WO2019004189A1 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
WO2019004189A1
WO2019004189A1 PCT/JP2018/024151 JP2018024151W WO2019004189A1 WO 2019004189 A1 WO2019004189 A1 WO 2019004189A1 JP 2018024151 W JP2018024151 W JP 2018024151W WO 2019004189 A1 WO2019004189 A1 WO 2019004189A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
terminal
processing apparatus
plasma processing
balun
Prior art date
Application number
PCT/JP2018/024151
Other languages
English (en)
French (fr)
Inventor
公司 山崎
忠 井上
正治 田名部
一成 関谷
浩 笹本
辰憲 佐藤
信昭 土屋
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2017/023603 external-priority patent/WO2019003309A1/ja
Priority claimed from PCT/JP2017/023611 external-priority patent/WO2019003312A1/ja
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to JP2019517996A priority Critical patent/JP6546369B2/ja
Publication of WO2019004189A1 publication Critical patent/WO2019004189A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a plasma processing apparatus.
  • a plasma processing apparatus which generates a plasma by applying a high frequency between two electrodes and processes a substrate by the plasma.
  • Such a plasma processing apparatus can operate as a sputtering apparatus or as an etching apparatus depending on the area ratio and / or bias of the two electrodes.
  • a plasma processing apparatus configured as a sputtering apparatus has a first electrode holding a target and a second electrode holding a substrate, and a high frequency is applied between the first electrode and the second electrode, A plasma is generated between the electrode and the second electrode (between the target and the substrate).
  • the generation of plasma generates a self-bias voltage on the surface of the target, which causes the ions to collide with the target, and the target releases particles of the material constituting it.
  • Patent Document 1 describes a sputtering apparatus having a grounded chamber, a target electrode connected to an RF source via an impedance matching network, and a substrate holding electrode grounded via a substrate electrode tuning circuit. It is done.
  • a chamber can function as an anode in addition to a substrate holding electrode.
  • the self bias voltage may depend on the state of the part that can function as a cathode and the state of the part that can function as an anode.
  • the cell bias voltage may change depending on the state of the portion of the chamber functioning as the anode. Changes in the self-bias voltage result in changes in the plasma potential, which can affect the properties of the film formed.
  • the film When a film is formed on the substrate by a sputtering apparatus, the film may be formed on the inner surface of the chamber. This can change the state of the portion of the chamber that can function as the anode. Therefore, when the sputtering apparatus is used continuously, the film formed on the inner surface of the chamber changes the self bias voltage, and the plasma potential may also change. Therefore, conventionally, when the sputtering apparatus is used for a long time, it has been difficult to maintain the characteristics of the film formed on the substrate constant.
  • the film formed on the inner surface of the chamber changes the self bias voltage, which may also change the plasma potential, thereby maintaining the etching characteristics of the substrate constant. It was difficult.
  • the present invention has been made based on the above-mentioned problem recognition, and provides an advantageous technique for stabilizing the plasma potential in long-term use.
  • One aspect of the present invention relates to a plasma processing apparatus, which comprises a balun having a first unbalanced terminal, a second unbalanced terminal, a first balanced terminal and a second balanced terminal, and a vacuum connected to ground.
  • a container a first electrode electrically connected to the first balanced terminal, and a second electrode electrically connected to the second balanced terminal, wherein the second electrode has a ring shape .
  • FIG. 1 The figure which shows typically the structure of the plasma processing apparatus 1 of 1st Embodiment of this invention.
  • FIG. 1 schematically shows the configuration of a plasma processing apparatus 1 according to a first embodiment of the present invention.
  • the plasma processing apparatus of the first embodiment can operate as a sputtering apparatus for forming a film on a substrate 112 by sputtering.
  • the plasma processing apparatus 1 includes a balun (balance-unbalance conversion circuit) 103, a vacuum vessel 110, a first electrode 106, and a second electrode 111.
  • the plasma processing apparatus 1 may be understood as comprising a balun 103 and a main body 10, wherein the main body 10 comprises a vacuum vessel 110, a first electrode 106 and a second electrode 111.
  • the main body 10 has a first terminal 251 and a second terminal 252.
  • the first electrode 106 may be disposed to cooperate with the vacuum vessel 110 to separate the vacuum space from the external space (ie, to form a part of the vacuum dividing wall). It may be placed inside.
  • the second electrode 111 may be arranged to cooperate with the vacuum vessel 110 to separate the vacuum space from the external space (ie, to constitute a part of the vacuum barrier), It may be placed inside.
  • the balun 103 has a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211, and a second balanced terminal 212.
  • An unbalanced circuit is connected to the side of the first unbalanced terminal 201 and the second unbalanced terminal 202 of the balun 103, and a balanced circuit is connected to the side of the first balanced terminal 211 and the second balanced terminal 212 of the balun 103.
  • the vacuum vessel 110 is composed of a conductor and is grounded.
  • the first electrode 106 is a cathode and holds the target 109.
  • the target 109 can be, for example, an insulator material or a conductor material.
  • the second electrode 111 is an anode and holds the substrate 112.
  • the plasma processing apparatus 1 of the first embodiment can operate as a sputtering apparatus for forming a film on the substrate 112 by sputtering of the target 109.
  • the first electrode 106 is electrically connected to the first balanced terminal 211
  • the second electrode 111 is electrically connected to the second balanced terminal 212.
  • the fact that the first electrode 106 and the first balanced terminal 211 are electrically connected means that the current flows between the first electrode 106 and the first balanced terminal 211. It means that a current path is formed between the two.
  • that a and b are electrically connected means that a current path is configured between a and b so that current flows between a and b. means.
  • the first electrode 106 is electrically connected to the first terminal 251
  • the second electrode 111 is electrically connected to the second terminal 252
  • the first terminal 251 is electrically connected to the first balanced terminal 211. It can also be understood as a configuration in which the second terminal 252 is electrically connected to the second balanced terminal 212.
  • the first electrode 106 and the first balanced terminal 211 are electrically connected via the blocking capacitor 104.
  • the blocking capacitor 104 blocks direct current between the first balanced terminal 211 and the first electrode 106 (or alternatively, between the first balanced terminal 211 and the second balanced terminal 212).
  • an impedance matching circuit 102 described later may be configured to interrupt direct current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202.
  • the first electrode 106 can be supported by the vacuum vessel 110 via the insulator 107.
  • the second electrode 111 can be supported by the vacuum vessel 110 via the insulator 108.
  • the insulator 108 may be disposed between the second electrode 111 and the vacuum vessel 110.
  • the plasma processing apparatus 1 can further include a high frequency power supply 101 and an impedance matching circuit 102 disposed between the high frequency power supply 101 and the balun 103.
  • the high frequency power supply 101 supplies a high frequency (high frequency current, high frequency voltage, high frequency power) between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the balun 103 via the impedance matching circuit 102.
  • the high frequency power supply 101 supplies a high frequency (high frequency current, high frequency voltage, high frequency power) between the first electrode 106 and the second electrode 111 via the impedance matching circuit 102, the balun 103 and the blocking capacitor 104.
  • the high frequency power supply 101 may be understood as supplying high frequency between the first terminal 251 and the second terminal 252 of the main body 10 through the impedance matching circuit 102 and the balun 103.
  • a gas for example, Ar, Kr or Xe gas
  • a gas supply unit (not shown) provided in the vacuum vessel 110.
  • a high frequency power is supplied between the first electrode 106 and the second electrode 111 by the high frequency power supply 101 via the impedance matching circuit 102, the balun 103 and the blocking capacitor 104.
  • a plasma is generated between the first electrode 106 and the second electrode 111, a self bias voltage is generated on the surface of the target 109, ions in the plasma collide with the surface of the target 109, and the target 109 is removed.
  • the particles of the material making up the are released.
  • a film is formed on the substrate 112 by the particles.
  • FIG. 2A An example configuration of the balun 103 is shown in FIG. 2A.
  • the balun 103 shown in FIG. 2A is configured to connect a first coil 221 connecting the first unbalanced terminal 201 and the first balanced terminal 211, and a second connecting the second unbalanced terminal 202 and the second balanced terminal 212. And a coil 222.
  • the first coil 221 and the second coil 222 are coils having the same number of turns, and share the iron core.
  • FIG. 2B Another configuration example of the balun 103 is shown in FIG. 2B.
  • the balun 103 shown in FIG. 2B is configured to connect a first coil 221 connecting the first unbalanced terminal 201 and the first balanced terminal 211, and a second connecting the second unbalanced terminal 202 and the second balanced terminal 212. And a coil 222.
  • the first coil 221 and the second coil 222 are coils having the same number of turns, and share the iron core.
  • the 2B further includes a third coil 223 and a fourth coil 224 connected between the first balanced terminal 211 and the second balanced terminal 212, and the third coil 223 and the The four coils 224 are configured such that the voltage at the connection node 213 between the third coil 223 and the fourth coil 224 is a midpoint between the voltage at the first balanced terminal 211 and the voltage at the second balanced terminal 212.
  • the third coil 223 and the fourth coil 224 are coils with the same number of turns, and share the iron core.
  • the connection node 213 may be grounded, may be connected to the vacuum vessel 110, or may be floated.
  • a current flowing through the first unbalanced terminal 201 is I1
  • a current flowing through the first balanced terminal 211 is I2
  • a current flowing through the second unbalanced terminal 202 is I2 '
  • a current flowing to the ground among the current I2 is I3.
  • Rp-jXp indicates the side of the first electrode 106 and the second electrode 111 from the side of the first balance terminal 211 and the second balance terminal 212 in a state where plasma is generated in the internal space of the vacuum vessel 110
  • the impedance (including the reactance of the blocking capacitor 104) when looking at the side of the main body 10 is shown.
  • Rp indicates a resistance component
  • -Xp indicates a reactance component.
  • X indicates a reactance component (inductance component) of the impedance of the first coil 221 of the balun 103.
  • ISO has a correlation to X / Rp.
  • the inventor of the present invention has a configuration in which a high frequency is supplied between the first electrode 106 and the second electrode 111 from the high frequency power source 101 through the balun 103, and in particular, 1.5 ⁇ X / Rp ⁇ 5000 in the configuration.
  • a potential plasma potential
  • the insensitivity of the plasma potential to the state of the inner surface of the vacuum vessel 110 means that the plasma potential can be stabilized even when the plasma processing apparatus 1 is used for a long time.
  • 1.5 ⁇ X / Rp ⁇ 5000 corresponds to ⁇ 10.0 dB ⁇ ISO ⁇ -80 dB.
  • FIG. 5A to 5D show simulation results of the plasma potential and the potential (cathode potential) of the first electrode 106 in the case of satisfying 1.5 ⁇ X / Rp ⁇ 5000.
  • FIG. 5A shows the plasma potential and the cathode potential in the state in which no film is formed on the inner surface of the vacuum vessel 110.
  • FIG. 5B shows the plasma potential and the cathode potential in the state in which a resistive film (1000 ⁇ ) is formed on the inner surface of the vacuum vessel 110.
  • FIG. 5C shows the plasma potential and the cathode potential in the state where an inductive film (0.6 ⁇ H) is formed on the inner surface of the vacuum vessel 110.
  • FIG. 5A shows the plasma potential and the cathode potential in the state in which no film is formed on the inner surface of the vacuum vessel 110.
  • FIG. 5B shows the plasma potential and the cathode potential in the state in which a resistive film (1000 ⁇ ) is formed on the inner surface of the vacuum vessel 110.
  • FIGS. 5A-5D shows the plasma potential and the cathode potential in the state where a capacitive film (0.1 nF) is formed on the inner surface of the vacuum vessel 110. It is understood from FIGS. 5A-5D that satisfying 1.5 ⁇ X / Rp ⁇ 5000 is advantageous for the inner surface of the vacuum vessel 110 to stabilize the plasma potential in various states.
  • FIG. 6A to 6D show simulation results of the plasma potential and the potential (cathode potential) of the first electrode 106 in the case where 1.5 ⁇ X / Rp ⁇ 5000 is not satisfied.
  • FIG. 6A shows the plasma potential and the cathode potential in the state in which no film is formed on the inner surface of the vacuum vessel 110.
  • FIG. 6B shows the plasma potential and the cathode potential in a state in which a resistive film (1000 ⁇ ) is formed on the inner surface of the vacuum vessel 110.
  • FIG. 6C shows the plasma potential and the cathode potential in the state where the inductive film (0.6 ⁇ H) is formed on the inner surface of the vacuum vessel 110.
  • FIGS. 6A to 6D shows the plasma potential and the cathode potential in the state where the capacitive film (0.1 nF) is formed on the inner surface of the vacuum vessel 110. It is understood from FIGS. 6A to 6D that the plasma potential may change depending on the state of the inner surface of the vacuum vessel 110 if 1.5 ⁇ X / Rp ⁇ 5000 is not satisfied.
  • the plasma potential is likely to change depending on the state of the inner surface of the vacuum vessel 110.
  • X / Rp> 5000 in a state where a film is not formed on the inner surface of the vacuum vessel 110, discharge occurs only between the first electrode 106 and the second electrode 111.
  • X / Rp> 5000 when a film starts to be formed on the inner surface of the vacuum vessel 110, the plasma potential reacts sensitively to the result as illustrated in FIGS. 6A to 6D.
  • the balun 103 is removed from the plasma processing apparatus 1, and the output terminal 230 of the impedance matching circuit 102 is connected to the first terminal 251 (blocking capacitor 104) of the main body 10. Further, the second terminal 252 (second electrode 111) of the main body 10 is grounded. In this state, a high frequency is supplied from the high frequency power source 101 to the first terminal 251 of the main body 10 through the impedance matching circuit 102.
  • the impedance matching circuit 102 is equivalently composed of coils L1 and L2 and variable capacitors VC1 and VC2.
  • a plasma can be generated by adjusting the capacitance value of the variable capacitors VC1 and VC2.
  • the impedance of the impedance matching circuit 102 is matched to the impedance Rp-jXp on the side of the main body 10 (side of the first electrode 106 and the second electrode 111) when the plasma is generated. .
  • the impedance of the impedance matching circuit 102 at this time is Rp + jXp.
  • Rp-jXp (only Rp what you really want to know).
  • Rp-jXp can also be obtained by simulation based on, for example, design data.
  • X / Rp can be identified.
  • the reactance component (inductance component) X of the impedance of the first coil 221 of the balun 103 can be determined based on Rp so as to satisfy 1.5 ⁇ X / Rp ⁇ 5000.
  • the structure of the plasma processing apparatus 1 of the second embodiment of the present invention is schematically shown in FIG.
  • the plasma processing apparatus 1 of the second embodiment can operate as an etching apparatus for etching the substrate 112.
  • the first electrode 106 is a cathode and holds the substrate 112.
  • the second electrode 111 is an anode.
  • the first electrode 106 and the first balanced terminal 211 are electrically connected via the blocking capacitor 104.
  • the blocking capacitor 104 is disposed in the electrical connection path between the first electrode 106 and the first balanced terminal 211.
  • FIG. 9 schematically shows the configuration of a plasma processing apparatus 1 according to a third embodiment of the present invention.
  • the plasma processing apparatus 1 of the third embodiment is a modification of the plasma processing apparatus 1 of the first embodiment, and further includes at least one of a mechanism for moving the second electrode 111 up and down and a mechanism for rotating the second electrode 111.
  • the plasma processing apparatus 1 includes a drive mechanism 114 including both a mechanism for moving the second electrode 111 up and down and a mechanism for rotating the second electrode 111. Between the vacuum vessel 110 and the drive mechanism 114, a bellows 113 constituting a vacuum partition can be provided.
  • the plasma processing apparatus 1 of the second embodiment can further include at least one of a mechanism for moving the first electrode 106 up and down and a mechanism for rotating the second electrode 106.
  • the structure of the plasma processing apparatus 1 of 4th Embodiment of this invention is shown typically by FIG.
  • the plasma processing apparatus of the fourth embodiment can operate as a sputtering apparatus for forming a film on a substrate 112 by sputtering. Matters not mentioned as the plasma processing apparatus 1 of the fourth embodiment can follow the first to third embodiments.
  • the plasma processing apparatus 1 includes a first balun 103, a second balun 303, a vacuum vessel 110, a first electrode 106 and a second electrode 135 constituting a first set, and a first electrode 141 constituting a second set. And a second electrode 145.
  • the plasma processing apparatus 1 includes the first balun 103, the second balun 303, and the main body 10, and the main body 10 includes the vacuum vessel 110 and the first electrode 106 and the second electrode 135 that form the first pair. And the first electrode 141 and the second electrode 145 that constitute the second set.
  • the main body 10 includes a first terminal 251, a second terminal 252, a third terminal 451, and a fourth terminal 452.
  • the first balun 103 has a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211 and a second balanced terminal 212.
  • An unbalanced circuit is connected to the side of the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103, and the side of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103.
  • Balance circuit is connected.
  • the second balun 303 may have the same configuration as the first balun 103.
  • the second balun 303 has a first unbalanced terminal 401, a second unbalanced terminal 402, a first balanced terminal 411 and a second balanced terminal 412.
  • An unbalanced circuit is connected to the side of the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303, and the side of the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303. , Balance circuit is connected.
  • the vacuum vessel 110 is grounded.
  • the first set of first electrodes 106 hold the target 109.
  • the target 109 can be, for example, an insulator material or a conductor material.
  • the first set of second electrodes 135 is disposed around the first electrode 106.
  • the first set of first electrodes 106 is electrically connected to the first balanced terminal 211 of the first balun 103, and the first set of second electrodes 135 is electrically connected to the second balanced terminal 212 of the first balun 103. It is connected to the.
  • the second set of first electrodes 141 holds the substrate 112.
  • the second set of second electrodes 145 is disposed around the first electrode 141.
  • the second set of first electrodes 141 is electrically connected to the first balanced terminal 411 of the second balun 303, and the second set of second electrodes 145 is electrically connected to the second balanced terminal 412 of the second balun 303. It is connected to the.
  • the first pair of first electrodes 106 is electrically connected to the first terminal 251
  • the first pair of second electrodes 135 is electrically connected to the second terminal 252
  • the first terminal 251 is It can be understood as a configuration that is electrically connected to the first balanced terminal 211 of the first balun 103 and that the second terminal 252 is electrically connected to the second balanced terminal 212 of the first balun 103.
  • the second set of first electrodes 141 is electrically connected to the third terminal 451, and the second set of second electrodes 145 is electrically connected to the fourth terminal 452, and the third terminal It can be understood that 451 is electrically connected to the first balanced terminal 411 of the second balun 303 and the fourth terminal 452 is electrically connected to the second balanced terminal 412 of the second balun 303.
  • the first pair of first electrodes 106 and the first balanced terminal 211 (first terminal 251) of the first balun 103 may be electrically connected via the blocking capacitor 104.
  • the blocking capacitor 104 is disposed between the first balanced terminal 211 of the first balun 103 and the first electrode 106 of the first set (or between the first balanced terminal 211 of the first balun 103 and the second balanced terminal 212). Cut off the DC current.
  • the first impedance matching circuit 102 may be configured to interrupt a direct current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103. Good.
  • the first set of first and second electrodes 106 and 135 may be supported by the vacuum vessel 110 via the insulator 132.
  • the second pair of first electrodes 141 and the first balanced terminal 411 (third terminal 451) of the second balun 303 may be electrically connected via the blocking capacitor 304.
  • the blocking capacitor 304 is between the first balanced terminal 411 of the second balun 303 and the first electrode 141 of the second set (or between the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303). Cut off the DC current.
  • the second impedance matching circuit 302 may be configured to interrupt direct current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the second balun 303. Good.
  • the second set of first and second electrodes 141 and 145 may be supported by the vacuum vessel 110 via the insulator 142.
  • the plasma processing apparatus 1 can include a first high frequency power supply 101, and a first impedance matching circuit 102 disposed between the first high frequency power supply 101 and the first balun 103.
  • the first high frequency power supply 101 supplies a high frequency between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103 via the first impedance matching circuit 102.
  • the first high frequency power supply 101 supplies a high frequency between the first electrode 106 and the second electrode 135 via the first impedance matching circuit 102, the first balun 103 and the blocking capacitor 104.
  • the first high frequency power supply 101 supplies a high frequency between the first terminal 251 and the second terminal 252 of the main body 10 via the first impedance matching circuit 102 and the first balun 103.
  • the first balun 103 and the first pair of first electrodes 106 and the second electrode 135 constitute a first high frequency supply unit for supplying a high frequency to the internal space of the vacuum vessel 110.
  • the plasma processing apparatus 1 can include a second high frequency power supply 301, and a second impedance matching circuit 302 disposed between the second high frequency power supply 301 and the second balun 303.
  • the second high frequency power supply 301 supplies a high frequency between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303 via the second impedance matching circuit 302.
  • the second high frequency power supply 301 supplies a high frequency between the first electrode 141 and the second electrode 145 of the second set via the second impedance matching circuit 302, the second balun 303 and the blocking capacitor 304. .
  • the second high frequency power supply 301 supplies a high frequency between the third terminal 451 and the fourth terminal 452 of the main body 10 via the second impedance matching circuit 302 and the second balun 303.
  • the second balun 303 and the first electrode 141 and the second electrode 145 of the second set constitute a second high frequency supply unit for supplying a high frequency to the internal space of the vacuum vessel 110.
  • the first set of first from the side of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 The impedance when looking at the side of the one electrode 106 and the second electrode 135 (the side of the main body 10) is Rp1-jXp1. Further, a reactance component (inductance component) of the impedance of the first coil 221 of the first balun 103 is assumed to be X1. In this definition, satisfying 1.5 ⁇ X1 / Rp1 ⁇ 5000 is advantageous for stabilizing the potential of plasma formed in the inner space of the vacuum vessel 110.
  • the impedance when looking at the side of the first electrode 141 and the second electrode 145 (the side of the main body 10) is Rp2-jXp2.
  • a reactance component (inductance component) of the impedance of the first coil 221 of the second balun 303 is assumed to be X2. In this definition, satisfying 1.5 ⁇ X2 / Rp2 ⁇ 5000 is advantageous for stabilizing the potential of plasma formed in the inner space of the vacuum vessel 110.
  • the structure of the plasma processing apparatus 1 of 5th Embodiment of this invention is shown typically by FIG.
  • the apparatus 1 of the fifth embodiment has a configuration in which driving mechanisms 114 and 314 are added to the plasma processing apparatus 1 of the fourth embodiment.
  • the driving mechanism 114 may include at least one of a mechanism for raising and lowering the first electrode 141 and a mechanism for rotating the first electrode 141.
  • the drive mechanism 314 may include a mechanism for raising and lowering the second electrode 145.
  • the structure of the plasma processing apparatus 1 of 6th Embodiment of this invention is shown typically by FIG.
  • the plasma processing apparatus of the sixth embodiment can operate as a sputtering apparatus for forming a film on a substrate 112 by sputtering. Matters not mentioned in the sixth embodiment can follow the first to fifth embodiments.
  • the plasma processing apparatus 1 of the sixth embodiment includes a plurality of first high frequency supply units and at least one second high frequency supply unit.
  • One of the plurality of first high frequency power supply units may include a first electrode 106a, a second electrode 135a, and a first balun 103a.
  • Another one of the plurality of first high frequency power supply units may include a first electrode 106 b, a second electrode 135 b, and a first balun 103 b.
  • a first electrode 106 b may include a first electrode 106 b, a second electrode 135 b, and a first balun 103 b.
  • the plurality of first high frequency supply units are configured by two high frequency supply units will be described.
  • the two high frequency feeds and their associated components are distinguished from one another by the indices a, b.
  • two targets are also distinguished from each other by the subscripts a and b.
  • the plasma processing apparatus 1 includes a plurality of first baluns 103a and 103b, a second balun 303, a vacuum vessel 110, a first electrode 106a and a second electrode 135a, a first electrode 106b and a second electrode.
  • An electrode 135 b and a first electrode 141 and a second electrode 145 are provided.
  • the plasma processing apparatus 1 includes a plurality of first baluns 103a and 103b, a second balun 303, and a main body 10.
  • the main body 10 includes a vacuum vessel 110, a first electrode 106a, and a second electrode 135a.
  • the main body 10 includes first terminals 251a and 251b, second terminals 252a and 252b, a third terminal 451, and a fourth terminal 452.
  • the first balun 103a has a first unbalanced terminal 201a, a second unbalanced terminal 202a, a first balanced terminal 211a, and a second balanced terminal 212a.
  • An unbalanced circuit is connected to the side of the first unbalanced terminal 201a and the second unbalanced terminal 202a of the first balun 103a, and is connected to the side of the first balanced terminal 211a and the second balanced terminal 212a of the first balun 103a.
  • Balance circuit is connected.
  • the first balun 103b has a first unbalanced terminal 201b, a second unbalanced terminal 202b, a first balanced terminal 211b, and a second balanced terminal 212b.
  • An unbalanced circuit is connected to the side of the first unbalanced terminal 201b and the second unbalanced terminal 202b of the first balun 103b, and the side of the first balanced terminal 211b and the second balanced terminal 212b of the first balun 103b. , Balance circuit is connected.
  • the second balun 303 may have the same configuration as the first baluns 103a and 103b.
  • the second balun 303 has a first unbalanced terminal 401, a second unbalanced terminal 402, a first balanced terminal 411 and a second balanced terminal 412.
  • An unbalanced circuit is connected to the side of the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303, and the side of the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303.
  • Balance circuit is connected.
  • the vacuum vessel 110 is grounded.
  • the first electrodes 106a and 106b respectively hold the targets 109a and 109b.
  • the targets 109a, 109b can be, for example, an insulator material or a conductor material.
  • the second electrodes 135a and 135b are disposed around the first electrodes 106a and 106b, respectively.
  • the first electrodes 106a and 106b are electrically connected to the first balanced terminals 211a and 211b of the first baluns 103a and 103b, respectively, and the second electrodes 135a and 135b are the second balanced terminals of the first baluns 103a and 103b, respectively. It is electrically connected to 212a and 212b.
  • the first electrode 141 holds the substrate 112.
  • the second electrode 145 is disposed around the first electrode 141.
  • the first electrode 141 is electrically connected to the first balanced terminal 411 of the second balun 303, and the second electrode 145 is electrically connected to the second balanced terminal 412 of the second balun 303.
  • the first electrodes 106a and 106b are electrically connected to the first terminals 251a and 251b, and the second electrodes 135a and 135b are electrically connected to the second terminals 252a and 252b, respectively.
  • the terminals 251a and 251b are electrically connected to the first balanced terminals 211a and 111b of the first baluns 103a and 103b, respectively, and the second terminals 252a and 252b are electrically connected to the second balanced terminals 212a and 212b of the first baluns 103a and 103b, respectively. It can be understood as a connected configuration.
  • the first electrode 141 is electrically connected to the third terminal 451, the second electrode 145 is electrically connected to the fourth terminal 452, and the third terminal 451 is the second balun 303. It can be understood that the first balanced terminal 411 is electrically connected, and the fourth terminal 452 is electrically connected to the second balanced terminal 412 of the second balun 303.
  • the first electrodes 106a and 106b may be electrically connected to the first balanced terminals 211a and 211b (first terminals 251a and 251b) of the first baluns 103a and 103b through the blocking capacitors 104a and 104b, respectively.
  • the blocking capacitors 104a and 104b are connected between the first balanced terminals 211a and 211b of the first baluns 103a and 103b and the first electrodes 106a and 106b (or alternatively, the first balanced terminals 211a and 211b and the first baluns 103a and 103b 2) interrupting the direct current between the balanced terminals 212a and 212b).
  • the first impedance matching circuits 102a and 102b are direct current flowing between the first unbalanced terminals 201a and 201b of the first baluns 103a and 103b and the second unbalanced terminals 202a and 202b. It may be configured to interrupt the current.
  • the blocking capacitors 104a and 104b may be disposed between the second electrodes 135a and 135b and the second balanced terminals 212a and 212b (second terminals 252a and 252b) of the first baluns 103a and 103b.
  • the first electrodes 106a and 106b and the second electrodes 135a and 135b may be supported by the vacuum vessel 110 via the insulators 132a and 132b, respectively.
  • the first electrode 141 and the first balanced terminal 411 (third terminal 451) of the second balun 303 may be electrically connected via the blocking capacitor 304.
  • the blocking capacitor 304 directs a DC current between the first balanced terminal 411 of the second balun 303 and the first electrode 141 (or alternatively, between the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303). Cut off.
  • the second impedance matching circuit 302 may be configured to interrupt direct current flowing between the first unbalanced terminal 201 and the second unbalanced terminal 202 of the second balun 303. Good.
  • the blocking capacitor 304 may be disposed between the second electrode 145 and the second balanced terminal 412 (fourth terminal 452) of the second balun 303.
  • the first electrode 141 and the second electrode 145 may be supported by the vacuum vessel 110 via the insulator 142.
  • the plasma processing apparatus 1 includes a first impedance matching circuit 102a disposed between the plurality of first high frequency power supplies 101a and 101b, the plurality of first high frequency power supplies 101a and 101b, and the plurality of first baluns 103a and 103b, respectively. And 102b.
  • the first high frequency power supplies 101a and 101b are high frequency components between the first unbalanced terminals 201a and 201b and the second unbalanced terminals 202a and 202b of the first baluns 103a and 103b through the first impedance matching circuits 102a and 102b, respectively. Supply.
  • the first high frequency power supplies 101a and 101b are connected to the first electrodes 106a and 106b and the second electrode 135a via the first impedance matching circuits 102a and 102b, the first baluns 103a and 103b, and the blocking capacitors 104a and 104b, respectively.
  • a high frequency is supplied between 135b and 135b.
  • the first high frequency power supplies 101a and 101b may be provided between the first terminals 251a and 251b and the second terminals 252a and 252b of the main body 10 via the first impedance matching circuits 102a and 102b and the first baluns 103a and 103b. Supply high frequency.
  • the plasma processing apparatus 1 can include a second high frequency power supply 301, and a second impedance matching circuit 302 disposed between the second high frequency power supply 301 and the second balun 303.
  • the second high frequency power supply 301 supplies a high frequency between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303 via the second impedance matching circuit 302.
  • the second high frequency power supply 301 supplies a high frequency between the first electrode 141 and the second electrode 145 via the second impedance matching circuit 302, the second balun 303 and the blocking capacitor 304.
  • the second high frequency power supply 301 supplies a high frequency between the third terminal 451 and the fourth terminal 452 of the main body 10 via the second impedance matching circuit 302 and the second balun 303.
  • the configuration of a plasma processing apparatus 1 according to a seventh embodiment of the present invention is schematically shown in FIG.
  • the plasma processing apparatus of the seventh embodiment can operate as a sputtering apparatus for forming a film on a substrate 112 by sputtering. Matters not mentioned as the plasma processing apparatus 1 of the seventh embodiment can follow the first to sixth embodiments.
  • the plasma processing apparatus 1 includes a first balun 103, a second balun 303, a vacuum vessel 110, a first electrode 105a and a second electrode 105b constituting a first set, and a first electrode 141 constituting a second set. And a second electrode 145.
  • the plasma processing apparatus 1 includes the first balun 103, the second balun 303, and the main body 10, and the main body 10 includes the vacuum vessel 110 and the first electrode 105a and the second electrode 105b constituting the first set. And the first electrode 141 and the second electrode 145 that constitute the second set.
  • the main body 10 includes a first terminal 251, a second terminal 252, a third terminal 451, and a fourth terminal 452.
  • the first balun 103 has a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211 and a second balanced terminal 212.
  • An unbalanced circuit is connected to the side of the first unbalanced terminal 201 and the second unbalanced terminal 202 of the first balun 103, and the side of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103.
  • Balance circuit is connected.
  • the second balun 303 may have the same configuration as the first balun 103.
  • the second balun 303 has a first unbalanced terminal 401, a second unbalanced terminal 402, a first balanced terminal 411 and a second balanced terminal 412.
  • An unbalanced circuit is connected to the side of the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303, and the side of the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303. , Balance circuit is connected.
  • the vacuum vessel 110 is grounded.
  • the first set of first electrodes 105a holds the first target 109a, and faces the space on the side of the substrate 112 via the first target 109a.
  • the first pair of second electrodes 105b is disposed adjacent to the first electrode 105a, holds the second target 109b, and faces the space on the side of the substrate 112 via the second target 109b.
  • the targets 109a and 109b can be, for example, an insulator material or a conductor material.
  • the first set of first electrodes 105 a is electrically connected to the first balanced terminal 211 of the first balun 103
  • the first set of second electrodes 105 b is electrically connected to the second balanced terminal 212 of the first balun 103. It is connected to the.
  • the second set of first electrodes 141 holds the substrate 112.
  • the second set of second electrodes 145 is disposed around the first electrode 141.
  • the second set of first electrodes 141 is electrically connected to the first balanced terminal 411 of the second balun 303, and the second set of second electrodes 145 is electrically connected to the second balanced terminal 412 of the second balun 303. It is connected to the.
  • the first set of first electrodes 105 a is electrically connected to the first terminal 251
  • the first set of second electrodes 105 b is electrically connected to the second terminal 252
  • the first terminals 251 are electrically connected. It can be understood as a configuration in which the first balanced terminal 211 of the first balun 103 is electrically connected and the second terminal 252 is connected to the second balanced terminal 212 of the first balun 103.
  • the second set of first electrodes 141 is electrically connected to the third terminal 451, and the second set of second electrodes 145 is electrically connected to the fourth terminal 452, and the third terminal It can be understood that 451 is electrically connected to the first balanced terminal 411 of the second balun 303 and the fourth terminal 452 is connected to the second balanced terminal 412 of the second balun 303.
  • the first pair of first electrodes 105a and the first balanced terminal 211 (first terminal 251) of the first balun 103 may be electrically connected via the blocking capacitor 104a.
  • the blocking capacitor 104 a is between the first balanced terminal 211 of the first balun 103 and the first electrode 105 a of the first set (or between the first balanced terminal 211 of the first balun 103 and the second balanced terminal 212). Cut off the DC current.
  • the first pair of second electrodes 105b and the second balanced terminal 212 (second terminal 252) of the first balun 103 may be electrically connected via the blocking capacitor 104b.
  • the blocking capacitor 104 b is disposed between the second balanced terminal 212 of the first balun 103 and the second electrode 105 b of the first set (or between the first balanced terminal 211 of the first balun 103 and the second balanced terminal 212). Cut off the DC current.
  • the first set of first electrode 105a and the second electrode 105b may be supported by the vacuum vessel 110 through the insulators 132a and 132b, respectively.
  • the second pair of first electrodes 141 and the first balanced terminal 411 (third terminal 451) of the second balun 303 may be electrically connected via the blocking capacitor 304.
  • the blocking capacitor 304 is between the first balanced terminal 411 of the second balun 303 and the first electrode 141 of the second set (or between the first balanced terminal 411 and the second balanced terminal 412 of the second balun 303). Cut off the DC current.
  • the second impedance matching circuit 302 may be configured to interrupt the direct current flowing between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303. Good.
  • the second set of first and second electrodes 141 and 145 may be supported by the vacuum vessel 110 through the insulators 142 and 146, respectively.
  • the plasma processing apparatus 1 can include a first high frequency power supply 101, and a first impedance matching circuit 102 disposed between the first high frequency power supply 101 and the first balun 103.
  • the first high frequency power supply 101 supplies a high frequency between the first electrode 105a and the second electrode 105b via the first impedance matching circuit 102, the first balun 103, and the blocking capacitors 104a and 104b.
  • the first high frequency power supply 101 supplies a high frequency between the first terminal 251 and the second terminal 252 of the main body 10 via the first impedance matching circuit 102 and the first balun 103.
  • the first balun 103 and the first set of first electrode 105 a and second electrode 105 b constitute a first high frequency supply unit for supplying a high frequency to the internal space of the vacuum vessel 110.
  • the plasma processing apparatus 1 can include a second high frequency power supply 301, and a second impedance matching circuit 302 disposed between the second high frequency power supply 301 and the second balun 303.
  • the second high frequency power supply 301 supplies a high frequency between the first unbalanced terminal 401 and the second unbalanced terminal 402 of the second balun 303 via the second impedance matching circuit 302.
  • the second high frequency power supply 301 supplies a high frequency between the first electrode 141 and the second electrode 145 of the second set via the second impedance matching circuit 302, the second balun 303 and the blocking capacitor 304.
  • the second high frequency power supply 301 supplies a high frequency between the third terminal 451 and the fourth terminal 452 of the main body 10 via the second impedance matching circuit 302 and the second balun 303.
  • the second balun 303 and the first electrode 141 and the second electrode 145 of the second set constitute a second high frequency supply unit for supplying a high frequency to the internal space of the vacuum vessel 110.
  • the first set of first from the side of the first balanced terminal 211 and the second balanced terminal 212 of the first balun 103 The impedance when looking at the side of the first electrode 105a and the second electrode 105b (the side of the main body 10) is Rp1-jXp1. Further, a reactance component (inductance component) of the impedance of the first coil 221 of the first balun 103 is assumed to be X1. In this definition, satisfying 1.5 ⁇ X1 / Rp1 ⁇ 5000 is advantageous for stabilizing the potential of plasma formed in the inner space of the vacuum vessel 110.
  • a reactance component (inductance component) of the impedance of the first coil 221 of the second balun 303 is assumed to be X2. In this definition, satisfying 1.5 ⁇ X2 / Rp2 ⁇ 5000 is advantageous for stabilizing the potential of plasma formed in the inner space of the vacuum vessel 110.
  • the plasma processing apparatus 1 of the seventh embodiment can further include at least one of a mechanism for moving the first electrode 141 constituting the second set up and down and a mechanism for rotating the first electrode 141 constituting the second set.
  • the plasma processing apparatus 1 includes a drive mechanism 114 including both a mechanism for moving the first electrode 141 up and down and a mechanism for rotating the first electrode 141.
  • the plasma processing apparatus 1 is provided with the drive mechanism 314 which raises / lowers the 2nd electrode 145 which comprises a 2nd group. Between the vacuum vessel 110 and the drive mechanisms 114, 314, a bellows that constitutes a vacuum partition can be provided.
  • a current flowing through the first unbalanced terminal 201 is I1
  • a current flowing through the first balanced terminal 211 is I2
  • a current flowing through the second unbalanced terminal 202 is I2 '
  • a current flowing to the ground among the current I2 is I3.
  • the impedance (including the reactance of the blocking capacitors 104a and 104b) when the side of the first electrode 105a and the side of the second electrode 105b (the side of the main body 10) is viewed from the side of 212 is shown.
  • Rp indicates a resistance component
  • -Xp indicates a reactance component.
  • X indicates a reactance component (inductance component) of the impedance of the first coil 221 of the first balun 103.
  • ISO has a correlation to X / Rp.
  • the relationship of FIG. 4 is also true in the seventh embodiment.
  • the present inventor also describes that 1.5 ⁇ X / Rp ⁇ 5000 is satisfied in the internal space of the vacuum vessel 110 (the space between the first electrode 105 a and the second electrode 105 b). It has been found that it is advantageous to make the potential of the generated plasma (plasma potential) insensitive to the state of the inner surface of the vacuum vessel 110.
  • the insensitivity of the plasma potential to the state of the inner surface of the vacuum vessel 110 means that the plasma potential can be stabilized even when the plasma processing apparatus 1 is used for a long time.
  • 1.5 ⁇ X / Rp ⁇ 5000 corresponds to ⁇ 10.0 dB ⁇ ISO ⁇ -80 dB.
  • FIG. 15A shows the plasma potential when the resistive film (1 m ⁇ ) is formed on the inner surface of the vacuum vessel 110, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) Is shown.
  • FIG. 15A shows the plasma potential when the resistive film (1 m ⁇ ) is formed on the inner surface of the vacuum vessel 110, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) Is shown.
  • FIG. 15B shows the plasma potential when the resistive film (1000 ⁇ ) is formed on the inner surface of the vacuum vessel 110, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) Is shown.
  • FIG. 15C shows the plasma potential when the inductive film (0.6 ⁇ H) is formed on the inner surface of the vacuum vessel 110, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2) (Potential) is shown.
  • FIGS. 15A-15D shows the plasma potential when the capacitive film (0.1 nF) is formed on the inner surface of the vacuum vessel 110, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 (Potential) is shown. It is understood from FIGS. 15A-15D that satisfying 1.5 ⁇ X / Rp ⁇ 5000 is advantageous for the inner surface of the vacuum vessel 110 to stabilize the plasma potential in various states.
  • FIG. 16A to 16D simulate the plasma potential, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) when 1.5 ⁇ X / Rp ⁇ 5000 is not satisfied. The results are shown.
  • FIG. 16A shows the plasma potential when the resistive film (1 m ⁇ ) is formed on the inner surface of the vacuum vessel 110, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) Is shown.
  • FIG. 16B shows the plasma potential when the resistive film (1000 ⁇ ) is formed on the inner surface of the vacuum vessel 110, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 potential) Is shown.
  • FIG. 16C shows the plasma potential when the inductive film (0.6 ⁇ H) is formed on the inner surface of the vacuum chamber 110, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2) (Potential) is shown.
  • FIGS. 16A to 16D shows the plasma potential when the capacitive film (0.1 nF) is formed on the inner surface of the vacuum vessel 110, the potential of the first electrode 105a (cathode 1 potential), and the potential of the second electrode 105b (cathode 2 (Potential) is shown. From FIGS. 16A to 16D, it is understood that the plasma potential changes depending on the state of the inner surface of the vacuum vessel 110 when 1.5 ⁇ X / Rp ⁇ 5000 is not satisfied.
  • the plasma potential is likely to change depending on the state of the inner surface of the vacuum vessel 110.
  • X / Rp> 5000 in a state where a film is not formed on the inner surface of the vacuum vessel 110, discharge occurs only between the first electrode 105a and the second electrode 105b.
  • X / Rp> 5000 when a film starts to be formed on the inner surface of the vacuum vessel 110, the plasma potential reacts sensitively to the result as illustrated in FIGS. 16A to 16D.
  • the structure of the plasma processing apparatus 1 of the eighth embodiment of the present invention is schematically shown in FIG.
  • the plasma processing apparatus 1 of the eighth embodiment is a modification of the plasma processing apparatus 1 of the second embodiment, and can operate as an etching apparatus for etching the substrate 112.
  • the plasma processing apparatus 1 includes a balun (balance-unbalance conversion circuit) 103, a vacuum vessel 110, a first electrode 106, and a second electrode 111.
  • the plasma processing apparatus 1 may be understood as comprising a balun 103 and a main body 10, wherein the main body 10 comprises a vacuum vessel 110, a first electrode 106 and a second electrode 111.
  • the main body 10 has a first terminal 251 and a second terminal 252.
  • the first electrode 106 may be disposed to cooperate with the vacuum vessel 110 to separate the vacuum space from the external space (ie, to form a part of the vacuum dividing wall). It may be placed inside.
  • the second electrode 111 may be arranged to cooperate with the vacuum vessel 110 to separate the vacuum space from the external space (ie, to constitute a part of the vacuum barrier), It may be placed inside.
  • the balun 103 has a first unbalanced terminal 201, a second unbalanced terminal 202, a first balanced terminal 211, and a second balanced terminal 212.
  • An unbalanced circuit is connected to the side of the first unbalanced terminal 201 and the second unbalanced terminal 202 of the balun 103, and a balanced circuit is connected to the side of the first balanced terminal 211 and the second balanced terminal 212 of the balun 103.
  • the vacuum vessel 110 is composed of a conductor and is grounded.
  • the first electrode 106 is a cathode and holds the substrate 112.
  • the second electrode 111 is an anode.
  • the first electrode 106 and the first balanced terminal 211 are electrically connected via the blocking capacitor 104.
  • the blocking capacitor 104 is disposed in the electrical connection path between the first electrode 106 and the first balanced terminal 211.
  • the second balanced terminal 212 and the second electrode 111 may be electrically connected via the blocking capacitor.
  • the first balanced terminal 211 and the first electrode 106 may be electrically connected through the blocking capacitor
  • the second balanced terminal 212 and the second electrode 111 may be electrically connected through the blocking capacitor.
  • the first electrode 106 can be supported by the vacuum vessel 110 via the insulator 107.
  • the second electrode 111 can be supported by the vacuum vessel 110 via the insulator 108.
  • the second electrode 111 may have a ring shape.
  • the second electrode 111 may have, for example, a constant thickness.
  • the first electrode 106 and the second electrode 111 may be disposed to face each other. In another aspect, the first electrode 106 and the second electrode 111 may be disposed such that at least a portion of the first electrode 106 and at least a portion of the second electrode 111 face each other.
  • the first electrode 106 may have a symmetrical shape with respect to the symmetry axis SA
  • the second electrode 111 may have a symmetrical shape with respect to the symmetry axis SA.
  • the first electrode 106 may have a circular shape disposed symmetrically with respect to the symmetry axis SA
  • the second electrode 111 may have a circular ring shape disposed symmetrically with respect to the symmetry axis SA.
  • the circular ring shape is circular in shape defining the outer edge and circular in shape defining the inner edge.
  • the first electrode 106 may have a rectangular shape arranged symmetrically with respect to the symmetry axis SA
  • the second electrode 111 may have a rectangular ring shape arranged symmetrically with respect to the symmetry axis SA.
  • the shape defining the outer edge is rectangular and the shape defining the inner edge is rectangular.
  • FIG. 18 schematically shows plasma P formed in the vacuum chamber 110 (the space between the first electrode 106 and the second electrode 111) in the plasma processing apparatus 1 of the eighth embodiment.
  • FIG. 19 in the configuration in which a high frequency is supplied from the impedance matching circuit 102 to the first electrode 106 without the balun 103 and the second electrode 111 does not have an opening, the inside of the vacuum vessel 110 (the first electrode 106 and the The plasma P formed in the space between the two electrodes 111 is schematically shown.
  • the plasma P is grounded (the vacuum chamber 110 ), So that the plasma P can be confined in the space between the first electrode 106 and the second electrode 111.
  • the density of the plasma P can be higher in the central portion (near the symmetry axis SA) than in the peripheral portion.
  • the density of the plasma P in the central portion is lower than when the second electrode 111 does not have a ring shape, and hence the density of the plasma P is more It can be uniform.
  • the vacuum vessel 110 can also function as a ground electrode.
  • the plasma P can spread widely.
  • the density of the plasma P may be higher in the central portion (near the symmetry axis SA) than in the peripheral portion. This can result in non-uniform processing of the substrate 112.
  • the structure of the plasma processing apparatus 1 of the ninth embodiment of the present invention is schematically shown in FIG.
  • the plasma processing apparatus 1 of the ninth embodiment is a modification of the plasma processing apparatus 1 of the eighth embodiment, and can operate as an etching apparatus for etching the substrate 112.
  • the first electrode 106 and the second electrode 111 may be disposed to face each other. In another aspect, the first electrode 106 and the second electrode 111 may be disposed such that at least a portion of the first electrode 106 and at least a portion of the second electrode 111 face each other.
  • the first electrode 106 may have a symmetrical shape with respect to the symmetry axis SA
  • the second electrode 111 may have a symmetrical shape with respect to the symmetry axis SA.
  • the first electrode 106 may have a circular shape disposed symmetrically with respect to the symmetry axis SA
  • the second electrode 111 may have a circular ring shape disposed symmetrically with respect to the symmetry axis SA.
  • the first electrode 106 may have a rectangular shape arranged symmetrically with respect to the symmetry axis SA
  • the second electrode 111 may have a rectangular ring shape arranged symmetrically with respect to the symmetry axis SA.
  • the second electrode 111 can have a portion whose thickness in the direction perpendicular to the holding surface (the surface holding the substrate 112) of the first electrode 106 is changed.
  • the second electrode 111 may have, for example, a shape in which a plurality of rings 111a, 111b, and 111c are stacked, and the plurality of rings 111a, 111b, and 111c may have smaller openings as the distance from the first electrode 106 increases. .
  • FIG. 21 schematically shows the configuration of a plasma processing apparatus 1 according to a tenth embodiment of the present invention.
  • the plasma processing apparatus 1 of the tenth embodiment is a modification of the plasma processing apparatus 1 of the first embodiment, and can operate as a sputtering apparatus for forming a film on a substrate 112 by sputtering.
  • the first electrode 106 is a cathode and holds the target 109.
  • the second electrode 111 is an anode and holds the substrate 112.
  • the first electrode 106 and the first balanced terminal 211 are electrically connected via the blocking capacitor 104.
  • the blocking capacitor 104 is disposed in the electrical connection path between the first electrode 106 and the first balanced terminal 211.
  • the second balanced terminal 212 and the second electrode 111 may be electrically connected via the blocking capacitor.
  • the first balanced terminal 211 and the first electrode 106 may be electrically connected through the blocking capacitor
  • the second balanced terminal 212 and the second electrode 111 may be electrically connected through the blocking capacitor.
  • the first electrode 106 can be supported by the vacuum vessel 110 via the insulator 107.
  • the second electrode 111 may have a ring shape.
  • the second electrode 111 may have, for example, a constant thickness.
  • the second electrode 111 can have a portion in which the thickness in the direction perpendicular to the holding surface (the surface holding the substrate 112) of the first electrode 106 is changed. It can be supported by the vacuum vessel 110 via the insulator 108.
  • the first electrode 106 and the second electrode 111 may be disposed to face each other. In another aspect, the first electrode 106 and the second electrode 111 may be disposed such that at least a portion of the first electrode 106 and at least a portion of the second electrode 111 face each other.
  • the first electrode 106 may have a symmetrical shape with respect to the symmetry axis SA
  • the second electrode 111 may have a symmetrical shape with respect to the symmetry axis SA.
  • the first electrode 106 may have a circular shape disposed symmetrically with respect to the symmetry axis SA
  • the second electrode 111 may have a circular ring shape disposed symmetrically with respect to the symmetry axis SA.
  • the first electrode 106 may have a rectangular shape arranged symmetrically with respect to the symmetry axis SA
  • the second electrode 111 may have a rectangular ring shape arranged symmetrically with respect to the symmetry axis SA.
  • Plasma processing apparatus 10 Main body 101: High frequency power supply 102: Impedance matching circuit 103: Balun 104: Blocking capacitor 106: First electrode 107, 108: Insulator 109: Target 110: Vacuum Container 111: second electrode 112: substrate 201: first unbalanced terminal 202: second unbalanced terminal 211: first balanced terminal 212: second balanced terminal 251: first terminal 252: Second terminal 221: first coil 222: second coil 223: third coil 224: fourth coil SA: axis of symmetry

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

プラズマ処理装置は、第1不平衡端子、第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、接地された真空容器と、前記第1平衡端子に電気的に接続された第1電極と、前記第2平衡端子に電気的に接続された第2電極とを備える。前記第2電極は、リング形状を有する。

Description

プラズマ処理装置
 本発明は、プラズマ処理装置に関する。
 2つの電極の間に高周波を印加することによってプラズマを発生し該プラズマによって基板を処理するプラズマ処理装置がある。このようなプラズマ処理装置は、2つの電極の面積比および/またはバイアスによってスパッタリング装置として動作したり、エッチング装置として動作したりしうる。スパッタリング装置として構成されたプラズマ処理装置は、ターゲットを保持する第1電極と、基板を保持する第2電極とを有し、第1電極と第2電極との間に高周波が印加され、第1電極と第2電極との間(ターゲットと基板との間)にプラズマが生成される。プラズマの生成によってターゲットの表面にセルフバイアス電圧が発生し、これによってターゲットにイオンが衝突し、ターゲットからそれを構成する材料の粒子が放出される。
 特許文献1には、接地されたチャンバと、インピーダンス整合回路網を介してRF発生源に接続されたターゲット電極と、基板電極同調回路を介して接地された基板保持電極とを有するスパッタリング装置が記載されている。
 特許文献1に記載されたようなスパッタリング装置では、基板保持電極の他、チャンバがアノードとして機能しうる。セルフバイアス電圧は、カソードとして機能しうる部分の状態およびアノードとして機能しうる部分の状態に依存しうる。よって、基板保持電極の他にチャンバもアノードとして機能する場合、セルバイアス電圧は、チャンバのうちアノードとして機能する部分の状態にも依存して変化しうる。セルフバイアス電圧の変化は、プラズマ電位の変化をもたらし、プラズマ電位の変化は、形成される膜の特性に影響を与えうる。
 スパッタリング装置によって基板に膜を形成すると、チャンバの内面にも膜が形成されうる。これによってチャンバのうちアノードとして機能しうる部分の状態が変化しうる。そのため、スパッタリング装置を継続して使用すると、チャンバの内面に形成される膜によってセルフバイアス電圧が変化し、プラズマ電位も変化しうる。よって、従来は、スパッタリング装置を長期にわたって使用した場合において、基板の上に形成される膜の特性を一定に維持することが難しかった。
 同様に、エッチング装置が長期にわたって使用された場合においても、チャンバの内面に形成される膜によってセルフバイアス電圧が変化し、これによってプラズマ電位も変化しうるので、基板のエッチング特性を一定に維持することが難しかった。
特公昭55-35465号公報
 本発明は、上記の課題認識に基づいてなされたものであり、長期間の使用においてプラズマ電位を安定させるために有利な技術を提供する。
 本発明の1つの側面は、プラズマ処理装置に係り、前記プラズマ処理装置は、第1不平衡端子、第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、接地された真空容器と、前記第1平衡端子に電気的に接続された第1電極と、前記第2平衡端子に電気的に接続された第2電極と、を備え、前記第2電極は、リング形状を有する。
本発明の第1実施形態のプラズマ処理装置1の構成を模式的に示す図。 バランの構成例を示す図。 バランの他の構成例を示す図。 バラン103の機能を説明する図。 電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係を例示する図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 Rp-jXpの確認方法を例示する図。 本発明の第2実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第3実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第4実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第5実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第6実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第7実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第6実施形態のバランの機能を説明する図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 本発明の第8実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第8実施形態のプラズマ処理装置1において真空容器の中に形成されるプラズマを模式的に示す図。 インピーダンス整合回路からバランを介することなく第1電極に高周波が供給され、第2電極が開口を有しない構成において、真空容器の中に形成されるプラズマを模式的に示す図。 本発明の第9実施形態のプラズマ処理装置の構成を示す図。 本発明の第10実施形態のプラズマ処理装置の構成を模式的に示す図。
 以下、添付図面を参照しながら本発明をその例示的な実施形態を通して説明する。
 図1には、本発明の第1実施形態のプラズマ処理装置1の構成が模式的に示されている。第1実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。プラズマ処理装置1は、バラン(平衡不平衡変換回路)103と、真空容器110と、第1電極106と、第2電極111とを備えている。あるいは、プラズマ処理装置1は、バラン103と、本体10とを備え、本体10が、真空容器110と、第1電極106と、第2電極111とを備えているものとして理解されてもよい。本体10は、第1端子251および第2端子252を有する。第1電極106は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。第2電極111は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。
 バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。真空容器110は、導体で構成され、接地されている。
 第1実施形態では、第1電極106は、カソードであり、ターゲット109を保持する。ターゲット109は、例えば、絶縁体材料または導電体材料でありうる。また、第1実施形態では、第2電極111は、アノードであり、基板112を保持する。第1実施形態のプラズマ処理装置1は、ターゲット109のスパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第1電極106は、第1平衡端子211に電気的に接続され、第2電極111は、第2平衡端子212に電気的に接続されている。第1電極106と第1平衡端子211とが電気的に接続されていることは、第1電極106と第1平衡端子211との間で電流が流れるように第1電極106と第1平衡端子211との間に電流経路が構成されていることを意味する。同様に、この明細書において、aとbとが電気的に接続されているとは、aとbとの間で電流が流れるようにaとbとの間に電流経路が構成されることを意味する。
 上記の構成は、第1電極106が第1端子251に電気的に接続され、第2電極111が第2端子252に電気的に接続され、第1端子251が第1平衡端子211に電気的に接続され、第2端子252が第2平衡端子212に電気的に接続された構成としても理解されうる。
 第1実施形態では、第1電極106と第1平衡端子211(第1端子251)とがブロッキングキャパシタ104を介して電気的に接続されている。ブロッキングキャパシタ104は、第1平衡端子211と第1電極106との間(あるいは、第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。ブロッキングキャパシタ104を設ける代わりに、後述のインピーダンス整合回路102が、第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。第1電極106は、絶縁体107を介して真空容器110によって支持されうる。第2電極111は、絶縁体108を介して真空容器110によって支持されうる。あるいは、第2電極111と真空容器110との間に絶縁体108が配置されうる。
 プラズマ処理装置1は、高周波電源101と、高周波電源101とバラン103との間に配置されたインピーダンス整合回路102とを更に備えうる。高周波電源101は、インピーダンス整合回路102を介してバラン103の第1不平衡端子201と第2不平衡端子202との間に高周波(高周波電流、高周波電圧、高周波電力)を供給する。換言すると、高周波電源101は、インピーダンス整合回路102、バラン103およびブロッキングキャパシタ104を介して、第1電極106と第2電極111との間に高周波(高周波電流、高周波電圧、高周波電力)を供給する。あるいは、高周波電源101は、インピーダンス整合回路102およびバラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給するものとしても理解されうる。
 真空容器110の内部空間には、真空容器110に設けられた不図示のガス供給部を通してガス(例えば、Ar、KrまたはXeガス)が供給される。また、第1電極106と第2電極111との間には、インピーダンス整合回路102、バラン103およびブロッキングキャパシタ104を介して高周波電源101によって高周波が供給される。これにより、第1電極106と第2電極111との間にプラズマが生成され、ターゲット109の表面にセルフバイアス電圧が発生し、プラズマ中のイオンがターゲット109の表面に衝突し、ターゲット109からそれを構成する材料の粒子が放出される。そして、この粒子によって基板112の上に膜が形成される。
 図2Aには、バラン103の一構成例が示されている。図2Aに示されたバラン103は、第1不平衡端子201と第1平衡端子211とを接続する第1コイル221と、第2不平衡端子202と第2平衡端子212とを接続する第2コイル222とを有する。第1コイル221および第2コイル222は、同一巻き数のコイルであり、鉄心を共有する。
 図2Bには、バラン103の他の構成例が示されている。図2Bに示されたバラン103は、第1不平衡端子201と第1平衡端子211とを接続する第1コイル221と、第2不平衡端子202と第2平衡端子212とを接続する第2コイル222とを有する。第1コイル221および第2コイル222は、同一巻き数のコイルであり、鉄心を共有する。また、図2Bに示されたバラン103は、第1平衡端子211と第2平衡端子212との間に接続された第3コイル223および第4コイル224を更に有し、第3コイル223および第4コイル224は、第3コイル223と第4コイル224との接続ノード213の電圧を第1平衡端子211の電圧と第2平衡端子212の電圧との中点とするように構成されている。第3コイル223および第4コイル224は、同一巻き数のコイルであり、鉄心を共有する。接続ノード213は、接地されてもよいし、真空容器110に接続されてもよいし、フローティングにされてもよい。
 図3を参照しながらバラン103の機能を説明する。第1不平衡端子201を流れる電流をI1、第1平衡端子211を流れる電流をI2、第2不平衡端子202を流れる電流をI2’、電流I2のうち接地に流れる電流をI3とする。I3=0、即ち、平衡回路の側で接地に電流が流れない場合、接地に対する平衡回路のアイソレーション性能が最も良い。I3=I2、即ち、第1平衡端子211を流れる電流I2の全てが接地に対して流れる場合、接地に対する平衡回路のアイソレーション性能が最も悪い。このようなアイソレーション性能の程度を示す指標ISOは、以下の式で与えられうる。この定義の下では、ISOの値の絶対値が大きい方が、アイソレーション性能が良い。
  ISO[dB]=20log(I3/I2’)
 図3において、Rp-jXpは、真空容器110の内部空間にプラズマが発生している状態で第1平衡端子211および第2平衡端子212の側から第1電極106および第2電極111の側(本体10の側)を見たときのインピーダンス(ブロッキングキャパシタ104のリアクタンスを含む)を示している。Rpは抵抗成分、-Xpはリアクタンス成分を示している。また、図3において、Xは、バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)を示している。ISOは、X/Rpに対して相関を有する。
 図4には、電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係が例示されている。本発明者は、バラン103を介して高周波電源101から第1電極106と第2電極111との間に高周波を供給する構成、特に、該構成において1.5≦X/Rp≦5000を満たすことが、真空容器110の内部空間(第1電極106と第2電極111との間の空間)に形成されるプラズマの電位(プラズマ電位)を真空容器110の内面の状態に対して鈍感にするために有利であることを見出した。ここで、プラズマ電位が真空容器110の内面の状態に対して鈍感になることは、プラズマ処理装置1を長期間にわたって使用した場合においてもプラズマ電位を安定させることができることを意味する。1.5≦X/Rp≦5000は、-10.0dB≧ISO≧-80dBに相当する。
 図5A~5Dには、1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および第1電極106の電位(カソード電位)をシミュレーションした結果が示されている。図5Aは、真空容器110の内面に膜が形成されていない状態でのプラズマ電位およびカソード電位を示している。図5Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位およびカソード電位を示している。図5Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位およびカソード電位を示している。図5Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位およびカソード電位を示している。図5A~5Dより、1.5≦X/Rp≦5000を満たすことが、真空容器110の内面が種々の状態においてプラズマ電位を安定させるために有利であることが理解される。
 図6A~図6Dには、1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および第1電極106の電位(カソード電位)をシミュレーションした結果が示されている。図6Aは、真空容器110の内面に膜が形成されていない状態でのプラズマ電位およびカソード電位を示している。図6Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位およびカソード電位を示している。図6Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位およびカソード電位を示している。図6Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位およびカソード電位を示している。図6A~6Dより、1.5≦X/Rp≦5000を満たさない場合は、真空容器110の内面の状態に依存してプラズマ電位が変化しうることが理解される。
 ここで、X/Rp>5000(例えば、X/Rp=∞)である場合とX/Rp<1.5である場合(例えば、X/Rp=1.0、X/Rp=0.5)との双方において、真空容器110の内面の状態に依存してプラズマ電位が変化しやすい。X/Rp>5000である場合は、真空容器110の内面に膜が形成されていない状態では、第1電極106と第2電極111との間でのみ放電が起こる。しかし、X/Rp>5000である場合、真空容器110の内面に膜が形成され始めると、それに対してプラズマ電位が敏感に反応し、図6A~6Dに例示されるような結果となる。一方、X/Rp<1.5である場合は、真空容器110を介して接地に流れ込む電流が大きいので、真空容器110の内面の状態(内面に形成される膜の電気的な特性)による影響が顕著となり、膜の形成に依存してプラズマ電位が変化する。したがって、前述のように、1.5≦X/Rp≦5000を満たすようにプラズマ処理装置1を構成することが有利である。
 図7を参照しながらRp-jXp(実際に知りたいものはRpのみ)の決定方法を例示する。まず、プラズマ処理装置1からバラン103を取り外し、インピーダンス整合回路102の出力端子230を本体10の第1端子251(ブロッキングキャパシタ104)に接続する。また、本体10の第2端子252(第2電極111)を接地する。この状態で高周波電源101からインピーダンス整合回路102を通して本体10の第1端子251に高周波を供給する。図7に示された例では、インピーダンス整合回路102は、等価的に、コイルL1、L2および可変キャパシタVC1、VC2で構成される。可変キャパシタVC1、VC2の容量値を調整することによってプラズマを発生させることができる。プラズマが安定した状態において、インピーダンス整合回路102のインピーダンスは、プラズマが発生しているときの本体10の側(第1電極106および第2電極111の側)のインピーダンスRp-jXpに整合している。このときのインピーダンス整合回路102のインピーダンスは、Rp+jXpである。
 よって、インピーダンスが整合したときのインピーダンス整合回路102のインピーダンスRp+jXpに基づいて、Rp-jXp(実際に知りたいものはRpのみ)を得ることができる。Rp-jXpは、その他、例えば、設計データに基づいてシミュレーションによって求めることができる。
 このようにして得られたRpに基づいて、X/Rpを特定することができる。例えば、1.5≦X/Rp≦5000を満たすように、Rpに基づいて、バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)Xを決定することができる。
 図8には、本発明の第2実施形態のプラズマ処理装置1の構成が模式的に示されている。第2実施形態のプラズマ処理装置1は、基板112をエッチングするエッチング装置として動作しうる。第2実施形態では、第1電極106は、カソードであり、基板112を保持する。また、第2実施形態では、第2電極111は、アノードである。第2実施形態のプラズマ処理装置1では、第1電極106と第1平衡端子211とがブロッキングキャパシタ104を介して電気的に接続されている。換言すると、第2実施形態のプラズマ処理装置1では、ブロッキングキャパシタ104が第1電極106と第1平衡端子211との電気的な接続経路に配置されている。
 図9には、本発明の第3実施形態のプラズマ処理装置1の構成が模式的に示されている。第3実施形態のプラズマ処理装置1は、第1実施形態のプラズマ処理装置1の変形例であり、第2電極111を昇降させる機構および第2電極111を回転させる機構の少なくとも一方を更に備える。図9に示された例では、プラズマ処理装置1は、第2電極111を昇降させる機構および第2電極111を回転させる機構の双方を含む駆動機構114を備える。真空容器110と駆動機構114との間には、真空隔壁を構成するベローズ113が設けられうる。
 同様に、第2実施形態のプラズマ処理装置1も、第1電極106を昇降させる機構および第2電極106を回転させる機構の少なくとも一方を更に備えうる。
 図10には、本発明の第4実施形態のプラズマ処理装置1の構成が模式的に示されている。第4実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第4実施形態のプラズマ処理装置1として言及しない事項は、第1乃至第3実施形態に従いうる。プラズマ処理装置1は、第1バラン103と、第2バラン303と、真空容器110と、第1組を構成する第1電極106および第2電極135と、第2組を構成する第1電極141および第2電極145とを備えている。あるいは、プラズマ処理装置1は、第1バラン103と、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1組を構成する第1電極106および第2電極135と、第2組を構成する第1電極141および第2電極145とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252、第3端子451、第4端子452を有する。
 第1バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。第1バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、第1バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。第2バラン303は、第1バラン103と同様の構成を有しうる。第2バラン303は、第1不平衡端子401、第2不平衡端子402、第1平衡端子411および第2平衡端子412を有する。第2バラン303の第1不平衡端子401および第2不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第1平衡端子411および第2平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。
 第1組の第1電極106は、ターゲット109を保持する。ターゲット109は、例えば、絶縁体材料または導電体材料でありうる。第1組の第2電極135は、第1電極106の周囲に配置される。第1組の第1電極106は、第1バラン103の第1平衡端子211に電気的に接続され、第1組の第2電極135は、第1バラン103の第2平衡端子212に電気的に接続されている。第2組の第1電極141は、基板112を保持する。第2組の第2電極145は、第1電極141の周囲に配置される。第2組の第1電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第2組の第2電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
 上記の構成は、第1組の第1電極106が第1端子251に電気的に接続され、第1組の第2電極135が第2端子252に電気的に接続され、第1端子251が第1バラン103の第1平衡端子211に電気的に接続され、第2端子252が第1バラン103の第2平衡端子212に電気的に接続された構成として理解されうる。また、上記の構成は、第2組の第1電極141が第3端子451に電気的に接続され、第2組の第2電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に電気的に接続されているものとして理解されうる。
 第1組の第1電極106と第1バラン103の第1平衡端子211(第1端子251)とは、ブロッキングキャパシタ104を介して電気的に接続されうる。ブロッキングキャパシタ104は、第1バラン103の第1平衡端子211と第1組の第1電極106との間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。ブロッキングキャパシタ104を設ける代わりに、第1インピーダンス整合回路102が、第1バラン103の第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。第1組の第1電極106および第2電極135は、絶縁体132を介して真空容器110によって支持されうる。
 第2組の第1電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第2組の第1電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。第2組の第1電極141および第2電極145は、絶縁体142を介して真空容器110によって支持されうる。
 プラズマ処理装置1は、第1高周波電源101と、第1高周波電源101と第1バラン103との間に配置された第1インピーダンス整合回路102とを備えうる。第1高周波電源101は、第1インピーダンス整合回路102を介して第1バラン103の第1不平衡端子201と第2不平衡端子202との間に高周波を供給する。換言すると、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103およびブロッキングキャパシタ104を介して、第1電極106と第2電極135との間に高周波を供給する。あるいは、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給する。第1バラン103並びに第1組の第1電極106および第2電極135は、真空容器110の内部空間に高周波を供給する第1高周波供給部を構成する。
 プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。換言すると、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第2組の第1電極141と第2電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。第2バラン303並びに第2組の第1電極141および第2電極145は、真空容器110の内部空間に高周波を供給する第2高周波供給部を構成する。
 第1高周波電源101からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第1バラン103の第1平衡端子211および第2平衡端子212の側から第1組の第1電極106および第2電極135の側(本体10の側)を見たときのインピーダンスをRp1-jXp1とする。また、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX1とする。この定義において、1.5≦X1/Rp1≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
 また、第2高周波電源301からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第2バラン303の第1平衡端子411および第2平衡端子412の側から第2組の第1電極141および第2電極145の側(本体10の側)を見たときのインピーダンスをRp2-jXp2とする。また、第2バラン303の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX2とする。この定義において、1.5≦X2/Rp2≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
 図11には、本発明の第5実施形態のプラズマ処理装置1の構成が模式的に示されている。第5実施形態の装置1は、第4実施形態のプラズマ処理装置1に対して駆動機構114、314を追加した構成を有する。駆動機構114は、第1電極141を昇降させる機構および第1電極141を回転させる機構の少なくとも一方を備えうる。駆動機構314は、第2電極145を昇降させる機構を備えうる。
 図12には、本発明の第6実施形態のプラズマ処理装置1の構成が模式的に示されている。第6実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第6実施形態として言及しない事項は、第1乃至第5実施形態に従いうる。第6実施形態のプラズマ処理装置1は、複数の第1高周波供給部と、少なくとも1つの第2高周波供給部とを備えている。複数の第1高周波供給部のうちの1つは、第1電極106aと、第2電極135aと、第1バラン103aとを含みうる。複数の第1高周波供給部のうちの他の1つは、第1電極106bと、第2電極135bと、第1バラン103bとを含みうる。ここでは、複数の第1高周波供給部が2つの高周波供給部で構成される例を説明する。また、2つの高周波供給部およびそれに関連する構成要素を添え字a、bで相互に区別する。同様に、2つのターゲットについても、添え字a、bで相互に区別する。
 他の観点において、プラズマ処理装置1は、複数の第1バラン103a、103bと、第2バラン303と、真空容器110と、第1電極106aおよび第2電極135aと、第1電極106bおよび第2電極135bと、第1電極141および第2電極145とを備えている。あるいは、プラズマ処理装置1は、複数の第1バラン103a、103bと、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1電極106aおよび第2電極135aと、第1電極106bおよび第2電極135bと、第1電極141および第2電極145とを備えているものとして理解されてもよい。本体10は、第1端子251a、251b、第2端子252a、252b、第3端子451、第4端子452を有する。
 第1バラン103aは、第1不平衡端子201a、第2不平衡端子202a、第1平衡端子211aおよび第2平衡端子212aを有する。第1バラン103aの第1不平衡端子201aおよび第2不平衡端子202aの側には、不平衡回路が接続され、第1バラン103aの第1平衡端子211aおよび第2平衡端子212aの側には、平衡回路が接続される。第1バラン103bは、第1不平衡端子201b、第2不平衡端子202b、第1平衡端子211bおよび第2平衡端子212bを有する。第1バラン103bの第1不平衡端子201bおよび第2不平衡端子202bの側には、不平衡回路が接続され、第1バラン103bの第1平衡端子211bおよび第2平衡端子212bの側には、平衡回路が接続される。
 第2バラン303は、第1バラン103a、103bと同様の構成を有しうる。第2バラン303は、第1不平衡端子401、第2不平衡端子402、第1平衡端子411および第2平衡端子412を有する。第2バラン303の第1不平衡端子401および第2不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第1平衡端子411および第2平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。
 第1電極106a、106bは、それぞれターゲット109a、109bを保持する。ターゲット109a、109bは、例えば、絶縁体材料または導電体材料でありうる。第2電極135a、135bは、それぞれ第1電極106a、106bの周囲に配置される。第1電極106a、106bは、それぞれ第1バラン103a、103bの第1平衡端子211a、211bに電気的に接続され、第2電極135a、135bは、それぞれ第1バラン103a、103bの第2平衡端子212a、212bに電気的に接続されている。
 第1電極141は、基板112を保持する。第2電極145は、第1電極141の周囲に配置される。第1電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第2電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
 上記の構成は、第1電極106a、106bがそれぞれ第1端子251a、251bに電気的に接続され、第2電極135a、135bがそれぞれ第2端子252a、252bに電気的に接続され、第1端子251a、251bがそれぞれ第1バラン103a、103bの第1平衡端子211a、111bに電気的に接続され、第2端子252a、252bがそれぞれ第1バラン103a、103bの第2平衡端子212a、212bに電気的に接続された構成として理解されうる。また、上記の構成は、第1電極141が第3端子451に電気的に接続され、第2電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に電気的に接続されているものとして理解されうる。
 第1電極106a、106bと第1バラン103a、103bの第1平衡端子211a、211b(第1端子251a、251b)とは、それぞれブロッキングキャパシタ104a、104bを介して電気的に接続されうる。ブロッキングキャパシタ104a、104bは、第1バラン103a、103bの第1平衡端子211a、211bと第1電極106a、106bとの間(あるいは、第1バラン103a、103bの第1平衡端子211a、211bと第2平衡端子212a、212bとの間)で直流電流を遮断する。ブロッキングキャパシタ104a、104bを設ける代わりに、第1インピーダンス整合回路102a、102bが、第1バラン103a、103bの第1不平衡端子201a、201bと第2不平衡端子202a、202bとの間を流れる直流電流を遮断するように構成されてもよい。あるいは、ブロッキングキャパシタ104a、104bは、第2電極135a、135bと第1バラン103a、103bの第2平衡端子212a、212b(第2端子252a、252b)との間に配置されてもよい。第1電極106a、106bおよび第2電極135a、135bは、それぞれ絶縁体132a、132bを介して真空容器110によって支持されうる。
 第1電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第1電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。あるいは、ブロッキングキャパシタ304は、第2電極145と第2バラン303の第2平衡端子412(第4端子452)との間に配置されてもよい。第1電極141および第2電極145は、絶縁体142を介して真空容器110によって支持されうる。
 プラズマ処理装置1は、複数の第1高周波電源101a、101bと、複数の第1高周波電源101a、101bと複数の第1バラン103a、103bとの間にそれぞれ配置された第1インピーダンス整合回路102a、102bとを備えうる。第1高周波電源101a、101bは、それぞれ第1インピーダンス整合回路102a、102bを介して第1バラン103a、103bの第1不平衡端子201a、201bと第2不平衡端子202a、202bとの間に高周波を供給する。換言すると、第1高周波電源101a、101bは、それぞれ第1インピーダンス整合回路102a、102b、第1バラン103a、103bおよびブロッキングキャパシタ104a、104bを介して、第1電極106a、106bと第2電極135a、135bとの間に高周波を供給する。あるいは、第1高周波電源101a、101bは、第1インピーダンス整合回路102a、102b、第1バラン103a、103bを介して、本体10の第1端子251a、251bと第2端子252a、252bとの間に高周波を供給する。
 プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。換言すると、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第1電極141と第2電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。
 図13には、本発明の第7実施形態のプラズマ処理装置1の構成が模式的に示されている。第7実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第7実施形態のプラズマ処理装置1として言及しない事項は、第1乃至第6実施形態に従いうる。プラズマ処理装置1は、第1バラン103と、第2バラン303と、真空容器110と、第1組を構成する第1電極105aおよび第2電極105bと、第2組を構成する第1電極141および第2電極145とを備えている。あるいは、プラズマ処理装置1は、第1バラン103と、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1組を構成する第1電極105aおよび第2電極105bと、第2組を構成する第1電極141および第2電極145とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252、第3端子451、第4端子452を有する。
 第1バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。第1バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、第1バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。第2バラン303は、第1バラン103と同様の構成を有しうる。第2バラン303は、第1不平衡端子401、第2不平衡端子402、第1平衡端子411および第2平衡端子412を有する。第2バラン303の第1不平衡端子401および第2不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第1平衡端子411および第2平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。
 第1組の第1電極105aは、第1ターゲット109aを保持し、第1ターゲット109aを介して基板112の側の空間と対向する。第1組の第2電極105bは、第1電極105aの隣に配置され、第2ターゲット109bを保持し、第2ターゲット109bを介して基板112の側の空間と対向する。ターゲット109aおよび109bは、例えば、絶縁体材料または導電体材料でありうる。第1組の第1電極105aは、第1バラン103の第1平衡端子211に電気的に接続され、第1組の第2電極105bは、第1バラン103の第2平衡端子212に電気的に接続されている。
 第2組の第1電極141は、基板112を保持する。第2組の第2電極145は、第1電極141の周囲に配置される。第2組の第1電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第2組の第2電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
 上記の構成は、第1組の第1電極105aが第1端子251に電気的に接続され、第1組の第2電極105bが第2端子252に電気的に接続され、第1端子251が第1バラン103の第1平衡端子211に電気的に接続され、第2端子252が第1バラン103の第2平衡端子212に接続された構成として理解されうる。また、上記の構成は、第2組の第1電極141が第3端子451に電気的に接続され、第2組の第2電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に接続されているものとして理解されうる。
 第1組の第1電極105aと第1バラン103の第1平衡端子211(第1端子251)とは、ブロッキングキャパシタ104aを介して電気的に接続されうる。ブロッキングキャパシタ104aは、第1バラン103の第1平衡端子211と第1組の第1電極105aとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。第1組の第2電極105bと第1バラン103の第2平衡端子212(第2端子252)とは、ブロッキングキャパシタ104bを介して電気的に接続されうる。ブロッキングキャパシタ104bは、第1バラン103の第2平衡端子212と第1組の第2電極105bとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。第1組の第1電極105a、第2電極105bは、それぞれ絶縁体132a、132bを介して真空容器110によって支持されうる。
 第2組の第1電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第2組の第1電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子401と第2不平衡端子402との間を流れる直流電流を遮断するように構成されてもよい。第2組の第1電極141、第2電極145は、それぞれ絶縁体142、146を介して真空容器110によって支持されうる。
 プラズマ処理装置1は、第1高周波電源101と、第1高周波電源101と第1バラン103との間に配置された第1インピーダンス整合回路102とを備えうる。第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103、およびブロッキングキャパシタ104a、104bを介して、第1電極105aと第2電極105bとの間に高周波を供給する。あるいは、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給する。第1バラン103並びに第1組の第1電極105aおよび第2電極105bは、真空容器110の内部空間に高周波を供給する第1高周波供給部を構成する。
 プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第2組の第1電極141と第2電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。第2バラン303並びに第2組の第1電極141および第2電極145は、真空容器110の内部空間に高周波を供給する第2高周波供給部を構成する。
 第1高周波電源101からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第1バラン103の第1平衡端子211および第2平衡端子212の側から第1組の第1電極105aおよび第2電極105bの側(本体10の側)を見たときのインピーダンスをRp1-jXp1とする。また、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX1とする。この定義において、1.5≦X1/Rp1≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
 また、第2高周波電源301からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第2バラン303の第1平衡端子411および第2平衡端子412の側から第2組の第1電極127および第2電極130の側(本体10の側)を見たときのインピーダンスをRp2-jXp2とする。また、第2バラン303の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX2とする。この定義において、1.5≦X2/Rp2≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
 第7実施形態のプラズマ処理装置1は、第2組を構成する第1電極141を昇降させる機構および第2組を構成する第1電極141を回転させる機構の少なくとも一方を更に備えうる。図13に示された例では、プラズマ処理装置1は、第1電極141を昇降させる機構および第1電極141を回転させる機構の双方を含む駆動機構114を備える。また、図13に示された例では、プラズマ処理装置1は、第2組を構成する第2電極145を昇降させる駆動機構314を備える。真空容器110と駆動機構114、314との間には、真空隔壁を構成するベローズが設けられうる。
 図14を参照しながら、図13に示された第7実施形態のプラズマ処理装置1における第1バラン103の機能を説明する。第1不平衡端子201を流れる電流をI1、第1平衡端子211を流れる電流をI2、第2不平衡端子202を流れる電流をI2’、電流I2のうち接地に流れる電流をI3とする。I3=0、即ち、平衡回路の側で接地に電流が流れない場合、接地に対する平衡回路のアイソレーション性能が最も良い。I3=I2、即ち、第1平衡端子211を流れる電流I2の全てが接地に対して流れる場合、接地に対する平衡回路のアイソレーション性能が最も悪い。このようなアイソレーション性能の程度を示す指標ISOは、第1乃至第5実施形態と同様に、以下の式で与えられうる。この定義の下では、ISOの値の絶対値が大きい方が、アイソレーション性能が良い。
  ISO[dB]=20log(I3/I2’)
 図14において、Rp-jXp(=Rp/2-jXp/2+Rp/2-jXp/2)は、真空容器110の内部空間にプラズマが発生している状態で第1平衡端子211および第2平衡端子212の側から第1電極105aおよび第2電極105bの側(本体10の側)を見たときのインピーダンス(ブロッキングキャパシタ104a及び104bのリアクタンスを含む)を示している。Rpは抵抗成分、-Xpはリアクタンス成分を示している。また、図14において、Xは、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)を示している。ISOは、X/Rpに対して相関を有する。
 第1実施形態の説明において参照した図4には、電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係が例示されている。図4の関係は、第7実施形態においても成り立つ。本発明者は、第7実施形態においても、1.5≦X/Rp≦5000を満たすことが、真空容器110の内部空間(第1電極105aと第2電極105bとの間の空間)に形成されるプラズマの電位(プラズマ電位)を真空容器110の内面の状態に対して鈍感にするために有利であることを見出した。ここで、プラズマ電位が真空容器110の内面の状態に対して鈍感になることは、プラズマ処理装置1を長期間にわたって使用した場合においてもプラズマ電位を安定させることができることを意味する。1.5≦X/Rp≦5000は、-10.0dB≧ISO≧-80dBに相当する。
 図15A~15Dには、1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)をシミュレーションした結果が示されている。図15Aは、真空容器110の内面に抵抗性の膜(1mΩ)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図15Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図15Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図15Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図15A~15Dより、1.5≦X/Rp≦5000を満たすことが、真空容器110の内面が種々の状態においてプラズマ電位を安定させるために有利であることが理解される。
 図16A~16Dには、1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)をシミュレーションした結果が示されている。図16Aは、真空容器110の内面に抵抗性の膜(1mΩ)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図16Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図16Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図16Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図16A~16Dより、1.5≦X/Rp≦5000を満たさない場合は、真空容器110の内面の状態に依存してプラズマ電位が変化することが理解される。
 ここで、X/Rp>5000(例えば、X/Rp=∞)である場合とX/Rp<1.5である場合(例えば、X/Rp=1.16、X/Rp=0.87)との双方において、真空容器110の内面の状態に依存してプラズマ電位が変化しやすい。X/Rp>5000である場合は、真空容器110の内面に膜が形成されていない状態では、第1電極105aと第2電極105bの間でのみ放電が起こる。しかし、X/Rp>5000である場合、真空容器110の内面に膜が形成され始めると、それに対してプラズマ電位が敏感に反応し、図16A~16Dに例示されるような結果となる。一方、X/Rp<1.5である場合は、真空容器110を介して接地に流れ込む電流が大きいので、真空容器110の内面の状態(内面に形成される膜の電気的な特性)による影響が顕著となり、膜の形成に依存してプラズマ電位が変化する。したがって、前述のように、1.5≦X/Rp≦5000を満たすようにプラズマ処理装置1を構成することが有利である。
 図17には、本発明の第8実施形態のプラズマ処理装置1の構成が模式的に示されている。第8実施形態のプラズマ処理装置1は、第2実施形態のプラズマ処理装置1の変形例であり、基板112をエッチングするエッチング装置として動作しうる。
 プラズマ処理装置1は、バラン(平衡不平衡変換回路)103と、真空容器110と、第1電極106と、第2電極111とを備えている。あるいは、プラズマ処理装置1は、バラン103と、本体10とを備え、本体10が、真空容器110と、第1電極106と、第2電極111とを備えているものとして理解されてもよい。本体10は、第1端子251および第2端子252を有する。第1電極106は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。第2電極111は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。
 バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。真空容器110は、導体で構成され、接地されている。
 第8実施形態では、第1電極106は、カソードであり、基板112を保持する。また、第8実施形態では、第2電極111は、アノードである。第8実施形態のプラズマ処理装置1では、第1電極106と第1平衡端子211とがブロッキングキャパシタ104を介して電気的に接続されている。換言すると、第8実施形態のプラズマ処理装置1では、ブロッキングキャパシタ104が第1電極106と第1平衡端子211との電気的な接続経路に配置されている。
 上記のような構成に代えて、第2平衡端子212と第2電極111とがブロッキングキャパシタを介して電気的に接続されてもよい。あるいは、第1平衡端子211と第1電極106とがブロッキングキャパシタを介して電気的に接続され、第2平衡端子212と第2電極111とがブロッキングキャパシタを介して電気的に接続されてもよい。
 第1電極106は、絶縁体107を介して真空容器110によって支持されうる。第2電極111は、絶縁体108を介して真空容器110によって支持されうる。第2電極111は、リング形状を有しうる。第2電極111は、例えば、一定の厚さを有しうる。
 第1電極106および第2電極111は、互いに対向するように配置されうる。他の観点において、第1電極106および第2電極111は、第1電極106の少なくとも一部分と第2電極111の少なくとも一部分とが互いに対向するように配置されうる。第1電極106は、対称軸SAに関して対称な形状を有し、第2電極111は、対称軸SAに関して対称な形状を有しうる。一例において、第1電極106は、対称軸SAに関して対称に配置された円形形状を有し、第2電極111は、対称軸SAに関して対称に配置された円形リング形状を有しうる。円形リング形状は、外側のエッジを規定する形状が円形であり、内側のエッジを規定する形状が円形である。他の例において、第1電極106は、対称軸SAに関して対称に配置された矩形形状を有し、第2電極111は、対称軸SAに関して対称に配置された矩形リング形状を有しうる。矩形リング形状は、外側のエッジを規定する形状が矩形であり、内側のエッジを規定する形状が矩形である。
 図18には、第8実施形態のプラズマ処理装置1において、真空容器110の中(第1電極106と第2電極111との間の空間)に形成されるプラズマPが模式的に示されている。図19には、インピーダンス整合回路102からバラン103を介することなく第1電極106に高周波が供給され、第2電極111が開口を有しない構成において、真空容器110の中(第1電極106と第2電極111との間の空間)に形成されるプラズマPが模式的に示されている。
 図18に模式的に示されるように、バラン103を介してインピーダンス整合回路102から第1電極106と第2電極111との間に高周波が供給される構成では、プラズマPが接地(真空容器110)に対して分離されているので、プラズマPが第1電極106と第2電極111との間の空間に閉じ込められうる。通常、第2電極111が開口を有しない場合(リング形状を有しない場合)、プラズマPの密度は、周辺部分よりも中央部分(対称軸SAの近傍)において高くなりうる。第2電極111がリング形状を有する場合、第2電極111がリング形状を有しない場合よりも中央部分(対称軸SAの近傍)におけるプラズマPの密度が低下し、そのため、プラズマPの密度がより均一になりうる。
 一方、図19に模式的に示されるように、インピーダンス整合回路102からバラン103を介することなく第1電極106に高周波が供給される構成においては、真空容器110も接地電極として機能しうるので、プラズマPが広範囲に広がりうる。また、第2電極111が開口を有しない構成において、プラズマPの密度は、周辺部分よりも中央部分(対称軸SAの近傍)において高くなりうる。これは、基板112の不均一な処理をもたらしうる。
 図20には、本発明の第9実施形態のプラズマ処理装置1の構成が模式的に示されている。第9実施形態のプラズマ処理装置1は、第8実施形態のプラズマ処理装置1の変形例であり、基板112をエッチングするエッチング装置として動作しうる。
 第1電極106および第2電極111は、互いに対向するように配置されうる。他の観点において、第1電極106および第2電極111は、第1電極106の少なくとも一部分と第2電極111の少なくとも一部分とが互いに対向するように配置されうる。第1電極106は、対称軸SAに関して対称な形状を有し、第2電極111は、対称軸SAに関して対称な形状を有しうる。一例において、第1電極106は、対称軸SAに関して対称に配置された円形形状を有し、第2電極111は、対称軸SAに関して対称に配置された円形リング形状を有しうる。他の例において、第1電極106は、対称軸SAに関して対称に配置された矩形形状を有し、第2電極111は、対称軸SAに関して対称に配置された矩形リング形状を有しうる。
 第2電極111は、第1電極106の保持面(基板112を保持する面)に垂直な方向における厚さが変化した部分を有しうる。第2電極111は、例えば、複数のリング111a、111b、111cを積層した形状を有し、複数のリング111a、111b、111cは、第1電極106からの距離が遠いほど小さい開口を有しうる。
 図21には、本発明の第10実施形態のプラズマ処理装置1の構成が模式的に示されている。第10実施形態のプラズマ処理装置1は、第1実施形態のプラズマ処理装置1の変形例であり、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。
 第10実施形態では、第1電極106は、カソードであり、ターゲット109を保持する。また、第10実施形態では、第2電極111は、アノードであり、基板112を保持する。第10実施形態のプラズマ処理装置1では、第1電極106と第1平衡端子211とがブロッキングキャパシタ104を介して電気的に接続されている。換言すると、第8実施形態のプラズマ処理装置1では、ブロッキングキャパシタ104が第1電極106と第1平衡端子211との電気的な接続経路に配置されている。
 上記のような構成に代えて、第2平衡端子212と第2電極111とがブロッキングキャパシタを介して電気的に接続されてもよい。あるいは、第1平衡端子211と第1電極106とがブロッキングキャパシタを介して電気的に接続され、第2平衡端子212と第2電極111とがブロッキングキャパシタを介して電気的に接続されてもよい。
 第1電極106は、絶縁体107を介して真空容器110によって支持されうる。第2電極111は、リング形状を有しうる。第2電極111は、例えば、一定の厚さを有しうる。あるいは、第2電極111は、第1電極106の保持面(基板112を保持する面)に垂直な方向における厚さが変化した部分を有しうる。絶縁体108を介して真空容器110によって支持されうる。
 第1電極106および第2電極111は、互いに対向するように配置されうる。他の観点において、第1電極106および第2電極111は、第1電極106の少なくとも一部分と第2電極111の少なくとも一部分とが互いに対向するように配置されうる。第1電極106は、対称軸SAに関して対称な形状を有し、第2電極111は、対称軸SAに関して対称な形状を有しうる。一例において、第1電極106は、対称軸SAに関して対称に配置された円形形状を有し、第2電極111は、対称軸SAに関して対称に配置された円形リング形状を有しうる。他の例において、第1電極106は、対称軸SAに関して対称に配置された矩形形状を有し、第2電極111は、対称軸SAに関して対称に配置された矩形リング形状を有しうる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
1:プラズマ処理装置、10:本体、101:高周波電源、102:インピーダンス整合回路、103:バラン、104:ブロッキングキャパシタ、106:第1電極、107、108:絶縁体、109:ターゲット、110:真空容器、111:第2電極、112:基板、201:第1不平衡端子、202:第2不平衡端子、211:第1平衡端子、212:第2平衡端子、251:第1端子、252:第2端子、221:第1コイル、222:第2コイル、223:第3コイル、224:第4コイル、SA:対称軸

Claims (16)

  1.  第1不平衡端子、第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、
     接地された真空容器と、
     前記第1平衡端子に電気的に接続された第1電極と、
     前記第2平衡端子に電気的に接続された第2電極と、を備え、
     前記第2電極は、リング形状を有する、
     ことを特徴とするプラズマ処理装置。
  2.  前記第2電極は、一定の厚さを有する、
     ことを特徴とする請求項1に記載のプラズマ処理装置。
  3.  前記第2電極は、厚さが変化した部分を有する、
     ことを特徴とする請求項1に記載のプラズマ処理装置。
  4.  前記第2電極は、複数のリングを積層した形状を有し、
     前記複数のリングは、前記第1電極からの距離が遠いほど小さい開口を有する、
     ことを特徴とする請求項2に記載のプラズマ処理装置。
  5.  前記第1電極および前記第2電極は、互いに対向するように配置されている、
     ことを特徴とする請求項1乃至4のいずれか1項に記載のプラズマ処理装置。
  6.  前記第1電極は、対称軸に関して対称な形状を有し、前記第2電極は、前記対称軸に関して対称な形状を有する、
     ことを特徴とする請求項1乃至5のいずれか1項に記載のプラズマ処理装置。
  7.  前記第1平衡端子と前記第1電極とがブロッキングキャパシタを介して電気的に接続されている、
     ことを特徴とする請求項1乃至6のいずれか1項に記載のプラズマ処理装置。
  8.  前記第2平衡端子と前記第2電極とがブロッキングキャパシタを介して電気的に接続されている、
     ことを特徴とする請求項1乃至6のいずれか1項に記載のプラズマ処理装置。
  9.  前記第1平衡端子と前記第1電極とがブロッキングキャパシタを介して電気的に接続され、前記第2平衡端子と前記第2電極とがブロッキングキャパシタを介して電気的に接続されている、
     ことを特徴とする請求項1乃至6のいずれか1項に記載のプラズマ処理装置。
  10.  前記第1電極および前記第2電極が絶縁体を介して前記真空容器によって支持されている、
     ことを特徴とする請求項1乃至9のいずれか1項に記載のプラズマ処理装置。
  11.  前記バランは、前記第1不平衡端子と前記第1平衡端子とを接続する第1コイルと、前記第2不平衡端子と前記第2平衡端子とを接続する第2コイルとを有する、
     ことを特徴とする請求項1乃至10のいずれか1項に記載のプラズマ処理装置。
  12.  前記バランは、前記第1平衡端子と前記第2平衡端子との間に接続された第3コイルおよび第4コイルを更に有し、前記第3コイルおよび前記第4コイルは、前記第3コイルと前記第4コイルとの接続ノードの電圧を前記第1平衡端子の電圧と前記第2平衡端子の電圧との中点とするように構成されている、
     ことを特徴とする請求項11に記載のプラズマ処理装置。
  13.  前記第1電極は基板を保持し、前記プラズマ処理装置は、前記基板をエッチングするエッチング装置として構成されている、
     ことを特徴とする請求項1乃至12のいずれか1項に記載のプラズマ処理装置。
  14.  前記第1電極はターゲットを保持し、前記第2電極は基板を保持し、前記プラズマ処理装置は、スパッタリングによって前記基板に膜を形成するスパッタリング装置として構成されている、
     ことを特徴とする請求項1乃至12のいずれか1項に記載のプラズマ処理装置。
  15.  高周波電源と、
     前記高周波電源と前記バランとの間に配置されたインピーダンス整合回路と、
     を更に備えることを特徴とする請求項1乃至14のいずれか1項に記載のプラズマ処理装置。
  16.  前記第1平衡端子および前記第2平衡端子の側から前記第1電極および前記第2電極の側を見たときの前記第1平衡端子と前記第2平衡端子との間の抵抗成分をRpとし、前記第1不平衡端子と前記第1平衡端子との間のインダクタンスをXとしたときに、1.5≦X/Rp≦5000を満たす、
     ことを特徴とする請求項1乃至15のいずれか1項に記載のプラズマ処理装置。
PCT/JP2018/024151 2017-06-27 2018-06-26 プラズマ処理装置 WO2019004189A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517996A JP6546369B2 (ja) 2017-06-27 2018-06-26 プラズマ処理装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
PCT/JP2017/023603 WO2019003309A1 (ja) 2017-06-27 2017-06-27 プラズマ処理装置
PCT/JP2017/023611 WO2019003312A1 (ja) 2017-06-27 2017-06-27 プラズマ処理装置
JPPCT/JP2017/023603 2017-06-27
JPPCT/JP2017/023611 2017-06-27
JP2018017555 2018-02-02
JP2018-017555 2018-02-02

Publications (1)

Publication Number Publication Date
WO2019004189A1 true WO2019004189A1 (ja) 2019-01-03

Family

ID=64741642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024151 WO2019004189A1 (ja) 2017-06-27 2018-06-26 プラズマ処理装置

Country Status (3)

Country Link
JP (1) JP6546369B2 (ja)
TW (1) TWI693864B (ja)
WO (1) WO2019004189A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248200A (en) * 1975-10-14 1977-04-16 Sanyo Kiko Kk Bolt fastening method
JPH02156080A (ja) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JPH10261621A (ja) * 1997-03-19 1998-09-29 Hitachi Ltd プラズマ処理装置
JP2001518230A (ja) * 1997-04-02 2001-10-09 マツクス−プランク−ゲゼルシャフト ツール フエルデルング デル ヴイツセンシャフテン エー フアウ 粒子操作
JP2009302566A (ja) * 2009-09-16 2009-12-24 Masayoshi Murata トランス型平衡不平衡変換装置を備えたプラズマ表面処理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141937U (ja) * 1977-04-15 1978-11-09
US4887005A (en) * 1987-09-15 1989-12-12 Rough J Kirkwood H Multiple electrode plasma reactor power distribution system
US5330578A (en) * 1991-03-12 1994-07-19 Semiconductor Energy Laboratory Co., Ltd. Plasma treatment apparatus
JP2000030896A (ja) * 1998-07-10 2000-01-28 Anelva Corp プラズマ閉込め装置
JP4601104B2 (ja) * 1999-12-20 2010-12-22 キヤノンアネルバ株式会社 プラズマ処理装置
US8438990B2 (en) * 2008-09-30 2013-05-14 Applied Materials, Inc. Multi-electrode PECVD source
JP5606063B2 (ja) * 2009-12-28 2014-10-15 東京エレクトロン株式会社 プラズマ処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248200A (en) * 1975-10-14 1977-04-16 Sanyo Kiko Kk Bolt fastening method
JPH02156080A (ja) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JPH10261621A (ja) * 1997-03-19 1998-09-29 Hitachi Ltd プラズマ処理装置
JP2001518230A (ja) * 1997-04-02 2001-10-09 マツクス−プランク−ゲゼルシャフト ツール フエルデルング デル ヴイツセンシャフテン エー フアウ 粒子操作
JP2009302566A (ja) * 2009-09-16 2009-12-24 Masayoshi Murata トランス型平衡不平衡変換装置を備えたプラズマ表面処理装置

Also Published As

Publication number Publication date
JPWO2019004189A1 (ja) 2019-11-07
TWI693864B (zh) 2020-05-11
JP6546369B2 (ja) 2019-07-17
TW201918122A (zh) 2019-05-01

Similar Documents

Publication Publication Date Title
JP6280677B1 (ja) プラズマ処理装置
JP6516951B1 (ja) プラズマ処理装置
JP6458206B1 (ja) プラズマ処理装置
JP6309683B1 (ja) プラズマ処理装置
WO2019003309A1 (ja) プラズマ処理装置
JP6516950B1 (ja) プラズマ処理装置
JP6546369B2 (ja) プラズマ処理装置
JP6785935B2 (ja) エッチング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517996

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824035

Country of ref document: EP

Kind code of ref document: A1