WO2019004445A1 - Device for computing optimal operation plan and method for computing optimal operation plan - Google Patents

Device for computing optimal operation plan and method for computing optimal operation plan Download PDF

Info

Publication number
WO2019004445A1
WO2019004445A1 PCT/JP2018/024874 JP2018024874W WO2019004445A1 WO 2019004445 A1 WO2019004445 A1 WO 2019004445A1 JP 2018024874 W JP2018024874 W JP 2018024874W WO 2019004445 A1 WO2019004445 A1 WO 2019004445A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
route
optimal
arrival
departure
Prior art date
Application number
PCT/JP2018/024874
Other languages
French (fr)
Japanese (ja)
Inventor
政樹 大嶺
直子 森田
久之輔 河田
成子 大橋
恭平 石上
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2019004445A1 publication Critical patent/WO2019004445A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft

Definitions

  • the present invention relates to an optimal operation plan computing device for a ship and an optimal operation plan computing method.
  • the conventional optimal route calculation is operated at a fixed ship speed or a fixed main engine speed under the planned departure time and arrival time restriction conditions for one ocean with high fuel efficiency reduction effect.
  • the route (latitude and longitude) is optimized and calculated on the assumption that
  • Patent Document 1 a configuration for weighting grid points (nodes) for optimal route search has been proposed as in Patent Document 1 below. Further, for example, as described in Patent Document 2 below, it has been proposed to set an essential passage point midway along the route and to calculate the optimum route so as to surely pass the essential passage point.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide an optimum flight plan computing device and an optimum flight plan computing method capable of automatically performing the formulation of a suitable route according to the actual situation.
  • an optimum operation plan computing device including: an information input receiving unit that receives an input of information including a departure place, an arrival place, and a departure time of a ship; the input information; And an optimal operation plan computing unit for computing an optimal operation plan including an optimal route based on weather data of a route area where the ship navigates, and the optimal operation plan computing unit is based on the weather data.
  • a determination unit that determines whether or not the ship is unable to navigate and the weather is in a poor condition; and the vicinity area of the departure place or the arrival place is the ship.
  • the vessel stops at a predetermined point for a predetermined time, or the vessel passes through the vicinity before the vicinity becomes the weather.
  • a constraint condition setting unit that sets the constraint condition as the constraint condition, and the optimal operation plan calculation unit is configured to calculate the optimal route based on the constraint condition when the constraint condition is set. .
  • the ship when the area near the departure place or the arrival place is in a poor weather condition, the ship is stopped at a predetermined point on the optimum route, or the near area passes the nearby area before the bad weather condition occurs. It is possible to calculate the optimal operation plan that is considered. For this reason, by stopping the ship at a predetermined point, as well as a route to avoid a bad weather condition, waiting for the recovery of the weather in an area where the weather is bad, or passing the area before the bad weather occurs. It is possible to calculate the optimal flight plan, including the conventional route. That is, according to the above configuration, it is possible to automatically calculate an optimal operation plan in which the concept of time is considered in the optimal route. Therefore, it is possible to automatically determine a suitable route more in line with the actual situation.
  • the optimal operation plan calculation unit changes the departure time or the arrival time when it is determined that the area near the departure place or the arrival place is in the bad weather condition, and changes the departure time or arrival after the change.
  • the optimal route may be calculated based on the time of day. As a result, if the weather near the departure place or arrival place is in poor weather, the departure time or arrival time is automatically changed even if the user does not change the departure time or arrival time.
  • An optimal flight plan is calculated that takes into account the modified departure time or arrival time. Therefore, it is possible to automatically obtain the calculation result of the preferred route along the more actual operation.
  • the optimal operation plan calculation unit intersects the vicinity area and a predetermined route from the departure site to the arrival site.
  • a reference position setting unit for setting a position as a reference position, the optimal operation plan calculation unit, a first navigation area between the departure point and the reference point, and a distance between the reference point and the arrival point.
  • the second navigation region is divided to calculate the optimum navigation route, and the optimum operation plan calculation unit uses the reference position departure time obtained by adding a predetermined time to the arrival time to the reference position in the first navigation region.
  • the optimal route in the second route region may be calculated.
  • the optimal operation plan calculation unit includes a shortest distance route calculation unit that calculates a shortest distance route connecting the shortest distance between the departure place and the arrival location as the predetermined route for setting the reference position.
  • the reference position setting unit sets a position on the shortest distance route as the reference position, and the optimal operation plan calculation unit uses the arrival time to the reference position in the shortest distance route to the first position.
  • the optimal navigation route in the navigation region is computed, and the determination unit determines whether the region near the arrival site is in the bad weather condition at the reference position departure time, and the optimal operation plan computation unit is:
  • the time at which the predetermined time is added to the reference position departure time is a new reference position departure time It may be set as.
  • the position on the shortest distance route is set as the reference position, and the arrival time to the reference position on the shortest distance route is used to calculate the optimum route in the first and second routes. Therefore, the setting of the arrival time to the reference position and the departure time from the reference position can be set easily and practically.
  • calculation of a suitable route including the stop time of the ship can be performed by lengthening the time for stopping the ship at the reference position. It can be done easily and automatically.
  • the determination unit determines the navigable time obtained by subtracting the predetermined time from the time from the departure time to the arrival time. It is determined whether or not the required navigation time required for navigation from the above to the arrival site is shorter than the minimum required navigation time, and the optimal operation plan calculation unit determines that the navigable time is shorter than the required navigation time.
  • the arrival time may be changed, and the optimum route on the first route may be calculated based on the changed arrival time. According to this, when the ship is stopped at the reference position, it is determined whether it is difficult to arrive at the input arrival time, and it is determined that it is difficult to arrive automatically. The time is changed. Therefore, more realistic route calculation results can be obtained automatically.
  • an optimal operation plan calculation method comprising: an information input receiving step of receiving an input of information including a departure place, an arrival place, and a departure time of a ship; the input information; And an optimal operation plan calculating step of calculating an optimal operation plan including an optimal route based on weather data of a route area where the vessel navigates, and the optimal operation plan calculating step includes A determination step of determining whether or not the vessel is in an uncontrollable weather condition based on the departure place or the arrival place, and the vessel near the departure place or the arrival place is the ship A restraint condition setting step of setting the vessel as a restraint condition at a predetermined point for a predetermined time when it is determined that the weather condition is incapable of navigating. Serial optimum flight plan calculation step, when the constraint condition is set, computing the optimal route based on the constraint conditions.
  • the ship when the area near the departure place or the arrival place is in a poor weather condition, the ship is stopped at a predetermined point on the optimum route, or the near area passes the nearby area before the bad weather condition occurs. It is possible to calculate the optimal operation plan that is considered. For this reason, by stopping the ship at a predetermined point, as well as a route to avoid a bad weather condition, waiting for the recovery of the weather in an area where the weather is bad, or passing the area before the bad weather occurs. It is possible to calculate the optimal flight plan, including the conventional route. That is, according to the above-mentioned method, it is possible to automatically calculate an optimal operation plan in which the concept of time is taken into consideration in the optimal route. Therefore, it is possible to automatically determine a suitable route more in line with the actual situation.
  • FIG. 1 is a block diagram showing a schematic configuration of an optimum flight plan computing device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a navigation route area in a first example of the present embodiment.
  • FIG. 3 is a flowchart showing the flow of arithmetic processing in the first example of FIG.
  • FIG. 4 is a diagram for explaining the optimal route calculation by the DP method.
  • FIG. 5 is a diagram showing a route area in a second example of the present embodiment.
  • FIG. 6 is a flow chart showing the flow of arithmetic processing in the second example of FIG.
  • FIG. 7 is a flow chart showing the flow of arithmetic processing in the modification of the second example of FIG.
  • FIG. 8 is a diagram showing a navigation route area in a third example of the present embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of an optimum flight plan computing device according to an embodiment of the present invention.
  • the optimal operation plan computing device 1 shown in FIG. 1 includes an input unit 2, a storage unit 3, a computing unit 4, and an output unit 5.
  • the configurations 2 to 5 of the optimal flight plan computing device 1 mutually transmit data via the bus 6.
  • the optimal operation plan computing device 1 may be configured by a computer at a land facility, or may be configured as a computer or a controller installed on a ship.
  • the computer installed on the ship exerts some of the functions constituting the optimal operation plan computing device 1
  • the computer installed on the land exerts other functions
  • mutual communication means such as inter-land communication Data may be configured to communicate with each other.
  • the input unit 2 is configured as an input device that allows a user to input information such as a departure place, an arrival place, a departure time, and an arrival time of a ship.
  • the storage unit 3 stores the information input from the input unit 2.
  • the storage unit 3 stores in advance performance data of the ship, weather data of at least a channel area where the ship travels, and an optimal operation plan calculation program.
  • the performance data of a ship is data relating to the performance each ship has individually.
  • Weather data is provided from, for example, an external organization.
  • the weather data is, for example, data on weather (sea weather) in a channel area or the like one week after the present.
  • the weather data may be configured to be sequentially transmitted from the outside through the network and automatically stored in the storage unit 3.
  • the calculation unit 4 executes an optimum operation plan calculation process for calculating an optimum operation plan including the optimum route of the ship based on various types of information stored in the storage unit 3. To this end, the calculation unit 4 executes the optimum flight plan calculation program to exhibit the functions of the information input reception unit 41 and the optimum flight plan calculation unit 42.
  • the information input reception unit 41 receives an input of information including a departure place, an arrival place, a departure time, and an arrival time of the ship.
  • the optimum flight plan calculation unit 42 calculates an optimum flight plan including the optimum route calculated by the optimum route calculation unit 47 described later.
  • the optimal operation plan includes the concept of time suitable for the optimum route (departure time, arrival time, time at a given position on the route, preferred value such as stop time at a given position on the route) .
  • the optimum flight plan calculation unit 42 exerts the functions of the determination unit 43, the restraint condition setting unit 44, the reference position setting unit 45, the shortest distance route calculation unit 46, the optimum route calculation unit 47, and the like.
  • the determination unit 43 determines, based on the weather data, whether or not the area near the departure place or the arrival place is in a bad weather condition in which the ship can not be navigated.
  • the restraint condition setting unit 44 causes the ship to stop at a predetermined point for a predetermined time, when it is determined by the determination unit 43 that the area near the departure point or the arrival point is in a poor weather condition in which the ship can not navigate. It is set as a restraint condition that the ship passes through the near area before the near area becomes the bad weather condition.
  • the optimal flight plan computation unit 42 computes an optimal route based on the constraint condition.
  • the reference position setting unit 45 and the shortest distance route calculation unit 46 perform calculation and processing for setting a point at which the ship stops for a predetermined time as a reference position.
  • the optimum route calculation unit 47 calculates the optimum route based on the input information, the performance data of the ship stored in the storage unit 3, and the weather data of the route area where the ship navigates.
  • the output unit 5 outputs the calculation result in the calculation unit 4.
  • the output unit 5 causes the display (not shown) connected to the optimal flight plan computing device 1 to display the optimal flight plan computed by the computing unit 4 on a map (nautical chart).
  • FIG. 2 is a diagram showing a navigation route area in a first example of the present embodiment. As shown in FIG. 2, in this example, a route departing from a departure point S located on the west side of the ocean toward the east and arriving at an arrival point G located on the east side of the ocean will be described.
  • FIG. 3 is a flowchart showing the flow of arithmetic processing in the first example of FIG.
  • the information input reception unit 41 receives information input including the departure point S, the arrival point G, the departure time T S , and the arrival time T G (step SA1). Note that in such case of sailing vessels from departure time T S at a constant rotational speed, it may be unnecessary information input arrival time T G.
  • the determination unit 43 determines whether the area near the departure point S is in a bad weather condition. For example, the determination unit 43, the period from the starting time T S that is input until the predetermined time X elapses (T S ⁇ T S + X ), the wave height in the peripheral area A S relative to the departure point S, weather It reads from the data and calculates the limit wave height that the ship can navigate from the performance data. Then, the determination unit 43, in the period T S ⁇ T S + X, determines the wave height in the peripheral area A S is whether the limit height (step SA2).
  • the peripheral area AS is set as a rectangular area centered on the departure point S, but is not limited thereto.
  • the traveling direction side of the ship from the departure point S arrival point G
  • the region may be biased to the side), and the shape may be variously adopted such as a circle or an ellipse.
  • the determining unit 43 determines that the area near the departure place S is not in a bad weather condition. .
  • the optimum flight plan calculation unit 42 calculates the optimum route based on the departure time T S that is input (step SA3).
  • the optimum route calculation unit 47 calculates a specific optimum route based on a known method as described later.
  • the determination unit 43 determines that the area near the departure point S has a bad weather condition. It is determined that Incidentally, at least part of the duration of the period T S ⁇ T S + X, wave height of at least a portion of the area of the peripheral region A S is not less than the limit height, is determined No in step SA2. In the example of FIG. 2, bad weather area A H is present in some areas of the peripheral region A S.
  • the optimum flight plan calculation unit 42 changes the departure time T S (step SA4).
  • the optimum flight plan calculation unit 42 sets the time T S + Y obtained by adding a predetermined time Y in the starting time T S as a new departure time T S.
  • Step SA2 determination wave height in the peripheral area A S is whether the limit height (Step SA2). If the wave height in the surrounding area A S in the new period T S to T S + X is lower than the limit wave height (Yes in step SA2), the optimal operation plan computation unit 42 is optimal based on the departure time T S after change.
  • the route is calculated (step SA3). In this way, after delaying the departure time T S until the vessel becomes ready for departure, the optimal route calculation is performed based on the departure time T S at which the vessel can depart.
  • the restraint condition setting unit 44 determines that the ship is at the departure point S when it is determined that the area near the departure point S (peripheral area A S ) is a weather defect that the ship can not navigate. Set a time stop as a constraint condition. Then, when the restraint condition is set, the optimal operation plan calculation unit 42 calculates the optimum route based on the restraint condition.
  • the optimal operation plan is calculated in which stopping the ship at the place of departure S is considered. Be done.
  • the user is automatically changed departure time T S is not changed departure time T S, the optimum route is calculated based on the departure time T S of the changed.
  • the optimal operation plan is calculated including not only the route that avoids the bad weather condition, but also the route that waits for the recovery of the weather in the bad weather condition by stopping the ship at a predetermined point. be able to. That is, according to the above aspect, it is possible to automatically calculate an optimal operation plan in which the concept of time is considered in the optimal route. Therefore, it is possible to automatically obtain the calculation result of the preferred route along the more actual operation.
  • FIG. 4 is a diagram for explaining the optimal route calculation by the DP method.
  • the shortest distance route calculation unit 46 calculates a shortest distance route (great zone route) R 0 connecting the shortest distance between the departure point S and the arrival point G. Then, the optimum path calculation unit 47 equally divides the shortest path R0 into N, and sets virtual line segments (great circles) M orthogonal to each other at each division point. Furthermore, the optimal path calculation unit 47 arranges grid points L on each virtual line segment M at equal intervals. The i-th grid point on the k-th virtual line segment M from the departure point S is L (k, i k ).
  • the optimal route calculation unit 47 selects one grid point L on each virtual line segment M one by one and sequentially connects between the departure point S and the arrival point G as a route (optimum route) R S Calculate as That is, the optimal route R S connects the departure point S, lattice point L (1.i 1 ), lattice point L (2, i 2 ), ..., L (k, i k ), ..., arrival point G in order It becomes a thing.
  • nk indicates the propeller rotational speed of the ship while traveling from the lattice point L (k, ik ) to the lattice point L (k + 1, ik + 1 ).
  • the penalty P for the operation limit indicates, for example, a wave height encountered between the grid points, a motion of the hull (roll angle, pitch angle) and the like.
  • T (L (k, ik ), L (k + 1, ik + 1 ), t k , n k ) is from lattice point L (k, ik ) to lattice point L (k + 1, ik + 1 ) Indicates the sailing time.
  • the optimal route calculation unit 47 calculates the minimum evaluation value J min (L (k.i k ), from the grid point L (k, i k ) to the arrival place G at time t k to the arrival place G. a t k), towards grid points L (k, from the lattice point from i k) L (k, i k + 1) lattice point in the evaluation value and the time t k + 1 up to L (k + 1, i k + 1) on arrival G navigation
  • the sum with the minimum evaluation value up to the arrival place G is obtained by minimizing i K + 1 and n k as parameters.
  • Min (i k + 1 , n k ) ⁇ J ⁇ means to minimize the inside of J with i k + 1 and n k as parameters.
  • the optimal route calculation unit 47 calculates the minimum evaluation value J min (L ( d ) while traveling from the grid point L (N ⁇ 1, i N ⁇ 1 ) on the N ⁇ 1th imaginary line segment M to the arrival location G.
  • N ⁇ 1, i N ⁇ 1 ), t N ⁇ 1 ) are calculated using the following equation.
  • J min (L (N-1, i N-1 ), t N-1 ) Min (n N-1 ) ⁇ J (L (N-1, i N-1 ), G, t N-1 , n N-1 ) ⁇ ...
  • the optimal route calculation unit 47 uses the above equations (1) and (2) as a function recursion equation in the DP method to trace back one virtual line segment M from the N-1th virtual line segment M to the departure point S The minimum evaluation value from each lattice point L to the arrival point G is calculated, and the minimum evaluation value from the departure point S to the arrival point G is finally determined.
  • the optimum path calculation unit 47 outputs a set of grid points L from which the minimum evaluation value can be obtained as an optimum path RS .
  • the optimal route computation unit 47 may perform the optimal route computation by the variational method, the Dijkstra method, the A * method, the equal time curve method, etc., instead of the above-described optimal route calculation using the DP method. .
  • the optimum route calculation may be performed with the selection of the route which is below the operation limit as a constraint condition. .
  • FIG. 5 is a diagram showing a route area in a second example of the present embodiment. As shown in FIG. 5, also in this example, as in the example of FIG. 2, the route departing from the departure place S located on the west side of the ocean toward the east and arriving at the arrival place G located on the east side of the ocean Will be explained.
  • FIG. 6 is a flow chart showing the flow of arithmetic processing in the second example of FIG.
  • the information input reception unit 41 receives information input including the departure point S, the arrival point G, the departure time T S , and the arrival time T G (step SB1).
  • the determination unit 43 determines whether the area near the arrival place G is in a bad weather condition. For example, the determination unit 43 determines the period from the time that is a predetermined time Z before the input arrival time TG to the time that is a predetermined time Z after the arrival time TG (T G -Z to T G + Z), the arrival place G The wave height in the surrounding area AG with reference to is read out from the meteorological data, and the limit wave height that the ship can navigate is calculated from the performance data. Then, the determination unit 43 determines whether or not the wave height in the peripheral area AG in the relevant period T G -Z to T G + Z is within the limit wave height (step SB2).
  • the determining unit 43 determines that the area near the arrival place G is not a bad weather condition. Do. In this case, the optimum flight plan calculation unit 42 calculates the optimum route based on the input arrival time TG (step SB3).
  • the determination unit 43 determines that the area near the arrival place G is bad weather. Determine that there is.
  • the restraint condition setting unit 44 sets that the vessel stops at a predetermined point for a predetermined time as a restraint condition.
  • the optimal operation plan calculation unit 42 after leaving from the place of departure S, optimizes a navigation route that causes the vessel to stop for a predetermined stop time T D in an intermediate sea area (reference position D described later). Calculate as Therefore, the optimal operation plan calculation unit 42 sets a predetermined stop time T D (step SB4).
  • the reference position setting unit 45 sets, as a reference position D, a position where the vicinity area of the arrival place G and a predetermined route from the departure place S to the arrival place G intersect (steps SB5 and SB6).
  • the shortest distance route computation unit 46 sets the shortest distance route connecting the starting location S and the arrival location G as a predetermined route for setting the reference location D ) Is calculated (step SB5).
  • the shortest distance route calculation unit 46 obtains the minimum required navigation time T N when the vehicle travels from the departure point S to the arrival point G at the maximum ship speed on the shortest distance route.
  • the reference position setting unit 45 sets the position on the shortest distance course as the reference position D (step SB6). That is, the reference position setting unit 45, of the point where the boundary portion of the shortest distance route and bad weather area A H intersect, set a point on the most minimum distance close to the departure point S side route as a reference position D .
  • the determination unit 43 the starting time T S from the arrival time T G stop from time to time T D a navigable time minus (T G -T D -T S) is, until arrival G from the departure point S It is determined whether or not the required navigation time T N, which is the minimum required for the navigation of the above, is equal to or greater than (step SB7).
  • the optimal operation plan computation unit 42 changes the arrival time T G (step SB8). For example, the optimal operation plan calculation unit 42 sets T G + W obtained by adding the time W to the arrival time T G as a new arrival time.
  • the optimal operation plan calculation unit 42 sets the arrival time T S1 to the reference position D1 in the first navigation area A1 to a predetermined time
  • the time obtained by adding (stop time T D ) is set as the departure time (reference position departure time) T S2 from the reference position D in the second channel area (step SB9).
  • the determination unit 43 determines whether or not the vicinity area (surrounding area A G ) of the arrival place G is in a bad weather condition at the reference position departure time T S2 . For example, the determination unit 43, the period of the reference position departure time T S2 of a predetermined time Z before time to time after a predetermined time Z from the reference position departure time T S2 (T S2 -Z ⁇ T S2 + Z), arrival place the wave height in the peripheral region a G relative to the G, reads from meteorological data, ship calculates the limit height navigable from the performance data. Then, the determination unit 43 determines whether or not the wave height in the peripheral area AG in the relevant period TS2- Z to TS2 + Z is within the limit wave height (step SB10).
  • the determination unit 43 determines the vicinity area of the arrival point G at the reference position departure time TS2 . Determines that the weather is not bad. In this case, the optimal operation plan calculation unit 42 sets the reference position departure time TS2 as the departure time from the reference position D in the second navigation area A2.
  • the optimal operation plan calculation unit 42 divides the first navigation area A1 from the departure point S to the reference position D and the second navigation area A2 from the reference position D to the arrival point G, respectively. Calculate the optimal route for. First, the optimum flight plan calculation unit 42 calculates the optimum route of the first route area A1 (step SB11). At this time, the optimum flight plan calculation unit 42, the arrival time at the reference position D in the shortest distance route (passage time), using as the arrival time T S1 to the reference position D in the first route region A1, the first route The optimal route in the region A1 is calculated.
  • the optimum flight plan calculation unit 43 calculates the optimum route in the second route region A2 using the reference position departure time T S2, which is set as described above as the starting time (step SB12).
  • the optimum route calculation unit 47 calculates a specific optimum route based on the above-described method for each of step SB11 and step SB12.
  • the determination unit 43 determines that the arrival position G is the reference position departure time TS2 . It is determined that the near area of is bad weather condition. In this case, the optimum flight plan calculation unit 42 adds a predetermined time V to stop time T D at the reference position D of the vessel (step SB13).
  • steps SB7 to SB10 are performed using the updated stop time T D.
  • the predetermined time V is subtracted from the previous navigable time, and when it is determined that the new navigable time is shorter than the required navigation time T N , the arrival time T G is changed.
  • step SB19 the optimum flight plan calculation unit 42 sets the time obtained by adding a predetermined time V to the reference position departure time T S2 as a new reference position departure time T S2.
  • step SB11 in the new reference position departure time T S2, the region near the arrival G is whether bad weather condition is determined. If it is determined by the determination unit 43 that the optimum area near the arrival point G is not in the poor weather condition at the reference position departure time TS2 , the optimum operation plan calculation unit 42 determines that the new reference position departure time TS2 is The optimum route of the first route region A1 and the optimum route of the second route region A2 are calculated using the departure time from the reference position D in the two route regions (steps SB11 and SB12).
  • the optimal operation plan calculation unit 42 finally connects the optimum route in the first route region A1, the stop time at the reference position D, and the optimum route in the second route region A2, and Output an optimal operation plan showing the optimal route up to and the time at each point.
  • the area near the arrival place G is in a bad weather condition, it is possible to calculate an optimal operation plan in which stopping the ship at the predetermined reference position D on the optimal route is considered. For this reason, it is optimal not only for routes that avoid bad weather conditions, but also for routes that wait for the recovery of the weather in the bad weather conditions by performing drifting to stop the ship at reference position D.
  • the operation plan can be calculated. Therefore, it is possible to automatically determine a suitable route more in line with the actual situation.
  • the reference position is set as the position on the shortest distance route, and using the arrival time to the reference position D in the shortest distance route, the optimum route in the first route region A1 and the second route region A2 Is calculated. Therefore, the setting of the arrival time to the reference position D and the departure time TS2 from the reference position can be set easily and practically.
  • the time TD for stopping the ship at the reference position D is increased to stop the ship on the optimum route. It is possible to easily and automatically calculate the time-optimized optimal operation plan.
  • the ship when the ship is stopped at the reference position D, it is determined whether it is difficult to arrive at the input arrival time TG, and it is determined that it is difficult. Automatically, the arrival time TG is changed. Therefore, more realistic route calculation results can be obtained automatically.
  • FIG. 7 is a flow chart showing the flow of arithmetic processing in the modification of the second example of FIG. Steps SC1 to SC3 in the present modification are the same as steps SB1 to SB3 in the drifting process shown in FIG.
  • the determination unit 43 determines whether the time (T G ⁇ T S ) from the departure time T S to the arrival time T G is longer than the navigation required time T N (Step SC4).
  • optimal flight plan computation unit 42 determines arrival time T A change is made to accelerate G (step SC5). For example, the optimal operation plan computation unit 42 sets T G -U obtained by subtracting the time U to the arrival time T G as a new arrival time.
  • the determination unit 43 determines again whether the wave height in the peripheral area AG in the period T G -Z to T G + Z based on the new arrival time T G is lower than the limit wave height (step SC2). That is, the ship by arriving earlier than the arrival time T G appointment when arriving at arrival G, whether the vicinity region of the arrival G can be prevented from becoming bad weather condition is determined.
  • Such advance the arrival time T G treatment, time from departure time T S to the arrival time T G (T G -T S) is carried out as far longer than the sailing time required T N.
  • the optimal flight plan computation unit 42 When it is determined that the wave height in the peripheral area AG in the period T G -Z to T G + Z based on the new arrival time T G is lower than the limit wave height (Yes in step SC2), the optimal flight plan computation unit 42 the optimal route, starting with the departure point S to the departure time T S, it is to calculate the optimum flight plan that has been taken into account to arrive at the arrival G to the new arrival time T G. That is, in this modification, the constraint condition setting unit 44, the region near the arrival G (peripheral region A G) If the ship is determined to be navigable non bad weather conditions, the peripheral region A G is It is set as a constraint condition that the vessel passes the surrounding area AG before the weather becomes poor. Then, when the restraint condition is set, the optimal operation plan calculation unit 42 calculates the optimum route based on the restraint condition.
  • step SC6 If it is determined that the time from departure time T S to arrival time T G (T G -T S ) is less than required navigation time T N (No in step SC4), the arrival time T G is advanced if it is further advanced since is impossible to arrive at the arrival G in T G, processor 4 executes the drifting process (step SC6). Specifically, steps SB4 to SB13 in FIG. 6 are executed.
  • the optimum route is considered as taking into consideration that the ship arrives at the arrival place G as soon as possible.
  • An operation plan is calculated.
  • the optimum route is calculated based on the arrival time T G of the changed. For this reason, not only a route for detouring to avoid a bad weather condition or stopping a ship in the middle of navigation, but also an arrival place G arrives at an arrival place G before a bad weather condition occurs.
  • the optimal operation plan can be calculated including the route. That is, according to the above aspect, it is possible to automatically calculate an optimal operation plan in which the concept of time is considered in the optimal route. Therefore, it is possible to automatically obtain the calculation result of the preferred route along the more actual operation.
  • Arriv time automatic change processing 2 when it determines with the area
  • the optimal operation plan calculation unit 42 adds the predetermined time Q to the arrival time TG to delay the arrival time.
  • the optimum flight plan calculation unit 42 starting the departure time T S Departure from the site S and calculate an optimal route to arrive at the arrival site G at the new arrival time TG . That is, in this modification, the constraint condition setting unit 44, the region near the arrival G (peripheral region A G) If the ship is determined to be navigable non bad weather conditions, the peripheral region A G is The restraint condition is set such that the vessel passes through the surrounding area AG after recovery from the bad weather condition. Then, when the restraint condition is set, the optimal operation plan calculation unit 42 calculates the optimum route based on the restraint condition.
  • the optimum operation plan calculation unit 42 may perform the optimum calculation by making the speed of the ship slower (in whole or in part) than before delaying the arrival time TG .
  • the ship's speed is to be reduced if the distance between the departure point S and the arrival point G (the surrounding area A G ) is less than or equal to a predetermined reference distance, or arrival from the departure time T S It may be limited to the case where the time to time TG is equal to or less than a predetermined reference time. Since it is determined based on the weather prediction based on the weather data, the weather prediction becomes inaccurate as a long time elapses from the predicted time, because the determination of the bad weather condition is made.
  • the determination unit 43 when obtained by delaying the arrival time T G, the distance between the departure point S and end points G is equal to or reference distance or less, or, from a starting time T S It may be determined whether the time to the arrival time TG is less than or equal to a predetermined reference time. Then, when it is determined that the distance is less than or equal to the reference distance, or when it is determined that the time is less than or equal to the reference time, the optimal operation plan calculation unit 42 slows the speed of the ship to optimize the route. May be calculated.
  • the optimal flight plan is calculated that is considered to wait for recovery from the failure condition.
  • arrival time T G is changed automatically
  • the optimum route is calculated based on the arrival time T G of the changed. For this reason, not only a route for detouring in order to avoid a bad weather condition, or stopping a ship in the middle of navigation, an arrival place G arrives at an arrival place G after recovery from a bad weather condition.
  • the optimal operation plan can be calculated including the route. That is, according to the above configuration, it is possible to automatically calculate an optimal operation plan in which the concept of time is considered in the optimal route. Therefore, it is possible to automatically obtain the calculation result of the preferred route along the more actual operation.
  • the route computation device 1 is not limited to this, and when the region other than the region near the departure point S or the arrival location G (for example, the region on the shortest distance course) is in poor weather condition, such as in the ocean. It may be possible to calculate an optimal operation plan in which it is considered to stop the vehicle before the area in the bad weather condition.
  • FIG. 8 is a diagram showing a navigation route area in a third example of the present embodiment. As shown in FIG. 8, also in this example, as in the example of FIG. 2, the route departing from the departure point S located on the west side of the ocean toward the east and arriving at the arrival point G located on the east side of the ocean Will be explained.
  • the shortest distance route calculation unit 46 calculates the shortest distance route (great zone route) Ro connecting the shortest distance between the departure place S and the arrival place G.
  • the determination unit 43 determines whether there is an area in the poor weather condition on the shortest distance route Ro. For example, the determination unit 43, when allowed to navigate at a predetermined speed the ship F according shortest route Ro, simulation whether there is bad weather area A H in a predetermined area A F relative to the position of the vessel F Determined by Specifically, as in the case of the drifting process, for example, the wave height in the predetermined area AF in the predetermined period based on the predicted arrival time of the ship F at the position on the shortest distance route Ro is within the limit wave height. It is determined whether or not.
  • the reference position setting unit 45 sets the position on the shortest distance route Ro as a reference position D. That is, the reference position setting unit 45 setting, among the point where the boundary portion of the shortest distance route Ro and bad weather area A H intersect, the point on the most minimum distance close to the departure point S side route as a reference position D Do.
  • the reference position D and the predicted arrival time of the ship F at this time are temporarily stored in the storage unit 3.
  • the restraint condition setting unit 44 sets that the boat F stops at the reference position D for a predetermined time as a restraint condition.
  • the optimal operation plan calculation unit 42 is an optimal operation plan in which it is considered that a predetermined stop time T D is stopped at the reference position D in the middle after leaving the departure point S on the optimal route. Calculate as R1. Also in this example, the optimal operation plan calculation unit 42 divides the first navigation area A1 from the departure point S to the reference position D and the second navigation area A2 from the reference position D to the arrival point G Then, the optimal route is calculated for each of the areas A1 and A2. The details of the calculation are the same as steps SB7 to SB13 of FIG. 6 in the drifting process.
  • the optimal flight plan computing unit 42 finally connects the optimal route in the first route region A1, the stop time T D at the reference position D , and the optimal route in the second route region A2, and arrives from the departure point S Output an optimal operation plan R1 indicating the optimum route to the place G and the time at each point.
  • the optimal operation plan in consideration of stopping the ship at the predetermined reference position D on the optimal route R1 can be calculated. For this reason, it is optimal not only for routes that avoid bad weather conditions, but also for routes that wait for the recovery of the weather in the bad weather conditions by performing drifting to stop the ship at reference position D.
  • the operation plan can be calculated. That is, according to the above aspect, it is possible to automatically calculate an optimal operation plan in which the concept of time is considered in the optimal route. Therefore, it is possible to automatically determine a suitable route more in line with the actual situation.
  • the optimal route is calculated individually for the first navigation area A1 from the departure point S to the reference position D and the second navigation area A2 from the reference position D to the arrival point G. Therefore, in addition to or instead of stopping at the reference position D, it is also possible to adopt an aspect of accelerating from the reference position D after deceleration to the reference position D.
  • the optimal operation plan calculation unit 42 may calculate the optimal operation plan R1 by dynamically changing the parameter related to the speed at the time of the optimal operation.
  • the optimal flight plan computing unit 42 computes an optimal route that makes the first navigation range A1 between the departure point S and the reference position D slower than usual or slows down as the reference position D is approached.
  • the second channel area A2 between the reference position D and the arrival point G is optimized to have a higher speed or accelerate so that the speed increases as the distance from the reference position D to the predetermined distance increases.
  • the route may be calculated. As a result, it is possible to carry out calculations for various aspects such as eliminating or shortening the time for stopping the ship F at the reference position D.
  • the optimal operation plan calculation unit 42 calculates the operation plan R1 based on the route in the case of performing the drifting as described above, and the operation plan R2 that bypasses the bad weather condition as usual.
  • the two operation plans R1 and R2 may be compared and a more suitable operation plan may be output as the optimum operation plan.
  • the optimum flight plan calculation unit 42 when it is determined that the bad weather area A H on the shortest distance route Ro is present, the optimal route, bad weather area A H of the departure point S and the shortest distance route on Ro A first operation plan R1 in which it is considered that the ship F is decelerated or stopped at the reference position D with the reference position D in front of it, and the poor weather region A H on the shortest distance route Ro there If it is determined to be present, to produce a second flight plan R2 based on the optimum route at the time of bypassing the bad weather area a H. Then, the optimal flight plan calculation unit 42 compares the first flight plan R1 with the second flight plan R2 and outputs a more suitable flight plan as the optimal flight plan.
  • the optimal operation plan calculation unit 42 outputs an operation plan based on a route with a lower minimum evaluation value J min calculated for each of the first operation plan R1 and the second operation plan R2 as an optimal operation plan.
  • the optimal flight plan computing unit 42 first computes the first flight plan R1, and if it is necessary to change the arrival time TG from the initial input value (if No at step SB5 in FIG. 6), (1) A second operation plan R2 may be calculated instead of the operation plan R1, and the second operation plan R2 may be output as an optimal operation plan.
  • first flight plan R1 to avoid bad weather area A H by changing the course of the ship F second flight plan to avoid bad weather area A H by changing the speed of the vessel F R2
  • a more suitable operation plan can be obtained by comparing with.
  • the automatic change processing of departure time, the drifting processing, the automatic change processing of arrival time, and the rough weather avoidance processing in the ocean have been described separately.
  • the two processes may be configured to be executed as a series of arithmetic processes.
  • the above embodiment has been described on the assumption that the optimal operation plan calculation is performed in advance before the departure of the ship, the above aspect may be implemented not only before the departure of the ship but also after the departure of the ship. It is possible.
  • the current position or the future of the position of the ship is the departure point S next to, the estimated time of arrival to the current time or navigation scheduled position is input as a starting time T S.
  • the automatic change processing of the departure time delays the departure time T S to make the vessel stop at the departure point S (predetermined point) for a predetermined time as a constraint condition of the optimal route calculation.
  • the optimum flight plan calculation unit 42 as an automatic changing process of the starting time may be performing an operation for optimum route by advancing the starting time T S. In this case, it is set as a constraint condition of the optimal route calculation that the ship passes the near area before the near area of the departure point S becomes poor weather condition.
  • the present invention is useful for providing an optimal operation plan computing device and an optimal operation plan computing method capable of automatically performing development of a suitable route more in line with the actual situation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

The present invention is provided with an optimal-operation-plan-computing unit that computes an optimal operation plan including an optimal course on the basis of information inputted from an information-input-receiving unit, capability data pertaining to a vessel, and meteorological data pertaining to a course region through which the vessel navigates. The optimal-operation-plan-computing unit is provided with: a determination unit for determining, on the basis of the meteorological data, whether or not a nearby region close to a point of departure or a point of arrival is in a bad-weather state through which the vessel cannot navigate; and a constraint-condition-setting unit that, when it is determined that the nearby region close to the point of departure or the point of arrival is in a bad-weather state through which the vessel cannot navigate, sets as a constraint condition either that the vessel stops at a prescribed site for a prescribed period of time or that the vessel passes through the nearby region before the nearby region enters the bad-weather state. When the constraint condition is set, the optimal-operation-plan-computing unit computes an optimal course on the basis of the constraint condition.

Description

最適運航計画演算装置および最適運航計画演算方法Optimal flight plan computing device and optimal flight plan computing method
 本発明は、船舶の最適運航計画演算装置および最適運航計画演算方法に関する。 The present invention relates to an optimal operation plan computing device for a ship and an optimal operation plan computing method.
 燃料価格高騰に伴う運航コストの削減、温室効果ガス(GHG)排出削減問題、さらには安全運航、輸送品質の維持向上などのニーズの高まりから、船舶における最適航路演算は船舶の運航管理における有効手段として重要視されている。 With the rising cost of fuel, reduced operating costs, greenhouse gas (GHG) emission reduction issues, and increased needs for safe operation and maintenance and improvement of transport quality, optimal route calculation on ships is an effective means for ship operation management. It is regarded as important.
 従来の最適航路演算は、燃費削減効果の高い北太平洋等の一大洋に対して、計画される出港時刻および入港時刻の拘束条件のもと、一定の船速または一定の主機回転数にて運航するという仮定で航路(緯度および経度)のみを最適化演算している。 The conventional optimal route calculation is operated at a fixed ship speed or a fixed main engine speed under the planned departure time and arrival time restriction conditions for one ocean with high fuel efficiency reduction effect. The route (latitude and longitude) is optimized and calculated on the assumption that
 このような最適航路の演算をより最適化するための技術として、例えば、下記特許文献1のように、最適航路探索のための格子点(ノード)に重み付けをする構成が提案されている。また、例えば、下記特許文献2のように、航路途中に必須通過地点を設定し、当該必須通過地点を必ず通るように最適航路の演算を行うことが提案されている。 As a technique for further optimizing the calculation of such an optimal route, for example, a configuration for weighting grid points (nodes) for optimal route search has been proposed as in Patent Document 1 below. Further, for example, as described in Patent Document 2 below, it has been proposed to set an essential passage point midway along the route and to calculate the optimum route so as to surely pass the essential passage point.
特許第4247497号公報Patent No. 4247497 特許第4934756号公報Patent No. 4934756
 しかし、実際の運航では、到着地に安全かつ省燃費で到着するために、上記のような航路のみの変更だけでなく、航路変更を過度に行わずに、船舶を一時停止させたりすることが行われている。このような船舶の一時停止による影響を考慮した最適航路演算は実現されていない。 However, in actual operation, in order to arrive at the arrival site safely and with low fuel consumption, it is possible not only to change the route only as described above, but also to suspend the vessel without excessively changing the route. It has been done. The optimal route calculation taking into consideration the influence of such a temporary stop of the vessel has not been realized.
 本発明は上記に鑑みなされたものであり、より実情に即した好適な航路の策定を自動的に行うことができる最適運航計画演算装置および最適運航計画演算方法を提供することを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide an optimum flight plan computing device and an optimum flight plan computing method capable of automatically performing the formulation of a suitable route according to the actual situation.
 本発明の一態様に係る最適運航計画演算装置は、船舶の出発地、到着地および出発時刻を含む情報の入力を受け付ける情報入力受付部と、入力された前記情報と、前記船舶の性能データと、前記船舶が航行する航路領域の気象データと、に基づいて、最適航路を含む最適運航計画を演算する最適運航計画演算部と、を備え、前記最適運航計画演算部は、前記気象データに基づいて、前記出発地または前記到着地の近傍領域が、前記船舶が航行不能な天候不良状態であるか否かを判定する判定部と、前記出発地または前記到着地の近傍領域が、前記船舶が航行不能な天候不良状態であると判定された場合、前記船舶が所定地点で所定時間停止すること、または、前記近傍領域が前記天候不良状態となる前に前記船舶が当該近傍領域を通過すること、を拘束条件として設定する拘束条件設定部と、を備え、前記最適運航計画演算部は、前記拘束条件が設定された場合、当該拘束条件に基づいて前記最適航路を演算するよう構成される。 According to an aspect of the present invention, there is provided an optimum operation plan computing device including: an information input receiving unit that receives an input of information including a departure place, an arrival place, and a departure time of a ship; the input information; And an optimal operation plan computing unit for computing an optimal operation plan including an optimal route based on weather data of a route area where the ship navigates, and the optimal operation plan computing unit is based on the weather data. A determination unit that determines whether or not the ship is unable to navigate and the weather is in a poor condition; and the vicinity area of the departure place or the arrival place is the ship. When it is determined that the weather is incapacitated, the vessel stops at a predetermined point for a predetermined time, or the vessel passes through the vicinity before the vicinity becomes the weather. And a constraint condition setting unit that sets the constraint condition as the constraint condition, and the optimal operation plan calculation unit is configured to calculate the optimal route based on the constraint condition when the constraint condition is set. .
 上記構成によれば、出発地または到着地の近傍領域が天候不良状態である場合、最適航路に、船舶を所定地点で停止させる、または、近傍領域が天候不良状態となる前に近傍領域を通過させることが考慮された最適運航計画を演算可能である。このため、天候不良状態を回避するような航路だけでなく、所定地点で船舶を停止させることにより天候不良状態である領域における天候の回復を待ったり、天候不良になる前に当該領域を通過したりするような航路をも含めて最適運航計画を演算することができる。すなわち、上記構成によれば、最適航路に時間の概念が考慮された最適運航計画を自動的に演算することができる。したがって、より実情に即した好適な航路の策定を自動的に行うことができる。 According to the above configuration, when the area near the departure place or the arrival place is in a poor weather condition, the ship is stopped at a predetermined point on the optimum route, or the near area passes the nearby area before the bad weather condition occurs. It is possible to calculate the optimal operation plan that is considered. For this reason, by stopping the ship at a predetermined point, as well as a route to avoid a bad weather condition, waiting for the recovery of the weather in an area where the weather is bad, or passing the area before the bad weather occurs. It is possible to calculate the optimal flight plan, including the conventional route. That is, according to the above configuration, it is possible to automatically calculate an optimal operation plan in which the concept of time is considered in the optimal route. Therefore, it is possible to automatically determine a suitable route more in line with the actual situation.
 前記最適運航計画演算部は、前記出発地または前記到着地の近傍領域が、前記天候不良状態であると判定された場合、前記出発時刻または前記到着時刻を変更し、変更後の出発時刻または到着時刻に基づいて前記最適航路を演算してもよい。これにより、出発地または到着地の近傍領域が天候不良状態である場合には、ユーザが出発時刻または到着時刻を変更しなくても出発時刻または到着時刻が自動的に変更され、最適航路に当該変更後の出発時刻または到着時刻が考慮された最適運航計画が演算される。したがって、より実際の運航に沿った好適な航路の演算結果を自動的に得ることができる。 The optimal operation plan calculation unit changes the departure time or the arrival time when it is determined that the area near the departure place or the arrival place is in the bad weather condition, and changes the departure time or arrival after the change. The optimal route may be calculated based on the time of day. As a result, if the weather near the departure place or arrival place is in poor weather, the departure time or arrival time is automatically changed even if the user does not change the departure time or arrival time. An optimal flight plan is calculated that takes into account the modified departure time or arrival time. Therefore, it is possible to automatically obtain the calculation result of the preferred route along the more actual operation.
 前記最適運航計画演算部は、前記到着地の近傍領域が、前記天候不良状態であると判定された場合、前記近傍領域と、前記出発地から前記到着地までの間の所定の航路とが交わる位置を基準位置として設定する基準位置設定部を備え、前記最適運航計画演算部は、前記出発地から前記基準位置までの間の第1航路領域と、前記基準位置から前記到着地までの間の第2航路領域とを分割して、最適航路を演算し、前記最適運航計画演算部は、前記第1航路領域における前記基準位置への到着時刻に所定時間を加えた基準位置出発時刻を用いて、前記第2航路領域における最適航路を演算してもよい。これにより、到着地の近傍領域が天候不良状態である場合には、最適航路に当該天候不良状態にある領域の直前で船舶を停止させるドリフティングを考慮した最適運航計画が演算される。したがって、より実際の運航に沿った好適な航路の演算結果を自動的に得ることができる。 When it is determined that the vicinity area of the arrival site is in the poor weather condition, the optimal operation plan calculation unit intersects the vicinity area and a predetermined route from the departure site to the arrival site. A reference position setting unit for setting a position as a reference position, the optimal operation plan calculation unit, a first navigation area between the departure point and the reference point, and a distance between the reference point and the arrival point The second navigation region is divided to calculate the optimum navigation route, and the optimum operation plan calculation unit uses the reference position departure time obtained by adding a predetermined time to the arrival time to the reference position in the first navigation region. The optimal route in the second route region may be calculated. As a result, when the area near the arrival site is in a poor weather condition, an optimal operation plan is calculated that takes into consideration the drifting to stop the vessel immediately before the region in the bad weather condition on the optimum route. Therefore, it is possible to automatically obtain the calculation result of the preferred route along the more actual operation.
 前記最適運航計画演算部は、前記基準位置を設定するための前記所定の航路として、前記出発地と前記到着地との間の最短距離を結ぶ最短距離航路を演算する最短距離航路演算部を備え、前記基準位置設定部は、前記最短距離航路上の位置を前記基準位置として設定し、前記最適運航計画演算部は、前記最短距離航路における前記基準位置への到着時刻を用いて、前記第1航路領域における最適航路を演算し、前記判定部は、前記基準位置出発時刻において、前記到着地の近傍領域が、前記天候不良状態にあるか否かを判定し、前記最適運航計画演算部は、前記基準位置出発時刻において、前記到着地の近傍領域が、前記天候不良状態にあると判定された場合、前記基準位置出発時刻に前記所定の時間を加えた時刻を新たな基準位置出発時刻として設定してもよい。これによれば、最短距離航路上の位置が基準位置として設定され、最短距離航路における基準位置への到着時刻を用いて、第1航路および第2航路における最適航路が演算される。したがって、基準位置への到着時刻および基準位置からの出発時刻の設定を容易かつ現実的に設定することができる。また、設定された基準位置出発時刻においても到着地の近傍領域が天候不良状態にある場合、基準位置において船舶を停止させる時間を長くすることで、船舶の停止時間を含む好適な航路の演算を容易かつ自動的に行うことができる。 The optimal operation plan calculation unit includes a shortest distance route calculation unit that calculates a shortest distance route connecting the shortest distance between the departure place and the arrival location as the predetermined route for setting the reference position. The reference position setting unit sets a position on the shortest distance route as the reference position, and the optimal operation plan calculation unit uses the arrival time to the reference position in the shortest distance route to the first position. The optimal navigation route in the navigation region is computed, and the determination unit determines whether the region near the arrival site is in the bad weather condition at the reference position departure time, and the optimal operation plan computation unit is: When it is determined that the area near the arrival site is in the bad weather condition at the reference position departure time, the time at which the predetermined time is added to the reference position departure time is a new reference position departure time It may be set as. According to this, the position on the shortest distance route is set as the reference position, and the arrival time to the reference position on the shortest distance route is used to calculate the optimum route in the first and second routes. Therefore, the setting of the arrival time to the reference position and the departure time from the reference position can be set easily and practically. In addition, when the area near the arrival site is in poor weather condition even at the set reference position departure time, calculation of a suitable route including the stop time of the ship can be performed by lengthening the time for stopping the ship at the reference position. It can be done easily and automatically.
 前記判定部は、前記到着地の近傍領域が、前記天候不良状態にあると判定された場合、前記出発時刻から前記到着時刻までの時間から前記所定時間を引いた航行可能時間が、前記出発地から前記到着地までの航行に最低限必要な航行必要時間より短いか否かを判定し、前記最適運航計画演算部は、前記航行可能時間が前記航行必要時間より短いと判定された場合、前記到着時刻を変更し、変更後の到着時刻に基づいて前記第1航路における最適航路を演算してもよい。これによれば、基準位置において船舶を停止させた場合に、入力された到着時刻に到着することが困難であるか否かが判定され、困難であると判定された場合に、自動的に到着時刻が変更される。したがって、より現実的な航路の演算結果を自動的に得ることができる。 When it is determined that the vicinity area of the arrival site is in the poor weather condition, the determination unit determines the navigable time obtained by subtracting the predetermined time from the time from the departure time to the arrival time. It is determined whether or not the required navigation time required for navigation from the above to the arrival site is shorter than the minimum required navigation time, and the optimal operation plan calculation unit determines that the navigable time is shorter than the required navigation time. The arrival time may be changed, and the optimum route on the first route may be calculated based on the changed arrival time. According to this, when the ship is stopped at the reference position, it is determined whether it is difficult to arrive at the input arrival time, and it is determined that it is difficult to arrive automatically. The time is changed. Therefore, more realistic route calculation results can be obtained automatically.
 本発明の他の態様に係る最適運航計画演算方法は、船舶の出発地、到着地および出発時刻を含む情報の入力を受け付ける情報入力受付ステップと、入力された前記情報と、前記船舶の性能データと、前記船舶が航行する航路領域の気象データと、に基づいて、最適航路を含む最適運航計画を演算する最適運航計画演算ステップと、を含み、前記最適運航計画演算ステップは、前記気象データに基づいて、前記出発地または前記到着地の近傍領域が、前記船舶が航行不能な天候不良状態にあるか否かを判定する判定ステップと、前記出発地または前記到着地の近傍領域が、前記船舶が航行不能な天候不良状態にあると判定された場合、前記船舶が所定地点で所定時間停止することを拘束条件として設定する拘束条件設定ステップと、を含み、前記最適運航計画演算ステップは、前記拘束条件が設定された場合、当該拘束条件に基づいて前記最適航路を演算する。 According to another aspect of the present invention, there is provided an optimal operation plan calculation method comprising: an information input receiving step of receiving an input of information including a departure place, an arrival place, and a departure time of a ship; the input information; And an optimal operation plan calculating step of calculating an optimal operation plan including an optimal route based on weather data of a route area where the vessel navigates, and the optimal operation plan calculating step includes A determination step of determining whether or not the vessel is in an uncontrollable weather condition based on the departure place or the arrival place, and the vessel near the departure place or the arrival place is the ship A restraint condition setting step of setting the vessel as a restraint condition at a predetermined point for a predetermined time when it is determined that the weather condition is incapable of navigating. Serial optimum flight plan calculation step, when the constraint condition is set, computing the optimal route based on the constraint conditions.
 上記方法によれば、出発地または到着地の近傍領域が天候不良状態である場合、最適航路に、船舶を所定地点で停止させる、または、近傍領域が天候不良状態となる前に近傍領域を通過させることが考慮された最適運航計画を演算可能である。このため、天候不良状態を回避するような航路だけでなく、所定地点で船舶を停止させることにより天候不良状態である領域における天候の回復を待ったり、天候不良になる前に当該領域を通過したりするような航路をも含めて最適運航計画を演算することができる。すなわち、上記方法によれば、最適航路に時間の概念が考慮された最適運航計画を自動的に演算することができる。したがって、より実情に即した好適な航路の策定を自動的に行うことができる。 According to the above method, when the area near the departure place or the arrival place is in a poor weather condition, the ship is stopped at a predetermined point on the optimum route, or the near area passes the nearby area before the bad weather condition occurs. It is possible to calculate the optimal operation plan that is considered. For this reason, by stopping the ship at a predetermined point, as well as a route to avoid a bad weather condition, waiting for the recovery of the weather in an area where the weather is bad, or passing the area before the bad weather occurs. It is possible to calculate the optimal flight plan, including the conventional route. That is, according to the above-mentioned method, it is possible to automatically calculate an optimal operation plan in which the concept of time is taken into consideration in the optimal route. Therefore, it is possible to automatically determine a suitable route more in line with the actual situation.
 本発明によれば、より実情に即した好適な航路の策定を自動的に行うことができる。 According to the present invention, it is possible to automatically determine a suitable route more in line with the actual situation.
図1は本発明の一実施の形態に係る最適運航計画演算装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an optimum flight plan computing device according to an embodiment of the present invention. 図2は本実施の形態の第1例における航路領域を示す図である。FIG. 2 is a diagram showing a navigation route area in a first example of the present embodiment. 図3は図2の第1例における演算処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing the flow of arithmetic processing in the first example of FIG. 図4はDP法による最適航路演算を説明するための図である。FIG. 4 is a diagram for explaining the optimal route calculation by the DP method. 図5は本実施の形態の第2例における航路領域を示す図である。FIG. 5 is a diagram showing a route area in a second example of the present embodiment. 図6は図5の第2例における演算処理の流れを示すフローチャートである。FIG. 6 is a flow chart showing the flow of arithmetic processing in the second example of FIG. 図7は図5の第2例の変形例における演算処理の流れを示すフローチャートである。FIG. 7 is a flow chart showing the flow of arithmetic processing in the modification of the second example of FIG. 図8は本実施の形態の第3例における航路領域を示す図である。FIG. 8 is a diagram showing a navigation route area in a third example of the present embodiment.
 以下、本発明を実施するための形態について、図面を参照しながら、詳細に説明する。なお、以下では全ての図を通じて同一または相当する要素には同一の参照符号を付して、その重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, the same or corresponding elements are denoted by the same reference numerals throughout all the drawings, and redundant description will be omitted.
 図1は本発明の一実施の形態に係る最適運航計画演算装置の概略構成を示すブロック図である。図1に示す最適運航計画演算装置1は、入力部2、記憶部3、演算部4、および出力部5を備えている。最適運航計画演算装置1の各構成2~5は、バス6により相互にデータ伝達を行う。最適運航計画演算装置1は、陸上の施設におけるコンピュータによって構成されてもよいし、船舶に設置されたコンピュータまたは制御装置として構成されてもよい。また、最適運航計画演算装置1を構成する一部の機能を船舶に設置されたコンピュータが発揮し、他の機能を陸上に設置されたコンピュータが発揮し、船陸間通信等の通信手段によって相互にデータの相互通信が行われるように構成されてもよい。 FIG. 1 is a block diagram showing a schematic configuration of an optimum flight plan computing device according to an embodiment of the present invention. The optimal operation plan computing device 1 shown in FIG. 1 includes an input unit 2, a storage unit 3, a computing unit 4, and an output unit 5. The configurations 2 to 5 of the optimal flight plan computing device 1 mutually transmit data via the bus 6. The optimal operation plan computing device 1 may be configured by a computer at a land facility, or may be configured as a computer or a controller installed on a ship. In addition, the computer installed on the ship exerts some of the functions constituting the optimal operation plan computing device 1, the computer installed on the land exerts other functions, and mutual communication means such as inter-land communication Data may be configured to communicate with each other.
 入力部2は、船舶の出発地、到着地、出発時刻および到着時刻等の情報をユーザが入力可能な入力装置として構成される。記憶部3は、入力部2から入力された情報を記憶する。また、記憶部3には、船舶の性能データと、少なくとも船舶が航行する航路領域の気象データと、最適運航計画演算プログラムが予め記憶されている。 The input unit 2 is configured as an input device that allows a user to input information such as a departure place, an arrival place, a departure time, and an arrival time of a ship. The storage unit 3 stores the information input from the input unit 2. In addition, the storage unit 3 stores in advance performance data of the ship, weather data of at least a channel area where the ship travels, and an optimal operation plan calculation program.
 船舶の性能データは、各船舶が個別に備える性能に関するデータである。気象データは、例えば外部機関等から提供される。気象データは、例えば現在から1週間先の、航路領域等における気象(海気象)に関するデータである。なお、気象データは、ネットワークを通じて外部から逐次送信され、記憶部3に自動的に蓄積されるように構成されてもよい。 The performance data of a ship is data relating to the performance each ship has individually. Weather data is provided from, for example, an external organization. The weather data is, for example, data on weather (sea weather) in a channel area or the like one week after the present. The weather data may be configured to be sequentially transmitted from the outside through the network and automatically stored in the storage unit 3.
 演算部4は、記憶部3に記憶された各種の情報に基づいて船舶の最適航路を含む最適運航計画を演算する最適運航計画演算処理を実行する。このために、演算部4は、最適運航計画演算プログラムを実行することにより、情報入力受付部41および最適運航計画演算部42の機能を発揮する。 The calculation unit 4 executes an optimum operation plan calculation process for calculating an optimum operation plan including the optimum route of the ship based on various types of information stored in the storage unit 3. To this end, the calculation unit 4 executes the optimum flight plan calculation program to exhibit the functions of the information input reception unit 41 and the optimum flight plan calculation unit 42.
 情報入力受付部41は、船舶の出発地、到着地、出発時刻および到着時刻を含む情報の入力を受け付ける。最適運航計画演算部42は、後述する最適航路演算部47で演算された最適航路を含む最適運航計画を演算する。最適運航計画は、最適航路に好適な時間の概念(出発時刻、到着時刻、航路上の所定の位置における時刻、航路上の所定の位置における停止時間等の好適な値)を含んだものである。 The information input reception unit 41 receives an input of information including a departure place, an arrival place, a departure time, and an arrival time of the ship. The optimum flight plan calculation unit 42 calculates an optimum flight plan including the optimum route calculated by the optimum route calculation unit 47 described later. The optimal operation plan includes the concept of time suitable for the optimum route (departure time, arrival time, time at a given position on the route, preferred value such as stop time at a given position on the route) .
 このために、最適運航計画演算部42は、判定部43、拘束条件設定部44、基準位置設定部45および最短距離航路演算部46、最適航路演算部47等の機能を発揮する。判定部43は、気象データに基づいて、出発地または到着地の近傍領域が、船舶が航行不能な天候不良状態であるか否かを判定する。拘束条件設定部44は、判定部43により出発地または到着地の近傍領域が、船舶が航行不能な天候不良状態であると判定された場合、船舶が所定地点で所定時間停止すること、または、当該近傍領域が前記天候不良状態となる前に船舶が当該近傍領域を通過すること、を拘束条件として設定する。最適運航計画演算部42は、拘束条件が設定された場合、当該拘束条件に基づいて最適航路を演算する。基準位置設定部45および最短距離航路演算部46は、船舶が所定時間停止する地点を基準位置として設定するための演算および処理を行う。最適航路演算部47は、入力された情報と、記憶部3に記憶されている船舶の性能データと、船舶が航行する航路領域の気象データと、に基づいて、最適航路を演算する。 To this end, the optimum flight plan calculation unit 42 exerts the functions of the determination unit 43, the restraint condition setting unit 44, the reference position setting unit 45, the shortest distance route calculation unit 46, the optimum route calculation unit 47, and the like. The determination unit 43 determines, based on the weather data, whether or not the area near the departure place or the arrival place is in a bad weather condition in which the ship can not be navigated. The restraint condition setting unit 44 causes the ship to stop at a predetermined point for a predetermined time, when it is determined by the determination unit 43 that the area near the departure point or the arrival point is in a poor weather condition in which the ship can not navigate. It is set as a restraint condition that the ship passes through the near area before the near area becomes the bad weather condition. When a constraint condition is set, the optimal flight plan computation unit 42 computes an optimal route based on the constraint condition. The reference position setting unit 45 and the shortest distance route calculation unit 46 perform calculation and processing for setting a point at which the ship stops for a predetermined time as a reference position. The optimum route calculation unit 47 calculates the optimum route based on the input information, the performance data of the ship stored in the storage unit 3, and the weather data of the route area where the ship navigates.
 出力部5は、演算部4における演算結果を出力する。例えば、出力部5は、最適運航計画演算装置1に接続された表示装置(図示せず)に、地図(海図)上に演算部4によって演算された最適運航計画を表示する。 The output unit 5 outputs the calculation result in the calculation unit 4. For example, the output unit 5 causes the display (not shown) connected to the optimal flight plan computing device 1 to display the optimal flight plan computed by the computing unit 4 on a map (nautical chart).
 以下、最適運航計画演算処理の具体例を説明する。 Hereinafter, a specific example of the optimal operation plan calculation process will be described.
 [出発時刻の自動変更]
 図2は本実施の形態の第1例における航路領域を示す図である。図2に示すように、本例においては、大洋の西側に位置する出発地Sから東方に向けて出発し、大洋の東側に位置する到着地Gに到着する航路について説明する。
[Automatic change of departure time]
FIG. 2 is a diagram showing a navigation route area in a first example of the present embodiment. As shown in FIG. 2, in this example, a route departing from a departure point S located on the west side of the ocean toward the east and arriving at an arrival point G located on the east side of the ocean will be described.
 図3は図2の第1例における演算処理の流れを示すフローチャートである。図3に示すように、情報入力受付部41は、出発地S、到着地G、出発時刻T、到着時刻Tを含む情報入力を受け付ける(ステップSA1)。なお、船舶を出発時刻Tから一定回転数で航行させる場合等において、到着時刻Tの情報入力を不要としてもよい。 FIG. 3 is a flowchart showing the flow of arithmetic processing in the first example of FIG. As shown in FIG. 3, the information input reception unit 41 receives information input including the departure point S, the arrival point G, the departure time T S , and the arrival time T G (step SA1). Note that in such case of sailing vessels from departure time T S at a constant rotational speed, it may be unnecessary information input arrival time T G.
 本例において、判定部43は、出発地Sの近傍領域が、天候不良状態であるか否かを判定する。例えば、判定部43は、入力された出発時刻Tから所定時間Xが経過するまでの期間(T~T+X)、出発地Sを基準とする周辺領域A内における波高を、気象データから読み出すとともに、性能データから船舶が航行可能な限界波高を演算する。そして、判定部43は、当該期間T~T+Xにおいて、周辺領域A内における波高が限界波高内か否かを判定する(ステップSA2)。 In the present example, the determination unit 43 determines whether the area near the departure point S is in a bad weather condition. For example, the determination unit 43, the period from the starting time T S that is input until the predetermined time X elapses (T S ~ T S + X ), the wave height in the peripheral area A S relative to the departure point S, weather It reads from the data and calculates the limit wave height that the ship can navigate from the performance data. Then, the determination unit 43, in the period T S ~ T S + X, determines the wave height in the peripheral area A S is whether the limit height (step SA2).
 なお、図2の例において、周辺領域ASは、出発地Sを中心とする矩形の領域として設定しているが、これに限られず、例えば、出発地Sより船舶の進行方向側(到着地G側)に偏った領域としてもよいし、その形状も円や楕円等種々採用可能である。 In the example of FIG. 2, the peripheral area AS is set as a rectangular area centered on the departure point S, but is not limited thereto. For example, the traveling direction side of the ship from the departure point S (arrival point G The region may be biased to the side), and the shape may be variously adopted such as a circle or an ellipse.
 当該期間T~T+Xにおいて、周辺領域A内における波高が限界波高より低い場合(ステップSA2でYes)、判定部43は、出発地Sの近傍領域は天候不良状態ではないと判定する。この場合、最適運航計画演算部42は、入力された出発時刻Tに基づいて最適航路を演算する(ステップSA3)。最適航路演算部47は、後述するような公知の方法に基づいて具体的な最適航路の演算を行う。 In the period T S to T S + X, when the wave height in the surrounding area A S is lower than the limit wave height (Yes in step SA2), the determining unit 43 determines that the area near the departure place S is not in a bad weather condition. . In this case, the optimum flight plan calculation unit 42 calculates the optimum route based on the departure time T S that is input (step SA3). The optimum route calculation unit 47 calculates a specific optimum route based on a known method as described later.
 一方、当該期間T~T+Xにおいて、周辺領域A内における波高が限界波高以上である場合(ステップSA2でNo)、判定部43は、出発地Sの近傍領域は天候不良状態であると判定する。なお、当該期間T~T+Xの少なくとも一部の期間において、周辺領域A内の少なくとも一部の領域における波高が限界波高以上であれば、ステップSA2でNoと判定される。図2の例では、周辺領域Aの一部の領域において天候不良領域Aが存在している。 On the other hand, if the wave height in the peripheral area A S is equal to or higher than the limit wave height in the period T S to T S + X (No in step SA2), the determination unit 43 determines that the area near the departure point S has a bad weather condition. It is determined that Incidentally, at least part of the duration of the period T S ~ T S + X, wave height of at least a portion of the area of the peripheral region A S is not less than the limit height, is determined No in step SA2. In the example of FIG. 2, bad weather area A H is present in some areas of the peripheral region A S.
 この場合、最適運航計画演算部42は、出発時刻Tを変更する(ステップSA4)。例えば、最適運航計画演算部42は、出発時刻Tに所定の時間Yを加えた時刻T+Yを新たな出発時刻Tとして設定する。 In this case, the optimum flight plan calculation unit 42 changes the departure time T S (step SA4). For example, the optimum flight plan calculation unit 42 sets the time T S + Y obtained by adding a predetermined time Y in the starting time T S as a new departure time T S.
 その後、再度、判定部43は、新たな出発時刻Tから所定時間Xが経過するまでの間(T~T+X)、周辺領域A内における波高が限界波高内か否かを判定する(ステップSA2)。当該新たな期間T~T+Xにおける周辺領域A内における波高が限界波高より低い場合(ステップSA2でYes)、最適運航計画演算部42は、変更後の出発時刻Tに基づいて最適航路を演算する(ステップSA3)。このようにして、船舶が出発可能な状態となるまで出発時刻Tを遅らせた上で、船舶が出発可能な出発時刻Tに基づいて最適航路演算が行われる。 Then, again, the determination unit 43, between the new departure time T S until the predetermined time X elapses (T S ~ T S + X ), determination wave height in the peripheral area A S is whether the limit height (Step SA2). If the wave height in the surrounding area A S in the new period T S to T S + X is lower than the limit wave height (Yes in step SA2), the optimal operation plan computation unit 42 is optimal based on the departure time T S after change. The route is calculated (step SA3). In this way, after delaying the departure time T S until the vessel becomes ready for departure, the optimal route calculation is performed based on the departure time T S at which the vessel can depart.
 すなわち、本例において、拘束条件設定部44は、出発地Sの近傍領域(周辺領域A)が、船舶が航行不能な天候不良状態であると判定された場合、船舶が出発地Sで所定時間停止することを拘束条件として設定する。そして、最適運航計画演算部42は、当該拘束条件が設定された場合、当該拘束条件に基づいて最適航路を演算する。 That is, in the present example, the restraint condition setting unit 44 determines that the ship is at the departure point S when it is determined that the area near the departure point S (peripheral area A S ) is a weather defect that the ship can not navigate. Set a time stop as a constraint condition. Then, when the restraint condition is set, the optimal operation plan calculation unit 42 calculates the optimum route based on the restraint condition.
 上記態様によれば、出発地Sの近傍領域(周辺領域A)が天候不良状態である場合には、最適航路に、船舶を出発地Sで停止させることが考慮された最適運航計画が演算される。これにより、ユーザが出発時刻Tを変更しなくても出発時刻Tが自動的に変更され、当該変更後の出発時刻Tに基づいて最適航路が演算される。このため、天候不良状態を回避するような航路だけでなく、所定地点で船舶を停止させることにより天候不良状態である領域における天候の回復を待つような航路をも含めて最適運航計画を演算することができる。すなわち、上記態様によれば、最適航路に時間の概念が考慮された最適運航計画を自動的に演算することができる。したがって、より実際の運航に沿った好適な航路の演算結果を自動的に得ることができる。 According to the above aspect, when the area (surrounding area A S ) in the vicinity of the place of departure S is in a poor weather condition, the optimal operation plan is calculated in which stopping the ship at the place of departure S is considered. Be done. Thus, the user is automatically changed departure time T S is not changed departure time T S, the optimum route is calculated based on the departure time T S of the changed. For this reason, the optimal operation plan is calculated including not only the route that avoids the bad weather condition, but also the route that waits for the recovery of the weather in the bad weather condition by stopping the ship at a predetermined point. be able to. That is, according to the above aspect, it is possible to automatically calculate an optimal operation plan in which the concept of time is considered in the optimal route. Therefore, it is possible to automatically obtain the calculation result of the preferred route along the more actual operation.
 [最適航路演算の例]
 なお、最適航路の演算自体は一般的な最適航路演算が適用可能である。例えば、以下のようなダイナミックプログラミング(DP)法を採用することができる。図4はDP法による最適航路演算を説明するための図である。
[Example of optimal route calculation]
Note that general optimal route computation can be applied to the optimal route computation itself. For example, the following dynamic programming (DP) method can be employed. FIG. 4 is a diagram for explaining the optimal route calculation by the DP method.
 DP法において、まず、最短距離航路演算部46は、出発地Sと到着地Gとの間の最短距離を結ぶ最短距離航路(大圏航路)Rを演算する。そして、最適航路演算部47は、当該最短距離航路RをN等分し、各等分点において直交する仮想線分(大圏)Mを設定する。さらに、最適航路演算部47は、各仮想線分M上に等間隔で格子点Lを配置する。出発地Sからk本目の仮想線分M上のi番目の格子点をL(k,i)とする。最適航路演算部47は、各仮想線分M上の何れかの格子点Lを1つずつ選択し、出発地Sと到着地Gとの間で順に繋いだものを航路(最適航路)Rとして演算する。すなわち、最適航路Rは、出発地S、格子点L(1.i),格子点L(2,i),…,L(k,i),…,到着地Gを順に繋いだものとなる。 In the DP method, first, the shortest distance route calculation unit 46 calculates a shortest distance route (great zone route) R 0 connecting the shortest distance between the departure point S and the arrival point G. Then, the optimum path calculation unit 47 equally divides the shortest path R0 into N, and sets virtual line segments (great circles) M orthogonal to each other at each division point. Furthermore, the optimal path calculation unit 47 arranges grid points L on each virtual line segment M at equal intervals. The i-th grid point on the k-th virtual line segment M from the departure point S is L (k, i k ). The optimal route calculation unit 47 selects one grid point L on each virtual line segment M one by one and sequentially connects between the departure point S and the arrival point G as a route (optimum route) R S Calculate as That is, the optimal route R S connects the departure point S, lattice point L (1.i 1 ), lattice point L (2, i 2 ), ..., L (k, i k ), ..., arrival point G in order It becomes a thing.
 船舶は、k本目の仮想線分M上の格子点L(k,i)を時刻tに出発し、k+1本目の仮想線分M上の格子点L(k+1,ik+1)に時刻tk+1に到着するものとする。このときの格子点L(k,i)から格子点L(k+1,ik+1)までの評価値J(L(k,i),L(k+1,ik+1),t,n)を燃料消費量F(L(k,i),L(k+1,ik+1),t,n)と運航限界に対するペナルティP(L(k,i),L(k+1,ik+1),t,n)の和で表す(J=F+P)。ここで、nは格子点L(k,i)から格子点L(k+1,ik+1)まで航行する間の船舶のプロペラ回転数を示す。また、運航限界に対するペナルティPは、例えばその格子点間で遭遇する波高や船体の動揺(ロール角、ピッチ角)などを示す。 The ship leaves grid point L (k, ik ) on the k-th virtual line segment M at time t k , and time t on the grid point L (k + 1, i k + 1 ) on the k + 1- th virtual line segment M We shall arrive at k + 1 . Evaluation value J (L (k, i k ), L (k + 1, i k + 1 ), t k , n k ) from lattice point L (k, ik ) to lattice point L (k + 1, ik + 1 ) at this time fuel consumption F (L (k, i k ), L (k + 1, i k + 1), t k, n k) penalty P (L (k for the flight limit, i k), L (k + 1, i k + 1) , T k , n k ) (J = F + P). Here, nk indicates the propeller rotational speed of the ship while traveling from the lattice point L (k, ik ) to the lattice point L (k + 1, ik + 1 ). Further, the penalty P for the operation limit indicates, for example, a wave height encountered between the grid points, a motion of the hull (roll angle, pitch angle) and the like.
 格子点L(k+1,ik+1)への到着時刻tk+1は、tk+1=t+T(L(k,i),L(k+1,ik+1),t,n)と表せる。ここで、T(L(k,i),L(k+1,ik+1),t,n)は、格子点L(k,i)から格子点L(k+1,ik+1)までの航行時間を示す。 The arrival time t k + 1 to the lattice point L (k + 1, i k + 1 ) can be expressed as t k + 1 = t k + T (L (k, i k ), L (k + 1, i k + 1 ), t k , n k ). Here, T (L (k, ik ), L (k + 1, ik + 1 ), t k , n k ) is from lattice point L (k, ik ) to lattice point L (k + 1, ik + 1 ) Indicates the sailing time.
 最適航路演算部47は、時刻tに格子点L(k,i)から到着地Gに向けて航行した場合の到着地Gまでの最小評価値Jmin(L(k.i),t)を、格子点L(k,i)から格子点L(k,ik+1)までの評価値と時刻tk+1に格子点L(k+1,ik+1)から到着地Gに向けて航行した場合の到着地Gまでの最小評価値との和を、iK+1とnとをパラメータとして最小化することで求める。 The optimal route calculation unit 47 calculates the minimum evaluation value J min (L (k.i k ), from the grid point L (k, i k ) to the arrival place G at time t k to the arrival place G. a t k), towards grid points L (k, from the lattice point from i k) L (k, i k + 1) lattice point in the evaluation value and the time t k + 1 up to L (k + 1, i k + 1) on arrival G navigation In this case, the sum with the minimum evaluation value up to the arrival place G is obtained by minimizing i K + 1 and n k as parameters.
 すなわち、最適航路演算部47は、
Jmin(L(k.ik),tk)
=Min(ik+1,nk){J(L(k,ik),L(k+1,ik+1),tk,nk)+Jmin(L(k+1,ik+1),tk+T(L(k,ik),L(k+1,ik+1),tk,nk))}
(k=N-2,…,1,0) … (1)
を演算する。ここで、Min(ik+1,n){J}は,J内をik+1,nをパラメータとして最小化することを意味する。k=0のときの格子点L(0,i)は出発地Sに等しい。
That is, the optimal route calculation unit 47
J min (L (ki k ), t k )
= Min (i k + 1, n k) {J (L (k, i k), L (k + 1, i k + 1), t k, n k) + J min (L (k + 1, i k + 1), t k + T (L (k, i k), L (k + 1, i k + 1), t k, n k))}
(K = N-2, ..., 1, 0) ... (1)
Calculate Here, Min (i k + 1 , n k ) {J} means to minimize the inside of J with i k + 1 and n k as parameters. The lattice point L (0, i 0 ) when k = 0 is equal to the departure point S.
 また、最適航路演算部47は、N-1本目の仮想線分M上の格子点L(N-1,iN-1)から到着地Gまで航行する間の最小評価値Jmin(L(N-1,iN-1),tN-1)を以下の式を用いて演算する。
Jmin(L(N-1,iN-1),tN-1)=Min(nN-1){J(L(N-1,iN-1),G,tN-1,nN-1)} … (2)
In addition, the optimal route calculation unit 47 calculates the minimum evaluation value J min (L ( d ) while traveling from the grid point L (N−1, i N−1 ) on the N− 1th imaginary line segment M to the arrival location G. N−1, i N−1 ), t N−1 ) are calculated using the following equation.
J min (L (N-1, i N-1 ), t N-1 ) = Min (n N-1 ) {J (L (N-1, i N-1 ), G, t N-1 , n N-1 )} ... (2)
 最適航路演算部47は、上記(1)および(2)式をDP法における関数再帰方程式として用いて、N-1本目の仮想線分Mから出発地Sへ仮想線分Mを1本ずつ遡りながら各格子点Lから到着地Gまでの最小評価値を算出し、最終的に出発地Sから到着地Gまでの最小評価値を求める。最適航路演算部47は、最小評価値を得ることができる格子点Lの集合を最適航路Rとして出力する。 The optimal route calculation unit 47 uses the above equations (1) and (2) as a function recursion equation in the DP method to trace back one virtual line segment M from the N-1th virtual line segment M to the departure point S The minimum evaluation value from each lattice point L to the arrival point G is calculated, and the minimum evaluation value from the departure point S to the arrival point G is finally determined. The optimum path calculation unit 47 outputs a set of grid points L from which the minimum evaluation value can be obtained as an optimum path RS .
 なお、最適航路演算部47は、上記のようなDP法を用いた最適航路演算に代えて、変分法、ダイクストラ法、A法、等時間曲線法等によって最適航路演算を行ってもよい。また、上記例では、運航限界をペナルティPとして評価値に加えた最適化計算の例を示したが、運航限界以下となる航路を選択することを拘束条件として最適航路演算が行われてもよい。 The optimal route computation unit 47 may perform the optimal route computation by the variational method, the Dijkstra method, the A * method, the equal time curve method, etc., instead of the above-described optimal route calculation using the DP method. . In the above example, although an example of optimization calculation in which the operation limit is added to the evaluation value as the penalty P is shown, the optimum route calculation may be performed with the selection of the route which is below the operation limit as a constraint condition. .
 [ドリフティング]
 図5は本実施の形態の第2例における航路領域を示す図である。図5に示すように、本例においても、図2の例と同様に、大洋の西側に位置する出発地Sから東方に向けて出発し、大洋の東側に位置する到着地Gに到着する航路について説明する。
[Drifting]
FIG. 5 is a diagram showing a route area in a second example of the present embodiment. As shown in FIG. 5, also in this example, as in the example of FIG. 2, the route departing from the departure place S located on the west side of the ocean toward the east and arriving at the arrival place G located on the east side of the ocean Will be explained.
 図6は図5の第2例における演算処理の流れを示すフローチャートである。図6に示すように、情報入力受付部41は、出発地S、到着地G、出発時刻T、到着時刻Tを含む情報入力を受け付ける(ステップSB1)。 FIG. 6 is a flow chart showing the flow of arithmetic processing in the second example of FIG. As shown in FIG. 6, the information input reception unit 41 receives information input including the departure point S, the arrival point G, the departure time T S , and the arrival time T G (step SB1).
 本例において、判定部43は、到着地Gの近傍領域が、天候不良状態であるか否かを判定する。例えば、判定部43は、入力された到着時刻Tより所定時間Z前の時刻から到着時刻Tより所定時間Z後の時刻までの期間(T-Z~T+Z)、到着地Gを基準とする周辺領域A内における波高を、気象データから読み出すとともに、性能データから船舶が航行可能な限界波高を演算する。そして、判定部43は、当該期間T-Z~T+Zにおける周辺領域A内における波高が限界波高内か否かを判定する(ステップSB2)。 In the present example, the determination unit 43 determines whether the area near the arrival place G is in a bad weather condition. For example, the determination unit 43 determines the period from the time that is a predetermined time Z before the input arrival time TG to the time that is a predetermined time Z after the arrival time TG (T G -Z to T G + Z), the arrival place G The wave height in the surrounding area AG with reference to is read out from the meteorological data, and the limit wave height that the ship can navigate is calculated from the performance data. Then, the determination unit 43 determines whether or not the wave height in the peripheral area AG in the relevant period T G -Z to T G + Z is within the limit wave height (step SB2).
 当該期間T-Z~T+Zにおける周辺領域A内における波高が限界波高より低い場合(ステップSB2でYes)、判定部43は、到着地Gの近傍領域は天候不良状態ではないと判定する。この場合、最適運航計画演算部42は、入力された到着時刻Tに基づいて最適航路を演算する(ステップSB3)。 If the wave height in the peripheral area AG in the period TG- Z to TG + Z is lower than the limit wave height (Yes in step SB2), the determining unit 43 determines that the area near the arrival place G is not a bad weather condition. Do. In this case, the optimum flight plan calculation unit 42 calculates the optimum route based on the input arrival time TG (step SB3).
 一方、当該期間T-Z~T+Zにおける周辺領域A内における波高が限界波高以上である場合(ステップSB2でNo)、判定部43は、到着地Gの近傍領域は天候不良状態であると判定する。この場合、拘束条件設定部44は、船舶が所定地点で所定時間停止することを拘束条件として設定する。この拘束条件に基づいて、最適運航計画演算部42は、出発地Sから出発後、途中の海域(後述する基準位置D)で所定の停止時間T船舶を停止させるような航路を最適運航計画として演算する。このため、最適運航計画演算部42は、所定の停止時間Tを設定する(ステップSB4)。 On the other hand, when the wave height in the peripheral area AG in the period T G -Z to T G + Z is equal to or higher than the limit wave height (No in step SB2), the determination unit 43 determines that the area near the arrival place G is bad weather. Determine that there is. In this case, the restraint condition setting unit 44 sets that the vessel stops at a predetermined point for a predetermined time as a restraint condition. Based on this restraint condition, the optimal operation plan calculation unit 42, after leaving from the place of departure S, optimizes a navigation route that causes the vessel to stop for a predetermined stop time T D in an intermediate sea area (reference position D described later). Calculate as Therefore, the optimal operation plan calculation unit 42 sets a predetermined stop time T D (step SB4).
 基準位置設定部45は、到着地Gの近傍領域と、出発地Sから到着地Gまでの間の所定の航路とが交わる位置を基準位置Dとして設定する(ステップSB5,SB6)。基準位置Dの設定に際して、最短距離航路演算部46は、基準位置Dを設定するための所定の航路として、出発地Sと到着地Gとの間の最短距離を結ぶ最短距離航路(大圏航路)を演算する(ステップSB5)。この際、最短距離航路演算部46は、当該最短距離航路において出発地Sから到着地Gまで最大船速で航行した場合に最低限必要な航行必要時間Tを求める。 The reference position setting unit 45 sets, as a reference position D, a position where the vicinity area of the arrival place G and a predetermined route from the departure place S to the arrival place G intersect (steps SB5 and SB6). When setting the reference position D, the shortest distance route computation unit 46 sets the shortest distance route connecting the starting location S and the arrival location G as a predetermined route for setting the reference location D ) Is calculated (step SB5). At this time, the shortest distance route calculation unit 46 obtains the minimum required navigation time T N when the vehicle travels from the departure point S to the arrival point G at the maximum ship speed on the shortest distance route.
 基準位置設定部45は、最短距離航路上の位置を基準位置Dとして設定する(ステップSB6)。すなわち、基準位置設定部45は、最短距離航路と天候不良領域Aの境界部とが交差する地点のうち、最も出発地Sに近い側の最短距離航路上の地点を基準位置Dとして設定する。 The reference position setting unit 45 sets the position on the shortest distance course as the reference position D (step SB6). That is, the reference position setting unit 45, of the point where the boundary portion of the shortest distance route and bad weather area A H intersect, set a point on the most minimum distance close to the departure point S side route as a reference position D .
 さらに、判定部43は、出発時刻Tから到着時刻Tまでの時間から停止時間Tを引いた航行可能時間(T-T-T)が、出発地Sから到着地Gまでの航行に最低限必要な航行必要時間T以上であるか否かを判定する(ステップSB7)。 Furthermore, the determination unit 43, the starting time T S from the arrival time T G stop from time to time T D a navigable time minus (T G -T D -T S) is, until arrival G from the departure point S It is determined whether or not the required navigation time T N, which is the minimum required for the navigation of the above, is equal to or greater than (step SB7).
 最適運航計画演算部42は、航行可能時間が航行必要時間Tより短いと判定された場合(ステップSB7でNo)、到着時刻Tを変更する(ステップSB8)。例えば、最適運航計画演算部42は、到着時刻Tに時間Wを追加したT+Wを新たな到着時刻とする。 When it is determined that the navigable time is shorter than the required navigation time T N (No in step SB7), the optimal operation plan computation unit 42 changes the arrival time T G (step SB8). For example, the optimal operation plan calculation unit 42 sets T G + W obtained by adding the time W to the arrival time T G as a new arrival time.
 航行可能時間が航行必要時間T以上であると判定された場合(ステップSB7でYes)、最適運航計画演算部42は、第1航路領域A1における基準位置D1への到着時刻TS1に所定時間(停止時間T)を加えた時刻を第2航路領域における基準位置Dからの出発時刻(基準位置出発時刻)TS2に設定する(ステップSB9)。 When it is determined that the navigable time is equal to or more than the necessary navigation time T N (Yes in step SB7), the optimal operation plan calculation unit 42 sets the arrival time T S1 to the reference position D1 in the first navigation area A1 to a predetermined time The time obtained by adding (stop time T D ) is set as the departure time (reference position departure time) T S2 from the reference position D in the second channel area (step SB9).
 判定部43は、基準位置出発時刻TS2において、到着地Gの近傍領域(周辺領域A)が、天候不良状態にあるか否かを判定する。例えば、判定部43は、基準位置出発時刻TS2より所定時間Z前の時刻から基準位置出発時刻TS2より所定時間Z後の時刻までの期間(TS2-Z~TS2+Z)、到着地Gを基準とする周辺領域A内における波高を、気象データから読み出すとともに、性能データから船舶が航行可能な限界波高を演算する。そして、判定部43は、当該期間TS2-Z~TS2+Zにおける周辺領域A内の波高が限界波高内か否かを判定する(ステップSB10)。 The determination unit 43 determines whether or not the vicinity area (surrounding area A G ) of the arrival place G is in a bad weather condition at the reference position departure time T S2 . For example, the determination unit 43, the period of the reference position departure time T S2 of a predetermined time Z before time to time after a predetermined time Z from the reference position departure time T S2 (T S2 -Z ~ T S2 + Z), arrival place the wave height in the peripheral region a G relative to the G, reads from meteorological data, ship calculates the limit height navigable from the performance data. Then, the determination unit 43 determines whether or not the wave height in the peripheral area AG in the relevant period TS2- Z to TS2 + Z is within the limit wave height (step SB10).
 当該期間TS2-Z~TS2+Zにおける周辺領域A内の波高が限界波高より低い場合(ステップSB10でYes)、判定部43は、基準位置出発時刻TS2において、到着地Gの近傍領域は天候不良状態ではないと判定する。この場合、最適運航計画演算部42は、基準位置出発時刻TS2を、第2航路領域A2における基準位置Dからの出発時刻とする。 When the wave height in the peripheral area AG in the period TS2- Z to TS2 + Z is lower than the limit wave height (Yes in step SB10), the determination unit 43 determines the vicinity area of the arrival point G at the reference position departure time TS2 . Determines that the weather is not bad. In this case, the optimal operation plan calculation unit 42 sets the reference position departure time TS2 as the departure time from the reference position D in the second navigation area A2.
 最適運航計画演算部42は、出発地Sから基準位置Dまでの間の第1航路領域A1と、基準位置Dから到着地Gまでの間の第2航路領域A2とを分割して、そのそれぞれについて最適航路を演算する。まず、最適運航計画演算部42は、第1航路領域A1の最適航路を演算する(ステップSB11)。このとき、最適運航計画演算部42は、最短距離航路における基準位置Dへの到着時刻(通過時刻)を、第1航路領域A1における基準位置Dへの到着時刻TS1として用いて、第1航路領域A1における最適航路を演算する。 The optimal operation plan calculation unit 42 divides the first navigation area A1 from the departure point S to the reference position D and the second navigation area A2 from the reference position D to the arrival point G, respectively. Calculate the optimal route for. First, the optimum flight plan calculation unit 42 calculates the optimum route of the first route area A1 (step SB11). At this time, the optimum flight plan calculation unit 42, the arrival time at the reference position D in the shortest distance route (passage time), using as the arrival time T S1 to the reference position D in the first route region A1, the first route The optimal route in the region A1 is calculated.
 さらに、最適運航計画演算部43は、上記のように設定された基準位置出発時刻TS2を出発時刻として用いて第2航路領域A2における最適航路を演算する(ステップSB12)。最適航路演算部47は、ステップSB11およびステップSB12のそれぞれについて、上述したような方法に基づいて具体的な最適航路の演算を行う。 Furthermore, the optimum flight plan calculation unit 43 calculates the optimum route in the second route region A2 using the reference position departure time T S2, which is set as described above as the starting time (step SB12). The optimum route calculation unit 47 calculates a specific optimum route based on the above-described method for each of step SB11 and step SB12.
 一方、当該期間TS2-Z~TS2+Zにおける周辺領域A内の波高が限界波高以上である場合(ステップSB10でNo)、判定部43は、基準位置出発時刻TS2において、到着地Gの近傍領域は天候不良状態であると判定する。この場合、最適運航計画演算部42は、船舶の基準位置Dにおける停止時間Tに所定の時間Vを加える(ステップSB13)。 On the other hand, when the wave height in the peripheral area AG in the period TS2- Z to TS2 + Z is equal to or higher than the limit wave height (No in step SB10), the determination unit 43 determines that the arrival position G is the reference position departure time TS2 . It is determined that the near area of is bad weather condition. In this case, the optimum flight plan calculation unit 42 adds a predetermined time V to stop time T D at the reference position D of the vessel (step SB13).
 そして、更新された停止時間Tを用いてステップSB7~SB10が行われる。ステップSB7では、前回の航行可能時間から所定の時間Vが差し引かれ、当該新たな航行可能時間が航行必要時間Tより短いと判定された場合、到着時刻Tが変更される。 Then, steps SB7 to SB10 are performed using the updated stop time T D. In step SB7, the predetermined time V is subtracted from the previous navigable time, and when it is determined that the new navigable time is shorter than the required navigation time T N , the arrival time T G is changed.
 ステップSB19において、最適運航計画演算部42は、基準位置出発時刻TS2に所定の時間Vを加えた時刻を新たな基準位置出発時刻TS2として設定する。ステップSB11では、当該新たな基準位置出発時刻TS2において、到着地Gの近傍領域が天候不良状態であるか否かが判定される。最適運航計画演算部42は、判定部43により、基準位置出発時刻TS2において、到着地Gの近傍領域は天候不良状態ではないと判定された場合、新たな基準位置出発時刻TS2を、第2航路領域における基準位置Dからの出発時刻として用いて、第1航路領域A1の最適航路と第2航路領域A2における最適航路とを演算する(ステップSB11,SB12)。 In step SB19, the optimum flight plan calculation unit 42 sets the time obtained by adding a predetermined time V to the reference position departure time T S2 as a new reference position departure time T S2. In step SB11, in the new reference position departure time T S2, the region near the arrival G is whether bad weather condition is determined. If it is determined by the determination unit 43 that the optimum area near the arrival point G is not in the poor weather condition at the reference position departure time TS2 , the optimum operation plan calculation unit 42 determines that the new reference position departure time TS2 is The optimum route of the first route region A1 and the optimum route of the second route region A2 are calculated using the departure time from the reference position D in the two route regions (steps SB11 and SB12).
 最適運航計画演算部42は、最終的に、第1航路領域A1における最適航路、基準位置Dにおける停止時間、および、第2航路領域A2における最適航路を連結させて、出発地Sから到着地Gまでの最適航路および各地点における時刻を示す最適運航計画を出力する。 The optimal operation plan calculation unit 42 finally connects the optimum route in the first route region A1, the stop time at the reference position D, and the optimum route in the second route region A2, and Output an optimal operation plan showing the optimal route up to and the time at each point.
 上記態様によれば、到着地Gの近傍領域が天候不良状態である場合、最適航路に船舶を所定の基準位置Dで停止させることが考慮された最適運航計画を演算可能である。このため、天候不良状態を回避するような航路だけでなく、基準位置Dで船舶を停止させるドリフティングを行うことにより天候不良状態である領域における天候の回復を待つような航路をも含めて最適運航計画を演算することができる。したがって、より実情に即した好適な航路の策定を自動的に行うことができる。 According to the above aspect, when the area near the arrival place G is in a bad weather condition, it is possible to calculate an optimal operation plan in which stopping the ship at the predetermined reference position D on the optimal route is considered. For this reason, it is optimal not only for routes that avoid bad weather conditions, but also for routes that wait for the recovery of the weather in the bad weather conditions by performing drifting to stop the ship at reference position D. The operation plan can be calculated. Therefore, it is possible to automatically determine a suitable route more in line with the actual situation.
 また、本実施の形態では、基準位置が最短距離航路上の位置として設定され、最短距離航路における基準位置Dへの到着時刻を用いて、第1航路領域A1および第2航路領域A2における最適航路が演算される。したがって、基準位置Dへの到着時刻および基準位置からの出発時刻TS2の設定を容易かつ現実的に設定することができる。また、設定された基準位置出発時刻TS2においても到着地Gの近傍領域の天候が回復しない場合、基準位置Dにおいて船舶を停止させる時間Tを長くすることで、最適航路に、船舶の停止時間が考慮された最適運航計画の演算を容易かつ自動的に行うことができる。 Further, in the present embodiment, the reference position is set as the position on the shortest distance route, and using the arrival time to the reference position D in the shortest distance route, the optimum route in the first route region A1 and the second route region A2 Is calculated. Therefore, the setting of the arrival time to the reference position D and the departure time TS2 from the reference position can be set easily and practically. In addition, when the weather in the area near the arrival point G is not recovered even at the set reference position departure time TS2 , the time TD for stopping the ship at the reference position D is increased to stop the ship on the optimum route. It is possible to easily and automatically calculate the time-optimized optimal operation plan.
 また、本実施の形態では、基準位置Dにおいて船舶を停止させた場合に、入力された到着時刻Tに到着することが困難であるか否かが判定され、困難であると判定された場合に、自動的に到着時刻Tが変更される。したがって、より現実的な航路の演算結果を自動的に得ることができる。 Furthermore, in the present embodiment, when the ship is stopped at the reference position D, it is determined whether it is difficult to arrive at the input arrival time TG, and it is determined that it is difficult. Automatically, the arrival time TG is changed. Therefore, more realistic route calculation results can be obtained automatically.
 [到着時刻の自動変更処理1]
 上記第2例のように、到着地Gの近傍領域が、天候不良状態である場合に、上記ドリフティング処理に先立って到着時刻の自動変更処理を行ってもよい。図7は図5の第2例の変形例における演算処理の流れを示すフローチャートである。本変形例におけるステップSC1~SC3は、図6に示すドリフティング処理におけるステップSB1~SB3と同様であるので説明を省略する。
[Arrival time change process 1]
As in the second example, when the area near the arrival place G is in a bad weather condition, the arrival time may be automatically changed prior to the drifting process. FIG. 7 is a flow chart showing the flow of arithmetic processing in the modification of the second example of FIG. Steps SC1 to SC3 in the present modification are the same as steps SB1 to SB3 in the drifting process shown in FIG.
 本変形例において、到着地Gの近傍領域が天候不良状態であると判定された場合、すなわち、到着時刻Tに基づく期間T-Z~T+Zにおける周辺領域A内の波高が限界波高以上である場合(ステップSC2でNo)、判定部43は、出発時刻Tから到着時刻Tまでの時間(T-T)が航行必要時間Tより長いか否かを判定する(ステップSC4)。 In this modification, when it is determined that the area near the arrival point G is in poor weather, that is, the wave height in the surrounding area AG in the period T G -Z to T G + Z based on the arrival time T G is limited If it is the wave height or more (No in step SC2), the determination unit 43 determines whether the time (T G −T S ) from the departure time T S to the arrival time T G is longer than the navigation required time T N (Step SC4).
 出発時刻Tから到着時刻Tまでの時間(T-T)が航行必要時間Tより長いと判定された場合(ステップSC4でYes)、最適運航計画演算部42は、到着時刻Tを速める変更を行う(ステップSC5)。例えば、最適運航計画演算部42は、到着時刻Tに時間Uを差し引いたT-Uを新たな到着時刻とする。 If it is determined that the time from departure time T S to arrival time T G (T G -T S ) is longer than required navigation time T N (Yes in step SC4), optimal flight plan computation unit 42 determines arrival time T A change is made to accelerate G (step SC5). For example, the optimal operation plan computation unit 42 sets T G -U obtained by subtracting the time U to the arrival time T G as a new arrival time.
 そして、判定部43は、再度、新たな到着時刻Tに基づく期間T-Z~T+Zにおける周辺領域A内の波高が限界波高より低いか否かを判定する(ステップSC2)。すなわち、予定の到着時刻Tより早く到着することによって船舶が到着地Gに到着する際に、当該到着地Gの近傍領域が天候不良状態となるのを回避できるか否かが判定される。このような到着時刻Tを早める処理は、出発時刻Tから到着時刻Tまでの時間(T-T)が航行必要時間Tより長い限り行われる。 Then, the determination unit 43 determines again whether the wave height in the peripheral area AG in the period T G -Z to T G + Z based on the new arrival time T G is lower than the limit wave height (step SC2). That is, the ship by arriving earlier than the arrival time T G appointment when arriving at arrival G, whether the vicinity region of the arrival G can be prevented from becoming bad weather condition is determined. Such advance the arrival time T G treatment, time from departure time T S to the arrival time T G (T G -T S) is carried out as far longer than the sailing time required T N.
 新たな到着時刻Tに基づく期間T-Z~T+Zにおける周辺領域A内の波高が限界波高より低いと判定された場合(ステップSC2でYes)、最適運航計画演算部42は、最適航路に、出発時刻Tに出発地Sを出発し、新たな到着時刻Tに到着地Gに到着することが考慮された最適運航計画を演算する。すなわち、本変形例において、拘束条件設定部44は、到着地Gの近傍領域(周辺領域A)が、船舶が航行不能な天候不良状態であると判定された場合、当該周辺領域Aが天候不良状態となる前に船舶が当該周辺領域Aを通過することを拘束条件として設定する。そして、最適運航計画演算部42は、当該拘束条件が設定された場合、当該拘束条件に基づいて最適航路を演算する。 When it is determined that the wave height in the peripheral area AG in the period T G -Z to T G + Z based on the new arrival time T G is lower than the limit wave height (Yes in step SC2), the optimal flight plan computation unit 42 the optimal route, starting with the departure point S to the departure time T S, it is to calculate the optimum flight plan that has been taken into account to arrive at the arrival G to the new arrival time T G. That is, in this modification, the constraint condition setting unit 44, the region near the arrival G (peripheral region A G) If the ship is determined to be navigable non bad weather conditions, the peripheral region A G is It is set as a constraint condition that the vessel passes the surrounding area AG before the weather becomes poor. Then, when the restraint condition is set, the optimal operation plan calculation unit 42 calculates the optimum route based on the restraint condition.
 出航時刻Tから到着時刻Tまでの時間(T-T)が航行必要時間T以下と判定された場合(ステップSC4でNo)、それ以上到着時刻Tを早めると当該到着時刻Tで到着地Gに到着することが不可能となるため、演算部4は、上記ドリフティング処理を実行する(ステップSC6)。具体的には、図6におけるステップSB4~SB13が実行される。 If it is determined that the time from departure time T S to arrival time T G (T G -T S ) is less than required navigation time T N (No in step SC4), the arrival time T G is advanced if it is further advanced since is impossible to arrive at the arrival G in T G, processor 4 executes the drifting process (step SC6). Specifically, steps SB4 to SB13 in FIG. 6 are executed.
 上記態様によれば、到着地Gの近傍領域(周辺領域A)が天候不良状態である場合には、最適航路に、船舶を可能な限り早く到着地Gに到着させることが考慮された最適運航計画が演算される。これにより、ユーザが到着時刻Tを変更しなくても、到着時刻Tが自動的に変更され、当該変更後の到着時刻Tに基づいて最適航路が演算される。このため、天候不良状態を回避するために迂回したり、航行途中で船舶を停止させたりするような航路だけでなく、到着地Gが天候不良状態となる前に到着地Gに到着するような航路をも含めて最適運航計画を演算することができる。すなわち、上記態様によれば、最適航路に時間の概念が考慮された最適運航計画を自動的に演算することができる。したがって、より実際の運航に沿った好適な航路の演算結果を自動的に得ることができる。 According to the above aspect, in the case where the area near the arrival place G (peripheral area A G ) is in a poor weather condition, the optimum route is considered as taking into consideration that the ship arrives at the arrival place G as soon as possible. An operation plan is calculated. Thus, even without the user to change the arrival time T G, is arrival time T G is changed automatically, the optimum route is calculated based on the arrival time T G of the changed. For this reason, not only a route for detouring to avoid a bad weather condition or stopping a ship in the middle of navigation, but also an arrival place G arrives at an arrival place G before a bad weather condition occurs. The optimal operation plan can be calculated including the route. That is, according to the above aspect, it is possible to automatically calculate an optimal operation plan in which the concept of time is considered in the optimal route. Therefore, it is possible to automatically obtain the calculation result of the preferred route along the more actual operation.
 [到着時刻の自動変更処理2]
 上記変形例では、到着地Gの近傍領域が天候不良状態であると判定された場合、時間に余裕があれば、到着時刻を繰り上げる演算を行う例を示した。これに加えて、または、これに代えて、到着地Gの近傍領域が天候不良状態であると判定された場合、到着時刻Tを遅延させる演算を行ってもよい。
[Arrival time automatic change processing 2]
In the said modification, when it determines with the area | region of the arrival place G being a bad weather condition, if time has an allowance, the example which carries out the calculation which raises arrival time was shown. In addition to or in place of this, when it is determined that the area near the arrival place G is in a bad weather condition, an operation may be performed to delay the arrival time TG .
 この場合、最適運航計画演算部42は、到着時刻Tに所定の時間Qを加えて到着時刻を遅らせる。判定部43は、再度、新たな到着時刻T(=T+Q)に基づく期間T-Z~T+Zにおける周辺領域A内の波高が限界波高より低いか否かを判定する。すなわち、予定の到着時刻Tより遅く到着することによって船舶が到着地Gに到着する際に、当該到着地Gの近傍領域が天候不良状態となるのを回避できるか否かが判定される。 In this case, the optimal operation plan calculation unit 42 adds the predetermined time Q to the arrival time TG to delay the arrival time. The determination unit 43 determines again whether the wave height in the peripheral area AG in the period T G -Z to T G + Z based on the new arrival time T G (= T G + Q) is lower than the limit wave height. That is, the ship by arriving later than the arrival time T G appointment when arriving at arrival G, whether the vicinity region of the arrival G can be prevented from becoming bad weather condition is determined.
 新たな到着時刻Tに基づく期間T-Z~T+Zにおける周辺領域A内の波高が限界波高より低いと判定された場合、最適運航計画演算部42は、出発時刻Tに出発地Sを出発し、新たな到着時刻Tに到着地Gに到着するような最適航路を演算する。すなわち、本変形例において、拘束条件設定部44は、到着地Gの近傍領域(周辺領域A)が、船舶が航行不能な天候不良状態であると判定された場合、当該周辺領域Aが天候不良状態から回復した後に船舶が当該周辺領域Aを通過することを拘束条件として設定する。そして、最適運航計画演算部42は、当該拘束条件が設定された場合、当該拘束条件に基づいて最適航路を演算する。 If the wave height in the peripheral area A G of the period T G -Z ~ T G + Z based on a new arrival time T G is determined to be lower than the limit height, the optimum flight plan calculation unit 42, starting the departure time T S Departure from the site S and calculate an optimal route to arrive at the arrival site G at the new arrival time TG . That is, in this modification, the constraint condition setting unit 44, the region near the arrival G (peripheral region A G) If the ship is determined to be navigable non bad weather conditions, the peripheral region A G is The restraint condition is set such that the vessel passes through the surrounding area AG after recovery from the bad weather condition. Then, when the restraint condition is set, the optimal operation plan calculation unit 42 calculates the optimum route based on the restraint condition.
 本変形例における最適航路演算において、最適運航計画演算部42は、船舶の速度を、到着時刻Tを遅延させる前より(全体的または部分的に)遅くして最適演算を行ってもよい。なお、最適航路演算において船舶の速度を遅くするのは、出発地Sと到着地G(の周辺領域A)との間の距離が所定の基準距離以下である場合または出発時刻Tから到着時刻Tまでの時間が所定の基準時間以下である場合に限ってもよい。天候不良状態か否かの判定は、気象データに基づく気象予測に基づいて行われるため、予測時点から長時間経過するほど当該気象予測は不正確になる。 In the optimum route calculation in the present modification, the optimum operation plan calculation unit 42 may perform the optimum calculation by making the speed of the ship slower (in whole or in part) than before delaying the arrival time TG . In the optimal route calculation, the ship's speed is to be reduced if the distance between the departure point S and the arrival point G (the surrounding area A G ) is less than or equal to a predetermined reference distance, or arrival from the departure time T S It may be limited to the case where the time to time TG is equal to or less than a predetermined reference time. Since it is determined based on the weather prediction based on the weather data, the weather prediction becomes inaccurate as a long time elapses from the predicted time, because the determination of the bad weather condition is made.
 したがって、判定部43は、到着時刻Tを遅延させた場合に、出発地Sと到着地Gとの間の距離が基準距離以下であるか否かを判定する、または、出発時刻Tから到着時刻Tまでの時間が所定の基準時間以下であるか否かを判定してもよい。その上で、最適運航計画演算部42は、当該距離が基準距離以下であると判定された場合または当該時間が基準時間以下であると判定された場合に、船舶の速度を遅くして最適航路を演算してもよい。 Accordingly, the determination unit 43, when obtained by delaying the arrival time T G, the distance between the departure point S and end points G is equal to or reference distance or less, or, from a starting time T S It may be determined whether the time to the arrival time TG is less than or equal to a predetermined reference time. Then, when it is determined that the distance is less than or equal to the reference distance, or when it is determined that the time is less than or equal to the reference time, the optimal operation plan calculation unit 42 slows the speed of the ship to optimize the route. May be calculated.
 上記態様によれば、到着地Gの近傍領域(周辺領域A)が天候不良状態である場合には、船舶の速度を遅くする等して、最適航路に、到着地Gの近傍領域が天候不良状態から回復するのを待つことが考慮された最適運航計画が演算される。これにより、ユーザが到着時刻Tを変更しなくても、到着時刻Tが自動的に変更され、当該変更後の到着時刻Tに基づいて最適航路が演算される。このため、天候不良状態を回避するために迂回したり、航行途中で船舶を停止させたりするような航路だけでなく、到着地Gが天候不良状態から回復した後に到着地Gに到着するような航路をも含めて最適運航計画を演算することができる。すなわち、上記構成によれば、最適航路に時間の概念が考慮された最適運航計画を自動的に演算することができる。したがって、より実際の運航に沿った好適な航路の演算結果を自動的に得ることができる。 According to the above aspect, when the area near the arrival place G (peripheral area A G ) is in a poor weather condition, the speed of the ship is reduced and the vicinity area of the arrival place G is weathered in the optimum route. An optimal flight plan is calculated that is considered to wait for recovery from the failure condition. Thus, even without the user to change the arrival time T G, is arrival time T G is changed automatically, the optimum route is calculated based on the arrival time T G of the changed. For this reason, not only a route for detouring in order to avoid a bad weather condition, or stopping a ship in the middle of navigation, an arrival place G arrives at an arrival place G after recovery from a bad weather condition. The optimal operation plan can be calculated including the route. That is, according to the above configuration, it is possible to automatically calculate an optimal operation plan in which the concept of time is considered in the optimal route. Therefore, it is possible to automatically obtain the calculation result of the preferred route along the more actual operation.
 [大洋中の荒天回避処理]
 上記第1例、第2例およびその変形例においては、出発地Sおよび/または到着地Gの近傍領域が天候不良状態である場合の最適航路演算処理について説明したが、本実施の形態における最適航路演算装置1は、これに限られず、大洋中等、出発地Sまたは到着地Gの近傍領域以外の領域(例えば最短距離航路上の領域)が天候不良状態である場合に、最適航路に、船舶を天候不良状態にある領域の手前で停止させることが考慮された最適運航計画を演算可能としてもよい。
[Avoiding stormy weather in the ocean]
In the first and second examples and their modifications described above, the optimum route calculation processing in the case where the area near the departure point S and / or the arrival point G is in a bad weather condition has been described. The route computation device 1 is not limited to this, and when the region other than the region near the departure point S or the arrival location G (for example, the region on the shortest distance course) is in poor weather condition, such as in the ocean. It may be possible to calculate an optimal operation plan in which it is considered to stop the vehicle before the area in the bad weather condition.
 図8は本実施の形態の第3例における航路領域を示す図である。図8に示すように、本例においても、図2の例と同様に、大洋の西側に位置する出発地Sから東方に向けて出発し、大洋の東側に位置する到着地Gに到着する航路について説明する。 FIG. 8 is a diagram showing a navigation route area in a third example of the present embodiment. As shown in FIG. 8, also in this example, as in the example of FIG. 2, the route departing from the departure point S located on the west side of the ocean toward the east and arriving at the arrival point G located on the east side of the ocean Will be explained.
 本例において、最短距離航路演算部46は、出発地Sと到着地Gとの間の最短距離を結ぶ最短距離航路(大圏航路)Roを演算する。判定部43は、最短距離航路Ro上に天候不良状態にある領域があるか否かを判定する。例えば、判定部43は、船舶Fを最短距離航路Roに従って所定速度で航行させた場合に、船舶Fの位置を基準とする所定領域A内に天候不良領域Aがあるか否かをシミュレーションにより判定する。具体的な判定は、ドリフティング処理の場合と同様に、例えば、ある最短距離航路Ro上の位置における船舶Fの到達予測時刻を基準とする所定期間における所定領域A内における波高が限界波高内か否かを判定する。 In the present example, the shortest distance route calculation unit 46 calculates the shortest distance route (great zone route) Ro connecting the shortest distance between the departure place S and the arrival place G. The determination unit 43 determines whether there is an area in the poor weather condition on the shortest distance route Ro. For example, the determination unit 43, when allowed to navigate at a predetermined speed the ship F according shortest route Ro, simulation whether there is bad weather area A H in a predetermined area A F relative to the position of the vessel F Determined by Specifically, as in the case of the drifting process, for example, the wave height in the predetermined area AF in the predetermined period based on the predicted arrival time of the ship F at the position on the shortest distance route Ro is within the limit wave height. It is determined whether or not.
 所定領域A内に天候不良領域Aがある場合、基準位置設定部45は、最短距離航路Ro上の位置を基準位置Dとして設定する。すなわち、基準位置設定部45は、最短距離航路Roと天候不良領域Aの境界部とが交差する地点のうち、最も出発地Sに近い側の最短距離航路上の地点を基準位置Dとして設定する。この基準位置Dとこのときの船舶Fの到達予測時刻が記憶部3に一時記憶される。 If there is bad weather area A H within the predetermined region A F, the reference position setting unit 45 sets the position on the shortest distance route Ro as a reference position D. That is, the reference position setting unit 45 setting, among the point where the boundary portion of the shortest distance route Ro and bad weather area A H intersect, the point on the most minimum distance close to the departure point S side route as a reference position D Do. The reference position D and the predicted arrival time of the ship F at this time are temporarily stored in the storage unit 3.
 この場合、拘束条件設定部44は、船舶Fが基準位置Dで所定時間停止することを拘束条件として設定する。この拘束条件に基づいて、最適運航計画演算部42は、最適航路に、出発地Sから出発後、途中の基準位置Dで所定の停止時間T船舶を停止させることが考慮された最適運航計画R1として演算する。本例においても、最適運航計画演算部42は、出発地Sから基準位置Dまでの間の第1航路領域A1と、基準位置Dから到着地Gまでの間の第2航路領域A2とを分割して、それぞれの領域A1,A2ごとに最適航路を演算する。詳しい演算内容は、ドリフティング処理における図6のステップSB7~SB13と同様である。 In this case, the restraint condition setting unit 44 sets that the boat F stops at the reference position D for a predetermined time as a restraint condition. Based on this restraint condition, the optimal operation plan calculation unit 42 is an optimal operation plan in which it is considered that a predetermined stop time T D is stopped at the reference position D in the middle after leaving the departure point S on the optimal route. Calculate as R1. Also in this example, the optimal operation plan calculation unit 42 divides the first navigation area A1 from the departure point S to the reference position D and the second navigation area A2 from the reference position D to the arrival point G Then, the optimal route is calculated for each of the areas A1 and A2. The details of the calculation are the same as steps SB7 to SB13 of FIG. 6 in the drifting process.
 最適運航計画演算部42は、最終的に、第1航路領域A1における最適航路、基準位置Dにおける停止時間T、および、第2航路領域A2における最適航路を連結させて、出発地Sから到着地Gまでの最適航路および各地点における時刻を示す最適運航計画R1を出力する。 The optimal flight plan computing unit 42 finally connects the optimal route in the first route region A1, the stop time T D at the reference position D , and the optimal route in the second route region A2, and arrives from the departure point S Output an optimal operation plan R1 indicating the optimum route to the place G and the time at each point.
 上記態様によれば、出発地Sおよび到着地G以外の領域における航路上に天候不良状態がある場合でも、最適航路に、船舶を所定の基準位置Dで停止させることが考慮された最適運航計画R1を演算可能である。このため、天候不良状態を回避するような航路だけでなく、基準位置Dで船舶を停止させるドリフティングを行うことにより天候不良状態である領域における天候の回復を待つような航路をも含めて最適運航計画を演算することができる。すなわち、上記態様によれば、最適航路に時間の概念が考慮された最適運航計画を自動的に演算することができる。したがって、より実情に即した好適な航路の策定を自動的に行うことができる。 According to the above aspect, even if there is a bad weather condition on the route other than the place of departure S and the place of arrival G, the optimal operation plan in consideration of stopping the ship at the predetermined reference position D on the optimal route R1 can be calculated. For this reason, it is optimal not only for routes that avoid bad weather conditions, but also for routes that wait for the recovery of the weather in the bad weather conditions by performing drifting to stop the ship at reference position D. The operation plan can be calculated. That is, according to the above aspect, it is possible to automatically calculate an optimal operation plan in which the concept of time is considered in the optimal route. Therefore, it is possible to automatically determine a suitable route more in line with the actual situation.
 また、本例においても、出発地Sから基準位置Dまでの第1航路領域A1と基準位置Dから到着地Gまでの第2航路領域A2とについて個別に最適航路が演算される。このため、基準位置Dで停止する態様に加えて、または、これに代えて、基準位置Dまで減速の後、基準位置Dから加速する態様も採用可能である。この場合、最適運航計画演算部42は、最適演算の際に速度に関するパラメータを動的に変化させて最適運航計画R1を演算してもよい。 Also in this example, the optimal route is calculated individually for the first navigation area A1 from the departure point S to the reference position D and the second navigation area A2 from the reference position D to the arrival point G. Therefore, in addition to or instead of stopping at the reference position D, it is also possible to adopt an aspect of accelerating from the reference position D after deceleration to the reference position D. In this case, the optimal operation plan calculation unit 42 may calculate the optimal operation plan R1 by dynamically changing the parameter related to the speed at the time of the optimal operation.
 例えば、最適運航計画演算部42は、出発地Sから基準位置Dまでの間の第1航路領域A1を、通常より遅い速度にしたり、基準位置Dに近づく程減速するような最適航路を演算し、基準位置Dから到着地Gまでの間の第2航路領域A2はそれまでより早い速度にしたり、基準位置Dから所定の距離までの間は離れるほど速度が速くなるように加速するような最適航路を演算してもよい。これにより、基準位置Dで船舶Fを停止させる時間をなくす、または、短くするような、様々な態様についての演算が可能となる。 For example, the optimal flight plan computing unit 42 computes an optimal route that makes the first navigation range A1 between the departure point S and the reference position D slower than usual or slows down as the reference position D is approached. The second channel area A2 between the reference position D and the arrival point G is optimized to have a higher speed or accelerate so that the speed increases as the distance from the reference position D to the predetermined distance increases. The route may be calculated. As a result, it is possible to carry out calculations for various aspects such as eliminating or shortening the time for stopping the ship F at the reference position D.
 さらに、本例において、最適運航計画演算部42は、上記のようなドリフティングを行う場合の航路に基づく運航計画R1と、従来通り天候不良状態を迂回するような運航計画R2とをそれぞれ演算し、2つの運航計画R1,R2を比較してより好適な運航計画を最適運航計画として出力してもよい。 Furthermore, in the present example, the optimal operation plan calculation unit 42 calculates the operation plan R1 based on the route in the case of performing the drifting as described above, and the operation plan R2 that bypasses the bad weather condition as usual. The two operation plans R1 and R2 may be compared and a more suitable operation plan may be output as the optimum operation plan.
 この場合、最適運航計画演算部42は、最短距離航路Ro上に天候不良領域Aが存在すると判定された場合に、最適航路に、出発地Sと最短距離航路Ro上における天候不良領域Aより手前の基準位置Dとの間で船舶Fを減速させる、または、基準位置Dで船舶Fを停止させることが考慮された第1運航計画R1と、最短距離航路Ro上に天候不良領域Aが存在すると判定された場合に、当該天候不良領域Aを迂回する際の最適航路に基づく第2運航計画R2とを生成する。そして、最適運航計画演算部42は、第1運航計画R1と第2運航計画R2とを比較し、より好適な運航計画を最適運航計画として出力する。 In this case, the optimum flight plan calculation unit 42, when it is determined that the bad weather area A H on the shortest distance route Ro is present, the optimal route, bad weather area A H of the departure point S and the shortest distance route on Ro A first operation plan R1 in which it is considered that the ship F is decelerated or stopped at the reference position D with the reference position D in front of it, and the poor weather region A H on the shortest distance route Ro there If it is determined to be present, to produce a second flight plan R2 based on the optimum route at the time of bypassing the bad weather area a H. Then, the optimal flight plan calculation unit 42 compares the first flight plan R1 with the second flight plan R2 and outputs a more suitable flight plan as the optimal flight plan.
 例えば、最適運航計画演算部42は、第1運航計画R1および第2運航計画R2のそれぞれについて演算される最小評価値Jminがより低い航路による運航計画を最適運航計画として出力する。 For example, the optimal operation plan calculation unit 42 outputs an operation plan based on a route with a lower minimum evaluation value J min calculated for each of the first operation plan R1 and the second operation plan R2 as an optimal operation plan.
 また、最適運航計画演算部42は、まず、第1運航計画R1を演算し、到着時刻Tを最初の入力値から変更しないといけない場合(図6におけるステップSB5でNoとなる場合)、第1運航計画R1に代えて第2運航計画R2を演算し、第2運航計画R2を最適運航計画として出力してもよい。 Further, the optimal flight plan computing unit 42 first computes the first flight plan R1, and if it is necessary to change the arrival time TG from the initial input value (if No at step SB5 in FIG. 6), (1) A second operation plan R2 may be calculated instead of the operation plan R1, and the second operation plan R2 may be output as an optimal operation plan.
 このように、船舶Fの進路を変更することにより天候不良領域Aを回避する第1運航計画R1と、船舶Fの速度を変更することにより天候不良領域Aを回避する第2運航計画R2とを比較することにより、より好適な運航計画を得ることができる。 Thus, the first flight plan R1 to avoid bad weather area A H by changing the course of the ship F, second flight plan to avoid bad weather area A H by changing the speed of the vessel F R2 A more suitable operation plan can be obtained by comparing with.
 [その他の変形例]
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の改良、変更、修正が可能である。
[Other modifications]
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, A various improvement, change, and correction are possible within the range which does not deviate from the meaning.
 例えば、上記実施の形態では、出発時刻の自動変更処理と、ドリフティング処理と、到着時刻の自動変更処理と、大洋中の荒天回避処理とを分けて説明したが、演算部4がこれらの少なくとも2つの処理を一連の演算処理として実行するように構成されてもよい。 For example, in the above embodiment, the automatic change processing of departure time, the drifting processing, the automatic change processing of arrival time, and the rough weather avoidance processing in the ocean have been described separately. The two processes may be configured to be executed as a series of arithmetic processes.
 また、上記実施の形態では、船舶の出航前に予め最適運航計画演算を行うことを想定して説明したが、上記態様は、船舶の出航前だけでなく、船舶の出航後において実施することも可能である。この場合、船舶の現在位置または未来の位置(航行予定位置)が出発地Sとなり、現在時刻または航行予定位置への到達予定時刻が出発時刻Tとして入力される。 Further, although the above embodiment has been described on the assumption that the optimal operation plan calculation is performed in advance before the departure of the ship, the above aspect may be implemented not only before the departure of the ship but also after the departure of the ship. It is possible. In this case, the current position or the future of the position of the ship (sailing schedule position) is the departure point S next to, the estimated time of arrival to the current time or navigation scheduled position is input as a starting time T S.
 また、上記実施の形態において、出発時刻の自動変更処理は、船舶が出発地S(所定地点)で所定時間停止することを最適航路演算の拘束条件とするために、出発時刻Tを遅らせることを例示したが、これに限られない。例えば、最適運航計画演算部42は、出発時刻の自動変更処理として、出発時刻Tを早めて最適航路の演算を行ってもよい。この場合、出発地Sの近傍領域が天候不良状態となる前に船舶が当該近傍領域を通過することが、最適航路演算の拘束条件として設定される。 In the above embodiment, the automatic change processing of the departure time delays the departure time T S to make the vessel stop at the departure point S (predetermined point) for a predetermined time as a constraint condition of the optimal route calculation. But it is not limited to this. For example, the optimum flight plan calculation unit 42, as an automatic changing process of the starting time may be performing an operation for optimum route by advancing the starting time T S. In this case, it is set as a constraint condition of the optimal route calculation that the ship passes the near area before the near area of the departure point S becomes poor weather condition.
 本発明は、より実情に即した好適な航路の策定を自動的に行うことができる最適運航計画演算装置および最適運航計画演算方法を提供するために有用である。 The present invention is useful for providing an optimal operation plan computing device and an optimal operation plan computing method capable of automatically performing development of a suitable route more in line with the actual situation.
1 最適運航計画演算装置
41 情報入力受付部
42 最適運航計画演算部
43 判定部
44 拘束条件設定部
45 基準位置設定部
46 最短距離航路演算部
47 最適航路演算部
D 基準位置
G 到着地
S 出発地
1 optimal flight plan computing device 41 information input acceptance unit 42 optimal flight plan computing unit 43 determination unit 44 restraint condition setting unit 45 reference position setting unit 46 shortest distance route computing unit 47 optimal route computing unit D reference position G arrival place S departure place

Claims (6)

  1.  船舶の出発地、到着地および出発時刻を含む情報の入力を受け付ける情報入力受付部と、
     入力された前記情報と、前記船舶の性能データと、前記船舶が航行する航路領域の気象データと、に基づいて、最適航路を含む最適運航計画を演算する最適運航計画演算部と、を備え、
     前記最適運航計画演算部は、
     前記気象データに基づいて、前記出発地または前記到着地の近傍領域が、前記船舶が航行不能な天候不良状態であるか否かを判定する判定部と、
     前記出発地または前記到着地の近傍領域が、前記船舶が航行不能な天候不良状態であると判定された場合、前記船舶が所定地点で所定時間停止すること、または、前記近傍領域が前記天候不良状態となる前に前記船舶が当該近傍領域を通過すること、を拘束条件として設定する拘束条件設定部と、を備え、
     前記最適運航計画演算部は、前記拘束条件が設定された場合、当該拘束条件に基づいて前記最適航路を演算する、最適運航計画演算装置。
    An information input reception unit that receives input of information including the departure point, arrival point and departure time of the ship;
    And an optimal operation plan calculation unit that calculates an optimal operation plan including an optimal route based on the input information, performance data of the vessel, and weather data of the route area where the vessel navigates,
    The optimal operation plan calculation unit
    A determination unit that determines, based on the weather data, whether or not the ship is unable to navigate and the weather is in a poor weather condition, or the vicinity area of the departure place or the arrival place;
    When it is determined that the ship is not able to navigate the bad weather condition that the ship can not navigate, the ship may stop at a predetermined point for a predetermined time, or the near area may be the bad weather condition. And a constraint condition setting unit that sets the vessel to pass through the near area before it becomes a state, as the constraint condition,
    The optimal flight plan computing device, wherein the optimal flight plan computing unit computes the optimal route based on the constraint condition when the constraint condition is set.
  2.  前記最適運航計画演算部は、前記出発地または前記到着地の近傍領域が、前記天候不良状態であると判定された場合、前記出発時刻または前記到着時刻を変更し、変更後の出発時刻または到着時刻に基づいて前記最適航路を演算する、請求項1に記載の最適運航計画演算装置。 The optimal operation plan calculation unit changes the departure time or the arrival time when it is determined that the area near the departure place or the arrival place is in the bad weather condition, and changes the departure time or arrival after the change. The optimal flight plan computing device according to claim 1, wherein the optimal route is computed based on time of day.
  3.  前記最適運航計画演算部は、前記到着地の近傍領域が、前記天候不良状態であると判定された場合、前記近傍領域と、前記出発地から前記到着地までの間の所定の航路とが交わる位置を基準位置として設定する基準位置設定部を備え、
     前記最適運航計画演算部は、前記出発地から前記基準位置までの間の第1航路領域と、前記基準位置から前記到着地までの間の第2航路領域とを分割して、最適航路を演算し、
     前記最適運航計画演算部は、前記第1航路領域における前記基準位置への到着時刻に所定時間を加えた基準位置出発時刻を用いて、前記第2航路領域における最適航路を演算する、請求項1または2に記載の最適運航計画演算装置。
    When it is determined that the vicinity area of the arrival site is in the poor weather condition, the optimal operation plan calculation unit intersects the vicinity area and a predetermined route from the departure site to the arrival site. A reference position setting unit that sets the position as a reference position;
    The optimal operation plan calculation unit calculates an optimal route by dividing a first navigation region between the departure point and the reference position and a second navigation region between the reference position and the arrival point. And
    The optimal flight plan in the second navigation area is computed using the reference position departure time obtained by adding a predetermined time to the arrival time to the reference position in the first navigation area, the optimal operation plan calculation unit. The optimal flight plan computing device according to or 2.
  4.  前記最適運航計画演算部は、前記基準位置を設定するための前記所定の航路として、前記出発地と前記到着地との間の最短距離を結ぶ最短距離航路を演算する最短距離航路演算部を備え、
     前記基準位置設定部は、前記最短距離航路上の位置を前記基準位置として設定し、
     前記最適運航計画演算部は、前記最短距離航路における前記基準位置への到着時刻を用いて、前記第1航路領域における最適航路を演算し、
     前記判定部は、前記基準位置出発時刻において、前記到着地の近傍領域が、前記天候不良状態にあるか否かを判定し、
     前記最適運航計画演算部は、前記基準位置出発時刻において、前記到着地の近傍領域が、前記天候不良状態にあると判定された場合、前記基準位置出発時刻に前記所定の時間を加えた時刻を新たな基準位置出発時刻として設定する、請求項3に記載の最適運航計画演算装置。
    The optimal operation plan calculation unit includes a shortest distance route calculation unit that calculates a shortest distance route connecting the shortest distance between the departure place and the arrival location as the predetermined route for setting the reference position. ,
    The reference position setting unit sets a position on the shortest distance passage as the reference position.
    The optimal operation plan computing unit computes an optimal route in the first route area using an arrival time to the reference position in the shortest distance route;
    The determination unit determines whether or not the area near the arrival site is in the bad weather condition at the reference position departure time.
    When it is determined that the area near the arrival site is in the bad weather condition at the reference position departure time, the optimal operation plan calculation unit is a time obtained by adding the predetermined time to the reference position departure time. The optimal flight plan computing device according to claim 3, wherein the optimal flight plan departure time is set as a new reference position departure time.
  5.  前記判定部は、前記到着地の近傍領域が、前記天候不良状態にあると判定された場合、前記出発時刻から前記到着時刻までの時間から前記所定時間を引いた航行可能時間が、前記出発地から前記到着地までの航行に最低限必要な航行必要時間より短いか否かを判定し、
     前記最適運航計画演算部は、前記航行可能時間が前記航行必要時間より短いと判定された場合、前記到着時刻を変更し、変更後の到着時刻に基づいて前記第1航路における最適航路を演算する、請求項3または4に記載の最適運航計画演算装置。
    When it is determined that the vicinity area of the arrival site is in the poor weather condition, the determination unit determines the navigable time obtained by subtracting the predetermined time from the time from the departure time to the arrival time. Determine whether it is shorter than the minimum required navigation time for navigation from
    When it is determined that the navigable time is shorter than the navigable time, the optimal operation plan calculation unit changes the arrival time, and calculates an optimum route on the first route based on the changed arrival time. The optimal operation plan arithmetic unit according to claim 3 or 4.
  6.  船舶の出発地、到着地および出発時刻を含む情報の入力を受け付ける情報入力受付ステップと、
     入力された前記情報と、前記船舶の性能データと、前記船舶が航行する航路領域の気象データと、に基づいて、最適航路を含む最適運航計画を演算する最適運航計画演算ステップと、を含み、
     前記最適運航計画演算ステップは、
     前記気象データに基づいて、前記出発地または前記到着地の近傍領域が、前記船舶が航行不能な天候不良状態にあるか否かを判定する判定ステップと、
     前記出発地または前記到着地の近傍領域が、前記船舶が航行不能な天候不良状態にあると判定された場合、前記船舶が所定地点で所定時間停止すること、または、前記近傍領域が前記天候不良状態となる前に前記船舶が当該近傍領域を通過すること、を拘束条件として設定する拘束条件設定ステップと、を含み、
     前記最適航路演算ステップは、前記拘束条件が設定された場合、当該拘束条件に基づいて前記最適航路を演算する、最適運航計画演算方法。
    An information input accepting step of accepting input of information including a departure point, an arrival point and a departure time of the ship;
    An optimal operation plan calculating step of calculating an optimal operation plan including an optimal route based on the input information, the performance data of the vessel, and meteorological data of the route area where the vessel navigates;
    The optimal operation plan calculation step is
    A determination step of determining whether or not the ship is in a weather failure condition in which the vessel can not navigate, based on the weather data;
    When it is determined that the ship is not in the navigable weather condition, the ship may stop at a predetermined point for a predetermined time, or the vicinity area may be the weather defect. And a constraint condition setting step of setting the ship to pass through the near area before becoming a state, as a constraint condition,
    The optimal navigation plan computing method, wherein the optimal navigation route computing step computes the optimal navigation route based on the restraint condition when the restraint condition is set.
PCT/JP2018/024874 2017-06-30 2018-06-29 Device for computing optimal operation plan and method for computing optimal operation plan WO2019004445A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-129786 2017-06-30
JP2017129786A JP6913537B2 (en) 2017-06-30 2017-06-30 Optimal flight plan arithmetic unit and optimal flight plan calculation method

Publications (1)

Publication Number Publication Date
WO2019004445A1 true WO2019004445A1 (en) 2019-01-03

Family

ID=64741594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024874 WO2019004445A1 (en) 2017-06-30 2018-06-29 Device for computing optimal operation plan and method for computing optimal operation plan

Country Status (2)

Country Link
JP (1) JP6913537B2 (en)
WO (1) WO2019004445A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111089591A (en) * 2019-12-10 2020-05-01 中船航海科技有限责任公司 Ship route planning method, system, terminal and storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102182037B1 (en) * 2020-04-02 2020-11-23 한국해양과학기술원 Apparatus and method for creating a ship's moving route network
CN111780760B (en) * 2020-06-10 2022-02-18 智慧航海(青岛)科技有限公司 Ship route simulation test method based on ocean voyage meteorological timeliness
JP7218973B1 (en) 2022-07-20 2023-02-07 独立行政法人国立高等専門学校機構 Operation support system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119356A (en) * 2012-12-17 2014-06-30 Taisei Corp Marine navigation simulation device
WO2015107805A1 (en) * 2014-01-16 2015-07-23 株式会社日立ソリューションズ Classification device and classification method
JP2016060454A (en) * 2014-09-22 2016-04-25 三菱重工業株式会社 Ship operation schedule optimization system and ship operation schedule optimization method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119356A (en) * 2012-12-17 2014-06-30 Taisei Corp Marine navigation simulation device
WO2015107805A1 (en) * 2014-01-16 2015-07-23 株式会社日立ソリューションズ Classification device and classification method
JP2016060454A (en) * 2014-09-22 2016-04-25 三菱重工業株式会社 Ship operation schedule optimization system and ship operation schedule optimization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111089591A (en) * 2019-12-10 2020-05-01 中船航海科技有限责任公司 Ship route planning method, system, terminal and storage medium

Also Published As

Publication number Publication date
JP2019012044A (en) 2019-01-24
JP6913537B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
WO2019004445A1 (en) Device for computing optimal operation plan and method for computing optimal operation plan
CN110967022B (en) Ship navigational speed optimization auxiliary decision-making system
JP5435418B2 (en) Ocean current data assimilation method and system
JP6251842B2 (en) Ship operation support system and ship operation support method
JP6038087B2 (en) Ship operation plan optimization system and ship operation plan optimization method
KR102589008B1 (en) A device for determining the optimal route of a maritime vessel
Mannarini et al. VISIR-I: small vessels–least-time nautical routes using wave forecasts
RU2292289C1 (en) Method of automatic control of ship motion
CN109460021A (en) Intelligently navigation can meet track identification actuarial collision avoidance system to ship
KR102526160B1 (en) Unmanned marine automatic route change apparatus utilizing weather information and method therefor
WO2021074483A1 (en) Computer-implemented method for optimizing marine vessel thrust allocation for plurality of thruster units
JP2013134089A (en) Optimal sailing route calculating apparatus and optimal sailing route calculating method
Muñuzuri et al. Planning navigation in inland waterways with tidal depth restrictions
CN113916234A (en) Automatic planning method for ship collision avoidance route under complex dynamic condition
JP2020008443A (en) Navigation device and route creation method
JP2021062653A (en) Trajectory generation device, trajectory generation method, and trajectory generation program
JP3950975B2 (en) Navigation planning support system
JP3868338B2 (en) Ship operation system
WO2019004443A1 (en) Device for computing optimal course and method for computing optimal course
Bijlsma On the applications of optimal control theory and dynamic programming in ship routing
Mannarini et al. VISIR-I: Small vessels, least-time nautical routes using wave forecasts
JP2007245935A (en) Voyage schedule assistance device
JP6262116B2 (en) Ship speed calculation device and ship speed calculation method
CN114166247A (en) Course evaluation system, method and storage medium based on ocean current numerical forecast information
JP6165697B2 (en) Ship speed calculation device and ship speed calculation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822850

Country of ref document: EP

Kind code of ref document: A1