WO2019004731A1 - Cathode for lithium secondary battery and lithium secondary battery comprising same - Google Patents

Cathode for lithium secondary battery and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2019004731A1
WO2019004731A1 PCT/KR2018/007313 KR2018007313W WO2019004731A1 WO 2019004731 A1 WO2019004731 A1 WO 2019004731A1 KR 2018007313 W KR2018007313 W KR 2018007313W WO 2019004731 A1 WO2019004731 A1 WO 2019004731A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
additive
active material
lithium
metal particles
Prior art date
Application number
PCT/KR2018/007313
Other languages
French (fr)
Korean (ko)
Inventor
송주용
김석구
김인철
김주리
이명기
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880004852.4A priority Critical patent/CN110036509B/en
Priority to PL18822950.4T priority patent/PL3540830T3/en
Priority to EP18822950.4A priority patent/EP3540830B1/en
Priority to US16/344,196 priority patent/US10910637B2/en
Priority to JP2019536969A priority patent/JP2020505719A/en
Priority claimed from KR1020180074359A external-priority patent/KR102268082B1/en
Publication of WO2019004731A1 publication Critical patent/WO2019004731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode, and a lithium secondary battery including the same.
  • the lithium secondary battery generally comprises a positive electrode containing a positive electrode active material, a negative electrode including a negative electrode active material, a separator and an electrolyte, and is charged and discharged by intercalation-decalation of lithium ions.
  • the lithium secondary battery has a high energy density, a large electromotive force, and a high capacity, so it is applied to various fields.
  • a first technical object of the present invention is to provide an anode capable of achieving high capacity and excellent initial capacity of a secondary battery by including an additive.
  • a second technical object of the present invention is to provide a lithium secondary battery including the positive electrode, which is excellent in charge / discharge efficiency and has a high capacity, and can be manufactured at low cost without a separate lithization process.
  • a third object of the present invention is to provide a positive electrode additive capable of achieving an excellent initial capacity of a secondary battery by including metal particles and lithium oxide.
  • a nickel-containing positive electrode active material In one embodiment of the present invention, a nickel-containing positive electrode active material; And an additive comprising metal particles and lithium oxide.
  • the present invention also provides a lithium secondary battery including the positive electrode, the negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • a positive electrode additive comprising metal particles and lithium oxide.
  • the metal particles contained in the additive and the lithium oxide react with each other at a driving voltage (2.5 V to 4.3 V) of the lithium secondary battery by including the metal particles and the additive including lithium oxide in the production of the anode, A metal oxide is formed, and lithium ions migrate to the negative electrode to lithiate the negative electrode active material.
  • a driving voltage 2.5 V to 4.3 V
  • the metal oxide produced by the reaction of the metal particles and the lithium oxide to adsorb the gas such as CO or CO 2 may be a cell prevent reliability degradation due to CO or CO 2 gas generated during charging and discharging, Swelling can also be reduced.
  • Fig. 1 is a diagram showing the charging capacities of the test secondary batteries 1 to 3 including Production Examples 1 and 2 and Comparative Production Example 1.
  • Fig. 1 is a diagram showing the charging capacities of the test secondary batteries 1 to 3 including Production Examples 1 and 2 and Comparative Production Example 1.
  • a positive electrode according to an embodiment of the present invention includes a nickel-containing positive electrode active material; And additives comprising metal particles and lithium oxides.
  • the positive electrode is formed by stacking a nickel-containing positive electrode active material on a positive electrode collector; And an additive comprising metal particles and lithium oxide.
  • the positive electrode collector is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery.
  • the positive electrode collector may be formed of a metal such as carbon, stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used.
  • the metal particles included in the additive may preferably include at least one or more selected from the group consisting of Fe, Co, Cr, Mn, and Ni.
  • at least one metal particle selected from the above it is possible to form a nano-sized composite having a capacity about four times larger than that of the existing lithium transition metal oxide, and the composite has a large charge / discharge voltage hysteresis curve So that the initial charge / discharge efficiency can be improved by adding a positive electrode additive.
  • the lithium oxide included in the additive may include at least one or more selected from the group consisting of Li 2 O, Li 2 O 2 , and LiO 2 .
  • the composition for forming an anode contains the metal particles and the additive including the lithium oxide so that the metal particles and the lithium oxide contained in the additive cause an electrochemical reaction in the drive voltage range of the additive, . ≪ / RTI >
  • the additive forms a lithium ion and a metal oxide
  • the lithium ion moves to the cathode according to charging / discharging of the secondary battery, thereby further increasing the capacity of the battery. It is possible to adsorb a gas such as CO or CO 2 which may be generated during charging and discharging, thereby reducing the swelling phenomenon.
  • the average particle diameter (D 50 ) of the metal particles may be 5 ⁇ m or less, preferably 1 nm to 5 ⁇ m, 1 nm to 1 ⁇ m, and more preferably 10 nm to 50 nm.
  • the metal particles have a particle diameter of more than 5 mu m, the reaction with lithium oxide may hardly occur.
  • the average particle diameter (D 50 ) of the metal particles can be defined as a particle diameter corresponding to 50% of the volume accumulation amount in the particle diameter distribution curve of the particles.
  • the average particle diameter (D 50 ) of the metal particles can be measured using a laser diffraction method.
  • the laser diffraction method generally enables measurement of a particle diameter from a submicron region to several millimeters, resulting in high reproducibility and high degradability.
  • the average particle diameter (D 50 ) of the metal particles is measured by introducing the metal particles into a commercially available laser diffraction particle size analyzer (for example, Microtrac MT 3000) to measure an ultrasonic wave of about 28 kHz at an output of 60 W After irradiation, the average particle diameter (D 50 ) at a 50% reference of the particle diameter distribution in the measuring apparatus can be calculated.
  • a commercially available laser diffraction particle size analyzer for example, Microtrac MT 3000
  • the additive may include metal particles and lithium oxide in a ratio of 1: 0.1 to 1: 4, preferably 1: 0.3 to 1: 4, more preferably 1: 0.3 to 1: 3, 0.5 to 1: 2 in terms of molar ratio.
  • the metal particles and the lithium oxide included in the additive are electrochemically reacted in the drive voltage range of the additive to easily form lithium ions and metal oxides, The capacity of the secondary battery can be further improved.
  • the metal particles and the lithium oxide are contained in an amount of less than 1: 0.1, since the amount of lithium oxide that the metal can react with is small, a metal oxide can not be formed with lithium ions, . Therefore, capacity may be smaller than that of lithium metal used as a conventional anode.
  • the metal particles and the lithium oxide are more than 1: 4, the amount of lithium oxide to be reacted is small and the capacity may hardly be obtained.
  • the nickel-containing cathode active material may preferably contain a high content of nickel at 60 mol% or more, relative to the total number of moles of the transition metal oxide contained in the nickel-containing cathode active material. More specifically, the nickel-containing cathode active material is LiNi 0. 8 Co 0 . 1 Mn 0 . 1 O 2 or LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 , but it is not limited thereto.
  • the nickel-containing positive electrode active material may be contained in an amount of 1 to 99 parts by weight, preferably 30 to 99 parts by weight, more preferably 50 to 99 parts by weight based on the total weight of the positive electrode.
  • the amount of the additive included in the composition for forming an anode may be controlled according to the irreversible capacity of the negative electrode.
  • the additive may be added in an amount of 0.1 to 100 parts by weight, preferably 1 to 50 parts by weight, 1 to 10 parts by weight, and most preferably 3 to 7 parts by weight based on the total weight of the composition for forming an anode .
  • the additive when the additive is contained in an amount of less than 0.1 part by weight based on the total weight of the composition for forming an anode, it is difficult to achieve the effect of generating lithium ions by the addition of the additive, thereby increasing the capacity and secondary capacity of the secondary battery. .
  • the anode may further include a conductive material and a binder.
  • the binder is a component which assists in bonding of the active material and the conductive material and bonding to the collector, and is usually added in an amount of 1% by weight to 30% by weight based on the total solid content of the composition for forming an anode.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers and the like.
  • the conductive material is usually added in an amount of 1 wt% to 30 wt% based on the total solid weight of the composition for forming an anode.
  • Such a conductive material is not particularly limited as long as it has electrical conductivity without causing a chemical change in the battery, and includes, for example, graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Metal powders such as carbon fluoride, aluminum, and nickel powder
  • Conductive whiskey such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives and the like can be used.
  • acetylene black series such as Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, etc.
  • Ketjenblack EC (Armak Company)
  • Vulcan XC-72 Cabot Company
  • Super P Tucal
  • the positive electrode can be produced by a conventional positive electrode manufacturing method, except that the above-mentioned composition for forming an anode is used. Specifically, the composition for forming an anode can be coated on the positive electrode current collector, followed by drying and rolling.
  • the positive electrode may be produced by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating a film obtained by peeling from the support onto the positive electrode collector.
  • the present invention provides a lithium secondary battery comprising the above-described positive electrode, negative electrode, and separator interposed between the positive electrode and the negative electrode.
  • the lithium secondary battery includes a positive electrode, a negative electrode disposed opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
  • the lithium secondary battery may further include a battery container for housing the electrode assembly of the anode, the cathode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode may be prepared by coating a negative electrode current collector with a negative electrode composition containing a silicon-based negative active material, a binder, a conductive material, a solvent, and the like.
  • the silicon-based anode active material may include at least one selected from the group consisting of Si and SiO x (0 ⁇ x? 2).
  • the negative electrode may further include a compound capable of reversibly intercalating and deintercalating lithium, in addition to the silicon-based negative active material.
  • a compound capable of reversibly intercalating and deintercalating lithium in addition to the silicon-based negative active material.
  • Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon; Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; SiO ⁇ (0 ⁇ ⁇ 2 ), SnO 2, vanadium oxide, which can dope and de-dope a lithium metal oxide such as lithium vanadium oxide; Or a composite containing the above-described metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • the carbon material both low crystalline carbon and highly crystalline carbon may be used. Examples of the low-crystalline carbon include soft carbon and hard carbon. Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar coke derived cokes).
  • the negative electrode may include a silicon-based negative active material having a high irreversible capacity and a carbon-based negative active material.
  • the negative electrode active material may be contained in an amount of 1 wt% to 99 wt%, preferably 50 wt% to 99 wt%, and more preferably 80 wt% to 99 wt% based on the total solid content of the composition for forming a negative electrode.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like can be used.
  • the negative electrode collector may have a thickness of 3 to 500 ⁇ , and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material.
  • the negative electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the binder is a component for assisting the bonding between the conductive material, the active material and the current collector, and is usually 1% by weight to 30% by weight, preferably 1% by weight to 20% by weight, based on the total solid content of the composition for forming a negative electrode .
  • binders examples include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • Sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber various copolymers thereof.
  • the conductive material may be added in an amount of 1% by weight to 20% by weight, preferably 1% by weight to 10% by weight, based on the total solid content of the negative electrode composition, as a component for further improving the conductivity of the negative electrode active material.
  • a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the solvent may include water or an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that makes it desirable to contain the negative electrode active material, and optionally, a binder and a conductive material .
  • NMP N-methyl-2-pyrrolidone
  • the concentration of the solid material including the negative electrode active material, and optionally the binder and the conductive material may be 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
  • the anode including the silicon-based anode active material When the anode including the silicon-based anode active material is used, high capacity can be achieved when it is dedicated to the battery, but the energy density of the secondary battery is rather low due to the high irreversible capacity of the silicon-based anode active material.
  • the positive electrode including the above-described metal particles and the additive including lithium oxide in addition to the negative electrode including the silicon-based negative active material, the metal particles included in the positive electrode and the lithium As the lithium ions generated by the reaction of the oxides move to the cathode, the irreversible capacity of the cathode can be lowered by lithiating the cathode.
  • the cathode active material does not participate in the electrochemical reaction.
  • the driving voltage of the cathode active material is 2.5 V to 4.3 V, and the driving voltage of the additive is less than 2.5 V, specifically, 0.5 V to 2.5 V.
  • the driving voltage means a voltage at which lithium ions are desorbed when a voltage is applied, and may preferably mean a voltage at which desorbed lithium ions migrate to the cathode.
  • the electrochemical reaction of the positive electrode active material does not occur, and the metal particles and the lithium oxide included in the composition for forming the positive electrode are electrochemically reacted do. That is, the metal particles contained in the positive electrode and the additive including the lithium oxide react with each other at less than the drive voltage range of the positive electrode active material (less than 2.5 V) to form lithium ions and metal oxides, As the lithium ions enter the negative electrode active material to lithiate the negative electrode, the irreversible capacity of the negative electrode decreases.
  • gas such as CO or CO 2 that may occur during the charging / discharging process is adsorbed, and the swelling phenomenon of the battery can be reduced.
  • Fe 2 O 3 remains on the anode to adsorb the gas that may occur during the charging / discharging process to reduce the swelling phenomenon of the battery, and lithium ions move to the cathode to lithium ionize the cathode.
  • the negative electrode may reduce the irreversible capacity of the negative electrode even if a separate lithiation process is not performed, and as a result, it is possible to achieve an effect of increasing the capacity and capacity of the secondary battery.
  • a conventional porous polymer film conventionally used as a separator such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene /
  • a porous polymer film made of a polyolefin-based polymer such as a polyolefin-based polymer can be used alone or in a laminated state or a nonwoven fabric made of a conventional porous nonwoven fabric such as a glass fiber having a high melting point or a polyethylene terephthalate fiber can be used But is not limited thereto.
  • an organic / inorganic composite membrane having an additional inorganic coating may be used for securing heat resistance or mechanical strength, and may be selectively used as a single layer or a multi-layer structure.
  • the inorganic material is not particularly limited as long as it can control the pores of the organic / inorganic composite separation membrane uniformly and improve the heat resistance.
  • the inorganic material is a non-limiting example is SiO 2, Al 2 O 3, TiO 2, BaTiO 3, Li 2 O, LiF, LiOH, Li 3 N, BaO, Na 2 O, Li 2 CO 3, CaCO 3, At least one selected from the group consisting of LiAlO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiC and their derivatives and mixtures thereof.
  • the average diameter of the inorganic material may be 0.001 ⁇ to 10 ⁇ , and more specifically 0.001 ⁇ to 1 ⁇ . If the average diameter of the inorganic materials is within the above range, the dispersibility in the coating solution is improved and the occurrence of problems in the coating process can be minimized. In addition, the physical properties of the final separation membrane can be made uniform, the inorganic particles can be uniformly distributed in the pores of the nonwoven fabric to improve the mechanical properties of the nonwoven fabric, and the advantage of easily controlling the pore size of the organic- .
  • the average diameter of the pores of the organic / inorganic hybrid separator may be in the range of 0.001 to 10 mu m, more specifically 0.001 to 1 mu m.
  • gas permeability and ion conductivity can be controlled within a desired range.
  • the battery is manufactured using the organic / inorganic hybrid separator, It is possible to eliminate the possibility of an internal short circuit of the battery by the battery.
  • the porosity of the organic / inorganic hybrid membrane may range from 30% by volume to 90% by volume. When the porosity is within the above range, the ion conductivity can be increased and the mechanical strength can be enhanced.
  • Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in the production of a lithium secondary battery. It is not.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and?
  • Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a linear, branched or cyclic hydrocarbon group having 2 to 20 carbon atoms, which may contain a double bond aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used.
  • Ether solvents such as dibutyl ether or tetrahydrofuran
  • Ketone solvents such as cyclohex
  • a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate for example, ethylene carbonate or propylene carbonate
  • ethylene carbonate or propylene carbonate for example, ethylene carbonate or propylene carbonate
  • ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate
  • the lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt LiPF 6, LiClO 4, LiAsF 6, LiBF 4, LiSbF 6, LiAl0 4, LiAlCl 4, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (C 2 F 5 SO 3) 2 , LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2.
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 may be used.
  • the concentration of the lithium salt is preferably in the range of 0.1 to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lithium ion can effectively move.
  • the electrolyte may contain, for example, a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like, pyridine, triethanolamine, or the like for the purpose of improving lifetime characteristics of the battery, Ethyl phosphite, triethanol amine, cyclic ether, ethylenediamine, glyme, hexametriamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, At least one additive such as benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, The additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, it can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
  • HEV hybrid electric vehicles hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
  • the battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • a power tool including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • EV electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
  • the lithium secondary battery according to the present invention can be used not only in a battery cell used as a power source of a small device but also as a unit cell in a middle- or large-sized battery module including a plurality of battery cells.
  • Fe having an average particle diameter of 50 nm and Li 2 O powder were mixed at a molar ratio of 1: 1.5 to prepare an irreversible anode additive.
  • Fe having an average particle diameter of 5 ⁇ and Li 2 O powder were mixed at a molar ratio of 1: 1.5 to prepare an irreversible anode additive.
  • An irreversible anode additive was prepared using 100% Li 2 O powder.
  • LiNi 0 . 8 Mn 0 . 1 Co 0 . 97.5 parts by weight of 1 O 2 cathode active material, 1 part by weight of FX35 of Denka as a conductive material, and 1.5 parts by weight of DA288 (KUREHA Corporation) as a binder were mixed in a solvent, 1 part by weight of an irreversible positive electrode additive were mixed in a solvent to prepare a composition for forming a positive electrode.
  • a mixed anode active material obtained by mixing graphite anode active material and SiO2 anode active material in a ratio of 70:30, 2.5 parts by weight of A544 (ZEON) as a binder, 2 parts by weight of Super C65 (Timcal) as a conductive material, 2000 (Daicel Co.), and the mixture was added to water as a solvent to prepare a composition for forming an anode.
  • the negative electrode composition was coated on a negative electrode current collector (Cu thin film) having a thickness of 20 ⁇ , dried, and roll pressed to prepare a negative electrode.
  • the positive electrode and the negative electrode prepared by the above-described method were laminated together with a separator to produce an electrode assembly.
  • the electrode assembly was inserted into a battery case, and an electrolyte solution was injected and sealed to prepare a lithium secondary battery.
  • a positive electrode, a negative electrode and a secondary battery including the same were prepared in the same manner as in Example 1, except that 2 parts by weight of the irreversible positive electrode additive prepared in Preparation Example 1 was used.
  • a positive electrode, a negative electrode and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that 3 parts by weight of the irreversible positive electrode additive prepared in Preparation Example 1 was used.
  • a positive electrode, a negative electrode and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that 4 parts by weight of the irreversible positive electrode additive prepared in Preparation Example 1 was used.
  • a positive electrode, a negative electrode and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that 5 parts by weight of the irreversible positive electrode additive prepared in Preparation Example 1 was used.
  • a positive electrode, a negative electrode and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that 6 parts by weight of the irreversible positive electrode additive prepared in Preparation Example 1 was used.
  • a positive electrode, a negative electrode, and a secondary battery including the same were prepared in the same manner as in Example 1, except that 7 parts by weight of the irreversible positive electrode additive prepared in Preparation Example 1 was used.
  • a positive electrode, a negative electrode and a secondary battery including the positive electrode and the negative electrode were prepared in the same manner as in Example 1, except that the additive was not included in the composition for forming the positive electrode.
  • Irreversible additive compositions 1 to 3 were prepared by mixing the irreversible positive electrode additive prepared in Preparation Examples 1 and 2 and Comparative Preparation Example 1, the conductive material and the binder in a solvent in a weight ratio of 80:10:10.
  • the positive electrode current collector was coated on the positive electrode current collector, followed by drying and roll pressing to obtain test negative electrodes 1 and 2 and comparative test for confirming the irreversibility of the irreversible additives prepared in Preparation Examples 1 and 2 and Comparative Preparation Example 1 Respectively.
  • the same materials as in Example 1 were used for the conductive material, the binder, and the solvent, respectively.
  • the negative electrode and the test secondary batteries 1 to 3 including the same were prepared in the same manner as in Example 1 except that the test positive electrodes 1 and 2 and the comparative test positive electrode 1 were respectively used.
  • test secondary batteries 1 to 3 prepared above was charged to 4.2 V at a constant current of 0.1 C at 25 ⁇ and then charged at a constant voltage of 4.2 V until the charge current reached 0.1 mAh. Thereafter, the battery was allowed to stand for 60 minutes, and discharged at a constant current of 0.1 C until it reached 2.5 V, and the capacity of the first cycle was measured.
  • Fig. 1 shows the charging and discharging capacities of the test secondary batteries 1 to 3 including the test electrodes 1 and 2 and the comparative test electrode 1, respectively.
  • the discharge capacity was not measured and only the charge capacity appeared.
  • the irreversible anode additive used in Production Examples 1 to 3 exhibits irreversibility.
  • the irreversible anode additive prepared in Preparation Examples 1 and 2 had a much higher charge capacity than the cathode additive prepared in Comparative Preparation Example 1.
  • the charging capacity of the irreversible positive electrode additive is improved by the reaction of the lithium oxide and the metal particles by including the lithium oxide as well as the metal particles.
  • the charging capacity of the irreversible anode additive used in Production Example 1 is higher than that used in Production Example 2. This is because the smaller the average particle diameter of the metal particles contained in the irreversible positive electrode additive is, the more easily the reaction with the lithium oxide is performed to further improve the initial capacity.
  • the batteries prepared in Examples 1 to 7 and Comparative Example 1 were charged at a constant current of 0.1 C at a temperature of 25 ° C until the voltage reached 4.2 V and then charged at a constant voltage of 4.2 V until the charging current reached 0.1 mAh. Thereafter, the battery was allowed to stand for 60 minutes, discharged at a constant current of 0.1 C until it reached 2.5 V, and the capacity of the first cycle was measured. The energy density of the secondary batteries was measured by simulation.
  • Examples 1 to 7 including metal particles and lithium oxide as additives in the nickel-containing cathode active material had better energy densities than the secondary batteries of Comparative Example 1 in which additives were not used I could confirm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides a cathode and a lithium secondary battery, the cathode comprising: a nickel-containing cathode active material having a large energy capacity; and an additive comprising metal particles and a lithium oxide.

Description

리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지Lithium secondary battery anode and lithium secondary battery comprising same
관련출원과의 상호인용Mutual citation with related application
본 출원은 2017년 6월 27일자 한국특허출원 제2017-0081273호 및 2018년 6월 27일자 한국특허출원 제2018-0074359호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. This application claims the benefit of priority based on Korean Patent Application No. 2017-0081273, filed on June 27, 2017, and Korean Patent Application No. 2018-0074359, filed on June 27, 2018, all of which are incorporated herein by reference in their entirety The contents of which are incorporated herein by reference.
기술분야Technical field
본 발명은 양극, 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a positive electrode, and a lithium secondary battery including the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대한 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다. As technology development and demand for mobile devices have increased, there has been a rapid increase in demand for secondary batteries as energy sources. Among such secondary batteries, lithium secondary batteries, which exhibit high energy density and operating potential, long cycle life, Batteries have been commercialized and widely used.
리튬 이차전지는 일반적으로 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 세퍼레이터 및 전해질로 구성되며 리튬 이온의 삽입-탈리(intercalation-decalation)에 의해 충전 및 방전이 이루어지는 이차전지이다. 리튬 이차전지는 에너지 밀도(energy density)가 높고, 기전력이 크며 고용량을 발휘할 수 있는 장점을 가지므로 다양한 분야에 적용되고 있다.The lithium secondary battery generally comprises a positive electrode containing a positive electrode active material, a negative electrode including a negative electrode active material, a separator and an electrolyte, and is charged and discharged by intercalation-decalation of lithium ions. The lithium secondary battery has a high energy density, a large electromotive force, and a high capacity, so it is applied to various fields.
이러한 리튬 이차전지의 보다 높은 용량을 구현하기 위해 다양한 방법이 연구되어 왔다. 구체적으로, 리튬 이차전지용 양극에 포함되는 양극 활물질로서 LCO, LNMCO, LMO 등의 1종 또는 2종 이상의 재료를 사용함으로써 리튬 이차전지의 고용량을 구현하는 방법이 시도되었다. 그러나, 실제 리튬 이차전지의 용량을 높이기 위해서는 양극의 용량뿐만 아니라 음극의 용량 또한 향상되어야 하는데, 이를 위해 용량이 높은 규소계 음극 활물질을 음극으로서 사용하는 방법 또한 시도되었다. 그러나, 이러한 규소계 음극 활물질의 경우, 비가역 용량 또한 크기 때문에, 충방전 효율이 낮다는 문제점이 있었다. 이러한 규소계 음극 활물질을 사용하면서 비가역 용량 문제를 해결하기 위해서는 상기 규소계 활물질을 리튬화(lithiation)해야 하는데, 이러한 리튬화시 고비용이 드는 문제가 발생한다. Various methods have been studied to realize higher capacity of such lithium secondary batteries. Specifically, a method of realizing a high capacity of a lithium secondary battery by using one or more materials such as LCO, LNMCO, and LMO as a cathode active material contained in a cathode for a lithium secondary battery has been attempted. However, in order to increase the capacity of an actual lithium secondary battery, not only the capacity of the positive electrode but also the capacity of the negative electrode should be improved. To this end, a method of using a silicon-based negative active material as a negative electrode has also been attempted. However, in the case of such a silicon-based negative electrode active material, irreversible capacity is also large, resulting in a problem of low charging / discharging efficiency. In order to solve the irreversible capacity problem while using such a silicon-based negative active material, the silicon-based active material must be lithiated, which poses a problem of high cost in lithization.
이에 따라, 고용량이고, 우수한 충방전 효율을 나타내며 저비용으로 제조 가능한 리튬 이차전지의 개발이 요구되고 있다. Accordingly, there is a demand for development of a lithium secondary battery which is high in capacity, exhibits excellent charge / discharge efficiency and can be manufactured at low cost.
상기와 같은 문제점을 해결하기 위하여, 본 발명의 제 1 기술적 과제는 첨가제를 포함함으로써 이차전지의 고용량화 및 우수한 초기 용량을 달성할 수 있는 양극을 제공하는 것이다. In order to solve the above-mentioned problems, a first technical object of the present invention is to provide an anode capable of achieving high capacity and excellent initial capacity of a secondary battery by including an additive.
또한, 본 발명의 제 2 기술적 과제는 상기 양극을 포함하여, 충방전 효율이 우수하고 고용량이며, 별도의 리튬화 공정 없이 저비용으로 제조 가능한 리튬 이차전지를 제공하는 것이다. A second technical object of the present invention is to provide a lithium secondary battery including the positive electrode, which is excellent in charge / discharge efficiency and has a high capacity, and can be manufactured at low cost without a separate lithization process.
또한, 본 발명의 제3 기술적 과제는 금속 입자 및 리튬 산화물을 포함함으로써 이차전지의 우수한 초기 용량을 달성할 수 있는 양극용 첨가제를 제공하는 것이다.A third object of the present invention is to provide a positive electrode additive capable of achieving an excellent initial capacity of a secondary battery by including metal particles and lithium oxide.
본 발명의 일 실시예에서, 니켈-함유 양극 활물질; 및 금속 입자 및 리튬 산화물을 포함하는 첨가제를 포함하는, 양극을 제공한다. In one embodiment of the present invention, a nickel-containing positive electrode active material; And an additive comprising metal particles and lithium oxide.
또한, 본 발명에서는 상기 양극, 음극, 및 상기 양극 및 음극 사이에 개재된 분리막을 포함하는, 리튬 이차전지를 제공한다. The present invention also provides a lithium secondary battery including the positive electrode, the negative electrode, and a separator interposed between the positive electrode and the negative electrode.
또한, 금속 입자 및 리튬 산화물을 포함하는, 양극용 첨가제를 제공한다,.Also provided is a positive electrode additive comprising metal particles and lithium oxide.
본 발명에 따르면 양극 제조 시 금속 입자 및 리튬 산화물을 포함하는 첨가제를 포함함으로써, 리튬 이차전지의 구동 전압(2.5 V 내지 4.3 V) 미만에서 첨가제에 포함되는 금속 입자와 리튬 산화물이 반응하여 리튬 이온 및 금속 산화물을 형성하고, 이 중 리튬 이온이 음극으로 이동하여 음극 활물질을 리튬화(lithiation) 시킨다. 이에 따라 별도의 리튬화 공정을 추가로 수행하지 않아도 되기 때문에, 저비용으로 우수한 용량을 나타내는 리튬 이차전지를 제조할 수 있다. According to the present invention, the metal particles contained in the additive and the lithium oxide react with each other at a driving voltage (2.5 V to 4.3 V) of the lithium secondary battery by including the metal particles and the additive including lithium oxide in the production of the anode, A metal oxide is formed, and lithium ions migrate to the negative electrode to lithiate the negative electrode active material. As a result, it is not necessary to further perform a separate lithiation process, and thus a lithium secondary battery exhibiting excellent capacity at a low cost can be manufactured.
또한, 금속 입자와 리튬 산화물의 반응에 의해 생성된 금속 산화물이 CO 또는 CO2 등의 가스를 흡착하여, 셀이 충방전하는 동안 발생하는 CO 또는 CO2 가스에 의한 안정성 저하를 방지할 수 있고, 스웰링(swelling) 또한 저감시킬 수 있다.In addition, the metal oxide produced by the reaction of the metal particles and the lithium oxide to adsorb the gas such as CO or CO 2, may be a cell prevent reliability degradation due to CO or CO 2 gas generated during charging and discharging, Swelling can also be reduced.
도 1은 제조예 1, 2, 및 비교 제조예 1을 포함하는 시험 이차전지 1 내지 3의 충전 용량을 나타낸 도면이다.Fig. 1 is a diagram showing the charging capacities of the test secondary batteries 1 to 3 including Production Examples 1 and 2 and Comparative Production Example 1. Fig.
이하, 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may appropriately define the concept of the term in order to best describe its invention It should be construed as meaning and concept consistent with the technical idea of the present invention.
양극anode
본 발명의 일 구현예에 따른 양극은, 니켈-함유 양극 활물질; 및 금속 입자 및 리튬 산화물을 포함하는 첨가제를 포함한다.A positive electrode according to an embodiment of the present invention includes a nickel-containing positive electrode active material; And additives comprising metal particles and lithium oxides.
구체적으로, 상기 양극은, 양극 집전체 상에 니켈-함유 양극 활물질; 및 금속 입자 및 리튬 산화물을 포함하는 첨가제;를 포함하는 양극 형성용 조성물을 형성한 것이다.Specifically, the positive electrode is formed by stacking a nickel-containing positive electrode active material on a positive electrode collector; And an additive comprising metal particles and lithium oxide.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. The positive electrode collector is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery. For example, the positive electrode collector may be formed of a metal such as carbon, stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used.
상기 첨가제에 포함되는 상기 금속 입자는 바람직하게는 Fe, Co, Cr, Mn, 및 Ni로 이루어진 군에서 선택되는 적어도 하나 이상을 포함할 수 있다. 특히, 상기에서 선택되는 적어도 하나 이상의 금속 입자를 포함할 경우, 기존 리튬 전이금속 산화물 대비 약 4배 이상 큰 용량을 지닌 나노 사이즈의 복합체를 형성할 수 있고, 상기 복합체는 큰 충전/방전 전압 이력 곡선을 지니고 있어, 양극 첨가제로 추가 시, 초기 충방전 효율을 개선할 수 있다.The metal particles included in the additive may preferably include at least one or more selected from the group consisting of Fe, Co, Cr, Mn, and Ni. In particular, when at least one metal particle selected from the above is included, it is possible to form a nano-sized composite having a capacity about four times larger than that of the existing lithium transition metal oxide, and the composite has a large charge / discharge voltage hysteresis curve So that the initial charge / discharge efficiency can be improved by adding a positive electrode additive.
또한, 상기 첨가제에 포함되는 상기 리튬 산화물은 Li2O, Li2O2, 및 LiO2로 이루어진 군에서 선택되는 적어도 하나 이상을 포함할 수 있다.In addition, the lithium oxide included in the additive may include at least one or more selected from the group consisting of Li 2 O, Li 2 O 2 , and LiO 2 .
상기 양극 형성용 조성물이 상기 금속 입자 및 상기 리튬 산화물을 포함하는 첨가제를 포함함으로써, 상기 첨가제의 구동 전압 범위에서, 상기 첨가제에 포함되는 금속 입자 및 리튬 산화물이 전기화학적 반응을 일으켜 리튬 이온 및 금속 산화물을 형성하는 것일 수 있다. 상기 첨가제가 리튬 이온 및 금속 산화물을 형성할 경우, 이를 이차전지에 적용 시 이차전지의 충방전에 따라 상기 리튬 이온이 음극으로 이동하여 전지의 용량을 더욱 높일 수 있고, 상기 금속 산화물은 이차전지의 충방전시 발생할 수 있는 CO 또는 CO2 등의 가스를 흡착하여, 스웰링 현상을 저감할 수 있다. Wherein the composition for forming an anode contains the metal particles and the additive including the lithium oxide so that the metal particles and the lithium oxide contained in the additive cause an electrochemical reaction in the drive voltage range of the additive, . ≪ / RTI > When the additive forms a lithium ion and a metal oxide, when the additive is applied to a secondary battery, the lithium ion moves to the cathode according to charging / discharging of the secondary battery, thereby further increasing the capacity of the battery. It is possible to adsorb a gas such as CO or CO 2 which may be generated during charging and discharging, thereby reducing the swelling phenomenon.
상기 금속 입자의 평균 입경(D50)은 5 ㎛ 이하일 수 있고, 바람직하게는 1 nm 내지 5㎛, 1 nm 내지 1 ㎛, 보다 바람직하게는 10 nm 내지 50 nm일 수 있다. 상기 금속 입자가 5 ㎛를 초과할 경우 리튬 산화물과의 반응이 거의 일어나지 않을 수 있으며, 상기 입자의 평균 입경이 작을수록, 바람직하게는 nm 범위에서 리튬 산화물과의 반응이 용이하게 이루어져, 초기 용량을 더욱 향상시킬 수 있다. The average particle diameter (D 50 ) of the metal particles may be 5 μm or less, preferably 1 nm to 5 μm, 1 nm to 1 μm, and more preferably 10 nm to 50 nm. When the metal particles have a particle diameter of more than 5 mu m, the reaction with lithium oxide may hardly occur. The smaller the average particle size of the particles, the better the reaction with lithium oxide is, Can be further improved.
상기 금속 입자의 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 예를 들어, 상기 금속 입자의 평균 입경(D50)은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도까지의 입경의 측정이 가능하며, 고재현성 및 고분해성의 결과를 얻을 수 있다. 예를 들어, 상기 금속 입자의 평균 입경(D50)의 측정 방법은, 상기 금속 입자를 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.The average particle diameter (D 50 ) of the metal particles can be defined as a particle diameter corresponding to 50% of the volume accumulation amount in the particle diameter distribution curve of the particles. For example, the average particle diameter (D 50 ) of the metal particles can be measured using a laser diffraction method. The laser diffraction method generally enables measurement of a particle diameter from a submicron region to several millimeters, resulting in high reproducibility and high degradability. For example, the average particle diameter (D 50 ) of the metal particles is measured by introducing the metal particles into a commercially available laser diffraction particle size analyzer (for example, Microtrac MT 3000) to measure an ultrasonic wave of about 28 kHz at an output of 60 W After irradiation, the average particle diameter (D 50 ) at a 50% reference of the particle diameter distribution in the measuring apparatus can be calculated.
예를 들면, 상기 첨가제는 금속 입자 및 리튬 산화물을 1:0.1 내지 1: 4, 바람직하게는 1:0.3 내지 1:4, 더욱 바람직하게는 1:0.3 내지 1:3, 가장 바람직하게는 1:0.5 내지 1:2의 몰비로 포함하는 것일 수 있다. 상기 금속 입자 및 리튬 산화물이 상기 범위로 포함될 경우, 상기 첨가제의 구동 전압 범위에서, 상기 첨가제에 포함되는 금속 입자 및 리튬 산화물이 전기화학적 반응이 일어나 리튬 이온 및 금속 산화물을 용이하게 형성할 수 있고, 이를 전지에 적용 시 이차전지의 용량을 더욱 향상시킬 수 있다. 예를 들면, 상기 금속 입자 및 리튬 산화물이 1:0.1 미만으로 포함될 경우, 상기 금속이 반응할 수 있는 리튬 산화물의 양이 적기 때문에 리튬 이온과 금속 산화물을 형성할 수 없어 용량이 거의 나오지 않을 수 있다. 이에 따라 기존의 양극으로 사용되는 리튬 금속보다 용량이 적을 수 있다. 반대로, 상기 금속 입자 및 리튬 산화물이 1 : 4를 초과할 경우, 반응하는 리튬 산화물의 양이 작아 용량이 거의 나오지 않을 수 있다. For example, the additive may include metal particles and lithium oxide in a ratio of 1: 0.1 to 1: 4, preferably 1: 0.3 to 1: 4, more preferably 1: 0.3 to 1: 3, 0.5 to 1: 2 in terms of molar ratio. When the metal particles and the lithium oxide are included in the above range, the metal particles and the lithium oxide included in the additive are electrochemically reacted in the drive voltage range of the additive to easily form lithium ions and metal oxides, The capacity of the secondary battery can be further improved. For example, when the metal particles and the lithium oxide are contained in an amount of less than 1: 0.1, since the amount of lithium oxide that the metal can react with is small, a metal oxide can not be formed with lithium ions, . Therefore, capacity may be smaller than that of lithium metal used as a conventional anode. On the contrary, when the metal particles and the lithium oxide are more than 1: 4, the amount of lithium oxide to be reacted is small and the capacity may hardly be obtained.
한편, 상기 양극 형성용 조성물에 포함되는 상기 니켈-함유 양극 활물질은, LiNiO2, Li1 + w(Ni1-x-y-zCoxM1yM2z)O2 (이때, M1 및 M2는 서로 독립적으로 Al, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, 0≤w≤1, 0≤x<1, 0≤y<1, 0≤z<1, x+y+z<1이다), Li1 + w1NiaCobM1cO2(이때, M1은 Al, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나이고, 0≤w1≤1, a≥0.6, 0≤b<1, 0≤c<1, a+b+c=1이다)및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함할 수 있다. 구체적으로, 상기 니켈-함유 양극 활물질은 바람직하게는 상기 니켈-함유 양극 활물질에 포함되는 전이금속 산화물 전체 몰수에 대하여, 니켈을 60 몰% 이상의 고함량으로 포함할 수 있다. 더욱 구체적으로, 상기 니켈-함유 양극 활물질은 LiNi0 . 8Co0 . 1Mn0 . 1O2 또는 LiNi0 . 6Co0 . 2Mn0 . 2O2일수 있으나, 이에 한정되는 것은 아니다. On the other hand, the nickel-containing cathode active material contained in the composition for forming an anode may be LiNiO 2 , Li 1 + w (Ni 1- xy z Co x M y y M2 z ) O 2 , Fe, Mn, V, Cr, Ti, W, Ta, Mg and Mo and 0? W? 1, 0? X <1, 0? Y <1, 0? Z <1 Mn, V, Cr, Ti, W, Ta, Mg, and Mo), Li 1 + w 1 Ni a Co b M1 c O 2 1, 0? C <1, a + b + c = 1), and combinations thereof. can do. Specifically, the nickel-containing cathode active material may preferably contain a high content of nickel at 60 mol% or more, relative to the total number of moles of the transition metal oxide contained in the nickel-containing cathode active material. More specifically, the nickel-containing cathode active material is LiNi 0. 8 Co 0 . 1 Mn 0 . 1 O 2 or LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 , but it is not limited thereto.
상기 양극 총 중량에 대해 상기 니켈-함유 양극 활물질은 1 내지 99중량부, 바람직하게는 30 내지 99 중량부, 더 바람직하게는 50 내지 99 중량부로 포함되는 것일 수 있다.The nickel-containing positive electrode active material may be contained in an amount of 1 to 99 parts by weight, preferably 30 to 99 parts by weight, more preferably 50 to 99 parts by weight based on the total weight of the positive electrode.
상기 양극 형성용 조성물에 포함되는 상기 첨가제의 양은 음극의 비가역 용량에 따라 조절되는 것일 수 있다. 예를 들면, 상기 양극 형성용 조성물 전체 중량에 대하여 상기 첨가제는 0.1 내지 100 중량부, 바람직하게는 1 내지 50 중량부, 1 내지 10 중량부, 가장 바람직하게는 3 내지 7 중량부로 포함할 수 있다. 예를 들면, 상기 양극 형성용 조성물 전체 중량에 대하여 상기 첨가제가 0.1 중량부 미만으로 포함될 경우, 상기 첨가제의 추가에 따른 리튬 이온의 생성 및 그로 인한 이차전지의 고용량화 및 초기 용량 개선 효과를 달성하기 어려울 수 있다.The amount of the additive included in the composition for forming an anode may be controlled according to the irreversible capacity of the negative electrode. For example, the additive may be added in an amount of 0.1 to 100 parts by weight, preferably 1 to 50 parts by weight, 1 to 10 parts by weight, and most preferably 3 to 7 parts by weight based on the total weight of the composition for forming an anode . For example, when the additive is contained in an amount of less than 0.1 part by weight based on the total weight of the composition for forming an anode, it is difficult to achieve the effect of generating lithium ions by the addition of the additive, thereby increasing the capacity and secondary capacity of the secondary battery. .
또한, 상기 양극은 도전재 및 바인더를 더 포함할 수 있다.In addition, the anode may further include a conductive material and a binder.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 형성용 조성물의 전체 고형분 중량을 기준으로 1 중량% 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component which assists in bonding of the active material and the conductive material and bonding to the collector, and is usually added in an amount of 1% by weight to 30% by weight based on the total solid content of the composition for forming an anode. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers and the like.
상기 도전재는 통상적으로 양극 형성용 조성물의 전체 고형분 중량을 기준으로 1 중량% 내지 30 중량%로 첨가된다. The conductive material is usually added in an amount of 1 wt% to 30 wt% based on the total solid weight of the composition for forming an anode.
이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다.Such a conductive material is not particularly limited as long as it has electrical conductivity without causing a chemical change in the battery, and includes, for example, graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used. Concrete examples of commercially available conductive materials include acetylene black series such as Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, etc.), Ketjenblack, EC (Armak Company), Vulcan XC-72 (Cabot Company), and Super P (Timcal).
한편, 상기 양극은 상기한 양극 형성용 조성물을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조할 수 있다. On the other hand, the positive electrode can be produced by a conventional positive electrode manufacturing method, except that the above-mentioned composition for forming an anode is used. Specifically, the composition for forming an anode can be coated on the positive electrode current collector, followed by drying and rolling.
또한, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.Alternatively, the positive electrode may be produced by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating a film obtained by peeling from the support onto the positive electrode collector.
이차전지Secondary battery
또한, 본 발명은 상술한 양극, 음극 및 상기 양극 및 음극 사이에 개재된 분리막을 포함하는, 리튬 이차전지를 제공한다.Further, the present invention provides a lithium secondary battery comprising the above-described positive electrode, negative electrode, and separator interposed between the positive electrode and the negative electrode.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함한다. 또한, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.The lithium secondary battery includes a positive electrode, a negative electrode disposed opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte. The lithium secondary battery may further include a battery container for housing the electrode assembly of the anode, the cathode, and the separator, and a sealing member for sealing the battery container.
상기 양극은 상술한 바와 동일하므로 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다. Since the anode is the same as that described above, a detailed description thereof will be omitted, and only the remaining constitution will be specifically described below.
상기 음극은 예를 들어, 음극 집전체 상에 규소계 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 형성용 조성물을 코팅하여 제조하는 것일 수 있다.The negative electrode may be prepared by coating a negative electrode current collector with a negative electrode composition containing a silicon-based negative active material, a binder, a conductive material, a solvent, and the like.
예를 들면, 상기 규소계 음극 활물질은 Si 및 SiOx (0<x≤2)로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다. For example, the silicon-based anode active material may include at least one selected from the group consisting of Si and SiO x (0 <x? 2).
또한, 상기 음극은 상기 규소계 음극 활물질 외에, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 더 포함할 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체와 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정성 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.In addition, the negative electrode may further include a compound capable of reversibly intercalating and deintercalating lithium, in addition to the silicon-based negative active material. Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon; Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; SiO β (0 <β <2 ), SnO 2, vanadium oxide, which can dope and de-dope a lithium metal oxide such as lithium vanadium oxide; Or a composite containing the above-described metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used. Also, a metal lithium thin film may be used as the negative electrode active material. As the carbon material, both low crystalline carbon and highly crystalline carbon may be used. Examples of the low-crystalline carbon include soft carbon and hard carbon. Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar coke derived cokes).
바람직하게는, 상기 음극은 비가역 용량이 높은 규소계 음극 활물질과 탄소계 음극 활물질을 포함하는 것일 수 있다.Preferably, the negative electrode may include a silicon-based negative active material having a high irreversible capacity and a carbon-based negative active material.
상기 음극활물질은 음극 형성용 조성물의 전체 고형분 중량을 기준으로 1 중량% 내지 99중량%, 바람직하게는 50 중량% 내지 99 중량%, 더욱 바람직하게는 80 중량% 내지 99 중량%로 포함될 수 있다.The negative electrode active material may be contained in an amount of 1 wt% to 99 wt%, preferably 50 wt% to 99 wt%, and more preferably 80 wt% to 99 wt% based on the total solid content of the composition for forming a negative electrode.
또한, 상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 통상적으로 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 상기 음극 집전체를 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Examples of the negative electrode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like can be used. In addition, the negative electrode collector may have a thickness of 3 to 500 탆, and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material. For example, the negative electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 형성용 조성물의 전체 고형분 중량을 기준으로 1 중량% 내지 30 중량%, 바람직하게는 1 중량% 내지 20 중량%로 첨가된다.  이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder is a component for assisting the bonding between the conductive material, the active material and the current collector, and is usually 1% by weight to 30% by weight, preferably 1% by weight to 20% by weight, based on the total solid content of the composition for forming a negative electrode . Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene Examples thereof include ethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber and various copolymers thereof.
상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 형성용 조성물의 전체 고형분 중량을 기준으로 1 중량% 내지 20 중량%, 바람직하게는 1 중량% 내지 10 중량%로 첨가될 수 있다.  이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material may be added in an amount of 1% by weight to 20% by weight, preferably 1% by weight to 10% by weight, based on the total solid content of the negative electrode composition, as a component for further improving the conductivity of the negative electrode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 용매는 물 또는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 음극활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.The solvent may include water or an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that makes it desirable to contain the negative electrode active material, and optionally, a binder and a conductive material . For example, the concentration of the solid material including the negative electrode active material, and optionally the binder and the conductive material may be 50 wt% to 95 wt%, preferably 70 wt% to 90 wt%.
상기 규소계 음극 활물질을 포함하는 음극을 사용할 경우, 이를 전지에 전용 시 고용량화를 달성할 수는 있으나, 상기 규소계 음극 활물질의 높은 비가역 용량으로 인해 이차전지의 에너지 밀도가 오히려 낮아진다는 단점이 있다. When the anode including the silicon-based anode active material is used, high capacity can be achieved when it is dedicated to the battery, but the energy density of the secondary battery is rather low due to the high irreversible capacity of the silicon-based anode active material.
이에, 상기 규소계 음극 활물질을 포함하는 음극과 더불어 상술한 바와 같은 금속 입자 및 리튬 산화물을 포함하는 첨가제를 포함하는 양극을 포함함으로써, 상기 첨가제의 구동 범위 내에서 상기 양극에 포함되는 금속 입자 및 리튬 산화물의 반응에 의해 생성된 리튬 이온이 상기 음극으로 이동함에 따라, 음극을 리튬화시킴으로써 상기 음극의 비가역 용량을 낮출 수 있다.Thus, by including the positive electrode including the above-described metal particles and the additive including lithium oxide in addition to the negative electrode including the silicon-based negative active material, the metal particles included in the positive electrode and the lithium As the lithium ions generated by the reaction of the oxides move to the cathode, the irreversible capacity of the cathode can be lowered by lithiating the cathode.
이를 구체적으로 살펴보면, 일반적인 전지의 구동 전압은 2.5 V 내지 4.3 V로, 양극에 포함되는 양극 활물질의 구동 전압이 상기 전지의 구동 전압 범위를 벗어날 경우에는, 양극 활물질이 전기화학적 반응에 참여하지 않는다.Specifically, when the driving voltage of a general battery is 2.5 V to 4.3 V and the driving voltage of the cathode active material contained in the anode is out of the driving voltage range of the battery, the cathode active material does not participate in the electrochemical reaction.
일 실시예에 있어서, 상기 양극 활물질의 구동 전압은 2.5 V 내지 4.3 V이고, 상기 첨가제의 구동 전압은 2.5 V 미만, 구체적으로는 0.5 V 내지 2.5 V 미만이다.In one embodiment, the driving voltage of the cathode active material is 2.5 V to 4.3 V, and the driving voltage of the additive is less than 2.5 V, specifically, 0.5 V to 2.5 V.
상기 구동 전압은, 전압을 인가하였을 경우 리튬 이온이 탈리되는 전압을 의미하는 것이며, 바람직하게는 탈리된 리튬 이온이 음극으로 이동하는 전압을 의미하는 것일 수 있다.The driving voltage means a voltage at which lithium ions are desorbed when a voltage is applied, and may preferably mean a voltage at which desorbed lithium ions migrate to the cathode.
즉, 상기 전지를 양극 활물질의 구동 전압 범위 미만인 2.5 V 미만으로 충전할 경우, 양극 활물질의 전기화학적 반응은 일어나지 않으며, 양극 형성용 조성물에 첨가제로서 포함되는 금속 입자 및 리튬 산화물이 전기화학적 반응을 일으키게 된다. 즉, 양극에 포함되는 금속 입자 및 리튬 산화물을 포함하는 첨가제가 양극 활물질의 구동 전압 범위 미만(2.5 V 미만)에서 반응하여, 리튬 이온 및 금속 산화물을 형성하게 되며, 이때 생성된 리튬 이온이 음극으로 이동하여, 음극 활물질 내에 상기 리튬 이온이 들어가 음극을 리튬화(lithiation)함에 따라, 음극의 비가역 용량이 감소하게 된다. That is, when the battery is charged to less than 2.5 V which is less than the driving voltage range of the positive electrode active material, the electrochemical reaction of the positive electrode active material does not occur, and the metal particles and the lithium oxide included in the composition for forming the positive electrode are electrochemically reacted do. That is, the metal particles contained in the positive electrode and the additive including the lithium oxide react with each other at less than the drive voltage range of the positive electrode active material (less than 2.5 V) to form lithium ions and metal oxides, As the lithium ions enter the negative electrode active material to lithiate the negative electrode, the irreversible capacity of the negative electrode decreases.
더불어, 반응 후 형성된 금속 산화물에 의해 충방전 공정 중 발생할 수 있는 CO 또는 CO2 등의 가스가 흡착되어, 전지의 스웰링 현상이 저감될 수 있다. In addition, due to the metal oxide formed after the reaction, gas such as CO or CO 2 that may occur during the charging / discharging process is adsorbed, and the swelling phenomenon of the battery can be reduced.
구체적으로, 양극 형성용 조성물에 포함되는 첨가제로서 Fe 입자 및 Li2O를 사용할 경우, 2.5 V 미만에서 Fe 입자 및 Li2O는 하기 식 (1) 내지 (3)과 같은 전기화학적 반응을 일으키게 된다. Specifically, when using the Fe particles and Li 2 O as the additive contained in the composition for a positive electrode formed, 2.5 V less than Fe particle and a Li 2 O is causing the electrochemical reaction represented by the following general formula (1) to (3) .
2Fe + 3Li2O → Li2Fe2O3 + 4Li+ + 4e- (1) 2Fe + 3Li 2 O? Li 2 Fe 2 O 3 + 4Li + + 4e - (1)
Li2Fe2O3 → α-Li2Fe2O3 + Li+ + e- (2)Li 2 Fe 2 O 3 ? - Li 2 Fe 2 O 3 + Li + + e - (2)
α-Li2Fe2O3 → Fe2O3 + Li+ + e- (3)? - Li 2 Fe 2 O 3 ? Fe 2 O 3 + Li + + e - (3)
이때, 최종 생성되는 Fe2O3는 양극에 잔류하여 충방전 공정 중 발생할 수 있는 가스를 흡착하여, 전지의 스웰링 현상을 저감시키고, 리튬 이온은 음극으로 이동하여, 음극을 리튬화시킨다. At this time, finally produced Fe 2 O 3 remains on the anode to adsorb the gas that may occur during the charging / discharging process to reduce the swelling phenomenon of the battery, and lithium ions move to the cathode to lithium ionize the cathode.
상기와 같은 반응에 따라, 상기 음극은 별도의 리튬화 공정을 수행하지 않더라도, 상기 음극의 비가역 용량을 저하시켜 결과적으로 이차전지의 고용량화 및 초기 용량 개선 효과를 달성할 수 있다.According to the above-described reaction, the negative electrode may reduce the irreversible capacity of the negative electrode even if a separate lithiation process is not performed, and as a result, it is possible to achieve an effect of increasing the capacity and capacity of the secondary battery.
또한, 상기 이차전지에 포함되는 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.As the separator included in the secondary battery, a conventional porous polymer film conventionally used as a separator, such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene / A porous polymer film made of a polyolefin-based polymer such as a polyolefin-based polymer can be used alone or in a laminated state or a nonwoven fabric made of a conventional porous nonwoven fabric such as a glass fiber having a high melting point or a polyethylene terephthalate fiber can be used But is not limited thereto.
이때, 내열성 또는 기계적 강도 확보를 위해 무기물이 추가로 코팅된 유무기 복합 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.At this time, an organic / inorganic composite membrane having an additional inorganic coating may be used for securing heat resistance or mechanical strength, and may be selectively used as a single layer or a multi-layer structure.
상기 무기물은 유무기 복합 분리막의 기공을 균일하게 제어하고 내열성을 향상시키는 역할을 할 수 있는 물질이라면 특별히 한정되지 않고 사용될 수 있다. 예컨대, 상기 무기물은 비제한적인 예로는 SiO2, Al2O3, TiO2, BaTiO3, Li2O, LiF, LiOH, Li3N, BaO, Na2O, Li2CO3, CaCO3, LiAlO2, SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, SiC, 및 이들의 유도체와 이들의 혼합물로 이루어진 군에서 선택된 적어도 하나를 들 수 있다.The inorganic material is not particularly limited as long as it can control the pores of the organic / inorganic composite separation membrane uniformly and improve the heat resistance. For example, the inorganic material is a non-limiting example is SiO 2, Al 2 O 3, TiO 2, BaTiO 3, Li 2 O, LiF, LiOH, Li 3 N, BaO, Na 2 O, Li 2 CO 3, CaCO 3, At least one selected from the group consisting of LiAlO 2 , SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiC and their derivatives and mixtures thereof.
상기 무기물의 평균 직경은 0.001 ㎛ 내지 10 ㎛일 수 있으며, 보다 구체적으로는 0.001 ㎛ 내지 1 ㎛일 수 있다. 무기물의 평균 직경이 상기 범위 이내이면 코팅 용액 내의 분산성이 향상되고, 코팅 공정에서의 문제 발생을 최소화할 수 있다. 또한, 최종 분리막의 물성을 균일하게 할 수 있을 뿐만 아니라, 무기입자가 부직포의 기공에 균일하게 분포되어 부직포의 기계적 물성을 향상시킬 수 있으며, 유무기 복합 분리막의 기공의 크기를 용이하게 조절 가능한 이점이 있다.The average diameter of the inorganic material may be 0.001 탆 to 10 탆, and more specifically 0.001 탆 to 1 탆. If the average diameter of the inorganic materials is within the above range, the dispersibility in the coating solution is improved and the occurrence of problems in the coating process can be minimized. In addition, the physical properties of the final separation membrane can be made uniform, the inorganic particles can be uniformly distributed in the pores of the nonwoven fabric to improve the mechanical properties of the nonwoven fabric, and the advantage of easily controlling the pore size of the organic- .
상기 유무기 복합 분리막의 기공의 평균 직경은 0.001 ㎛ 내지 10 ㎛의 범위일 수 있으며, 보다 구체적으로는 0.001 ㎛ 내지 1 ㎛일 수 있다. 상기 유무기 복합 분리막의 기공의 평균 직경이 상기 범위 이내이면 기체 투과도 및 이온 전도도를 원하는 범위로 제어할 수 있을 뿐만 아니라, 상기 유무기 복합 분리막을 이용하여 전지를 제조 시, 양극과 음극의 접촉에 의한 전지의 내부 단락 가능성을 없앨 수 있다.The average diameter of the pores of the organic / inorganic hybrid separator may be in the range of 0.001 to 10 mu m, more specifically 0.001 to 1 mu m. When the average diameter of the pores of the organic / inorganic hybrid separator is within the above range, gas permeability and ion conductivity can be controlled within a desired range. In addition, when the battery is manufactured using the organic / inorganic hybrid separator, It is possible to eliminate the possibility of an internal short circuit of the battery by the battery.
상기 유무기 복합 분리막의 기공도는 30 부피% 내지 90 부피%의 범위 내 일수 있다. 기공도가 상기 범위 내인 경우, 이온 전도성이 높아지며 기계적 강도가 우수해질 수 있다.The porosity of the organic / inorganic hybrid membrane may range from 30% by volume to 90% by volume. When the porosity is within the above range, the ion conductivity can be increased and the mechanical strength can be enhanced.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in the production of a lithium secondary battery. It is not.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다. Specifically, the electrolyte may include an organic solvent and a lithium salt.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. The organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move. Specifically, examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and? -Caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a linear, branched or cyclic hydrocarbon group having 2 to 20 carbon atoms, which may contain a double bond aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used. Among these, a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable. In this case, when the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1: 1 to about 1: 9, the performance of the electrolytic solution may be excellent.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the lithium salt, LiPF 6, LiClO 4, LiAsF 6, LiBF 4, LiSbF 6, LiAl0 4, LiAlCl 4, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (C 2 F 5 SO 3) 2 , LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2. LiCl, LiI, or LiB (C 2 O 4 ) 2 may be used. The concentration of the lithium salt is preferably in the range of 0.1 to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lithium ion can effectively move.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.In addition to the electrolyte components, the electrolyte may contain, for example, a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like, pyridine, triethanolamine, or the like for the purpose of improving lifetime characteristics of the battery, Ethyl phosphite, triethanol amine, cyclic ether, ethylenediamine, glyme, hexametriamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, At least one additive such as benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, The additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.As described above, since the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, it can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다. According to another embodiment of the present invention, there is provided a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.The battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. The lithium secondary battery according to the present invention can be used not only in a battery cell used as a power source of a small device but also as a unit cell in a middle- or large-sized battery module including a plurality of battery cells.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail by way of examples with reference to the following examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to enable those skilled in the art to more fully understand the present invention.
실시예Example
제조예Manufacturing example 1 One
평균 입경 50 nm의 Fe와, Li2O 분말을 1:1.5의 몰비로 혼합하여, 비가역 양극 첨가제를 제조하였다. Fe having an average particle diameter of 50 nm and Li 2 O powder were mixed at a molar ratio of 1: 1.5 to prepare an irreversible anode additive.
제조예Manufacturing example 2 2
평균 입경 5 ㎛의 Fe와, Li2O 분말을 1:1.5의 몰비로 혼합하여, 비가역 양극 첨가제를 제조하였다. Fe having an average particle diameter of 5 탆 and Li 2 O powder were mixed at a molar ratio of 1: 1.5 to prepare an irreversible anode additive.
비교 compare 제조예Manufacturing example 1 One
Li2O 분말을 100% 이용하여 비가역 양극 첨가제를 제조하였다.An irreversible anode additive was prepared using 100% Li 2 O powder.
실시예Example 1 One
(양극 제조)(Anode manufacture)
LiNi0 . 8Mn0 . 1Co0 . 1O2 양극 활물질 97.5 중량부, 도전재로서 Denka 社의 FX35를 1 중량부, 바인더로서 DA288(KUREHA 社)을 1.5 중량부를 용매 중에서 혼합하고, 이들의 고형분 전체 중량에 대하여 제조예 1에서 제조한 비가역 양극 첨가제 1 중량부를 용매 중에서 혼합하여 양극 형성용 조성물을 제조하였다. 이를 두께 20 ㎛인 양극 집전체(Al 박막)에 6 mAh/cm2의 로딩량으로 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 양극을 제조하였다.LiNi 0 . 8 Mn 0 . 1 Co 0 . 97.5 parts by weight of 1 O 2 cathode active material, 1 part by weight of FX35 of Denka as a conductive material, and 1.5 parts by weight of DA288 (KUREHA Corporation) as a binder were mixed in a solvent, 1 part by weight of an irreversible positive electrode additive were mixed in a solvent to prepare a composition for forming a positive electrode. This was applied to a positive electrode current collector (Al thin film) having a thickness of 20 μm at a loading amount of 6 mAh / cm 2 , dried, and roll pressed to prepare a positive electrode.
(음극 제조)(Cathode manufacture)
흑연 음극 활물질과 SiO 음극 활물질을 70:30 비율로 혼합한 혼합 음극 활물질 94.2 중량부, 바인더로서 A544(ZEON 社) 2.5 중량부, 도전재로 Super C65(Timcal 社) 2 중량부, 및 증점제로 Daicell 2000(Daicell 社) 1.3 중량부로 혼합하여 용제인 물에 첨가하여 음극 형성용 조성물 제조하였다. 상기 음극 형성용 조성물을 두께가 20 ㎛인 음극 집전체 (Cu 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 음극을 제조하였다.94.2 parts by weight of a mixed anode active material obtained by mixing graphite anode active material and SiO2 anode active material in a ratio of 70:30, 2.5 parts by weight of A544 (ZEON) as a binder, 2 parts by weight of Super C65 (Timcal) as a conductive material, 2000 (Daicel Co.), and the mixture was added to water as a solvent to prepare a composition for forming an anode. The negative electrode composition was coated on a negative electrode current collector (Cu thin film) having a thickness of 20 탆, dried, and roll pressed to prepare a negative electrode.
(이차전지 제조)(Secondary Battery Manufacturing)
전술한 방법으로 제조한 양극과 음극을 분리막과 함께 적층하여 전극조립체를 제조한 다음, 이를 전지 케이스에 넣고 전해액을 주입하고, 밀봉하여 리튬 이차전지를 제조하였다.The positive electrode and the negative electrode prepared by the above-described method were laminated together with a separator to produce an electrode assembly. The electrode assembly was inserted into a battery case, and an electrolyte solution was injected and sealed to prepare a lithium secondary battery.
실시예Example 2 2
상기 제조예 1에서 제조한 비가역 양극 첨가제를 2 중량부 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극, 음극, 및 이를 포함하는 이차전지를 제조하였다. A positive electrode, a negative electrode and a secondary battery including the same were prepared in the same manner as in Example 1, except that 2 parts by weight of the irreversible positive electrode additive prepared in Preparation Example 1 was used.
실시예Example 3 3
상기 제조예 1에서 제조한 비가역 양극 첨가제를 3 중량부 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극, 음극, 및 이를 포함하는 이차전지를 제조하였다.A positive electrode, a negative electrode and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that 3 parts by weight of the irreversible positive electrode additive prepared in Preparation Example 1 was used.
실시예Example 4 4
상기 제조예 1에서 제조한 비가역 양극 첨가제를 4 중량부 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극, 음극, 및 이를 포함하는 이차전지를 제조하였다.A positive electrode, a negative electrode and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that 4 parts by weight of the irreversible positive electrode additive prepared in Preparation Example 1 was used.
실시예Example 5 5
상기 제조예 1에서 제조한 비가역 양극 첨가제를 5 중량부 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극, 음극, 및 이를 포함하는 이차전지를 제조하였다.A positive electrode, a negative electrode and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that 5 parts by weight of the irreversible positive electrode additive prepared in Preparation Example 1 was used.
실시예Example 6 6
상기 제조예 1에서 제조한 비가역 양극 첨가제를 6 중량부 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극, 음극, 및 이를 포함하는 이차전지를 제조하였다.A positive electrode, a negative electrode and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that 6 parts by weight of the irreversible positive electrode additive prepared in Preparation Example 1 was used.
실시예Example 7 7
상기 제조예 1에서 제조한 비가역 양극 첨가제를 7 중량부 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극, 음극, 및 이를 포함하는 이차전지를 제조하였다.A positive electrode, a negative electrode, and a secondary battery including the same were prepared in the same manner as in Example 1, except that 7 parts by weight of the irreversible positive electrode additive prepared in Preparation Example 1 was used.
비교예Comparative Example 1 One
양극 형성용 조성물에 첨가제를 포함하지 않는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 양극, 음극, 및 이를 포함하는 이차전지를 제조하였다.A positive electrode, a negative electrode and a secondary battery including the positive electrode and the negative electrode were prepared in the same manner as in Example 1, except that the additive was not included in the composition for forming the positive electrode.
실험예Experimental Example 1:  One: 비가역Irreversible 첨가제의 비가역성 확인 Identification of irreversibility of additive
상기 제조예 1, 2, 및 비교 제조예 1에서 제조한 비가역 양극 첨가제와, 도전재, 및 바인더를 용매 중에서 80:10:10의 중량비로 혼합하여 비가역 첨가제 조성물 1 내지 3을 각각 제조하였다. 이를 각각 양극 집전체에 도포한 후, 건조하고 롤 프레스를 실시하여, 상기 제조예 1, 2, 및 비교 제조예 1에서 제조한 비가역 첨가제의 비가역성을 확인하기 위한 시험 양극 1, 2, 및 비교 시험 양극 1을 각각 제조하였다. 이때, 도전재, 바인더, 및 용매 각각은 상기 실시예 1과 동일한 물질을 사용하였다. Irreversible additive compositions 1 to 3 were prepared by mixing the irreversible positive electrode additive prepared in Preparation Examples 1 and 2 and Comparative Preparation Example 1, the conductive material and the binder in a solvent in a weight ratio of 80:10:10. The positive electrode current collector was coated on the positive electrode current collector, followed by drying and roll pressing to obtain test negative electrodes 1 and 2 and comparative test for confirming the irreversibility of the irreversible additives prepared in Preparation Examples 1 and 2 and Comparative Preparation Example 1 Respectively. Here, the same materials as in Example 1 were used for the conductive material, the binder, and the solvent, respectively.
상기 시험 양극 1, 2, 및 비교 시험 양극 1을 각각 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 음극 및 이를 포함하는 시험 이차전지 1 내지 3을 각각 제조하였다.The negative electrode and the test secondary batteries 1 to 3 including the same were prepared in the same manner as in Example 1 except that the test positive electrodes 1 and 2 and the comparative test positive electrode 1 were respectively used.
상기에서 제조한 시험 이차전지 1 내지 3을 각각 이용하여, 25℃에서 0.1C의 정전류로 4.2 V가 될때까지 충전하고, 이후 4.2 V의 정전압으로 충전하여 충전 전류가 0.1 mAh가 될때까지 충전하였다. 이후 60 분간 방치한 다음 0.1C의 정전류로 2.5 V가 될때까지 방전하여 1사이클째의 용량을 측정하였다.Each of the test secondary batteries 1 to 3 prepared above was charged to 4.2 V at a constant current of 0.1 C at 25 캜 and then charged at a constant voltage of 4.2 V until the charge current reached 0.1 mAh. Thereafter, the battery was allowed to stand for 60 minutes, and discharged at a constant current of 0.1 C until it reached 2.5 V, and the capacity of the first cycle was measured.
이와 관련하여, 도 1은 상기 시험 양극 1, 2, 및 비교 시험 양극 1을 포함하는 시험 이차전지 1 내지 3의 충전 및 방전 용량을 나타낸 도면이다. 도 1에 도시된 바와 같이, 상기 시험 이차전지 1 내지 3의 경우, 방전 용량은 측정되지 않고, 충전 용량만이 나타나는 것을 확인할 수 있었다. 이에 따라, 상기 제조예 1 내지 3에서 사용된 비가역 양극 첨가제는 비가역성을 나타내는 것임을 확인할 수 있다. 또한, 상기 제조예 1 및 2에서 제조된 비가역 양극 첨가제의 경우, 충전 용량이 비교 제조예 1에서 제조된 양극 첨가제보다 월등히 높은 것을 확인할 수 있었다. 이는 제조예 1 및 2에서 제조된 비가역 양극 첨가제의 경우, 리튬 산화물뿐만 아니라 금속 입자를 함께 포함함으로써 상기 리튬 산화물과 상기 금속 입자의 반응에 의해 상기 비가역 양극 첨가제의 충전 용량이 향상되기 때문이다. 더불어, 상기 제조예 1에서 사용된 비가역 양극 첨가제의 충전 용량이 제조예 2에서 사용된 것보다 높은 것을 확인할 수 있다. 이는 상기 비가역 양극 첨가제에 포함되는 금속 입자의 평균 입경이 작을수록, 리튬 산화물과의 반응이 용이하게 이루어져 초기 용량을 더욱 향상시키기 때문이다.In this connection, Fig. 1 shows the charging and discharging capacities of the test secondary batteries 1 to 3 including the test electrodes 1 and 2 and the comparative test electrode 1, respectively. As shown in FIG. 1, in the case of the test secondary batteries 1 to 3, it was confirmed that the discharge capacity was not measured and only the charge capacity appeared. Thus, it can be confirmed that the irreversible anode additive used in Production Examples 1 to 3 exhibits irreversibility. In addition, it was confirmed that the irreversible anode additive prepared in Preparation Examples 1 and 2 had a much higher charge capacity than the cathode additive prepared in Comparative Preparation Example 1. This is because, in the case of the irreversible positive electrode additive prepared in Preparation Examples 1 and 2, the charging capacity of the irreversible positive electrode additive is improved by the reaction of the lithium oxide and the metal particles by including the lithium oxide as well as the metal particles. In addition, it can be confirmed that the charging capacity of the irreversible anode additive used in Production Example 1 is higher than that used in Production Example 2. This is because the smaller the average particle diameter of the metal particles contained in the irreversible positive electrode additive is, the more easily the reaction with the lithium oxide is performed to further improve the initial capacity.
실험예Experimental Example 2: 이차전지의 특성 평가 2: Characterization of secondary battery
실시예 1 내지 7, 및 비교예 1에서 제조한 전지를 25℃에서 0.1C의 정전류로 4.2 V가 될때까지 충전하고, 이후 4.2 V의 정전압으로 충전하여 충전 전류가 0.1 mAh가 될때까지 충전하였다. 이후 60 분간 방치한 다음 0.1C의 정전류로 2.5 V가 될때까지 방전하여 1 사이클째의 용량을 측정하였고, 이들을 시뮬레이션하여 상기 이차전지들의 에너지 밀도를 측정하였다.The batteries prepared in Examples 1 to 7 and Comparative Example 1 were charged at a constant current of 0.1 C at a temperature of 25 ° C until the voltage reached 4.2 V and then charged at a constant voltage of 4.2 V until the charging current reached 0.1 mAh. Thereafter, the battery was allowed to stand for 60 minutes, discharged at a constant current of 0.1 C until it reached 2.5 V, and the capacity of the first cycle was measured. The energy density of the secondary batteries was measured by simulation.
그 결과를 하기 표 1에 나타내었다.The results are shown in Table 1 below.
에너지 밀도 (Wh/L)Energy density (Wh / L)
실시예 1Example 1 805.2805.2
실시예 2Example 2 817.7817.7
실시예 3Example 3 830.4830.4
실시예 4Example 4 843.1843.1
실시예 5Example 5 847.1847.1
실시예 6Example 6 842.3842.3
실시예 7Example 7 836.6836.6
비교예 1Comparative Example 1 792.7792.7
상기 표 1에 나타난 바와 같이, 니켈-함유 양극 활물질에 첨가제로서 금속 입자 및 리튬 산화물을 포함하는 실시예 1 내지 7의 경우, 첨가제를 사용하지 않는 비교예 1의 이차전지에 비해 에너지 밀도가 우수한 것을 확인할 수 있었다.As shown in Table 1, Examples 1 to 7 including metal particles and lithium oxide as additives in the nickel-containing cathode active material had better energy densities than the secondary batteries of Comparative Example 1 in which additives were not used I could confirm.
이는, 실시예 1 내지 7의 경우 초기 충전(2.5 V 미만)시 니켈-함유 양극 활물질에 비가역 첨가제로서 포함되는 금속 입자와 리튬 산화물이 전기 화학적으로 반응하여, 상기 반응에 의해 생성된 리튬 이온이 음극으로 이동하여, 초기 충전시 음극에 과량의 리튬을 보내 음극을 리튬화시킴으로써 상기 음극의 비가역 용량을 낮추기 때문이다. This is because, in the case of Examples 1 to 7, the metal particles included as an irreversible additive in the nickel-containing positive electrode active material and the lithium oxide electrochemically react with each other during the initial charging (less than 2.5 V) , And an excessive amount of lithium is sent to the negative electrode at the time of initial charging to reduce the irreversible capacity of the negative electrode by lithiating the negative electrode.
비교예 1의 경우, 비가역 첨가제를 포함하지 않기 때문에, 초기 충전시 양극에서 방출하는 리튬 외에 음극에 추가적으로 리튬을 제공할 수 없어, 초기 용량 또한 본 발명에 따른 실시예 1 내지 7 보다 낮게 나타났다.In the case of Comparative Example 1, since no irreversible additive was included, lithium could not be additionally supplied to the cathode in addition to lithium released from the anode at the time of initial charging, and the initial capacity was also lower than those of Examples 1 to 7 according to the present invention.

Claims (19)

  1. 니켈-함유 양극 활물질; 및Nickel-containing cathode active material; And
    금속 입자 및 리튬 산화물을 포함하는 첨가제를 포함하는 양극. An anode comprising an additive comprising metal particles and lithium oxide.
  2. 제1항에 있어서,The method according to claim 1,
    상기 첨가제는 Fe, Co, Cr, Mn, Ni, 및 이들의 조합으로 이루어진 군에서 선택되는 금속 입자를 포함하는 것인, 양극. Wherein the additive comprises metal particles selected from the group consisting of Fe, Co, Cr, Mn, Ni, and combinations thereof.
  3. 제1항에 있어서, The method according to claim 1,
    상기 첨가제는 Li2O, Li2O2, LiO2, 및 이들의 조합으로 이루어진 군에서 선택되는 리튬 산화물을 포함하는 것인, 양극. Wherein the additive comprises a lithium oxide selected from the group consisting of Li 2 O, Li 2 O 2 , LiO 2 , and combinations thereof.
  4. 제1항에 있어서, The method according to claim 1,
    상기 금속 입자 및 리튬 산화물은 1:0.1 내지 1:4의 몰비로 포함하는, 양극. Wherein the metal particles and the lithium oxide are contained in a molar ratio of 1: 0.1 to 1: 4.
  5. 제1항에 있어서,The method according to claim 1,
    상기 양극 총 중량에 대해 상기 니켈-함유 양극 활물질이 1 내지 99중량부로 포함되는 것인, 양극.Wherein the nickel-containing positive electrode active material is contained in an amount of 1 to 99 parts by weight based on the total weight of the positive electrode.
  6. 제1항에 있어서,The method according to claim 1,
    상기 양극 총 중량에 대해 상기 첨가제가 0.1 내지 100중량부로 포함되는 것인, 양극.Wherein the additive is included in an amount of 0.1 to 100 parts by weight based on the total weight of the positive electrode.
  7. 제1항에 있어서,The method according to claim 1,
    상기 니켈-함유 양극 활물질의 구동 전압은 2.5 V 내지 4.3 V인, 양극.Wherein the driving voltage of the nickel-containing positive electrode active material is 2.5 V to 4.3 V.
  8. 제1항에 있어서,The method according to claim 1,
    상기 첨가제의 구동 전압은 2.5 V 미만인, 양극. Wherein the driving voltage of the additive is less than 2.5 volts.
  9. 제1항에 있어서,The method according to claim 1,
    상기 금속 입자의 평균 입경은 5 ㎛ 이하인, 양극. Wherein the average particle diameter of the metal particles is 5 占 퐉 or less.
  10. 제1항에 있어서,The method according to claim 1,
    상기 양극은 도전재 및 바인더를 더 포함하는 것인, 양극.Wherein the anode further comprises a conductive material and a binder.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 양극, 음극, 및 상기 양극 및 음극 사이에 개재된 분리막을 포함하는, 리튬 이차전지. A lithium secondary battery comprising a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode according to any one of claims 1 to 10.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 음극은 규소계 음극 활물질을 포함하는 것인, 리튬 이차전지. Wherein the negative electrode comprises a silicon-based negative active material.
  13. 제11항에 있어서,12. The method of claim 11,
    금속 입자 및 리튬 산화물을 포함하는 첨가제가 양극 활물질의 구동 전압 범위 미만에서 반응하여 리튬 이온 및 금속 산화물을 형성하고, 상기 리튬 이온이 음극으로 이동하는 것인, 리튬 이차전지. Wherein the additive comprising metal particles and lithium oxide reacts below the drive voltage range of the positive electrode active material to form lithium ions and metal oxides and the lithium ions migrate to the negative electrode.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 양극 활물질의 구동 전압은 2.5 V 내지 4.3 V인, 리튬 이차전지.And the driving voltage of the positive electrode active material is 2.5 V to 4.3 V.
  15. 제13항에 있어서,14. The method of claim 13,
    상기 첨가제의 구동 전압은 2.5 V 미만인, 리튬 이차전지.And the driving voltage of the additive is less than 2.5 V.
  16. 금속 입자 및 리튬 산화물을 포함하는, 양극용 첨가제.Metal particles, and lithium oxide.
  17. 제16항에 있어서,17. The method of claim 16,
    상기 금속 입자는 Fe, Co, Cr, Mn, Ni, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 포함하는 것인, 양극용 첨가제.Wherein the metal particles include one selected from the group consisting of Fe, Co, Cr, Mn, Ni, and combinations thereof.
  18. 제16항에 있어서, 17. The method of claim 16,
    상기 리튬 산화물은 Li2O, Li2O2, LiO2, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 포함하는 것인, 양극용 첨가제. Wherein the lithium oxide comprises one selected from the group consisting of Li 2 O, Li 2 O 2 , LiO 2 , and combinations thereof.
  19. 제16항에 있어서, 17. The method of claim 16,
    상기 금속 입자 및 리튬 산화물을 1:0.1 내지 1:4의 몰비로 포함하는, 양극용 첨가제. Wherein the metal particles and the lithium oxide are contained in a molar ratio of 1: 0.1 to 1: 4.
PCT/KR2018/007313 2017-06-27 2018-06-27 Cathode for lithium secondary battery and lithium secondary battery comprising same WO2019004731A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880004852.4A CN110036509B (en) 2017-06-27 2018-06-27 Positive electrode for lithium secondary battery and lithium secondary battery comprising same
PL18822950.4T PL3540830T3 (en) 2017-06-27 2018-06-27 Cathode for lithium secondary battery and lithium secondary battery comprising same
EP18822950.4A EP3540830B1 (en) 2017-06-27 2018-06-27 Cathode for lithium secondary battery and lithium secondary battery comprising same
US16/344,196 US10910637B2 (en) 2017-06-27 2018-06-27 Positive electrode for lithium secondary battery and lithium secondary battery including the same
JP2019536969A JP2020505719A (en) 2017-06-27 2018-06-27 Positive electrode for lithium secondary battery and lithium secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170081273 2017-06-27
KR10-2017-0081273 2017-06-27
KR1020180074359A KR102268082B1 (en) 2017-06-27 2018-06-27 Positive electrode for lithium secondary battery and lithium secondary battery including the same
KR10-2018-0074359 2018-06-27

Publications (1)

Publication Number Publication Date
WO2019004731A1 true WO2019004731A1 (en) 2019-01-03

Family

ID=64741734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007313 WO2019004731A1 (en) 2017-06-27 2018-06-27 Cathode for lithium secondary battery and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2019004731A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306330A (en) * 2002-04-11 2003-10-28 Nikko Materials Co Ltd Lithium-containing double oxide and method for manufacturing it
JP2004186130A (en) * 2002-10-10 2004-07-02 Shin Kobe Electric Mach Co Ltd Non-aqueous lithium secondary battery
KR100515029B1 (en) * 2003-05-07 2005-09-15 한국과학기술연구원 A cathode active material treated with a conductive material, metallic oxide or mixtures thereof, a cathode and lithium battery using the same, and preparation method thereof
KR20120027707A (en) * 2010-09-13 2012-03-22 삼성에스디아이 주식회사 Positive electrode active material, manufacturing method thereof and lithium secondary battery using the same
KR20150026864A (en) * 2013-08-29 2015-03-11 주식회사 엘지화학 Lithium transition metal composite particles, preparation method thereof, and cathode active material comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306330A (en) * 2002-04-11 2003-10-28 Nikko Materials Co Ltd Lithium-containing double oxide and method for manufacturing it
JP2004186130A (en) * 2002-10-10 2004-07-02 Shin Kobe Electric Mach Co Ltd Non-aqueous lithium secondary battery
KR100515029B1 (en) * 2003-05-07 2005-09-15 한국과학기술연구원 A cathode active material treated with a conductive material, metallic oxide or mixtures thereof, a cathode and lithium battery using the same, and preparation method thereof
KR20120027707A (en) * 2010-09-13 2012-03-22 삼성에스디아이 주식회사 Positive electrode active material, manufacturing method thereof and lithium secondary battery using the same
KR20150026864A (en) * 2013-08-29 2015-03-11 주식회사 엘지화학 Lithium transition metal composite particles, preparation method thereof, and cathode active material comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3540830A4 *

Similar Documents

Publication Publication Date Title
WO2019103460A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2018097562A1 (en) Positive electrode for secondary battery and lithium secondary battery comprising same
WO2019103463A1 (en) Cathode material for lithium secondary battery, and cathode and lithium secondary battery which comprise same
WO2019151834A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019147017A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019194510A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2019050282A1 (en) Lithium secondary battery cathode active material, preparation method therefor, lithium secondary battery cathode comprising same, and lithium secondary battery
WO2019022422A1 (en) Secondary battery cathode and lithium secondary battery comprising same
WO2019059552A2 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019164347A1 (en) Negative electrode active material for lithium secondary battery, negative electrode containing same for lithium secondary battery, and lithium secondary battery
WO2020149679A1 (en) Lithium secondary battery and method for manufacturing same
WO2019059647A2 (en) Positive electrode material for lithium secondary battery, method for manufacturing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
WO2019017643A9 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2021187907A1 (en) Cathode material for lithium secondary battery, and cathode and lithium secondary battery each comprising same
WO2022164281A1 (en) Positive electrode, and lithium secondary battery comprising same
WO2019013511A2 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2021096204A1 (en) Irreversible additive, cathode material comprising irreversible additive, and lithium secondary battery comprising cathode material
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2021049918A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2020067830A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery comprising same
WO2020149683A1 (en) Anode active material for secondary battery, method for preparing same, anode for secondary battery comprising same, and lithium secondary battery
WO2021125873A1 (en) Positive electrode for lithium secondary battery, and lithium secondary battery comprising same
WO2021153936A1 (en) Positive electrode active material for secondary battery and lithium secondary battery comprising same
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2019078685A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018822950

Country of ref document: EP

Effective date: 20190611

ENP Entry into the national phase

Ref document number: 2019536969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE