WO2019004211A1 - Mechanical-property testing method and measurement device - Google Patents

Mechanical-property testing method and measurement device Download PDF

Info

Publication number
WO2019004211A1
WO2019004211A1 PCT/JP2018/024193 JP2018024193W WO2019004211A1 WO 2019004211 A1 WO2019004211 A1 WO 2019004211A1 JP 2018024193 W JP2018024193 W JP 2018024193W WO 2019004211 A1 WO2019004211 A1 WO 2019004211A1
Authority
WO
WIPO (PCT)
Prior art keywords
indenter
test body
test
indentation
contact
Prior art date
Application number
PCT/JP2018/024193
Other languages
French (fr)
Japanese (ja)
Inventor
達也 宮島
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2019526936A priority Critical patent/JP7046383B2/en
Publication of WO2019004211A1 publication Critical patent/WO2019004211A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/36DC mode
    • G01Q60/366Nanoindenters, i.e. wherein the indenting force is measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid

Definitions

  • the present invention relates to a mechanical property test method and a measuring apparatus, and more specifically to a test method and a measuring apparatus for evaluating the mechanical property of a test body by an indentation test.
  • the indentation test is a test technique for evaluating various mechanical properties such as hardness and elastic modulus of a material from the condition of a depression formed by pressing a jig called an indenter against the surface of a test body of various materials.
  • the elastic modulus When the indenter is pressed against the surface of the test body, the elastic modulus can be evaluated from the deformation behavior within the range of the elastic deformation of the material to be tested. Furthermore, when the stress generated immediately below the indenter exceeds the elastic limit, plastic deformation is induced in the test body, and it is observed from the surface as an indentation after unloading. The hardness of the test body can be evaluated from the size of the indentation and the maximum load value.
  • the elastic modulus and hardness are one of the indices of the mechanical stimulus response when the indenter and the surface of the test body are brought into contact with each other.
  • the size of the indentation is the same at maximum load and after unloading, as plasticity governs the total deformation behavior.
  • the size of the indentation after unloading is greater than that at maximum load, since elastic recovery occurs during unloading. It is known to decrease.
  • microindentation test method which can optically measure the projected contact area of a depression as a mechanical stimulus response in a state where a load is loaded on the surface of a test body.
  • This test method is a method of directly evaluating the dynamic stimulus response characteristics when the indenter and the surface of the test body are in contact.
  • the projected contact area can be measured for both surface deformation modes regardless of whether the depression is a "sinking type" or a "swelling type" (for example, Patent Document 1, Patent Document 1) Document 2, Patent Document 3, Patent Document 4, Patent Document 5, Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3, Non-Patent Document 4, Non-Patent Document 5, and Non-Patent Document 6).
  • the present invention has been made in view of such circumstances of the prior art, and the mechanical stimulus response characteristic when an indenter having a known shape and mechanical characteristics is brought into contact with the surface of the test sample of the unknown sample is referred to as the sample. It is an object of the present invention to provide a technique for evaluating the state of deformation of an indenter reflecting the mechanical characteristics possessed by in the nano area without using an optical microscope of an image observation method for narrowing visible light with a lens.
  • a mechanical characteristic measuring device having the above-mentioned micro indentation test machine, a measurement control device, and an information processing device
  • the measurement control device Measuring the positional relationship between the surface of the test body and the tip of the indenter; Position control is performed so that pressing of the test body and the indenter has a predetermined press-fit depth, Controlling the scanning probe microscope for observing the back surface of the indenter;
  • the information processing apparatus Receiving surface information of the back surface of the surface observation probe from the micro-indentation tester, and analyzing it as surface deformation or surface displacement distribution; Store the analyzed surface deformation amount or surface displacement distribution in the storage device, It is characterized in that the mechanical characteristics of the test body of the unknown sample are evaluated from the result of the micro-indentation test by the micro-indentation tester using the indenter having the known mechanical characteristics stored in the storage device.
  • an indenter which is pressed into the test sample of the measurement sample, And a measuring means for measuring the shape change of the surface opposite to the measuring sample side of the indenter.
  • this micro indentation tester is The indenter;
  • Said test body A scanning probe microscope equipped with a surface observation probe that measures the change in shape of the surface of the indenter opposite to the side of the test body in a state where the tip of the indenter is pressed into contact with the surface of the test body
  • the mechanical characteristic measuring device according to [5], wherein the measuring means includes the scanning probe microscope.
  • the microscope indentation test machine a measurement control device, and an information processing device
  • the measurement control device A displacement measuring device for measuring the positional relationship between the surface of the test body and the tip of the indenter;
  • a precision positioning device that performs position control such that the contact between the test body and the indenter has a predetermined press-fit depth;
  • It has a surface analysis device for controlling the scanning probe microscope for observing the back surface of the indenter,
  • the information processing apparatus is A surface analysis unit that receives surface information of the back surface of the surface observation probe from the micro-indentation tester and analyzes it as a three-dimensional surface deformation amount or surface displacement distribution;
  • a storage device for storing the surface deformation amount or surface displacement distribution analyzed by the surface analysis unit;
  • the mechanical characteristics of the test body of the unknown sample are evaluated from the result of the micro indentation test by the micro indentation test using the indenter having the known mechanical characteristics stored in the storage device.
  • [6] mechanical characteristic measuring device [8] The mechanical property measuring device according to [6] or [7], having a vertical double structure in which the indenter and the probe of the surface observation probe are arranged in the vertical direction. [9] The surface observation probe is attached to the XYZ scanning mechanism of the scanning probe microscope by a cantilever method so as to be interlocked with the XYZ scanning mechanism, any one of [6] to [8] Mechanical characteristic measuring device. [10] The scanning probe microscope is a variation or a point at which the indenter is vertically lowered from the contact center point with respect to the surface opposite to the test body side of the indenter with respect to the contact center point of the indenter with the sample surface. The mechanical characteristic measurement device according to any one of [6] to [9], which is configured to measure a displacement distribution as a function of a distance from a point.
  • the micro indentation tester it is a diagram for explaining an example of the arrangement of the probe for measuring the displacement change of the back surface of the indenter in a situation where the indenter tip contacts the surface of the test body. It is a block diagram explaining an example of basic composition of an indentation system including an indentation tester concerning one embodiment of the present invention. It is a figure explaining an example of composition of an indentation tester concerning one embodiment of the present invention. In Example 1 using a spherical indenter, it is a figure explaining an example of a result of finite element analysis of the relation between the amount of indentation to the test body and the displacement change of the back surface of the spherical indenter.
  • Example 1 It is a figure explaining an example of a result of finite element analysis about Example 1 which used a spherical indenter about the effect which the elasticity modulus of a test body and the pushing amount to a test body exert on the displacement change of an indenter back surface. It is a figure explaining an example of a result of finite element analysis about a relation of a modulus change of a test object and a spherical indenter, and displacement change of an indenter back surface about Example 1 using a spherical indenter.
  • Example 1 using a spherical indenter, the elastic modulus ratio between the test body and the indenter is determined from the maximum value of the displacement change of the back surface of the spherical indenter measured in the amount of indentation to the predetermined test body. It is a figure explaining an example which analyzes the elastic modulus of an unknown sample from the product with the elastic modulus of an indenter which is.
  • Example 2 using a conical indenter it is a figure explaining an example of a result of finite element analysis of the relation between the amount of indentation to the test body and the displacement change of the back of the indenter.
  • Example 2 using a conical indenter it is a figure explaining an example of a result of finite element analysis of the relation of elastic modulus ratio of a test object and an indenter, and displacement change of an indenter back.
  • Example 2 using a conical indenter it is a figure explaining an example of a result of finite element analysis of the effect of the elastic modulus of the test body and the pressing amount to the test body on the displacement change of the back surface of the indenter.
  • the elastic modulus ratio between the test body and the indenter is determined from the maximum value of the change in displacement of the back surface of the spherical indenter measured for the amount of indentation to the predetermined test body.
  • Example 3 it is a figure explaining an example which analyzes the elastic modulus of an unknown sample from the product with the elastic modulus of an indenter which is.
  • the spherical indenter was made of polyurethane
  • the test body was made of polyurethane and an aluminum alloy
  • the relationship between the additional weight of the constant load loading system to the test body and the displacement change of the back surface of the spherical indenter was tested. It is a figure explaining the example of a result.
  • Example 3 using a spherical indenter the spherical indenter is made of polyurethane, the test body is polyurethane and an aluminum alloy, and the back surface displacement distribution of the spherical indenter is normalized by the indentation amount of the spherical indenter determined by a predetermined load. It is a figure explaining the example of the result of experiment showing the relationship between the additional load of the constant load loading system to a test body, and the load load dependency of the depth (valley) of a valley.
  • Example 3 using a spherical indenter, the elastic modulus ratio between the test body and the indenter is determined from the amount of change in elevation of the indenter back surface displacement measured at a predetermined additional weight under a constant load load on the test body, and the value It is a figure explaining an example which analyzes the elastic modulus of an unknown sample from the product with the elastic modulus of an indenter known.
  • FIG. 1 is a view for explaining an indenter portion of a microscopic indentation tester according to an embodiment of the mechanical characteristic measurement device of the present invention.
  • the indenter portion of the indentation test apparatus (micro indentation testing machine) according to the present embodiment is a measuring means for measuring the shape change of the surface of the indenter on the side opposite to the test body of the indenter for mechanical testing (hereinafter also referred to as indenter).
  • the probe (a probe, hereinafter, also simply referred to as a probe or a surface observation probe) 20 is arranged vertically in a vertical double probe structure.
  • FIG. 1A hereinafter referred to as a spherical indenter
  • a conical indenter an indenter having a conical tip as shown in FIG. 1B
  • a conical indenter an indenter having a conical tip as shown in FIG. 1B
  • Zm is a plus sign because the back surface of the indenter 4 bulges up.
  • a conical indenter (B) is drawn.
  • the tip of the indenter is shaped to have one protrusion, and is, for example, a sphere, a triangular pyramid, a square pyramid, or a cone.
  • the structure of the indenter 4 shown in FIG. 1 is solid, but may be a shell. However, the back side needs to be smooth.
  • the method for producing the indenter 4 can be selected from, for example, nanoimprint, electrolytic polishing, wet etching, dry etching, plasma etching, photolithography, micromachining, etc., and has a very small radius of curvature of the order of submicron to nanometer.
  • the probe 20 of the measuring means for example, a scanning probe microscope
  • the beam structure cantilever
  • the measuring means is a device used to observe the displacement of the back surface of the indenter 4, and the probe 20 is installed so as to be interlocked with the movement of the indenter 4, and the back surface of the indenter 4 can always be monitored.
  • the moment when the indenter 4 contacts the test body 5 can be regarded as the deformation of the back surface of the indenter 4.
  • the displacement of the indenter 4 in the Z-axis direction can be measured as a shape change.
  • the measuring means may include, for example, a scanning probe microscope 6 described later, and further, the measurement control device 2 or its components (displacement measuring device 7, precision positioning device 8, surface analysis device 9, etc.), information processing It may include one or more selected from the device 3 or its components (surface analysis unit 13, storage device 16 and the like).
  • the tip of the indenter 4 is brought into contact with the surface of the test body 5 to a predetermined indentation depth, and the contact center point is used as a reference.
  • a conventional optical microscope is measured by measuring the displacement distribution as a function of the displacement of a point dropped vertically from the contact center point with respect to the surface opposite to the test body side of the indenter 4 or the distance from that point. It is possible to evaluate the mechanical properties in the nano area, which was difficult by the method used.
  • the displacement distribution can be selected from general-purpose scanning probe microscopes capable of measuring with sub-nanometer precision or less, and can be selected from, for example, a scanning tunneling microscope, an atomic force microscope, a scanning near-field optical microscope, etc. .
  • the horizontal resolution of a common scanning probe microscope is less than nanometre, the vertical resolution is less than sub-nanometer, and observation in the nano area with high measurement accuracy which was impossible with an optical microscope is possible.
  • FIG. 2 is a block diagram for explaining an example of a basic configuration of an indentation system including a micro indentation test apparatus according to an embodiment of the present invention.
  • the indentation system shown in FIG. 2 comprises a microscopic indentation tester 1, a measurement control unit 2, and an information processing unit (electronic computer) 3.
  • the micro-indentation tester 1 includes an indenter 4, a test object 5, and a scanning probe microscope 6 (hereinafter also referred to as a probe microscope) for observing the back surface of the indenter 4 bringing its tip into contact with the surface of the test object 5. It consists of
  • the measurement control device 2 is a displacement measurement device 7 that measures the positional relationship between the surface of the test body 5 and the tip of the indenter 4, and the precision that position control is performed so that the contact between the test body 5 and the indenter 4 becomes a predetermined press fit depth. It comprises a positioning device 8 and a surface analysis device 9 for controlling a probe microscope 6 for observing the back surface of the indenter 4.
  • the information processing apparatus 3 is a computer (electronic computer), and has an input / output I / F (Interface) 10, a CPU (Central Processing Unit) 11, a condition setting unit 12, a surface analysis unit 13, a characteristic value calculation unit 14, a position control unit 15 and the storage unit 16.
  • the respective elements of the information processing device 3 are connected by a bus (Bus).
  • the analysis program used by the surface analysis unit 13 of the information processing device 3 is stored in the storage device 16, and prompts the user to input through the input / output I / F 10 so as to set the contact displacement amount which is the test condition. , And is executed on a main storage device such as a computer memory.
  • the position control program used by the position control unit 15 of the information processing device 3 is stored in the storage device 16 and input to the user through the input / output I / F 10 so as to set the contact displacement amount which is a test condition.
  • it is deployed on the main storage device such as a computer memory to perform execution.
  • the calculation program used in the characteristic value calculation unit 14 is stored in the storage unit 16, and through the condition setting unit 12, the input / output I / F 10 is set to set test conditions such as the type of the indenter 4 and its elastic modulus. The user is prompted to input through the above, and the test conditions are met from the value of the back deformation of the indenter 4 analyzed by the surface analysis unit 13 and the result of the finite element analysis performed in advance stored in the storage unit 16 Data is selected, expanded on a main storage device such as a computer memory, and executed.
  • FIG. 3 is an example of a basic configuration of a micro-indentation test apparatus according to an embodiment of the present invention provided with a scanning probe microscope that functions as an apparatus for measuring a change in back surface displacement of an indenter.
  • FIG. 3 is an example of a functional configuration of a micro indentation test apparatus according to an embodiment of the present invention.
  • the configuration example of the indentation system shown in FIG. 2 will also be described with appropriate reference.
  • the surface observation probe 20 is attached to the XYZ scanning mechanism 21 by a cantilever method, and scans the selected area at high speed to collect surface information.
  • the surface information is position information of the back surface of the surface observation probe 20.
  • the surface information is detected by the laser 22 and the split photodiode 23, and is transferred to the surface analysis unit 13 of the information processing device 3 through the current / voltage conversion circuit 24 and the feedback circuit 25. Further, the position information is analyzed as a three-dimensional surface displacement distribution by an analysis program. Then, the back surface deformation amount or displacement distribution that has been digitized is written to the storage device 16 of the information processing device 3.
  • the axis of the surface observation probe 20 of the probe microscope 6 (scanning probe microscope) controlled by the surface analysis device 9 is arranged to coincide with the axis connecting the indenter 4 and the contact portion of the test body 5.
  • the tip of the indenter 4 is brought into contact with the surface of the test body 5 to a predetermined indentation depth, and the contact center point is used as a reference and opposite to the test body side of the indenter 4 It is difficult in the method using the conventional optical microscope by measuring the displacement distribution as a function of the displacement of the point dropped vertically from the contact center point with respect to the plane of the surface or the distance from the point by the probe microscope 6 Mechanical properties in the nano range can be evaluated.
  • the surface position of the test body 5 can be made to approach the tip of the indenter 4 by moving the test body support 27 on which the test body 5 is mounted up and down by the coarse movement mechanism 26. Furthermore, the absolute value of the air gap which is the proximity amount can be measured using the displacement measurement device 7 installed in the coarse movement mechanism 26, transferred to the information processing device 3, and displayed. However, it is necessary to carry out a calibration in which the contact point where the indenter 4 is in contact with the test body 5 is set as the zero point of the air gap in advance.
  • the method of detecting this contact can be selected from various methods, for example, an event in which the probe microscope 6 captures the displacement of the back surface of the indenter 4 can be used to detect a contact point (the details will be described in the embodiment). Described in section).
  • the tip of the indenter 4 is brought into contact with the surface of the test body 5 by finely moving the precision positioning device 8.
  • the displacement measuring device 7 and the precision positioning device 8 precisely adjust the value to a predetermined numerical value set by the condition setting unit 12 of the information processing device 3.
  • the press-fit amount (push-in amount) of the indentation test is determined.
  • the position control unit 15 of the information processing device 3 makes the precision positioning device 8 to have a predetermined numerical value set by the condition setting unit 12 based on the measurement value of the displacement measuring device 7 It has a closed loop function to perform feedback control.
  • the larger the load value generated by the contact that is, the larger the pressing amount to the surface of the test body 5, the larger the back surface deformation amount of the indenter 4. Therefore, in order to quantitatively measure the back surface deformation of the indenter 4 accurately, the amount of movement of the precision positioning device 8 is increased. At this time, as the scanning mechanism 21 of the probe microscope 6 moves in conjunction with the movement of pressing the indenter 4 into the surface of the test body 5, the displacement amount of the indenter 4 pushing into the surface of the test body 5 is cancelled. , Only deformation of the back of the indenter is measured.
  • the surface observation probe 20 can always observe the back surface of the indenter 4 by the device arrangement in which the indenter 4 and the surface observation probe 20 are relatively at the same position.
  • Finite element analysis is selected here as a large-scale finite element analysis program (FrontISTR) as a solver that has already been validated for contact problems involving elasto-plastic deformation.
  • the contact analysis was performed by combining nonlinear static analysis and step analysis.
  • model preparation and mesh formation were performed using general purpose computer application software (CAD) as preprocessing.
  • CAD general purpose computer application software
  • the number of elements here is about 60,000 to about 100,000.
  • calculation results are illustrated using general purpose computer application software for visualization.
  • the shape of the spherical surface of the spherical indenter is the surface of a solid sphere of diameter D and radius r.
  • the height H of the spherical indenter is 1 ⁇ 4 of the diameter D (hereinafter also referred to as “1 ⁇ 4 D spherical indenter”).
  • the Young's modulus Ei of the spherical indenter was fixed at 1000 MPa, and the Young's modulus Es of the test sample was changed to 250, 500, 750, 1000 and 1500 MPa.
  • the Poisson's ratio of the spherical indenter to the test sample was 0.0.
  • the absolute value of the dimension has no meaning, but here, the diameter D is 10 microns, and the height H of the spherical indenter is 2.5 microns.
  • the test body was a solid rectangular parallelepiped in which the vertical B and the horizontal W of the surface in contact with the indenter are square. Here, vertical B and horizontal W were 10 microns, and height h was 5 microns.
  • a setting value of the pressing amount of the spherical indenter into the test body it was changed to 50, 100, 200, 300, 400, 500 nm.
  • FIG. 4 shows the results of finite element analysis focusing on the displacement distribution on the back surface of the spherical indenter when increasing the amount of indentation to the test object under the condition that the Young's modulus has the same value of 1000 MPa for both the spherical indenter and the test object.
  • FIG. 7 is a diagram showing the distance L from the contact center as the horizontal axis.
  • the figure on the right of FIG. 4 is normalized and displayed by the setting value of the amount of indentations to a test body from the result shown by the figure on the left.
  • the displacement of the back surface of the spherical indenter increases with the increase of the amount of indentation into the test body, and there is a 37.6 nm ridge on the back surface of the contact point for the indentation amount of 500 nm.
  • the vertical resolution of a typical scanning probe microscope is sub-nanometers or less, so it can be seen that the displacement distribution can be measured with high accuracy.
  • FIG. 5 shows that the Young's modulus Es of the test body is variously changed (500, 750, 1000, 1500 MPa) under the condition that the Young's modulus Ei of the spherical indenter is fixed at 1000 MPa, and further, the indentation of the indenter tip to the surface of the test body
  • the example 50, 100, 200, 300, 400, 500 nm
  • it is the result of the finite element analysis paying attention to the displacement distribution of the back of the spherical indenter, and the distance L from the contact center It is the figure shown as a horizontal axis.
  • the Young's modulus Es of the test sample was variously changed under the condition that the Young's modulus Ei of the spherical indenter was fixed at 1000 MPa and the amount of indentation (-Z 0 ) of the indenter tip to the surface of the test sample was 500 nm.
  • Example (250, 500, 750, 1000, 1500MPa) that is, the elastic modulus ratio between the test body and the spherical indenter is variously changed from 0.25 to 1.5, and attention is paid to the displacement distribution of the back surface of the spherical indenter. It is the result of element analysis, and it is the figure which showed distance L from the contact center as a horizontal axis.
  • the figure on the right of FIG. 6 shows the results shown in the figure on the left, re-normalized by the set value of the press-fit amount to the test body.
  • Es Young's modulus
  • FIG. 7 is a calibration curve for evaluating the Young's modulus of a test sample of an unknown sample from the results of a micro-indentation test using a spherical indenter having a known Young's modulus.
  • the bumps seen on the back of the spherical indenter are uniformly determined by the amount of indentation into the test body and the Young's modulus ratio of the test body to the indenter. Therefore, as exemplified by the two arrows shown in FIG.
  • the shape of the conical indenter is a solid cone with a surface inclination angle ⁇ of 19.7 degrees.
  • the Young's modulus Ei of the conical indenter was fixed at 1000 MPa, and the Young's modulus Es of the test sample was changed to 250, 500, 750, 1000, and 1500 MPa.
  • the Poisson's ratio of the conical indenter to the test sample was 0.0.
  • the test body was a solid rectangular parallelepiped in which the vertical B and the horizontal W of the surface in contact with the indenter were square.
  • vertical B and horizontal W were 10 microns
  • height h was 5 microns.
  • a setting value of the pressing amount to the test body of a spherical indenter it was changed with 50, 100, 200, 300, 360, 450, 500 nm.
  • FIG. 8 shows the results of finite element analysis focusing on the displacement distribution on the back surface of the conical indenter when increasing the amount of indentation to the specimen under the condition that the Young's modulus has the same value of 1000 MPa for both the conical indenter and the specimen.
  • FIG. 7 is a diagram showing the distance L from the contact center as the horizontal axis.
  • the figure on the right of FIG. 8 shows the results shown in the figure on the left normalized and re-displayed with the set value of the press-fit amount to the test body.
  • the displacement of the back of the conical indenter increases with the increase of the amount of indentation into the test body, and there is a 35.9 nm ridge on the back of the contact point for the indentation amount of 500 nm.
  • the vertical resolution of a typical scanning probe microscope is sub-nanometers or less, so it can be seen that the displacement distribution can be measured with high accuracy.
  • FIG. 9 shows that the Young's modulus Es of the test body is variously changed (500, 750, 1000, 1500 MPa) under the condition that the Young's modulus Ei of the conical indenter is fixed at 1000 MPa, and further, the indentation of the indenter tip to the test body surface
  • the example 50, 100, 200, 300, 360, 450, 500 nm
  • it is the result of the finite element analysis paying attention to the displacement distribution on the back of the conical indenter, and the distance from the contact center It is the figure which showed L as a horizontal axis.
  • the Young's modulus Es of the test sample was variously changed under the condition that the Young's modulus Ei of the conical indenter was fixed at 1000 MPa and the amount of indentation (-Z 0 ) of the indenter tip into the surface of the test sample was 500 nm.
  • Example (250, 500, 750, 1000, 1500MPa) that is, changing the elastic modulus ratio of the test body to the conical indenter from 0.25 to 1.5 and focusing on the displacement distribution on the back of the conical indenter It is the result of element analysis, and it is the figure which showed distance L from the contact center as a horizontal axis.
  • the drawing on the right of FIG. 10 shows the results shown in the drawing on the left, renormalized by the set value of the press-fit amount to the test body and displayed again.
  • Es Young's modulus
  • FIG. 11 is a calibration curve for evaluating the Young's modulus of a test sample of an unknown sample from the results of a microscopic indentation test using a conical indenter having a known Young's modulus.
  • the bumps seen on the back of the conical indenter are uniformly determined by the amount of indentation into the test body and the Young's modulus ratio of the test body to the indenter. Therefore, as the two arrows illustrate that shown in the figure 11, from the maximum value of the pressing amount (-Z 0) measured displacement change of the conical indenter back in to a given specimen, test specimen and the indenter
  • the Young's modulus ratio Es / Ei of is calculated.
  • the elastic modulus Es of the unknown sample can be evaluated by integrating the elastic modulus Ei of the indenter which is known with respect to the value.
  • a laser beam is selected as the surface observation probe 20 shown in FIG. 1A, and a reflection type CCD laser displacement meter (manufactured by KEYENCE, LK-G35, laser wavelength: 650 nm) and an automatic drive mechanism (Sigma)
  • a scanning probe microscope was constructed by using an optical scanner, SGSP20-85). The repetition accuracy of displacement measurement in the Z-axis direction is 10 nm.
  • the shape of the spherical surface of the spherical indenter is the surface of a solid sphere having a diameter D of 44 mm, and the height H of the spherical indenter is 16 mm.
  • the material of the spherical indenter was polyurethane, and the Young's modulus Ei of the spherical indenter was fixed at 230 kPa.
  • the material of the test body was polyurethane and an aluminum alloy, and two types of polyurethane different in Young's modulus Es from 100 and 510 kPa were selected.
  • the Young's modulus Es of the aluminum alloy is 70 GPa.
  • the amount of pressing of the spherical indenter into the test body was a constant load control method by dead load.
  • polyurethane Youngng's modulus Es: 100 kPa
  • aluminum alloy Young's modulus Es: 70 GPa
  • Reference hereinafter also referred to as “Reference”.
  • the back surface displacement distribution of the spherical indenter was measured.
  • FIG. 13 is a back surface displacement distribution of a spherical indenter of two types of polyurethane having a Young's modulus Es of 100 or 510 kPa as a test body and an aluminum alloy having a Young's modulus Es of 70 GPa.
  • the back surface displacement distribution of the spherical indenter is represented by the value (-Z / Z 0 ) normalized by the indentation amount (-Z 0 ) of the spherical indenter determined by the predetermined load, the back surface of the spherical indenter is The ridges of the are illustrated as valleys.
  • This figure is a calibration curve for evaluating the Young's modulus of the test sample of the unknown sample from the result of the micro indentation test using a spherical indenter having a known Young's modulus. As exemplified by the two arrows shown in FIG.

Landscapes

  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Provided is a technology for evaluating, in the nano-domain, mechanical stimulus response properties when an indenter having a known shape and known mechanical properties and the surface of a test body of an unknown sample are brought into contact with each other. In a mechanical-property testing method according to the present invention, in a state where an indenter is pressed into contact with the surface of a test body of a measurement sample, a change in the shape of the face of the indenter on the reverse side of the test body side is measured to evaluate the mechanical properties of the measurement sample. Furthermore, a mechanical-property measurement device according to the present invention includes: an indenter that is pressed into a test body of a measurement sample; and a measurement means that measures a change in the shape of the face of the indenter on the reverse side of the test body side.

Description

力学特性試験方法及び計測装置Mechanical property test method and measuring device
 本発明は、力学特性試験方法及び計測装置に関し、より具体的には、インデンテーション試験により、試験体の力学特性を評価する試験方法及び計測装置に関する。 The present invention relates to a mechanical property test method and a measuring apparatus, and more specifically to a test method and a measuring apparatus for evaluating the mechanical property of a test body by an indentation test.
 インデンテーション試験は、圧子と呼ばれる治具を各種材料の試験体の表面に押し付けることにより形成される窪みの状況から、材料の硬さや弾性率などの各種力学特性を評価する試験技術である。 The indentation test is a test technique for evaluating various mechanical properties such as hardness and elastic modulus of a material from the condition of a depression formed by pressing a jig called an indenter against the surface of a test body of various materials.
 圧子を試験体の表面に押し付ける際、試験する材料の弾性変形の範囲内であれば、その変形挙動から弾性率が評価できる。さらに、圧子直下に発生する応力が弾性限界を超えると、試験体に塑性変形が誘起され、除荷後に圧痕として表面から観察される。この圧痕の大きさと最大負荷荷重値から試験体の硬さが評価できる。弾性率や硬さは、圧子と試験体表面とを接触させた際の力学刺激応答の指標の一つである。 When the indenter is pressed against the surface of the test body, the elastic modulus can be evaluated from the deformation behavior within the range of the elastic deformation of the material to be tested. Furthermore, when the stress generated immediately below the indenter exceeds the elastic limit, plastic deformation is induced in the test body, and it is observed from the surface as an indentation after unloading. The hardness of the test body can be evaluated from the size of the indentation and the maximum load value. The elastic modulus and hardness are one of the indices of the mechanical stimulus response when the indenter and the surface of the test body are brought into contact with each other.
 一般的な金属類では、塑性が全変形挙動を支配するため、圧痕の大きさは、最大負荷荷重時と除荷後とでは同じ寸法である。一方、弾塑性体や粘弾性体のように塑性以外の成分が変形挙動において無視できない材料では、除荷中に弾性回復するために除荷後の圧痕の大きさは、最大負荷荷重時よりも減少することが知られている。 In general metals, the size of the indentation is the same at maximum load and after unloading, as plasticity governs the total deformation behavior. On the other hand, for materials such as elasto-plastics and visco-elastics where components other than plasticity can not be neglected in deformation behavior, the size of the indentation after unloading is greater than that at maximum load, since elastic recovery occurs during unloading. It is known to decrease.
 したがって、未知試料の力学特性を厳密に解析するには、圧子と試験体表面とが接触している状況下で該試料はどの様な窪みを形成しているのかを知ること、すなわち、その場で力学刺激応答特性を計測することが必要である。 Therefore, in order to analyze the mechanical properties of the unknown sample strictly, it is necessary to know what kind of depression the sample forms in the situation where the indenter and the surface of the test body are in contact, that is, It is necessary to measure the mechanical stimulus response characteristics in
 また、試験体に圧子で負荷した際に生じる窪みの種類には、その周辺部に見られる表面変形の形態の違いに注目して「沈み込み型」と「盛り上がり型」があることが知られており、試験体の表面に荷重が負荷されて形成される窪みを定量表現するには、元の表面からの深さだけでなく、接触面積も計測する必要がある。 In addition, it is known that the types of depressions produced when loaded with an indenter on a test body include "sinking type" and "swelling type" paying attention to the difference in the form of surface deformation seen in the peripheral part Not only the depth from the original surface but also the contact area needs to be measured in order to quantitatively express the depression formed by the load applied to the surface of the test body.
 試験体の表面に荷重が負荷されている状態の力学刺激応答として窪みの深さを計測できる計装化ナノインデンテーション試験法がある。この試験法では、全ての試料の窪みは、完全弾性体の「沈み込み型」の接触深さを有する窪みが形成されているとする仮定が置かれている。現在の計装化ナノインデンテーション技術では圧入深さと負荷荷重との関係から接触面積を推算する汎用近似法を用いているが、「盛り上がり型」の接触面積を知ることができないという最大の弱点を抱えている。窪みの深さを計測する計装化ナノインデンテーション法は、「盛り上がり型」の接触面積を演算することができないため、「盛り上がり型」の表面変形を示す弾塑性体を解析することに問題がある。 There is an instrumented nanoindentation test method that can measure the depth of a depression as a mechanical stimulus response in a state where a load is applied to the surface of a test body. In this test method, it is assumed that the depressions of all the samples are formed to be depressions having a completely elastic "submersible" contact depth. The current instrumented nanoindentation technology uses a general-purpose approximation method to estimate the contact area from the relationship between the press-in depth and the applied load, but it has the greatest weakness that it can not know the contact area of "climbing type" I have it. Since the instrumented nanoindentation method that measures the depth of the depression can not calculate the contact area of the “raised” type, there is a problem in analyzing the elasto-plastic body that exhibits surface deformation of the “raised” type. is there.
 試験体の表面に荷重が負荷されている状態で力学刺激応答として窪みの投影接触面積を光学的に計測できる顕微インデンテーション試験法がある。この試験法は、圧子と試験体表面とを接触させた際の力学刺激応答特性をその場で直接的に評価する手法である。顕微インデンテーション試験法は、窪みが「沈み込み型」であるか「盛り上がり型」であるかに関係無く、両方の表面変形様式に対して投影接触面積が計測できる(例えば、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、非特許文献1、非特許文献2、非特許文献3、非特許文献4、非特許文献5、および、非特許文献6)。 There is a microindentation test method which can optically measure the projected contact area of a depression as a mechanical stimulus response in a state where a load is loaded on the surface of a test body. This test method is a method of directly evaluating the dynamic stimulus response characteristics when the indenter and the surface of the test body are in contact. In the micro indentation test method, the projected contact area can be measured for both surface deformation modes regardless of whether the depression is a "sinking type" or a "swelling type" (for example, Patent Document 1, Patent Document 1) Document 2, Patent Document 3, Patent Document 4, Patent Document 5, Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3, Non-Patent Document 4, Non-Patent Document 5, and Non-Patent Document 6).
特開2005-195357号公報(特許第4317743号公報)Unexamined-Japanese-Patent No. 2005-195357 (patent 4317743) 実用新案登録第3182252号公報Utility model registration 3182252 gazette 特開2015-175666号公報JP, 2015-175666, A 特願2016-016555号公報Japanese Patent Application No. 2016-016555 特開2017-146294号公報[Patent Document 1] Japanese Patent Application Publication No. 201-146294
 しかしながら、レンズを用いて可視光をスポットに絞り像観察する方式の光学顕微鏡の水平方向の分解能は、光が持つ波動性に起因する回折限界があるため、従来の顕微インデンテーション試験法では、原理上、可視光の波長の半分以下であるサブミクロン領域までに限定され、該光学顕微鏡を用いてナノ領域での力学刺激応答特性を評価することが難しい場合があった。 However, the resolution in the horizontal direction of an optical microscope of the type that uses a lens to observe the visible light at a spot on a spot has a diffraction limit due to the wave nature of the light, so the conventional microindentation test method In addition, it has been sometimes difficult to evaluate mechanical stimulus response characteristics in the nano area using the optical microscope, which is limited to the submicron area that is half or less the wavelength of visible light.
 本発明は、このような従来技術の実情を鑑みてなされたもので、既知の形状と力学特性を持つ圧子と未知試料の試験体表面とを接触させた際の力学刺激応答特性を、該試料が有する力学特性を反映して圧子が変形する様子を、可視光をレンズで絞る像観察方式の光学顕微鏡を用いることなく、ナノ領域で評価する技術を提供することを課題とする。 The present invention has been made in view of such circumstances of the prior art, and the mechanical stimulus response characteristic when an indenter having a known shape and mechanical characteristics is brought into contact with the surface of the test sample of the unknown sample is referred to as the sample. It is an object of the present invention to provide a technique for evaluating the state of deformation of an indenter reflecting the mechanical characteristics possessed by in the nano area without using an optical microscope of an image observation method for narrowing visible light with a lens.
 上記課題を解決するために、本発明によれば、下記の技術的手段および技術的手法が提供される。 In order to solve the above problems, according to the present invention, the following technical means and technical procedures are provided.
[1]測定試料の試験体の表面に圧子を押し込んで接触させた状態で、圧子の試験体側と反対の面の形状変化を計測することによって、測定試料の力学特性を評価する力学特性試験方法。
[2]前記圧子と、前記試験体と、表面観察プローブを備えた走査型プローブ顕微鏡と、を有する顕微インデンテーション試験機を用いて、
 前記走査型プローブ顕微鏡により、前記圧子の先端を、前記試験体の表面に前記圧子を押し込んで接触させた状態で、前記圧子の前記試験体側と反対の面の形状変化を計測する、[1]の力学特性試験方法。
[3]前記顕微インデンテーション試験機と、計測制御装置と、情報処理装置とを有する力学特性計測装置を用いて、
 前記計測制御装置により、
  前記試験体の表面と前記圧子の先端との位置関係を計測し、
  前記試験体と前記圧子との押し込みが所定の圧入深さとなるように位置制御し、
  前記圧子の背面を観察する前記走査型プローブ顕微鏡を制御し、
 前記情報処理装置により、
  前記顕微インデンテーション試験機から前記表面観察プローブの背面の表面情報を受け取り、表面変形量もしくは表面変位分布として解析し、
  解析された表面変形量もしくは表面変位分布を記憶装置に記憶し、
 前記記憶装置に記憶された既知の力学特性を有する前記圧子を用いた前記顕微インデンテーション試験機による顕微インデンテーション試験の結果から、未知試料の試験体の力学特性を評価することを特徴とする[2]の力学特性試験方法。

[4]前記圧子の前記試験体表面との接触中心点を基準とし、前記圧子の前記試験体側と反対の面に対して接触中心点から垂直に降ろした点の変位もしくはその点からの距離を関数とする変位分布を計測する[1]から[3]のいずれかの力学特性試験方法。
[1] Mechanical property test method for evaluating the mechanical property of a measurement sample by measuring the shape change of the surface opposite to the test body side of the indenter in a state where the indenter is pressed into contact with the surface of the test sample of the measurement sample .
[2] Using a microindentation tester having the indenter, the test body, and a scanning probe microscope provided with a surface observation probe,
Measuring the shape change of the surface of the indenter opposite to the side of the test body, with the tip of the indenter pressed into contact with the surface of the test body by the scanning probe microscope [1] Mechanical property test method.
[3] Using a mechanical characteristic measuring device having the above-mentioned micro indentation test machine, a measurement control device, and an information processing device,
By the measurement control device,
Measuring the positional relationship between the surface of the test body and the tip of the indenter;
Position control is performed so that pressing of the test body and the indenter has a predetermined press-fit depth,
Controlling the scanning probe microscope for observing the back surface of the indenter;
The information processing apparatus
Receiving surface information of the back surface of the surface observation probe from the micro-indentation tester, and analyzing it as surface deformation or surface displacement distribution;
Store the analyzed surface deformation amount or surface displacement distribution in the storage device,
It is characterized in that the mechanical characteristics of the test body of the unknown sample are evaluated from the result of the micro-indentation test by the micro-indentation tester using the indenter having the known mechanical characteristics stored in the storage device. 2] Mechanical property test method.

[4] With reference to the contact center point of the indenter with the surface of the test body, the displacement of a point dropped vertically from the contact center point with respect to the surface of the indenter opposite to the test body side The mechanical characteristic test method in any one of [1] to [3] which measures displacement distribution as a function.
[5]測定試料の試験体に押し込む圧子と、
圧子の測定試料側と反対の面の形状変化を計測する計測手段と、を備えた力学特性計測装置。
[6]顕微インデンテーション試験機を備え、この顕微インデンテーション試験機は、
  前記圧子と、
  前記試験体と、
  前記圧子の先端を、前記試験体の表面に前記圧子を押し込んで接触させた状態で、前記圧子の前記試験体側と反対の面の形状変化を計測する、表面観察プローブを備えた走査型プローブ顕微鏡を有し、
 前記計測手段は、前記走査型プローブ顕微鏡を含む、[5]の力学特性計測装置。
[7]前記顕微インデンテーション試験機と、計測制御装置と、情報処理装置とを備え、
 前記計測制御装置は、
    前記試験体の表面と前記圧子の先端との位置関係を計測する変位計測装置と、
  前記試験体と前記圧子との接触が所定の圧入深さとなるように位置制御する精密位置決め装置と、
  前記圧子の背面を観察する前記走査型プローブ顕微鏡を制御する表面解析装置を有し、
 前記情報処理装置は、
  前記顕微インデンテーション試験機から前記表面観察プローブの背面の表面情報を受け取り、三次元の表面変形量もしくは表面変位分布として解析する表面解析部と、
  前記表面解析部で解析された表面変形量もしくは表面変位分布を記憶する記憶装置を有し、
 前記記憶装置に記憶された既知の力学特性を有する前記圧子を用いた、前記顕微インデンテーション試験機による顕微インデンテーション試験の結果から、未知試料の試験体の力学特性を評価することを特徴とする[6]の力学特性計測装置。

[8]前記圧子と、前記表面観察プローブの探針とが縦方向に配列した縦型二重構造を有する請求項[6]又は[7]の力学特性計測装置。[9]前記表面観察プローブは、片持ち梁方式により前記走査型プローブ顕微鏡のXYZ走査機構に、前記XYZ走査機構と連動できるように取り付けられている、[6]から[8]のいずれかの力学特性計測装置。

[10]前記走査型プローブ顕微鏡は、前記圧子の前記試験体表面との接触中心点を基準とし、圧子の試験体側と反対の面に対して接触中心点から垂直に降ろした点の変異もしくはその点からの距離を関数とする変位分布を計測するように構成されている、[6]から[9]のいずれかの力学特性計測装置。
[5] an indenter which is pressed into the test sample of the measurement sample,
And a measuring means for measuring the shape change of the surface opposite to the measuring sample side of the indenter.
[6] equipped with a micro indentation tester, this micro indentation tester is
The indenter;
Said test body,
A scanning probe microscope equipped with a surface observation probe that measures the change in shape of the surface of the indenter opposite to the side of the test body in a state where the tip of the indenter is pressed into contact with the surface of the test body Have
The mechanical characteristic measuring device according to [5], wherein the measuring means includes the scanning probe microscope.
[7] The microscope indentation test machine, a measurement control device, and an information processing device,
The measurement control device
A displacement measuring device for measuring the positional relationship between the surface of the test body and the tip of the indenter;
A precision positioning device that performs position control such that the contact between the test body and the indenter has a predetermined press-fit depth;
It has a surface analysis device for controlling the scanning probe microscope for observing the back surface of the indenter,
The information processing apparatus is
A surface analysis unit that receives surface information of the back surface of the surface observation probe from the micro-indentation tester and analyzes it as a three-dimensional surface deformation amount or surface displacement distribution;
A storage device for storing the surface deformation amount or surface displacement distribution analyzed by the surface analysis unit;
The mechanical characteristics of the test body of the unknown sample are evaluated from the result of the micro indentation test by the micro indentation test using the indenter having the known mechanical characteristics stored in the storage device. [6] mechanical characteristic measuring device.

[8] The mechanical property measuring device according to [6] or [7], having a vertical double structure in which the indenter and the probe of the surface observation probe are arranged in the vertical direction. [9] The surface observation probe is attached to the XYZ scanning mechanism of the scanning probe microscope by a cantilever method so as to be interlocked with the XYZ scanning mechanism, any one of [6] to [8] Mechanical characteristic measuring device.

[10] The scanning probe microscope is a variation or a point at which the indenter is vertically lowered from the contact center point with respect to the surface opposite to the test body side of the indenter with respect to the contact center point of the indenter with the sample surface. The mechanical characteristic measurement device according to any one of [6] to [9], which is configured to measure a displacement distribution as a function of a distance from a point.
 本発明によれば、既知の形状と力学特性を持つ圧子と未知試料の試験体表面とを接触させた際の力学刺激応答特性を、ナノ領域で評価する技術が提供される。 According to the present invention, there is provided a technique for evaluating, in the nano area, mechanical stimulus response characteristics when an indenter having a known shape and mechanical characteristics is brought into contact with a test object surface of an unknown sample.
本発明の一実施形態に係る顕微インデンテーション試験機において、圧子先端と試験体表面とが接触する状況において圧子背面の変位変化を計測するプローブの配置の一例を説明する図である。In the micro indentation tester according to one embodiment of the present invention, it is a diagram for explaining an example of the arrangement of the probe for measuring the displacement change of the back surface of the indenter in a situation where the indenter tip contacts the surface of the test body. 本発明の一実施形態に係るインデンテーション試験機を含む、インデンテーション・システムの基本構成の一例を説明するブロック図である。It is a block diagram explaining an example of basic composition of an indentation system including an indentation tester concerning one embodiment of the present invention. 本発明の一実施形態に係るインデンテーション試験機の構成の一例を説明する図である。It is a figure explaining an example of composition of an indentation tester concerning one embodiment of the present invention. 球面圧子を用いた実施例1について、試験体への押し込み量と球面圧子背面の変位変化の関係を、有限要素解析した結果の一例を説明する図である。In Example 1 using a spherical indenter, it is a figure explaining an example of a result of finite element analysis of the relation between the amount of indentation to the test body and the displacement change of the back surface of the spherical indenter. 球面圧子を用いた実施例1について、試験体の弾性率と試験体への押し込み量が圧子背面の変位変化に及ぼす効果を、有限要素解析した結果の一例を説明する図である。It is a figure explaining an example of a result of finite element analysis about Example 1 which used a spherical indenter about the effect which the elasticity modulus of a test body and the pushing amount to a test body exert on the displacement change of an indenter back surface. 球面圧子を用いた実施例1について、試験体と球面圧子との弾性率比と圧子背面の変位変化の関係を、有限要素解析した結果の一例を説明する図である。It is a figure explaining an example of a result of finite element analysis about a relation of a modulus change of a test object and a spherical indenter, and displacement change of an indenter back surface about Example 1 using a spherical indenter. 球面圧子を用いた実施例1について、所定の試験体への押し込み量において、計測された球面圧子背面の変位変化の最大値から、試験体と圧子との弾性率比を求め、その値と既知である圧子の弾性率との積から、未知試料の弾性率を解析する一例を説明する図である。In Example 1 using a spherical indenter, the elastic modulus ratio between the test body and the indenter is determined from the maximum value of the displacement change of the back surface of the spherical indenter measured in the amount of indentation to the predetermined test body. It is a figure explaining an example which analyzes the elastic modulus of an unknown sample from the product with the elastic modulus of an indenter which is. 円錐圧子を用いた実施例2について、試験体への押し込み量と圧子背面の変位変化の関係を、有限要素解析した結果の一例を説明する図である。In Example 2 using a conical indenter, it is a figure explaining an example of a result of finite element analysis of the relation between the amount of indentation to the test body and the displacement change of the back of the indenter. 円錐圧子を用いた実施例2について、試験体と圧子との弾性率比と圧子背面の変位変化の関係を、有限要素解析した結果の一例を説明する図である。In Example 2 using a conical indenter, it is a figure explaining an example of a result of finite element analysis of the relation of elastic modulus ratio of a test object and an indenter, and displacement change of an indenter back. 円錐圧子を用いた実施例2について、試験体の弾性率と試験体への押し込み量が圧子背面の変位変化に及ぼす効果を、有限要素解析した結果の一例を説明する図である。In Example 2 using a conical indenter, it is a figure explaining an example of a result of finite element analysis of the effect of the elastic modulus of the test body and the pressing amount to the test body on the displacement change of the back surface of the indenter. 円錐圧子を用いた実施例2について、所定の試験体への押し込み量において、計測された球面圧子背面の変位変化の最大値から、試験体と圧子との弾性率比を求め、その値と既知である圧子の弾性率との積から、未知試料の弾性率を解析する一例を説明する図である。For Example 2 using a conical indenter, the elastic modulus ratio between the test body and the indenter is determined from the maximum value of the change in displacement of the back surface of the spherical indenter measured for the amount of indentation to the predetermined test body. It is a figure explaining an example which analyzes the elastic modulus of an unknown sample from the product with the elastic modulus of an indenter which is. 球面圧子を用いた実施例3について、球面圧子をポリウレタン製とし、試験体をポリウレタン及びアルミニウム合金とし、試験体への定荷重負荷方式の追加重量と球面圧子背面の変位変化の関係を、実験した結果の例を説明する図である。With respect to Example 3 using a spherical indenter, the spherical indenter was made of polyurethane, the test body was made of polyurethane and an aluminum alloy, and the relationship between the additional weight of the constant load loading system to the test body and the displacement change of the back surface of the spherical indenter was tested. It is a figure explaining the example of a result. 球面圧子を用いた実施例3について、球面圧子をポリウレタン製とし、試験体をポリウレタン及びアルミニウム合金とし、球面圧子の背面変位分布を、所定の負荷荷重によって決まる球面圧子の押し込み量で規格化した値で表示し、試験体への定荷重負荷方式の追加重量と谷の深さ(隆起)の負荷荷重依存性の関係を、実験した結果の例を説明する図である。In Example 3 using a spherical indenter, the spherical indenter is made of polyurethane, the test body is polyurethane and an aluminum alloy, and the back surface displacement distribution of the spherical indenter is normalized by the indentation amount of the spherical indenter determined by a predetermined load. It is a figure explaining the example of the result of experiment showing the relationship between the additional load of the constant load loading system to a test body, and the load load dependency of the depth (valley) of a valley. 球面圧子を用いた実施例3について、試験体への定荷重負荷において、所定の追加重量で計測された圧子背面変位の隆起変化量から、試験体と圧子との弾性率比を求め、その値と既知である圧子の弾性率との積から、未知試料の弾性率を解析する一例を説明する図である。In Example 3 using a spherical indenter, the elastic modulus ratio between the test body and the indenter is determined from the amount of change in elevation of the indenter back surface displacement measured at a predetermined additional weight under a constant load load on the test body, and the value It is a figure explaining an example which analyzes the elastic modulus of an unknown sample from the product with the elastic modulus of an indenter known.
 以下、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 図1は、本発明の力学特性計測装置の一実施形態に係る顕微インデンテーション試験機の圧子部を説明する図である。本実施形態に係るインデンテーション試験装置(顕微インデンテーション試験機)の圧子部は、力学試験用圧子(以下、圧子とも称する)4と圧子の試験体側と反対の面の形状変化を計測する計測手段の探針(プローブ、以下、単にプローブ又は表面観察プローブとも称する)20とが縦方向に配列した縦型二重プローブ構造となる。ここには、図1(A)として先端が球面である圧子(以下、球面圧子と称す)、及び図1(B)として先端が円錐である圧子(以下、円錐圧子と称す)が例示されている。 FIG. 1 is a view for explaining an indenter portion of a microscopic indentation tester according to an embodiment of the mechanical characteristic measurement device of the present invention. The indenter portion of the indentation test apparatus (micro indentation testing machine) according to the present embodiment is a measuring means for measuring the shape change of the surface of the indenter on the side opposite to the test body of the indenter for mechanical testing (hereinafter also referred to as indenter). The probe (a probe, hereinafter, also simply referred to as a probe or a surface observation probe) 20 is arranged vertically in a vertical double probe structure. Here, an indenter having a spherical tip as shown in FIG. 1A (hereinafter referred to as a spherical indenter) and an indenter having a conical tip as shown in FIG. 1B (hereinafter referred to as a conical indenter) are exemplified. There is.
 図1には、この二重構造を反映し二つの直交座標が描かれており、圧子のための座標系は(Xi, Zi)であり、原点((Xi, Zi)=(0, 0))は圧子4の先端と試験体5の表面が接触する位置である。圧子4の先端を試験体5の表面に押し込む試験ではZiはマイナスの符号をとる。また、表面観察プローブのための座標系は(Xm, Zm)であり、原点((Xm, Zm)=(0, 0))は表面観察プローブ20の先端と圧子4の背面が接触する位置である(厳密には、例えば計測手段が走査型トンネル顕微鏡の場合、プローブ先端と圧子の表面とはトンネル電流が流れるサブナノメートルオーダーの隙間があり力学的には接触していない)。圧子4の先端を試験体5の表面に押し込む試験では、圧子4の背面は隆起するように盛り上がるため、Zmはプラスの符号となる。 In FIG. 1, two orthogonal coordinates are drawn reflecting this double structure, the coordinate system for the indenter is (Xi, Zi), and the origin ((Xi, Zi) = (0, 0) Is a position where the tip of the indenter 4 and the surface of the test body 5 are in contact with each other. In the test in which the tip of the indenter 4 is pressed into the surface of the test body 5, Zi takes a negative sign. The coordinate system for the surface observation probe is (Xm, Zm), and the origin ((Xm, Zm) = (0, 0)) is the position where the tip of the surface observation probe 20 contacts the back of the indenter 4 (Strictly, for example, when the measurement means is a scanning tunneling microscope, the tip of the probe and the surface of the indenter do not contact mechanically because there is a gap of the order of sub-nanometers in which a tunnel current flows). In the test in which the tip of the indenter 4 is pressed into the surface of the test body 5, Zm is a plus sign because the back surface of the indenter 4 bulges up.
 図1には、例として、半径rの中実な球体を高さHにおいて切り取った形状の球面圧子(A)、及び、中実な円錐形状であり面傾斜角がβ、高さがHである円錐圧子(B)が描かれている。
圧子の先端は一つの突起を持つ形状であり、例えば、球面、三角錐、四角錐、または、円錐である。図1に示す圧子4の構造は中実であるが、殻(シェル)でも良い。しかし、その背面は平滑であることが必要である。
In FIG. 1, as an example, a spherical indenter (A) having a shape in which a solid sphere of radius r is cut at height H, and a solid conical shape having a surface inclination angle of β and a height of H A conical indenter (B) is drawn.
The tip of the indenter is shaped to have one protrusion, and is, for example, a sphere, a triangular pyramid, a square pyramid, or a cone. The structure of the indenter 4 shown in FIG. 1 is solid, but may be a shell. However, the back side needs to be smooth.
 圧子4の作製方法は、例えば、ナノインプリント、電解研磨法、ウエットエッチング、ドライエッチング、プラズマエッチング、フォトリソグラフィー、マイクロマシニング、などから選択して利用でき、サブミクロンからナノメートルオーダーの極小な先端曲率半径を持たせることができる。さらに、マイクロマシニング技術によれば、梁構造(カンチレバー)を持つ計測手段(例えば走査型プローブ顕微鏡)のプローブ20と接触用の圧子4を同時に作り込むことが可能となる。 The method for producing the indenter 4 can be selected from, for example, nanoimprint, electrolytic polishing, wet etching, dry etching, plasma etching, photolithography, micromachining, etc., and has a very small radius of curvature of the order of submicron to nanometer. Can be Furthermore, according to the micromachining technology, it is possible to simultaneously fabricate the probe 20 of the measuring means (for example, a scanning probe microscope) having a beam structure (cantilever) and the indenter 4 for contact.
 計測手段は圧子4の背面の変位を観察するために用いる装置であり、そのプローブ20は圧子4の移動に対して連動できるように設置されており、常に圧子4の背面を監視できる。このことにより、圧子4が試験体5と接触した瞬間を圧子4の背面の変形として捉えることができる。さらに、圧子4を試験体5に押し込む過程において、圧子4のZ軸方向の変位を形状変化として計測することができる。計測手段は、例えば、後述の走査型プローブ顕微鏡6を含むものであってよく、更に計測制御装置2もしくはその構成要素(変位計測装置7、精密位置決め装置8、表面解析装置9等)、情報処理装置3もしくはその構成要素(表面解析部13、記憶装置16等)から選ばれる1種以上を含むものであってもよい。 The measuring means is a device used to observe the displacement of the back surface of the indenter 4, and the probe 20 is installed so as to be interlocked with the movement of the indenter 4, and the back surface of the indenter 4 can always be monitored. By this, the moment when the indenter 4 contacts the test body 5 can be regarded as the deformation of the back surface of the indenter 4. Furthermore, in the process of pushing the indenter 4 into the test body 5, the displacement of the indenter 4 in the Z-axis direction can be measured as a shape change. The measuring means may include, for example, a scanning probe microscope 6 described later, and further, the measurement control device 2 or its components (displacement measuring device 7, precision positioning device 8, surface analysis device 9, etc.), information processing It may include one or more selected from the device 3 or its components (surface analysis unit 13, storage device 16 and the like).
 すなわち、本発明の力学特性計測装置の一実施形態である顕微インデンテーション試験装置によれば、圧子4の先端を試験体5の表面に所定の押し込み深さまで接触させ、その接触中心点を基準とし、圧子4の試験体側と反対の面に対して接触中心点から垂直に降ろした点の変位もしくはその点からの距離を関数とする変位分布を計測手段により計測することによって、従来の光学顕微鏡を用いる方法では困難であったナノ領域での力学特性を評価することができる。該変位分布は、サブナノメートル以下の精度で計測できる汎用の各種の走査型プローブ顕微鏡が利用でき、例えば、走査型トンネル顕微鏡、原子間力顕微鏡、走査型近接場光学顕微鏡などから選択することができる。一般的な走査型プローブ顕微鏡の水平方向分解能はナノメートール以下、垂直方向分解能はサブナノメートル以下であり、光学顕微鏡では不可能であった測定確度の高いナノ領域での観察ができる。 That is, according to the micro indentation test apparatus which is one embodiment of the mechanical characteristic measurement apparatus of the present invention, the tip of the indenter 4 is brought into contact with the surface of the test body 5 to a predetermined indentation depth, and the contact center point is used as a reference. A conventional optical microscope is measured by measuring the displacement distribution as a function of the displacement of a point dropped vertically from the contact center point with respect to the surface opposite to the test body side of the indenter 4 or the distance from that point. It is possible to evaluate the mechanical properties in the nano area, which was difficult by the method used. The displacement distribution can be selected from general-purpose scanning probe microscopes capable of measuring with sub-nanometer precision or less, and can be selected from, for example, a scanning tunneling microscope, an atomic force microscope, a scanning near-field optical microscope, etc. . The horizontal resolution of a common scanning probe microscope is less than nanometre, the vertical resolution is less than sub-nanometer, and observation in the nano area with high measurement accuracy which was impossible with an optical microscope is possible.
 図2は、本発明の一実施形態に係る顕微インデンテーション試験装置を含む、インデンテーション・システムの基本構成の一例を説明するブロック図である。 FIG. 2 is a block diagram for explaining an example of a basic configuration of an indentation system including a micro indentation test apparatus according to an embodiment of the present invention.
 図2に示すインデンテーション・システムは、顕微インデンテーション試験機1と、計測制御装置2と、情報処理装置(電子計算機)3で構成される。 The indentation system shown in FIG. 2 comprises a microscopic indentation tester 1, a measurement control unit 2, and an information processing unit (electronic computer) 3.
 顕微インデンテーション試験機1は、圧子4と、試験体5と、その先端を試験体5の表面に接触させる圧子4の背面を観察する走査型プローブ顕微鏡6(以下、プローブ顕微鏡ともいう)、とから構成される。 The micro-indentation tester 1 includes an indenter 4, a test object 5, and a scanning probe microscope 6 (hereinafter also referred to as a probe microscope) for observing the back surface of the indenter 4 bringing its tip into contact with the surface of the test object 5. It consists of
 計測制御装置2は、試験体5の表面と圧子4の先端との位置関係を計測する変位計測装置7と、試験体5と圧子4との接触が所定の圧入深さとなるよう位置制御する精密位置決め装置8、圧子4の背面を観察するプローブ顕微鏡6を制御する表面解析装置9、により構成される。 The measurement control device 2 is a displacement measurement device 7 that measures the positional relationship between the surface of the test body 5 and the tip of the indenter 4, and the precision that position control is performed so that the contact between the test body 5 and the indenter 4 becomes a predetermined press fit depth. It comprises a positioning device 8 and a surface analysis device 9 for controlling a probe microscope 6 for observing the back surface of the indenter 4.
 情報処理装置3はコンピュータ(電子計算機)であり、入出力I/F(Interface)10、CPU(Central Processing Unit)11、条件設定部12、表面解析部13、特性値演算部14、位置制御部15、および、記憶装置16により構成される。情報処理装置3の有する各要素は、バス(Bus)によって接続されている。 The information processing apparatus 3 is a computer (electronic computer), and has an input / output I / F (Interface) 10, a CPU (Central Processing Unit) 11, a condition setting unit 12, a surface analysis unit 13, a characteristic value calculation unit 14, a position control unit 15 and the storage unit 16. The respective elements of the information processing device 3 are connected by a bus (Bus).
 情報処理装置3の表面解析部13で使用される解析プログラムは記憶装置16に格納されており、試験条件である接触変位量を設定するように入出力I/F10を通してユーザーに入力を促し、さらに、コンピュータのメモリなどの主記憶装置上に展開されて実行を行う。同様に、情報処理装置3の位置制御部15で使用される位置制御プログラムは記憶装置16に格納されており、試験条件である接触変位量を設定するように入出力I/F10を通してユーザーに入力を促し、さらに、コンピュータのメモリなどの主記憶装置上に展開されて実行を行う。 The analysis program used by the surface analysis unit 13 of the information processing device 3 is stored in the storage device 16, and prompts the user to input through the input / output I / F 10 so as to set the contact displacement amount which is the test condition. , And is executed on a main storage device such as a computer memory. Similarly, the position control program used by the position control unit 15 of the information processing device 3 is stored in the storage device 16 and input to the user through the input / output I / F 10 so as to set the contact displacement amount which is a test condition. In addition, it is deployed on the main storage device such as a computer memory to perform execution.
 特性値演算部14で使用される演算プログラムは、記憶装置16に格納されており、条件設定部12を通して、圧子4の種類とその弾性率などの試験条件を設定するように入出力I/F10を通してユーザーに入力を促し、さらに、表面解析部13で解析された圧子4の背面変形の値と、記憶装置16に格納されている事前に実施された有限要素解析の結果から試験条件に合致するデータを選択し、コンピュータのメモリなどの主記憶装置上に展開されて実行を行う。 The calculation program used in the characteristic value calculation unit 14 is stored in the storage unit 16, and through the condition setting unit 12, the input / output I / F 10 is set to set test conditions such as the type of the indenter 4 and its elastic modulus. The user is prompted to input through the above, and the test conditions are met from the value of the back deformation of the indenter 4 analyzed by the surface analysis unit 13 and the result of the finite element analysis performed in advance stored in the storage unit 16 Data is selected, expanded on a main storage device such as a computer memory, and executed.
 図3は、圧子の背面変位の変化を計測する装置として機能する走査型プローブ顕微鏡を備えた本発明の一実施形態に係る顕微インデンテーション試験装置の基本構成の一例である。 FIG. 3 is an example of a basic configuration of a micro-indentation test apparatus according to an embodiment of the present invention provided with a scanning probe microscope that functions as an apparatus for measuring a change in back surface displacement of an indenter.
 次に、顕微インデンテーション試験装置により、試験中の圧子の背面変位を精密に計測する機構について説明する。 Next, a mechanism for precisely measuring the back surface displacement of the indenter under test by the micro indentation testing device will be described.
<顕微インデンテーション試験装置の構造>
 図3は、本発明の一実施形態に係る顕微インデンテーション試験装置の機能構成の一例である。なお、以下では、図2に示すインデンテーション・システムの構成例も適宜参照して説明する。
<Structure of micro indentation test device>
FIG. 3 is an example of a functional configuration of a micro indentation test apparatus according to an embodiment of the present invention. In the following, the configuration example of the indentation system shown in FIG. 2 will also be described with appropriate reference.
 ここでは、プローブ顕微鏡6の一例として、「光てこ」方式の原子間力顕微鏡が描かれているが、これに限定されるものではなく、種々の変更が可能である。 Here, as an example of the probe microscope 6, an “optical lever” atomic force microscope is depicted, but the present invention is not limited to this, and various modifications are possible.
 表面観察プローブ20は片持ち梁方式によりXYZ走査機構21に取り付けられており、選択した範囲内を高速に走査し表面情報を収集する。表面情報とは表面観察プローブ20の背面の位置情報である。表面情報はレーザ22と分割フォトダイオード23によって検出され、電流・電圧変換回路24とフィードバック回路25を経て情報処理装置3の表面解析部13に転送される。さらに、位置情報は解析プログラムにより三次元の表面変位分布として解析される。そして、数値化された背面変形量もしくは変位分布は、情報処理装置3の記憶装置16に書き込まれる。 The surface observation probe 20 is attached to the XYZ scanning mechanism 21 by a cantilever method, and scans the selected area at high speed to collect surface information. The surface information is position information of the back surface of the surface observation probe 20. The surface information is detected by the laser 22 and the split photodiode 23, and is transferred to the surface analysis unit 13 of the information processing device 3 through the current / voltage conversion circuit 24 and the feedback circuit 25. Further, the position information is analyzed as a three-dimensional surface displacement distribution by an analysis program. Then, the back surface deformation amount or displacement distribution that has been digitized is written to the storage device 16 of the information processing device 3.
 表面解析装置9によって制御されるプローブ顕微鏡6(走査型プローブ顕微鏡)の表面観察プローブ20の軸は、圧子4と試験体5との接触部とを結ぶ軸と一致するように配置する。こうすることで、圧子4を試験体5に接触させた際に圧子4の背面が変形する挙動をプローブ顕微鏡6で観察することが可能となる。 The axis of the surface observation probe 20 of the probe microscope 6 (scanning probe microscope) controlled by the surface analysis device 9 is arranged to coincide with the axis connecting the indenter 4 and the contact portion of the test body 5. By so doing, it becomes possible to observe the behavior of the back surface of the indenter 4 being deformed by the probe microscope 6 when the indenter 4 is brought into contact with the test body 5.
 すなわち、本実施形態に係る顕微インデンテーション試験装置によれば、圧子4の先端を試験体5の表面に所定の押し込み深さまで接触させ、その接触中心点を基準とし、圧子4の試験体側と反対の面に対して接触中心点から垂直に降ろした点の変位もしくはその点からの距離を関数とする変位分布をプローブ顕微鏡6により計測することによって、従来の光学顕微鏡を用いる方法では困難であったナノ領域での力学特性を評価することができる。 That is, according to the micro-indentation test apparatus according to the present embodiment, the tip of the indenter 4 is brought into contact with the surface of the test body 5 to a predetermined indentation depth, and the contact center point is used as a reference and opposite to the test body side of the indenter 4 It is difficult in the method using the conventional optical microscope by measuring the displacement distribution as a function of the displacement of the point dropped vertically from the contact center point with respect to the plane of the surface or the distance from the point by the probe microscope 6 Mechanical properties in the nano range can be evaluated.
 試験体5の表面位置は、試験体5を載せた試験体保持台27を粗動機構26により上下させることにより、圧子4の先端に接近させることができる。さらに、近接量である空隙の絶対値は粗動機構26に設置した変位計測装置7を用いて計測され、情報処理装置3に転送し、表示させることができる。ただし、圧子4が試験体5と接触した接触点を空隙のゼロ点とする較正をあらかじめ実施しておく必要がある。この接触を検知する手法は種々の方法から選択することができるが、例えば、プローブ顕微鏡6が圧子4の背面の変位を捉えた事象を接触点の検出に利用することができる(詳細は実施例の項に記載する)。 The surface position of the test body 5 can be made to approach the tip of the indenter 4 by moving the test body support 27 on which the test body 5 is mounted up and down by the coarse movement mechanism 26. Furthermore, the absolute value of the air gap which is the proximity amount can be measured using the displacement measurement device 7 installed in the coarse movement mechanism 26, transferred to the information processing device 3, and displayed. However, it is necessary to carry out a calibration in which the contact point where the indenter 4 is in contact with the test body 5 is set as the zero point of the air gap in advance. Although the method of detecting this contact can be selected from various methods, for example, an event in which the probe microscope 6 captures the displacement of the back surface of the indenter 4 can be used to detect a contact point (the details will be described in the embodiment). Described in section).
 精密位置決め装置8を微動させることによって圧子4の先端を試験体5の表面に接触させる。情報処理装置3の条件設定部12で設定した所定の数値となるよう、変位計測装置7と精密位置決め装置8によって精密に調整される。このことにより、インデンテーション試験の圧入量(押し込み量)は確定される。圧入量を一定に保持するため、情報処理装置3の位置制御部15は、変位計測装置7の計測値に基づいて条件設定部12で設定した所定の数値となるよう、精密位置決め装置8に対してフィードバック制御を掛けるクローズドループ機能を備えている。 The tip of the indenter 4 is brought into contact with the surface of the test body 5 by finely moving the precision positioning device 8. The displacement measuring device 7 and the precision positioning device 8 precisely adjust the value to a predetermined numerical value set by the condition setting unit 12 of the information processing device 3. By this, the press-fit amount (push-in amount) of the indentation test is determined. In order to hold the press-fit amount constant, the position control unit 15 of the information processing device 3 makes the precision positioning device 8 to have a predetermined numerical value set by the condition setting unit 12 based on the measurement value of the displacement measuring device 7 It has a closed loop function to perform feedback control.
 接触で生じる負荷値が大きいほど、すなわち、試験体5の表面への押し込み量が多いほど、圧子4の背面変形量は大きい。したがって、精度良く圧子4の背面変形を定量計測するには精密位置決め装置8が微動する移動量を大きくさせることになる。この際、圧子4を試験体5の表面に押し込む移動にともないプローブ顕微鏡6の走査機構21も連動して移動する配置とすることで、圧子4が試験体5の表面に押し込む変位量はキャンセルされ、圧子背面の変形のみが計測される。圧子4と表面観察プローブ20が相対的に同じ位置となる装置配置により、表面観察プローブ20は圧子4の背面を常に観察できる。 The larger the load value generated by the contact, that is, the larger the pressing amount to the surface of the test body 5, the larger the back surface deformation amount of the indenter 4. Therefore, in order to quantitatively measure the back surface deformation of the indenter 4 accurately, the amount of movement of the precision positioning device 8 is increased. At this time, as the scanning mechanism 21 of the probe microscope 6 moves in conjunction with the movement of pressing the indenter 4 into the surface of the test body 5, the displacement amount of the indenter 4 pushing into the surface of the test body 5 is cancelled. , Only deformation of the back of the indenter is measured. The surface observation probe 20 can always observe the back surface of the indenter 4 by the device arrangement in which the indenter 4 and the surface observation probe 20 are relatively at the same position.
 次に、実施例により本発明を詳細に説明する。 Next, the present invention will be described in detail by way of examples.
 本発明の課題について、数値解析として有限要素法を選択し解析的に課題を検証した。有限要素解析は、弾塑性変形を含む接触問題に関し既に有効性が認められたソルバーとして、ここでは大規模有限要素法解析プログラム(FrontISTR)を選択した。接触の解析は非線形静解析にステップ解析を組み合わせて実施した。 With regard to the problem of the present invention, the finite element method was selected as the numerical analysis and the problem was analytically verified. Finite element analysis is selected here as a large-scale finite element analysis program (FrontISTR) as a solver that has already been validated for contact problems involving elasto-plastic deformation. The contact analysis was performed by combining nonlinear static analysis and step analysis.
 有限要素法による計算をするに先立ち、前処理として、汎用のコンピューター・アプリケーション・ソフトウェア(CAD)を用いてモデル作成とメッシュ作成を実施した。ここでの要素数は約6万から約10万程度とした。さらに、有限要素解析の後処理として、汎用の可視化用コンピューター・アプリケーション・ソフトウェアを用いて計算結果を図示させた。
<実施例1>
Prior to calculation by the finite element method, model preparation and mesh formation were performed using general purpose computer application software (CAD) as preprocessing. The number of elements here is about 60,000 to about 100,000. Furthermore, as a post-process of finite element analysis, calculation results are illustrated using general purpose computer application software for visualization.
Example 1
 図1(A)に示した球面圧子を有する顕微インデンテーション試験装置を用いた解析内容の詳細を記載する。 Details of analysis contents using the micro indentation test apparatus having the spherical indenter shown in FIG. 1 (A) will be described.
 球面圧子の球面の形状は直径がD、半径がrである中実の球体の表面である。球面圧子の高さHは、直径Dの1/4である(以下、1/4D球面圧子とも称す)。球面圧子のヤング率Eiは1000MPaに固定し、試験体のヤング率Esを250、500、750、1000、1500MPaと変化させた。また、球面圧子と試験体のポアソン比は0.0とした。 The shape of the spherical surface of the spherical indenter is the surface of a solid sphere of diameter D and radius r. The height H of the spherical indenter is 1⁄4 of the diameter D (hereinafter also referred to as “1⁄4 D spherical indenter”). The Young's modulus Ei of the spherical indenter was fixed at 1000 MPa, and the Young's modulus Es of the test sample was changed to 250, 500, 750, 1000 and 1500 MPa. In addition, the Poisson's ratio of the spherical indenter to the test sample was 0.0.
 有限要素法による解析では寸法の絶対値に意味はないが、ここでは直径Dとして10ミクロン、球面圧子の高さHは2.5ミクロンを選択した。また、試験体は圧子と接触する面の縦Bと横Wが正方形の中実の直方体とした。ここでは、縦Bと横Wは10ミクロン、高さhは5ミクロンとした。また、球面圧子の試験体への圧入量の設定値として、50、100、200、300、400、500 nmと変化させた。 In the analysis by the finite element method, the absolute value of the dimension has no meaning, but here, the diameter D is 10 microns, and the height H of the spherical indenter is 2.5 microns. In addition, the test body was a solid rectangular parallelepiped in which the vertical B and the horizontal W of the surface in contact with the indenter are square. Here, vertical B and horizontal W were 10 microns, and height h was 5 microns. Moreover, as a setting value of the pressing amount of the spherical indenter into the test body, it was changed to 50, 100, 200, 300, 400, 500 nm.
 図4は、球面圧子と試験体ともにヤング率が同じ値1000MPaである条件において、試験体への押し込み量を増大させた際の球面圧子の背面の変位分布に注目して有限要素解析した結果であり、接触中心からの距離Lを横軸として示した図である。 Fig. 4 shows the results of finite element analysis focusing on the displacement distribution on the back surface of the spherical indenter when increasing the amount of indentation to the test object under the condition that the Young's modulus has the same value of 1000 MPa for both the spherical indenter and the test object. FIG. 7 is a diagram showing the distance L from the contact center as the horizontal axis.
 圧子先端を試験体表面に押し込む試験であるため、圧子と試験体との間隔は狭くなり、球面圧子の背面の変位を示すZ軸変位量はマイナスの符号をとる。このことから、各条件における変位分布の解析結果について見てみると、解析された圧子背面の座標には設定値からのズレΔZが発生しており、すなわち、そのズレΔZは背面が隆起するように盛り上がっていること、さらに、そのズレΔZの最大値は接触点の真裏の背面(X=0)であることが判る。図4の右の図は、左の図に示された結果から試験体への圧入量の設定値で規格化して表示したものである。 Since this test is a test in which the indenter tip is pressed into the surface of the test body, the distance between the indenter and the test body becomes narrow, and the Z-axis displacement amount that indicates the displacement of the back surface of the spherical indenter takes a negative sign. From this, when looking at the analysis results of the displacement distribution under each condition, a shift ΔZ from the set value occurs at the coordinates of the back surface of the analyzed indenter, that is, the back surface is raised by the shift ΔZ Further, it can be seen that the maximum value of the deviation ΔZ is the back surface (X = 0) of the back of the contact point. The figure on the right of FIG. 4 is normalized and displayed by the setting value of the amount of indentations to a test body from the result shown by the figure on the left.
 試験体への押し込み量の増大とともに球面圧子背面の変位は増大しており、圧入量500nmに対し接触点の背面では37.6nmの隆起がある。一般的な走査型プローブ顕微鏡の垂直方向分解能はサブナノメートル以下であるので、高い精度で変位分布を計測できることが判る。 The displacement of the back surface of the spherical indenter increases with the increase of the amount of indentation into the test body, and there is a 37.6 nm ridge on the back surface of the contact point for the indentation amount of 500 nm. The vertical resolution of a typical scanning probe microscope is sub-nanometers or less, so it can be seen that the displacement distribution can be measured with high accuracy.
 図5は、球面圧子のヤング率Eiを1000MPaに固定した条件において、試験体のヤング率Esを種々に変化させ(500、750、1000、1500MPa)、さらに、圧子先端の試験体表面への圧入量を種々に変化させた例(50、100、200、300、400、500 nm)において、球面圧子の背面の変位分布に注目して有限要素解析した結果であり、接触中心からの距離Lを横軸として示した図である。 FIG. 5 shows that the Young's modulus Es of the test body is variously changed (500, 750, 1000, 1500 MPa) under the condition that the Young's modulus Ei of the spherical indenter is fixed at 1000 MPa, and further, the indentation of the indenter tip to the surface of the test body In the example (50, 100, 200, 300, 400, 500 nm) where the amount was changed variously, it is the result of the finite element analysis paying attention to the displacement distribution of the back of the spherical indenter, and the distance L from the contact center It is the figure shown as a horizontal axis.
 図6は、球面圧子のヤング率Eiを1000MPaに固定し、圧子先端の試験体表面への圧入量(-Z)を500nmとした条件において、試験体のヤング率Esを種々に変化させた例(250、500、750、1000、1500MPa)、すなわち、試験体と球面圧子との弾性率比を0.25から1.5まで種々変化させ、球面圧子の背面の変位分布に注目して有限要素解析した結果であり、接触中心からの距離Lを横軸として示した図である。 In FIG. 6, the Young's modulus Es of the test sample was variously changed under the condition that the Young's modulus Ei of the spherical indenter was fixed at 1000 MPa and the amount of indentation (-Z 0 ) of the indenter tip to the surface of the test sample was 500 nm. Example (250, 500, 750, 1000, 1500MPa), that is, the elastic modulus ratio between the test body and the spherical indenter is variously changed from 0.25 to 1.5, and attention is paid to the displacement distribution of the back surface of the spherical indenter. It is the result of element analysis, and it is the figure which showed distance L from the contact center as a horizontal axis.
 図6の右の図は、左の図に示された結果を試験体への圧入量の設定値で規格化して再表示したものである。試験体のヤング率Esが増大するにつれ、球面圧子背面の最大変位量は増大している。球面圧子の背面で見られる隆起は、試験体のヤング率が高い場合(Es = 1500 MPa)、46.7nmであった。一方、球面圧子の背面で見られる隆起が一番小さい場合(Es = 250 MPa)、試験体の接触点の背面では24.4nmの隆起があるため、一般的な走査型プローブ顕微鏡を用いて変位分布を高い精度で計測できることが判る。 The figure on the right of FIG. 6 shows the results shown in the figure on the left, re-normalized by the set value of the press-fit amount to the test body. As the Young's modulus Es of the test body increases, the maximum displacement of the back surface of the spherical indenter increases. The bulge seen on the back of the spherical indenter was 46.7 nm when the Young's modulus of the test sample was high (Es = 1500 MPa). On the other hand, if the ridge seen at the back of the spherical indenter is the smallest (Es = 250 MPa), there is a ridge of 24.4 nm at the back of the contact point of the specimen, so displacement using a common scanning probe microscope It can be seen that the distribution can be measured with high accuracy.
 図7は、既知のヤング率を持つ球面圧子を用いた顕微インデンテーション試験の結果から未知試料の試験体のヤング率を評価するための検量線である。上述して来たように、球面圧子の背面で見られる隆起は試験体への押し込み量及び試験体と圧子とのヤング率比で一律に決まる。したがって、図7中に示した2本の矢印が例示するように、所定の試験体への押し込み量(-Z)において計測された球面圧子背面の変位変化の最大値から、試験体と圧子とのヤング率比Es/Eiが求められる。さらに、その値に対して既知である圧子の弾性率Eiを積算することによって未知試料の弾性率Esが評価できる。
<実施例2>
FIG. 7 is a calibration curve for evaluating the Young's modulus of a test sample of an unknown sample from the results of a micro-indentation test using a spherical indenter having a known Young's modulus. As described above, the bumps seen on the back of the spherical indenter are uniformly determined by the amount of indentation into the test body and the Young's modulus ratio of the test body to the indenter. Therefore, as exemplified by the two arrows shown in FIG. 7, from the maximum value of the change in displacement of the back surface of the spherical indenter measured at the amount of indentation (-Z 0 ) to the predetermined test object, the test object and the indenter The Young's modulus ratio Es / Ei of is calculated. Furthermore, the elastic modulus Es of the unknown sample can be evaluated by integrating the elastic modulus Ei of the indenter which is known with respect to the value.
Example 2
 図1(B)に示した円錐圧子を有する顕微インデンテーション試験装置を用いた解析内容の詳細を記載する。 Details of analysis contents using the micro indentation test apparatus having a conical indenter shown in FIG. 1 (B) will be described.
 円錐圧子の形状は面傾斜角βが19.7度である中実の円錐(コーン)である。この角度は一般的なバーコビッチ型三角錐圧子と同一の圧子圧入量の時、同じ体積となる等価円錐から定められた値である。この面傾斜角(β=19.7)と円錐圧子背面の円の直径(D=10.0ミクロン)とから、圧子背面の高さHは1.79ミクロンとした。本実施例では、円錐圧子のヤング率Eiは1000MPaに固定し、試験体のヤング率Esを250、500、750、1000、1500MPaと変化させた。また、円錐圧子と試験体のポアソン比は0.0とした。 The shape of the conical indenter is a solid cone with a surface inclination angle β of 19.7 degrees. This angle is a value determined from an equivalent cone having the same volume when the indenter pressing amount is the same as that of a general Berkovich type triangular pyramid indenter. From this surface inclination angle (β = 19.7) and the diameter of the circle on the back of the conical indenter (D = 10.0 microns), the height H of the back of the indenter was 1.79 microns. In this example, the Young's modulus Ei of the conical indenter was fixed at 1000 MPa, and the Young's modulus Es of the test sample was changed to 250, 500, 750, 1000, and 1500 MPa. Also, the Poisson's ratio of the conical indenter to the test sample was 0.0.
 試験体は圧子と接触する面の縦Bと横Wが正方形の中実の直方体とした。ここでは、縦Bと横Wは10ミクロン、高さhは5ミクロンとした。また、球面圧子の試験体への圧入量の設定値として、50、100、200、300、360、450、500 nmと変化させた。 The test body was a solid rectangular parallelepiped in which the vertical B and the horizontal W of the surface in contact with the indenter were square. Here, vertical B and horizontal W were 10 microns, and height h was 5 microns. Moreover, as a setting value of the pressing amount to the test body of a spherical indenter, it was changed with 50, 100, 200, 300, 360, 450, 500 nm.
 図8は、円錐圧子と試験体ともにヤング率が同じ値1000MPaである条件において、試験体への押し込み量を増大させた際の円錐圧子の背面の変位分布に注目して有限要素解析した結果であり、接触中心からの距離Lを横軸として示した図である。 FIG. 8 shows the results of finite element analysis focusing on the displacement distribution on the back surface of the conical indenter when increasing the amount of indentation to the specimen under the condition that the Young's modulus has the same value of 1000 MPa for both the conical indenter and the specimen. FIG. 7 is a diagram showing the distance L from the contact center as the horizontal axis.
 圧子先端を試験体表面に押し込む試験であるため、圧子と試験体との間隔は狭くなり、円錐圧子の背面の変位を示すZ軸変位量はマイナスの符号をとる。このことから、各条件における変位分布の解析結果について見てみると、解析された圧子背面の座標には設定値からのズレΔZが発生しており、すなわち、そのズレΔZは背面が隆起していること、さらに、そのズレΔZの最大値は接触点の真裏の背面(X=0)であることが判る。図8の右の図は、左の図に示された結果から試験体への圧入量の設定値で規格化して再表示したものである。 Since this test is a test in which the indenter tip is pressed into the surface of the test body, the distance between the indenter and the test body is narrowed, and the Z-axis displacement amount indicating the displacement of the back surface of the conical indenter has a minus sign. From this, when looking at the analysis results of the displacement distribution under each condition, a shift ΔZ from the set value occurs at the coordinates of the back surface of the analyzed indenter, that is, the shift ΔZ Further, it can be seen that the maximum value of the deviation ΔZ is the back surface (X = 0) of the back of the contact point. The figure on the right of FIG. 8 shows the results shown in the figure on the left normalized and re-displayed with the set value of the press-fit amount to the test body.
 試験体への押し込み量の増大とともに円錐圧子背面の変位は増大しており、圧入量500nmに対し接触点の背面では35.9nmの隆起がある。一般的な走査型プローブ顕微鏡の垂直方向分解能はサブナノメートル以下であるので、高い精度で変位分布を計測できることが判る。 The displacement of the back of the conical indenter increases with the increase of the amount of indentation into the test body, and there is a 35.9 nm ridge on the back of the contact point for the indentation amount of 500 nm. The vertical resolution of a typical scanning probe microscope is sub-nanometers or less, so it can be seen that the displacement distribution can be measured with high accuracy.
 図9は、円錐圧子のヤング率Eiを1000MPaに固定した条件において、試験体のヤング率Esを種々に変化させ(500、750、1000、1500MPa)、さらに、圧子先端の試験体表面への圧入量を種々に変化させた例(50、100、200、300、360、450、500 nm)において、円錐圧子の背面の変位分布に注目して有限要素解析した結果であり、接触中心からの距離Lを横軸として示した図である。 FIG. 9 shows that the Young's modulus Es of the test body is variously changed (500, 750, 1000, 1500 MPa) under the condition that the Young's modulus Ei of the conical indenter is fixed at 1000 MPa, and further, the indentation of the indenter tip to the test body surface In the example (50, 100, 200, 300, 360, 450, 500 nm) where the amount was changed variously, it is the result of the finite element analysis paying attention to the displacement distribution on the back of the conical indenter, and the distance from the contact center It is the figure which showed L as a horizontal axis.
 図10は、円錐圧子のヤング率Eiを1000MPaに固定し、圧子先端の試験体表面への圧入量(-Z)を500nmとした条件において、試験体のヤング率Esを種々に変化させた例(250、500、750、1000、1500MPa)、すなわち、試験体と円錐圧子との弾性率比を0.25から1.5まで種々変化させ、円錐圧子の背面の変位分布に注目して有限要素解析した結果であり、接触中心からの距離Lを横軸として示した図である。 In FIG. 10, the Young's modulus Es of the test sample was variously changed under the condition that the Young's modulus Ei of the conical indenter was fixed at 1000 MPa and the amount of indentation (-Z 0 ) of the indenter tip into the surface of the test sample was 500 nm. Example (250, 500, 750, 1000, 1500MPa), that is, changing the elastic modulus ratio of the test body to the conical indenter from 0.25 to 1.5 and focusing on the displacement distribution on the back of the conical indenter It is the result of element analysis, and it is the figure which showed distance L from the contact center as a horizontal axis.
 図10の右の図は、左の図に示された結果を試験体への圧入量の設定値で規格化して再表示したものである。試験体のヤング率Esが増大するにつれ、球面圧子背面の最大変位量は増大している。球面圧子の背面で見られる隆起は、試験体のヤング率が高い場合(Es = 1500 MPa)、40.9nmであった。一方、球面圧子の背面で見られる隆起が一番小さい場合(Es = 250 MPa)、試験体の接触点の背面では13.7nmの隆起があるため、一般的な走査型プローブ顕微鏡を用いて変位分布を高い精度で計測できることが判る。 The drawing on the right of FIG. 10 shows the results shown in the drawing on the left, renormalized by the set value of the press-fit amount to the test body and displayed again. As the Young's modulus Es of the test body increases, the maximum displacement of the back surface of the spherical indenter increases. The bulge seen on the back of the spherical indenter was 40.9 nm when the Young's modulus of the test sample was high (Es = 1500 MPa). On the other hand, if the ridge seen at the back of the spherical indenter is the smallest (Es = 250 MPa), there is a ridge of 13.7 nm at the back of the contact point of the specimen, so displacement using a common scanning probe microscope It can be seen that the distribution can be measured with high accuracy.
 図11は、既知のヤング率を持つ円錐圧子を用いた顕微インデンテーション試験の結果から未知試料の試験体のヤング率を評価するための検量線である。上述して来たように、円錐圧子の背面で見られる隆起は試験体への押し込み量及び試験体と圧子とのヤング率比で一律に決まる。したがって、図11中に示した2本の矢印が例示するように、所定の試験体への押し込み量(-Z)において計測された円錐圧子背面の変位変化の最大値から、試験体と圧子とのヤング率比Es/Eiが求められる。さらに、その値に対して既知である圧子の弾性率Eiを積算することによって未知試料の弾性率Esが評価できる。
<実施例3>
FIG. 11 is a calibration curve for evaluating the Young's modulus of a test sample of an unknown sample from the results of a microscopic indentation test using a conical indenter having a known Young's modulus. As described above, the bumps seen on the back of the conical indenter are uniformly determined by the amount of indentation into the test body and the Young's modulus ratio of the test body to the indenter. Therefore, as the two arrows illustrate that shown in the figure 11, from the maximum value of the pressing amount (-Z 0) measured displacement change of the conical indenter back in to a given specimen, test specimen and the indenter The Young's modulus ratio Es / Ei of is calculated. Furthermore, the elastic modulus Es of the unknown sample can be evaluated by integrating the elastic modulus Ei of the indenter which is known with respect to the value.
Example 3
 図1(A)に示した球面圧子を有する顕微インデンテーション試験装置を用いた実験内容の詳細を記載する。 Details of the experiment contents using the micro indentation test apparatus having the spherical indenter shown in FIG. 1 (A) will be described.
 この実施例では、図1(A)に示した表面観察プローブ20としてレーザ光を選択し、反射式のCCDレーザ変位計(キーエンス製、LK-G35、レーザ波長:650nm)と自動駆動機構(シグマ光機製、SGSP20-85)とにより走査型プローブ顕微鏡を構成した。Z軸方向の変位計測の繰り返し精度は10nmである。 In this embodiment, a laser beam is selected as the surface observation probe 20 shown in FIG. 1A, and a reflection type CCD laser displacement meter (manufactured by KEYENCE, LK-G35, laser wavelength: 650 nm) and an automatic drive mechanism (Sigma) A scanning probe microscope was constructed by using an optical scanner, SGSP20-85). The repetition accuracy of displacement measurement in the Z-axis direction is 10 nm.
 球面圧子の球面の形状は直径Dが44mmの中実の球体の表面であり、球面圧子の高さHは16mmである。球面圧子の材質はポリウレタンであり、球面圧子のヤング率Eiは230kPaに固定した。試験体の材質はポリウレタンとアルミニウム合金とし、ポリウレタンは、ヤング率Esが100、510kPaと異なる2種類を選択した。アルミニウム合金のヤング率Esは70 GPaである。 The shape of the spherical surface of the spherical indenter is the surface of a solid sphere having a diameter D of 44 mm, and the height H of the spherical indenter is 16 mm. The material of the spherical indenter was polyurethane, and the Young's modulus Ei of the spherical indenter was fixed at 230 kPa. The material of the test body was polyurethane and an aluminum alloy, and two types of polyurethane different in Young's modulus Es from 100 and 510 kPa were selected. The Young's modulus Es of the aluminum alloy is 70 GPa.
 試験体に対する球面圧子の圧入量は、死荷重による定荷重制御方式とした。球面圧子自体の重量は13.44gf(131.8mN)であり、それに追加する重りの重量(以下、追加重量とも称す)を、0gf(追加重量なし、0mN)、5.28gf(51.8mN)もしくは10.48gf(102.8mN)とした。よって、試験体の表面に負荷される総荷重は、13.44gf(131.8mN)、18.72gf(183.6mN)、23.92gf(234.6mN)となる。
 なお、本実施例に関して記載する負荷力は、「1kgf=9.80665N」に従って換算されることが理解される。
The amount of pressing of the spherical indenter into the test body was a constant load control method by dead load. The weight of the spherical indenter itself is 13.44 gf (131.8 mN), and the weight of the weight added thereto (hereinafter also referred to as additional weight) is 0 gf (no additional weight, 0 mN), 5.28 gf (51.8 mN) Or it was set to 10.48 gf (102.8 mN). Accordingly, the total load applied to the surface of the test body is 13.44 gf (131.8 mN), 18.72 gf (183.6 mN), 23.92 gf (234.6 mN).
In addition, it is understood that the load force described in connection with the present embodiment is converted according to “1 kgf = 9.80665N”.
 図12は、低弾性体の代表としてポリウレタン(ヤング率Es:100kPa)を、高弾性体の代表としてアルミニウム合金(ヤング率Es:70GPa)を試験体として選択し、両者を比較するために重ねて図示したものである。実験は、試験体に球面圧子のみを載せた場合(追加重量を搭載しない場合)を基準(以下、Referenceとも称す)とし、順次、追加重量を搭載させた状態(図中、5.28gf、10.48gfと示す)における球面圧子の背面変位分布を計測した。 In FIG. 12, polyurethane (Young's modulus Es: 100 kPa) is selected as a representative of a low elastic body, and an aluminum alloy (Young's modulus Es: 70 GPa) is selected as a representative of a high elastic body. It is illustrated. In the experiment, when only the spherical indenter was placed on the test body (when no additional weight was loaded), the additional weight was loaded sequentially (5.28 gf, 10 in the figure), using the reference (hereinafter also referred to as “Reference”). The back surface displacement distribution of the spherical indenter was measured.
 図13は、試験体としてヤング率Esが100、もしくは、510kPaである2種類のポリウレタンとヤング率Esが70 GPaであるアルミニウム合金の球面圧子の背面変位分布である。この図では、球面圧子の背面変位分布は、所定の負荷荷重によって決まる球面圧子の押し込み量(-Z)で規格化した値(-Z/Z)で表示してあるため、球面圧子背面の隆起が谷として図示される。試験体に負荷する荷重を増大させると、各図における谷はより深く、すなわち、隆起が大きくなることが判る。また、その隆起の最大値は、圧子と試験体との接触点の真裏の背面(X=0)であることが判る。さらに、隆起の負荷荷重依存性、すなわち、Referenceからの隆起変化(谷の深さ変化)と追加重量との関係に注目すると、試験体のヤング率が高いほど、同じ追加重量に対する隆起変化量ΔZ’x=0が大きいことが判る。 FIG. 13 is a back surface displacement distribution of a spherical indenter of two types of polyurethane having a Young's modulus Es of 100 or 510 kPa as a test body and an aluminum alloy having a Young's modulus Es of 70 GPa. In this figure, since the back surface displacement distribution of the spherical indenter is represented by the value (-Z / Z 0 ) normalized by the indentation amount (-Z 0 ) of the spherical indenter determined by the predetermined load, the back surface of the spherical indenter is The ridges of the are illustrated as valleys. It can be seen that as the load on the test body is increased, the valleys in each figure are deeper, ie the bumps become larger. In addition, it can be seen that the maximum value of the bulge is the back surface (X = 0) of the back of the contact point between the indenter and the test body. Furthermore, focusing on the load-load dependence of the ridge, that is, the relationship between the ridge change from the Reference (valley depth change) and the additional weight, the higher the Young's modulus of the test body, the more the ridge change ΔZ for the same additional weight It can be seen that 'x = 0 is large.
 図14は、図13の隆起変化量ΔZ’x=0を縦軸に、球面圧子のヤング率Eiと試験体のヤング率Esとの比Es/Eiを横軸にプロットした図である。この図は、既知のヤング率を持つ球面圧子を用いた顕微インデンテーション試験の結果から未知試料の試験体のヤング率を評価するための検量線である。図14中に示した2本の矢印が例示するように、所定の追加重量で計測された圧子背面変位の隆起変化量ΔZ’x=0から、試験体と圧子とのヤング率比Es/Eiが求められる。さらに、その値に対して既知である圧子の弾性率Eiを積算することによって未知試料の弾性率Esが評価できる。 FIG. 14 is a diagram in which the ratio Es / Ei of the Young's modulus Ei of the spherical indenter to the Young's modulus Es of the test body is plotted on the abscissa, with the elevation change amount ΔZ'x = 0 in FIG. 13 taken on the ordinate. This figure is a calibration curve for evaluating the Young's modulus of the test sample of the unknown sample from the result of the micro indentation test using a spherical indenter having a known Young's modulus. As exemplified by the two arrows shown in FIG. 14, the Young's modulus ratio Es / Ei between the test body and the indenter from the amount of change in elevation of the indenter back surface displacement ΔZ'x = 0 measured with a predetermined additional weight. Is required. Furthermore, the elastic modulus Es of the unknown sample can be evaluated by integrating the elastic modulus Ei of the indenter which is known with respect to the value.
 以上、本発明の好ましい実施形態を、添付の図面を参照して例示の実施例により詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 While the preferred embodiments of the present invention have been described in detail by way of example with reference to the accompanying drawings, the present invention is not limited to such specific embodiments, but rather is described in the claims. Within the scope of the gist of the present invention, various modifications and changes are possible.
1 顕微インデンテーション試験機
2 計測制御装置
3 情報処理装置(電子計算機)
4 圧子
5 試験体
6 プローブ顕微鏡
7 変位計測装置
8 精密位置決め装置
9 表面解析装置
10 入出力I/F
11 CPU
12 条件設定部
13 表面解析部
14 特性値演算部
15 位置制御部
16 記憶装置
20 表面観察プローブ
21 XYZ走査機構
22 レーザ
23 分割フォトダイオード
24 電流・電圧変換回路
25 フィードバック回路
26 粗動機構
27 試験体保持台
1 Micro Indentation Tester 2 Measurement Control Device 3 Information Processing Device (Electronic Computer)
4 indenter 5 test body 6 probe microscope 7 displacement measuring device 8 precise positioning device 9 surface analysis device 10 input / output I / F
11 CPU
12 condition setting unit 13 surface analysis unit 14 characteristic value calculation unit 15 position control unit 16 storage device 20 surface observation probe 21 XYZ scanning mechanism 22 laser 23 split photodiode 24 current-voltage conversion circuit 25 feedback circuit 26 coarse movement mechanism 27 test body Holding stand

Claims (10)

  1.  測定試料の試験体の表面に圧子を押し込んで接触させた状態で、圧子の試験体側と反対の面の形状変化を計測することによって、測定試料の力学特性を評価する力学特性試験方法。 The mechanical property test method which evaluates the mechanical property of a measurement sample by measuring the shape change of the opposite side to the test body side of an indenter in the state where the indenter is pressed into contact with the surface of the test sample of the measurement sample.
  2.  前記圧子と、前記試験体と、表面観察プローブを備えた走査型プローブ顕微鏡と、を有する顕微インデンテーション試験機を用いて、
     前記走査型プローブ顕微鏡により、前記圧子の先端を、前記試験体の表面に前記圧子を押し込んで接触させた状態で、前記圧子の前記試験体側と反対の面の形状変化を計測する請求項1に記載の力学特性試験方法。
    Using a micro-indentation tester comprising the indenter, the test body, and a scanning probe microscope equipped with a surface observation probe,
    The scanning probe microscope measures the shape change of the surface of the indenter opposite to the side of the test body while the tip of the indenter is pressed into contact with the surface of the test body and brought into contact with the tip of the indenter. Mechanical property test method described.
  3.  前記顕微インデンテーション試験機と、計測制御装置と、情報処理装置とを有する力学特性計測装置を用いて、
     前記計測制御装置により、
      前記試験体の表面と前記圧子の先端との位置関係を計測し、
      前記試験体と前記圧子との押し込みが所定の圧入深さとなるように位置制御し、
      前記圧子の背面を観察する前記走査型プローブ顕微鏡を制御し、
     前記情報処理装置により、
      前記顕微インデンテーション試験機から前記表面観察プローブの背面の表面情報を受け取り、表面変形量もしくは表面変位分布として解析し、
      解析された表面変形量もしくは表面変位分布を記憶装置に記憶し、
     前記記憶装置に記憶された既知の力学特性を有する前記圧子を用いた前記顕微インデンテーション試験機による顕微インデンテーション試験の結果から、未知試料の試験体の力学特性を評価することを特徴とする請求項2に記載の力学特性試験方法。
    By using a mechanical characteristic measuring apparatus having the above-mentioned micro indentation test machine, a measurement control apparatus, and an information processing apparatus,
    By the measurement control device,
    Measuring the positional relationship between the surface of the test body and the tip of the indenter;
    Position control is performed so that pressing of the test body and the indenter has a predetermined press-fit depth,
    Controlling the scanning probe microscope for observing the back surface of the indenter;
    The information processing apparatus
    Receiving surface information of the back surface of the surface observation probe from the micro-indentation tester, and analyzing it as surface deformation or surface displacement distribution;
    Store the analyzed surface deformation amount or surface displacement distribution in the storage device,
    The mechanical properties of the test body of the unknown sample are evaluated from the results of the micro indentation test by the micro indentation test using the indenter having the known mechanical properties stored in the storage device. The mechanical property test method of claim 2.
  4.  前記圧子の前記試験体表面との接触中心点を基準とし、前記圧子の前記試験体側と反対の面に対して接触中心点から垂直に降ろした点の変位もしくはその点からの距離を関数とする変位分布を計測する請求項1から3のいずれか一項に記載の力学特性試験方法。 Based on the contact center point of the indenter with the surface of the test body, the displacement of a point dropped vertically from the contact center point with respect to the surface of the indenter opposite to the test body side or the distance from that point is used as a function. The dynamic characteristic test method according to any one of claims 1 to 3, wherein the displacement distribution is measured.
  5.  測定試料の試験体に押し込む圧子と、
     圧子の試験体側と反対の面の形状変化を計測する計測手段と、を備えた力学特性計測装置。
    An indenter that is pressed into the test sample of the measurement sample,
    And a measuring means for measuring the shape change of the surface of the indenter opposite to the test body side.
  6.  顕微インデンテーション試験機を備え、この顕微インデンテーション試験機は、
      前記圧子と、
      前記試験体と、
      前記圧子の先端を、前記試験体の表面に前記圧子を押し込んで接触させた状態で、前記圧子の前記試験体側と反対の面の形状変化を計測する、表面観察プローブを備えた走査型プローブ顕微鏡を有し、
     前記計測手段は、前記走査型プローブ顕微鏡を含む、請求項5に記載の力学特性計測装置。
    The micro indentation tester is equipped with a micro indentation tester.
    The indenter;
    Said test body,
    A scanning probe microscope equipped with a surface observation probe that measures the change in shape of the surface of the indenter opposite to the side of the test body in a state where the tip of the indenter is pressed into contact with the surface of the test body Have
    The mechanical property measuring device according to claim 5, wherein the measuring means includes the scanning probe microscope.
  7.  前記顕微インデンテーション試験機と、計測制御装置と、情報処理装置とを備え、
     前記計測制御装置は、
        前記試験体の表面と前記圧子の先端との位置関係を計測する変位計測装置と、
      前記試験体と前記圧子との接触が所定の圧入深さとなるように位置制御する精密位置決め装置と、
      前記圧子の背面を観察する前記走査型プローブ顕微鏡を制御する表面解析装置を有し、
     前記情報処理装置は、
      前記顕微インデンテーション試験機から前記表面観察プローブの背面の表面情報を受け取り、三次元の表面変形量もしくは表面変位分布として解析する表面解析部と、
      前記表面解析部で解析された表面変形量もしくは表面変位分布を記憶する記憶装置を有し、
     前記記憶装置に記憶された既知の力学特性を有する前記圧子を用いた、前記顕微インデンテーション試験機による顕微インデンテーション試験の結果から、未知試料の試験体の力学特性を評価する、請求項6に記載の力学特性計測装置。
    The microscope indentation test apparatus, a measurement control apparatus, and an information processing apparatus
    The measurement control device
    A displacement measuring device for measuring the positional relationship between the surface of the test body and the tip of the indenter;
    A precision positioning device that performs position control such that the contact between the test body and the indenter has a predetermined press-fit depth;
    It has a surface analysis device for controlling the scanning probe microscope for observing the back surface of the indenter,
    The information processing apparatus is
    A surface analysis unit that receives surface information of the back surface of the surface observation probe from the micro-indentation tester and analyzes it as a three-dimensional surface deformation amount or surface displacement distribution;
    A storage device for storing the surface deformation amount or surface displacement distribution analyzed by the surface analysis unit;
    The mechanical characteristics of the test body of the unknown sample are evaluated from the results of the micro indentation test by the micro indentation test using the indenter having the known mechanical characteristics stored in the storage device. Mechanical property measuring device as described.
  8.  前記圧子と、前記表面観察プローブの探針とが縦方向に配列した縦型二重構造を有する請求項6又は7に記載の力学特性計測装置。 The mechanical characteristic measurement device according to claim 6 or 7, having a vertical double structure in which the indenter and the probe of the surface observation probe are arranged in the longitudinal direction.
  9.  前記表面観察プローブは、片持ち梁方式により前記走査型プローブ顕微鏡のXYZ走査機構に、前記XYZ走査機構と連動できるように取り付けられている、請求項6から8のいずれか一項に記載の力学特性計測装置。
    The mechanics according to any one of claims 6 to 8, wherein the surface observation probe is attached to the XYZ scanning mechanism of the scanning probe microscope by a cantilever method so as to be interlocked with the XYZ scanning mechanism. Characteristic measurement device.
  10.  前記走査型プローブ顕微鏡は、前記圧子の前記試験体表面との接触中心点を基準とし、圧子の試験体側と反対の面に対して接触中心点から垂直に降ろした点の変異もしくはその点からの距離を関数とする変位分布を計測するように構成されている、請求項6から9のいずれか一項に記載の力学特性計測装置。 The scanning probe microscope is based on a contact center point of the indenter with the surface of the test body, and a variation or a point from a point dropped vertically from the contact center point with respect to a surface opposite to the test body side of the indenter. 10. A mechanical property measuring device according to any one of claims 6 to 9, configured to measure a displacement distribution as a function of distance.
PCT/JP2018/024193 2017-06-28 2018-06-26 Mechanical-property testing method and measurement device WO2019004211A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019526936A JP7046383B2 (en) 2017-06-28 2018-06-26 Mechanical property test method and measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-126201 2017-06-28
JP2017126201 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019004211A1 true WO2019004211A1 (en) 2019-01-03

Family

ID=64742332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024193 WO2019004211A1 (en) 2017-06-28 2018-06-26 Mechanical-property testing method and measurement device

Country Status (2)

Country Link
JP (1) JP7046383B2 (en)
WO (1) WO2019004211A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220454A (en) * 2020-03-19 2020-06-02 重庆大学 Device and method for detecting forming performance of semi-solid alloy
CN112924275A (en) * 2021-01-25 2021-06-08 武汉大学 Micro-force measuring device, preparation method thereof and in-situ mechanical testing method
CN113324846A (en) * 2021-05-28 2021-08-31 中国人民解放军国防科技大学 Accelerated aging test method and device for solid propellant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153775A (en) * 1999-11-30 2001-06-08 Univ Kansai Method and apparatus for indentation hardness test
US20050154540A1 (en) * 2004-01-14 2005-07-14 The Hong Kong Polytechnic University Method of determining elastic modulus
JP3182252U (en) * 2012-12-28 2013-03-14 独立行政法人産業技術総合研究所 Mechanical property measurement test equipment
WO2016194985A1 (en) * 2015-06-02 2016-12-08 国立研究開発法人産業技術総合研究所 Measurement apparatus for performing indentation/creep test, testing method, physical property evaluation program, and recording medium in which physical property evaluation program is recorded.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230974A (en) * 1998-02-17 1999-08-27 Olympus Optical Co Ltd Probe and manufacture thereof
JP5024152B2 (en) 2007-10-16 2012-09-12 Jfeスチール株式会社 Tension stiffness measurement indenter, tension stiffness measurement method and apparatus
JP6339969B2 (en) 2015-05-18 2018-06-06 国立大学法人名古屋大学 Deformation resistance identification method for thin inspection materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153775A (en) * 1999-11-30 2001-06-08 Univ Kansai Method and apparatus for indentation hardness test
US20050154540A1 (en) * 2004-01-14 2005-07-14 The Hong Kong Polytechnic University Method of determining elastic modulus
JP3182252U (en) * 2012-12-28 2013-03-14 独立行政法人産業技術総合研究所 Mechanical property measurement test equipment
WO2016194985A1 (en) * 2015-06-02 2016-12-08 国立研究開発法人産業技術総合研究所 Measurement apparatus for performing indentation/creep test, testing method, physical property evaluation program, and recording medium in which physical property evaluation program is recorded.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220454A (en) * 2020-03-19 2020-06-02 重庆大学 Device and method for detecting forming performance of semi-solid alloy
CN111220454B (en) * 2020-03-19 2022-06-21 重庆大学 Device and method for detecting forming performance of semi-solid alloy
CN112924275A (en) * 2021-01-25 2021-06-08 武汉大学 Micro-force measuring device, preparation method thereof and in-situ mechanical testing method
CN112924275B (en) * 2021-01-25 2022-06-24 武汉大学 Micro-force measuring device, preparation method thereof and in-situ mechanical testing method
CN113324846A (en) * 2021-05-28 2021-08-31 中国人民解放军国防科技大学 Accelerated aging test method and device for solid propellant

Also Published As

Publication number Publication date
JP7046383B2 (en) 2022-04-04
JPWO2019004211A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
Moser et al. Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test
Griepentrog et al. Comparison of nanoindentation and AFM methods for the determination of mechanical properties of polymers
WO2019004211A1 (en) Mechanical-property testing method and measurement device
Baker Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime
Sagadevan et al. Novel Analysis on the Influence of Tip Radius and Shape of the Nanoindenter on the Hardness of Materials
Marinello et al. Error sources in atomic force microscopy for dimensional measurements: Taxonomy and modeling
Wang et al. Principle and methods of nanoindentation test
Krier et al. Introduction of the real tip defect of Berkovich indenter to reproduce with FEM nanoindentation test at shallow penetration depth
CN100356160C (en) Improved method for testing micro-cantilever beam elasticity coefficient
Cai et al. An ultra-precision tool nanoindentation instrument for replication of single point diamond tool cutting edges
Heim et al. Direct thermal noise calibration of colloidal probe cantilevers
Jarzabek et al. Elastic modulus and fracture strength evaluation on the nanoscale by scanning force microscope experiments
Geng et al. Investigation of the nanoscale elastic recovery of a polymer using an atomic force microscopy-based method
Grutzik et al. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers
Huang et al. Mechanical characterization of thin film materials with nanoindentation measurements and FE analysis
Wang et al. Finite element modelling of atomic force microscope cantilever beams with uncertainty in material and dimensional parameters
Fischer et al. Determination of adhesion forces between smooth and structured solids
Gorman et al. Probe-based micro-scale manipulation and assembly using force feedback
JP3675406B2 (en) Micromaterial testing apparatus and mechanical property evaluation method using the same
Daugela et al. Opto-nanomechanical test instrument in mechanical characterization of DLC coated MEMS devices
Su et al. Investigation of near-surface mechanical properties of materials using atomic force microscopy
Danzebrink et al. Dimensional nanometrology at PTB
Marinello Atomic force microscopy in nanometrology: modeling and enhancement of the instrument
JP2005201908A (en) Micro material testing apparatus
Hoffman Measuring the elastic modulus of polymers using the atomic force microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526936

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824335

Country of ref document: EP

Kind code of ref document: A1