转驱动机构需要转动的角度差;根据角度差和旋转角度,计算驱动电机的旋转角;控制驱动电机旋转,进而使得倾斜驱动机构驱动转轴旋转,从而带动安装座旋转至设定位置。
可选地,该方法中的所述的倾转驱动机构为本发明提供上述的倾转驱动机构。
本发明提供的倾转驱动机构及其控制方法和飞行器,通过在飞行器上设置倾转驱动机构,进而可以通过对倾转驱动机构的倾转角度位置实时测量,高精度的控制倾转驱动机构的旋转角,以对安装在倾转驱动机构上的动力装置的方向进行改变,从而使得动力装置可以在提供上升力以及推动力的位置之间来回切换;同时通过将驱动机构设置在倾转驱动机构中,大大减小了驱动机构的力矩,便于了倾转驱动机构的小型化设计,在飞行器飞行的过程中使其不易发生卡死的情况,提高了倾转驱动机构稳定性和安全性,从而使得飞行器达到了降低成本、提高动力装置的利用率以及高效飞行的目的。
附图说明
为了更清楚地说明本发明具体实施方式的技术方案,下面根据本发明的具体实施例并结合附图,对发明作进一步详细说明。
图1为现有技术的倾转旋翼飞行器的示意图;
图2为本发明飞行器的俯视图;
图3为图2所示飞行器的局部放大图,该图示出了飞行器的动力装置安装在短翼上的状态;
图4为图2所示飞行器的倾转驱动机构的安装座处于垂直位置时的立体图;
图5为图2所示飞行器的倾转驱动机构的安装座处于水平位置时的立体图
图6为图4所示倾转驱动机构的第二壳与固定座的立体图;
图7为图4所示倾转驱动机构去掉第一壳后的立体图;
图8为图4所示倾转驱动机构的动力源的立体图;
图9为图4所示倾转驱动机构的第一旋转机构的立体图;
图10为图4所示倾转驱动机构的第二旋转机构安装和固定座、安装座的立体图;
图11为本发明倾转驱动机构控制方法的流程图。
图中各附图标记说明如下。
1'-机身;2'-机翼;3'-尾翼;4'-连杆;5'-舵机;
6'-倾转机构;7'-旋翼系统;100-倾转驱动机构;1-外壳;
11-第一壳;12-第二壳;13-收容腔;131-卡槽;132-第一腔;
133-第二腔;1331-第一轴承腔;1332-第二轴承腔;14-挡板;
141-通孔;15-固定座;21-动力源;211-输出轴;212-驱动电机;
213-减速机构;214-编码器;22-第一旋转机构;221-蜗杆轴;
222-蜗杆轴承;23-第二旋转机构;231-转轴;232-蜗轮轴承;
24-连接机构;3-安装座;31-收容空间;4-第一惯性测量单元;
5-第二惯性测量单元;200-飞行器;201-机身;202-机翼;
203-短翼;300-动力装置。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“固定连接”可以是两个部件直接连接,也可以是间接连接;术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
如图2和图3所示的飞行器200,包括机身201以及设置在机身201两侧的两个机翼202,两个机翼202上分别设置有与机翼202长度方向垂直的短翼203,短翼203的两端分别设置有控制动力装置300倾转的倾转驱动机构100,结合图4和图5所示,倾转驱动机构100包括外壳1、驱动机构和安装座3,其中,外壳1固定安装在飞行器200上,例如,外壳1通过螺丝锁接在飞行器200上,或者,以胶粘的方式粘合在飞行器200上。驱动机构安装在外壳1中。安装座3活动安装在外壳1上,例如,安装座3与外壳1通过铰接的方式活动连接。安装座3上固定安装有动力装置300,驱动机构与安装座3固定连接,以驱动安装座3相对外壳1旋转,进而通过将驱动机构设置在倾转驱动机构100中,大大减小了驱动机构的力矩,便于了倾转驱动机构100的小型化设计,在飞行的过程中不易发生卡死的情况, 提高了倾转驱动机构100稳定性和安全性。
上述飞行器200,通过设置倾转驱动机构100,可以通过对倾转驱动机构100的倾转角度位置实时测量,高精度的控制倾转驱动机构100的旋转角,以对安装在倾转驱动机构100上的动力装置300的方向进行改变,从而使得动力装置300可以在提供上升力以及推动力的位置之间来回切换;同时通过将驱动机构设置在倾转驱动机构100中,大大减小了驱动机构的力矩,便于了倾转驱动机构100的小型化设计,使其不易发生卡死的情况,提高了倾转驱动机构100稳定性和安全性,从而提高动力装置300的利用率以及达到了高效飞行的目的。
结合图5和图6所示,外壳1包括可拆卸配合的第一壳11和第二壳12,第一壳11和第二壳12之间围绕形成收容腔13,驱动机构收容在收容腔13中。收容腔13的侧壁上开设有两个卡槽131,结合图7,卡槽131内插设有挡板14,挡板14将收容腔13分隔成第一腔132和第二腔133,挡板14上设置有通孔141;同时,外壳1上固定设置有具有一开口的固定座15,开口与第二腔133相连通。
结合图7至图9所示,驱动机构包括动力源21、第一旋转机构22、第二旋转机构23和连接机构24,其中,动力源21设置在第一腔132中;第一旋转机构22与第二旋转机构23设置在第二腔133中,动力源21的输出轴211与第一旋转机构22相连;并且第二旋转机构23与安装座3固定连接,当动力源21的输出轴211带动第一旋转机构22转动时,第二旋转机构23与第一旋转机构22传动配合。因而,通过第一腔132和第二腔133的设计,利于动力源21、第一旋转机构22与第二旋转机构23的安装固定;同时,通过动力源21、第一旋转机构22与第二旋转机构23的依次传动,使得与第二旋转机构23固定连接的安装座3相应的发生转动,即实现了倾转驱动机构100的倾转功能。
其中,动力源21固定安装在挡板14上,并且动力源21的输出轴211穿过通孔141伸向第二腔133中,使得动力源21的安装更加方便,实现了动力源21与第一旋转机构22之间相连接,具体的,动力源21包括驱动电 机212,驱动电机212的电机轴的两端分别连接有减速机构213和编码器214,减速机构213的转动轴为输出轴211,使得动力源21的转速降低,扭矩增大,进而便于动力源21规格的小型化,即在保证倾转驱动机构100倾转稳定的同时,减小了倾转驱动机构100的重量,从而提高了飞行器200飞行的稳定性。
在一个实施例中,第一旋转机构22为蜗杆,第二旋转机构23为蜗轮,蜗杆的导程角小于蜗轮和蜗杆啮合齿之间的当量摩擦角,进而使得该倾转驱动机构100具备自锁功能,防止逆转的情况发生;具体的,蜗杆的蜗杆轴221的两端分别设置有蜗杆轴承222,蜗轮的蜗轮轴为转轴231,蜗轮轴的两端分别设置有蜗轮轴承;第二腔133的内壁上设置有两个第一轴承腔1331和两个第二轴承腔1332,蜗杆轴221承内置于第一轴承腔1331中,蜗轮轴承232内置于第二轴承腔1332中,采用蜗轮蜗杆传动的方式,使得驱动机构动力源21输出轴211与驱动机构的转轴231方向不同,进而方便了外壳1内各机构之间的位置排布,同时还带来了大速比、低噪音、小振动的优点。
连接机构24设置在输出轴211和蜗杆轴221之间,以连接输出轴211和蜗杆轴221,进而保证输出轴211和蜗杆轴221之间连接的稳定性,在本实施例中,连接机构24为联轴器组件或者是金属连接块。
如图6和图10所示,安装座3罩设在固定座15外,安装座3上开设有一收容空间31,固定座15插入收容空间31内,蜗轮凸伸出第二腔133并伸向固定座15中,蜗轮轴凸伸出外壳1并与安装座3固定连接,进而使得蜗轮可以采用先安装在固定座15上,然后放置于外壳1中的安装方式,使得蜗轮的安装更加方便;同时,动力装置300动力装置300为螺旋桨,其安装在安装座3上位于固定座15插入方向的相对外表面,进而通过设置收容空间31,减小了固定座15与安装座3的安装空间,还使得动力装置300的相关线材能够合理被收纳和整理,方便了倾转驱动机构100的理线和走线。
当飞行器200处于起降或者空中悬停状态时,倾转驱动机构100的安 装座3处于垂直位置,进而为飞行器200的上升提供了足够的上升力;当飞行器200处于飞行状态时,倾转驱动机构100的安装座3处于水平位置,并且短翼203上背离飞行方向的动力装置300停止工作,进而短翼203上演飞行方向的动力装置300为飞行器200的飞行提供相应的推动力。
除此之外,飞行器200的机身201内安装有控制器,编码器214与控制器电性连接,使得驱动电机212的转速信号能够及时反馈,安装座3上设置有第一惯性测量单元4,外壳1上设置有第二惯性测量单元5,控制器与第一惯性测量单元4和第二惯性测量单元5电性连接,控制器根据第一惯性测量单元4和第二惯性测量单元5采集到的信息,得到倾转驱动机构100的安装座3的位置,通过设置第一惯性测量单元4和第二惯性测量单元5,即可以对倾转驱动机构100的倾转角度进行实时侦测。
实施例2
如图11所示提供的一种倾转驱动机构100的控制方法的流程图,包括步骤:
获取第一惯性测量单元4数据和第二惯性测量单元5数据;
根据获取的数据处理得到倾转驱动机构100的倾转角度;
控制驱动机构驱动,以使转轴231带动安装座3旋转至设定位置。
作为可选的实施方式,在控制驱动机构驱动,以使转轴231带动安装座3旋转至设定位置的步骤之前,还包括步骤:
控制驱动机构的驱动电机212旋转一周;
根据与驱动电机212相连的减速机构213的减速比n1,以及驱动机构中第一旋转机构22和第二旋转机构23之间的传动比n2,计算得到驱动电机212旋转一周时,倾斜驱动机构的旋转角度=360°/(n1*n2),从而计算得到安装座3旋转角度和驱动电机212旋转角度之间的关系。
同时,在根据获取的数据处理得到倾转驱动机构100的倾转角度的步 骤之后,还包括步骤:
根据获取的倾转角度,计算安装座3旋转至设定位置时,倾转驱动机构100需要转动的角度差;
根据角度差和旋转角度,计算驱动电机212的旋转角;
控制驱动电机212旋转,进而使得倾斜驱动机构驱动转轴231旋转,从而带动安装座3旋转至设定位置。
优选地,该控制方法中的倾转驱动机构为本发明实施例1中提供的倾转驱动机构。
上述倾转驱动机构100的控制方法,可以通过对倾转驱动机构100的倾转角度位置实时测量,高精度的控制倾转驱动机构100的旋转角,以对安装在倾转驱动机构100上的动力装置300的方向进行改变,从而使得动力装置300可以在提供上升力以及推动力的位置之间来回切换,便于了倾转驱动机构100的小型化设计,提高了倾转驱动机构100稳定性和安全性,从而提高动力装置300的利用率以及达到了高效飞行的目的。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (20)

  1. 一种倾转驱动机构(100),安装在飞行器(200)上以控制所述飞行器(200)的动力装置(300)倾转,其特征在于,所述倾转驱动机构(100)包括:
    外壳(1),固定安装在所述飞行器(200)上;
    驱动机构,安装在所述外壳(1)中;
    安装座(3),活动安装在所述外壳(1)上,所述安装座(3)上固定安装有所述动力装置(300),所述驱动机构与所述安装座(3)固定连接,以驱动所述安装座(3)相对所述外壳(1)旋转。
  2. 如权利要求1所述的倾转驱动机构(100),其特征在于,所述驱动机构包括动力源(21)、第一旋转机构(22)和第二旋转机构(23),其中,所述动力源(21)的输出轴(211)与所述第一旋转机构(22)相连,并且所述第二旋转机构(23)上的转轴(231)与所述安装座(3)固定连接,当所述动力源(21)的所述输出轴(211)带动所述第一旋转机构(22)转动时,所述第二旋转机构(23)与所述第一旋转机构(22)传动配合。
  3. 如权利要求2所述的倾转驱动机构(100),其特征在于,所述外壳(1)包括可拆卸配合的第一壳(11)和第二壳(12),所述第一壳(11)和所述第二壳(12)之间围绕形成收容腔(13),所述驱动机构收容在所述收容腔(13)中。
  4. 如权利要求3所述的倾转驱动机构(100),其特征在于,所述收容腔(13)的侧壁上开设有两个卡槽(131),所述卡槽内插设有挡板(14),所述挡板(14)将所述收容腔(13)分隔成第一腔(132)和第二腔(133), 所述动力源(21)设置在所述第一腔(132)中,所述第一旋转机构(22)与所述第二旋转机构(23)设置在所述第二腔(133)中。
  5. 如权利要求4所述的倾转驱动机构(100),其特征在于,所述挡板(14)上设置有通孔(141),所述动力源(21)固定安装在所述挡板(14)上,并且所述动力源(21)的所述输出轴(211)穿过所述通孔(141)伸向所述第二腔(133)中。
  6. 如权利要求2至5中任一项所述的倾转驱动机构(100),其特征在于,所述飞行器(200)内安装有控制器;所述动力源(21)包括驱动电机(212),所述驱动电机(212)的电机轴的两端分别连接有减速机构(213)和编码器(214),所述减速机构(213)的转动轴为所述输出轴(211),所述编码器(214)与所述控制器电性连接。
  7. 如权利要求4或5所述的倾转驱动机构(100),其特征在于,所述第一旋转机构(22)为蜗杆,所述第二旋转机构(23)为蜗轮;所述蜗杆的蜗杆轴(221)的两端分别设置有蜗杆轴承(222),所述蜗轮的蜗轮轴为所述转轴(231),所述蜗轮轴的两端分别设置有蜗轮轴承(232);所述第二腔(133)的内壁上设置有两个第一轴承腔(1331)和两个第二轴承腔(1332),所述蜗杆轴承(222)内置于所述第一轴承腔(1331)中,所述蜗轮轴承(232)内置于所述第二轴承腔(1332)中。
  8. 如权利要求7所述的倾转驱动机构(100),其特征在于,所述驱动机构还包括连接机构(24),所述连接机构(24)设置在所述输出轴(211)和所述蜗杆轴(221)之间,以连接所述输出轴(211)和所述蜗杆轴(221)。
  9. 如权利要求8所述的倾转驱动机构(100),其特征在于,所述连接机构(24)为联轴器组件或者是金属连接块。
  10. 如权利要求7至9所述的倾转驱动机构(100),其特征在于,所述外壳(1)上固定设置有具有一开口(151)的固定座(15),所述安装座(3)罩设在所述固定座(15)外,所述开口(151)与所述第二腔(133)相连通,所述蜗轮凸伸出所述第二腔(133)并伸向所述固定座(15)中,所述蜗轮轴凸伸出所述外壳(1)并与所述安装座(3)固定连接。
  11. 如权利要求9所述的倾转驱动机构(100),其特征在于,所述安装座(3)上开设有一收容空间(31),所述固定座(15)插入所述收容空间(31)内,所述动力装置(300)安装在所述安装座(3)上位于所述固定座(15)插入方向的相对外表面。
  12. 如权利要求7-11中任一项所述的倾转驱动机构(100),其特征在于,所述蜗杆的导程角小于所述蜗轮和所述蜗杆啮合齿之间的当量摩擦角。
  13. 一种飞行器(200),包括机身(201)以及设置在机身(201)两侧的两个机翼(202),其特征在于,两个所述机翼(202)上分别设置有与所述机翼(202)长度方向垂直的短翼(203),所述短翼(203)的两端分别设置有权利要求1-12中任一项所述倾转驱动机构(100),所述倾转驱动机构(100)的安装座(3)上固定安装有动力装置(300)。
  14. 如权利要求13所述的飞行器(200),其特征在于,所述机身(201)内设置有控制器,所述倾转驱动机构(100)的所述安装座(3)上设置有第一惯性测量单元(4),所述外壳(1)上设置有第二惯性测量单元(5),所述控制器与所述第一惯性测量单元(4)和所述第二惯性测量单元(5) 电性连接,所述控制器根据所述第一惯性测量单元(4)和所述第二惯性测量单元(5)采集到的信息,得到所述倾转驱动机构(100)的所述安装座(3)的位置。
  15. 如权利要求13或14所述的飞行器(200),其特征在于,当所述飞行器(200)处于起降或者空中悬停状态时,所述倾转驱动机构(100)的所述安装座(3)处于垂直位置;当所述飞行器(200)处于飞行状态时,所述倾转驱动机构(100)的所述安装座(3)处于水平位置,并且所述短翼上背离飞行方向的动力装置(300)停止工作。
  16. 如权利要求13-15中任一项所述的飞行器(200),其特征在于,所述动力装置(300)为螺旋桨。
  17. 一种倾转驱动机构的控制方法,其特征在于,包括步骤:
    获取第一惯性测量单元数据和第二惯性测量单元数据;
    根据获取的数据处理得到倾转驱动机构的倾转角度;
    控制驱动机构驱动,以使转轴带动安装座旋转至设定位置。
  18. 如权利要求17所述的倾转驱动机构的控制方法,其特征在于,在所述控制驱动机构驱动,以使转轴带动安装座旋转至设定位置的步骤之前,还包括步骤:
    控制所述驱动机构的驱动电机旋转一周;
    根据与所述驱动电机相连的减速机构的减速比n1,以及所述驱动机构中第一旋转机构和第二旋转机构之间的传动比n2,计算得到所述驱动电机 旋转一周时,所述倾斜驱动机构的旋转角度=360°/(n1*n2)。
  19. 如权利要求18所述的倾转驱动机构的控制方法,其特征在于,在所述根据获取的数据处理得到倾转驱动机构的倾转角度的步骤之后,还包括步骤:
    根据获取的所述倾转角度,计算所述安装座旋转至所述设定位置时,所述倾转驱动机构需要转动的角度差;
    根据所述角度差和所述旋转角度,计算驱动电机的旋转角;
    控制驱动电机旋转。
  20. 如权利要求17至19中任一项所述的控制倾转驱动机构的方法,其特征在于,所述倾转驱动机构为权利要求1至12中任一项所述的倾转驱动机构。
PCT/CN2018/079013 2017-07-06 2018-03-14 飞行器、倾转驱动机构及其控制方法 WO2019007101A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18753039.9A EP3444186B1 (en) 2017-07-06 2018-03-14 Flight vehicle, tilt driving mechanism and control method therefor
US16/129,115 US10894600B2 (en) 2017-07-06 2018-09-12 Aircraft, tilt driving mechanism and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710547182.8 2017-07-06
CN201710547182.8A CN109204806B (zh) 2017-07-06 2017-07-06 飞行器、倾转驱动机构及其控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/129,115 Continuation US10894600B2 (en) 2017-07-06 2018-09-12 Aircraft, tilt driving mechanism and control method thereof

Publications (1)

Publication Number Publication Date
WO2019007101A1 true WO2019007101A1 (zh) 2019-01-10

Family

ID=64500317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079013 WO2019007101A1 (zh) 2017-07-06 2018-03-14 飞行器、倾转驱动机构及其控制方法

Country Status (3)

Country Link
EP (1) EP3444186B1 (zh)
CN (1) CN109204806B (zh)
WO (1) WO2019007101A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113148136A (zh) * 2021-04-29 2021-07-23 辽宁北兴激光技术有限公司 一种具有固定翼和多旋翼切换功能的无人机
CN116853491A (zh) * 2023-09-01 2023-10-10 成都沃飞天驭科技有限公司 倾转装置及其设计方法和飞行器
CN117585217A (zh) * 2024-01-18 2024-02-23 中北大学 一种倾转旋翼无人机矢量推进装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109774918B (zh) * 2019-03-19 2024-03-29 深圳市道通智能航空技术股份有限公司 一种无人机控制装置和无人机
WO2021232219A1 (zh) * 2020-05-19 2021-11-25 深圳市大疆创新科技有限公司 一种无人飞行器启动方法、装置及无人飞行器
CN113291467A (zh) * 2021-06-28 2021-08-24 徐志凌 一种倾转装置及倾转旋翼飞行器
KR102673773B1 (ko) * 2023-11-09 2024-06-11 주식회사 네스앤텍 드론암에 장착되는 틸트 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802754B2 (en) * 2005-08-15 2010-09-28 Abe Karem Tilt outboard wing for tilt rotor aircraft
US8276840B2 (en) * 2005-09-02 2012-10-02 Abe Karem Fail-operational multiple lifting-rotor aircraft
JP2014141107A (ja) * 2012-07-12 2014-08-07 Hiroyoshi Fujimoto 垂直離着陸輸送機の機体安定用機構
CN204489181U (zh) * 2015-03-10 2015-07-22 广州天翔航空科技有限公司 可变电机角度四轴垂直起降固定翼复合无人机
CN205022861U (zh) * 2015-09-06 2016-02-10 长沙鸿浪自动化科技有限公司 垂直起降固定翼飞行器
CN205098470U (zh) * 2015-10-26 2016-03-23 深圳智航无人机有限公司 倾转旋翼飞行器
CN106184736A (zh) * 2016-08-29 2016-12-07 天津中翔腾航科技股份有限公司 一种固定翼与多旋翼组成的复合型飞行器
CN106628201A (zh) * 2016-12-09 2017-05-10 北京奇正数元科技股份有限公司 多动力组合更换适应不同起降方式不同任务载荷的无人机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6655631B2 (en) * 2000-07-28 2003-12-02 John Frederick Austen-Brown Personal hoverplane with four tiltmotors
US20070034737A1 (en) * 2003-10-21 2007-02-15 Tierney Glenn M Dual axis control for cycloidal propeller
KR100832067B1 (ko) * 2006-12-26 2008-05-27 한국항공우주연구원 안정성 증강유닛 및 이를 포함하는 틸트로터 항공기
US20140008498A1 (en) * 2010-09-17 2014-01-09 Johannes Reiter Tilt Wing Rotor VTOL
CN101962075A (zh) * 2010-10-18 2011-02-02 南京航空航天大学 倾转机构及其工作方式和在倾转旋翼机上的应用
CN103803079A (zh) * 2012-11-12 2014-05-21 上海市闵行区知识产权保护协会 一种小型旋翼飞行器
CN203714177U (zh) * 2014-02-21 2014-07-16 刘浩 一种串列式倾转翼飞机
CN103935510A (zh) * 2014-04-15 2014-07-23 西安交通大学 一种倾转四旋翼飞行器
CN205098469U (zh) * 2015-10-26 2016-03-23 深圳智航无人机有限公司 倾转旋翼机
US10589867B2 (en) * 2015-11-20 2020-03-17 FlightWave Aerospace Systems Gimbaled thruster configuration for use with unmanned aerial vehicle
CN205273861U (zh) * 2016-01-04 2016-06-01 西安交通大学 一种新型倾转四旋翼飞行器
CN106005447B (zh) * 2016-06-30 2019-10-15 深圳一电航空技术有限公司 倾转装置及飞行器
CN206288235U (zh) * 2016-12-05 2017-06-30 西北工业大学 一种用于倾转旋翼飞行器的倾转装置
CN207242031U (zh) * 2017-07-06 2018-04-17 深圳市道通智能航空技术有限公司 飞行器及其倾转驱动机构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802754B2 (en) * 2005-08-15 2010-09-28 Abe Karem Tilt outboard wing for tilt rotor aircraft
US8276840B2 (en) * 2005-09-02 2012-10-02 Abe Karem Fail-operational multiple lifting-rotor aircraft
JP2014141107A (ja) * 2012-07-12 2014-08-07 Hiroyoshi Fujimoto 垂直離着陸輸送機の機体安定用機構
CN204489181U (zh) * 2015-03-10 2015-07-22 广州天翔航空科技有限公司 可变电机角度四轴垂直起降固定翼复合无人机
CN205022861U (zh) * 2015-09-06 2016-02-10 长沙鸿浪自动化科技有限公司 垂直起降固定翼飞行器
CN205098470U (zh) * 2015-10-26 2016-03-23 深圳智航无人机有限公司 倾转旋翼飞行器
CN106184736A (zh) * 2016-08-29 2016-12-07 天津中翔腾航科技股份有限公司 一种固定翼与多旋翼组成的复合型飞行器
CN106628201A (zh) * 2016-12-09 2017-05-10 北京奇正数元科技股份有限公司 多动力组合更换适应不同起降方式不同任务载荷的无人机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3444186A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113148136A (zh) * 2021-04-29 2021-07-23 辽宁北兴激光技术有限公司 一种具有固定翼和多旋翼切换功能的无人机
CN113148136B (zh) * 2021-04-29 2023-07-21 辽宁北兴激光技术有限公司 一种具有固定翼和多旋翼切换功能的无人机
CN116853491A (zh) * 2023-09-01 2023-10-10 成都沃飞天驭科技有限公司 倾转装置及其设计方法和飞行器
CN116853491B (zh) * 2023-09-01 2023-11-07 成都沃飞天驭科技有限公司 倾转装置及其设计方法和飞行器
CN117585217A (zh) * 2024-01-18 2024-02-23 中北大学 一种倾转旋翼无人机矢量推进装置

Also Published As

Publication number Publication date
EP3444186B1 (en) 2021-08-18
EP3444186A4 (en) 2019-05-01
CN109204806B (zh) 2024-09-03
EP3444186A1 (en) 2019-02-20
CN109204806A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
WO2019007101A1 (zh) 飞行器、倾转驱动机构及其控制方法
US10894600B2 (en) Aircraft, tilt driving mechanism and control method thereof
CN108698682B (zh) 无人飞行器及其机架、套件、组装方法、以及操作方法
WO2021078267A1 (zh) 一种无人飞行器
CN212386689U (zh) 可倾转的三旋翼倾转旋翼飞行器
US20210163130A1 (en) Mounting mechanism, landing gear, frame, and unmanned aerial vehicle
CN106585952B (zh) 一种多旋翼无人机
WO2019109306A1 (zh) 无人飞行器
CN109987223B (zh) 一种联接翼构型的新型垂直起降无人机
CN112158330A (zh) 一种无人飞行器
WO2020062758A1 (zh) 无人机及倾转机构
CN113460298A (zh) 电机倾转机构和倾转旋翼飞行汽车
CN112644701A (zh) 一种横列式双旋翼无人机
CN107444606B (zh) 新型飞行器及飞行器系统
WO2020000690A1 (zh) 固定翼无人机及其尾翼
CN212709964U (zh) 一种基于旋翼和扇翼的可垂直起降飞行器
CN215155629U (zh) 一种垂直起降式系留无人机系统
CN211076330U (zh) 倾转翼机构以及倾转旋翼无人机
CN115367106A (zh) 倾转旋翼无人机
CN210618464U (zh) 固定翼无人机的垂直起降连接组件及固定翼无人机
CN212305043U (zh) 电机组件、吊舱和无人机
CN212022961U (zh) 一种无人飞行器的舵面舵机联动结构和一种无人飞行器
CN113788142A (zh) 一种可变型百叶窗机翼的倾转旋翼飞行器
CN209795847U (zh) 一种用于飞行器的迫降装置及涵道式飞行器
CN209757510U (zh) 一种倾转旋翼无人机及其机翼组件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018753039

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018753039

Country of ref document: EP

Effective date: 20180823

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE