WO2019004335A1 - Genetic mutation evaluation method, and kit for evaluating genetic mutation - Google Patents

Genetic mutation evaluation method, and kit for evaluating genetic mutation Download PDF

Info

Publication number
WO2019004335A1
WO2019004335A1 PCT/JP2018/024511 JP2018024511W WO2019004335A1 WO 2019004335 A1 WO2019004335 A1 WO 2019004335A1 JP 2018024511 W JP2018024511 W JP 2018024511W WO 2019004335 A1 WO2019004335 A1 WO 2019004335A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
probe
mutation
gene mutation
type
Prior art date
Application number
PCT/JP2018/024511
Other languages
French (fr)
Japanese (ja)
Inventor
恵美 高光
大場 光芳
惇一 森弘
山野 博文
俊昭 湯尻
雅史 松隈
Original Assignee
東洋鋼鈑株式会社
国立大学法人山口大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社, 国立大学法人山口大学 filed Critical 東洋鋼鈑株式会社
Priority to JP2019527013A priority Critical patent/JP7248982B2/en
Publication of WO2019004335A1 publication Critical patent/WO2019004335A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters

Definitions

  • the present invention relates to a gene mutation evaluation method and a gene mutation evaluation kit for evaluating gene mutations of types in which multiple types may exist.
  • Gene mutations include so-called innate gene polymorphism polymorphism (also referred to simply as polymorphism) and acquired mutations introduced. These gene mutations have a great influence on the individual's phenotype such as diagnosis, treatment and efficacy in various diseases. Genetic mutations include polymorphisms such as single nucleotide polymorphisms which are differences of one base in a DNA sequence, and microsatellite polymorphisms which are differences in repetitive sequences of a sequence having several bases as one unit, and acquired mutations There are known mutations or the like in which bases of the length are inserted or deleted.
  • Myeloproliferative tumors can be mentioned as an example in which individual gene mutations are used for diagnosis.
  • Myeloproliferative neoplasms are diseases caused by tumorigenesis of myeloid cells. MPN is characterized by marked proliferation of myeloid cells (such as granulocytes, blasts, megakaryocytes and mast cells).
  • CML chronic myelogenous leukemia
  • CCL chronic neutrophilic leukemia
  • PV polycythemia vera
  • primary bone marrow fiber Disease primary myelofibrosis: PMF
  • essential thrombocythemia EGF
  • CEL chronic eosinophilic leukemia
  • HES hypereosinolytic syndrome
  • HES mastocytosis
  • myoproliferative neoplasms unclassifiable: MPN, U.
  • diagnosis of MPN is based on clinical parameters, bone marrow morphology and genetic data.
  • the combination of these can be used to diagnose MPNs excluding CML in patients with Philadelphia chromosome negative.
  • genetic data specifically, mutation information on three genes: JAK2, CALR and MPL, and additionally, mutation information on ASXL1, EZH2, TET2, IDH1 / IDH2, SRSF2 and SF3B1 are used.
  • JAK2, CALR and MPL are considered to be the molecular basis of MPN onset, the presence or absence of mutations in the gene group is an important factor in the definitive diagnosis of MPN.
  • JAK2 (Janus activating kinase 2) is a gene encoding a protein that controls the signal of erythropoietin receptor.
  • Non Patent Literature 2 further discloses that the MPLW515L / K mutant PMF was found in PMF and ET with respect to MPL.
  • MPL is a gene encoding a thrombopoietin receptor.
  • Non-Patent Document 2 discloses that type 1 mutations of 52 base deletion and type 2 mutations of 5-base insertion are most frequent for CALR, and these mutations are found in ET and PMF. Type 1 mutations are disclosed to be more frequent in PMF and to be associated with conversion to myelofibrosis in ET.
  • CALR is a gene encoding calreticulin, which is one of endoplasmic reticulum molecular chaperones.
  • Patent Document 1 discloses a JAK2V617F site-specific fluorescently labeled probe as a mutation analysis method of the JAK2 gene.
  • Patent Document 2 discloses a technique for detecting a mutation different from the JAK2V617F mutation, which is found in a patient who is negative for the JAK2V617F mutation and shows a myeloproliferative tumor.
  • Patent Document 3 discloses a probe set for detecting W515K mutation and W515L mutation in MPL as a probe for detecting MPL gene polymorphism.
  • Patent Document 4 discloses a technique for identifying a mutation in CALR.
  • the present invention aims to provide a gene mutation evaluation method and a gene mutation evaluation kit capable of determining a plurality of types of gene mutations in which there may be a plurality of types of gene mutations. I assume.
  • the present invention includes the following.
  • a step of amplifying a region including a specific site where a plurality of gene mutations may exist to obtain an amplified fragment having a label, a first probe corresponding to a wild-type sequence at the specific site, and the amplified fragment Contacting a common probe corresponding to the sequence excluding the gene mutation in step with a solution containing the amplified fragment, and detecting a signal based on the label in the first probe and the common probe, and a determination formula: [ A step of calculating a first determination value based on the signal intensity of the first probe / the signal intensity of the common probe, and the first determination value calculated by the above determination formula are compared with a preset cutoff value.
  • a step of determining the presence or absence of a gene mutation based on the comparison result a second probe corresponding to a specific gene mutation among the plurality of gene mutations is brought into contact with a solution containing the amplification fragment, and the labeling of the second probe is carried out Detecting the signal based on the gene mutation evaluation method according to (1).
  • step of calculating the first determination value further determination equation: [signal strength of second probe] / ([signal strength of first probe] + [signal strength of second probe])
  • step of calculating the second determination value by the step of determining the presence or absence of the gene mutation, the second determination value is compared with a preset cutoff value, and the result of the comparison using the first determination value
  • the judgment value is further calculated according to the judgment formula: [signal strength of second probe] / [signal strength of common probe], and the presence or absence of the gene mutation
  • the determination value is compared with a preset cutoff value, and the result of the comparison using the first determination value and the result of the comparison using the determination value (2) the method for evaluating gene mutation according to (2).
  • the specific part is between the 501st and the 579th in the nucleotide sequence of the CALR gene shown in SEQ ID NO: 2, and the plurality of gene mutations are due to the insertion or deletion of bases in the 501st to 579th regions
  • the gene mutation evaluation method according to (1) characterized in that (7) A gene mutation evaluation kit for determining the presence or absence of a gene mutation using an amplified fragment having a label obtained by amplifying a region including a specific part where a plurality of gene mutations may exist, which is a wild type of the above specific part
  • a kit for evaluating gene mutation which comprises a first probe corresponding to a sequence and a common probe corresponding to a sequence excluding the gene mutation in the amplified fragment.
  • the kit for gene mutation evaluation according to (7) further comprising a second probe corresponding to a specific gene mutation among the plurality of gene mutations.
  • the kit for gene mutation evaluation according to (7) wherein the plurality of gene mutations are insertions or deletions of bases.
  • the above specific site is between the 501st and the 579th in the nucleotide sequence of the CALR gene shown in SEQ ID NO: 2, and the plurality of gene mutations are due to the insertion or deletion of bases in the 501st to 579th regions
  • the kit for gene mutation evaluation as described in (7) characterized by a certain thing.
  • the gene mutation evaluation kit according to (7), wherein the common probe is an oligonucleotide containing a sequence of 397 to 659 in the nucleotide sequence of the CALR gene shown in SEQ ID NO: 2.
  • the common probe is an oligonucleotide containing CTCCTCCATCC TCATCTTTGTC (SEQ ID NO: 15) or CTCTCGTCCTGTTTGTC (SEQ ID NO: 31).
  • the above gene mutation is a 52 base deletion type 1 mutation in which 52 bases from 513 to 564 in the base sequence of the CALR gene shown in SEQ ID NO: 2 is deleted, and the second probe corresponding to the mutation type is A kit for evaluating gene mutation according to (7), which is an oligonucleotide containing TCCTGTGTCTCCTGCTCC (SEQ ID NO: 5).
  • the present specification includes the disclosure content of Japanese Patent Application No. 2017-125929 based on which the priority of the present application is based.
  • the gene mutation evaluation method and the gene mutation evaluation kit according to the present invention when there are plural types of gene mutations in specific places, the presence or absence of these gene mutations can be determined.
  • FIG. 2 schematically shows type 1 mutations and type 2 mutations associated with myeloproliferative tumors in CALR.
  • FIG. 7 is a characteristic diagram in which determination values are plotted for each gene mutation in the sample used in Example 1.
  • FIG. 10 is a characteristic diagram in which first determination values and second determination values are plotted for CALR type 1 mutation in the sample used in Example 1.
  • FIG. 16 is a characteristic diagram showing the relationship between the blocker concentration and the second determination value in the hybridization experiment in the present Example 2.
  • FIG. 16 is a characteristic diagram showing the relationship between the mutation ratio (mutation%) in a mutant sample and the second determination value in the hybridization experiment in the present Example 2.
  • the method for evaluating gene mutation and the kit for evaluating gene mutation according to the present invention can be applied when there are multiple types of gene mutations at specific places.
  • the presence of a plurality of gene mutations at a specific site means, for example, that a mutation pattern is not one but a plurality of patterns at predetermined positions in genomic DNA.
  • mutation in a plurality of patterns means that, when a gene mutation is an insertion or deletion of a nucleotide sequence, there are a plurality of lengths of the nucleotide sequence to be inserted or deleted, and the gene mutation repeats a predetermined nucleotide sequence.
  • the number it means that there are a plurality of patterns of the number of repetitions.
  • to mutate in a plurality of patterns means that, when the gene mutation is a substitution of 1 to several bases, there are a plurality of patterns of base sequences after substitution.
  • gene mutation due to insertion or deletion means that a base of a predetermined length is inserted when looking at the other allele from one allele, conversely, when looking at one allele from the other allele It is a gene mutation whose difference is that a base of the predetermined length is deleted.
  • the type in which the base of a predetermined length is deleted may be a wild type, and the type in which the base of a predetermined length is inserted may be a wild type.
  • type 1 mutations As a gene mutation of a type in which a region of a predetermined length is deleted, and other deletion types having different lengths are known, 52 bases in the CALR gene, the details of which will be described later. Mention may be made of deletion type gene mutations (referred to as type 1 mutations). In the CALR gene, mutations similar to type 1 such as 46 base deletion mutation, 34 base deletion mutation and 24 base deletion mutation at the same position in addition to this 52 base deletion type type 1 (these are collectively called type 1 like (Leukemia (2016) 30, 431-438), and at the same position, it has been shown that there are other mutations not classified into these.
  • an amplified fragment obtained by amplifying a region including a specific portion where such a gene mutation may exist, and a wild-type probe And use a common probe. That is, in the present invention, the following probe set is designed. That is, a first probe (also referred to as a wild-type probe) corresponding to a wild-type sequence without gene mutation and a common probe corresponding to a sequence excluding the gene mutation in the amplified fragment are designed.
  • a second probe (also referred to as a mutant probe) corresponding to the sequence of gene mutation is designed.
  • This second probe is designed to correspond to one gene mutation (gene mutation to be detected) among the plurality of types of gene mutations described above. That is, the second probe specifically hybridizes to a nucleic acid fragment having one gene mutation among the plurality of types of gene mutations described above, and a nucleic acid fragment having another gene mutation and a wild-type nucleic acid fragment It is designed to prevent hybridization.
  • the labeled amplification fragments are brought into contact with these probes, and signals based on the labels in the first probe and the common probe are detected.
  • a first judgment value is calculated from the obtained signal according to the judgment formula: [signal strength of the first probe] / [signal strength of the common probe], and a preset cutoff is used.
  • the presence or absence of a gene mutation in the obtained amplified fragment is determined by comparison with a value (threshold value).
  • the common probe specifically hybridizes to the amplified nucleic acid regardless of the presence or absence of a gene mutation to be detected in the amplified nucleic acid.
  • the denominator is compared with the determination value calculated as [signal strength of the first probe] + [signal strength of the second probe], and a plurality of types of higher precision can be obtained.
  • Gene mutations can be detected. Specifically, when there is a gene mutation similar to the gene mutation to be detected, according to the first judgment value, either the gene mutation to be detected or the gene mutation similar to the gene mutation is selected. Having these can be distinguished from wild type which does not have any of these gene mutations.
  • a plurality of genes containing gene mutations to be detected without using probes corresponding to a plurality of gene mutations including gene mutations to be detected Mutations can be detected.
  • a determination formula [signal strength of second probe] / ([signal strength of first probe] + [second The second determination value is calculated by the signal intensity of the probe of [1], and the gene mutation in the obtained amplified fragment can be determined with higher accuracy by comparing with the preset cutoff value (threshold value). . That is, specifically, when there is a gene mutation similar to a gene mutation to be detected, having the gene mutation to be detected is similar to the gene mutation to be detected according to the second judgment value Can be distinguished from the wild type which does not have any of these gene mutations and these gene mutations.
  • the determination value may be used for determination of gene mutation using the first determination value described above and determination using the first determination value and the second determination value.
  • the gene mutation evaluation method and the gene mutation evaluation kit according to the present invention can be applied, for example, to gene mutations present in CALR among gene mutations associated with myeloproliferative tumors. More specifically, among gene mutations present in CALR, types such as so-called 52 base deletion type gene mutations (type 1), 46 base deletion mutations at the same position, 34 base deletion mutations, 24 base deletion mutations, etc. It can be applied in determining the presence or absence of mutations similar to 1 (type 1 like) and further mutations not classified as these at the same position.
  • the kit for evaluating gene mutations associated with myeloproliferative tumors described below relates to gene mutations present in JAK2, CALR and MPL.
  • JAK2, CALR and MPL are gene mutations used for diagnosis of myeloproliferative tumors in the classification by World Health Organization (WHO) (for example, the 2016 fiscal year version).
  • WHO World Health Organization
  • the kit for gene mutation evaluation shown as an example includes a probe set for identifying gene mutations present in each of these JAK2, CALR and MPL.
  • the gene mutation of JAK2 means the V617F mutation (the substitution mutation of valine at position 617 to phenylalanine). This mutation contributes to the activation of the JAK-STAT pathway and is a hallmark of polycytemia vera (PV).
  • the V617F mutation is also found at a frequency of 50 to 60% in patients with primary myelofibrosis (PMF) or patients with essential thrombocythemia (ET).
  • the nucleotide sequence encoding wild type JAK2 is shown in SEQ ID NO: 1.
  • G is substituted for T.
  • CALR gene mutation means type 1 mutation with 52 bases deletion and type 2 mutation with 5 bases insertion.
  • the 52 base deletion and 5 base insertions are located at the C-terminus of the CALR protein. Any of these mutations is found at a frequency of 20-25% in patients with primary myelofibrosis (PMF) or in patients with essential thrombocythemia (ET).
  • type 2 mutations are associated with essential thrombocythemia (ET) and type 1 mutations are involved in primary myelofibrosis (PMF).
  • the CALR gene mutation is also a mutation found in myeloproliferative tumors that do not have the above-mentioned gene mutation in JAK2.
  • the nucleotide sequence encoding wild type CALR is shown in SEQ ID NO: 2. If it has a type 1 mutation, 52 bases from 513 to 564 in the base sequence shown in SEQ ID NO: 2 will be deleted. In the case of having a type 2 mutation, TGTTC is inserted between the 568th and 569th in the base sequence shown in SEQ ID NO: 2.
  • the gene mutation of MPL means the W515K mutation (a substitution mutation of tryptophan at position 515 to lysine) or the W515L mutation (a substitution mutation of tryptophan at position 515 to leucine).
  • This gene mutation of MPL is found in 3 to 5% of patients with essential thrombocythemia (ET) and in 6 to 10% of primary myelofibrosis (PMF).
  • the nucleotide sequence encoding wild type MPL is shown in SEQ ID NO: 3.
  • TGs at positions 305 and 306 in the base sequence shown in SEQ ID NO: 3 are subjected to substitution mutation to AA.
  • G at position 306 in the base sequence shown in SEQ ID NO: 3 is substituted for T.
  • an oligonucleotide containing CTCCACAGAaACATACTCC (SEQ ID NO: 4), which corresponds to the substitution mutation in SEQ ID NO: 1, can be used as a variant probe.
  • the small letter a corresponds to a 351st G to T substitution mutation in the base sequence shown in SEQ ID NO: 1.
  • a wild-type probe corresponding to wild-type JAK2 (a small letter a in the above sequence can be used as c) can also be used.
  • a mutant-type probe containing the base sequence of SEQ ID NO: 4 may be used, or a probe set consisting of the mutant-type probe and a wild-type probe may be used.
  • a region selected from 52 bases from 513 to 564 in the base sequence shown in SEQ ID NO: 2 is a wild-type probe (first probe) corresponding to wild-type CALR.
  • first probe an oligonucleotide containing TCCTTGT-CCTCTGCTCC (SEQ ID NO: 5) corresponding to the 52 base deletion in SEQ ID NO: 2 can be used as a probe (second probe) .
  • the position of the hyphen "-" in the above sequence is the position of 52 base deletion.
  • CALR type 2 mutation a wild-type probe (first probe designed as a sequence in which the above 5 bases are not inserted, ie, 568th and 569th adjacent sequences in the base sequence shown in SEQ ID NO: 2) Use).
  • first probe designed as a sequence in which the above 5 bases are not inserted ie, 568th and 569th adjacent sequences in the base sequence shown in SEQ ID NO: 2
  • type 2 mutations of CALR for example, an oligonucleotide containing, for example, ATCC TCC gacaa TTGTCCT (SEQ ID NO: 6) corresponding to the above-mentioned 5-base insertion in SEQ ID NO: 2 can be used as a probe.
  • lower case gacaa has a 5-base insertion.
  • an oligonucleotide corresponding to the above substitution mutation in SEQ ID NO: 3, for example, containing GAAACTGCttCCTCAGCA (SEQ ID NO: 7) can be used as a variant probe.
  • lower case tt corresponds to substitution mutation of the 305th and 306th TGs to AA in the base sequence shown in SEQ ID NO: 3.
  • a wild-type probe corresponding to wild-type MPL (a sequence in which the lower-case tt in the above sequence is a ca) can also be used.
  • a mutant-type probe containing the base sequence of SEQ ID NO: 7 may be used, or a probe set consisting of the mutant-type probe and a wild-type probe may be used.
  • an oligonucleotide corresponding to the above substitution mutation in SEQ ID NO: 5, for example, GGAAACTGCAAaCCTCAG (SEQ ID NO: 8) can be used as a variant probe.
  • the small letter a in the above sequence corresponds to a substitution mutation of the 306th G to the T in the nucleotide sequence shown in SEQ ID NO: 3.
  • a wild-type probe corresponding to wild-type MPL (a sequence in which a in the above sequence is a c) can be used.
  • a mutant-type probe containing the base sequence of SEQ ID NO: 8 may be used, or a probe set consisting of the mutant-type probe and a wild-type probe may be used.
  • the mutant-type probe for identifying the gene mutation which exists in JAK2, CALR, and MPL was respectively illustrated, the base sequence of a mutant-type probe is not limited to sequence number 4-8, but sequence number 1 It can design suitably based on the base sequence of JAK2 shown, the base sequence of CALR shown to sequence number 2, and the base sequence of MPL shown to sequence number 3.
  • the base length of these probes is not particularly limited, but may be, for example, 10 to 30 bases, and preferably 15 to 25 bases.
  • the probe is a base sequence designed based on a region containing a gene mutation in the base sequence of SEQ ID NO: 1, 3 or 5, and a base sequence added to one or both ends of the base sequence.
  • the probe designed as described above is preferably a nucleic acid, more preferably DNA.
  • the DNA may be double stranded or single stranded but is preferably single stranded DNA.
  • the probe can be obtained, for example, by chemical synthesis by a nucleic acid synthesizer.
  • a nucleic acid synthesizer an apparatus called a DNA synthesizer, a fully automatic nucleic acid synthesizer, an automatic nucleic acid synthesizer or the like can be used.
  • the probe designed as described above is preferably used in the form of a microarray (as an example, a DNA chip) by immobilizing its 5 'end on a carrier.
  • the microarray preferably has a mutant-type probe and a wild-type probe for each of the aforementioned gene mutations.
  • the length of the mutant-type probe and the wild-type probe are preferably differences within 2 bases, and more preferably the lengths are the same.
  • the microarray according to the present invention can be prepared by immobilizing the above-described probe on a carrier.
  • noble metals such as platinum, platinum black, gold, palladium, rhodium, silver, mercury, tungsten and compounds thereof, and conductive materials such as carbon represented by graphite and carbon fiber; single crystal silicon, amorphous Silicon materials represented by silicon, silicon carbide, silicon oxide, silicon nitride etc., and composite materials of these silicon materials represented by SOI (silicon on insulator) etc .; glass, quartz glass, alumina, sapphire, ceramics, foam Stellite, inorganic materials such as photosensitive glass; polyethylene, ethylene, polypropylene, cyclic polyolefin, polyisobutylene, polyethylene terephthalate, unsaturated polyester, fluorine-containing resin, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol , Polyvinyl acetal, acrylic resin, polyacrylonitrile, polystyren
  • a carrier having a carbon layer and a chemical modification group on the surface is used as the carrier.
  • Carriers having a carbon layer and a chemical modification group on the surface include those having a carbon layer and a chemical modification group on the surface of the substrate and those having a chemical modification group on the surface of the substrate consisting of a carbon layer.
  • the material of the substrate those known in the art can be used without particular limitation, and the same ones as mentioned above as the carrier material can be used.
  • a carrier having a fine tabular structure is suitably used.
  • the shape is not limited to rectangular, square and round shapes, but usually 1 to 75 mm square, preferably 1 to 10 mm square, more preferably 3 to 5 mm square is used. It is preferable to use a substrate made of a silicon material or a resin material because it is easy to manufacture a carrier having a fine flat plate structure, and in particular, a carrier having a carbon layer and a chemical modification group on the surface of a substrate made of single crystal silicon is more preferable. preferable.
  • Single crystal silicon has a slight change in orientation of crystallographic axis in part (sometimes referred to as a mosaic crystal), or includes disorder on atomic scale (lattice defect) Is also included.
  • the carbon layer formed on the substrate in the present invention is not particularly limited, but synthetic diamond, high-pressure synthetic diamond, natural diamond, soft diamond (for example, diamond like carbon), amorphous carbon, carbon-based material (for example, graphite, fullerene) It is preferable to use any of carbon nanotubes, mixtures thereof, or laminates thereof.
  • carbides such as hafnium carbide, niobium carbide, silicon carbide, tantalum carbide, thorium carbide, titanium carbide, uranium carbide, tungsten carbide, zirconium carbide, molybdenum carbide, chromium carbide, vanadium carbide and the like may be used.
  • soft diamond generally refers to an incomplete diamond structure which is a mixture of diamond and carbon such as so-called diamond like carbon (DLC: Diamond Like Carbon), and the mixing ratio is not particularly limited.
  • the carbon layer is excellent in chemical stability and can withstand the subsequent reaction with the introduction of a chemical modification group and the binding to the analyte, and the bond is flexible because it is bound to the analyte by electrostatic binding. It is advantageous in that it has properties, is transparent to the detection system UV due to lack of UV absorption, and can be energized during electroblotting. In addition, it is also advantageous in that nonspecific adsorption is small in the binding reaction with the analyte.
  • the substrate itself may use a carrier composed of a carbon layer.
  • the formation of the carbon layer can be performed by a known method.
  • microwave plasma CVD Chemical vapor deposition
  • ECR CVD Electro cyclotron resonance chemical vapor deposition
  • ICP Inductive coupled plasma
  • DC sputtering ECR (Electric cyclotron resonance)
  • ionization deposition arc Deposition methods, laser deposition methods, electron beam (EB) deposition methods, resistance heating deposition methods, and the like.
  • a source gas (methane) is decomposed by glow discharge generated between electrodes by high frequency to synthesize a carbon layer on a substrate.
  • the source gas (benzene) is decomposed and ionized by using thermoelectrons generated by a tungsten filament, and a carbon layer is formed on a substrate by a bias voltage.
  • the carbon layer may be formed by ionization vapor deposition in a mixed gas consisting of 1 to 99% by volume of hydrogen gas and 99 to 1% by volume of methane gas.
  • an arc discharge is generated in vacuum by applying a direct current voltage between a solid graphite material (cathode evaporation source) and a vacuum vessel (anode) to generate a plasma of carbon atoms from the cathode and the evaporation source Furthermore, by applying a negative bias voltage to the substrate, carbon ions in the plasma can be accelerated toward the substrate to form a carbon layer.
  • a carbon layer can be formed by, for example, irradiating a target plate of graphite with Nd: YAG laser (pulse oscillation) light to melt and depositing carbon atoms on a glass substrate.
  • Nd: YAG laser pulse oscillation
  • the thickness of the carbon layer is usually from about 1 to 100 ⁇ m, and if it is too thin, the surface of the base substrate may be exposed locally. If this is the case, the productivity will deteriorate, so it is preferably 2 nm to 1 ⁇ m, more preferably 5 nm to 500 nm.
  • the oligonucleotide probe By introducing a chemical modification group on the surface of the substrate on which the carbon layer is formed, the oligonucleotide probe can be firmly immobilized on the carrier.
  • the chemical modification group to be introduced can be appropriately selected by those skilled in the art and is not particularly limited, and examples thereof include an amino group, a carboxyl group, an epoxy group, a formyl group, a hydroxyl group and an active ester group.
  • the introduction of the amino group can be carried out, for example, by irradiating the carbon layer with ultraviolet light in ammonia gas or by plasma treatment.
  • the carbon layer may be chlorinated by irradiating ultraviolet light in chlorine gas and further irradiating ultraviolet light in ammonia gas.
  • it can also be carried out by reacting with a chlorinated carbon layer in a polyvalent amines gas such as methylene diamine and ethylene diamine.
  • the introduction of the carboxyl group can be carried out, for example, by reacting the carbon layer aminated as described above with a suitable compound.
  • the compound used to introduce a carboxyl group is, for example, represented by the formula: X—R 1 —COOH (wherein, X represents a halogen atom, R 1 represents a divalent hydrocarbon group having 10 to 12 carbon atoms)
  • Halocarboxylic acids such as chloroacetic acid, fluoroacetic acid, bromoacetic acid, iodoacetic acid, 2-chloropropionic acid, 3-chloropropionic acid, 3-chloroacrylic acid, 4-chlorobenzoic acid; formula: HOOC-R2-COOH (formula In which R 2 represents a single bond or a divalent hydrocarbon group having 1 to 12 carbon atoms), such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, phthalic acid; polyacrylic acid And polyvalent
  • organic peracids include peracetic acid, perbenzoic acid, diperoxyphthalic acid, formic acid, and trifluoroperacetic acid.
  • the introduction of the formyl group can be carried out, for example, by reacting glutaraldehyde with the carbon layer aminated as described above.
  • the introduction of hydroxyl groups can be carried out, for example, by reacting water with the carbon layer chlorinated as described above.
  • the active ester group means an ester group having an electron withdrawing group with high acidity on the alcohol side of the ester group to activate a nucleophilic reaction, that is, an ester group with high reaction activity. It is an ester group having an electron withdrawing group on the alcohol side of the ester group and activated more than the alkyl ester.
  • the active ester group has reactivity with groups such as amino group, thiol group and hydroxyl group. More specifically, an active ester group in which phenol esters, thiophenol esters, N-hydroxyamine esters, cyanomethyl esters, esters of heterocyclic hydroxy compounds, etc. have much higher activity than alkyl esters etc.
  • examples of the active ester group include p-nitrophenyl group, N-hydroxysuccinimide group, succinimide group, phthalimido group, 5-norbornene-2,3-dicarboximide group and the like.
  • N-hydroxysuccinimide group is preferably used.
  • the introduction of the active ester group may be carried out, for example, with a dehydrating condensation agent such as cyanamide or carbodiimide (for example, 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide) and N-containing carboxyl group introduced as described above. It can be carried out by active esterification with a compound such as hydroxysuccinimide. By this treatment, it is possible to form a group in which an active ester group such as N-hydroxysuccinimide group is bonded to an end of a hydrocarbon group via an amide bond (Japanese Patent Laid-Open No. 2001-139532).
  • a dehydrating condensation agent such as cyanamide or carbodiimide (for example, 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide) and N-containing carboxyl group introduced as described above. It can be carried out by active esterification with a compound such as hydroxy
  • the probe is dissolved in a buffer for spotting to prepare a spotting solution, which is dispensed into a 96-well or 384-well plastic plate, and the aliquoted solution is spotted on a carrier by a spotter device or the like. Can be immobilized on a carrier. Alternatively, the spotting solution may be spotted manually with a micropipettor.
  • Incubation is usually performed at a temperature of ⁇ 20 to 100 ° C., preferably 0 to 90 ° C., usually for 0.5 to 16 hours, preferably 1 to 2 hours.
  • the incubation is preferably performed under an atmosphere of high humidity, for example, 50 to 90% humidity.
  • a washing solution eg, 50 mM TBS / 0.05% Tween 20, 2 ⁇ SSC / 0.2% SDS solution, ultrapure water, etc.
  • microarray configured as described above, it is possible to simultaneously determine the presence or absence of each of the aforementioned gene mutations in JAK2, CALR and MPL in a diagnosis subject.
  • the subject to be diagnosed is usually a human, and is not particularly limited to the race and the like, but particularly the yellow race, preferably the East Asian race, particularly preferably the Japanese. Moreover, it can be set as the patient who is suspected of myeloproliferative tumor as a diagnostic subject.
  • the sample from the subject of diagnosis is not particularly limited.
  • blood related samples blood, serum, plasma, etc.
  • DNA is extracted from a sample collected from a subject to be diagnosed.
  • the extraction means is not particularly limited.
  • a DNA extraction method using phenol / chloroform, ethanol, sodium hydroxide, CTAB or the like can be used.
  • an amplification reaction is carried out using the obtained DNA as a template to amplify a region containing JAK2, a region containing CALR and a region containing MPL.
  • a polymerase chain reaction PCR
  • LAMP Long-Mediated Isothermal Amplification
  • ICAN Isothermal and Chimeric primer-Initiated Amplification of Nucleic acids
  • a method for labeling the amplified nucleic acid is not particularly limited.
  • a method in which a primer used for amplification reaction is previously labeled may be used, or a labeled nucleotide is used as a substrate for amplification reaction. Methods may be used.
  • the labeling substance is not particularly limited, and radioactive isotopes, fluorescent dyes, or organic compounds such as digoxigenin (DIG) and biotin can be used.
  • this reaction system includes a buffer necessary for nucleic acid amplification and labeling, a thermostable DNA polymerase, a primer specific to the amplification region, a labeled nucleotide triphosphate (specifically, a nucleotide triphosphate to which a fluorescent label or the like is added) , A nucleotide triphosphate, and a reaction system containing magnesium chloride and the like.
  • the primer used for the amplification reaction of the region containing the above gene mutation in JAK2 is not particularly limited as long as it can specifically amplify the region containing the above gene mutation, and can be appropriately designed by those skilled in the art.
  • a set of primers consisting of primer JAK2-F: 5'-GAGCAAGCTTTCTCACAAAGCATTTGG-3 '(SEQ ID NO: 9) and primer JAK2-R: 5'-CTGACACCTAGCTGTGATCCTGAAACTG-3' (SEQ ID NO: 10) can be mentioned.
  • the primer used for the amplification reaction of the region containing the gene mutation in CALR is not particularly limited as long as it can specifically amplify the region containing the gene mutation, and can be appropriately designed by those skilled in the art.
  • a set of primers consisting of primer CALR-F: 5'-CGTAAAAAAGGTGAGGCCTGGT-3 '(SEQ ID NO: 11) and primer CALR-R: 5'-GGCCTCTCTAGACTCGTCTTG-3' (SEQ ID NO: 12) can be mentioned.
  • the primer used for amplification reaction of the region containing the gene mutation in MPL is not particularly limited as long as it can specifically amplify the region containing the gene mutation, and can be appropriately designed by those skilled in the art.
  • a set of primers consisting of primer MPL-F: 5'- CTCCTAGCCCTGGATCTCCTTGG-3 '(SEQ ID NO: 13) and primer MPL-R: 5'-ACAGAGCGAACCAAGAATGCCTGTTTTAC-3 '(SEQ ID NO: 14) can be mentioned.
  • the nucleic acid fragment amplified by the primer is not particularly limited as long as it contains a region corresponding to the designed probe, and is preferably 1 kbp or less, for example, preferably 800 bp or less, more preferably 500 bp or less, 350 bp or less Particularly preferred.
  • hybridization reaction between the amplified nucleic acid obtained as described above and the probe immobilized on the carrier is carried out, and the hybridization of the amplified nucleic acid to the mutant type probe is detected to detect the presence or absence of the above gene mutation in the person to be diagnosed. It can be evaluated. That is, hybridization of the amplified nucleic acid to the mutant-type probe can be measured, for example, by detecting a label. Also, by quantitatively measuring the signal from the label, the amount of nucleic acid hybridized to the mutant probe can be quantified.
  • the signal from the label can be detected as a fluorescent signal using a fluorescent scanner and analyzed by image analysis software to quantify the signal intensity.
  • the amplified nucleic acid hybridized to the mutant-type probe can also be quantified, for example, by preparing a calibration curve using a sample containing a known amount of DNA.
  • the hybridization reaction is preferably carried out under stringent conditions. Stringent conditions are conditions under which a specific hybrid is formed and a nonspecific hybrid is not formed, for example, after hybridization reaction at 50 ° C. for 16 hours, 2 ⁇ SSC / 0.2% SDS, 25 The conditions for washing at 10 ° C. for 10 minutes and 2 ⁇ SSC at 25 ° C. for 5 minutes are described.
  • the temperature for hybridization can be 45 to 60 ° C. when the salt concentration is 0.5 ⁇ SSC, and it is more preferable to lower the hybridization temperature when the length of the probe is short, When the chain length is long, it is more preferable to make the hybridization temperature higher. It goes without saying that the hybridization temperature having specificity increases as the salt concentration increases, and the hybridization temperature having specificity decreases as the salt concentration decreases.
  • the signal intensities from these mutant-type probes and the wild-type probe are used.
  • the presence or absence of the above-mentioned gene mutation can be evaluated.
  • the signal intensity in the wild type probe and the signal intensity in the mutant probe are each measured, and the judgment value for evaluating the signal intensity derived from the mutant probe is calculated.
  • the second determination value calculated by the above equation is compared with a predetermined threshold (cut-off value), and when the second determination value exceeds the threshold, the amplified nucleic acid contains the gene mutation. If the second judgment value is below the threshold value, it can be judged that the amplified nucleic acid does not contain the gene mutation. Thus, by using the second determination value, it is possible to determine the presence or absence of each gene mutation in JAK2, CALR (gene mutation of type 2) and MPL described above.
  • the threshold value is not particularly limited.
  • the above-mentioned test is performed using a sample in which each of the aforementioned gene mutations present in JAK2, CALR (gene mutation of type 2) and MPL is wild type. It can prescribe
  • gene mutations that exist in the above-mentioned CALR are similar to type 1 such as 46 base deletion mutation, 34 base deletion mutation, 24 base deletion mutation, etc.
  • these type 1 like mutations are also known to be involved in the disease (Leukemia (2016) 30, 431-438).
  • Leukemia (2016) 30, 431-438 it is shown that there are other mutations not classified as type 1 or type 1 like sites where 52 bases are deleted. Therefore, if it becomes possible to detect the presence or absence of type 1 gene mutations, type 1 like gene mutations, and other mutations not classified as these as gene mutations present in CALR, it is useful information for definitive diagnosis of MPN. It is considered to be.
  • type 1 of 52 base deletion can be distinguished from the above-mentioned type 1 like and other mutations described above. That is, when the second determination value exceeds the threshold value, it can be determined to have type 1 of 52 base deletion. In addition, when the second determination value is below the threshold value, it can be determined that it is a wild type without mutation, a type 1 like mutation, or another mutation.
  • the presence or absence of the type 1 gene mutation present in the above-described CALR is determined using the above-described first determination value.
  • the presence or absence of the gene mutation may be determined only by the first determination value, but the gene variation using the first determination value and the second determination value You may judge the presence or absence of.
  • the first determination value is a value obtained by dividing the signal intensity of the wild-type probe by the signal intensity of the common probe different from the mutant-type probe and the wild-type probe.
  • the common probe is a nucleotide consisting of a base sequence complementary to a region commonly present in wild-type amplified nucleic acid and amplified nucleic acid having gene mutation for type 1 gene mutation. That is, the common probe specifically hybridizes to the amplified nucleic acid regardless of the presence or absence of the type 1 gene mutation contained in the amplified nucleic acid.
  • the common probe is not particularly limited, but can be an oligonucleotide containing the 397th to 659th sequences in the nucleotide sequence of the CALR gene shown in SEQ ID NO: 2. More specifically, as a common probe, there can be mentioned, for example, an oligonucleotide containing CTCCTCCATCC TCATCTTTGTC (SEQ ID NO: 15). In addition, as a common probe, there can be mentioned an oligonucleotide containing CCTC CTCATCC TCAT CTTTGTC (SEQ ID NO: 26) and an oligonucleotide containing CCTC CTTGTCCCTCCTCAT (SEQ ID NO: 27). In addition, as a common probe, an oligonucleotide containing CCTCGTCCTGTTTGTCC (SEQ ID NO: 31) can be mentioned.
  • the first judgment value calculated by [signal strength of wild type probe] / [signal strength of common probe] is a value that decreases when there is a mutation (deletion or insertion) at a position corresponding to the wild type probe in the amplified nucleic acid. It is. Then, when the first judgment value is below the threshold value, it is judged that the amplified nucleic acid contains any of the 52 base deletion type 1, the above type 1 like and other mutations not classified into these.
  • the obtained first judgment value exceeds the threshold value, it is judged that the amplified nucleic acid does not contain type 1 of 52 base deletion, type 1 like as described above and other mutations not classified into these. In this way, by using the first judgment value, one having any of the above-mentioned CALR type 1 gene mutation, type 1 like gene mutation and other mutations as described above does not have any of these mutations. And can be distinguished.
  • first determination value and the “second determination value” described above may be used together to determine the presence or absence of a gene mutation present in the CALR described above. Whether you have a 52 base deletion type 1 mutation or a type 1 like mutation or any other mutation by using the “first judgment value” and “second judgment value” described above The presence or absence of these mutations can be accurately determined. Specifically, when the first determination value is below the threshold value and the second determination value is above the threshold value, it is determined that the amplified nucleic acid contains a type 1 gene mutation. In addition, when the first determination value is below the threshold and the second determination value is below the threshold, it is determined that the amplified nucleic acid contains type 1 like gene mutation or other mutation.
  • the first determination value exceeds the threshold value and the second determination value is less than the threshold value, it is determined that the amplified nucleic acid does not contain any of the type 1, type 1 like and other mutations.
  • the first judgment value and the second judgment value the above-mentioned CALR type 1 gene mutation is identified from type 1 like and other mutations at type 1 mutation sites. Can.
  • each gene mutation present in JAK2, CALR and MPL can be identified with high accuracy by using the first determination value described above or by using the first determination value and the second determination value.
  • Information on gene mutations present in JAK2, CALR and MPL can be used, for example, for diagnosis of myeloproliferative tumors in the classification by WHO (2016 version).
  • WHO the classification by WHO, it is one requirement that the above gene mutation in JAK2 be present for the diagnosis of polycythemia vera or polycythemia vera (PV).
  • the diagnosis of essential thrombocythemia requires one of presence of any of gene mutations present in JAK2, CALR and MPL.
  • JAK2, CALR and / or J for the diagnosis of prefibrotic / early primary myelofibrosis (prefibrotic / early PMF) or primary myelofibrosis (PMF).
  • prefibrotic / early PMF prefibrotic / early primary myelofibrosis
  • PMF primary myelofibrosis
  • Example 1 Sample Preparation
  • peripheral blood a patient sample for which informed consent was obtained from a document
  • DNA was extracted as follows.
  • Peripheral blood leukocyte genomic DNA was extracted by a conventional method (NaI method).
  • Predetermined regions of the JAK2 gene, the CALR gene and the MPL gene were amplified by PCR using the DNA samples prepared as described above.
  • the primer set shown in Table 1 was designed for this PCR.
  • a fluorescent label (IC5) is added to the forward primer to which “F” is attached.
  • the primer set designed as described above was mixed so as to have the composition shown in Table 2 to prepare a primer mix.
  • the PCR reaction solution of the composition shown in Table 3 was prepared using the DNA sample and primer mix which were prepared as mentioned above.
  • the PCR thermal cycle is performed for 5 minutes at 95 ° C., followed by 40 cycles of 30 seconds at 95 ° C., 30 seconds at 59 ° C. and 45 seconds at 72 ° C., and then 10 minutes at 72 ° C. The final temperature was maintained at 4 ° C.
  • mutant probes corresponding to the V617F mutation in the JAK2 gene, type 1 mutations and type 2 mutations in the CALR gene, and W515L / K mutation in the MPL gene, and the corresponding wild-type probes were designed.
  • a common probe corresponding to a site which is commonly present in a region amplified by the above primer for the CALR gene regardless of whether or not the mutation of type 1 is present was designed. That is, the common probe specifically hybridizes to the amplified nucleic acid regardless of the presence or absence of the type 1 gene mutation contained in the amplified nucleic acid.
  • the nucleotide sequences of the designed probes are shown in Table 4.
  • wild type probe 1 and mutant type probe 1 As for type 1 and type 2 gene mutations in CALR, wild type probe 1 and mutant type probe 1, wild type probe 2 and mutant type probe 2 were designed as shown in FIG. In FIG. 1, 52 base deletion, which is a type 1 gene mutation in CALR, is indicated by “-”. In addition, in FIG. 1, the corresponding wild-type region is indicated by “-” for 5-base insertion, which is a type 2 gene mutation in CALR.
  • the stainless steel holder for washing was immersed in a 0.1 ⁇ SSC / 0.1% SDS solution, and the chip from which the hybrid cover was removed was set in the holder. After shaking several times up and down, the holder was immersed in 1 ⁇ SSC solution (room temperature) until the fluorescence intensity of the chip was detected.
  • Second determination value [fluorescence intensity of mutant probe] / ([fluorescence intensity of wild-type probe] + [fluorescence intensity of mutant probe])
  • First determination value [fluorescence intensity of wild-type probe] / [fluorescence intensity of common probe]
  • the first determination value and the second determination value were used for the type 1 gene mutation determination of CALR.
  • the first determination value and the second determination value calculated for the type 1 of CALR are shown in FIG.
  • the vertical axis is plotted as a first determination value in a graph.
  • the plot of each sample is divided into four regions divided by the cutoff value defined for the first determination value and the cutoff value defined for the second determination value.
  • the sample which exceeded the cutoff value defined for the second determination value and was less than the cutoff value defined for the first determination value All were type 1 gene mutations of CALR, ie 52 base deletion.
  • all the samples below the cutoff value specified for the second determination value and below the cutoff value specified for the first determination value are 46 bases similar to the type 1 gene mutation of CALR. It was revealed to be deletion, 34 bases deletion or 24 bases deletion.
  • type 1 like mutant genes such as 46 base deletion, 34 base deletion and 24 base deletion that could not be distinguished from the wild type only by the second judgment value were wild by using the first judgment value. It can be distinguished from the type.
  • Example 2 In this example, for each of the JAK2 gene, the CALR gene and the MPL gene, a blocker that specifically hybridizes to the wild-type derived amplification by-product is designed, and the amplification product from the wild-type is nonspecific to the mutant-type probe. By suppressing the hybridization, it was examined whether the detection sensitivity of gene mutation of JAK2 gene, type 1 mutation of CALR gene and gene mutation of MPL gene could be improved. In addition, since the type 2 mutation of the CALR gene has a difference of 5 bases from the wild type and nonspecific hybridization is unlikely to occur in this example, no blocker was designed.
  • mutant samples were prepared as follows.
  • wild-type plasmids and mutant-type plasmids were prepared through the artificial gene synthesis service of FASMAC.
  • a wild-type plasmid of the JAK2 gene a plasmid into which a region consisting of 400 bases at positions 151 to 550 in the base sequence shown in SEQ ID NO: 1 was inserted was used.
  • a wild-type plasmid of the CALR gene a plasmid into which a region consisting of 389 bases at positions 376 to 764 in SEQ ID NO: 2 was inserted was used.
  • a wild-type plasmid of the MPL gene As a wild-type plasmid of the MPL gene, a plasmid into which a region consisting of 399 bases at positions 107 to 505 in SEQ ID NO: 3 was inserted was used. The same region was inserted as a mutant-type plasmid of each gene except that it had the above-mentioned mutation (V617F mutation of JAK2 gene, W515L mutation of MPL gene or W515K mutation and type 1 mutation or type 2 mutation of CALR gene). The plasmid was used. The purchased plasmid DNA was dissolved to about 100 ng / ⁇ L with TE buffer and further diluted to about 1 ng / ⁇ L with TE buffer.
  • a plasmid corresponding to the wild type of the JAK2 gene, a plasmid corresponding to the wild type of the MPL gene, and three types of plasmids corresponding to the wild type of the CALR gene are mixed, diluted with TE buffer, and each plasmid concentration is about 200 pg
  • a wild-type plasmid mix was prepared at / ⁇ L.
  • plasmid corresponding to the V617F mutant of the JAK2 gene, a plasmid corresponding to the W515L mutant of the MPL gene, and a plasmid corresponding to the type 1 mutant of the CALR gene are mixed, diluted with TE buffer, A 100% mutant plasmid mix A was prepared with a plasmid concentration of about 200 pg / ⁇ L.
  • plasmid corresponding to the V617F variant of the JAK2 gene, a plasmid corresponding to the W515K variant of the MPL gene, and a plasmid corresponding to the type 2 variant of the CALR gene are mixed and diluted with TE buffer, A 100% mutant plasmid mix B was prepared at a concentration of about 200 pg / ⁇ L for each plasmid.
  • mutant samples were prepared by mixing these wild-type plasmid mixes with 100% mutant-type plasmid mix A or 100% mutant-type plasmid mix B at a predetermined ratio. After preparation of mutant samples,% mutation (ratio of mutant to total wild type and mutant) for JAK2 gene and MPL gene was quantified by digital PCR, and mutation% for CALR gene was quantified by fragment analysis. Then, the mutant sample was diluted to about 0.16 pg / ⁇ L and used for PCR.
  • predetermined regions of the JAK2 gene, the CALR gene and the MPL gene were amplified by PCR under the same conditions as in Example 1 using the wild-type sample or the mutant-type sample prepared as described above.
  • Example 2 the microarray used in Example 1 was used, and a hybridization buffer was prepared in the same manner as in Example 1 except that the blocker was included, and hybridization experiments were performed.
  • the hybridization buffer was prepared such that the blocker for JAK2 gene, the blocker for CALR gene, and the blocker for MPL gene shown in Table 7 had concentrations of 90 to 210 nM, respectively. Then, the PCR reaction solution and the hybridization buffer were mixed at 2: 1 to conduct a hybridization experiment.
  • FIG. 4 (a) shows the result when detecting the V617F mutant of the JAK2 gene
  • FIG. 4 (b) shows the result when the W515L mutant of the MPL gene is detected
  • FIG. 4 (c) shows the W515K of the MPL gene.
  • the results when a mutant is detected the same (d) is the results when a type 1 mutant of the CARL gene is detected
  • the same (e) is the results when a type 2 mutant of the CARL gene is detected It is.
  • FIG. 4 it became clear that, by adding the blocker to the hybridization buffer, it is possible to detect the mutant form of the gene with excellent detection sensitivity even if the mutation rate is 2.6 to 5.8%.
  • the mixing ratio of the wild-type plasmid mix and the mutant-type plasmid mix A or B in the mutant-type sample is changed to adjust the ratio of the mutant-type of each gene, and the same hybridization experiment is performed.
  • the The relationship between the mutation rate (mutation%) in the mutant-type sample and the second judgment value is shown in FIG. FIG. 5 (a) shows the result when detecting the V617F mutant of the JAK2 gene, and FIG. 5 (b) shows the result when the W515L mutant of the MPL gene is detected, and FIG. 5 (c) shows the W515K of the MPL gene.
  • the results when a mutant is detected the same (d) is the results when a type 1 mutant of the CARL gene is detected, and the same (e) is the results when a type 2 mutant of the CARL gene is detected It is.
  • the blocker concentration for JAK2 gene was 150 nM
  • the blocker concentration for CALR gene was 210 nM
  • the blocker concentration for MPL gene was 150 nM.

Abstract

For a type of genetic mutation for which there can be a plurality of kinds, the present invention determines the plurality of kinds of genetic mutations. The present invention uses a value calculated by the ratio [signal intensity of first probe]/[signal intensity of shared probe], using an amplified fragment having a label and amplified from a region including a specific location at which a plurality of genetic mutations can be present, a first probe corresponding to a wild-type sequence in the specific location, and a shared probe corresponding to a sequence in the amplified fragment excluding the genetic mutation.

Description

遺伝子変異評価方法、遺伝子変異評価用キットGene mutation evaluation method, kit for gene mutation evaluation
 本発明は、複数種類が存在しうるタイプの遺伝子変異を評価する遺伝子変異評価方法及び遺伝子変異評価用キットに関する。 The present invention relates to a gene mutation evaluation method and a gene mutation evaluation kit for evaluating gene mutations of types in which multiple types may exist.
 遺伝子変異には、所謂、先天的な遺伝子多型polymorphism(単に多型ともいう)及び後天的に導入される変異がある。これら遺伝子変異は、例えば、各種疾患における診断や治療、薬効といった個体の表現型に大きな影響を与えている。遺伝子変異には、DNA配列中の1つの塩基の相違である一塩基多型、数塩基を一単位とする配列の繰り返し配列の相違であるマイクロサテライト多型等の多型と、後天的に所定の長さの塩基が挿入又は欠損する変異等が知られている。 Gene mutations include so-called innate gene polymorphism polymorphism (also referred to simply as polymorphism) and acquired mutations introduced. These gene mutations have a great influence on the individual's phenotype such as diagnosis, treatment and efficacy in various diseases. Genetic mutations include polymorphisms such as single nucleotide polymorphisms which are differences of one base in a DNA sequence, and microsatellite polymorphisms which are differences in repetitive sequences of a sequence having several bases as one unit, and acquired mutations There are known mutations or the like in which bases of the length are inserted or deleted.
 個人の遺伝子変異が診断に利用される一例として骨髄増殖性腫瘍を挙げることができる。骨髄増殖性腫瘍(MPN:Myeloproliferative neoplasms)は、骨髄系細胞の腫瘍化によって発症する疾患である。MPNは、骨髄系細胞(顆粒球、芽球、骨髄巨核球及び肥満細胞等)の著しい増殖を特徴としている。MPNには、慢性骨髄性白血病(chronic myelogenous leukemia:CML)、慢性好中球性白血病(chronic neutrophilic leukemia:CNL)、真性赤血球増加症又は真性多血症(polycythemia vera:PV)、原発性骨髄線維症(primary myelofibrosis:PMF)、本態性血小板血症(essential thrombocythemia:ET)、慢性好酸球性白血病(chronic eosinophilic leukemia:CEL)、好酸球増加症候群(hypereosinophilic syndrome:HES)、肥満細胞症(mastocytosis)及び分類不能骨髄増殖性腫瘍(myeloproliferative neoplasms,unclassifiable:MPN, U)が含まれる。 Myeloproliferative tumors can be mentioned as an example in which individual gene mutations are used for diagnosis. Myeloproliferative neoplasms (MPN) are diseases caused by tumorigenesis of myeloid cells. MPN is characterized by marked proliferation of myeloid cells (such as granulocytes, blasts, megakaryocytes and mast cells). In MPN, chronic myelogenous leukemia (CML), chronic neutrophilic leukemia (CNL), erythrocytatosis or polycythemia vera (PV), primary bone marrow fiber Disease (primary myelofibrosis: PMF), essential thrombocythemia (ET), chronic eosinophilic leukemia (CEL), hypereosinolytic syndrome (HES), mastocytosis (hyperosinophilic syndrome (HES)) and myoproliferative neoplasms (unclassifiable: MPN, U).
 MPNの診断については、非特許文献1に記載されるように、臨床的パラメータ、骨髄形態及び遺伝的データを指標としている。フィラデルフィア染色体陰性の患者に対して、これらを組み合わせて診断することでCMLを除くMPNを診断することができる。遺伝的データとしては、具体的に3つの遺伝子:JAK2、CALR及びMPLに関する変異情報、更には追加的に、ASXL1、EZH2、TET2、IDH1/IDH2、SRSF2及びSF3B1に関する変異情報が利用される。特に、JAK2、CALR及びMPLは、MPN発症の分子基盤であると考えられることから当該遺伝子群における変異の有無がMPNの確定診断における重要な要素となっている。 As described in Non-patent Document 1, diagnosis of MPN is based on clinical parameters, bone marrow morphology and genetic data. The combination of these can be used to diagnose MPNs excluding CML in patients with Philadelphia chromosome negative. As genetic data, specifically, mutation information on three genes: JAK2, CALR and MPL, and additionally, mutation information on ASXL1, EZH2, TET2, IDH1 / IDH2, SRSF2 and SF3B1 are used. In particular, since JAK2, CALR and MPL are considered to be the molecular basis of MPN onset, the presence or absence of mutations in the gene group is an important factor in the definitive diagnosis of MPN.
 また、非特許文献2には、JAK2に関してJAK2V617F変異(617番目のバリンがフェニルアラニンへ置換変異)がPV、ET及びPMFにおいて多く見られること、また少数のPVにおいては上記変異に加えてエクソン12への挿入/欠損型変異が見られることが開示されている。JAK2(Janus activating kinase 2)は、エリスロポエチン受容体のシグナルをつかさどるタンパク質をコードする遺伝子である。 In addition, non-patent document 2 shows that the JAK2V617F mutation (a substitution mutation of valine at position 617 to phenylalanine) is frequently found in PV, ET and PMF with respect to JAK2, and in a small number of PVs It is disclosed that the insertion / deletion type mutation of is found. JAK2 (Janus activating kinase 2) is a gene encoding a protein that controls the signal of erythropoietin receptor.
 非特許文献2には、更にMPLに関してMPLW515L/K変異PMFがPMF及びETにおいて見られたことが開示されている。MPLは、トロンボポイエチン受容体をコードする遺伝子である。 Non Patent Literature 2 further discloses that the MPLW515L / K mutant PMF was found in PMF and ET with respect to MPL. MPL is a gene encoding a thrombopoietin receptor.
 非特許文献2には、更にまたCALRに関して、52塩基欠損のタイプ1と5塩基挿入のタイプ2の変異が最も頻度が高く、ET及びPMFにおいてこれら変異が見られることが開示されている。タイプ1変異は、PMFにおいてより高頻度であり、ETにおける骨髄線維症への変換に関連していることが開示されている。CALRは小胞体の分子シャペロンの1つであるcalreticulinをコードする遺伝子である。 Further, Non-Patent Document 2 discloses that type 1 mutations of 52 base deletion and type 2 mutations of 5-base insertion are most frequent for CALR, and these mutations are found in ET and PMF. Type 1 mutations are disclosed to be more frequent in PMF and to be associated with conversion to myelofibrosis in ET. CALR is a gene encoding calreticulin, which is one of endoplasmic reticulum molecular chaperones.
 さらに、特許文献1には、JAK2遺伝子の変異解析方法として、JAK2V617F部位特異的な蛍光標識プローブが開示されている。特許文献2には、JAK2V617F変異が陰性であって骨髄増殖性腫瘍を示す患者において見いだされた、JAK2V617F変異とは異なる変異を検出する技術が開示されている。 Furthermore, Patent Document 1 discloses a JAK2V617F site-specific fluorescently labeled probe as a mutation analysis method of the JAK2 gene. Patent Document 2 discloses a technique for detecting a mutation different from the JAK2V617F mutation, which is found in a patient who is negative for the JAK2V617F mutation and shows a myeloproliferative tumor.
 さらにまた、特許文献3には、MPL遺伝子多型検出用プローブとして、MPLにおけるW515K変異及びW515L変異を検出するためのプローブセットが開示されている。 Furthermore, Patent Document 3 discloses a probe set for detecting W515K mutation and W515L mutation in MPL as a probe for detecting MPL gene polymorphism.
 さらにまた、特許文献4には、CALRにおける変異を同定するための技術が開示されている。 Furthermore, Patent Document 4 discloses a technique for identifying a mutation in CALR.
特開2012-034580JP 2012-034580 WO2009/060804WO2009 / 060804 WO2011/052755WO2011 / 052755 特表2016-537012Special table 2016-537012
 ところが、従来の技術において、複数種類が存在しうるタイプの遺伝子変異については、遺伝子変異の配列に基づいて設計した変異型プローブを用いても、これら複数種類の遺伝子変異を判定できないといった問題があった。 However, in the prior art, there is a problem that, with respect to gene mutations of types in which a plurality of types can exist, even if a mutant type probe designed based on the sequence of gene mutations can be used, these gene mutations can not be determined. The
 そこで、本発明は、このような実情に鑑み、複数種類が存在しうるタイプの遺伝子変異について、これら複数種類の遺伝子変異を判定できる遺伝子変異評価方法及び遺伝子変異評価用キットを提供することを目的とする。 Therefore, in view of such circumstances, the present invention aims to provide a gene mutation evaluation method and a gene mutation evaluation kit capable of determining a plurality of types of gene mutations in which there may be a plurality of types of gene mutations. I assume.
 本発明は以下を包含する。
 (1)複数の遺伝子変異が存在しうる特定箇所を含む領域を増幅して標識を有する増幅断片を得る工程と、上記特定箇所における野生型の配列に対応する第1のプローブと、上記増幅断片における上記遺伝子変異を除く配列に対応する共通プローブとを、上記増幅断片を含む溶液と接触させ、上記第1のプローブ及び上記共通プローブにおける上記標識に基づくシグナルを検出する工程と、判定式:[第1のプローブのシグナル強度]/[共通プローブのシグナル強度]により第1の判定値を算出する工程と、上記判定式で算出される第1の判定値を予め設定したカットオフ値と比較し、比較の結果に基づいて遺伝子変異の有無を判定する工程とを含む遺伝子変異評価方法。
 (2)上記シグナルを検出する工程では、上記複数の遺伝子変異のうち特定の遺伝子変異に対応する第2のプローブを、上記増幅断片を含む溶液と接触させ、上記第2のプローブにおける上記標識に基づくシグナルを検出することを特徴とする(1)記載の遺伝子変異評価方法。
 (3)上記第1の判定値を算出する工程では、更に判定式:[第2のプローブのシグナル強度]/([第1のプローブのシグナル強度]+[第2のプローブのシグナル強度])により第2の判定値を算出し、上記遺伝子変異の有無を判定する工程では、上記第2の判定値を予め設定したカットオフ値と比較し、上記第1の判定値を用いた比較の結果と上記第2の判定値を用いた比較の結果とに基づいて遺伝子変異の有無を判定することを特徴とする(2)記載の遺伝子変異評価方法。
 (4)上記第1の判定値を算出する工程では、更に判定式:[第2のプローブのシグナル強度]/[共通プローブのシグナル強度]により更に異なる判定値を算出し、上記遺伝子変異の有無を判定する工程では、当該判定値を予め設定したカットオフ値と比較し、上記第1の判定値を用いた比較の結果と当該判定値を用いた比較の結果とに基づいて遺伝子変異の有無を判定することを特徴とする(2)記載の遺伝子変異評価方法。
 (5)上記複数の遺伝子変異は、塩基の挿入又は欠損であることを特徴とする(1)記載の遺伝子変異評価方法。
 (6)上記特定箇所は、配列番号2に示したCALR遺伝子の塩基配列において501番目から579番目の間であり、上記複数の遺伝子変異は501番目から579番目の領域における塩基の挿入又は欠損であることを特徴とする(1)記載の遺伝子変異評価方法。
 (7)複数の遺伝子変異が存在しうる特定箇所を含む領域を増幅した標識を有する増幅断片を用いて遺伝子変異の有無を判定する遺伝子変異評価用キットであって、上記特定箇所における野生型の配列に対応する第1のプローブと、上記増幅断片における上記遺伝子変異を除く配列に対応する共通プローブとを含む遺伝子変異評価用キット。
 (8)上記複数の遺伝子変異のうち特定の遺伝子変異に対応する第2のプローブを更に備える(7)記載の遺伝子変異評価用キット。
 (9)上記複数の遺伝子変異は、塩基の挿入又は欠損であることを特徴とする(7)記載の遺伝子変異評価用キット。
 (10)上記特定箇所は、配列番号2に示したCALR遺伝子の塩基配列において501番目から579番目の間であり、上記複数の遺伝子変異は501番目から579番目の領域における塩基の挿入又は欠損であることを特徴とする(7)記載の遺伝子変異評価用キット。
 (11)上記共通プローブは、配列番号2に示したCALR遺伝子の塩基配列において397番目から659番目の配列を含むオリゴヌクレオチドであることを特徴とする(7)記載の遺伝子変異評価キット。
 (12)上記共通プローブは、CTCCTCATCCTCATCTTTGTC(配列番号15)又はCCTCGTCCTGTTTGTC(配列番号31)を含むオリゴヌクレオチドであることを特徴とする(7)記載の遺伝子変異評価キット。
 (13)上記遺伝子変異は、配列番号2に示したCALR遺伝子の塩基配列において513番目から564番目の52塩基が欠損する52塩基欠損のタイプ1変異であり、変異型に対応する第2プローブは、TCCTTGTCCTCTGCTCC(配列番号5)を含むオリゴヌクレオチドであることを特徴とする(7)記載の遺伝子変異評価キット。
The present invention includes the following.
(1) A step of amplifying a region including a specific site where a plurality of gene mutations may exist to obtain an amplified fragment having a label, a first probe corresponding to a wild-type sequence at the specific site, and the amplified fragment Contacting a common probe corresponding to the sequence excluding the gene mutation in step with a solution containing the amplified fragment, and detecting a signal based on the label in the first probe and the common probe, and a determination formula: [ A step of calculating a first determination value based on the signal intensity of the first probe / the signal intensity of the common probe, and the first determination value calculated by the above determination formula are compared with a preset cutoff value. And a step of determining the presence or absence of a gene mutation based on the comparison result.
(2) In the step of detecting the signal, a second probe corresponding to a specific gene mutation among the plurality of gene mutations is brought into contact with a solution containing the amplification fragment, and the labeling of the second probe is carried out Detecting the signal based on the gene mutation evaluation method according to (1).
(3) In the step of calculating the first determination value, further determination equation: [signal strength of second probe] / ([signal strength of first probe] + [signal strength of second probe]) In the step of calculating the second determination value by the step of determining the presence or absence of the gene mutation, the second determination value is compared with a preset cutoff value, and the result of the comparison using the first determination value The method for evaluating gene mutation according to (2), wherein the presence or absence of a gene mutation is determined based on the result of comparison using the second determination value and the second determination value.
(4) In the step of calculating the first judgment value, the judgment value is further calculated according to the judgment formula: [signal strength of second probe] / [signal strength of common probe], and the presence or absence of the gene mutation In the step of determining the presence or absence of the gene mutation, the determination value is compared with a preset cutoff value, and the result of the comparison using the first determination value and the result of the comparison using the determination value (2) the method for evaluating gene mutation according to (2).
(5) The gene mutation evaluation method according to (1), wherein the plurality of gene mutations are insertions or deletions of bases.
(6) The specific part is between the 501st and the 579th in the nucleotide sequence of the CALR gene shown in SEQ ID NO: 2, and the plurality of gene mutations are due to the insertion or deletion of bases in the 501st to 579th regions The gene mutation evaluation method according to (1), characterized in that
(7) A gene mutation evaluation kit for determining the presence or absence of a gene mutation using an amplified fragment having a label obtained by amplifying a region including a specific part where a plurality of gene mutations may exist, which is a wild type of the above specific part A kit for evaluating gene mutation, which comprises a first probe corresponding to a sequence and a common probe corresponding to a sequence excluding the gene mutation in the amplified fragment.
(8) The kit for gene mutation evaluation according to (7), further comprising a second probe corresponding to a specific gene mutation among the plurality of gene mutations.
(9) The kit for gene mutation evaluation according to (7), wherein the plurality of gene mutations are insertions or deletions of bases.
(10) The above specific site is between the 501st and the 579th in the nucleotide sequence of the CALR gene shown in SEQ ID NO: 2, and the plurality of gene mutations are due to the insertion or deletion of bases in the 501st to 579th regions The kit for gene mutation evaluation as described in (7) characterized by a certain thing.
(11) The gene mutation evaluation kit according to (7), wherein the common probe is an oligonucleotide containing a sequence of 397 to 659 in the nucleotide sequence of the CALR gene shown in SEQ ID NO: 2.
(12) The gene mutation evaluation kit according to (7), wherein the common probe is an oligonucleotide containing CTCCTCCATCC TCATCTTTGTC (SEQ ID NO: 15) or CTCTCGTCCTGTTTGTC (SEQ ID NO: 31).
(13) The above gene mutation is a 52 base deletion type 1 mutation in which 52 bases from 513 to 564 in the base sequence of the CALR gene shown in SEQ ID NO: 2 is deleted, and the second probe corresponding to the mutation type is A kit for evaluating gene mutation according to (7), which is an oligonucleotide containing TCCTGTGTCTCCTGCTCC (SEQ ID NO: 5).
 本明細書は本願の優先権の基礎となる日本国特許出願番号2017-125929号の開示内容を包含する。 The present specification includes the disclosure content of Japanese Patent Application No. 2017-125929 based on which the priority of the present application is based.
 本発明に係る遺伝子変異評価方法及び遺伝子変異評価用キットによれば、特定の箇所に複数種の遺伝子変異が存在するような場合に、これら遺伝子変異の有無を判定することができる。 According to the gene mutation evaluation method and the gene mutation evaluation kit according to the present invention, when there are plural types of gene mutations in specific places, the presence or absence of these gene mutations can be determined.
CALRにおける骨髄増殖性腫瘍に関連するタイプ1変異及びタイプ2変異を模式的に示す図である。FIG. 2 schematically shows type 1 mutations and type 2 mutations associated with myeloproliferative tumors in CALR. 本実施例1で使用した検体における各遺伝子変異について判定値をプロットした特性図である。FIG. 7 is a characteristic diagram in which determination values are plotted for each gene mutation in the sample used in Example 1. 本実施例1で使用した検体における、CALRのタイプ1変異について第1の判定値及び第2の判定値をプロットした特性図である。FIG. 10 is a characteristic diagram in which first determination values and second determination values are plotted for CALR type 1 mutation in the sample used in Example 1. 本実施例2におけるハイブリダイズ実験におけるブロッカー濃度と第2の判定値との関係を示す特性図である。FIG. 16 is a characteristic diagram showing the relationship between the blocker concentration and the second determination value in the hybridization experiment in the present Example 2. 本実施例2におけるハイブリダイズ実験における変異型サンプル中の変異割合(変異%)と第2の判定値との関係を示す特性図である。FIG. 16 is a characteristic diagram showing the relationship between the mutation ratio (mutation%) in a mutant sample and the second determination value in the hybridization experiment in the present Example 2.
 本発明に係る遺伝子変異評価方法及び遺伝子変異評価用キットは、特定の箇所に複数種の遺伝子変異が存在する場合に適用できる。特定の箇所に複数種の遺伝子変異が存在するとは、例えば、ゲノムDNAにおける所定の位置において変異のパターンが1種類ではなく、複数のパターンで変異することを意味している。ここで複数のパターンで変異するとは、遺伝子変異が塩基配列の挿入や欠損である場合、挿入又は欠損する塩基配列の長さが複数種類あることを意味し、遺伝子変異が所定の塩基配列の繰り返し回数である場合、繰り返し回数のパターンが複数種類あることを意味する。その他、複数のパターンで変異するとは、遺伝子変異が1~数塩基の置換である場合、置換後の塩基配列のパターンが複数種類あることを意味する。 The method for evaluating gene mutation and the kit for evaluating gene mutation according to the present invention can be applied when there are multiple types of gene mutations at specific places. The presence of a plurality of gene mutations at a specific site means, for example, that a mutation pattern is not one but a plurality of patterns at predetermined positions in genomic DNA. Here, mutation in a plurality of patterns means that, when a gene mutation is an insertion or deletion of a nucleotide sequence, there are a plurality of lengths of the nucleotide sequence to be inserted or deleted, and the gene mutation repeats a predetermined nucleotide sequence. In the case of the number, it means that there are a plurality of patterns of the number of repetitions. In addition, to mutate in a plurality of patterns means that, when the gene mutation is a substitution of 1 to several bases, there are a plurality of patterns of base sequences after substitution.
 また、挿入又は欠損による遺伝子変異とは、一方のアレルから他方のアレルを見たときに所定の長さの塩基が挿入されていること、逆に、他方のアレルから一方のアレルを見たときには当該所定の長さの塩基が欠損していることを相違点とする遺伝子変異である。なお、所定の長さの塩基が欠損したタイプが野生型であっても良いし、所定の長さの塩基が挿入したタイプが野生型であっても良い。 In addition, gene mutation due to insertion or deletion means that a base of a predetermined length is inserted when looking at the other allele from one allele, conversely, when looking at one allele from the other allele It is a gene mutation whose difference is that a base of the predetermined length is deleted. The type in which the base of a predetermined length is deleted may be a wild type, and the type in which the base of a predetermined length is inserted may be a wild type.
 より具体的に、所定の長さの領域が欠損するタイプの遺伝子変異であって、長さの異なる他の欠損タイプが知られている遺伝子変異としては、詳細を後述する、CALR遺伝子における52塩基欠損タイプの遺伝子変異(タイプ1変異と称する)を挙げることができる。CALR遺伝子においては、この52塩基欠損タイプのタイプ1の他に、同位置において46塩基欠損変異、34塩基欠損変異、24塩基欠損変異等のタイプ1に類似する変異(これらを纏めてタイプ1ライクと称する)が存在し(Leukemia (2016) 30, 431-438)、さらに同位置に、これらに分類されない他の変異が存在することが示されている。 More specifically, as a gene mutation of a type in which a region of a predetermined length is deleted, and other deletion types having different lengths are known, 52 bases in the CALR gene, the details of which will be described later. Mention may be made of deletion type gene mutations (referred to as type 1 mutations). In the CALR gene, mutations similar to type 1 such as 46 base deletion mutation, 34 base deletion mutation and 24 base deletion mutation at the same position in addition to this 52 base deletion type type 1 (these are collectively called type 1 like (Leukemia (2016) 30, 431-438), and at the same position, it has been shown that there are other mutations not classified into these.
 本発明に係る遺伝子変異評価方法及び遺伝子変異評価用キットでは、このような遺伝子変異が存在しうる特定箇所を含む領域を増幅して得られた増幅断片(標識されている)と、野生型プローブ及び共通プローブとを使用する。すなわち、本発明では以下のプローブセットを設計する。すなわち、遺伝子変異のない野生型の配列に対応する第1のプローブ(野生型プローブとも称する)と、上記増幅断片における上記遺伝子変異を除く配列に対応する共通プローブとを設計する。 In the gene mutation evaluation method and the gene mutation evaluation kit according to the present invention, an amplified fragment (labeled) obtained by amplifying a region including a specific portion where such a gene mutation may exist, and a wild-type probe And use a common probe. That is, in the present invention, the following probe set is designed. That is, a first probe (also referred to as a wild-type probe) corresponding to a wild-type sequence without gene mutation and a common probe corresponding to a sequence excluding the gene mutation in the amplified fragment are designed.
 また、本発明に係る遺伝子変異評価方法及び遺伝子変異評価用キットでは、上記第1のプローブ及び共通プローブの他に、遺伝子変異の配列に対応する第2のプローブ(変異型プローブとも称する)を設計しても良い。この第2のプローブは、上述した複数種類の遺伝子変異のうち1つの遺伝子変異(検出対象の遺伝子変異)に対応するように設計される。すなわち、第2のプローブは、上述した複数種類の遺伝子変異のうち1つの遺伝子変異を有する核酸断片に特異的にハイブリダイズし、且つ、他の遺伝子変異を有する核酸断片及び野生型の核酸断片に対してはハイブリダイズしないように設計する。 Further, in the method for evaluating gene mutation and the kit for evaluating gene mutation according to the present invention, in addition to the first probe and the common probe, a second probe (also referred to as a mutant probe) corresponding to the sequence of gene mutation is designed. You may. This second probe is designed to correspond to one gene mutation (gene mutation to be detected) among the plurality of types of gene mutations described above. That is, the second probe specifically hybridizes to a nucleic acid fragment having one gene mutation among the plurality of types of gene mutations described above, and a nucleic acid fragment having another gene mutation and a wild-type nucleic acid fragment It is designed to prevent hybridization.
 そして、標識された増幅断片とこれらプローブとを接触させ、第1のプローブ及び共通プローブにおける標識に基づくシグナルを検出する。本発明に係る遺伝子変異評価方法では、得られたシグナルから判定式:[第1のプローブのシグナル強度]/[共通プローブのシグナル強度]により第1の判定値を算出し、予め設定したカットオフ値(閾値)と比較することで、得られた増幅断片における遺伝子変異の有無を判定する。ここで、共通プローブは、増幅核酸に検出対象の遺伝子変異が存在するか存在しないかであるに拘わらず当該増幅核酸に対して特異的にハイブリダイズする。 Then, the labeled amplification fragments are brought into contact with these probes, and signals based on the labels in the first probe and the common probe are detected. In the gene mutation evaluation method according to the present invention, a first judgment value is calculated from the obtained signal according to the judgment formula: [signal strength of the first probe] / [signal strength of the common probe], and a preset cutoff is used. The presence or absence of a gene mutation in the obtained amplified fragment is determined by comparison with a value (threshold value). Here, the common probe specifically hybridizes to the amplified nucleic acid regardless of the presence or absence of a gene mutation to be detected in the amplified nucleic acid.
 このとき、第1の判定値によれば、分母を[第1のプローブのシグナル強度]+[第2のプローブのシグナル強度]として算出した判定値と比較して、より高精度に複数種類の遺伝子変異を検出することができる。具体的には、検出対象の遺伝子変異に対して類似する遺伝子変異が存在する場合、第1の判定値によれば、検出対象の遺伝子変異及び当該遺伝子変異に類似する遺伝子変異のうちいずれかを有することを、これら遺伝子変異をいずれも有しない野生型と区別して同定することができる。このように、本発明に係る遺伝子変異評価方法及び遺伝子変異評価用キットでは、検出対象の遺伝子変異を含む複数の遺伝子変異に対応するプローブを用いることなく、検出対象の遺伝子変異を含む複数の遺伝子変異を検出することができる。 At this time, according to the first determination value, the denominator is compared with the determination value calculated as [signal strength of the first probe] + [signal strength of the second probe], and a plurality of types of higher precision can be obtained. Gene mutations can be detected. Specifically, when there is a gene mutation similar to the gene mutation to be detected, according to the first judgment value, either the gene mutation to be detected or the gene mutation similar to the gene mutation is selected. Having these can be distinguished from wild type which does not have any of these gene mutations. Thus, in the gene mutation evaluation method and the gene mutation evaluation kit according to the present invention, a plurality of genes containing gene mutations to be detected without using probes corresponding to a plurality of gene mutations including gene mutations to be detected Mutations can be detected.
 また、本発明に係る遺伝子変異評価方法では、上述した第1の判定値に加え、更に判定式:[第2のプローブのシグナル強度]/([第1のプローブのシグナル強度]+[第2のプローブのシグナル強度])により第2の判定値を算出し、予め設定したカットオフ値(閾値)と比較することで、得られた増幅断片における遺伝子変異を更に高精度に判定することができる。すなわち、具体的には、検出対象の遺伝子変異に対して類似する遺伝子変異が存在する場合、第2の判定値によれば、検出対象の遺伝子変異を有することを、検出対象の遺伝子変異に類似する遺伝子変異及びこれら遺伝子変異をいずれも有しない野生型と区別して同定することができる。 Further, in the method for evaluating gene mutation according to the present invention, in addition to the above-described first determination value, a determination formula: [signal strength of second probe] / ([signal strength of first probe] + [second The second determination value is calculated by the signal intensity of the probe of [1], and the gene mutation in the obtained amplified fragment can be determined with higher accuracy by comparing with the preset cutoff value (threshold value). . That is, specifically, when there is a gene mutation similar to a gene mutation to be detected, having the gene mutation to be detected is similar to the gene mutation to be detected according to the second judgment value Can be distinguished from the wild type which does not have any of these gene mutations and these gene mutations.
 さらに、第1の判定値及び第2の判定値とは異なり、得られたシグナルから判定式:[第2のプローブのシグナル強度]/[共通プローブのシグナル強度]により異なる判定値を算出しても良い。すなわち、上述した第1の判定値を用いた遺伝子変異の判定、第1の判定値及び第2の判定値を用いた判定に、この判定値を利用しても良い。 Furthermore, different from the first judgment value and the second judgment value, different judgment values are calculated from the obtained signal according to the judgment formula: [signal strength of second probe] / [signal strength of common probe] Also good. That is, the determination value may be used for determination of gene mutation using the first determination value described above and determination using the first determination value and the second determination value.
 本発明に係る遺伝子変異評価方法及び遺伝子変異評価用キットは、一例として、骨髄増殖性腫瘍に関連する遺伝子変異のうちCALRに存在する遺伝子変異に適用することができる。より具体的には、CALRに存在する遺伝子変異のうち、いわゆる52塩基欠損のタイプの遺伝子変異(タイプ1)、その他同位置における46塩基欠損変異、34塩基欠損変異、24塩基欠損変異等のタイプ1に類似する変異(タイプ1ライク)、さらに同位置におけるこれらに分類されない他の変異の有無を判定する際に適用することができる。また、CALRに存在する遺伝子変異のうちいわゆる5塩基挿入のタイプの遺伝子変異(タイプ2)、その他同位置におけるタイプ2に類似する変異(タイプ2ライク)、さらに同位置におけるこれらに分類されない他の変異の有無を判定する際に適用することができる。 The gene mutation evaluation method and the gene mutation evaluation kit according to the present invention can be applied, for example, to gene mutations present in CALR among gene mutations associated with myeloproliferative tumors. More specifically, among gene mutations present in CALR, types such as so-called 52 base deletion type gene mutations (type 1), 46 base deletion mutations at the same position, 34 base deletion mutations, 24 base deletion mutations, etc. It can be applied in determining the presence or absence of mutations similar to 1 (type 1 like) and further mutations not classified as these at the same position. In addition, among gene mutations present in CALR, so-called 5-base insertion type gene mutations (type 2), other mutations similar to type 2 in the same position (type 2 like), and others not classified in these in the same position It can be applied when determining the presence or absence of mutation.
 以下、CALRに存在する遺伝子変異を含む、骨髄増殖性腫瘍に関連する遺伝子変異を同定・評価するシステムについて説明する。以下に説明する骨髄増殖性腫瘍に関連する遺伝子変異評価用キットは、JAK2、CALR及びMPLに存在する遺伝子変異に関するものである。これらJAK2、CALR及びMPLにおける遺伝子変異は、世界保健機関(WHO)による分類(例えば、2016年度バージョン)において骨髄増殖性腫瘍の診断に利用されている遺伝子変異である。 Hereinafter, a system for identifying and evaluating gene mutations associated with myeloproliferative tumors, including gene mutations present in CALR, will be described. The kit for evaluating gene mutations associated with myeloproliferative tumors described below relates to gene mutations present in JAK2, CALR and MPL. These gene mutations in JAK2, CALR and MPL are gene mutations used for diagnosis of myeloproliferative tumors in the classification by World Health Organization (WHO) (for example, the 2016 fiscal year version).
 一例として示す遺伝子変異評価用キットは、これらJAK2、CALR及びMPLのそれぞれに存在する遺伝子変異を同定するためのプローブセットを含んでいる。 The kit for gene mutation evaluation shown as an example includes a probe set for identifying gene mutations present in each of these JAK2, CALR and MPL.
 具体的に、JAK2の遺伝子変異とは、V617F変異(617番目のバリンがフェニルアラニンへ置換変異)を意味する。この変異は、JAK-STATパスウェイの活性化に寄与し、真性多血症(polycythemia vera:PV)における顕著な特徴である。また、原発性骨髄線維症(primary myelofibrosis:PMF)患者或いは本態性血小板血症(essential thrombocythemia:ET)患者においても、当該V617F変異は50~60%の頻度で見られる。なお、野生型JAK2をコードする塩基配列を配列番号1に示す。V617F変異を有する場合、配列番号1に示した塩基配列において351番目のGがTへ置換変異することとなる。 Specifically, the gene mutation of JAK2 means the V617F mutation (the substitution mutation of valine at position 617 to phenylalanine). This mutation contributes to the activation of the JAK-STAT pathway and is a hallmark of polycytemia vera (PV). The V617F mutation is also found at a frequency of 50 to 60% in patients with primary myelofibrosis (PMF) or patients with essential thrombocythemia (ET). The nucleotide sequence encoding wild type JAK2 is shown in SEQ ID NO: 1. When the V617F mutation is present, at the 351st position of the base sequence shown in SEQ ID NO: 1, G is substituted for T.
 また、CALRの遺伝子変異とは、52塩基欠損のタイプ1の変異と5塩基挿入のタイプ2の変異とを意味する。52塩基欠損及び5塩基挿入は、CALRタンパク質のC末端に位置している。原発性骨髄線維症(primary myelofibrosis:PMF)患者或いは本態性血小板血症(essential thrombocythemia:ET)患者において、これらいずれかの変異が20~25%の頻度で見られる。主として、タイプ2の変異が本態性血小板血症(essential thrombocythemia:ET)に関連し、タイプ1の変異が原発性骨髄線維症(primary myelofibrosis:PMF)に関与している。また、CALRの遺伝子変異は、上述したJAK2における遺伝子変異を有さない骨髄増殖性腫瘍において見られる変異でもある。なお、野生型CALRをコードする塩基配列を配列番号2に示す。タイプ1の変異を有する場合、配列番号2に示した塩基配列において513番目から564番目の52塩基が欠損することとなる。タイプ2の変異を有する場合、配列番号2に示した塩基配列において568番目と569番目の間にTTGTCが挿入されることとなる。 In addition, CALR gene mutation means type 1 mutation with 52 bases deletion and type 2 mutation with 5 bases insertion. The 52 base deletion and 5 base insertions are located at the C-terminus of the CALR protein. Any of these mutations is found at a frequency of 20-25% in patients with primary myelofibrosis (PMF) or in patients with essential thrombocythemia (ET). Primarily, type 2 mutations are associated with essential thrombocythemia (ET) and type 1 mutations are involved in primary myelofibrosis (PMF). The CALR gene mutation is also a mutation found in myeloproliferative tumors that do not have the above-mentioned gene mutation in JAK2. The nucleotide sequence encoding wild type CALR is shown in SEQ ID NO: 2. If it has a type 1 mutation, 52 bases from 513 to 564 in the base sequence shown in SEQ ID NO: 2 will be deleted. In the case of having a type 2 mutation, TGTTC is inserted between the 568th and 569th in the base sequence shown in SEQ ID NO: 2.
 さらに、MPLの遺伝子変異とは、W515K変異(515番目のトリプトファンがリシンへ置換変異)又はW515L変異(515番目のトリプトファンがロイシンへ置換変異)を意味する。このMPLの遺伝子変異は、本態性血小板血症(essential thrombocythemia:ET)患者の3~5%において見られ、原発性骨髄線維症(primary myelofibrosis:PMF)の6~10%において見られる。なお、野生型MPLをコードする塩基配列を配列番号3に示す。W515K変異を有する場合、配列番号3に示した塩基配列において305番目と306番目のTGがAAへと置換変異することとなる。W515L変異を有する場合、配列番号3に示した塩基配列において306番目のGがTへと置換変異することとなる。 Furthermore, the gene mutation of MPL means the W515K mutation (a substitution mutation of tryptophan at position 515 to lysine) or the W515L mutation (a substitution mutation of tryptophan at position 515 to leucine). This gene mutation of MPL is found in 3 to 5% of patients with essential thrombocythemia (ET) and in 6 to 10% of primary myelofibrosis (PMF). The nucleotide sequence encoding wild type MPL is shown in SEQ ID NO: 3. When the W515K mutation is present, TGs at positions 305 and 306 in the base sequence shown in SEQ ID NO: 3 are subjected to substitution mutation to AA. In the case of having the W515L mutation, G at position 306 in the base sequence shown in SEQ ID NO: 3 is substituted for T.
 より具体的に、JAK2のV617F変異については、配列番号1における上記置換変異に対応する、例えば、CTCCACAGAaACATACTCC(配列番号4)を含むオリゴヌクレオチドを変異型プローブとして使用することができる。なお、上記配列において小文字のaが配列番号1に示した塩基配列における351番目のGからTへの置換変異に対応している。また、JAK2のV617F変異を同定する際、野生型のJAK2に対応する野生型プローブ(上記配列における小文字のaをcとした配列)を使用することもできる。すなわち、JAK2のV617F変異を同定するには、配列番号4の塩基配列を含む変異型プローブを使用すれば良く、また、当該変異型プローブと野生型プローブとからなるプローブセットを使用しても良い。 More specifically, for the V617F mutation of JAK2, for example, an oligonucleotide containing CTCCACAGAaACATACTCC (SEQ ID NO: 4), which corresponds to the substitution mutation in SEQ ID NO: 1, can be used as a variant probe. In the above sequence, the small letter a corresponds to a 351st G to T substitution mutation in the base sequence shown in SEQ ID NO: 1. In addition, when identifying the V617F mutation of JAK2, a wild-type probe corresponding to wild-type JAK2 (a small letter a in the above sequence can be used as c) can also be used. That is, in order to identify the V617F mutation of JAK2, a mutant-type probe containing the base sequence of SEQ ID NO: 4 may be used, or a probe set consisting of the mutant-type probe and a wild-type probe may be used. .
 また、CALRのタイプ1の変異については、配列番号2に示した塩基配列において513番目から564番目の52塩基から選ばれる領域を、野生型のCALRに対応する野生型プローブ(第1のプローブ)として使用する。なおCALRのタイプ1の変異については、配列番号2における上記52塩基欠損に対応する、例えば、TCCTTGT-CCTCTGCTCC(配列番号5)を含むオリゴヌクレオチドをプローブ(第2のプローブ)として使用することができる。なお、上記配列においてハイフン“-”の位置が52塩基欠損の位置である。 In addition, for type 1 mutation of CALR, a region selected from 52 bases from 513 to 564 in the base sequence shown in SEQ ID NO: 2 is a wild-type probe (first probe) corresponding to wild-type CALR. Use as. As for type 1 mutation of CALR, for example, an oligonucleotide containing TCCTTGT-CCTCTGCTCC (SEQ ID NO: 5) corresponding to the 52 base deletion in SEQ ID NO: 2 can be used as a probe (second probe) . The position of the hyphen "-" in the above sequence is the position of 52 base deletion.
 さらに、CALRのタイプ2の変異については、上記5塩基が挿入されていない、すなわち配列番号2に示した塩基配列において568番目と569番目が隣接する配列として設計した野生型プローブ(第1のプローブ)を使用する。なお、CALRのタイプ2の変異については、配列番号2における上記5塩基挿入に対応する、例えば、ATCCTCCgacaaTTGTCCT(配列番号6)を含むオリゴヌクレオチドをプローブとして使用することができる。なお、上記配列において小文字のgacaaが5塩基挿入である。 Furthermore, for CALR type 2 mutation, a wild-type probe (first probe designed as a sequence in which the above 5 bases are not inserted, ie, 568th and 569th adjacent sequences in the base sequence shown in SEQ ID NO: 2) Use). As for type 2 mutations of CALR, for example, an oligonucleotide containing, for example, ATCC TCC gacaa TTGTCCT (SEQ ID NO: 6) corresponding to the above-mentioned 5-base insertion in SEQ ID NO: 2 can be used as a probe. In the above sequence, lower case gacaa has a 5-base insertion.
 さらにまた、MPLのW515K変異については、配列番号3における上記置換変異に対応する、例えば、GAAACTGCttCCTCAGCA(配列番号7)を含むオリゴヌクレオチドを変異型プローブとして使用することができる。なお、上記配列において小文字のttが配列番号3に示した塩基配列における305番目と306番目のTGのAAへの置換変異に対応している。また、MPLのW515K変異を同定する際、野生型のMPLに対応する野生型プローブ(上記配列における小文字のttをcaとした配列)を使用することもできる。すなわち、MPLのW515K変異を同定するには、配列番号7の塩基配列を含む変異型プローブを使用すれば良く、また、当該変異型プローブと野生型プローブとからなるプローブセットを使用しても良い。 Furthermore, for the W515K mutation of MPL, an oligonucleotide corresponding to the above substitution mutation in SEQ ID NO: 3, for example, containing GAAACTGCttCCTCAGCA (SEQ ID NO: 7) can be used as a variant probe. In the above sequence, lower case tt corresponds to substitution mutation of the 305th and 306th TGs to AA in the base sequence shown in SEQ ID NO: 3. In addition, when identifying the W515K mutation of MPL, a wild-type probe corresponding to wild-type MPL (a sequence in which the lower-case tt in the above sequence is a ca) can also be used. That is, in order to identify the W515K mutation of MPL, a mutant-type probe containing the base sequence of SEQ ID NO: 7 may be used, or a probe set consisting of the mutant-type probe and a wild-type probe may be used. .
 さらにまた、MPLのW515L変異については、配列番号5における上記置換変異に対応する、例えば、GGAAACTGCAaCCTCAG(配列番号8)を含むオリゴヌクレオチドを変異型プローブとして使用することができる。なお、上記配列において小文字のaが配列番号3に示した塩基配列における306番目のGのTへの置換変異に対応している。また、MPLのW515L変異を同定する際、野生型のMPLに対応する野生型プローブ(上記配列における小文字のaをcとした配列)を使用することもできる。すなわち、MPLのW515L変異を同定するには、配列番号8の塩基配列を含む変異型プローブを使用すれば良く、また、当該変異型プローブと野生型プローブとからなるプローブセットを使用しても良い。 Furthermore, for the W515L mutation of MPL, an oligonucleotide corresponding to the above substitution mutation in SEQ ID NO: 5, for example, GGAAACTGCAAaCCTCAG (SEQ ID NO: 8) can be used as a variant probe. The small letter a in the above sequence corresponds to a substitution mutation of the 306th G to the T in the nucleotide sequence shown in SEQ ID NO: 3. In addition, when identifying the W515L mutation of MPL, a wild-type probe corresponding to wild-type MPL (a sequence in which a in the above sequence is a c) can be used. That is, in order to identify the W515L mutation of MPL, a mutant-type probe containing the base sequence of SEQ ID NO: 8 may be used, or a probe set consisting of the mutant-type probe and a wild-type probe may be used. .
 以上のように、JAK2、CALR及びMPLに存在する遺伝子変異を同定するための変異型プローブをそれぞれ例示したが、変異型プローブの塩基配列は配列番号4~8に限定されず、配列番号1に示したJAK2の塩基配列、配列番号2に示したCALRの塩基配列及び配列番号3に示したMPLの塩基配列に基づいて適宜設計することができる。 As mentioned above, although the mutant-type probe for identifying the gene mutation which exists in JAK2, CALR, and MPL was respectively illustrated, the base sequence of a mutant-type probe is not limited to sequence number 4-8, but sequence number 1 It can design suitably based on the base sequence of JAK2 shown, the base sequence of CALR shown to sequence number 2, and the base sequence of MPL shown to sequence number 3.
 これらプローブの塩基長としては、特に限定しないが、例えば10~30塩基長とすることができ、15~25塩基長とすることが好ましい。なお、プローブは、上述のように、配列番号1、3又は5の塩基配列における遺伝子変異を含む領域に基づいて設計した塩基配列と、当該塩基配列における一方又は両方の末端に付加した塩基配列とを合計して、例えば10~30塩基長とすることができ、15~25塩基長とすることが好ましい。 The base length of these probes is not particularly limited, but may be, for example, 10 to 30 bases, and preferably 15 to 25 bases. As described above, the probe is a base sequence designed based on a region containing a gene mutation in the base sequence of SEQ ID NO: 1, 3 or 5, and a base sequence added to one or both ends of the base sequence. Can be, for example, 10 to 30 bases in length, preferably 15 to 25 bases in length.
 また、上述のように設計したプローブは、好ましくは核酸であり、より好ましくはDNAである。DNAには二本鎖も一本鎖も含まれるが、好ましくは一本鎖DNAである。プローブは、例えば、核酸合成装置によって化学的に合成することで取得することができる。核酸合成装置としては、DNAシンセサイザー、全自動核酸合成装置、核酸自動合成装置等と呼ばれる装置を使用することができる。 Also, the probe designed as described above is preferably a nucleic acid, more preferably DNA. The DNA may be double stranded or single stranded but is preferably single stranded DNA. The probe can be obtained, for example, by chemical synthesis by a nucleic acid synthesizer. As the nucleic acid synthesizer, an apparatus called a DNA synthesizer, a fully automatic nucleic acid synthesizer, an automatic nucleic acid synthesizer or the like can be used.
 上述のように設計したプローブは、その5’末端を担体上に固定化することにより、マイクロアレイ(一例としてDNAチップ)の形態で用いるのが好ましい。このとき、マイクロアレイは、上述した各遺伝子変異について、変異型プローブ及び野生型プローブを有することが好ましい。各遺伝子変異について、変異型プローブと野生型プローブとを利用することによって、変異の有無のみならず変異の割合を正確に判定することができる。ここで、変異型プローブと野生型プローブとは、長さが2塩基以内の差であることが好ましく、長さが同じであることがより好ましい。 The probe designed as described above is preferably used in the form of a microarray (as an example, a DNA chip) by immobilizing its 5 'end on a carrier. At this time, the microarray preferably has a mutant-type probe and a wild-type probe for each of the aforementioned gene mutations. For each gene mutation, not only the presence or absence of the mutation but also the ratio of the mutation can be accurately determined by using the mutant-type probe and the wild-type probe. Here, the length of the mutant-type probe and the wild-type probe are preferably differences within 2 bases, and more preferably the lengths are the same.
 本発明に係るマイクロアレイは、上述したプローブを担体上に固定することで作製することができる。 The microarray according to the present invention can be prepared by immobilizing the above-described probe on a carrier.
 担体の材料としては、当技術分野で公知のものを使用でき、特に制限されない。例えば、白金、白金黒、金、パラジウム、ロジウム、銀、水銀、タングステンおよびそれらの化合物などの貴金属、およびグラファイト、カ-ボンファイバ-に代表される炭素などの導電体材料;単結晶シリコン、アモルファスシリコン、炭化ケイ素、酸化ケイ素、窒化ケイ素などに代表されるシリコン材料、SOI(シリコン・オン・インシュレータ)などに代表されるこれらシリコン材料の複合素材;ガラス、石英ガラス、アルミナ、サファイア、セラミクス、フォルステライト、感光性ガラスなどの無機材料;ポリエチレン、エチレン、ポリプロビレン、環状ポリオレフィン、ポリイソブチレン、ポリエチレンテレフタレート、不飽和ポリエステル、含フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、アクリル樹脂、ポリアクリロニトリル、ポリスチレン、アセタール樹脂、ポリカーボネート、ポリアミド、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、スチレン・アクリロニトリル共重合体、アクリロニトリル・ブタジエンスチレン共重合体、ポリフェニレンオキサイドおよびポリスルホンなどの有機材料等が挙げられる。担体の形状も特に制限されないが、好ましくは平板状である。 As the material of the carrier, those known in the art can be used without particular limitation. For example, noble metals such as platinum, platinum black, gold, palladium, rhodium, silver, mercury, tungsten and compounds thereof, and conductive materials such as carbon represented by graphite and carbon fiber; single crystal silicon, amorphous Silicon materials represented by silicon, silicon carbide, silicon oxide, silicon nitride etc., and composite materials of these silicon materials represented by SOI (silicon on insulator) etc .; glass, quartz glass, alumina, sapphire, ceramics, foam Stellite, inorganic materials such as photosensitive glass; polyethylene, ethylene, polypropylene, cyclic polyolefin, polyisobutylene, polyethylene terephthalate, unsaturated polyester, fluorine-containing resin, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol , Polyvinyl acetal, acrylic resin, polyacrylonitrile, polystyrene, acetal resin, polycarbonate, polyamide, phenol resin, urea resin, epoxy resin, melamine resin, styrene / acrylonitrile copolymer, acrylonitrile / butadiene styrene copolymer, polyphenylene oxide And organic materials such as polysulfone and the like. The shape of the carrier is also not particularly limited, but is preferably flat.
 本発明においては、担体として、好ましくは表面にカーボン層と化学修飾基とを有する担体を用いる。表面にカーボン層と化学修飾基とを有する担体には、基板の表面にカーボン層と化学修飾基とを有するもの、およびカーボン層からなる基板の表面に化学修飾基を有するものが包含される。基板の材料としては、当技術分野で公知のものを使用でき、特に制限されず、上述の担体材料として挙げたものと同様のものを使用できる。 In the present invention, preferably, a carrier having a carbon layer and a chemical modification group on the surface is used as the carrier. Carriers having a carbon layer and a chemical modification group on the surface include those having a carbon layer and a chemical modification group on the surface of the substrate and those having a chemical modification group on the surface of the substrate consisting of a carbon layer. As the material of the substrate, those known in the art can be used without particular limitation, and the same ones as mentioned above as the carrier material can be used.
 本発明に係るマイクロアレイにおいては、微細な平板状の構造を有する担体が好適に用いられる。形状は、長方形、正方形および丸形など限定されないが、通常、1~75mm四方のもの、好ましくは1~10mm四方のもの、より好ましくは3~5mm四方のものを用いる。微細な平板状の構造の担体を製造しやすいことから、シリコン材料や樹脂材料からなる基板を用いるのが好ましく、特に単結晶シリコンからなる基板の表面にカーボン層および化学修飾基を有する担体がより好ましい。単結晶シリコンには、部分部分でごくわずかに結晶軸の向きが変わっているものや(モザイク結晶と称される場合もある)、原子的尺度での乱れ(格子欠陥)が含まれているものも包含される。 In the microarray according to the present invention, a carrier having a fine tabular structure is suitably used. The shape is not limited to rectangular, square and round shapes, but usually 1 to 75 mm square, preferably 1 to 10 mm square, more preferably 3 to 5 mm square is used. It is preferable to use a substrate made of a silicon material or a resin material because it is easy to manufacture a carrier having a fine flat plate structure, and in particular, a carrier having a carbon layer and a chemical modification group on the surface of a substrate made of single crystal silicon is more preferable. preferable. Single crystal silicon has a slight change in orientation of crystallographic axis in part (sometimes referred to as a mosaic crystal), or includes disorder on atomic scale (lattice defect) Is also included.
 本発明において基板上に形成させるカーボン層としては、特に制限されないが、合成ダイヤモンド、高圧合成ダイヤモンド、天然ダイヤモンド、軟ダイヤモンド(例えば、ダイヤモンドライクカーボン)、アモルファスカーボン、炭素系物質(例えば、グラファイト、フラーレン、カーボンナノチューブ)のいずれか、それらの混合物、またはそれらを積層させたものを用いることが好ましい。また、炭化ハフニウム、炭化ニオブ、炭化珪素、炭化タンタル、炭化トリウム、炭化チタン、炭化ウラン、炭化タングステン、炭化ジルコニウム、炭化モリブデン、炭化クロム、炭化バナジウム等の炭化物を用いてもよい。ここで、軟ダイヤモンドとは、いわゆるダイヤモンドライクカーボン(DLC:Diamond Like Carbon)等の、ダイヤモンドとカーボンとの混合体である不完全ダイヤモンド構造体を総称し、その混合割合は、特に限定されない。カーボン層は、化学的安定性に優れておりその後の化学修飾基の導入や分析対象物質との結合における反応に耐えることができる点、分析対象物質と静電結合によって結合するためその結合が柔軟性を持っている点、UV吸収がないため検出系UVに対して透明性である点、およびエレクトロブロッティングの際に通電可能な点において有利である。また、分析対象物質との結合反応において、非特異的吸着が少ない点においても有利である。前記のとおり基板自体がカーボン層からなる担体を用いてもよい。 The carbon layer formed on the substrate in the present invention is not particularly limited, but synthetic diamond, high-pressure synthetic diamond, natural diamond, soft diamond (for example, diamond like carbon), amorphous carbon, carbon-based material (for example, graphite, fullerene) It is preferable to use any of carbon nanotubes, mixtures thereof, or laminates thereof. In addition, carbides such as hafnium carbide, niobium carbide, silicon carbide, tantalum carbide, thorium carbide, titanium carbide, uranium carbide, tungsten carbide, zirconium carbide, molybdenum carbide, chromium carbide, vanadium carbide and the like may be used. Here, soft diamond generally refers to an incomplete diamond structure which is a mixture of diamond and carbon such as so-called diamond like carbon (DLC: Diamond Like Carbon), and the mixing ratio is not particularly limited. The carbon layer is excellent in chemical stability and can withstand the subsequent reaction with the introduction of a chemical modification group and the binding to the analyte, and the bond is flexible because it is bound to the analyte by electrostatic binding. It is advantageous in that it has properties, is transparent to the detection system UV due to lack of UV absorption, and can be energized during electroblotting. In addition, it is also advantageous in that nonspecific adsorption is small in the binding reaction with the analyte. As described above, the substrate itself may use a carrier composed of a carbon layer.
 本発明においてカーボン層の形成は公知の方法で行うことができる。例えば、マイクロ波プラズマCVD(Chemical vapor deposit)法、ECRCVD(Electric cyclotron resonance chemical vapor deposit)法、ICP(Inductive coupled plasma)法、直流スパッタリング法、ECR(Electric cyclotron resonance)スパッタリング法、イオン化蒸着法、アーク式蒸着法、レーザ蒸着法、EB(Electron beam)蒸着法、抵抗加熱蒸着法などが挙げられる。 In the present invention, the formation of the carbon layer can be performed by a known method. For example, microwave plasma CVD (Chemical vapor deposition), ECR CVD (Electric cyclotron resonance chemical vapor deposition), ICP (Inductive coupled plasma), DC sputtering, ECR (Electric cyclotron resonance), ionization deposition, arc Deposition methods, laser deposition methods, electron beam (EB) deposition methods, resistance heating deposition methods, and the like.
 高周波プラズマCVD法では、高周波によって電極間に生じるグロー放電により原料ガス(メタン)を分解し、基板上にカーボン層を合成する。イオン化蒸着法では、タングステンフィラメントで生成される熱電子を利用して、原料ガス(ベンゼン)を分解・イオン化し、バイアス電圧によって基板上にカーボン層を形成する。水素ガス1~99体積%と残りメタンガス99~1体積%からなる混合ガス中で、イオン化蒸着法によりカーボン層を形成してもよい。 In the high frequency plasma CVD method, a source gas (methane) is decomposed by glow discharge generated between electrodes by high frequency to synthesize a carbon layer on a substrate. In the ionization vapor deposition method, the source gas (benzene) is decomposed and ionized by using thermoelectrons generated by a tungsten filament, and a carbon layer is formed on a substrate by a bias voltage. The carbon layer may be formed by ionization vapor deposition in a mixed gas consisting of 1 to 99% by volume of hydrogen gas and 99 to 1% by volume of methane gas.
 アーク式蒸着法では、固体のグラファイト材料(陰極蒸発源)と真空容器(陽極)の間に直流電圧を印加することにより真空中でアーク放電を起こして陰極から炭素原子のプラズマを発生させ蒸発源よりもさらに負のバイアス電圧を基板に印加することにより基板に向かってプラズマ中の炭素イオンを加速しカーボン層を形成することができる。 In the arc vapor deposition method, an arc discharge is generated in vacuum by applying a direct current voltage between a solid graphite material (cathode evaporation source) and a vacuum vessel (anode) to generate a plasma of carbon atoms from the cathode and the evaporation source Furthermore, by applying a negative bias voltage to the substrate, carbon ions in the plasma can be accelerated toward the substrate to form a carbon layer.
 レーザ蒸着法では、例えばNd:YAGレーザ(パルス発振)光をグラファイトのターゲット板に照射して溶融させ、ガラス基板上に炭素原子を堆積させることによりカーボン層を形成することができる。 In the laser deposition method, a carbon layer can be formed by, for example, irradiating a target plate of graphite with Nd: YAG laser (pulse oscillation) light to melt and depositing carbon atoms on a glass substrate.
 基板の表面にカーボン層を形成する場合、カーボン層の厚さは、通常、単分子層~100μm程度であり、薄すぎると下地基板の表面が局部的に露出する可能性があり、逆に厚くなると生産性が悪くなるので、好ましくは2nm~1μm、より好ましくは5nm~500nmである。 When a carbon layer is formed on the surface of the substrate, the thickness of the carbon layer is usually from about 1 to 100 μm, and if it is too thin, the surface of the base substrate may be exposed locally. If this is the case, the productivity will deteriorate, so it is preferably 2 nm to 1 μm, more preferably 5 nm to 500 nm.
 カーボン層が形成された基板の表面に化学修飾基を導入することにより、オリゴヌクレオチドプローブを担体に強固に固定化できる。導入する化学修飾基は、当業者であれば適宜選択することができ、特に制限されないが、例えば、アミノ基、カルボキシル基、エポキシ基、ホルミル基、ヒドロキシル基および活性エステル基が挙げられる。 By introducing a chemical modification group on the surface of the substrate on which the carbon layer is formed, the oligonucleotide probe can be firmly immobilized on the carrier. The chemical modification group to be introduced can be appropriately selected by those skilled in the art and is not particularly limited, and examples thereof include an amino group, a carboxyl group, an epoxy group, a formyl group, a hydroxyl group and an active ester group.
 アミノ基の導入は、例えば、カーボン層をアンモニアガス中で紫外線照射することによりまたはプラズマ処理することにより実施できる。または、カーボン層を塩素ガス中で紫外線を照射して塩素化し、さらにアンモニアガス中で紫外線照射することにより実施できる。または、メチレンジアミン、エチレンジアミンで等の多価アミン類ガス中を、塩素化したカーボン層と反応させることによって実施することもできる。 The introduction of the amino group can be carried out, for example, by irradiating the carbon layer with ultraviolet light in ammonia gas or by plasma treatment. Alternatively, the carbon layer may be chlorinated by irradiating ultraviolet light in chlorine gas and further irradiating ultraviolet light in ammonia gas. Alternatively, it can also be carried out by reacting with a chlorinated carbon layer in a polyvalent amines gas such as methylene diamine and ethylene diamine.
 カルボキシル基の導入は、例えば、前記のようにアミノ化したカーボン層に適当な化合物を反応させることにより実施できる。カルボキシル基を導入するために用いられる化合物としては、例えば、式:X-R1-COOH(式中、Xはハロゲン原子、R1は炭素数10~12の2価の炭化水素基を表す)で示されるハロカルボン酸、例えばクロロ酢酸、フルオロ酢酸、ブロモ酢酸、ヨード酢酸、2-クロロプロピオン酸、3-クロロプロピオン酸、3-クロロアクリル酸、4-クロロ安息香酸;式:HOOC-R2-COOH(式中、R2は単結合または炭素数1~12の2価の炭化水素基を表す)で示されるジカルボン酸、例えばシュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、フタル酸;ポリアクリル酸、ポリメタクリル酸、トリメリット酸、ブタンテトラカルボン酸などの多価カルボン酸;式:R3-CO-R4-COOH(式中、R3は水素原子または炭素数1~12の2価の炭化水素基、R4は炭素数1~12の2価の炭化水素基を表す)で示されるケト酸またはアルデヒド酸;式:X-OC-R5-COOH(式中、Xはハロゲン原子、R5は単結合または炭素数1~12の2価の炭化水素基を表す。)で示されるジカルボン酸のモノハライド、例えばコハク酸モノクロリド、マロン酸モノクロリド;無水フタル酸、無水コハク酸、無水シュウ酸、無水マレイン酸、無水ブタンテトラカルボン酸などの酸無水物が挙げられる。 The introduction of the carboxyl group can be carried out, for example, by reacting the carbon layer aminated as described above with a suitable compound. The compound used to introduce a carboxyl group is, for example, represented by the formula: X—R 1 —COOH (wherein, X represents a halogen atom, R 1 represents a divalent hydrocarbon group having 10 to 12 carbon atoms) Halocarboxylic acids such as chloroacetic acid, fluoroacetic acid, bromoacetic acid, iodoacetic acid, 2-chloropropionic acid, 3-chloropropionic acid, 3-chloroacrylic acid, 4-chlorobenzoic acid; formula: HOOC-R2-COOH (formula In which R 2 represents a single bond or a divalent hydrocarbon group having 1 to 12 carbon atoms), such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, phthalic acid; polyacrylic acid And polyvalent carboxylic acids such as polymethacrylic acid, trimellitic acid and butanetetracarboxylic acid; Formula: R3-CO-R4-COOH (wherein, R3 is a hydrogen atom or a divalent hydrocarbon group having 1 to 12 carbon atoms) , R 4 represents a divalent hydrocarbon group having 1 to 12 carbon atoms) Dicarbon represented by the formula: X-OC-R5-COOH (wherein, X is a halogen atom, R 5 represents a single bond or a divalent hydrocarbon group having 1 to 12 carbon atoms) Mono halides of acids such as succinic acid monochloride, malonic acid monochloride; acid anhydrides such as phthalic anhydride, succinic anhydride, oxalic anhydride, maleic anhydride, butanetetracarboxylic acid anhydride and the like can be mentioned.
 エポキシ基の導入は、例えば、前記のようにアミノ化したカーボン層に適当な多価エポキシ化合物を反応させることによって実施できる。あるいは、カーボン層が含有する炭素=炭素2重結合に有機過酸を反応させることにより得ることができる。有機過酸としては、過酢酸、過安息香酸、ジペルオキシフタル酸、過ギ酸、トリフルオロ過酢酸などが挙げられる。 The introduction of the epoxy group can be carried out, for example, by reacting the carbon layer aminated as described above with an appropriate polyvalent epoxy compound. Alternatively, it can be obtained by reacting an organic peroxy acid with the carbon = carbon double bond contained in the carbon layer. Examples of organic peracids include peracetic acid, perbenzoic acid, diperoxyphthalic acid, formic acid, and trifluoroperacetic acid.
 ホルミル基の導入は、例えば、前記のようにアミノ化したカーボン層に、グルタルアルデヒドを反応させることにより実施できる。 The introduction of the formyl group can be carried out, for example, by reacting glutaraldehyde with the carbon layer aminated as described above.
 ヒドロキシル基の導入は、例えば、前記のように塩素化したカーボン層に、水を反応させることにより実施できる。 The introduction of hydroxyl groups can be carried out, for example, by reacting water with the carbon layer chlorinated as described above.
 活性エステル基は、エステル基のアルコール側に酸性度の高い電子求引性基を有して求核反応を活性化するエステル群、すなわち反応活性の高いエステル基を意味する。エステル基のアルコール側に、電子求引性の基を有し、アルキルエステルよりも活性化されたエステル基である。活性エステル基は、アミノ基、チオール基、水酸基等の基に対する反応性を有する。さらに具体的には、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、シアノメチルエステル、複素環ヒドロキシ化合物のエステル類等がアルキルエステル等に比べてはるかに高い活性を有する活性エステル基として知られている。より具体的には、活性エステル基としては、たとえばp-ニトロフェニル基、N-ヒドロキシスクシンイミド基、コハク酸イミド基、フタル酸イミド基、5-ノルボルネン-2,3-ジカルボキシイミド基等が挙げられ、特に、N-ヒドロキシスクシンイミド基が好ましく用いられる。 The active ester group means an ester group having an electron withdrawing group with high acidity on the alcohol side of the ester group to activate a nucleophilic reaction, that is, an ester group with high reaction activity. It is an ester group having an electron withdrawing group on the alcohol side of the ester group and activated more than the alkyl ester. The active ester group has reactivity with groups such as amino group, thiol group and hydroxyl group. More specifically, an active ester group in which phenol esters, thiophenol esters, N-hydroxyamine esters, cyanomethyl esters, esters of heterocyclic hydroxy compounds, etc. have much higher activity than alkyl esters etc. Known as More specifically, examples of the active ester group include p-nitrophenyl group, N-hydroxysuccinimide group, succinimide group, phthalimido group, 5-norbornene-2,3-dicarboximide group and the like. In particular, N-hydroxysuccinimide group is preferably used.
 活性エステル基の導入は、例えば、前記のように導入したカルボキシル基を、シアナミドやカルボジイミド(例えば、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド)などの脱水縮合剤とN-ヒドロキシスクシンイミドなどの化合物で活性エステル化することにより実施できる。この処理により、アミド結合を介して炭化水素基の末端に、N-ヒドロキシスクシンイミド基等の活性エステル基が結合した基を形成することができる(特開2001-139532)。 The introduction of the active ester group may be carried out, for example, with a dehydrating condensation agent such as cyanamide or carbodiimide (for example, 1- [3- (dimethylamino) propyl] -3-ethylcarbodiimide) and N-containing carboxyl group introduced as described above. It can be carried out by active esterification with a compound such as hydroxysuccinimide. By this treatment, it is possible to form a group in which an active ester group such as N-hydroxysuccinimide group is bonded to an end of a hydrocarbon group via an amide bond (Japanese Patent Laid-Open No. 2001-139532).
 プローブを、スポッティング用バッファーに溶解してスポッティング用溶液を調製し、これを96穴もしくは384穴プラスチックプレートに分注し、分注した溶液をスポッター装置等によって担体上にスポッティングすることにより、プローブが担体に固定化されたマイクロアレイを製造することができる。または、スポッティング溶液をマイクロピペッターにて手動でスポッティングしてもよい。 The probe is dissolved in a buffer for spotting to prepare a spotting solution, which is dispensed into a 96-well or 384-well plastic plate, and the aliquoted solution is spotted on a carrier by a spotter device or the like. Can be immobilized on a carrier. Alternatively, the spotting solution may be spotted manually with a micropipettor.
 スポッティング後、プローブが担体に結合する反応を進行させるため、インキュベーションを行うことが好ましい。インキュベーションは、通常-20~100℃、好ましくは0~90℃の温度で、通常0.5~16時間、好ましくは1~2時間にわたって行う。インキュベーションは、高湿度の雰囲気下、例えば、湿度50~90%の条件で行うのが望ましい。インキュベーションに続き、担体に結合していないDNAを除去するため、洗浄液(例えば、50mM TBS/0.05% Tween20、2×SSC/0.2%SDS溶液、超純水など)を用いて洗浄を行うことが好ましい。 After spotting, it is preferable to carry out incubation in order to advance the reaction in which the probe is bound to the carrier. Incubation is usually performed at a temperature of −20 to 100 ° C., preferably 0 to 90 ° C., usually for 0.5 to 16 hours, preferably 1 to 2 hours. The incubation is preferably performed under an atmosphere of high humidity, for example, 50 to 90% humidity. Following the incubation, it is preferable to wash using a washing solution (eg, 50 mM TBS / 0.05 % Tween 20, 2 × SSC / 0.2% SDS solution, ultrapure water, etc.) in order to remove DNA not bound to the carrier. .
 以上のように構成されたマイクロアレイを用いることで、診断対象者における、JAK2、CALR及びMPLに存在する上記遺伝子変異について、それぞれの遺伝子変異の有無を同時に判定することができる。 By using the microarray configured as described above, it is possible to simultaneously determine the presence or absence of each of the aforementioned gene mutations in JAK2, CALR and MPL in a diagnosis subject.
 具体的に、JAK2、CALR及びMPLに存在する上記遺伝子変異の有無を判定する際には、診断対象者由来の試料からDNAを抽出する工程と、抽出したDNAを鋳型とし、JAK2における上記遺伝子変異を含む領域、CALRにおける上記遺伝子
変異を含む領域及びMPLにおける上記遺伝子変異を含む領域をそれぞれ増幅する工程と、上述したマイクロアレイを用いて、増幅された核酸に含まれるJAK2、CALR及びMPLに存在する上記遺伝子変異の有無をそれぞれ検出する工程とを含む。
Specifically, when determining the presence or absence of the above gene mutation present in JAK2, CALR and MPL, a step of extracting DNA from a sample derived from a diagnosis subject, and the extracted DNA as a template, the above gene mutation in JAK2 Amplifying the region containing the above gene mutation in CALR and the region containing the above gene mutation in MPL, and present in JAK2, CALR and MPL contained in the amplified nucleic acid using the above-mentioned microarray And d) detecting the presence or absence of the gene mutation.
 診断対象者は通常ヒトであり、人種等には特に限定されないが、特に、黄色人種、好適には東アジア人種、特に好適には日本人とする。また、診断対象者としては、骨髄増殖性腫瘍が疑われる患者とすることができる。 The subject to be diagnosed is usually a human, and is not particularly limited to the race and the like, but particularly the yellow race, preferably the East Asian race, particularly preferably the Japanese. Moreover, it can be set as the patient who is suspected of myeloproliferative tumor as a diagnostic subject.
 診断対象者由来の試料は特に制限されない。例えば、血液関連試料(血液、血清、血漿など)、リンパ液、糞便、がん細胞、組織または臓器の破砕物および抽出物などが挙げられる。 The sample from the subject of diagnosis is not particularly limited. For example, blood related samples (blood, serum, plasma, etc.), lymph, feces, cancer cells, tissue or organ fragments and extracts, etc. may be mentioned.
 まず、診断対象者から採取した試料からDNAを抽出する。抽出手段としては、特に限定されない。例えばフェノール/クロロホルム、エタノール、水酸化ナトリウム、CTABなどを用いたDNA抽出法を用いることができる。 First, DNA is extracted from a sample collected from a subject to be diagnosed. The extraction means is not particularly limited. For example, a DNA extraction method using phenol / chloroform, ethanol, sodium hydroxide, CTAB or the like can be used.
 次に、得られたDNAを鋳型として用いて増幅反応を行い、JAK2を含む領域、CALRを含む領域及びMPLを含む領域を増幅する。増幅反応としては、ポリメラーゼ連鎖反応(PCR)、LAMP(Loop-Mediated Isothermal Amplification)、ICAN(Isothermal and Chimeric primer-initiated Amplification of Nucleic acids)法等を適用することができる。増幅反応においては、増幅後の領域を識別できるように標識を付加することが望ましい。このとき、増幅された核酸を標識する方法としては、特に限定されないが、例えば増幅反応に使用するプライマーをあらかじめ標識しておく方法を使用してもよいし、増幅反応に標識ヌクレオチドを基質として使用する方法を使用してもよい。標識物質としては、特に限定されないが、放射性同位元素や蛍光色素、あるいはジゴキシゲニン(DIG)やビオチンなどの有機化合物などを使用することができる。 Next, an amplification reaction is carried out using the obtained DNA as a template to amplify a region containing JAK2, a region containing CALR and a region containing MPL. As an amplification reaction, a polymerase chain reaction (PCR), LAMP (Loop-Mediated Isothermal Amplification), ICAN (Isothermal and Chimeric primer-Initiated Amplification of Nucleic acids) method or the like can be applied. In the amplification reaction, it is desirable to add a label so that the region after amplification can be identified. At this time, a method for labeling the amplified nucleic acid is not particularly limited. For example, a method in which a primer used for amplification reaction is previously labeled may be used, or a labeled nucleotide is used as a substrate for amplification reaction. Methods may be used. The labeling substance is not particularly limited, and radioactive isotopes, fluorescent dyes, or organic compounds such as digoxigenin (DIG) and biotin can be used.
 またこの反応系は、核酸増幅・標識に必要な緩衝剤、耐熱性DNAポリメラーゼ、増幅領域に特異的なプライマー、標識ヌクレオチド三リン酸(具体的には蛍光標識等を付加したヌクレオチド三リン酸)、ヌクレオチド三リン酸および塩化マグネシウム等を含む反応系である。 In addition, this reaction system includes a buffer necessary for nucleic acid amplification and labeling, a thermostable DNA polymerase, a primer specific to the amplification region, a labeled nucleotide triphosphate (specifically, a nucleotide triphosphate to which a fluorescent label or the like is added) , A nucleotide triphosphate, and a reaction system containing magnesium chloride and the like.
 JAK2における上記遺伝子変異を含む領域の増幅反応に用いるプライマーは、上記遺伝子変異を含む領域を特異的に増幅できるものであれば特に制限されず、当業者であれば適宜設計できる。例えば、
プライマーJAK2-F:5'-GAGCAAGCTTTCTCACAAGCATTTGG-3'(配列番号9)及びプライマーJAK2-R:5'-CTGACACCTAGCTGTGATCCTGAAACTG-3'(配列番号10)からなるプライマーのセットが挙げられる。
The primer used for the amplification reaction of the region containing the above gene mutation in JAK2 is not particularly limited as long as it can specifically amplify the region containing the above gene mutation, and can be appropriately designed by those skilled in the art. For example,
A set of primers consisting of primer JAK2-F: 5'-GAGCAAGCTTTCTCACAAAGCATTTGG-3 '(SEQ ID NO: 9) and primer JAK2-R: 5'-CTGACACCTAGCTGTGATCCTGAAACTG-3' (SEQ ID NO: 10) can be mentioned.
 CALRにおける上記遺伝子変異を含む領域の増幅反応に用いるプライマーは、上記遺伝子変異を含む領域を特異的に増幅できるものであれば特に制限されず、当業者であれば適宜設計できる。例えば、
プライマーCALR-F:5'-CGTAACAAAGGTGAGGCCTGGT-3'(配列番号11)及びプライマーCALR-R:5'--GGCCTCTCTACAGCTCGTCCTTG-3'(配列番号12)からなるプライマーのセットが挙げられる。
The primer used for the amplification reaction of the region containing the gene mutation in CALR is not particularly limited as long as it can specifically amplify the region containing the gene mutation, and can be appropriately designed by those skilled in the art. For example,
A set of primers consisting of primer CALR-F: 5'-CGTAAAAAAGGTGAGGCCTGGT-3 '(SEQ ID NO: 11) and primer CALR-R: 5'-GGCCTCTCTAGACTCGTCTTG-3' (SEQ ID NO: 12) can be mentioned.
 MPLにおける上記遺伝子変異を含む領域の増幅反応に用いるプライマーは、上記遺伝子変異を含む領域を特異的に増幅できるものであれば特に制限されず、当業者であれば適宜設計できる。例えば、
プライマーMPL-F:5'-CTCCTAGCCTGGATCTCCTTGG-3'(配列番号13)及びプライマーMPL-R:5'--ACAGAGCGAACCAAGAATGCCTGTTTAC-3'(配列番号14)からなるプライマーのセットが挙げられる。
The primer used for amplification reaction of the region containing the gene mutation in MPL is not particularly limited as long as it can specifically amplify the region containing the gene mutation, and can be appropriately designed by those skilled in the art. For example,
A set of primers consisting of primer MPL-F: 5'- CTCCTAGCCCTGGATCTCCTTGG-3 '(SEQ ID NO: 13) and primer MPL-R: 5'-ACAGAGCGAACCAAGAATGCCTGTTTTAC-3 '(SEQ ID NO: 14) can be mentioned.
 また、プライマーにより増幅される核酸断片は、設計したプローブに対応する領域を含んでいれば特に限定されず、例えば1kbp以下が好ましく、800bp以下がより好ましくは、500bp以下が更に好ましく、350bp以下が特に好ましい。 The nucleic acid fragment amplified by the primer is not particularly limited as long as it contains a region corresponding to the designed probe, and is preferably 1 kbp or less, for example, preferably 800 bp or less, more preferably 500 bp or less, 350 bp or less Particularly preferred.
 上記のようにして得られた増幅核酸と、担体に固定されたプローブとのハイブリダイゼーション反応を行い、変異型プローブに対する増幅核酸のハイブリダイズを検出することで診断対象者における上記遺伝子変異の有無を評価することができる。すなわち、変異型プローブに対して増幅核酸がハイブリダイズしたことを例えば標識を検出することにより測定できる。また、標識からのシグナルを定量的に測定することで、変異型プローブにハイブリダイズした核酸量を定量することができる。 The hybridization reaction between the amplified nucleic acid obtained as described above and the probe immobilized on the carrier is carried out, and the hybridization of the amplified nucleic acid to the mutant type probe is detected to detect the presence or absence of the above gene mutation in the person to be diagnosed. It can be evaluated. That is, hybridization of the amplified nucleic acid to the mutant-type probe can be measured, for example, by detecting a label. Also, by quantitatively measuring the signal from the label, the amount of nucleic acid hybridized to the mutant probe can be quantified.
 標識からのシグナルは、例えば、蛍光標識を用いた場合は、蛍光スキャナを用いて蛍光シグナル検出し、これを画像解析ソフトによって解析することによりシグナル強度を数値化することができる。また、変異型プローブにハイブリダイズした増幅核酸は、例えば、既知量のDNAを含む試料を用いて検量線を作成することにより、定量することもできる。ハイブリダイゼーション反応は、好ましくはストリンジェントな条件下で実施する。ストリンジェントな条件とは、特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいい、例えば、50℃で16時間ハイブリダイズ反応させた後、2×SSC/0.2% SDS、25℃、10分および2×SSC、25℃、5分の条件で洗浄する条件をさす。或いは、ハイブリダイズする温度としては、塩濃度が0.5×SSCのとき、45~60℃とすることができ、プローブの鎖長が短い場合にはハイブリダイズ温度をこれより低くすることがより好ましく、鎖長が長い場合にはハイブリダイズ温度をこれより高くとすることがより好ましい。塩濃度が高くなると特異性を有するハイブリダイズ温度は高くなり、逆に塩濃度が低くなると特異性を有するハイブリダイズ温度は低くなることはいうまでもない。 For example, when a fluorescent label is used, the signal from the label can be detected as a fluorescent signal using a fluorescent scanner and analyzed by image analysis software to quantify the signal intensity. The amplified nucleic acid hybridized to the mutant-type probe can also be quantified, for example, by preparing a calibration curve using a sample containing a known amount of DNA. The hybridization reaction is preferably carried out under stringent conditions. Stringent conditions are conditions under which a specific hybrid is formed and a nonspecific hybrid is not formed, for example, after hybridization reaction at 50 ° C. for 16 hours, 2 × SSC / 0.2% SDS, 25 The conditions for washing at 10 ° C. for 10 minutes and 2 × SSC at 25 ° C. for 5 minutes are described. Alternatively, the temperature for hybridization can be 45 to 60 ° C. when the salt concentration is 0.5 × SSC, and it is more preferable to lower the hybridization temperature when the length of the probe is short, When the chain length is long, it is more preferable to make the hybridization temperature higher. It goes without saying that the hybridization temperature having specificity increases as the salt concentration increases, and the hybridization temperature having specificity decreases as the salt concentration decreases.
 また、上述した各遺伝子変異について変異型プローブ(第2のプローブ)と野生型プローブ(第1のプローブ)とを備えるマイクロアレイを使用した場合、これら変異型プローブ及び野生型プローブからのシグナル強度を用いて上記遺伝子変異の有無を評価することができる。具体的には、野生型プローブにおけるシグナル強度及び変異型プローブにおけるシグナル強度をそれぞれ測定し、変異型プローブに由来するシグナ強度を評価するための判定値を算出する。判定値の算出例としては、例えば、判定式:[変異型プローブ由来のシグナル強度]/([野生型プローブ由来のシグナル強度]+[変異型プローブ由来のシグナル強度])=第2の判定値を使用する方法が挙げられる。 In addition, when using a microarray comprising a mutant-type probe (second probe) and a wild-type probe (first probe) for each of the gene mutations described above, the signal intensities from these mutant-type probes and the wild-type probe are used The presence or absence of the above-mentioned gene mutation can be evaluated. Specifically, the signal intensity in the wild type probe and the signal intensity in the mutant probe are each measured, and the judgment value for evaluating the signal intensity derived from the mutant probe is calculated. As a calculation example of the judgment value, for example, judgment equation: [signal strength derived from mutant probe] / ([signal strength derived from wild type probe] + [signal strength derived from mutant probe]) = second judgment value How to use
 そして、上記式にて算出される第2の判定値と予め定めた閾値(カットオフ値)とを比較し、第2の判定値が閾値を上回る場合には増幅核酸に上記遺伝子変異が含まれると判断し、第2の判定値が閾値を下回る場合には増幅核酸に上記遺伝子変異が含まれないと判断することができる。このように第2の判定値を利用することで、上述したJAK2、CALR(タイプ2の遺伝子変異)及びMPLにおける各遺伝子変異の有無を判定することができる。 Then, the second determination value calculated by the above equation is compared with a predetermined threshold (cut-off value), and when the second determination value exceeds the threshold, the amplified nucleic acid contains the gene mutation. If the second judgment value is below the threshold value, it can be judged that the amplified nucleic acid does not contain the gene mutation. Thus, by using the second determination value, it is possible to determine the presence or absence of each gene mutation in JAK2, CALR (gene mutation of type 2) and MPL described above.
 ここで、閾値としては、特に限定されないが、例えば、JAK2、CALR(タイプ2の遺伝子変異)及びMPLに存在する上述した各遺伝子変異が野生型であることが確定している検体を用いて上記式により算出された第2の判定値に基づいて規定することができる。より具体的には、JAK2、CALR(タイプ2の遺伝子変異)及びMPLに存在する上述した各遺伝子変異が野生型であることが確定している複数の検体を用いて複数の第2の判定値を算出し、その平均値+3σ(σ:標準偏差)の値を閾値とすることができる。なお、平均値+2σや平均値+σの値を閾値とすることもできる。 Here, the threshold value is not particularly limited. For example, the above-mentioned test is performed using a sample in which each of the aforementioned gene mutations present in JAK2, CALR (gene mutation of type 2) and MPL is wild type. It can prescribe | regulate based on the 2nd determination value calculated by the type | formula. More specifically, a plurality of second judgment values using a plurality of samples in which each of the aforementioned gene mutations present in JAK2, CALR (type 2 gene mutation) and MPL is determined to be wild type Can be calculated, and the value of the average value + 3σ (σ: standard deviation) can be used as the threshold value. In addition, the value of average value +2 (sigma) or average value + (sigma) can also be used as a threshold value.
 ところで、上述したCALRに存在する遺伝子変異には、52塩基欠損のタイプ1以外にも、タイプ1変異部位に、たとえば46塩基欠損変異、34塩基欠損変異、24塩基欠損変異等のタイプ1に類似する変異(これらを纏めてタイプ1ライクと称する)が存在することタイプ1変異に加えてこれらのタイプ1ライク変異も疾患に関与することが知られている(Leukemia (2016) 30, 431-438)。なお、Leukemia (2016) 30, 431-438によれば、52塩基欠損のタイプ1やタイプ1ライクが生じる箇所に、これらに分類されない他の変異が存在することが示されている。したがって、CALRに存在する遺伝子変異として、上述したタイプ1の遺伝子変異、タイプ1ライクの遺伝子変異、これらに分類されない他の変異の有無が検出可能となれば、MPNの確定診断に有益な情報となると考えられる。 By the way, gene mutations that exist in the above-mentioned CALR are similar to type 1 such as 46 base deletion mutation, 34 base deletion mutation, 24 base deletion mutation, etc. In addition to type 1 mutations, these type 1 like mutations are also known to be involved in the disease (Leukemia (2016) 30, 431-438). ). According to Leukemia (2016) 30, 431-438, it is shown that there are other mutations not classified as type 1 or type 1 like sites where 52 bases are deleted. Therefore, if it becomes possible to detect the presence or absence of type 1 gene mutations, type 1 like gene mutations, and other mutations not classified as these as gene mutations present in CALR, it is useful information for definitive diagnosis of MPN. It is considered to be.
 上述した式で算出される第2の判定値を用いることで、52塩基欠損のタイプ1を、上述したタイプ1ライク及び上述した他の変異から区別して判定することができる。すなわち、第2の判定値が閾値を超える場合には52塩基欠損のタイプ1を有すると判定することができる。また、第2の判定値が閾値を下回る場合には、変異を有しない野生型であるか、タイプ1ライク変異であるか、その他の変異であると判定することができる。 By using the second determination value calculated by the above-mentioned equation, type 1 of 52 base deletion can be distinguished from the above-mentioned type 1 like and other mutations described above. That is, when the second determination value exceeds the threshold value, it can be determined to have type 1 of 52 base deletion. In addition, when the second determination value is below the threshold value, it can be determined that it is a wild type without mutation, a type 1 like mutation, or another mutation.
 ところで、上述したCALRに存在するタイプ1の遺伝子変異については、上述した第1の判定値を用いてその有無を判定する。なお、このCALRに存在するタイプ1の遺伝子変異については、第1の判定値のみで遺伝子変異の有無を判定しても良いが、第1の判定値及び第2の判定値を用いて遺伝子変異の有無を判定しても良い。 The presence or absence of the type 1 gene mutation present in the above-described CALR is determined using the above-described first determination value. With regard to the type 1 gene mutation present in this CALR, the presence or absence of the gene mutation may be determined only by the first determination value, but the gene variation using the first determination value and the second determination value You may judge the presence or absence of.
 具体的には、第1の判定値を使用することで、変異を有しないか、52塩基欠損のタイプ1、上記タイプ1ライク及びこれらに分類されない他の変異のいずれかを有するかを正確に判定することができる。第1の判定値とは、上述のように、野生型プローブのシグナル強度を、変異型プローブ及び野生型プローブとは異なる共通プローブのシグナル強度で割った値である。共通プローブとは、タイプ1の遺伝子変異について、野生型の増幅核酸と遺伝子変異を有する増幅核酸とに共通して存在する領域に相補的な塩基配列からなるヌクレオチドである。すなわち、共通プローブは、増幅核酸に含まれるタイプ1の遺伝子変異が存在するか存在しないかに拘わらず当該増幅核酸に対して特異的にハイブリダイズする。 Specifically, by using the first determination value, it is correctly determined whether it has any mutation, type 1 with 52 base deletion, type 1 like the above, and other types of mutations not classified as these. It can be determined. As described above, the first determination value is a value obtained by dividing the signal intensity of the wild-type probe by the signal intensity of the common probe different from the mutant-type probe and the wild-type probe. The common probe is a nucleotide consisting of a base sequence complementary to a region commonly present in wild-type amplified nucleic acid and amplified nucleic acid having gene mutation for type 1 gene mutation. That is, the common probe specifically hybridizes to the amplified nucleic acid regardless of the presence or absence of the type 1 gene mutation contained in the amplified nucleic acid.
 共通プローブとしては、特に限定されないが、配列番号2に示したCALR遺伝子の塩基配列において397番目から659番目の配列を含むオリゴヌクレオチドとすることができる。より具体的に共通プローブとしては、例えばCTCCTCATCCTCATCTTTGTC(配列番号15)を含むオリゴヌクレオチドを挙げることができる。また、共通プローブとしては、CCTCCTCATCCTCATCTTTGTC(配列番号26)を含むオリゴヌクレオチドや、CCTCCTTGTCCTCCTCAT(配列番号27)を含むオリゴヌクレオチドを挙げることができる。また、共通プローブとしては、CCTCGTCCTGTTTGTCC(配列番号31)を含むオリゴヌクレオチドを挙げることができる。 The common probe is not particularly limited, but can be an oligonucleotide containing the 397th to 659th sequences in the nucleotide sequence of the CALR gene shown in SEQ ID NO: 2. More specifically, as a common probe, there can be mentioned, for example, an oligonucleotide containing CTCCTCCATCC TCATCTTTGTC (SEQ ID NO: 15). In addition, as a common probe, there can be mentioned an oligonucleotide containing CCTC CTCATCC TCAT CTTTGTC (SEQ ID NO: 26) and an oligonucleotide containing CCTC CTTGTCCCTCCTCAT (SEQ ID NO: 27). In addition, as a common probe, an oligonucleotide containing CCTCGTCCTGTTTGTCC (SEQ ID NO: 31) can be mentioned.
 具体的に、第1の判定値を算出する式としては、[野生型プローブのシグナル強度]/[共通プローブのシグナル強度]とすることができる。[野生型プローブのシグナル強度]/[共通プローブのシグナル強度]により算出される第1の判定値は、増幅核酸における野生型プローブに対応する位置に変異(欠損や挿入)があると低くなる値である。そして、第1の判定値が閾値を下回る場合、増幅核酸に、52塩基欠損のタイプ1、上記タイプ1ライク及びこれらに分類されない他の変異のいずれかが含まれると判断する。また、求めた第1の判定値が閾値を上回る場合、増幅核酸には52塩基欠損のタイプ1、上記タイプ1ライク及びこれらに分類されない他の変異のいずれも含まれないと判断する。このように第1の判定値を利用することで、上述したCALRのタイプ1の遺伝子変異、タイプ1ライクの遺伝子変異及びその他の変異のいずれかを有することを、これら変異をいずれも有しないものと区別して同定することができる。 Specifically, as a formula for calculating the first determination value, [signal intensity of wild-type probe] / [signal intensity of common probe] can be used. The first judgment value calculated by [signal strength of wild type probe] / [signal strength of common probe] is a value that decreases when there is a mutation (deletion or insertion) at a position corresponding to the wild type probe in the amplified nucleic acid. It is. Then, when the first judgment value is below the threshold value, it is judged that the amplified nucleic acid contains any of the 52 base deletion type 1, the above type 1 like and other mutations not classified into these. In addition, when the obtained first judgment value exceeds the threshold value, it is judged that the amplified nucleic acid does not contain type 1 of 52 base deletion, type 1 like as described above and other mutations not classified into these. In this way, by using the first judgment value, one having any of the above-mentioned CALR type 1 gene mutation, type 1 like gene mutation and other mutations as described above does not have any of these mutations. And can be distinguished.
 また、上述した「第1の判定値」及び「第2の判定値」を共に利用して、上述したCALRに存在する遺伝子変異の有無を判定しても良い。上述した「第1の判定値」及び「第2の判定値」を利用することで、52塩基欠損のタイプ1の変異を有するか、タイプ1ライク又はその他の変異のいずれかの変異を有するか、これら変異を有しないかを正確に判定することができる。具体的には、第1の判定値が閾値を下回り、且つ第2の判定値が閾値を上回る場合、増幅核酸にタイプ1の遺伝子変異が含まれると判断する。また、第1の判定値が閾値を下回り、且つ第2の判定値が閾値を下回る場合、増幅核酸にタイプ1ライクの遺伝子変異又はその他の変異が含まれると判断する。また、第1の判定値が閾値を上回り、且つ、第2の判定値が閾値を下回る場合、増幅核酸にタイプ1、タイプ1ライク及びその他の変異のいずれも含まれないと判断する。このように第1の判定値及び第2の判定値を利用することで、上述したCALRのタイプ1の遺伝子変異を、タイプ1変異部位にあるタイプ1ライク及びその他の変異と区別して同定することができる。 In addition, the “first determination value” and the “second determination value” described above may be used together to determine the presence or absence of a gene mutation present in the CALR described above. Whether you have a 52 base deletion type 1 mutation or a type 1 like mutation or any other mutation by using the “first judgment value” and “second judgment value” described above The presence or absence of these mutations can be accurately determined. Specifically, when the first determination value is below the threshold value and the second determination value is above the threshold value, it is determined that the amplified nucleic acid contains a type 1 gene mutation. In addition, when the first determination value is below the threshold and the second determination value is below the threshold, it is determined that the amplified nucleic acid contains type 1 like gene mutation or other mutation. In addition, when the first determination value exceeds the threshold value and the second determination value is less than the threshold value, it is determined that the amplified nucleic acid does not contain any of the type 1, type 1 like and other mutations. Thus, by using the first judgment value and the second judgment value, the above-mentioned CALR type 1 gene mutation is identified from type 1 like and other mutations at type 1 mutation sites. Can.
 一方、上述したCALRに存在する遺伝子変異のうちタイプ2変異を判定する際にも、タイプ1変異と同様に、上述した「第1の判定値」のみを用いても良いし、上述した「第1の判定値」及び「第2の判定値」を共に用いても良い。上述したタイプ2の遺伝子変異についても、タイプ2に類似する変異(タイプ2ライク)が存在する(Leukemia (2016) 30, 431-438)。タイプ2やタイプ2ライクが生じる箇所に、これらに分類されない他の変異が存在することが示されている。したがって、「第1の判定値」を用いることで、タイプ2の遺伝子変異、タイプ2ライクの遺伝子変異及びその他の変異のいずれかを有することを、これら変異をいずれも有しないものと区別して同定することができる。また、「第1の判定値」及び「第2の判定値」を共に用いることで、上述したタイプ2の遺伝子変異を、タイプ2ライク及びその他の変異と区別して同定することができる。 On the other hand, when determining a type 2 mutation among the gene mutations present in the above-described CALR, as in the type 1 mutation, only the above-described “first determination value” may be used, or The judgment value of 1 and the second judgment value may be used together. Mutations similar to type 2 (type 2 like) are also present for type 2 gene mutations described above (Leukemia (2016) 30, 431-438). Where type 2 or type 2 like occurs, it has been shown that there are other mutations not classified into these. Therefore, by using the “first judgment value”, it is distinguished from those having any of these mutations as having any of the type 2 gene mutations, type 2 like gene mutations and other mutations. can do. Further, by using both the “first determination value” and the “second determination value”, the type 2 gene mutation described above can be distinguished from type 2 like and other mutations.
 以上のように、JAK2、CALR及びMPLに存在する各遺伝子変異を同定するための変異型プローブを備えるマイクロアレイを利用することで、JAK2、CALR及びMPLに存在する各遺伝子変異を同時に同定することができる。特に上述した第1の判定値を用い、或いは第1の判定値及び第2の判定値を用いることで、各遺伝子変異を高精度に同定することができる。JAK2、CALR及びMPLに存在する各遺伝子変異に関する情報は、例えば、WHOによる分類(2016年度バージョン)における骨髄増殖性腫瘍の診断に利用することができる。詳細には、WHOによる分類では、真性赤血球増加症又は真性多血症(polycythemia vera:PV)の診断には、JAK2における上記遺伝子変異が存在することが一つの要件となっている。また、WHOによる分類では、本態性血小板血症(essential thrombocythemia:ET)の診断には、JAK2、CALR及びMPLに存在する遺伝子変異のいずれかが存在することが一つの要件となっている。さらに、WHOによる分類では、前線維/早期の原発性骨髄線維症(prefibrotic/early primary myelofibrosis:prefibrotic/early PMF)若しくは原発性骨髄線維症(primary myelofibrosis:PMF)の診断には、JAK2、CALR及びMPLに存在する遺伝子変異のいずれかが存在することが一つの要件となっている。 As described above, it is possible to simultaneously identify each gene mutation present in JAK2, CALR and MPL by using a microarray provided with a mutation type probe for identifying each gene mutation present in JAK2, CALR and MPL. it can. In particular, each gene mutation can be identified with high accuracy by using the first determination value described above or by using the first determination value and the second determination value. Information on gene mutations present in JAK2, CALR and MPL can be used, for example, for diagnosis of myeloproliferative tumors in the classification by WHO (2016 version). In particular, according to the classification by WHO, it is one requirement that the above gene mutation in JAK2 be present for the diagnosis of polycythemia vera or polycythemia vera (PV). In addition, according to the classification by WHO, the diagnosis of essential thrombocythemia (ET) requires one of presence of any of gene mutations present in JAK2, CALR and MPL. Furthermore, according to the WHO classification, JAK2, CALR and / or J for the diagnosis of prefibrotic / early primary myelofibrosis (prefibrotic / early PMF) or primary myelofibrosis (PMF). One requirement is that any of the genetic mutations present in MPL be present.
 このように、例えばWHOによる分類(2016年度バージョン)を利用した骨髄増殖性腫瘍の診断に、JAK2、CALR及びMPLに存在する各遺伝子変異を同定するための変異型プローブを備えるマイクロアレイを利用することができる。 Thus, for example, in the diagnosis of myeloproliferative tumors using classification by WHO (2016 version), using a microarray provided with a mutated probe for identifying each gene mutation present in JAK2, CALR and MPL Can.
 以下、実施例により本発明を更に詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the technical scope of the present invention is not limited thereto.
 [実施例1]
 1.サンプル調整
 本実施例では、山口大学医学部附属病院を主施設とした臨床研究によって集められた末梢血血液(文書によるインフォームドコンセントを取得した患者検体)を検体とした。これら検体から以下のようにサンプルとなるDNAを抽出した。末梢血白血球ゲノムDNAを常法(NaI法)により抽出した。
Example 1
1. Sample Preparation In this example, peripheral blood (a patient sample for which informed consent was obtained from a document) collected by clinical research with the Yamaguchi University Hospital as a main facility was used as a sample. From these samples, DNA as a sample was extracted as follows. Peripheral blood leukocyte genomic DNA was extracted by a conventional method (NaI method).
 以上のように調製したDNAサンプルを用いて、JAK2遺伝子、CALR遺伝子及びMPL遺伝子の所定の領域をそれぞれPCRにより増幅した。このPCRに際して表1に示すプライマーセットを設計した。なお、表1に示したプライマーセットのうち、「F」を付したフォワードプライマーに蛍光標識(IC5)を付加している。 Predetermined regions of the JAK2 gene, the CALR gene and the MPL gene were amplified by PCR using the DNA samples prepared as described above. The primer set shown in Table 1 was designed for this PCR. In the primer sets shown in Table 1, a fluorescent label (IC5) is added to the forward primer to which “F” is attached.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上のように設計したプライマーセットを表2の組成となるよう混合し、プライマーミックスを調製した。 The primer set designed as described above was mixed so as to have the composition shown in Table 2 to prepare a primer mix.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上のように調製したDNAサンプル及びプライマーミックスを用いて表3に示す組成のPCR反応液を調製した。 The PCR reaction solution of the composition shown in Table 3 was prepared using the DNA sample and primer mix which were prepared as mentioned above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 そして、PCRのサーマルサイクルを、95℃で5分間の後、95℃で30秒、59℃で30秒及び72℃で45秒を1サイクルとして40サイクル行い、その後、72℃で10分間とし、最終的に4℃を維持した。 Then, the PCR thermal cycle is performed for 5 minutes at 95 ° C., followed by 40 cycles of 30 seconds at 95 ° C., 30 seconds at 59 ° C. and 45 seconds at 72 ° C., and then 10 minutes at 72 ° C. The final temperature was maintained at 4 ° C.
 2.マイクロアレイ
 本実施例では、JAK2遺伝子におけるV617F変異、CALR遺伝子におけるタイプ1変異並びにタイプ2変異及びMPL遺伝子におけるW515L/K変異に対応する変異型プローブとこれに対応する野生型プローブを設計した。
2. Microarray In this example, mutant probes corresponding to the V617F mutation in the JAK2 gene, type 1 mutations and type 2 mutations in the CALR gene, and W515L / K mutation in the MPL gene, and the corresponding wild-type probes were designed.
 また、本実施例では、CALR遺伝子について上記プライマーで増幅した領域に、タイプ1の変異を有するか有しないかに拘わらず共通して存在する部位に対応する共通プローブを設計した。すなわち、共通プローブは、増幅核酸に含まれるタイプ1の遺伝子変異が存在するか存在しないかに拘わらず当該増幅核酸に対して特異的にハイブリダイズする。
 設計したプローブの塩基配列を表4に示した。
Further, in this example, a common probe corresponding to a site which is commonly present in a region amplified by the above primer for the CALR gene regardless of whether or not the mutation of type 1 is present was designed. That is, the common probe specifically hybridizes to the amplified nucleic acid regardless of the presence or absence of the type 1 gene mutation contained in the amplified nucleic acid.
The nucleotide sequences of the designed probes are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 CALRにおけるタイプ1及びタイプ2の遺伝子変異については、図1に示すように、それぞれ野生型プローブ1及び変異型プローブ1、野生型プローブ2及び変異型プローブ2を設計した。なお、図1において、CALRにおけるタイプ1の遺伝子変異である52塩基欠損を「-」で示した。また、図1において、CALRにおけるタイプ2の遺伝子変異である5塩基挿入については、対応する野生型の領域を「-」で示した。 As for type 1 and type 2 gene mutations in CALR, wild type probe 1 and mutant type probe 1, wild type probe 2 and mutant type probe 2 were designed as shown in FIG. In FIG. 1, 52 base deletion, which is a type 1 gene mutation in CALR, is indicated by “-”. In addition, in FIG. 1, the corresponding wild-type region is indicated by “-” for 5-base insertion, which is a type 2 gene mutation in CALR.
 3.遺伝子変異の同定
 上記プローブを有するチップを用いて以下のようにハイブリダイズを行った。先ず、規定温度(52℃)に設定したチャンバー内に湿箱を載置し、チャンバー及び湿箱を十分予熱しておいた。PCR反応液4μLとハイブリダイズ緩衝液(2.25×SSC/0.23%SDS/0.2 nM Cy5標識オリゴDNA(シグマアルドリッチ社製))2μLを混合し、この溶液を3μLとり、ハイブリカバーの中央凸部の上に滴下して、これをチップに被せ、52℃に設定したハイブリダイズチャンバー装置(東洋鋼鈑社製)で1時間反応させた。ハイブリダイズ反応終了後、洗浄用ステンレスホルダーを0.1×SSC/0.1% SDS溶液に浸し、ハイブリカバーをはずしたチップをホルダーにセットした。上下に数回振動させた後、チップの蛍光強度を検出するまでホルダーを1×SSC溶液(室温)に浸した。
3. Identification of Gene Mutation Hybridization was performed as follows using a chip having the above probe. First, the wet box was placed in a chamber set to a specified temperature (52 ° C.), and the chamber and the wet box were sufficiently preheated. Mix 4 μL of PCR reaction solution and 2 μL of hybridization buffer (2.25 × SSC / 0.23% SDS / 0.2 nM Cy5-labeled oligo DNA (manufactured by Sigma Aldrich)), take 3 μL of this solution, and place on the central convex part of the hybrid cover The solution was dropped onto the chip, covered with a chip, and allowed to react for 1 hour with a hybridization chamber apparatus (made by Toyo Kogyo Co., Ltd.) set at 52 ° C. After completion of the hybridization reaction, the stainless steel holder for washing was immersed in a 0.1 × SSC / 0.1% SDS solution, and the chip from which the hybrid cover was removed was set in the holder. After shaking several times up and down, the holder was immersed in 1 × SSC solution (room temperature) until the fluorescence intensity of the chip was detected.
 検出直前にチップにカバーフィルムを被せ、BIOSHOT(東洋鋼鈑製)でチップの蛍光強度を検出した。以上のように測定した野生型プローブ及び変異型プローブにおける蛍光強度を用い、JAK2の遺伝子変異、CALRの遺伝子変異及びMPLの遺伝子変異について下記式によって第2の判定値を算出した。
第2の判定値=[変異型プローブの蛍光強度]/([野生型プローブの蛍光強度]+[変異型プローブの蛍光強度])
Immediately before the detection, the chip was covered with a cover film, and the fluorescence intensity of the chip was detected by BIOSHOT (manufactured by Toyo Kogyo Co., Ltd.). The second judgment value was calculated for the gene mutation of JAK2, the gene mutation of CALR and the gene mutation of MPL by the following formula using the fluorescence intensities of the wild type probe and the mutant type probe measured as described above.
Second determination value = [fluorescence intensity of mutant probe] / ([fluorescence intensity of wild-type probe] + [fluorescence intensity of mutant probe])
 また、CALRのタイプ1の遺伝子変異については、下記式によって第1の判定値を算出した。
第1の判定値=[野生型プローブの蛍光強度]/[共通プローブの蛍光強度]
Moreover, about the gene mutation of type 1 of CALR, the 1st judgment value was computed by the following formula.
First determination value = [fluorescence intensity of wild-type probe] / [fluorescence intensity of common probe]
 なお、本実施例では、JAK2の遺伝子変異、CALRの遺伝子変異及びMPLの遺伝子変異の全てが野生型である検体を用いて第2の判定値を算出し(n=4)、第2の判定値の平均値及び標準偏差を求めた。そして、平均値+3σ又は平均+4σ(σ:標準偏差)の値をカットオフ値として設定した(下記表参照)。 In this example, the second judgment value is calculated using a sample in which all mutations of JAK2 gene mutation, CALR gene mutation and MPL gene mutation are wild type (n = 4), and the second judgment The mean and standard deviation of the values were determined. Then, a value of average value + 3σ or average + 4σ (σ: standard deviation) was set as a cutoff value (see the following table).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 さらに、本実施例では、第1の判定値について以下のようにカットオフ値を規定した。すなわち、タイプ1変異部位に変異のないことが確認された検体を用いて第1の判定値を算出し(n=40)、第1の判定値の平均値および標準偏差を求めた。そして、平均値-1.5σの値をカットオフ値として設定した(下記表参照)。 Furthermore, in the present embodiment, the cutoff value is defined as follows for the first determination value. That is, the first judgment value was calculated using a sample confirmed to have no mutation at the type 1 mutation site (n = 40), and the average value and the standard deviation of the first judgment value were obtained. Then, a value of the average value -1.5σ was set as a cutoff value (see the following table).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 4.結果
 本実施例で使用した各検体について上述のように算出した第2の判定値を、遺伝子変異毎にプロットした結果を図2に示した。なお、図2において、上述のように規定したカットオフ値を破線で示した。破線より下側にあるプロットは、各遺伝子変異において野生型である(遺伝子変異を有しない)検体を示し、破線より上側にあるプロットは各遺伝子変異を有する検体を示している。
4. Result The result of having plotted the 2nd judgment value computed as mentioned above about each specimen used by the present Example for every gene mutation was shown in FIG. In FIG. 2, the cutoff value defined as described above is indicated by a broken line. The plots below the dashed line indicate the specimens that are wild type (no gene mutation) in each gene mutation, and the plots above the dashed line indicate specimens with each gene mutation.
 図2に示すように、JAK2の遺伝子変異、CALRの遺伝子変異のうちタイプ2及びMPLの遺伝子変異については、第2の判定値により変異型と野生型を高精度に同定できることが明らかとなった。ただし、図2に示すように、CALRの遺伝子変異のうちタイプ1については、カットオフ値の近傍にプロットされる検体が少なくなく、第2の判定値のみではタイプ1遺伝子変異に対して判定精度が低い可能性があった。 As shown in FIG. 2, among the gene mutations of JAK2 and CALR, among the gene mutations of type 2 and MPL, it was revealed that the second judgment value can identify the mutant and the wild type with high accuracy. . However, as shown in FIG. 2, among the CALR gene mutations, there are not a few samples plotted near the cutoff value for type 1, and the second judgment value alone makes it possible to judge the type 1 gene mutation with respect to the judgment accuracy. Could have been low.
 そこで、本実施例では、第1の判定値及び第2の判定値をCALRのタイプ1の遺伝子変異判定に用いた。具体的には、本実施例で使用した各検体について、CALRのタイプ1に関して算出した第1の判定値及び第2の判定値を、図3に示すように、横軸を第2の判定値とし、縦軸を第1の判定値としたグラフにプロットした。図3に示すように、各検体のプロットは、第1の判定値について規定したカットオフ値と第2の判定値について規定したカットオフ値とにより区画される4つの領域に分かれることとなった。プロットされた各検体について、他の方法により遺伝子変異を決定したところ、第2の判定値について規定したカットオフ値を上回り、且つ、第1の判定値について規定したカットオフ値を下回る検体は、全てCALRのタイプ1の遺伝子変異、すなわち52塩基欠損であった。これに対して、第2の判定値について規定したカットオフ値を下回り、且つ、第1の判定値について規定したカットオフ値を下回る検体は、全てCALRのタイプ1の遺伝子変異に類似する46塩基欠損、34塩基欠損又は24塩基欠損であることが明らかとなった。 Therefore, in this example, the first determination value and the second determination value were used for the type 1 gene mutation determination of CALR. Specifically, for each sample used in the present embodiment, the first determination value and the second determination value calculated for the type 1 of CALR are shown in FIG. And the vertical axis is plotted as a first determination value in a graph. As shown in FIG. 3, the plot of each sample is divided into four regions divided by the cutoff value defined for the first determination value and the cutoff value defined for the second determination value. . When the gene mutation was determined by other methods for each of the plotted samples, the sample which exceeded the cutoff value defined for the second determination value and was less than the cutoff value defined for the first determination value All were type 1 gene mutations of CALR, ie 52 base deletion. On the other hand, all the samples below the cutoff value specified for the second determination value and below the cutoff value specified for the first determination value are 46 bases similar to the type 1 gene mutation of CALR. It was revealed to be deletion, 34 bases deletion or 24 bases deletion.
 本実施例の結果から、第2の判定値のみでは野生型と区別できなかった46塩基欠損、34塩基欠損及び24塩基欠損といったタイプ1ライク変異遺伝子を、第1の判定値を用いることで野生型とは区別して同定することができる。 From the results of this example, type 1 like mutant genes such as 46 base deletion, 34 base deletion and 24 base deletion that could not be distinguished from the wild type only by the second judgment value were wild by using the first judgment value. It can be distinguished from the type.
 [実施例2]
 本実施例では、JAK2遺伝子、CALR遺伝子及びMPL遺伝子のそれぞれについて、野生型由来の増副産物に特異的にハイブリダイズするブロッカーを設計し、野生型由来の増幅産物が変異型プローブへの非特異的ハイブリダイズを抑制することで、JAK2遺伝子の遺伝子変異、CALR遺伝子のtype1変異及びMPL遺伝子の遺伝子変異の検出感度が向上するか検証した。なお、CALR遺伝子のtype2変異は野生型と5塩基の相違があり本実施例では非特異的ハイブリダイズが起こりにくいため、ブロッカーを設計しなかった。
Example 2
In this example, for each of the JAK2 gene, the CALR gene and the MPL gene, a blocker that specifically hybridizes to the wild-type derived amplification by-product is designed, and the amplification product from the wild-type is nonspecific to the mutant-type probe. By suppressing the hybridization, it was examined whether the detection sensitivity of gene mutation of JAK2 gene, type 1 mutation of CALR gene and gene mutation of MPL gene could be improved. In addition, since the type 2 mutation of the CALR gene has a difference of 5 bases from the wild type and nonspecific hybridization is unlikely to occur in this example, no blocker was designed.
 1.サンプル調整
 本実施例では、野生型サンプルとして、TE緩衝液で8ng/μLに希釈した健常人末梢血白血球由来ゲノムDNA(Biochain社より購入)を用いた。
1. Sample Preparation In this example, healthy human peripheral blood leukocyte-derived genomic DNA (purchased from Biochain) diluted to 8 ng / μL with TE buffer was used as a wild-type sample.
 また、本実施例では、変異型サンプルを以下のように調製した。本実施例では、FASMAC社の人工遺伝子合成サービスを通じて、野生型プラスミド及び変異型プラスミドを作製した。JAK2遺伝子の野生型プラスミドとしては、配列番号1に示した塩基配列における151~550番目の400塩基からなる領域を挿入したプラスミドを用いた。CALR遺伝子の野生型プラスミドとしては、配列番号2における376~764番目の389塩基からなる領域を挿入したプラスミドを用いた。MPL遺伝子の野生型プラスミドとしては、配列番号3における107~505番目の399塩基からなる領域を挿入したプラスミドを用いた。なお、各遺伝子の変異型プラスミドとしては、上述した変異(JAK2遺伝子のV617F変異、MPL遺伝子のW515L変異又はW515K変異及びCALR遺伝子のタイプ1変異又はタイプ2変異)を有する以外は同じ領域を挿入したプラスミドを用いた。購入したプラスミドDNAは、TE緩衝液で約100ng/μLとなるよう溶解し、更にTE緩衝液で約1ng/μLに希釈したものを使用した。 In addition, in this example, mutant samples were prepared as follows. In this example, wild-type plasmids and mutant-type plasmids were prepared through the artificial gene synthesis service of FASMAC. As a wild-type plasmid of the JAK2 gene, a plasmid into which a region consisting of 400 bases at positions 151 to 550 in the base sequence shown in SEQ ID NO: 1 was inserted was used. As a wild-type plasmid of the CALR gene, a plasmid into which a region consisting of 389 bases at positions 376 to 764 in SEQ ID NO: 2 was inserted was used. As a wild-type plasmid of the MPL gene, a plasmid into which a region consisting of 399 bases at positions 107 to 505 in SEQ ID NO: 3 was inserted was used. The same region was inserted as a mutant-type plasmid of each gene except that it had the above-mentioned mutation (V617F mutation of JAK2 gene, W515L mutation of MPL gene or W515K mutation and type 1 mutation or type 2 mutation of CALR gene). The plasmid was used. The purchased plasmid DNA was dissolved to about 100 ng / μL with TE buffer and further diluted to about 1 ng / μL with TE buffer.
 そして、JAK2遺伝子の野生型に対応するプラスミド、MPL遺伝子の野生型に対応するプラスミド及びCALR遺伝子の野生型に対応するプラスミドの3種類を混合、TE緩衝液で希釈し、各プラスミド濃度を約200pg/μLとした野生型プラスミドミックスを調製した。また、JAK2遺伝子のV617F変異型に対応するプラスミド、MPL遺伝子のW515L変異型に対応するプラスミド及びCALR遺伝子のタイプ1変異型に対応するプラスミドの3種類を混合し、TE緩衝液で希釈し、各プラスミド濃度を約200pg/μLとした100%変異型プラスミドミックスAを調製した。同様に、JAK2遺伝子のV617F変異型に対応するプラスミド、MPL遺伝子のW515K変異型に対応するプラスミド、CALR遺伝子のタイプ2変異型に対応するプラスミドの3種類を混合し、TE緩衝液で希釈し、各プラスミド濃度を約200pg/μLとした100%変異型プラスミドミックスBを調製した。 Then, a plasmid corresponding to the wild type of the JAK2 gene, a plasmid corresponding to the wild type of the MPL gene, and three types of plasmids corresponding to the wild type of the CALR gene are mixed, diluted with TE buffer, and each plasmid concentration is about 200 pg A wild-type plasmid mix was prepared at / μL. In addition, a plasmid corresponding to the V617F mutant of the JAK2 gene, a plasmid corresponding to the W515L mutant of the MPL gene, and a plasmid corresponding to the type 1 mutant of the CALR gene are mixed, diluted with TE buffer, A 100% mutant plasmid mix A was prepared with a plasmid concentration of about 200 pg / μL. Similarly, a plasmid corresponding to the V617F variant of the JAK2 gene, a plasmid corresponding to the W515K variant of the MPL gene, and a plasmid corresponding to the type 2 variant of the CALR gene are mixed and diluted with TE buffer, A 100% mutant plasmid mix B was prepared at a concentration of about 200 pg / μL for each plasmid.
 本実施例では、これら野生型プラスミドミックスと、100%変異型プラスミドミックスA又は100%変異型プラスミドミックスBとを所定の割合で混合することで変異型サンプルを調製した。変異型サンプルの調製後、JAK2遺伝子及びMPL遺伝子に関する変異%(野生型と変異型の合計に対する変異型の割合)はデジタルPCR、CALR遺伝子に関する変異%はフラグメント解析で定量した。そして、変異型サンプルを約0.16pg/μLとなるよう希釈し、PCRに用いた。 In this example, mutant samples were prepared by mixing these wild-type plasmid mixes with 100% mutant-type plasmid mix A or 100% mutant-type plasmid mix B at a predetermined ratio. After preparation of mutant samples,% mutation (ratio of mutant to total wild type and mutant) for JAK2 gene and MPL gene was quantified by digital PCR, and mutation% for CALR gene was quantified by fragment analysis. Then, the mutant sample was diluted to about 0.16 pg / μL and used for PCR.
 本実施例では、以上のように調製した野生型サンプル又は変異型サンプルを用いて、実施例1と同様の条件でJAK2遺伝子、CALR遺伝子及びMPL遺伝子の所定の領域をそれぞれPCRにより増幅した。 In this example, predetermined regions of the JAK2 gene, the CALR gene and the MPL gene were amplified by PCR under the same conditions as in Example 1 using the wild-type sample or the mutant-type sample prepared as described above.
 本実施例では、実施例1で使用したマイクロアレイを使用し、ブロッカーを含む以外は実施例1と同様にハイブリダイズ緩衝液を作製し、ハイブリダイズ実験を行った。本実施例では、表7に示した、JAK2遺伝子用ブロッカー、CALR遺伝子用ブロッカー及びMPL遺伝子用ブロッカーをそれぞれ90~210nMの濃度となるようにハイブリダイズ緩衝液を調製した。そして、PCR反応液と当該ハイブリダイズ緩衝液とを2:1で混合し、ハイブリダイズ実験を行った。 In this example, the microarray used in Example 1 was used, and a hybridization buffer was prepared in the same manner as in Example 1 except that the blocker was included, and hybridization experiments were performed. In this example, the hybridization buffer was prepared such that the blocker for JAK2 gene, the blocker for CALR gene, and the blocker for MPL gene shown in Table 7 had concentrations of 90 to 210 nM, respectively. Then, the PCR reaction solution and the hybridization buffer were mixed at 2: 1 to conduct a hybridization experiment.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本実施例では、実施例1と同様にして、ハイブリダイズ実験の結果として第2の判定値を算出した。ただし、本実施例では、実施例1と異なり、MPL遺伝子のW515L変異型の検出には:第2の判定値=[W515L変異型プローブの蛍光強度]/([野生型プローブの蛍光強度]+[W515L変異型プローブの蛍光強度]+[W515K変異型プローブの蛍光強度])の式に従い、MPL遺伝子のW515K変異型の検出には:第2の判定値=[W515K変異型プローブの蛍光強度]/([野生型プローブの蛍光強度]+[W515L変異型プローブの蛍光強度]+[W515K変異型プローブの蛍光強度])の式に従った。 In the present example, in the same manner as Example 1, a second determination value was calculated as a result of the hybridization experiment. However, in this example, unlike Example 1, for detection of the W515L mutant of the MPL gene: second determination value = [fluorescence intensity of W515L mutant-type probe] / ([fluorescence intensity of wild-type probe] + According to the formula of [fluorescent intensity of W515L mutant probe] + [fluorescent intensity of W515K mutant probe], for detection of W515K mutant of MPL gene: second judgment value = [fluorescent intensity of W515K mutant probe] The equation of ([fluorescent intensity of wild type probe] + [fluorescent intensity of W515L mutant probe] + [fluorescent intensity of W515K mutant probe]) was followed.
 ブロッカー濃度と第2の判定値との関係を図4に示した。図4(a)はJAK2遺伝子のV617F変異型を検出したときの結果であり、同(b)はMPL遺伝子のW515L変異型を検出したときの結果であり、同(c)はMPL遺伝子のW515K変異型を検出したときの結果であり、同(d)はCARL遺伝子のタイプ1変異型を検出したときの結果であり、同(e)はCARL遺伝子のタイプ2変異型を検出したときの結果である。図4に示したように、ブロッカーをハイブリダイズ緩衝液に加えることで、変異割合が2.6~5.8%であっても優れた検出感度で遺伝子の変異型を検出できることが明らかとなった。 The relationship between the blocker concentration and the second determination value is shown in FIG. FIG. 4 (a) shows the result when detecting the V617F mutant of the JAK2 gene, and FIG. 4 (b) shows the result when the W515L mutant of the MPL gene is detected, and FIG. 4 (c) shows the W515K of the MPL gene. The results when a mutant is detected, the same (d) is the results when a type 1 mutant of the CARL gene is detected, and the same (e) is the results when a type 2 mutant of the CARL gene is detected It is. As shown in FIG. 4, it became clear that, by adding the blocker to the hybridization buffer, it is possible to detect the mutant form of the gene with excellent detection sensitivity even if the mutation rate is 2.6 to 5.8%.
 また、本実施例では、変異型サンプルにおける野生型プラスミドミックスと変異型プラスミドミックスA又はBとの混合比を変えることで、各遺伝子の変異型の割合を調整して同様にハイブリダイズ実験を行った。変異型サンプル中の変異割合(変異%)と第2の判定値との関係を図5に示した。図5(a)はJAK2遺伝子のV617F変異型を検出したときの結果であり、同(b)はMPL遺伝子のW515L変異型を検出したときの結果であり、同(c)はMPL遺伝子のW515K変異型を検出したときの結果であり、同(d)はCARL遺伝子のタイプ1変異型を検出したときの結果であり、同(e)はCARL遺伝子のタイプ2変異型を検出したときの結果である。図5に示したように、ブロッカーをハイブリダイズ緩衝液に加えることで、変異型サンプル中の変異割合が2%程度であっても優れた検出感度を達成できることが明らかとなった。なお、図5に結果を示したハイブリダイズ実験では、JAK2遺伝子用ブロッカー濃度を150nMとし、CALR遺伝子用ブロッカー濃度を210nMとし及びMPL遺伝子用ブロッカー濃度を150nMとした。 Moreover, in this example, the mixing ratio of the wild-type plasmid mix and the mutant-type plasmid mix A or B in the mutant-type sample is changed to adjust the ratio of the mutant-type of each gene, and the same hybridization experiment is performed. The The relationship between the mutation rate (mutation%) in the mutant-type sample and the second judgment value is shown in FIG. FIG. 5 (a) shows the result when detecting the V617F mutant of the JAK2 gene, and FIG. 5 (b) shows the result when the W515L mutant of the MPL gene is detected, and FIG. 5 (c) shows the W515K of the MPL gene. The results when a mutant is detected, the same (d) is the results when a type 1 mutant of the CARL gene is detected, and the same (e) is the results when a type 2 mutant of the CARL gene is detected It is. As shown in FIG. 5, it became clear that, by adding the blocker to the hybridization buffer, excellent detection sensitivity can be achieved even if the mutation rate in the mutant sample is about 2%. In the hybridization experiments whose results are shown in FIG. 5, the blocker concentration for JAK2 gene was 150 nM, the blocker concentration for CALR gene was 210 nM, and the blocker concentration for MPL gene was 150 nM.
 なお、変異型サンプルに含まれる変異割合の理論値に対して、各変異型の実際の濃度を実測した結果を表8に示した。表8に示した実測値は、JAK2遺伝子及びMPL遺伝子に関する変異%はデジタルPCRにより、CALR遺伝子に関する変異%はフラグメント解析で定量した結果である。 In addition, the result of having measured the actual density | concentration of each mutant with respect to the theoretical value of the mutation rate contained in a mutant sample was shown in Table 8. The actual values shown in Table 8 are the results of quantification of the mutation% for the JAK2 gene and the MPL gene by digital PCR and the mutation% for the CALR gene by fragment analysis.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (13)

  1.  複数の遺伝子変異が存在しうる特定箇所を含む領域を増幅して標識を有する増幅断片を得る工程と、
     上記特定箇所における野生型の配列に対応する第1のプローブと、上記増幅断片における上記遺伝子変異を除く配列に対応する共通プローブとを、上記増幅断片を含む溶液と接触させ、上記第1のプローブ及び上記共通プローブにおける上記標識に基づくシグナルを検出する工程と、
     判定式:[第1のプローブのシグナル強度]/[共通プローブのシグナル強度]により第1の判定値を算出する工程と、
     上記判定式で算出される第1の判定値を予め設定したカットオフ値と比較し、比較の結果に基づいて遺伝子変異の有無を判定する工程と
     を含む遺伝子変異評価方法。
    Amplifying a region including a specific site where a plurality of gene mutations may exist to obtain an amplified fragment having a label;
    A first probe corresponding to a wild-type sequence at the specific location and a common probe corresponding to a sequence excluding the gene mutation in the amplified fragment are brought into contact with a solution containing the amplified fragment, the first probe And detecting a signal based on the label in the common probe;
    Judgment formula: A step of calculating a first judgment value by [signal strength of first probe] / [signal strength of common probe],
    And D. comparing the first determination value calculated by the above determination equation with a preset cutoff value, and determining the presence or absence of a gene mutation based on the comparison result.
  2.  上記シグナルを検出する工程では、上記複数の遺伝子変異のうち特定の遺伝子変異に対応する第2のプローブを、上記増幅断片を含む溶液と接触させ、上記第2のプローブにおける上記標識に基づくシグナルを検出することを特徴とする請求項1記載の遺伝子変異評価方法。 In the step of detecting the signal, a second probe corresponding to a specific gene mutation among the plurality of gene mutations is brought into contact with a solution containing the amplification fragment, and the signal based on the label in the second probe is detected. The method for evaluating gene mutation according to claim 1, which comprises detecting.
  3.  上記第1の判定値を算出する工程では、更に判定式:[第2のプローブのシグナル強度]/([第1のプローブのシグナル強度]+[第2のプローブのシグナル強度])により第2の判定値を算出し、上記遺伝子変異の有無を判定する工程では、上記第2の判定値を予め設定したカットオフ値と比較し、上記第1の判定値を用いた比較の結果と上記第2の判定値を用いた比較の結果とに基づいて遺伝子変異の有無を判定することを特徴とする請求項2記載の遺伝子変異評価方法。 In the step of calculating the first determination value, the second determination equation further includes: [signal strength of second probe] / ([signal strength of first probe] + [signal strength of second probe]) In the step of calculating the judgment value of and determining the presence or absence of the gene mutation, the second judgment value is compared with a preset cutoff value, and the result of the comparison using the first judgment value is compared with the first judgment value. The method for evaluating gene mutation according to claim 2, wherein the presence or absence of the gene mutation is determined based on the result of comparison using the determination value of 2.
  4.  上記第1の判定値を算出する工程では、更に判定式:[第2のプローブのシグナル強度]/[共通プローブのシグナル強度]により更に異なる判定値を算出し、上記遺伝子変異の有無を判定する工程では、当該判定値を予め設定したカットオフ値と比較し、上記第1の判定値を用いた比較の結果と当該判定値を用いた比較の結果とに基づいて遺伝子変異の有無を判定することを特徴とする請求項2記載の遺伝子変異評価方法。 In the step of calculating the first determination value, the determination value is further calculated according to the determination formula [signal strength of second probe] / [signal strength of common probe] to determine the presence or absence of the gene mutation. In the step, the determination value is compared with a preset cutoff value, and the presence or absence of gene mutation is determined based on the result of comparison using the first determination value and the result of comparison using the determination value. The method for evaluating gene mutation according to claim 2, wherein the method is as follows.
  5.  上記複数の遺伝子変異は、塩基の挿入又は欠損であることを特徴とする請求項1記載の遺伝子変異評価方法。 The method for evaluating gene mutation according to claim 1, wherein the plurality of gene mutations are insertions or deletions of bases.
  6.  上記特定箇所は、配列番号2に示したCALR遺伝子の塩基配列において501番目から579番目の間であり、上記複数の遺伝子変異は501番目から579番目の領域における塩基の挿入又は欠損であることを特徴とする請求項1記載の遺伝子変異評価方法。 The above specific site is between the 501st and 579th in the nucleotide sequence of the CALR gene shown in SEQ ID NO: 2, and the plurality of gene mutations are insertions or deletions of bases in the 501st to 579th regions. The method for evaluating gene mutation according to claim 1 characterized by the above.
  7.  複数の遺伝子変異が存在しうる特定箇所を含む領域を増幅した標識を有する増幅断片を用いて遺伝子変異の有無を判定する遺伝子変異評価用キットであって、
     上記特定箇所における野生型の配列に対応する第1のプローブと、上記増幅断片における上記遺伝子変異を除く配列に対応する共通プローブとを含む遺伝子変異評価用キット。
    A kit for gene mutation evaluation which determines the presence or absence of a gene mutation using an amplification fragment having a label obtained by amplifying a region including a specific site where a plurality of gene mutations may exist.
    A kit for gene mutation evaluation, comprising a first probe corresponding to a wild-type sequence at the specific site, and a common probe corresponding to a sequence excluding the gene mutation in the amplified fragment.
  8.  上記複数の遺伝子変異のうち特定の遺伝子変異に対応する第2のプローブを更に備える請求項7記載の遺伝子変異評価用キット。 The kit for gene mutation evaluation according to claim 7, further comprising a second probe corresponding to a specific gene mutation among the plurality of gene mutations.
  9.  上記複数の遺伝子変異は、塩基の挿入又は欠損であることを特徴とする請求項7記載の遺伝子変異評価用キット。 The gene mutation evaluation kit according to claim 7, wherein the plurality of gene mutations are insertions or deletions of bases.
  10.  上記特定箇所は、配列番号2に示したCALR遺伝子の塩基配列において501番目から579番目の間であり、上記複数の遺伝子変異は501番目から579番目の領域における塩基の挿入又は欠損であることを特徴とする請求項7記載の遺伝子変異評価用キット。 The above specific site is between the 501st and 579th in the nucleotide sequence of the CALR gene shown in SEQ ID NO: 2, and the plurality of gene mutations are insertions or deletions of bases in the 501st to 579th regions. The kit for gene mutation evaluation according to claim 7, which is characterized.
  11.  上記共通プローブは、配列番号2に示したCALR遺伝子の塩基配列において397番目から659番目の配列を含むオリゴヌクレオチドであることを特徴とする請求項7記載の遺伝子変異評価キット。 The gene mutation evaluation kit according to claim 7, wherein the common probe is an oligonucleotide comprising a sequence of 397 to 659 in the nucleotide sequence of the CALR gene shown in SEQ ID NO: 2.
  12.  上記共通プローブは、CTCCTCATCCTCATCTTTGTC(配列番号15)又はCCTCGTCCTGTTTGTC(配列番号31)を含むオリゴヌクレオチドであることを特徴とする請求項7記載の遺伝子変異評価キット。 The gene mutation evaluation kit according to claim 7, wherein the common probe is an oligonucleotide containing CTCCTCCATCC TCATCTTTGTC (SEQ ID NO: 15) or CTCTCGTCCTGTTTGTC (SEQ ID NO: 31).
  13.  上記遺伝子変異は、配列番号2に示したCALR遺伝子の塩基配列において513番目から564番目の52塩基が欠損する52塩基欠損のタイプ1変異であり、変異型に対応する第2プローブは、TCCTTGTCCTCTGCTCC(配列番号5)を含むオリゴヌクレオチドであることを特徴とする請求項7記載の遺伝子変異評価キット。 The above gene mutation is a 52 base deleted type 1 mutation in which 52 bases from 513 to 564 in the base sequence of the CALR gene shown in SEQ ID NO: 2 is deleted, and the second probe corresponding to the mutant is TCCTTGTCCTGCTGCTCC ( The gene mutation evaluation kit according to claim 7, which is an oligonucleotide containing SEQ ID NO: 5).
PCT/JP2018/024511 2017-06-28 2018-06-28 Genetic mutation evaluation method, and kit for evaluating genetic mutation WO2019004335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019527013A JP7248982B2 (en) 2017-06-28 2018-06-28 Gene Mutation Evaluation Method, Gene Mutation Evaluation Kit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017125929 2017-06-28
JP2017-125929 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019004335A1 true WO2019004335A1 (en) 2019-01-03

Family

ID=64741631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024511 WO2019004335A1 (en) 2017-06-28 2018-06-28 Genetic mutation evaluation method, and kit for evaluating genetic mutation

Country Status (2)

Country Link
JP (1) JP7248982B2 (en)
WO (1) WO2019004335A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282179A1 (en) * 2021-07-06 2023-01-12 東洋鋼鈑株式会社 Microarray kit, and target detection method using microarray
WO2024048608A1 (en) * 2022-09-01 2024-03-07 東洋鋼鈑株式会社 Myelodysplastic syndrome test kit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103904A (en) * 2012-11-28 2014-06-09 Toyo Kohan Co Ltd Oligonucleotide probe for detecting mutation in k-ras
JP2016077221A (en) * 2014-10-17 2016-05-16 東洋鋼鈑株式会社 Detection method of bcr-abl inhibitor resistance-associated mutations, and data acquisition method for predicting bcr-abl inhibitor resistance using the same
WO2016167317A1 (en) * 2015-04-14 2016-10-20 凸版印刷株式会社 Method for detecting genetic mutation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103904A (en) * 2012-11-28 2014-06-09 Toyo Kohan Co Ltd Oligonucleotide probe for detecting mutation in k-ras
JP2016077221A (en) * 2014-10-17 2016-05-16 東洋鋼鈑株式会社 Detection method of bcr-abl inhibitor resistance-associated mutations, and data acquisition method for predicting bcr-abl inhibitor resistance using the same
WO2016167317A1 (en) * 2015-04-14 2016-10-20 凸版印刷株式会社 Method for detecting genetic mutation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PARK, JOONHONG ET AL.: "Peptide nucleic acid probe-based fluorescence melting curve analysis for rapid screening of common JAK2, MPL, and CALR mutations", CLIN CHIM ACTA., vol. 465, 6 December 2016 (2016-12-06), pages 82 - 90, XP029907164, DOI: 10.1016/j.cca.2016.12.002 *
PIETRA, D. ET AL.: "Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms", LEUKEMIA, vol. 30, no. 2, 9 October 2015 (2015-10-09), pages 431 - 438, XP055676108, DOI: 10.1038/leu.2015.277 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282179A1 (en) * 2021-07-06 2023-01-12 東洋鋼鈑株式会社 Microarray kit, and target detection method using microarray
WO2024048608A1 (en) * 2022-09-01 2024-03-07 東洋鋼鈑株式会社 Myelodysplastic syndrome test kit

Also Published As

Publication number Publication date
JPWO2019004335A1 (en) 2020-05-07
JP7248982B2 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
JP7108988B2 (en) Kit for evaluating gene mutations associated with myeloproliferative neoplasms
JP2019213555A (en) Hybridization buffer composition and hybridization method
JP4884899B2 (en) Method for determining risk of occurrence of side effects of irinotecan and kit therefor
JP7248982B2 (en) Gene Mutation Evaluation Method, Gene Mutation Evaluation Kit
JP2016192939A (en) Probe for detecting cyp2c19*2 and probe for detecting cyp2c19*3
JP7123593B2 (en) Microsatellite detection microarray and microsatellite detection method using the same
WO2021039958A1 (en) Kit for evaluating gene mutation related to myeloproliferative neoplasm
JP2016192940A (en) PROBE FOR DETECTING CYP3A4*1b AND PROBE FOR DETECTING CYP3A5*3
JP5376841B2 (en) Method for determining the risk of occurrence of side effects of irinotecan, and DNA chip and kit used therefor
WO2022149575A1 (en) Kit for detecting mlh1 methylation modification and braf mutation
WO2011152272A1 (en) Method of determining the risk of adverse effects of irinotecan, and kit therefore
JP7456739B2 (en) Kit for evaluating genetic mutations associated with myeloproliferative tumors
WO2019117192A1 (en) Method for designing probe for detecting single nucleotide polymorphism and probe set
WO2020067388A1 (en) Kit for assessing gene mutations relevant to prognosis prediction of papillary thyroid carcinoma
JP5607373B2 (en) Microarray detection method
JPWO2009130797A1 (en) Probe set for determining ABO blood group
JP6028299B2 (en) Primer set and probe for judging animals
JP2021052738A (en) Kits for evaluating gene mutation related to myeloproliferative tumor
JP2020162503A (en) Method for determining methylation in cpg island and methylation determination kit
JP6028300B2 (en) Primer set and probe for determining ABO blood group
JP6735105B2 (en) Method and DNA chip for predicting side effects of gemcitabine
JP2016192941A (en) Probe for detecting cyp2c9*3
JP2014103904A (en) Oligonucleotide probe for detecting mutation in k-ras
JP2015198581A (en) Probe for polymorphism detection in il28b gene, dna chip having the probe for polymorphism detection, and data acquisition method for predicting effect of chronic hepatitis c therapy using the probe for polymorphism detection
JP2024034945A (en) Myelodysplastic syndrome test kit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527013

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824043

Country of ref document: EP

Kind code of ref document: A1