WO2019007079A1 - 导光组件、背光模组及显示装置 - Google Patents

导光组件、背光模组及显示装置 Download PDF

Info

Publication number
WO2019007079A1
WO2019007079A1 PCT/CN2018/076515 CN2018076515W WO2019007079A1 WO 2019007079 A1 WO2019007079 A1 WO 2019007079A1 CN 2018076515 W CN2018076515 W CN 2018076515W WO 2019007079 A1 WO2019007079 A1 WO 2019007079A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guiding
guiding member
incident end
end surface
Prior art date
Application number
PCT/CN2018/076515
Other languages
English (en)
French (fr)
Inventor
浩育涛
陈英
布占场
吕金库
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/300,094 priority Critical patent/US11280952B2/en
Priority to EP18793349.4A priority patent/EP3454115A4/en
Publication of WO2019007079A1 publication Critical patent/WO2019007079A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0078Side-by-side arrangements, e.g. for large area displays

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a light guiding component, a backlight module, and a display device.
  • the structure for forming a surface light source in a backlight module of a liquid crystal display includes a direct type and a side-in type, wherein a display using a direct type backlight module has a light source capable of sub-area control, uniform light emission, and can be applied to a large-area display panel.
  • the advantage because the light source requires sufficient space for the light mixing, the thickness of the backlight module cannot be reduced, and cannot be adapted to the light and thin requirements of the display.
  • the purpose of the technical solution of the present disclosure is to provide a light guiding component, a backlight module, and a display device, which are used for solving the backlight module adopting the related art light guide plate, and can not simultaneously meet the requirements of light and thinning requirements and sub-area control of the light source.
  • An embodiment of the present disclosure provides a light guiding component, including:
  • a first light guiding member including an opposite first surface and a second surface
  • At least one second light guide the second light guide being disposed on a side of the second surface away from the first surface
  • the second light guiding member includes a non-parallel light incident end surface and a light exit end surface, and the second light guiding member is configured to cause light incident on the light incident end surface to be inside the second light guiding member Propagating and emitting from the light exit end face, the light emitted from the light exit end face is incident into the first light guide via the second surface.
  • an angle between the light incident end surface and the second surface is greater than or equal to 45 degrees.
  • each of the light incident end faces is perpendicular to the second surface.
  • the second light guiding member is adhered and fixed on the second surface by an optical adhesive layer, and light emitted from the light emitting end surface is incident into the first light guiding member via the optical adhesive layer.
  • the refractive index of the first light guiding member is greater than or equal to the refractive index of the optical adhesive layer, and the refractive index of the optical adhesive layer is greater than or equal to the refractive index of the second light guiding member.
  • the refractive index of the first light guiding member and the refractive index of the second light guiding member are both greater than or equal to 1.42.
  • each of the second light guiding members is respectively formed into a hexahedron structure, wherein a first surface of the hexahedral structure is fixedly connected to the second surface, and a second surface connected to the first surface is formed as The light is incident on the end face.
  • a reflective layer is attached to the other surface except the first surface, the second surface, and the third surface opposite to the first surface.
  • the second light guide comprises a curved curved surface connected to the light incident end surface.
  • the second light guiding member further includes a connecting surface fixedly connected to the second surface, and the first edge of the light incident end surface is connected to the first edge of the connecting surface, wherein the curved shape The opposite edges of the curved surface are respectively connected to the second edge of the light incident end surface and the second edge of the connecting surface;
  • the second edge of the light incident end surface is an opposite edge of the first edge of the light incident end surface
  • the second edge of the connection surface is an opposite edge of the first edge of the connection surface
  • a reflective layer is attached to the second light guiding member except the curved curved surface, the connecting surface and the light incident end surface.
  • each position point of the curved curved surface has a bending curvature capable of causing total reflection of the internal light of the second light guide to be totally reflected.
  • an angle between a tangent plane and a horizontal plane of each position of the curved curved surface is less than or equal to 3.2. degree.
  • a plurality of the second light guides are distributed in an array on the second surface.
  • a plurality of mesh points are formed on the first surface, and light incident into the first light guide is emitted through the mesh point.
  • each of the second light guiding members is respectively formed into a hexahedron structure, wherein the hexahedral structure comprises a top surface, a bottom surface and four side surfaces, and a top surface of the hexahedral structure is fixedly connected to the second surface
  • One of the four sides connected to the top surface is the light incident end surface, wherein the hexahedron structure is attached to other surfaces than the top surface, the bottom surface, and the light incident end surface There is a reflective layer.
  • each of the second light guiding members is respectively formed into a pentahedron structure, and the pentahedron structure includes a connecting surface fixedly connected to the second surface, the light incident end surface, two side surfaces, and a The connecting surface, the light incident end surface, and the curved curved surface connected to the two sides.
  • An embodiment of the present disclosure further provides a backlight module including at least one light source and a light guide assembly as described above, wherein the light source is disposed in one-to-one correspondence with the second light guide, and the light emitted by the light source The light incident end surface of the second light guide is transmitted into the light guide assembly.
  • the light guiding component comprises a plurality of second light guiding members
  • the backlight module comprises a plurality of light sources, each light source being respectively disposed corresponding to one second light guiding member.
  • the embodiment of the present disclosure further provides a display device including the backlight module as described above.
  • FIG. 1 is a schematic perspective structural view of a light guiding assembly according to some embodiments of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of a light guiding assembly according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of a first state of light transmission in a light guiding component according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of a second state of light transmission in a light guiding component according to some embodiments of the present disclosure
  • 5a is a schematic perspective structural view of a light guiding assembly according to some embodiments of the present disclosure.
  • FIG. 5b is a schematic perspective structural view of a second light guiding member of the light guiding assembly according to some embodiments of the present disclosure
  • FIG. 6 is a cross-sectional structural view of a light guiding assembly according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram of a state of light transmission in a light guiding component according to some embodiments of the present disclosure.
  • the display using the side-entry backlight module has the advantage of being able to adapt to the requirements of thinning and thinning, but the disadvantage is that the light source can only perform sub-area control in the one-dimensional direction, and the sub-area control in the two-dimensional direction cannot be realized.
  • the coupling efficiency of the light emitted by the light source disposed on the side of the light guide plate to be coupled into the light guide plate is related to the thickness between the light source and the light guide plate, and only when the thickness of the light source is smaller than the thickness of the light guide plate can the light guide plate be reached. Full coupling of incident light.
  • the related art has the shortcomings of the application of the flat-type light guide plate, whether it is a direct light incident or a side-injection of the light source.
  • the related art does not exist, and the light-thinning feature of the side-entry backlight module can be provided. It is also possible to implement sub-regional control and a backlight module that can be applied to a large-area display panel.
  • Some embodiments of the present disclosure provide a light guiding component, wherein the light guiding component comprises:
  • a first light guiding member comprising oppositely disposed first surfaces and second surfaces; wherein the first surface is provided with a plurality of dots for light exiting;
  • each of the second light guiding members respectively comprises a light incident end surface for light entering the second light guiding member in a side-entry manner.
  • the plurality of second light guides are distributed on the second surface of the first light guide, because the second surface is the first surface of the first light guide (formed as light) The opposite surface of the exit surface, so when a light source capable of sub-area control is respectively disposed at the light incident end faces of the plurality of second light guides, the plurality of second light guides are formed to be distributed in the second light guide A plurality of incident light sources on the surface (formed as a light incident surface), the plurality of incident light sources being capable of satisfying the requirements of the light source sub-region control of the first light guide.
  • the thickness of the second light guiding member can be sufficiently small relative to the straight-in type; further, due to the light source The light is incident through the second light guide, and even if the thickness of the first light guide is small, the coupling efficiency of the light emitted by the light source into the light guide assembly can be ensured, so that the plurality of second light guides are disposed on the first light guiding element.
  • the thickness of the light guide plate of the related art does not increase the thickness excessively, and the entire light guiding component can still meet the thin and light requirements under the premise of ensuring higher coupling efficiency of the light.
  • the angle of inclination of the light incident end surface on each of the second light guides with respect to the first surface is 135 degrees or less and 45 degrees or more, that is, each of the second The angle between the light incident end surface on the light guiding member and the first surface is greater than or equal to 45 degrees.
  • it is 90 degrees, so that when the light source is correspondingly disposed at the end face of the light, the light emitted by the light source can be transmitted into the second light guide side by side.
  • FIG. 1 is a schematic perspective structural view of a light guiding assembly according to some embodiments of the present disclosure
  • FIG. 2 is a schematic cross-sectional structural view of the light guiding assembly according to some embodiments of the present disclosure.
  • the light guiding component includes:
  • the first light guide 100 includes a first surface 110 and a second surface 120 disposed opposite to each other; wherein the first surface 110 is provided with a plurality of dots 111 for light exiting, the dots 111 being on the first surface 110 Formed as a protruding structure, in some embodiments of the present disclosure, the dot 111 may also be formed as a groove structure;
  • the plurality of second light guides 200 are respectively fixedly connected to the second surface 120, wherein each of the second light guides 200 respectively includes a light incident end surface 210, and the plurality of second light guides 200 are on the second surface 120. Distributed in an array.
  • the light source 400 is disposed opposite to the light incident end surface 210.
  • the first surface 110 is parallel to the second surface 120, and the light incident end surface 210 is perpendicular to the first surface 110 and the second surface 120.
  • a portion of the second light guide 200 fixedly coupled to the second surface 120 is formed as a light exit end surface 220 of the second light guide 200, wherein the light incident end surface 210 is perpendicular to the light exit end surface 220, so when light passes through the light incident When the end surface 210 is transferred into the second light guide 200, it is formed into a side-entry type.
  • the light incident end surface 210 is not limited to being perpendicular to the second surface 120 only, and the inclination angle of the light incident end surface 210 relative to the second surface 120 is less than or equal to
  • the angle 135 is greater than or equal to 45 degrees, that is, when the angle between the light incident end surface 210 and the second surface 120 is greater than or equal to 45 degrees, the light can enter the second light guide 200 in a side-entry manner.
  • each of the second light guides 200 is formed into a hexahedral structure.
  • the first surface of the hexahedral structure is fixedly connected to the second surface 120, and the first surface is formed as a first
  • the light exit end face 220 of the two light guides 200 and the second face connected to the first face are formed as light incident end faces 210.
  • the second light guide 200 can be adhered and fixed to the second surface 120 through the optical adhesive layer 300.
  • the refractive index n of the second light guiding member 200 2 or less of the optical refractive index n 3 of the adhesive layer 300, and the refractive index of the optical adhesive layer 300 is equal to the refractive index n 3 smaller than the first light guide member 100 is n 1.
  • FIG. 3 is a schematic diagram of a first state of light transmission in a light guiding component according to some embodiments of the present disclosure.
  • the angle of refraction at the light incident end surface 210 is ⁇ 1
  • the incident light is transmitted in the second light guide 200
  • the incident angle to the third surface 230 of the second light guide 200 is ⁇ 2 . It can be understood that, in order to prevent light from being transmitted to the outside of the second light guide 200 through the third surface 230 , the incident angle ⁇ 2 should be greater than It is equal to the total reflection angle when the light is transmitted from the second light guide 200 to the outside.
  • Equation 3 n 2 sin ⁇ 2 ⁇ n 0 .
  • n 0 is the refractive index of the external transmission space of the light guiding component.
  • the external transmission space of the light guiding component is air.
  • the refractive index n 2 of the second light guiding member 200 is greater than or equal to 1.42, it can be ensured that the light transmitted to the surface in the second light guiding member 200 can generate total reflection at the surface, thereby A light guide 100 is reflected in the direction and is not transmitted to the outside of the light guide assembly.
  • the refractive index n 1 of the first light guiding member 100 is greater than or equal to 1.42, it can be ensured that the light transmitted inside the first light guiding member 100 is transmitted to one of the surfaces, and total reflection can be generated at the corresponding surface to avoid Transmission to the outside, causing light loss.
  • the refractive index n 2 of the second light guide 200 is less than or equal to that of the optical adhesive layer 300.
  • refractive index n 3 the optical adhesive layer 300 is equal to the refractive index n 3 smaller than the first light guide member 100 is n 1.
  • the light transmitted in the first light guiding member 100 when the light emitted from the light source 400 is incident on the light incident end surface 210 at an angle of ⁇ 0 to the second light guiding member 200, the light incident end surface The angle of refraction at 210 is ⁇ 4 , and then the incident light is transmitted to the first surface 110 of the first light guide 100 through the second light guide 200 , the optical adhesive layer 300 and the first light guide 100 , so as to ensure the light is Uniform transmission inside the first light guiding member 100, when the incoming light reaches the position on the first surface 110 of the first light guiding member 100 where the halftone dot 111 is not provided, total reflection should occur.
  • the refractive index n 3 of the optical adhesive layer 300 is less than equal to the first guide
  • the refractive index n 1 of the light member 100 and n 1 , n 2 and n 3 are respectively greater than or equal to 1.42, it is ensured that the light is totally reflected on the first surface 110, and the specific argument is as follows:
  • Equation 5 for calculating ⁇ 4 is obtained:
  • the second light guide 200 has a connecting surface (first surface) between the first light guiding member 100 and the second light guiding member 200, a light incident end surface 210, and a surface opposite to the first surface ( The other surfaces on the third side are attached with a light reflecting layer to further ensure that the internal light transmitted by the light guiding member is effectively reflected when incident on other surfaces of the second light guiding member 200.
  • the light emitted by the light source 400 is incident on the inside of the second light guiding member 200 through the light incident end surface 210 of the second light guiding member 200, and the light is in the second light guiding member.
  • the inside of the 200 is transmitted in a total reflection manner toward the first light guide 100. Since the refractive indices of the second light guiding member 200, the optical adhesive layer 300 and the first light guiding member 100 are sequentially increased, or are correspondingly equal, it is ensured that the light transmitted in the second light guiding member 200 can be completely reflected in a non-reflective manner. After being passed through the optical adhesive layer 300, it is transferred into the first light guiding member 100.
  • the light transmitted inside the first light guiding member 100 is totally reflected when the light is transmitted to the position where the first surface 110 is not provided with the halftone dot 111, wherein the partially reflected light passes through the first light guiding member 100 and the second guiding portion.
  • the corresponding connection position of the light member 200 is re-transmitted into the second light guide member 200, and continues to be reflected by the surface of the second light guide member 200 and then enters the first light guide member 100 again; the reflected portion of the light is transmitted to the first light guide member.
  • 100 is at other positions of the position where the second light guide 200 is connected, it will continue to be totally reflected in the first light guide 100.
  • the light transmitted inside the first light guiding member 100 when the light is transmitted to the position of the dot 111 on the first surface 110, utilizes the structural features of the dot 111 to derive the light from the first surface 110 to form a surface light source.
  • the light guiding component when the light is transmitted between the first light guiding member 100 and the second light guiding member 200, the light is transmitted in a total reflection manner, and the light source can be ensured.
  • the effective utilization of the emitted light by controlling the degree of density of the dots 111 on the first surface 110, the distribution of light in the entire light exit face can be improved.
  • the first light guide and the plurality of second light guides are disposed, and the plurality of second light guides are distributed on the second surface of the first light guide.
  • the light source incident end faces of the plurality of second light guiding members are respectively provided with light sources capable of sub-region control, thereby satisfying the requirement of the light source sub-region control of the first light guiding member; in addition, since the light incident end surface of the second light guiding member can The light entering the second light guiding member in a side-entry manner does not excessively increase the overall thickness relative to the straight-in type, and the entire light guiding component can still meet the thin and light requirements under the premise of ensuring higher coupling efficiency of the light.
  • the present disclosure provides a light guiding assembly capable of achieving local light source control and meeting slim design requirements.
  • some embodiments of the present disclosure further provide a light guiding component.
  • the light guiding component includes:
  • the first light guide 100 includes a first surface 110 and a second surface 120 disposed opposite to each other, wherein the first surface 110 is provided with a plurality of dots 111 for light exiting, and the dots 111 are on the first surface 110 Formed as a protruding structure, in some embodiments of the present disclosure, the dot 111 may also be formed as a groove structure;
  • the plurality of second light guides 200 are respectively fixedly connected to the second surface 120, wherein each of the second light guides 200 respectively includes a light incident end surface 210, wherein the plurality of second light guides 200 are at the second The surface 120 is distributed in an array.
  • the light source 400 is disposed opposite to the light incident end surface 210.
  • the first surface 110 is parallel to the second surface 120, and the light incident end surface 210 is perpendicular to the first surface 110.
  • the second surface 120 it is obvious that a portion of the second light guiding member 200 fixedly connected to the second surface 120 is formed as a light exit end surface of the second light guiding member 200 (corresponding to the connecting surface 250 in FIG. 6), wherein light is incident
  • the end surface 210 is perpendicular to the light exit end surface, and thus when the light is transmitted into the second light guide 200 through the light incident end surface 210, the side entrance type incident mode is formed.
  • the light incident end surface 210 with respect to the second surface 120 when the inclination angle of the light incident end surface 210 with respect to the second surface 120 is 135 degrees or more and 45 degrees or more, that is, the angle between the light incident end surface 210 and the second surface 120 is greater than or equal to At 45 degrees, the light can enter the second light guide 200 in a side-entry manner.
  • the second light guide 200 is provided with an arcuate curved surface 240 connected to the light incident end surface 210 .
  • the second light guide 200 is connected to the second surface 120 through the connecting surface 250, wherein the first edge 2101 of the light incident end surface 210 is connected to the first edge 2501 of the connecting surface 250.
  • each of the second light guiding members is respectively formed into a pentahedron structure, and the pentahedron structure includes a connecting surface fixedly connected to the second surface 120, a light incident end surface 210, two side surfaces and a connecting surface, and light incident.
  • the end surface 210 and the curved curved surface 240 connected to the two sides.
  • the curved curved surface 240 disposed between the light incident end surface 210 and the connecting surface 250 changes from the light incident end surface 210 to the connecting surface 250, and the curved curvature of the curved surface changes to form a smooth curved surface structure.
  • the curved curved surface 240 provided by the second light guiding member 200 is not limited to the above-described structure, and other curved structural forms may also be adopted.
  • the second light guide 200 may be adhered to the second surface 120 through the optical adhesive layer 300.
  • the surfaces of the first light guide 100 and the second light guide 200 are planar, as long as the first light guide 100 and the second light guide
  • the refractive index n 2 of 200 is greater than or equal to 1.42, that is, it can be ensured that the light transmitted inside the first light guiding member 100 and the second light guiding member 200 is totally reflected at the corresponding surface.
  • some embodiments of the present disclosure is the same as the refractive index of the second light guide member 200 is equal to the refractive index n 2 less than n 3 of the optical adhesive layer 300, the refractive index n 3 of the optical adhesive layer 300 is less than or equal the first light guide member
  • the refractive index n 1 of 100, and each of the above refractive indexes is greater than or equal to 1.42.
  • each position point of the curved curved surface 240 on the second light guiding member 200 has a bending curvature capable of causing total reflection of the internal light of the second light guiding member 200 to be totally reflected.
  • FIG. 7 is a schematic diagram showing one state of light transmission in a light guiding component according to some embodiments of the present disclosure.
  • the angle of refraction at the light incident end surface 210 is ⁇ 6
  • the incident light is transmitted to the curved curved surface 240
  • the incident angle at the curved curved surface 240 with respect to the normal direction of the tangent plane a of the incident point is ⁇ 7 .
  • the light incident on the curved curved surface 240 should be able to be fully emitted, and the light incident on the curved curved surface 240 is reflected and transmitted to the first light guiding member 100.
  • the first surface 110 and the angle of incidence at the first surface 110 is ⁇ 8 .
  • the bending curvature calculation method capable of satisfying the total reflection at the curved curved surface 240 is as follows:
  • n 0 1
  • the total reflection angle at which the total reflection occurs at the curved curved surface 240 of the second light guide 200 can be calculated.
  • ⁇ c is 41.8 degrees.
  • is the angle between the tangent plane a and the horizontal plane.
  • Equations 8 and 9 in order to satisfy the total reflection condition, there should be ⁇ 7 ⁇ ⁇ C , and ⁇ 8 ⁇ ⁇ C ;
  • ⁇ 7 48.2 ° - ⁇ ⁇ ⁇ C ;
  • ⁇ 8 48.2 ° - 2 ⁇ ⁇ ⁇ C ;
  • the angle ⁇ between the tangent plane a and the horizontal plane can define the bending curvature of the corresponding position of the curved curved surface. Therefore, according to the above theoretical derivation, when the refractive indices of the first light guiding member 100, the second light guiding member 200 and the optical adhesive layer 300 are respectively 1.5, the tangent plane and the horizontal plane of each point of the curved curved surface 240 When the angle between the two is less than or equal to 3.2 degrees, the incident light rays incident on the inside of the second light guide 200 to each position can be totally reflected.
  • the refractive indices of the first light guide 100, the second light guide 200, and the optical adhesive layer 300 are not limited to 1.5, respectively, as long as the refractive index n 2 of the second light guide 200 is less than or equal to the optical adhesive layer 300.
  • refractive index n 3 the optical adhesive layer 300 is equal to the refractive index n 3 smaller than the first light guide member 100 is n 1, a refractive index and are each greater than or equal to 1.42.
  • the light emitted by the light source 400 is incident at the light incident end surface 210
  • one of the incident light passes through the second light guide 200, the optical adhesive layer 300, and the first guide.
  • the light member 100 is directly transmitted to the first surface 110 of the first light guiding member 100.
  • the incident light is transmitted in the same manner as in FIG. 4, and the incident light reaches the first surface 110 of the first light guiding member 100 and can be totally reflected.
  • the manner of transmission the specific principle can be combined with FIG. 4 and refer to the description in some embodiments of the present disclosure, and details are not described herein again.
  • the arcuate curved surface 240 on the second light guiding member 200 except the portion connecting the first light guiding member 100 and the second light guiding member 200, the curved curved surface 240 and the light incident end surface
  • the other surfaces outside the 210 are attached with a reflective layer to further ensure that the internal transmitted light of the second light guide 200 can be effectively reflected when transmitted to other surfaces.
  • the light emitted by the light source 400 is incident on the inside of the second light guiding member 200 through the light incident end surface 210 of the second light guiding member 200, and the light is in the second light guiding member.
  • the 200 internal transmission can be divided into two types, one of which can be directly transmitted to the curved curved surface 240 of the second light guiding member 200.
  • the light is in the curved curved surface 240. Total reflection occurs at a position to transmit light in the direction of the first light guide 100.
  • Another incident light incident on the inside of the second light guide 200 through the light incident end surface 210 of the second light guide 200 is directly transmitted toward the first light guide 100. Since the refractive indices of the second light guiding member 200, the optical adhesive layer 300 and the first light guiding member 100 are sequentially increased, or are correspondingly equal, the light transmitted in the second light guiding member 200 can be ensured to have no reflection and no loss. The ground is completely transmitted through the optical adhesive layer 300 and then transferred into the first light guiding member 100.
  • the incident light When the incident light enters the first light guide 100 and is transmitted to the first surface 110, the incident angle satisfies the total reflection angle, and thus is transmitted forward in a total reflection manner; when the light is transmitted again to the first light guide 100 At the time of the two surfaces, part of the light is re-transmitted into the second light guide 200 through the corresponding connection position of the first light guide 100 and the second light guide 200, and when transmitted to the curved surface 240, passes through the curved curved surface 240 Appropriate bending curvature, such that the light is totally reflected at the curved curved surface, continues to be reflected by the curved curved surface of the second light guiding member 200 and then enters the first light guiding member 100 again; another part of the light is transmitted to the first light guiding member 100 and When the second light guide 200 is at other positions of the connected position, it will continue to be totally reflected in the first light guide 100.
  • the light transmitted inside the first light guide 100 when the light is transmitted to the position of the dot 111 on the first surface 110, utilizes the structural features of the dot 111 to derive the light from the first surface 110 to form a surface light source.
  • the light when the light is transmitted between the first light guide 100 and the second light guide 200, the light is transmitted in a total reflection manner, and the light source can be ensured.
  • the effective utilization of the emitted light by controlling the degree of density of the dots 111 on the first surface 110, the distribution of light in the entire light exit face can be improved.
  • the first light guide and the plurality of second light guides are disposed, and each of the second light guides includes a curved curved surface, which can be used to adjust the second light guide. Reflects the direction of the light for better light uniformity.
  • Some embodiments of the present disclosure further provide a backlight module, including a plurality of light sources, wherein the backlight module further includes the light guide assembly according to any one of the preceding claims, wherein each of the light sources respectively corresponds to one of the first The two light guiding members are disposed, and the emitted light is transmitted into the light guiding component through the light incident end surface of the second light guiding member.
  • Some embodiments of the present disclosure also provide a display device including the backlight module of the above structure.
  • the light guiding component in some embodiments of the present disclosure, those skilled in the art should be able to understand the specific structure of the backlight module and the display device using the light guiding module, and details are not described herein.
  • the backlight module and the display device of the light guiding component can simultaneously realize sub-regional control of the light source and lightness and thinness of the structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种导光组件、背光模组及显示装置。导光组件包括:第一导光件(100),包括相对设置的第一表面(110)和第二表面(120);其中第一表面(110)上设置多个用于光出射的网点(111);多个第二导光件(200),分别与第二表面(120)通过光学胶层(300)固定连接,每一第二导光件(200)分别包括用于光线以侧入式进入第二导光件(200)的光入射端面(210)。

Description

导光组件、背光模组及显示装置
相关申请的交叉引用
本申请主张在2017年7月3日在中国提交的中国专利申请号No.201710532989.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示器技术领域,尤其是指一种导光组件、背光模组及显示装置。
背景技术
目前,液晶显示器的背光模组中用于形成面光源的结构包括直下式和侧入式,其中采用直下式背光模组的显示器具有光源能够分区域控制、出光均匀、可以应用于大面积显示面板的优点,然而由于光源需要足够空间进行混光,使得背光模组的厚度无法减小,不能适应于显示器的轻薄化需求。
发明内容
本公开技术方案的目的是提供一种导光组件、背光模组及显示装置,用于解决采用相关技术导光板的背光模组,无法同时满足轻薄化要求和光源分区域控制的问题。
本公开实施例提供一种导光组件,其中,包括:
第一导光件,包括相对的第一表面和第二表面,
至少一个第二导光件,所述第二导光件设置在所述第二表面远离所述第一表面的一侧,
其中,所述第二导光件包括不相平行的光入射端面和光出射端面,所述第二导光件被配置为使射入所述光入射端面的光线在所述第二导光件内部传播并由所述光出射端面射出,从所述光出射端面射出的光经由所述第二表面射入至所述第一导光件内。
可选的,所述光入射端面与所述第二表面之间的夹角大于等于45度。
可选的,每一所述光入射端面垂直于所述第二表面。
可选的,所述第二导光件通过光学胶层粘贴固定于所述第二表面上,从所述光出射端面射出的光经由所述光学胶层入射至所述第一导光件内。
可选的,所述第一导光件的折射率大于等于所述光学胶层的折射率,且所述光学胶层的折射率大于等于所述第二导光件的折射率。
可选的,所述第一导光件的折射率和所述第二导光件的折射率均大于等于1.42。
可选的,每一所述第二导光件分别形成为六面体结构,其中所述六面体结构的第一面与所述第二表面固定连接,与所述第一面相连接的第二面形成为所述光入射端面。
可选的,所述六面体结构上,除所述第一面、所述第二面和所述第一面相对的第三面外的其他面上贴附有反光层。
可选的,所述第二导光件包括与所述光入射端面相连接的弧形曲面。
可选的,所述第二导光件还包括与所述第二表面固定连接的连接面,所述光入射端面的第一边缘与所述连接面的第一边缘连接,其中所述弧形曲面的相对两个边缘分别连接所述光入射端面的第二边缘和所述连接面的第二边缘;
所述光入射端面的第二边缘为所述光入射端面的第一边缘的相对边缘,所述连接面的第二边缘为所述连接面的第一边缘的相对边缘。
可选的,所述第二导光件上,除所述弧形曲面、所述连接面和所述光入射端面外的其他面上贴附有反光层。
可选的,所述弧形曲面的每一位置点具有能够使所述第二导光件的内部光线传输达到后发生全反射的弯曲曲率。
可选的,所述第一导光件和所述第二导光件的折射率分别为1.5时,所述弧形曲面的每一位置点的切平面与水平面之间的夹角小于等于3.2度。
可选的,多个所述第二导光件在所述第二表面上呈阵列分布。
可选的,在所述第一表面上有多个网点,入射至所述第一导光件内的光经由所述网点射出。
可选的,每一所述第二导光件分别形成为六面体结构,其中,所述六面体结构包括顶面、底面和四个侧面,所述六面体结构的顶面与所述第二表面固定连接,与所述顶面连接的所述四个侧面之一为所述光入射端面,其中,所述六面体结构上,除所述顶面、底面和所述光入射端面外的其他面上贴附有反光层。
可选的,每一所述第二导光件分别形成为五面体结构,所述五面体结构包括与所述第二表面固定连接的连接面、所述光入射端面、两个侧面和与所述连接面、所述光入射端面和所述两个侧面连接的弧形曲面。
本公开实施例还提供一种背光模组,包括至少一个光源和如上所述的导光组件,其中,所述光源与所述第二导光件一一对应设置,所述光源所发出的光通过所述第二导光件的光入射端面传输进入所述导光组件内。
可选的,所述导光组件包括多个第二导光件,所述背光模组包括多个光源,每个光源分别对应于一个第二导光件设置。
本公开实施例还提供一种显示装置,其中,包括如上所述的背光模组。
附图说明
图1为本公开的一些实施例所述导光组件的立体结构示意图;
图2为本公开的一些实施例所述导光组件的剖面结构示意图;
图3为本公开的一些实施例所述导光组件内光线传输的第一种状态示意图;
图4为本公开的一些实施例所述导光组件内光线传输的第二种状态示意图;
图5a为本公开的一些实施例所述导光组件的立体结构示意图;
图5b为本公开的一些实施例所述导光组件的第二导光件的立体结构示意图;
图6为本公开的一些实施例所述导光组件的剖面结构示意图;
图7为本公开的一些实施例所述导光组件内光线传输的一种状态示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
相关技术中,采用侧入式背光模组的显示器具有能够适应于轻薄化要求的优点,但缺点是光源只能够进行一维方向上的分区域控制,无法实现二维方向上的分区域控制,而且设置于导光板的侧面的光源所发出光能够耦合进入导光板的耦合效率与光源、导光板之间的厚度尺寸有关,只有当光源的厚度小于导光板的厚度时,才能够达到导光板上入射光的充分耦合。
根据以上,相关技术对于平板型的导光板,无论是光源的直下式入射还是侧入式入射,均存在其应用的缺点,相关技术不存在即能够具备侧入式背光模组的轻薄化特点,又能够实现分区域控制,以及能够应用于大面积显示面板的背光模组。
本公开的一些实施例提供一种导光组件,其中,该导光组件包括:
第一导光件,包括相对设置的第一表面和第二表面;其中所述第一表面上设置有多个用于光出射的网点;
多个第二导光件,分别与所述第二表面固定连接,其中每一所述第二导光件分别包括用于光线以侧入式进入所述第二导光件的光入射端面。
本公开的一些实施例所述导光组件,多个第二导光件分布于第一导光件的第二表面上,由于第二表面为第一导光件的第一表面(形成为光出射面)的相对表面,因此当多个第二导光件的光入射端面处分别设置能够分区域控制的光源时,多个第二导光件形成为分布于第一导光件的第二表面(形成为光入射面)上的多个入射光源,该多个入射光源能够满足第一导光件的光源分区域控制的需求。
另外,由于第二导光件上的光入射端面能够使光线以侧入式进入第二导光件,相对于直入式,第二导光件的厚度能够足够小;进一步地,由于光源所发出光经过第二导光件入射,即使第一导光件的厚度较小,也能够保证光源所发出光传输进入导光组件的耦合效率,因此第一导光元件上设置多个第二导光元件的方式,相较于相关技术中的侧入式的导光板,不会过多增大厚 度,在保证光具有更高耦合效率的前提下,整个导光组件仍能够满足轻薄要求。
具体地,本公开的一些实施例中,每一所述第二导光件上的光入射端面相对于第一表面的倾斜角度小于等于135度大于等于45度,即,每一所述第二导光件上的光入射端面与第一表面之间的夹角大于等于45度。可选的,为90度,以使得当光入射端面处对应设置光源时,光源所发出光线能够以侧入式传输进入第二导光件。
图1为本公开的一些实施例所述导光组件的立体结构示意图;图2为本公开的一些实施例所述导光组件的剖面结构示意图。参阅图1和图2所示,本公开的一些实施例中,所述导光组件包括:
第一导光件100,包括相对设置的第一表面110和第二表面120;其中,第一表面110上设置有多个用于光出射的网点111,所述网点111在第一表面110上形成为突出结构,本公开的一些实施例中,网点111也可以形成为凹槽结构;
多个第二导光件200,分别与第二表面120固定连接,其中,每一第二导光件200分别包括光入射端面210,且多个第二导光件200在第二表面120上呈阵列分布。
结合图2,光源400与光入射端面210相对设置,本公开的一些实施例中,第一表面110平行于第二表面120,而光入射端面210垂直于第一表面110和第二表面120,显而易见地,第二导光件200与第二表面120固定连接的部分形成为第二导光件200的光出射端面220,其中光入射端面210垂直于光出射端面220,因此当光线通过光入射端面210传输进入第二导光件200时,形成为侧入式入射方式。
另外,为了满足光线以侧入式进入第二导光件200的要求,光入射端面210不限于仅能够垂直于第二表面120,当光入射端面210相对于第二表面120的倾斜角度小于等于135度大于等于45度时,即,光入射端面210与第二表面120之间的夹角大于等于45度时,均能够使光线以侧入式进入第二导光件200。
本公开的一些实施例中,每一第二导光件200分别形成为六面体结构, 根据图1和图2,六面体结构的第一面与第二表面120固定连接,该第一面形成为第二导光件200的光出射端面220,与第一面相连接的第二面形成为光入射端面210。
另外,具体地,第二导光件200可以通过光学胶层300粘贴固定于第二表面120上。为保证光源400所发出光的利用率,避免在导光组件内传输的光线由第一表面110外的其他表面射出,从而造成光线损失,可选的,第二导光件200的折射率n 2小于等于光学胶层300的折射率n 3,且光学胶层300的折射率n 3小于等于第一导光件100的折射率n 1
如图3为本公开的一些实施例的导光组件内光线传输的第一种状态示意图。当光源400所发出光线在光入射端面210以θ 0角度入射至第二导光件200时,在光入射端面210处的折射角度为θ 1,之后入射光线在第二导光件200内传输,到达第二导光件200的第三面230的入射角度为θ 2,可以理解的是,为了避免光线通过第三面230传输至第二导光件200的外部,入射角度θ 2应该大于等于光线由第二导光件200传输至外部时的全反射角。根据以下的折射定率(公式一)和θ 0、θ 1和θ 2之间的关系式(公式二),以及根据全反射原理,为了保证第二导光件200内部所传输的光线在第二导光件200的表面处能够发生全发射,入射角度θ 2应该满足以下的公式三:
公式一:n 2sin θ 1=n 0sin θ 0
公式二:θ 2=90°-θ 1
公式三:n 2sin θ 2≥n 0
其中,n 0为导光组件的外部传输空间的折射率。
通常,以导光组件的外部传输空间为空气,当θ 0以最大角度(90度)入射的条件下:n 0=1,θ 0=90°,可以计算获得结果:
Figure PCTCN2018076515-appb-000001
也就是说,根据以上描述,只要第二导光件200的折射率n 2大于等于1.42,可以保证第二导光件200内传输至表面的光线均可以在表面处产生全反射,从而朝第一导光件100的方向反射,而不会传输至导光组件的外部。
同理,当第一导光件100的折射率n 1大于等于1.42时,可以保证第一导光件100内部传输的光线传输至其中一表面时,能够在对应表面处发生全反 射,以避免传输至外部,造成光损失。
可选的,为避免光线经过第二导光件200、光学胶层300传输至第一导光件100时发生全发射,第二导光件200的折射率n 2小于等于光学胶层300的折射率n 3,光学胶层300的折射率n 3小于等于第一导光件100的折射率n 1
进一步地,对于第一导光件100内传输的光线,根据图4所示,当光源400所发出光线在光入射端面210以θ 0角度入射至第二导光件200时,在光入射端面210处的折射角度为θ 4,之后入射光线经第二导光件200、光学胶层300和第一导光件100后传输至第一导光件100的第一表面110,为保证光线在第一导光件100内部的均匀传输,入线光线到达第一导光件100的第一表面110上没有设置网点111的位置时,应该发生全反射。本公开的一些实施例所述导光组件,当第二导光件200的折射率n 2小于等于光学胶层300的折射率n 3,光学胶层300的折射率n 3小于等于第一导光件100的折射率n 1,且n 1、n 2和n 3分别大于等于1.42时,可以保证光线在该第一表面110发生全反射,具体论证如下:
设定n 1=n 2=n 3=1.5,外部环境折射率n 0=1,根据全反射计算公式,可以计算第一表面110发生全反射的全反射角为41.8度。另外,根据折射定律,具有公式四:n 2sin θ 4=n 0sin θ 0
根据公式四,获得计算θ 4的公式五:
Figure PCTCN2018076515-appb-000002
在θ 0以最大角度(90度)的条件下,获得θ 4的最大角度值为θ 4=41.8度。
对应地,根据图4,各入射角之间的对应关系,光线在第一表面110的入射角度为θ 5时,θ 5与θ 4之间的关系满足以下公式六:
θ 5=90°-θ 4
具体地,根据以上公式六,当θ 4具有最大角度41.8°时,θ 5具有最小角度48.2°,因此显而易见地,θ 5的最小角度大于第一表面110发生全反射的全反射角(41.8度),这样当入射光经第二导光件200的光入射端面210传输至第一导光件100的表面时,能够保证光线在对应表面处产生全反射,以保证第一导光件100内光线的均匀传输。
可选的,第二导光件200上,除第一导光件100与第二导光件200之间 相连接表面(第一面)、光入射端面210和与第一面相对的表面(第三面)外的其他表面均贴附有反光层,以进一步保证导光组件的内部传输光线在第二导光件200的其他表面入射时被有效反射。
本公开的至少一个实施例所述的导光组件,光源400所发出光线,经过第二导光件200的光入射端面210入射至第二导光件200内部时,光线在第二导光件200的内部以全反射方式朝第一导光件100的方向传输。由于第二导光件200、光学胶层300和第一导光件100的折射率依次增加,或者对应相等,这样能够保证在第二导光件200内传输的光线能够以无反射的方式全被经过光学胶层300后传输进入第一导光件100。
另外,在第一导光件100内部传输的光线,当光线传输至第一表面110未设置网点111的位置时发生全反射,其中被反射的部分光线经过第一导光件100与第二导光件200的对应连接位置重新传输进入第二导光件200,继续经第二导光件200的表面反射后再次进入第一导光件100;被反射的部分光线传输至第一导光件100与第二导光件200的相连接位置的其他位置时,将在第一导光件100内继续被全反射。
在第一导光件100内部传输的光线,当光线传输至第一表面110上的网点111位置时,利用网点111的结构特征,将光线从第一表面110上导出,形成面光源。
因此,根据本公开至少一个实施例所述导光组件内光线的传输过程,光线在第一导光件100和第二导光件200之间传输时,均以全反射方式传输,能够保证光源所发出光的有效利用率。另外,通过控制网点111在第一表面110上设置的疏密程度,可以改进整个光出射面内光线的分布。
本公开的一些实施例所述导光组件,通过设置第一导光件和多个第二导光件,并使多个第二导光件分布于第一导光件的第二表面上,使得多个第二导光件的光入射端面处分别设置能够分区域控制的光源,从而满足第一导光件的光源分区域控制的需求;另外,由于第二导光件的光入射端面能够使光线以侧入式进入第二导光件,相对于直入式,不会过多增大整体厚度,在保证光具有更高耦合效率的前提下,整个导光组件仍能够满足轻薄要求。
因此,根据以上,本公开提供一种能够实现局部光源控制且满足轻薄设 计要求的导光组件。
此外,本公开的一些实施例还提供一种导光组件,参阅图5a、图5b和图6所示,所述导光组件包括:
第一导光件100,包括相对设置的第一表面110和第二表面120,其中,第一表面110上设置有多个用于光出射的网点111,所述网点111在第一表面110上形成为突出结构,本公开的一些实施例中网点111也可以形成为凹槽结构;
多个第二导光件200,分别与第二表面120固定连接,其中,每一第二导光件200分别包括光入射端面210,其中,所述多个第二导光件200在第二表面120上呈阵列分布。
结合图5a、图5b和图6,光源400与光入射端面210相对设置,本公开的一些实施例中,第一表面110平行于第二表面120,而光入射端面210垂直于第一表面110和第二表面120,显而易见地,第二导光件200与第二表面120固定连接的部分形成为第二导光件200的光出射端面(对应图6中的连接面250),其中光入射端面210垂直于光出射端面,因此当光线通过光入射端面210传输进入第二导光件200时,形成为侧入式入射方式。
本公开的一些实施例中,当光入射端面210相对于第二表面120的倾斜角度小于等于135度大于等于45度时,即,光入射端面210与第二表面120之间的夹角大于等于45度时,均能够使光线以侧入式进入第二导光件200。
如图5b和图6所示,本公开的一些实施例中,第二导光件200上设置有与光入射端面210相连接的弧形曲面240。具体地,如图5b和图6所示,第二导光件200通过连接面250与第二表面120相连接,其中光入射端面210的第一边缘2101与连接面250的第一边缘2501连接时,弧形曲面240的相对两个边缘分别连接光入射端面210的第二边缘2102和连接面250的第二边缘2502;其中,光入射端面210的第二边缘2102为光入射端面210的第一边缘2101的相对边缘,连接面250的第二边缘2502为连接面250的第一边缘2501的相对边缘。如图5b所示,每一第二导光件分别形成为五面体结构,五面体结构包括与第二表面120固定连接的连接面、光入射端面210、两个侧面和与连接面、光入射端面210和两个侧面连接的弧形曲面240。
可选的,上述光入射端面210和连接面250之间所设置的弧形曲面240,从光入射端面210至连接面250,曲面的弯曲曲率变化,形成平滑的曲面结构。
当然,以上第二导光件200所设置的弧形曲面240并不限于仅为上述的结构,也可以采用其他的弯曲结构形式。
在本公开的一些实施例中,第二导光件200可以通过光学胶层300粘贴固定于第二表面120上。
另外,根据本公开的一些实施例并结合对图3的描述,当第一导光件100和第二导光件200的表面为平面时,只要第一导光件100和第二导光件200的折射率n 2大于等于1.42,即能够保证第一导光件100和第二导光件200内部传输的光线在对应表面处发生全反射。因此,与本公开的一些实施例相同,第二导光件200的折射率n 2小于等于光学胶层300的折射率n 3,光学胶层300的折射率n 3小于等于第一导光件100的折射率n 1,而且上述各折射率均大于等于1.42。
另外,本公开的一些实施例中,第二导光件200上弧形曲面240的每一位置点具有能够使第二导光件200的内部光线传输达到后发生全反射的弯曲曲率。
图7所示为本公开的一些实施例所述导光组件内光线传输的其中一种状态示意图。当光源400所发出光线在光入射端面210以θ 0角度入射至第二导光件200时,在光入射端面210处的折射角度为θ 6,之后入射光线传输至弧形曲面240处,且在弧形曲面240处相对于入射点切平面a法线方向的入射角度为θ 7。其中为避免光线在弧形曲面240处传输至外部,在该弧形曲面240上所入射的光线应该能够发生全发射,入射在弧形曲面240的光线经反射后传输至第一导光件100的第一表面110,且在第一表面110的入射角为θ 8
根据图7所示,第二导光件200的内部所传输光线入射至弧形曲面240时,能够满足在弧形曲面240处发生全反射的弯曲曲率计算方式为如下:
设定n 1=n 2=n 3=1.5,外部环境折射率n 0=1,根据全反射计算公式,可以计算在第二导光件200的弧形曲面240处发生全反射的全反射角θ c为41.8 度。
根据折射定律和各角度之间的关系,可以组构如下的关系式:
公式七:n 2sin θ 6=n 0sin θ 0
公式八:θ 7=90°-θ 6-β;
公式九:θ 8=θ 7-β。
其中β为切平面a与水平面之间的夹角。
根据公式七,可以计算获得公式十:
Figure PCTCN2018076515-appb-000003
根据公式八和九,为满足全反射条件应该有,θ 7≥θ C,以及θ 8≥θ C
利用上述的计算条件和公式八至十,可以计算推导获得如下关系式:
θ 7=48.2°-β≥θ C
θ 8=48.2°-2β≥θ C
根据θ c=41.8,可以计算获得:β≤3.2°。
可以理解的是,切平面a与水平面之间的夹角β即能够限定弧形曲面对应位置的弯曲曲率。因此,根据以上的理论推导,当第一导光件100、第二导光件200和光学胶层300的折射率分别为1.5时,弧形曲面240的每一位置点的切平面与水平面之间的夹角小于等于3.2度时,即能够使第二导光件200内部入射至每一位置点的入射光线发生全反射。
当然,第一导光件100、第二导光件200和光学胶层300的折射率并不限定分别为1.5,只要满足第二导光件200的折射率n 2小于等于光学胶层300的折射率n 3,光学胶层300的折射率n 3小于等于第一导光件100的折射率n 1,而且上述各折射率均大于等于1.42即可。可以理解的是,根据上述推导方式,可以获得第一导光件100、第二导光件200和光学胶层300的折射率为上述折射率限定条件时,能够使弧形曲面240的每一位置点发生全反射的β值。
此外,本公开的一些实施例所述导光组件,当光源400所发出光线在光入射端面210处入射之后,其中一种入射光线经过第二导光件200、光学胶层300和第一导光件100后直接传输至第一导光件100的第一表面110,该路入射光线的传输方式与图4相同,入射光线到达第一导光件100的第一表面110时能够以全反射的方式传输,具体原理可以结合图4并参阅本公开的一些实施例中的描述,在此不再赘述。
另外,本公开的一些实施例中,弧形曲面240第二导光件200上,除第一导光件100与第二导光件200之间相连接的部分、弧形曲面240和光入射端面210外的其他表面均贴附有反光层,以进一步保证第二导光件200的内部传输光线在传输至其他表面时能够被有效反射。
采用本公开的一些实施例所述的导光组件,光源400所发出光线,经过第二导光件200的光入射端面210入射至第二导光件200内部时,光线在第二导光件200内部传输时可以分为两种,其中一种入射光线可以直接传输至第二导光件200的弧形曲面240上,通过设置弧形曲面240的合适弯曲曲率,使得光线在弧形曲面240处发生全反射,使光线向第一导光件100的方向传输。
通过第二导光件200的光入射端面210入射至第二导光件200内部的另一种入射光线,直接朝第一导光件100的方向传输。由于第二导光件200、光学胶层300和第一导光件100的折射率依次增加,或者对应相等,这样能够保证在第二导光件200内传输的光线能够以无反射、无损失地全被经过光学胶层300后传输进入第一导光件100。当入射光线进入第一导光件100后,并传输至第一表面110时,入射角满足全反射角,因此以全反射方式向前传输;当光线再次传输到第一导光件100的第二表面时,部分光线经过第一导光件100与第二导光件200的对应连接位置重新传输进入第二导光件200,当传输至弧形曲面240处时,通过弧形曲面240的合适弯曲曲率,使得光线在弧形曲面处发生全反射,继续经第二导光件200的弧形曲面反射后再次进入第一导光件100;另外部分光线传输至第一导光件100与第二导光件200的相连接位置的其他位置时,将在第一导光件100内继续被全反射。
另外,在第一导光件100内部传输的光线,当光线传输至第一表面110上的网点111位置时,利用网点111的结构特征,将光线从第一表面110上导出,形成面光源。
因此,根据本公开的一些实施例所述导光组件内光线的传输过程,光线在第一导光件100和第二导光件200之间传输时,均以全反射方式传输,能够保证光源所发出光的有效利用率。另外,通过控制网点111在第一表面110上设置的疏密程度,可以改进整个光出射面内光线的分布。
本公开的一些实施例所述导光组件,通过设置第一导光件和多个第二导光件,且每一第二导光件包括弧形曲面,能够用于调节第二导光件反射光的方向,达到更佳的光线均匀效果。
本公开的一些实施例还提供一种背光模组,包括多个光源,其中,该背光模组还包括如上任一项所述的导光组件,其中每一所述光源分别对应一个所述第二导光件设置,所发出光通过所述第二导光件的光入射端面传输进入所述导光组件。
本公开的一些实施例还提供一种显示装置,包括如上结构的背光模组。
根据以上本公开的一些实施例中所述导光组件的具体结构描述,本领域技术人员应该能够了解采用该导光模组的背光模组和显示装置的具体结构,在此不再赘述。
采用本公开的至少一个实施例所述导光组件的背光模组和显示装置,能够同时实现光源的分区域控制和结构轻薄化。
以上所述的是本公开的一些实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (20)

  1. 一种导光组件,包括:
    第一导光件,包括相对的第一表面和第二表面,
    至少一个第二导光件,所述第二导光件设置在所述第二表面远离所述第一表面的一侧,
    其中,所述第二导光件包括不相平行的光入射端面和光出射端面,所述第二导光件被配置为使射入所述光入射端面的光线在所述第二导光件内部传播并由所述光出射端面射出,从所述光出射端面射出的光经由所述第二表面射入至所述第一导光件内。
  2. 根据权利要求1所述的导光组件,其中,所述光入射端面与所述第二表面之间的夹角大于等于45度。
  3. 根据权利要求2所述的导光组件,其中,每一所述光入射端面垂直于所述第二表面。
  4. 根据权利要求1所述的导光组件,其中,所述第二导光件通过光学胶层粘贴固定于所述第二表面上,从所述光出射端面射出的光经由所述光学胶层入射至所述第一导光件内。
  5. 根据权利要求4所述的导光组件,其中,所述第一导光件的折射率大于等于所述光学胶层的折射率,且所述光学胶层的折射率大于等于所述第二导光件的折射率。
  6. 根据权利要求1所述的导光组件,其中,所述第一导光件的折射率和所述第二导光件的折射率均大于等于1.42。
  7. 根据权利要求1所述的导光组件,其特征在于,每一所述第二导光件分别形成为六面体结构,其中,所述六面体结构的第一面与所述第二表面固定连接,与所述第一面相连接的第二面形成为所述光入射端面。
  8. 根据权利要求7所述的导光组件,其特征在于,所述六面体结构上,除所述第一面、所述第二面和所述第一面相对的第三面外的其他面上贴附有反光层。
  9. 根据权利要求1所述的导光组件,其中,所述第二导光件包括与所述 光入射端面相连接的弧形曲面。
  10. 根据权利要求9所述的导光组件,其中,所述第二导光件还包括与所述第二表面固定连接的连接面,所述光入射端面的第一边缘与所述连接面的第一边缘连接,其中,所述弧形曲面的相对两个边缘分别连接所述光入射端面的第二边缘和所述连接面的第二边缘;
    所述光入射端面的第二边缘为所述光入射端面的第一边缘的相对边缘,所述连接面的第二边缘为所述连接面的第一边缘的相对边缘。
  11. 根据权利要求9所述的导光组件,其中,所述第二导光件上,除所述弧形曲面、所述连接面和所述光入射端面外的其他面上贴附有反光层。
  12. 根据权利要求9所述的导光组件,其中,所述弧形曲面的每一位置点具有能够使所述第二导光件的内部光线传输达到后发生全反射的弯曲曲率。
  13. 根据权利要求12所述的导光组件,其中,所述第一导光件和所述第二导光件的折射率分别为1.5时,所述弧形曲面的每一位置点的切平面与水平面之间的夹角小于等于3.2度。
  14. 根据权利要求1所述的导光组件,其中,多个所述第二导光件在所述第二表面上呈阵列分布。
  15. 根据权利要求1所述的导光组件,其中,在所述第一表面上有多个网点,入射至所述第一导光件内的光经由所述网点射出。
  16. 根据权利要求1所述的导光组件,其中,每一所述第二导光件分别形成为六面体结构,其中,所述六面体结构包括顶面、底面和四个侧面,所述六面体结构的顶面与所述第二表面连接,与所述顶面连接的所述四个侧面之一为所述光入射端面;
    其中,所述六面体结构上,除所述顶面、底面和所述光入射端面外的其他面上贴附有反光层。
  17. 根据权利要求1所述的导光组件,其中,每一所述第二导光件分别形成为五面体结构,所述五面体结构包括与所述第二表面连接的连接面、所述光入射端面、两个侧面和与所述连接面、所述光入射端面和所述两个侧面连接的弧形曲面。
  18. 一种背光模组,包括至少一个光源和如权利要求1至17任一项所述 的导光组件,其中,所述光源与所述第二导光件一一对应设置,所述光源所发出的光通过所述第二导光件的光入射端面传输进入所述导光组件内。
  19. 根据权18所述的背光模组,其中,所述导光组件包括多个第二导光件,所述背光模组包括多个光源,每个光源分别对应于一个第二导光件设置。
  20. 一种显示装置,包括权利要求18所述的背光模组。
PCT/CN2018/076515 2017-07-03 2018-02-12 导光组件、背光模组及显示装置 WO2019007079A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/300,094 US11280952B2 (en) 2017-07-03 2018-02-12 Light guide component, backlight module and display device
EP18793349.4A EP3454115A4 (en) 2017-07-03 2018-02-12 LIGHT GUIDE ASSEMBLY, BACKLIGHT MODULE, AND DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710532989.4 2017-07-03
CN201710532989.4A CN109212656B (zh) 2017-07-03 2017-07-03 导光组件、背光模组及显示装置

Publications (1)

Publication Number Publication Date
WO2019007079A1 true WO2019007079A1 (zh) 2019-01-10

Family

ID=64950583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076515 WO2019007079A1 (zh) 2017-07-03 2018-02-12 导光组件、背光模组及显示装置

Country Status (4)

Country Link
US (1) US11280952B2 (zh)
EP (1) EP3454115A4 (zh)
CN (1) CN109212656B (zh)
WO (1) WO2019007079A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111273390A (zh) * 2020-03-24 2020-06-12 杭州矽能新材料有限公司 一种引光条及带有引光条的导光装置
CN113589421A (zh) * 2021-09-16 2021-11-02 维沃移动通信有限公司 导光件和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152720A (ja) * 2002-11-01 2004-05-27 Optoquest Co Ltd 面状光源
CN1928667A (zh) * 2005-09-09 2007-03-14 三星电子株式会社 背光单元和具有该背光单元的显示设备
CN101158773A (zh) * 2006-10-08 2008-04-09 财团法人工业技术研究院 背光结构
CN101652606A (zh) * 2007-08-29 2010-02-17 夏普株式会社 发光元件和具备它的显示装置
CN102109130A (zh) * 2010-11-01 2011-06-29 友达光电股份有限公司 背光模块

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616625B1 (ko) 2004-10-20 2006-08-28 삼성전기주식회사 두께가 감소된 대화면 백라이트 장치
TWM273739U (en) * 2004-11-26 2005-08-21 Taiwan Green Point Entpr Co Lt Light-emitting structure of direct and side-light type
US20080260328A1 (en) * 2007-04-20 2008-10-23 3M Innovative Properties Company Led light extraction bar and injection optic for thin lightguide
US7872705B2 (en) * 2007-07-29 2011-01-18 Cree, Inc. LED backlight system for LCD displays
JP4513918B2 (ja) * 2008-06-03 2010-07-28 エプソンイメージングデバイス株式会社 照明装置及び電気光学装置
TWI379124B (en) * 2009-07-15 2012-12-11 Au Optronics Corp Backlight module
US20120113619A1 (en) * 2010-11-04 2012-05-10 Au Optronics Corporation Light source and backlight module having the same
KR101793275B1 (ko) * 2011-03-24 2017-11-03 삼성디스플레이 주식회사 백라이트 유닛 및 백라이트 유닛을 포함하는 표시장치
US10030846B2 (en) * 2012-02-14 2018-07-24 Svv Technology Innovations, Inc. Face-lit waveguide illumination systems
TW201337870A (zh) * 2012-03-02 2013-09-16 Primax Electronics Ltd 應用於電子設備之顯示裝置
KR101731141B1 (ko) * 2013-12-31 2017-04-28 엘지디스플레이 주식회사 평판 표시장치용 박막형 백 라이트 유닛
TW201533378A (zh) * 2014-02-20 2015-09-01 Lextar Electronics Corp 燈管裝置
TWI502564B (zh) * 2014-05-23 2015-10-01 Au Optronics Corp 透明顯示器及其操作方法
CN205331987U (zh) * 2016-01-14 2016-06-22 合肥京东方显示光源有限公司 一种背光模组、背光源及显示装置
CN105650490A (zh) * 2016-03-09 2016-06-08 苏州向隆塑胶有限公司 照明灯具及其导光板的设计方法
EP3334130B1 (en) * 2016-12-08 2021-06-09 LG Display Co., Ltd. Flat panel display embedding optical imaging sensor
US10605980B2 (en) * 2017-06-04 2020-03-31 Svv Technology Innovations, Inc. Stepped light guide illumination systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152720A (ja) * 2002-11-01 2004-05-27 Optoquest Co Ltd 面状光源
CN1928667A (zh) * 2005-09-09 2007-03-14 三星电子株式会社 背光单元和具有该背光单元的显示设备
CN101158773A (zh) * 2006-10-08 2008-04-09 财团法人工业技术研究院 背光结构
CN101652606A (zh) * 2007-08-29 2010-02-17 夏普株式会社 发光元件和具备它的显示装置
CN102109130A (zh) * 2010-11-01 2011-06-29 友达光电股份有限公司 背光模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3454115A4 *

Also Published As

Publication number Publication date
US20210223459A1 (en) 2021-07-22
CN109212656A (zh) 2019-01-15
CN109212656B (zh) 2020-03-27
EP3454115A1 (en) 2019-03-13
EP3454115A4 (en) 2019-11-06
US11280952B2 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
US20210286118A1 (en) Slim waveguide coupling apparatus and method
US10437099B2 (en) Backlight module, display panel and display device
US8301002B2 (en) Slim waveguide coupling apparatus and method
CN106094097B (zh) 导光板及应用其的背光模组、显示装置
US8388207B2 (en) Illuminating device and display device having the same
EP1808716B1 (en) Light guide panel and display device employing the same
US8192067B2 (en) Backlight unit and liquid crystal display apparatus having light guiding member, prism sheet and reflection section
JP4426551B2 (ja) バックライトモジュール
KR19990029518A (ko) 면광원 소자 및 그것을 이용한 표시 장치
KR20110083493A (ko) 면광원 장치 및 액정 표시 장치
CN110161758B (zh) 光转换结构、背光模组及虚拟现实显示装置
WO2019007079A1 (zh) 导光组件、背光模组及显示装置
WO2016206148A1 (zh) 导光板、背光模组及显示装置
WO2019041911A1 (zh) 光学元件、使用其的反射型液晶显示系统
US9103955B2 (en) Backlight module with light guide plate with light sources, and liquid crystal display apparatus with such module
US12078836B2 (en) Light guide plate assembly, backlight module and display device
JPH11144515A (ja) 面光源素子およびそれを用いた表示装置
US20070189034A1 (en) High output light guide panel, backlight unit having the light guide panel, and display having the backlight unit
WO2015018102A1 (zh) 导光板、背光模组及液晶显示装置
JP2019200862A (ja) 導光板、面光源装置および表示装置
US20170108635A1 (en) Backlight module with non-planar lateral structure and liquid crystal display apparatus using the same
CN113126359A (zh) 背光装置、显示装置和电子设备
WO2020220167A1 (zh) 一种背光模组及显示装置
CN113330349A (zh) 光波导镜片及近眼显示装置
US20160077271A1 (en) Light generation member including light diffusion member and display apparatus having the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018793349

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018793349

Country of ref document: EP

Effective date: 20181108

NENP Non-entry into the national phase

Ref country code: DE